
Mind The (Synthesis) Gap: Examining Where
Academic FPGA Tools Lag Behind Industry

Eddie Hung
Department of Computing

Imperial College London, England
e.hung@imperial.ac.uk

Abstract—Firstly, we present VTR-to-Bitstream v2.0, the latest
version of our open-source toolchain that takes Verilog input and
produces a packed, placed — and now routed — solution that can
be programmed onto the Xilinx commercial FPGA architecture.
Secondly, we apply this updated tool to measure the gap between
academic and industrial FPGA tools by examining the quality of
results at each of the three main compilation stages: synthesis,
packing & placement, routing. Our findings indicate that the
delay gap (according to Xilinx static timing analysis) for academic
tools breaks down into a 31% degradation with synthesis, 10%
with packing & placement, and 15% with routing. This leads
us to believe that opportunities for improvement exist not only
within VPR, but also in the front-end tools that lie upstream.

I. INTRODUCTION

FPGA research into architecture design, and on the computer-
aided design (CAD) algorithms to map circuit descriptions
onto these architectures, has typically been evaluated using
the VPR academic tool that is now packaged with the Verilog-
To-Routing (VTR) toolflow [1]. The open-source VTR flow
consists of three main tools: Odin II for synthesising circuits
designed in Verilog into generic lookup table (LUT) resources,
ABC for technology-mapping those resources into architecture-
specific LUTs, and VPR for packing, placement, and routing.
For architecture design, a key strength of VPR is that it allows
researchers to easily experiment with new theoretical FPGA
architectures — for example, in deciding the optimal number
of inputs for a lookup table, or the best number of LUTs to
group into a logic cluster. For CAD research, however, any new
innovations can only be evaluated on those same theoretical
architectures as opposed to commercially available devices due
to the closed-source nature of vendor tools.

First contribution: is to present VTR-to-Bitstream (VTB)
v2.0, an open-source extension to the VTR toolchain that
provides a path not just from Verilog to a packed, placed, and
routed netlist on a realistic FPGA architecture, but also onto a
valid bitstream that can be programmed onto a physical Xilinx
device. In contrast to the original version of VTB that only
supported packing and placement [2], timing-driven routing is
now supported, along with carry-chains and the integration of
a new Verilog synthesis tool. This extension is provided as a
patch available from http://eddiehung.github.io.

Second contribution: is to use the extended toolflow to
make a fair and robust comparison between the quality of
results (QoR) gained by academic and industrial offerings.
By applying a varying combination of both flows to compile
bitstreams for the same FPGA device, we are able to infer
the gap between the individual tools responsible for synthesis,
packing & placement, and routing.

Related work: Relating to our first contribution of providing
open-source CAD for commercial FPGAs is RapidSmith [3]

and Torc [4], which not only provide abstraction layers for
manipulating Xilinx netlists but also contain limited, non
timing-driven CAD functionality (e.g. a basic router with
no conflict resolution). GoAhead [5] also exists to provide
additional support for dynamic partial reconfiguration tasks
that are not available through the vendor toolchain.

Bridging both of our contributions is Titan [6], a similar
flow but for Altera devices. By leveraging the vendor’s (closed-
source) Quartus II tool for front-end synthesis but continuing
to use VPR for back-end compilation, their hybrid flow enables
experimentation with large, complex, and mixed-language
netlists that are not supported by the open-source Odin II [7].
Their flow is also used to make comparisons between academic
and commercial tools, finding that the VPR back-end alone
produces circuits that are 53% slower than Quartus II. Crucially,
since Titan continues to route for an approximate model of
the commercial architecture, this also means their result is
not backed by an industrial static timing analysis tool, nor
realisable on a physical FPGA device.

The original version 1.0 of VTR-to-Bitstream [2] presented
a Verilog to packed-and-placed netlist flow for Xilinx devices,
used vendor tools to route the circuit, and found that the total
critical-path delay gap across the entire flow was 110%. As an
initial step towards closing this gap, in our second contribution
we seek to identify how this total gap breaks down across the
individual CAD stages.

II. XILINX ARCHITECTURAL MODEL

The Xilinx architectural model used in this paper is an
extension of that in prior work [2], with a number of changes
to support hardened adder functionality and carry-chains. The
augmented cluster model is shown in Fig. 1.

