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Non-plasmonic nanoantennas for surface enhanced
spectroscopies with ultra-low heat conversion
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Rupert F. Oulton2, Andrea V. Bragas1 & Stefan A. Maier2

Nanoplasmonics has recently revolutionized our ability to control light on the nanoscale.

Using metallic nanostructures with tailored shapes, it is possible to efficiently focus light into

nanoscale field ‘hot spots’. High field enhancement factors have been achieved in such optical

nanoantennas, enabling transformative science in the areas of single molecule interactions,

highly enhanced nonlinearities and nanoscale waveguiding. Unfortunately, these large

enhancements come at the price of high optical losses due to absorption in the metal,

severely limiting real-world applications. Via the realization of a novel nanophotonic platform

based on dielectric nanostructures to form efficient nanoantennas with ultra-low light-into-

heat conversion, here we demonstrate an approach that overcomes these limitations. We

show that dimer-like silicon-based single nanoantennas produce both high surface enhanced

fluorescence and surface enhanced Raman scattering, while at the same time generating a

negligible temperature increase in their hot spots and surrounding environments.
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1 Laboratorio de Electrónica Cuántica, Departamento de Fı́sica, FCEN, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA Buenos Aires,
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M
etallic nanoantennas have been widely used to
efficiently enhance electromagnetic fields and confine
them to nanometric volumes, particularly at optical

frequencies1. This local enhancement is due to the resonant
excitation of surface plasmons, collective oscillations of the
conducting electrons in metals2. Enhanced light-matter
interactions mediated by plasmons enable many applications,
such as information processing3, ultrasensitive (bio)detection4,
surface enhanced Raman scattering (SERS)5,6, surface enhanced
fluorescence (SEF)7 and nonlinear spectroscopy8–10. Gold and
silver are commonly used in plasmonic devices because of their
high DC conductivities11,12. However, at optical frequencies
interband transitions play a detrimental role in these metals13.
Losses arising from interband transitions occur when a valence
electron in the metal absorbs a photon to jump to the Fermi
surface or when an electron near the Fermi surface absorbs a
photon to jump to the next unoccupied state in the conduction
band14,15. This loss mechanism leads to Joule heating
of the structure and its local environment16. In recent years
several applications, such as photothermal cancer therapy17,
photothermal imaging18, catalytic process enhancement in
photocatalysis19 and photohermal biosensing20 have been
proposed to take advantage of this nanoscale-generated (that is,
highly localized) heat in metallic-based plasmonic nanoantennas.

For many other applications, however, localized heating is
extremely detrimental for both the application/experiment and for
the nanoantennas themselves21,22. Local heating of the plasmonic
structures changes their refractive indices via the thermo-optic
effect. Depending on the illuminating power, nanoantennas can
even be reshaped and/or melted, thus strongly affecting their
nanoscale lighting and photonic modulation capabilities23.
Moreover, heat generated by the nanoantennas can vapourize the
surrounding liquid/solvent media24 or affect nanoemitters,
molecules and proteins close to them25. To circumvent the issues
of losses and heating, the use of non-plasmonic materials, such as

silicon, germanium or gallium phosphide (high refractive index
dielectrics), has been theoretically proposed for the fabrication of
nanoantennas with the ability to confine and enhance near and far-
field light26,27. The magneto-optical response28–32 and directional
light scattering33–35 of these materials have been explored and
recent experimental efforts in this field have been devoted to
controllably obtaining single spherical Si nanoparticles36.

In this work, we show experimental results that illustrate both
high near-field enhancement (electromagnetic hot spots) and
ultra-low heat conversion in the visible-near infrared (vis-NIR)
region using Si dimer nanoantennas with 20-nm gaps. These hot
spots are able to enhance the Raman scattering from a polymer
thin film by up to 103 times. Moreover, we report surface
enhanced fluorescence of the same order from emitters in the
vicinity of these non-plasmonic antennas. Finally, using mole-
cular thermometry we compare the temperature increase in the
gap and surrounding areas of Si dimers against Au-reference
nanoantennas under the same experimental conditions, when
illuminating at their resonance wavelength. We find Si dimer
related heating to be 1/18 times that of the Au plasmon-analogue
system; with the last only doubling the field enhancement
capability of the dielectric. Theoretical simulations are used to
better understand and support these findings. Non-plasmonic
nanoantennas open a new approach for surface-enhanced
spectroscopies with the peculiarity of not perturbing the response
of the target under evaluation by undesired local heating.

