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Abstract

Background

Currently, the predominant onchocerciasis control strategy in Africa is annual mass drug

administration (MDA) with ivermectin. However, there is a consensus among the global

health community, supported by mathematical modelling, that onchocerciasis in Africa will

not be eliminated within proposed time frameworks in all endemic foci with only annual

MDA, and novel and alternative strategies are urgently needed. Furthermore, use of MDA

with ivermectin is already compromised in large areas of central Africa co-endemic with Loa
loa, and there are areas where suboptimal or atypical responses to ivermectin have been

documented. An onchocerciasis vaccine would be highly advantageous in these areas.

Methodology/Principal Findings

We used a previously developed onchocerciasis transmission model (EPIONCHO) to

investigate the impact of vaccination in areas where loiasis and onchocerciasis are co-

endemic and ivermectin is contraindicated. We also explore the potential influence of a vac-

cination programme on infection resurgence in areas where local elimination has been suc-

cessfully achieved. Based on the age range included in the Expanded Programme on

Immunization (EPI), the vaccine was assumed to target 1 to 5 year olds. Our modelling

results indicate that the deployment of an onchocerciasis vaccine would have a beneficial

impact in onchocerciasis–loiasis co-endemic areas, markedly reducing microfilarial load in

the young (under 20 yr) age groups.

Conclusions/Significance

An onchocerciasis prophylactic vaccine would reduce the onchocerciasis disease burden in

populations where ivermectin cannot be administered safely. Moreover, a vaccine could
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substantially decrease the chance of re-emergence ofOnchocerca volvulus infection in

areas where it is deemed that MDA with ivermectin can be stopped. Therefore, a vaccine

would protect the substantial investments made by present and past onchocerciasis control

programmes, decreasing the chance of disease recrudescence and offering an important

additional tool to mitigate the potentially devastating impact of emerging ivermectin

resistance.

Author Summary

Novel and alternative strategies are required to meet the demanding control and elimina-
tion (of infection) goals for human onchocerciasis (river blindness) in Africa. Due to the
overlapping distribution of onchocerciasis and loiasis (African eye worm) in forested areas
of central Africa, millions of people living in such areas are not well served by current
interventions because they cannot safely receive the antiparasitic drug ivermectin that is
distributed en masse to treat onchocerciasis elsewhere in Africa. The Onchocerciasis Vac-
cine for Africa—TOVA—Initiative has been established to develop and trial an onchocer-
ciasis vaccine. We model the potential impact of a hypothetical childhood vaccination
programme rolled out in areas where co-endemicity of onchocerciasis and African eye
worm makes mass distribution of ivermectin difficult and potentially unsafe for treating,
controlling and eliminating river blindness. We find that, 15 years into the programme, a
vaccine would substantially reduce infection levels in children and young adults, protect-
ing them from the morbidity and mortality associated with onchocerciasis. Most benefit
would be reaped from a long-lived vaccine, even if only partially protective. We also dis-
cuss how a vaccine could substantially reduce the risk of re-emergence of onchocerciasis
in areas freed from infection after years of successful intervention.

Introduction
Currently, the predominant onchocerciasis control strategy in Africa is annual mass drug
administration (MDA) with ivermectin, which Merck & Co. have committed to donate for as
long as needed to eliminate onchocerciasis as a public health problem. Since 2010 there has
been a dramatic shift in onchocerciasis control policy in Africa, with programmes changing
their aim from elimination of the disease burden to elimination of the infection where feasible.
The World Health Organization’s (WHO) Roadmap on Neglected Tropical Diseases [1]—
endorsed by the London Declaration on NTDs (LDNTD, 31 January 2012) [2]—set goals for
elimination of Onchocerca volvulus infection in selected countries of Africa by 2020. The Afri-
can Programme for Onchocerciasis Control (APOC) has pledged elimination of onchocerciasis
where possible by 2025 [3], and the Bill and Melinda Gates Foundation foresees that global
elimination will be reached by 2030 [4]. We have previously indicated, based on mathematical
modelling of onchocerciasis transmission and control with EPIONCHO, that the feasibility of
eliminating the infection depends primarily on baseline (pre-control) levels of endemicity, pat-
terns of transmission, magnitude of residual transmission between inter-treatment periods,
therapeutic coverage and importantly, compliance to treatment, precluding a one-size-fits-all
approach to elimination [5,6,7,8]. There is a consensus among the global health community,
substantiated by mathematically modelling, that onchocerciasis in Africa will not be eliminated
in all endemic foci with annual ivermectin MDA alone [9,10,11], and that novel supportive
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health intervention technologies, including a vaccine, and/or alternative treatment and control
strategies are badly needed [2,12,13].