In contrast to the default VTR architecture which possess a
dedicated full-adder, devices from the Xilinx Virtex-6 family
have only a 2:1 carry multiplexer (referred to as MUXCY in
Xilinx literature) and a 2-input XOR sum gate (XORCY) in
hard-logic, requiring the remaining functionality for a full adder
(another 2-input XOR gate for deciding whether the carry-in
should be propagated, and an AND gate for generating a new
carry) to be implemented in soft-logic [8].

The cluster (CLB) model adopted in this work is made up
of two logic slices, shown in Figure 1. Within the Virtex-6
architecture, a logic slice holds four basic logic elements (BLEs)
each of which contains a 6-input LUT that can be fractured
into two 5-input LUTs (with all inputs shared), followed by
two flip-flops. A bypass input (AX) can be used to reach either
flip-flop, or to feed the XADDER carry-in directly without
passing through the LUT. Three outputs exist for each BLE:
a combinational output (A) from the primary LUT output O6,



SLICE x2

BLE

O6

FF

O6

O5

{O6,O5,
COUT}

COUT

FF{O6,O5,AX}
AQ

A

AMUX

A6:A1

AX

BLEBLEBLE x3

XORCY

XADDER

CIN3

5LUT

5LUT

Fracturable 6LUT
A6

CIN3

CIN

MUXCY

Fig. 1: Virtex-6 logic cluster model adopted in this work.
(XADDER represents our new hardened adder black-box).

TABLE I: VTR-to-Bitstream’s Virtex-6 architectural support.

Supported:
• Basic logic elements with 6-input LUTs, fracturable into two 5-input

LUTs followed by two flip-flops and a carry-chain
• Block RAMs fracturable between a 36K or 18K memory, simple or

true dual-port, and full aspect ratio support: from 1b×32K – 72b×512
• DSPs only as a 25x18 combinational multiplier
• Multiple global clock buffers (BUFG) for low skew clock distribution

Not yet supported:
• Logic slice clock enable, set/reset, nor wide multiplexers employing

the MUXF7/F8 hardened resources
• Block RAMs as hardened FIFOs, nor distributed (LUT) memory

available in SLICEM resources
• All other DSP48E1 functionality (such as 48-bit accumulation)

a sequential output (AQ) and a multi-purpose output (AMUX)
shared between the secondary flip-flop, both LUT outputs O6
& O5, and the carry out or sum from the adder. Each slice
also contains one carry input and one output (CIN and COUT)
connected as a chain through all four BLEs.

Table I details the main Virtex-6 features that our flow
supports through leveraging VTR. Given that we are constrained
by that which is supported by VTR, in future should any
unsupported features be inferred into black-boxes, it would be
straightforward to add support for those too. Although we target
a Virtex-6 device in this work, with the correct specifications
our approach can be extended to any other device from any
vendor — currently, we are constrained to those architectures
supported by the XDL functionality inside the ISE toolflow;
unfortunately, Xilinx has since deprecated XDL in their latest
Vivado toolflow (targeting the UltraScale family and beyond).

III. EXTENDING VPR TO ROUTE FOR XILINX DEVICES

The challenge with extending VPR to route for an exact
Xilinx architecture is that VPR’s model can only generate
relatively simple routing networks: supporting only horizontal
and vertical (but not diagonal) wires, regular and symmetric
across both channels, throughout the device. This limitation
has been an obstacle in prior comparisons with industrial
tools [6]. In the context of the commercial architecture that
we are targeting, we find that the actual Xilinx Virtex-6
routing network contains a number of features — in particular
diagonal and L-shaped bent wires — that VPR cannot currently
model. Through querying Torc [4], we have inferred that the
connectivity of each tile appears to be that shown in Figure 2.

We add routing support by preprocessing the Xilinx routing
graph and importing it directly into VPR. This approach is
made possible because VPR’s router is not tied to operating
only with routing graphs generated internally: analysis of the

FPGA Tile

x4

x4

x2

x4 L=2
L=4

x4

L=16
(bi-dir)

L=1

x4

x4

x4
L=4

x7

L=16
(bi-dir)

L=2

L=1

x5

x4

L=2

L=4

L=2

L=4

x4

x4L=4

L=2

x6

x2

N

E

S

W

x5

x4 x7
x4

x4

x4

x4

Fig. 2: Inferred routing connectivity of a Virtex-6 tile. L is
the manhattan distance that the wire traverses. Diagonal wires
with L = 2 represents a span from (x,y) to (x±1,y±1).