Results
Silicon nanoantennas design and enhancement. Guided by
numerical calculations (described in the Methods section,
numerical calculations), we designed and then fabricated silicon
dimer antenna arrays to evaluate their performance as optical
nanoantennas in the near infrared region of the spectrum
expecting, as predicted theoretically, good enhancement response
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Figure 1 | Design and performance of silicon nanoantennas. (a) SEM image of the array of nanostructures fabricated in Si on a silicon-on-insulator

substrate. Each nanoantenna consists of two identical disks with a diameter of 220 nm, a height of 200 nm and a 20-nm gap in between. Scale bar, 2 mm.

(b) SEM top-view and (c) lateral-view images of a single nanoantenna, indicated in the rectangle in a. Scale bar, 100 nm. (d) Numerical calculation results

showing a scattering resonance at l¼ 860 nm (vertical black line) and a low absorption cross section for the Si dimer in PMMA. Note that the absorption

curve is multiplied by a factor of 10. (e) Near-field distribution map for the silicon structure excited at resonance, showing good confinement of the electric

field in the gap. Note that the maximum enhancement value is 5.5. Scale bar, 100 nm. (f) Experimental 2D normalized Raman map, showing enhanced

signal coming from the molecules close to the nanoantennas. (g) SERS enhancement factors obtained for each individual nanoantenna shown in f, after

volume normalization (see Methods, SERS mapping section, for details). The error bars show half the difference between the minimum and the maximum

Raman intensity value in each nanoantenna. The dashed line corresponds to (Emax/E0)4, from e.
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in the near and far field together with ultra-low heat conversion.
Figure 1a shows a scanning electron microscope (SEM) image of
the fabricated arrays, while Fig. 1b,c exhibit the diameter, height
and shape of a single Si-dimer nanoantenna with a 20-nm gap
between the two disks; a very challenging configuration for this
material. The fabrication methodology can be found in the
Methods section, sample fabrication and preparation, while fur-
ther characterization can be found in Supplementary Fig. 1 and
Supplementary Note 1. These nanostructures present a broad
scattering resonance in the NIR, whereas at the same time, the
low-energy band gap of Si (B1.1 eV), leads to a very low
absorption in this region as shown in Fig. 1d. Figure 1e illustrates
the calculated near-field distribution around a silicon dimer
excited at resonance (l¼ 860 nm), describing the optical antenna
performance. As this is a dipolar resonance of the structure, the
maximum field enhancement occurs in the gap, reaching values
close to 5.5 for E/E0. We note that theoretical simulations predict
(E/E0)4 enhancements as large as B106 (E/E0¼B32) for Si
dimers with gaps as small as 4 nm (ref. 26), which would allow in
principle single-molecule SERS detection37 (see Supplementary
Fig. 2 and Supplementary Note 2). For comparison, we observe
that gold structures such as bow–tie nanoantennas with sharp
edges and 4-nm gap, have been shown to produce E/E0 values up
to B40 (ref. 38), whereas Au disk dimers with similar inter-disk
spacing distance to that of our Si dimers (20 nm) show values for
the field enhancement which are higher by a factor of 2 (ref. 39).
It is important to mention that the physical mechanism behind
dielectric or metallic nanoantennas is essentially different. While
dielectric antennas rely on the fields and displacement currents
induced by the external electromagnetic radiation, in metallic
ones their properties are based on the oscillations of the free-
electron plasma26.

To experimentally probe the optical antenna performance (that is,
the local field enhancement), a 200-nm thick poly(methyl
methacrylate) (PMMA) polymeric film was deposited on top of
the Si-nanoantenna sample to study the SERS effect. Using a home-
built confocal microscope fed with a CW Ti:Sapphire laser, two-
dimensional (2D) Raman maps were recorded by scanning the
sample and sending the scattered light through an appropriate set of
filters and into an avalanche photodiode (APD). To verify that there
was adequate rejection of the laser line, the scattered light was sent
to a spectrometer and Raman spectra were acquired at several

selected points on the sample. For details refer to the sample
fabrication and preparation and SERS mapping sections in Methods.

An image of the SERS signal from a PMMA film taken at the
antenna resonance wavelength (l¼ 860 nm) is shown in Fig. 1f.
To produce this image, the Raman image at l¼ 860 nm has been
normalized with the scattering image taken at l¼ 890 nm. The
normalized Raman map is quantified in the colour bar (see
Methods, SERS mapping section, for a more detailed explana-
tion). Finally, in Fig. 1g we calculate the SERS enhancement
factor, FSERS (see Methods, SERS Mapping section for details), for
each antenna and compare it with the expected value, the fourth
power of the peak6,40,41 of the computed field distribution shown
in Fig. 1e (dashed line). As can be seen in, the FSERS value
computed for each single nanoantenna is around 103, in good
agreement with the expected value.