Mass distribution of ivermectin is already compromised in large areas of central Africa
(including the Congo basin) [14], where another filarial infection, loiasis or eye-worm, is co-
endemic with human onchocerciasis and ivermectin cannot be used for the treatment of indi-
viduals with high Loa loamicrofilaraemia (microfilariae in blood) because of the risk of devel-
oping severe and possibly fatal or irreversible adverse reactions [15,16]. Currently, it is
recommended that in areas co-endemic for these two filarial infections, where L. loamicrofilar-
ial prevalence is above a threshold of 20% [15], ivermectin should not be distributed [16] as
there is an unacceptable risk of severe adverse events (SAEs). It has been estimated that approx-
imately 14 million people live in high-risk loiasis areas in central Africa and are potentially
affected by this contraindication [14]. However, the true extent of the overlap between oncho-
cerciasis and loiasis, as well as the levels of infection prevalence and intensity for both infec-
tions and of L. loamicrofilarial load in co-infected individuals within such co-endemic areas
need to be ascertained [17].

Stopping ivermectin treatment following local elimination of infection brings the inescap-
able risk of infection recrudescence seeded by migrating and infective blackflies and/or humans
from areas with ongoing transmission. Modelling has shown that the time to reach elimination
varies considerably with the intensity of transmission, taking longer in high endemicity areas
compared to low endemicity areas [5,6,9]. Hence, it is likely that the highest endemicity areas
with the most intense transmission will become sources of infection to an increasing number
of infection-free communities as progress towards global elimination goals advances.

In addition to the above considerations, suboptimal or atypical responses to ivermectin
have been documented in some communities, particularly in Ghana where mass ivermectin
distribution first started. These responses manifest as a faster than anticipated rate of microfi-
larial reappearance in the skin following treatment [18,19,20,21]. This has raised concerns that
the parasite may be developing incipient resistance to the embryostatic effect of ivermectin
[18,19,20,21]. If ivermectin resistance were to develop, it could eventually spread and the likeli-
hood of onchocerciasis elimination by MDA with ivermectin as a stand-alone strategy would
be jeopardised.

The Onchocerciasis Vaccine for Africa (TOVA) initiative is a response to the demand for
new intervention tools for onchocerciasis control and elimination [13,22,23]. TOVA builds
upon over 30 years of research aimed at developing and testing an O. volvulus vaccine, a project
initiated by the Edna McConnell Clark Foundation (1985–1999) [24,25] and subsequently sup-
ported by the European Union and the National Institutes for Health of the USA. TOVA has
identified three prime vaccine candidates (Ov-103, Ov-RAL-2, and Ov-CPI-2M) based on
proven efficacy in animal model systems [22,26,27,28,29,30], aiming to take at least one of
these experimental vaccines to phase II efficacy trials by 2020 [22].

Here, we extend a previously developed onchocerciasis dynamic transmission model to: (a)
investigate the potential impact of vaccination in areas where ivermectin is contraindicated
because of onchocerciasis–loiasis co-endemicity, and (b) explore its potential influence on
infection resurgence in controlled areas.

Methods

Model
The analysis was performed using our deterministic onchocerciasis transmission model
(EPIONCHO) which describes the rate of change with respect to time and host age (in both
sexes) of the mean number of fertile and non-fertile female adult worms per host, the mean
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number of microfilariae (mf) per milligram (mg) of skin, and the mean number of L3 larvae
per simuliid fly (Fig 1). The model has been refined from the original framework developed by
Basáñez and Boussinesq [31], to include age and sex structure of the host population [32]; the
population-level effects of a single [33,34] and multiple [8] treatments with ivermectin, and
increased programmatic realism related to patterns of treatment coverage and systematic non-
compliance (whose effects can be explored separately) [8].