xdlrc2vpr
(one-off)

.rrg.gz

.shim

VTB v1 [2]

RapidSmith

route2xdl

Torc

Torc

.blif .net .place

.xdl

xdl2ncd DRC

.
r
o
u
t
e

.xdl

Verilog-to-Routing (VTR v7)

VPR

VTR-to-Bitstream
v2.0

.inode2tw

Architecture
Description

.xml

To commercial
flow

Fig. 3: Components of the VTR-to-Bitstream v2 flow.

source code shows that the only requirement is a directed graph
where each node represents a resource containing its starting
and ending coordinates, its type (e.g. a source, output pin,
horizontal wire, etc.) as well as its timing cost.

We generate this new routing graph by stitching the graph
generated by VPR’s model to one extracted from the Xilinx
device database (inclusive of LUT route-throughs) acquired
from Torc. Our tool, xdlrc2vpr performs this task only
once per architecture, where specifically it stitches each Xilinx
output pin to be the only fanout from its corresponding VPR
output pin. The equivalent task is also performed on all input
pins, and all other resources are transformed into the VPR
coordinate space and assigned the appropriate timing cost.
By stitching, we preserve the interface of the routing graph
through which VPR interacts, whilst modifying its internals
to represent the true graph that exists on silicon. Later, when
VPR has finished routing the circuit, we invoke our second
tool route2xdl to translate the .route output from VPR
back into the programmable routing switches (PIPs) used by
the Xilinx netlist, described in the Xilinx Design Language
(XDL) format.

Figure 3 illustrates how these two tools integrate into the
entire VTR-to-Bitstream v2.0 flow. This flow is an extension
of prior work: VTR-to-Bitstream v1.0 [2] (which itself uses



Xilinx ISE

Verilog HDL

.edif

.bit .twr

Yosys – Synthesis (new) VTR

Flow 1 Flow 2 Flow 5Flow 3 Flow 4.ncd

.ncd

.blif

.blif

Vanilla ISE Vanilla VTR

.ncd

bitgen trce – STA

ABC – T.map

VPR – Route (new)

map – Pack & Place

par – Route

Odin II – Synthesis

ABC – Tech. map

VPR – Route (new)

VPR – Pack & Place

xdl2ncd

VTR-to-Bitstream v2

VPR – Pack & Place

par – Route

map – Pack & Place

par – Route

ngdbuild – Merge

xst – Synthesis

DRC

xdl2ncd DRC xdl2ncd DRC

.blif

Prior
work [2]

xdl2ncd

VTB v1

par

Flows proposed by this paper

Architecture
Description

(e.g. cluster model,
placement sites,
wire delays, etc.)

VTR-to-Bitstream v2 VTR-to-Bitstream v2

ngdbuild – Merge

Fig. 4: Industrial comparison experiments (where flows 2–5 contain new synthesis/routing support over prior work).

RapidSmith [3] to interact with the XDL format) that is
responsible for converting the .blif netlist, the .net packing
result, and the .place result into an equivalent XDL netlist.
This netlist would be similiar to the output from ISE’s map
tool. route2xdl then adds routing PIPs to this placed netlist,
generating an output similar to ISE’s par.

IV. METHODOLOGY

Experiments were conducted using the five different flows
shown in Figure 4. Flow 1 describes vanilla ISE, in which
a Verilog benchmark is compiled as normal entirely using
industrial tools, primarily: xst for front-end synthesis, map
for packing and placement, and par for routing. Once a legal
circuit has been generated, static timing analysis and bitstream
generation can occur.

Flows 2 to 4 describe an alternative flow for generating
Xilinx circuits, with various tool stages replaced by academic
equivalents. We apply the same ABC script used by VTR across
flows 2–5: “resyn; resyn2; if;”. For flow 2 only, we
also enable the -u switch in map which prevents unused
logic from being recursively removed to allow for a fairer
comparison with VPR, which has no such ability.