These results demonstrate that these dielectric structures do
actually behave as nanoantennas, and that they are capable of
enhancing electromagnetic fields confined into nanometric-sized
hot spots32. Moreover, they could be used as an efficient platform
for SERS experiments. For instance, silicon nanoantennas can be
easily modified by silane molecules due to the ultrathin native
oxide layer (see Supplementary Fig. 1 and Supplementary Note 1
for further details).

We turn now to consider in detail, the thermal behaviour of
these antennas, trying to demonstrate experimentally that they
produce ultra-low heating when illuminated with optical fields, in
contrast to traditional plasmonic nanoantennas.

Thermal mapping method. We used a thermal imaging method
that combines both diffraction-limited spatial resolution (close to
370 nm) and molecular thermometry to evaluate the temperature
behaviour of the nanoantennas. Temperature mapping is
achieved by imaging the emission of the fluorophore Nile Red
(7-diethylamino-3,4-benzophenoxazine-2-ona) with a home-
made dual-beam confocal microscope (see Methods, Dual-beam
confocal microscopy and imaging section for more details). Nile
Red is a fluorophore with high quantum efficiency and photo-
stability and is widely used as a polarity-responsive fluorescent
molecule in many environments, including polymeric films42.
Figure 2a,b schematically illustrate the temperature measurement
principle and experiment. Samples are covered with a PMMA
thin-film doped with Nile Red molecules, which act as thermal
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Figure 2 | Molecular thermometry experiment. (a) Scheme for the fluorescence imaging experiments in the nanoantenna sample. The imaging laser

excites Nile Red molecules embedded in the PMMA thin-film layer on top of the nanoantennas within the confocal spot. (b) When the heating laser is

turned on, the nanoantennas increase their temperature and the molecules close to the nanoantennas decrease their fluorescence emission, resulting

in a lower fluorescence signal. (c) Nile Red emission spectra taken at different temperatures. The marked zone shows the detection spectral range

(550–680 nm). The inset shows the integrated intensity in the detection spectral range as well as the fit used as a calibration curve to extract the

corresponding temperature values.
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nanoprobes. A low power CW 532-nm imaging laser is used for
molecular excitation of the Nile Red molecules, and the
fluorescence emission is detected in the spectral range 550–
680 nm. Recording images of Nile Red fluorescence serves dual
purposes; on one hand it serves as a mapping tool, since the
presence of the nanoantennas modifies Nile Red fluorescence
emission, allowing access to the location of the nanoantennas. On
the other hand, it probes local temperature changes since the Nile
Red fluorescence profile is particularly sensitive to temperature
changes, as shown in Fig. 2c. When the heating laser (CW
Ti:Sapphire) is turned on, absorption in the nanoantennas
produces a temperature increase of the surroundings which is
sensed by the Nile Red molecules on-site. Over the measurement
time, the whole structure thermalizes (represented schematically
in Fig. 2b as dim red over the structure) and a reduction in the
fluorescence emission from the molecules around the
nanoantenna takes place (represented in the same Figure as a
reduction in the size of the dots/stars).

This reduction in the molecular fluorescence is due to the
thermal activation of non-radiative channels, as well as a shift of
the spectrum to higher energies (see Fig. 2c). The latter effect is
called thermochromism, and it is explained as a decrement of the
environmental polarity with the temperature rise43. These
combined effects give our intensity-based method a sensitivity
of around 0.5% per �C, which is comparable to other polymer-dye
based methods44–46. Although fluorescence intensity quenching
measurements are straightforward, the emission intensity also
depends on the dye concentration and the illumination intensity.
Therefore, we have done a very careful initial calibration
combined with several control experiments in order to identify
and avoid artifacts (in Methods, see temperature calibration and
thermal imaging section for details). Using the calibration in the
inset of Fig. 2c, a temperature map is obtained from a
fluorescence image, where each value represents an average
temperature within the imaging laser spot. This procedure is
repeated for several values of heating laser intensity, Ih, to vary the
amount of local heating and trace changes in temperature.