The assumed human age- and sex-structure of the population reflects demographic charac-
teristics in savannah areas of northern Cameroon [32,35,36] (Fig 2), where the prevailing O.
volvulus–Simulium damnosum sensu lato combinations (i.e. savannah parasites–S. damnosum
sensu stricto /S. sirbanum) are responsible for the most severe sequelae of onchocerciasis
[37,38]. The model captures age- and sex-specific host exposure to biting blackfly vectors (Fig
2A), calibrated to reproduce observed pre-control microfilarial load (infection intensity) age
profiles (Fig 2B) in Cameroon [32], epidemiological patterns which are also seen in forest areas
of Cameroon [35] and elsewhere in foci under vector control in the Onchocerciasis Control
Programme in West Africa (OCP) area [39]. We assumed a stationary age distribution and a
stable (closed) population. The model can reflect pre-control infection levels in a range of
hypo-, meso-, hyper- and highly hyperendemic onchocerciasis foci (Table 1) by varying the
annual biting rate (ABR) of the simuliid vectors (the number of bites received per person per
year). A more detailed explanation of the model is provided in S1 File (Text A, Text B, Table A,
Table B and Table C).

Fig 1. Schematic representation of EPIONCHO. The red arrows indicate the points in theOnchocerca
volvulus lifecycle on which a hypothetical vaccine is assumed to have an effect; namely on parasite
establishment and microfilariae.

doi:10.1371/journal.pntd.0003938.g001
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Vaccine Effects
Our extended version of EPIONCHO assumes that the vaccine exerts two effects (Fig 1), a pro-
phylactic effect against incoming L3 (infective) stage-larvae and a therapeutic effect against mf
(the stage responsible for transmission to vectors and onchocercal pathology). These effects—
which are represented phenomenologically rather than mechanistically—are assumed to mani-
fest, respectively, as a proportional reduction in the probability that an incoming L3 larva
develops into a reproductively functional adult worm (prophylactic effect), and as a propor-
tional reduction in the skin microfilarial load (therapeutic effect) (S1 File, Text C).

Based on animal model data [26,27,28], we assumed an initial prophylactic efficacy of 50%,
and an initial therapeutic efficacy of 90%. We also explored higher initial vaccine efficacies of,
respectively, 70% and 95% in a sensitivity analysis. We assumed that these initial prophylactic
and therapeutic effects wane at a rate of 0.05 per year such that their mean duration is 20 years
(= 1 / 0.05). As part of our sensitivity analysis, we varied this rate of decay (mean duration

Fig 2. EPIONCHO’s underlying demography. (A) Age distribution and (B) Human sex ratio parameterised for savannah settings of northern Cameroon
[32,35,36].

doi:10.1371/journal.pntd.0003938.g002

Table 1. Endemicity categories as defined by microfilarial prevalence.

Endemicity Microfilarial prevalence

Hypoendemic <35%

Mesoendemic 35% to 60%

Hyperendemic Over 60%

Highly hyperendemic Over 80%

Values adapted from [72].

doi:10.1371/journal.pntd.0003938.t001
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between 5 and 50 years), in accordance with the range considered by previous modelling of a
hypothetical schistosomiasis vaccine [40].

We modelled a vaccination programme targeting one- to five-year olds in its first year, rep-
resenting an initial ‘catch-up’ campaign, followed by continuous vaccination of one-year olds
subsequently (hence each child would receive a single vaccination, as they become 1). This was
based on the age range included in the Expanded Programme on Immunization (EPI) [41]. We
also considered a less intensive alternative programme, omitting the initial ‘catch-up’ compo-
nent, and involving the vaccination of five-year olds only. A compromised schedule such as
this could be necessary given the high number of vaccinations that are given to the one-year-
old cohort in developing countries [42]. Vaccination coverage was assumed to be 80% based
on EPI data on the 4-year average coverage of measles vaccine in Cameroon between 2010 and
2013 [43], and more incidentally, the level of coverage assumed by a previous modelling paper
on the potential long-term impact of a hypothetical schistosomiasis vaccine [44]. We based our
estimate on the EPI data from Cameroon because: (a) it is a country with a high prevalence of
onchocerciasis–loiasis co-endemicity, and therefore a potential beneficiary of an onchocerciasis
vaccine, and (b) the demographic structure of EPIONCHO is based on data from this country
[32]. We also varied the assumed level of coverage as part of our sensitivity analysis, choosing a
more modest 60% coverage to reflect, perhaps, a lower degree of public confidence in a new
vaccine compared to more familiar and established vaccines.