In flows 3 through 5, we use our VTR-to-Bitstream tool
to translate VTR’s various output files into a fully placed
and/or routed XDL netlist. During conversion of the XDL
format into Xilinx’s proprietary NCD format (necessary for
timing analysis and bitstream generation), the netlist must
pass Xilinx’s design rule check (DRC) — which checks that
all resources are legally placed, full connectivity from all net
sources to all net and component sinks exists, and that there are
no routing violations — thus providing us with confidence that
we are creating valid netlists. For these same flows involving
VPR, we apply the “--allow_unrelated_clustering
off” option to prevent maximum density packing, which was
previously found to lead to unrouteable circuits [2].

We target a mid-range Virtex-6 device (xc6vlx240t) found on
the ML605 evaluation kit, using Xilinx ISE v14.4. This FPGA
device is built on 40nm technology, and contains approximately
150K LUTs arranged into 37K logic slices. This logic, along
with RAM and DSP resources, are spread over a 102x240

tile grid. In all experiments using the Xilinx tools, we set
an aggressive 1ns clock constraint to encourage maximum
CAD effort, matching behaviour in the academic flows. We
conduct experiments across multiple placement seeds using the
Imperial College HPC service [9], on servers with two Intel
Xeon X5650 processors and 48GB RAM. However, to ensure
accurate runtime metrics, we ran each experiment on its own
exclusive server and measured using /usr/bin/time.

For the academic flow, we use Verilog-to-Routing v7.0 [1],
along with Yosys v0.5 [10]. We evaluate across six benchmarks,
consisting of the four largest benchmarks provided as part of
VTR that fitted onto our FPGA (revisiting those reported in [2])
as well as des50, a smaller variant of the des90 benchmark
from Titan [6] that does fit on our target device, and our own
AES x3 benchmark composed of a chain of three 128-bit AES
encoders [11] followed by three decoders.

Yosys front-end: Currently, a weakness of the academic VTR
flow lies with its Verilog elaboration capabilities — the task of
converting circuits described in this language into logic gates,
flip-flops, and other resources — that is currently performed by
Odin II [7], which does not fully support all language constructs
such as those found in the des50 and AES x3 benchmarks.
In flows 2–5, we replace Odin II with Yosys [10], which
has gained traction as part of Qflow: an open-source digital
synthesis flow for ASIC design. Yosys has extensive support
for the synthesisable features of Verilog-2005, and is capable
of outputting identical netlists in BLIF (for use in academic
tools) as well as industry-standard EDIF. Internally, Yosys calls
upon the same ABC tool as VTR for technology-mapping.

Timing model: Although Xilinx provide the complete routing
resource graph in their XDLRC, no timing costs are given. By
analysing static timing analysis reports (which lists only the
total net delay), we were able to infer an approximate figure
for each group of resources (e.g. all A6 LUT inputs, or all
length-2 wires, etc.) through linear regression.

V. INDUSTRIAL COMPARISON RESULTS

Figure 5 compares the area utilisation, total tool runtime,
and critical path delay of all six benchmark circuits (and their
geometric mean) across flows 1–5, when operating from the



Fl
o
w

 1 Fl
o
w

 5

Geomean

O
D

IN
 I
I 
fa

ile
d

O
D

IN
 I
I 
fa

ile
d

(a) Area utilisation.

Geomean

Fl
o
w

 1 Fl
o
w

 5

O
D

IN
 I
I 
fa

ile
d

O
D

IN
 I
I 
fa

ile
d

(b) Total runtime.

(13%)

(6%)

(7%)

(4%)

Synthesis
proportion

(c) Runtime distribution.

Geomean

O
D

IN
 I
I 
fa

ile
d

O
D

IN
 I
I 
fa

ile
d

Fl
o
w

 1

Fl
o
w

 5

(d) Critical-path delay (from Xilinx STA trce tool).

+31%

+10%

+15%

(e) Delay gap.

Fig. 5: Quality-of-Results summary (geomean across 10 seeds, normalised to flow 1: vanilla ISE).

same Verilog input. Unsurprisingly, the commercial flow (#1)
outperforms the academic flow (#4) in all three figures of merit.
In looking more closely at the area, such as the number of
logic slices occupied by a circuit, it can be seen that the fully
open-source flow 4 produces circuits that consume an extra
19–540% (geomean 82%) area over the vendor’s flow 1 (which
uses xst as its front-end synthesis tool). Although flow 2, and
flows 3 & 4, are provided with the same logical netlist (either as
EDIF or BLIF formats respectively) different packing decisions
made by map and VPR result in different slice utilisations.