To demonstrate the improved thermal performance of our
dielectric nanoantennas when compared with traditional plasmo-
nic nanoantennas, we also fabricated arrays of Au disk dimers with
a dipolar resonance at l¼ 860 nm (see Supplementary Fig. 3 and
Supplementary Note 3 for optical characteristics of the Au
antennas). SEM images of the Si and Au arrays are shown in
Fig. 3a,e, respectively. Confocal fluorescence imaging was
performed on both sets of nanoantennas first without the heating
laser, as shown in Fig. 3b for Si and Fig. 3f for Au, to be used as a
reference for the assignment of the room temperature (Tr¼ 25 �C)
fluorescence intensity across the maps. The imaging laser power
was set three orders of magnitude lower than the heating laser
power so that heating by the imaging laser can be considered
negligible in both types of nanoantennas (in Methods, see Dual
beam confocal microscopy and imaging section for details).
Remarkably enough, the reference fluorescence images (Fig. 3b
for Si and Fig. 3f for Au) have different behaviour over the
nanoantennas. It is seen in these images that the silicon
nanoantennas enhance the fluorescence emission with a contrast
of 0 to 2,000 counts per 4 ms, while for the gold nanoantennas the
contrast is significantly lower (0–500 counts per 4 ms). This is fully
understood, and constitutes an additional striking advantage of the
dielectric over the metal nanoantennas and is discussed in detail in
the last section of this Article.

We then performed the heating experiment by simultaneously
illuminating an array with both the imaging and the heating
lasers (linear and circular polarization in the sample, respec-
tively). Sequential images are taken for different heating laser
intensities, Ih. Fig. 3c,g show the fluorescence images attained

with Ih¼ 6 mW mm� 2 for silicon and gold antennas, respectively.
To compare the fluorescence intensity with and without heating,
Fig. 3d,h show the intensity line profiles with and without heating
from the indicated rows of the nanoantenna arrays in the silicon
and gold fluorescence images, respectively. It is easy to see that
while the intensity profile remains nearly the same for the Si
nanoantennas with and without the heating laser; that of the gold
sample shows a pronounced intensity decrease around the
antennas when the heating laser is turned on. This difference is
due to the temperature increase around the Au antennas that can
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Figure 3 | Nanoantenna fluorescence images. The top panels show SEM

images of the nanoantenna arrays for reference, (a) for Si and (e) for Au. The

four images below are fluorescence images corresponding to Si (left) and Au

(right). Scale bar, 2mm. Reference panels (b) and (f): fluorescence images

without the heating laser turned on. (b) Silicon nanoantennas produce

enhanced fluorescence while gold antennas (f) slightly enhance the

fluorescence emission (see Supplementary Fig. 4 and Supplementary Note 4

for explanation). (c) and (g): Fluorescence images with the heating laser on at

6 mWmm� 2. The color scale bar is the same for all the fluorescence images.

Bottom panels: Intensity profiles taken from the rows indicated as lines in the

fluorescence images. The intensity clearly drops for the gold antennas (h) but

remains nearly constant for the silicon ones (d). The Nile Red molecules

around the gold antennas are affected by drastic changes in temperature,

leading to the observed intensity drop. In all the fluorescence images the

background average value has been subtracted for better displaying.
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be transformed into a temperature value using the calibration
curve in the inset of Fig. 2c.

Temperature in silicon and gold nanoantennas. The local
temperature around both Si and Au nanoantennas was studied as
a function of the heating laser intensity. It should be noted that
our experimental method gives an average temperature value, T,
because in the confocal detection volume there are some mole-
cules that are located in the heated zone and some other mole-
cules that are not (see Fig. 2b).

The measured average temperature is shown as box plots in
Fig. 4 for silicon (Fig. 4a) and gold (Fig. 4b). The horizontal axis
shows the intensity of the heating laser for the polarization
parallel to the nanoantennas, since this component is resonant
with the antennas and therefore heats the structures. For each
box, the central red mark is the median of the array of 9 (25) Si
(Au) nanoantennas on the sample; the edges of the box are the
25th and 75th percentiles, and the whiskers extend to the most
extreme data points that are not yet considered outliers (points
are drawn as outliers if they are larger than q3þ 1.5(q3� q1) or
smaller than q1� 1.5(q3� q1), where q1 and q3 are the 25th and
75th percentiles, respectively). These outliers may be due to
defects in the fabrication of few of the antennas. These results
clearly evidence that the environment around the silicon
nanoantennas remains nearly constant in temperature, while
that of the gold nanoantennas increases by 460 �C (in the range
of powers we used), demonstrating that dielectric nanoantennas
produce local enhancement with minimal heating. In the inset of
each figure a calculated temperature map was added for the case
of 5 mW mm� 2 heating laser intensity. Note that the highest
temperature zone is confined over the nanoantenna including the
gap, where the temperature is, for the Au case, B30 �C greater
than in a region near the border of the map. A similar thermal
behaviour can be found for the Si antennas at higher powers (see
Supplementary Fig. 5 and Supplementary Note 5). This spatial
dependence must be taken into account to obtain the temperature
in the gap, which is the relevant temperature for SERS
experiments, since the molecules sense the local electric field
and the highest contribution comes from the hot spot in this gap.