Scenarios Explored and Model Output
We used the model to investigate (1) the beneficial impact of vaccination in terms of reductions
in onchocerciasis infection and transmission in O. volvulus–L. loa co-endemic areas where
ivermectin is contraindicated, and (2) the long-term dynamics of vaccine-induced protection
against O. volvulus infection and how this may reduce the chance of infection recrudescence
following elimination (and cessation of ivermectin MDA). We investigated these scenarios
using three principal model outputs, all presented after 15 years of a hypothetical vaccination
programme. These outputs are: (a) the mean microfilarial load in the human population as a
whole and the age-stratified contribution to this mean; (b) the overall annual transmission
potential (ATP, the average number of L3 larvae potentially received per person per year), and
the age- and sex-specific contributions to the ATP; (c) the age-specific protection afforded by
the vaccine against new infections.

The age-stratified contribution to mean microfilarial load was obtained by multiplying the
age- and sex-specific microfilarial loads (Fig 3B) times the proportion of the population within
each corresponding demographic stratum (Fig 2A for age and Fig 2B for sex). The sum (grand
total) of the age-stratified contribution yields the overall mean microfilarial load. The age- and
sex-specific contribution to the ATP was calculated as the product of the following factors: i)
the age- and sex-specific microfilarial loads; ii) the proportion of the population within each
corresponding demographic stratum; iii) the proportion of blackfly bites taken on each demo-
graphic stratum (Fig 3A); iv) the annual biting rate (ABR); and v) the constraining density-
dependent processes (parasite establishment and fly survival) acting on the development, to L3
larvae, of ingested mf within the blackfly [32]. The sum (grand total) of the age-and sex-
stratified contribution to ATP yields the overall annual transmission potential.

Results and Discussion

Scenario 1: Onchocerciasis—Loiasis Co-endemic Areas
Our modelling results indicate that the deployment of an onchocerciasis vaccine would have a
substantial beneficial impact in O. volvulus–L. loa co-endemic areas where it may not be
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possible to deliver ivermectin MDA, or the population does not take treatment for fear of
SAEs. However, these benefits take a considerable time to accrue since vaccinated individuals
(one to five year olds initially and then only one year olds) need to age through the population
into the more heavily exposed population age groups (Fig 3A). After 15 years of vaccination,
the overall mean microfilarial load in the population is projected to decrease by 30% in highly
hyper- and hyperendemic onchocerciasis foci and by 32% in mesoendemic foci (Table 2).
Assuming a more modest 60% vaccination coverage (as opposed to the default 80%), the corre-
sponding reductions are 23% (highly hyperendemic), 22% (hyperendemic) and 24% (mesoen-
demic) (S1 File, Table D). When the initial one- to five-year old ‘catch-up’ campaign is omitted
and the programme comprises the continuous vaccination of five-year olds only (but see below
for a discussion on caveats associated with this approach), the reductions in the highly hyper-,
hyper- and mesoendemic foci, again after 15 years, are 24%, 24% and 26% respectively (S1 File,
Table E). Fig 4 illustrates the profile of the age-specific contribution to overall mean microfilar-
ial load, accounting for both demography of the population (Fig 2) and infection (Fig 3B).
Although the reduction in the overall mean microfilarial load is somewhat modest compared
to what could be achieved if it were possible to deliver ivermectin MDA [5], it is highly relevant
that the most substantial reductions occur among younger members of the population. Previ-
ous studies have highlighted the crucial role played by exposure to heavy infection early in life
on the risk of onchocerciasis-associated morbidity, blindness and excess mortality [36,45], and
that for a given microfilarial load the relative risk of mortality is much greater in the<20 yr

Fig 3. EPIONCHO’s underlying age- and sex-specific exposure and baseline microfilarial load profiles. (A) The age- and sex-specific exposure
profiles to blackfly bites calibrated to reproduce the observed pre-control age-dependent microfilarial loads. (B) The age- and sex-specific microfilarial loads
in African savannah settings of northern Cameroon [32]. Note that the fitting was performed using the individual data, not the binned data shown in Fig 2B.
Note also that the legend on panel (B) applies to both panels (A) and (B).