For the runtime metrics, we find that flow 4 can be between
1.6–7.8 times slower than flow 1 (geomean 3.5X). This is
not surprising, since runtime is often a secondary concern
for academic tools. However, it is worth noting that over-
constraining the Xilinx tools to 1ns is not recommended,
and can cause excessive runtimes that do not reflect typical
industrial usage. We find that for mcml, a significant gap
exists between flows 2 & 3, and flows 4 & 5, where the latter
uses VPR for routing. Further investigation revealed that this
benchmark contained two high fanout nets that each have
around 40,000 sinks, requiring up to 200 seconds to route,
consuming the majority (70%) of the total routing runtime.

Figure 5c shows the runtime distribution over the three main
CAD stages. Immediately obvious is that synthesis consumes a
reducing proportion of the total runtime budget (as annotated)
yet the following results also show that it contributes to the
largest gap in circuit performance. In addition, there is a
significant difference in runtime between the industrial and
academic (flow 4) router, though this can perhaps be attributed
to the irregular nature of the imported Xilinx routing graph.

Lastly, Figure 5d provides a view of the mean circuit delay
(as reported by Xilinx’s static timing analysis tool trce) whilst
Figure 5e illustrates the incremental delay gap between flows
2–4 over the baseline flow 1. The biggest gap (31%) exists
when moving from flows 1 to 2, where only the synthesis
tool is changed, as opposed to 10% and 15%, for packing &
placement and routing respectively. This result lends credence
to our claim: ‘mind the (synthesis) gap’.

VI. CONCLUSION

In this work, we presented an open-source extension to the
well-known VTR flow that has an improved Verilog front-end,
as well as back-end support for creating valid bitstreams for
a Xilinx Virtex-6 FPGA. This contribution is provided as a
patch for download at http://eddiehung.github.io. Our second
contribution was to make a rigorous, piecewise comparison
between academic and industrial tools across the three main
stages of the compilation flow, finding that the delay gap (as
backed by a commercial STA tool) is 31% at the synthesis
stage, 10% for packing & placement, and 15% for routing.
The finding that the gap is largest at the front-end (which also
consumes the least amount of runtime across the three stages)
indicates that not only should researchers focus their efforts on
improving back-end tools such as VPR, but that opportunities
also exist at the upper levels, too.

ACKNOWLEDGEMENTS: Grateful for the support from the
UK EPSRC (grants EP/I012036/1 & EP/I020357/1) and Xilinx.

REFERENCES

[1] J. Luu et al., “VTR 7.0: Next Generation Architecture and CAD System
for FPGAs,” ACM TRETS, vol. 7, no. 2, pp. 6:1–6:30, Jul. 2014.

[2] E. Hung et al., “Escaping the Academic Sandbox: Realizing VPR Circuits
on Xilinx Devices,” in IEEE FCCM’13, Apr 2013, pp. 45–52.

[3] C. Lavin et al., “RapidSmith: Do-It-Yourself CAD Tools for Xilinx
FPGAs,” in IEEE FPL’11, Sep 2011, pp. 349–355.

[4] N. Steiner et al., “Torc: Towards an Open-Source Tool Flow,” in ACM
FPGA’11, Feb 2011, pp. 41–44.

[5] C. Beckhoff et al., “GoAhead: A Partial Reconfiguration Framework,”
in IEEE FCCM’12, Apr 2012, pp. 37–44.

[6] K. E. Murray et al., “Timing Driven Titan: Enabling Large Benchmarks
and Exploring the Gap Between Academic and Commercial CAD,” ACM
TRETS, vol. 8, no. 2, pp. 10:1–10:18, Mar 2015.

[7] P. Jamieson et al., “Odin II - An Open-source Verilog HDL Synthesis
tool for CAD Research,” in IEEE FCCM’10, 2010, pp. 149–156.

[8] Xilinx, “Virtex-6 FPGA Configurable Logic Block User Guide (UG364
v1.2),” Feb 2012.

[9] Imperial College, “High Performance Computing Service,”
http://www.imperial.ac.uk/ict/services/teachingandresearchservices/
highperformancecomputing.

[10] C. Wolf, “Yosys Open SYnthesis Suite,” http://www.clifford.at/yosys/.
[11] Altera, “Advanced Synthesis Cookbook,” http://www.altera.co.uk/

literature/manual/stx cookbook.pdf, July 2011.