To obtain the temperature in the gap of the nanoantennas
(TGAP), we integrated the numerically calculated three-dimen-
sional (3D) temperature distribution for each heating laser
intensity (a 2D map at a fixed z-value of this distribution is shown
in the insets of Fig. 4). From these calculations we obtain a

proportionality factor relating the measured average temperature
with the temperature in the gap (see Supplementary Fig. 6 and
Supplementary Note 6 for details). This factor was then applied to
the experimentally measured average temperature to calculate a
temperature value in the gap. Figure 4c shows the gap
temperature as a function of the heating laser power. As expected,
the temperature increase in the gap is ultra low for the Si
nanoantennas, while it exceeds 80 �C for the gold nanoantennas.
This fact is in accordance with theoretical predictions, and a good
agreement between these extracted gap temperatures and those
extracted from numerical calculations (dashed lines) was found.
From Fig. 4c we calculated a ratio between heating slopes (Au/Si)
of 17.6. In addition, it is worth mentioning that numerical
calculations of the temperature increase for heating laser
intensities up to 120 mW mm� 2 show that the gold nanoantennas
would raise their temperature by 41,200 �C, while for the Si
nanoantennas the temperature increment would not exceed
100 �C. Remarkably, by increasing less than five times the
incident power for the Si nanoantennas we can get the same
Raman signal than for the Au-analogue but with 75% less heating
(refer to Supplementary Note 5 for detailed calculation). This
substantial difference in the thermal behaviour for the two types
of nanoantennas would allow working with much higher incident
fields for the dielectric case, which could serve, for example, to
improve the efficiency of light frequency up-conversion in
nonlinear applications8,9. We note here, that the above
mentioned value of 75% corresponds to processes which scale
with (E/E0)4. For lower order processes this factor would be even
more favourable for the dielectric nanoantenna.

To sum up, in this section we demonstrated both experimen-
tally and theoretically that silicon nanoantennas excited at
resonance do not heat appreciably while the gold nanoantennas
heat significantly, even at low heating laser intensities.

Surface enhanced fluorescence. In addition to the Raman scat-
tering enhancement already shown in Fig. 1f,g, we also measured
a remarkable Nile Red fluorescence enhancement generated by
the Si-nanoantennas, as seen in Fig. 3b, in contrast to the dim
fluorescence produced by this particular set of Au-nanoantennas
(Fig. 3f). This behaviour is fully in accordance with the predic-
tions of the numerical calculations where an ideal dipole is placed
at the gap of each type of antenna and the radiative and non-
radiative contributions of its emission are calculated over a broad
spectral range26. Even though the increased local field intensity

Au

95

85

75

65

55

45

35

25

15
0 1 1.7 2.9 4.2 6.1

807060504030

Si

T
 (

°C
)

T
 (

°C
)

T (°C)
807060504030

T (°C)

95

85

75

65

55

45

35

25

15

T
G

A
P

 (°
C

)

Heating laser intensity (mW µm–2) Heating laser intensity (mW µm–2) Heating laser intensity (mW µm–2)

0 2.3 3.6 4.8 6.1 7.4 0 2 4 6 8

120

100

80

60

40

20

Si
Au
Theo Si
Theo Au

a b c

Figure 4 | Temperature measurement in nanoantennas. Box plot for the average temperature T, measured for (a) silicon and (b) gold nanoantennas,

shown in Fig. 3, excited at resonance. It can be seen that the Au nanoantennas significantly increase their temperature when Ih increases while the Si

temperature remains nearly constant. The inset in each figure shows the calculated temperature map around the disks for Ih¼ 5 mWmm� 2 in both cases.

Scale bar, 100 nm. (c) Extracted temperature in the gap for selected silicon (cyan) and gold (magenta) nanoantennas as a function of the heating laser

intensity at 860 nm. The dashed lines show the numerical calculations for the temperature at the gap, presenting good agreement with the experimental

data. The error bars show the s.d. of the temperature measurements, obtained from error propagation from the fluorescence measurements.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8915 ARTICLE

NATURE COMMUNICATIONS | 6:7915 | DOI: 10.1038/ncomms8915 | www.nature.com/naturecommunications 5