doi:10.1371/journal.pntd.0003938.g003
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age group [43]. Hence, our modelling results suggest that an onchocerciasis vaccine would con-
tribute to reduce the burden of disease and mortality in these populations, with most benefit
afforded to those aged less than 20 years. In future, it will be important to determine whether a
vaccine eliciting these anticipated reductions in onchocerciasis-associated disease and mortal-
ity could be delivered in a cost-effective manner. Like any intervention, this will crucially
depend on the balance between the fixed and variable costs combined with the scale of the
intervention (economies of scale) [46,47]. Currently, it is difficult to ascribe plausible costs to
an onchocerciasis vaccination programme given the early stage of the vaccine’s development,
and that no comparable vaccines or vaccination programmes exist for any other human hel-
minthiasis. Besides, if ivermectin treatment were to be implemented in areas of onchocercia-
sis–loiasis co-endemicity with high risk of SAEs (those with a loiasis prevalence� 20%), it
would have to be on a test-and-treat basis in order to identify and exclude those with a high
loiasis microfilaraemia and therefore most at risk, which would raise the costs over those of
routine community-directed treatment with ivermectin (CDTI). In addition, measures would
have to be put in place to monitor any SAEs that might occur and provide adequate care, and
this would also elevate the costs of programmes based on ivermectin. These considerations
would have to be taken into account in any cost-effectiveness comparison.

The ATP is projected to decrease by over 20% (Table 2), representing reductions in oncho-
cerciasis transmission which would diminish the risk of O. volvulus–L. loa co-endemic areas
acting as sources of infection to areas where treatment programmes are in the process of being
scaled down or stopped. The reduction in the intensity of transmission (ATP), of 20%, is less
than the reduction in the intensity of infection (microfilarial load), of 30%, because older

Table 2. Long-term impact of vaccination on onchocerciasis annual transmission potential andmicrofilarial load in the absence of ivermectin
treatment under different assumptions of initial vaccine efficacy.

A Years after vaccination

Pre-Control 5 years 10 years 15 years 30 years

Annual transmission potential (ATP) and percent reduction from baseline (%)

Mesoendemic 88 76 (14%) 71 (19%) 69 (22%) 57 (35%)

Hyperendemic 373 324 (13%) 307 (18%) 294 (21%) 269 (28%)

Highly hyperendemic 4,365 3,778 (13%) 3,574 (18%) 3,419 (22%) 3,137 (28%)

Mean microfilarial load (arithmetic mean no. microfilariae/mg, all ages) and percent reduction (%)

Mesoendemic 11.2 9.1 (19%) 8.3 (26%) 7.6 (32%) 6.3 (44%)

Hyperendemic 24.0 19.5 (19%) 18.0 (25%) 16.9 (30%) 15.2 (37%)

Highly hyperendemic 59.2 48.0 (19%) 44.3 (25%) 41.4 (30%) 36.7 (38%)

B

Annual transmission potential (ATP) and percent reduction from baseline (%)

Mesoendemic 88 75 (15%) 69 (22%) 64 (27%) 52 (41%)

Hyperendemic 373 319 (14%) 299 (20%) 283 (24%) 254 (32%)

Highly hyperendemic 4,365 3,723 (15%) 3,479 (20%) 3,291 (25%) 2,957 (32%)

Mean microfilarial load (arithmetic mean no. microfilariae/mg, all ages) and percent reduction (%)

Mesoendemic 11.2 8.9 (21%) 8.0 (29%) 7.2 (36%) 5.7 (49%)

Hyperendemic 24.0 19.1 (20%) 17.3 (28%) 16.1 (33%) 13.9 (42%)

Highly hyperendemic 59.2 47.1 (20%) 42.6 (28%) 39.2 (34%) 33.7 (43%)

A: Model assumes an initial vaccine efficacy against the development of incoming worms of 50% and against skin microfilarial load of 90%. B: Model

assumes a higher initial vaccine efficacy against the development of incoming worms of 70% and against skin microfilarial load of 95%. Results assume

mean duration of prophylactic and therapeutic effects of 20 years (rate of decay = 0.05 per year) and an 80% coverage of vaccination. Annual

transmission potential (ATP): the average number of L3 larvae potentially received per person per year.

doi:10.1371/journal.pntd.0003938.t002
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women (particularly those aged�60 years), albeit comprising a relatively small proportion of
the total population (Fig 2A), are both heavily exposed to biting blackflies (Fig 3A) and, at
baseline, also heavily infected (Fig 3B). Like the age-specific contributions to the microfilarial
load (Fig 4), the corresponding contributions to the ATP depicted in Fig 5 are most reduced in
younger age groups, making these age groups, despite being most numerous in the population,
the lowest contributors to infection transmission.