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


results in an enhanced molecular absorption rate for both kinds
of nanoantennas, the molecular emission process is very different
in nature for the gold and silicon cases. In general, fluorescence
enhancement depends on two factors: the coupling of the
emission to the radiative dipole mode of the nanoantenna, and
the radiative efficiency of the dipole mode itself. Competing with
this, coupling to non-radiative modes contributes to fluorescence
quenching. However, since the continuum of quenching modes
arises through the imaginary part of the permittivity (present in
metals), having an almost real dielectric constant for the Si
resonator supresses the quenching effect, leading to the observed
behaviour (see Supplementary Fig. 4 and Supplementary Note 4
for details). Anger et al.47 very nicely illustrate limitations of
metal particles in SEF due to the quenching phenomena. For
metals, a spacer layer between the antenna and the emitter is
needed to diminish quenching and achieve stronger fluorescence
(both for antennas on and off resonance with the absorption or
emission windows of a particular emitter), but as a consequence
the SERS signal drops since the molecules are away from the
highest field region. In this work, we show that dielectric
nanoantennas overcome these limitations and allow having the
same configuration for both SERS and SEF.

To carefully study this effect, an experimental SEF map was
obtained (Fig. 5a) by normalizing the reference image for the Si
case (Fig. 3b). A value of FSEFB1,900 was obtained for the Si
nanoantennas, as shown in Fig. 5b. This remarkable behaviour
denotes an important difference between metallic and Si
structures and opens the possibility of more elaborated SEF
experiments with dielectric nanoantennas that provide a good
SEF enhancement factor with no emission quenching and no
spacers layers needed.

Discussion
It is important to mention at this point that large Raman and
fluorescence enhancement factors have been achieved through

dielectric-based photonic resonators48,49. However, photonic
crystal and whispering gallery mode devices optimized for these
ends have characteristic sizes in the micrometre scale50. Although
photonic crystals may be nanostructured, several ‘unit cells’ are
needed to build the artificial crystal to obtain the desired
properties51,52, whereas for our Si-dimer nanoantenna all
geometrical parameters are on the order of 100 nm. Moreover,
while microcavity resonators use high Q-factors to generate field
enhancements, Si nanoantennas use small modal volumes with
low Q-factors. As such, the underlying physical phenomena are
not the same. In fact, this difference gives rise to various
advantages for our approach. High Q-factors imply a narrow
spectral range of operation and difficulties associated with tuning
the cavity to the material to be sensed. In contrast, small mode
volume of the Si nanoantennas promotes Raman enhancement
(due to field confinement) and fluorescence enhancement (due to
the Purcell effect), while broadening the spectral range of utility
as a result of the low Q-factor. Thus, small modal volumes allow
light focusing in 3D nanoscale hot spots; also differing from one-
dimensional field confinement recently shown in aluminium
oxide nanosheets through Dyakonov surface waves53.

In conclusion, we have presented and experimentally demon-
strated a novel type of Si-dimer nanoantenna exhibiting high
near-field enhancement within a 20-nm gap at NIR wavelengths.
These non-plasmonic nanoantennas are able to enhance the
Raman scattering of a polymer thin film by a factor of B103 and
also allow surface enhanced fluorescence by a factor of B2� 103,
avoiding the well-known fluorescence quenching effects observed
for metallic structures when no spacer layers are used. Moreover,
molecular thermometry measurements demonstrated that dielec-
tric nanoantennas produce ultra-low heating when illuminating
at their resonance wavelength, thus overcoming one of the main
drawbacks of traditional plasmonic materials such as gold. Higher
field enhancement factors which compare more favourably
against the well-known metallic antennas are achievable by
engineering future dielectric nanoantenna configurations. How-
ever, our claim here is that the scheme presented goes well
beyond only the improvement of the field enhancement and, as
so, our main point is that the plasmonic system suffers from
limitations such as heating losses and non-radiative fluorescence
quenching, amongst others, which are almost virtually absent in
the dielectric case. Ultra-low heat conversion avoids reshaping or
melting of the antenna thus important advances in many fields
can be foreseen due to almost no restrictions in the power that
can be delivered to these non-plasmonic nanoscale devices. For
instance, dielectric-based nanoantennas can highly improve light-
driven fields like nonlinear up-conversion processes, nanoelec-
tronics and unperturbed sensing by enhanced spectroscopies or
the study of nanoemitter behaviour.

We stress the fact that we have built a non-plasmonic
nanoantenna with field enhancement capabilities of almost 50%
of that of a gold-analogue system, but which exhibits a temperature
increase more than one order of magnitude smaller, promotes
fluorescence enhancement, and presents a hot-spot volume
approximately five times larger than that of the Au system. This
leads, for example, to 75% less heating in the Si nanoantennas
compared with the Au plasmon analogue for the same Raman
output signal. These results open new perspectives for the design,
fabrication and applications of low-loss nanoantennas in the vis-
NIR range. The possibility to have non-plasmonic materials that
enhance the electromagnetic field without undesirable losses
constitutes an important step in nanophotonics.

Methods
Numerical calculations. Nanoparticles composed of various materials (such as
metals or semiconductors) can efficiently release heat under optical excitation. The
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heat-generation process involves not only absorption of incident photons, but also
heat transfer from the nanoparticle to the surrounding matrix. The mechanism of
heat release is very simple: the laser electric field strongly drives mobile carriers
inside the material, and the energy gained by the carriers heats the material. Then,
heat diffuses away from the nanostructure and leads to a temperature increase of
the surrounding medium. Heat generation becomes especially strong in the case of
metal nanoparticles in the regime of plasmon resonance. In the case of semi-
conductor nanoparticles, the heat-generation rate is much weaker since heat dis-
sipation occurs through an interband absorption process with the creation of a
single mobile electron and hole (exciton). In the absence of phase transformations,
the temperature distribution around optically stimulated nanoparticles is described
by the usual heat transfer equation:

r rð Þc rð Þ @Tðr; tÞ
@t

¼ rk rð ÞrT r; tð ÞþQeðr; tÞ ð1Þ

where r and t are the position and time, T(r,t) is the local temperature and the
material parameters r(r), c(r) and k(r) are the mass density, specific heat and
thermal conductivity, respectively. The function Qe(r,t) represents the energy
(heat) source coming from light dissipation (electromagnetic losses). The solution
of this equation has a transient state, and after a characteristic time, it reaches its
steady state54,55. Thermal processes in metals are fast, which means that a steady
state is rapidly reached for typical incident powers and metal nanoparticle
dimensions, similar to those used in nanomedicine56. To obtain the
electromagnetic losses Qe(r,t), a system of Maxwell’s equations including
appropriate boundary conditions must be written, which in the case of an ensemble
of nanoparticles, such as a dimer, must be solved numerically. In our case, the
whole process of light absorption and subsequent heat transfer between the
nanostructure and the surrounding medium has been modelled by means of finite
element simulations (in the same manner as in ref. 27). For easy implementation
and reliability of the solution, we have chosen Comsol Multiphysics 4.3a, which
provides state-of-the-art routines to solve partial differential equations. In our
simulations, we have assumed the electromagnetic losses from the electromagnetic
waves in the nanoparticles as the only heat source. Furthermore, we have assumed
that the electromagnetic cycle time is short compared with the thermal time scale
(adiabatic assumption). To take into account heat dissipation in our simulation
region, we used a heat flux node across the outer boundaries, considering a heat
transfer coefficient, dependent on the geometry and the ambient flow conditions.
The heat transfer coefficient h can often be estimated by dividing the thermal
conductivity of the convection fluid by a length scale57.

Sample fabrication and preparation. Arrays of silicon dimers were fabricated by
electron beam lithography on a backside polished silicon-on-insulator substrate,
using the positive-tone electron-beam resist PMMA. First, the substrate was coated
with PMMA and baked at B180 �C for 120 s. Then patterns of silicon dimers were
defined by an electron beam exposure, followed by a development procedure.
Subsequently, a 10 nm thick Cr film was deposited by thermal evaporation on the
substrate, followed by lift-off. The structures were then transferred to the silicon
substrates via a reactive ion etch using the Cr dimers as an etch mask and the
buried oxide as an etch stop. The residual Cr was then removed via wet etching to
obtain the Si dimers. Au antennas were fabricated through PMMA coating, elec-
tron-beam exposure, development, Au deposition and lift-off.

The samples were coated with a fluorescent dye in a polymer matrix to perform
the temperature-mapping measurements. 950 PMMA A (MicroChem) in anisole
was mixed with the fluorescent dye (Nile Red, Sigma Aldrich) to reach a final
fluorophore concentration of 40 mM. This concentration was chosen after
performing life-time measurements to find the upper-limit concentration before
the onset of concentration quenching effects. The substrates were spin-coated at
3,500 r.p.m. for 1 min and then baked at B160 �C for 5 min. This procedure
generates a homogeneous fluorescent layer of 200 nm in thickness. This last same
procedure, but without the inclusion of the fluorophore, was performed to cover
the sample with a PMMA film for SERS measurements.

SERS mapping. A home-built inverted confocal microscope was used to obtain
SERS images, using the appropriate filter set to allow efficient filtering for the
excitation laser (from a tuneable CW Ti:Sapphire laser). All Raman images were
taken over a 15� 15mm zone with a pixel size of 75� 75 nm and a dwell time of
4 ms px� 1. Raman spectra where taken with a home-made spectrometer consisting
of a diffraction grating and a cooled CCD camera (see Supplementary Fig. 7 and
Supplementary Fig. 8 for set-up schemes and Supplementary Note 7 for more
details). SERS images were taken in resonance with the nanoantennas (860 nm),
detecting a scattering band between 392 and 639 cm� 1. The latter images were
then normalized pixel by pixel with the scattering image taken in the detection
wavelength range (890 nm), to account for the substrate contribution to obtain a
normalized image IR. We then applied a Gaussian filter (with 5� 5 px average and
s¼ 1 px) to obtain Fig. 1f. The unfiltered normalized image was used to compute
the maximum IR in each nanoantenna (IMAX

R ). The SERS enhancement factor was
then calculated as:

FSERS ¼ IMAX
R

Vspot�Vantenna

Vgap
� Vspot �Vantenna �Vgap

Vgap
ð2Þ

where Vspot was calculated with the full-width at half-maximum value for the laser
spot; Vantenna and Vgap are the volumes of the antenna and the gap, respectively.
Note that the dye coats everywhere, but not inside the antenna volume, and that is
why Vantenna is subtracted in equation (2). Regarding the second term of this
expression, it accounts for the contribution from outside the gap region. The gap
was considered as a 20� 20 nm� hantenna rectangular box, where hantenna stands for
the nanoantenna height40,37. The obtained values for each nanostructure are shown
in Fig. 1g, together with the theoretical expected value.

Dual-beam confocal microscopy and imaging. The home-built confocal
microscope also allows a dual-beam configuration. In this case the set-up consists
of an inverted fluorescence confocal microscope, fed with a green low power
imaging laser (l¼ 532 nm, B11mW mm� 2 at the sample) and a heating laser
(CW tuneable Ti:Sapphire, with circular polarization at the sample). Both lasers are
focused on the sample by a 40� objective lens (NA¼ 0.9) and the collected
fluorescence is focused into a multimode optical fibre that acts as a confocal
pinhole (see Supplementary Fig. 8 for set-up schematics and Supplementary Note 7
for details). The light coming out from the fibre is collimated and sent to an APD
after filtering out the excitation light. Before each experiment, both lasers are
carefully overlapped at the sample plane, to ensure that the heating and the
fluorescence detection volumes fully coincide.

The fluorescence maps were taken over a 15� 15 mm zone with a pixel size of
75� 75 nm and a dwell time of 4 ms px� 1. The background average value has been
subtracted in each image for better displaying.

Temperature calibration and thermal imaging. The calibration of fluorescence
intensity versus temperature was done using a commercial fluorimeter (Quanta-
Master 400, Quantum Technology International) with a temperature controller
(TLC 50 Temperature Controlled Cuvette Holder for Fluorescence, Quantum
Northwest). Emission spectra for Nile Red were recorded at different temperatures,
as it is shown in Fig. 2c. To obtain the inset in the figure, we integrated the intensity
in the detection range, 550–680 nm, and normalized it by the integrated intensity at
ambient temperature (25 �C). These values were fitted with a third order poly-
nomial function, which was used to transform intensity values into temperature.

The thermal imaging experiment consists of performing a series of images,
starting with a bare fluorescence image taken as the reference. Further images in
the same series, taken with one or both of the lasers alternatively, serves for
bleaching correction, temperature determination and control of the preservation of
the antennas. This procedure is repeated at every heating laser intensity, Ih.
Photobleaching effects were globally corrected by fitting a negative exponential
function to the mean intensity of the images when chronologically ordered
(see Supplementary Fig. 9 and Supplementary Note 8 for further details). The mean
fluorescence intensity Is, on each nanoantenna was calculated by averaging the
counts in a circular area with a radius of r0¼ 5 px, centred at the nanostructure
position. Similarly, the fluorescence intensity outside the nanoantennas, Ibg, was
calculated. Calling Is,0 (Ibg,0) the nanoantenna (background) intensity at the
reference image and Is,lh (Ibg,lh) the nanoantenna (background) intensity with the
laser heating on, the corrected intensity can be computed:

Icorrected ¼ Is;Ih=Is;0 � Ibg;Ih=Ibg;0 þ 1 ð3Þ
This intensity is then transformed into a temperature value with the calibration

curve shown in the inset of Fig. 2c.
For the thermal mapping images, presented in Fig. 3, the mean intensity

(computed in a region without nanoantennas) was subtracted to set the intensity
value outside the dimers to zero. Negative counts then indicate zones where
the fluorescence intensity is below the reference value. When heating on the
nanoantenna the fluorescence emission of that area drops, as shown in the
calibration curve—inset of Fig. 2c—and negative counts are computed in that
region of the image.
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