Reductions in microfilarial load and ATP are only marginally increased by assuming a
greater initial vaccine efficacy; of 70% for prophylactic (against L3 larvae) efficacy, and of 95%
for therapeutic (against mf) efficacy (Table 2B). By contrast, reductions in the assumed rate of
waning of these vaccine effects have a marked impact on model outcomes (Fig 6). Therefore, it
will be more important to invest in a vaccine with a slow rate of decay, effecting a long duration
of protection—most likely mediated by the natural boosting effect of repeated infection chal-
lenges—than in an initially highly efficacious vaccine whose protective effects decay faster.
This conclusion is in agreement with other modelling studies on potential schistosomiasis vac-
cines [44]. Therefore, our modelling helps to inform the most desirable properties of an oncho-
cerciasis vaccine as an integral part of developing its target product profile (TPP).

Overall, the magnitude of the reduction in ATP elicited by an onchocerciasis vaccination
programme would be unlikely to interrupt transmission per se and ultimately eliminate O. vol-
vulus without concomitant and complementary interventions that can be safely and effectively
implemented in areas of onchocerciasis–loiasis co-endemicity. Thus, in such areas of co-
endemicity, it is envisaged that an onchocerciasis vaccine would represent an additional and
complementary intervention strategy to be used in conjunction with interventions such as vec-
tor control or test and treat strategies using anti-Wolbachiamacrofilaricidal drugs such as

Fig 4. Long-term impact of vaccination onmicrofilarial load in the absence of ivermectin treatment. The green (A), blue (B) and red (C) lines
correspond to, respectively, a pre-control endemicity of 40%, 60%, and 80%microfilarial prevalence. The solid lines indicate the pre-control contribution of
each group to the overall microfilarial load, which is the product of multiplying the microfilarial age- and sex specific profiles (Fig 3B) times the proportion of
hosts in each demographic stratum, i.e. the proportion of hosts in each age and sex group (Fig 2). The sum total of the age- and sex-specific contributions
yields the overall mean microfilarial load. The dotted lines correspond to the values after 15 years of vaccination. The shaded area illustrates the reduction in
microfilarial load in those aged less than 20 years. Modelling assumptions are as follows: a vaccination programme targeting initially 1–5 year olds with
continuous vaccination of one year olds after the first year of the programme; an initial prophylactic efficacy against the development of incoming worms of
50%; an initial therapeutic efficacy against skin microfilarial load of 90%; a mean duration of protective and therapeutic effects of 20 years (rate of
decay = 0.05 per year) and an 80% coverage of vaccination.

doi:10.1371/journal.pntd.0003938.g004
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doxycycline [48], both of which are currently under consideration for recommendation as
alternative treatment strategies (ATSs) by APOC.

Scenario 2: Potential Influence on Infection Resurgence
A key prerequisite to understanding how an onchocerciasis vaccine might mitigate the chances
of reinfection from uncontrolled areas or areas with incomplete control is to consider the frac-
tion of blackfly bites that are taken from different age groups by amalgamating the demo-
graphic structure of the population and the age- and sex-specific patterns of exposure to
blackfly bites. This is illustrated in Fig 7 and demonstrates that the groups of the population
protected by the vaccine (those aged less than 20 years) receive collectively most of the bites
(because they are more numerous, Fig 2). Comparing this distribution (Fig 7) with the pro-
jected age-specific protection against incoming worms (prophylactic efficacy) after 15 year of
vaccination (Fig 8), suggests that an onchocerciasis vaccine could markedly decrease the
chance of onchocerciasis infection re-spreading to areas where treatment has been stopped
(because it protects the age group who receive most bites). Hence, an onchocerciasis vaccine
could help to protect the substantial investments already made by donors and stakeholders of
ivermectin MDA programmes. However, this result is sensitive to the assumed rate of decay of
vaccine protection (Fig 8), reinforcing the emphasis that should be placed in the TPP on
achieving a vaccine with a long duration of protection.

The issues regarding recrudescence of infection in areas where ivermectin treatment has
been stopped will have important programmatic implications, as having to recommence dis-
mantled MDA campaigns is potentially expensive. Together, the Onchocerciasis Control

Fig 5. Long-term impact of vaccination on the overall contribution to onwards transmission by age groups in the host population in absence of
ivermectin treatment. The green (A), blue (B) and red (C) lines correspond to, respectively, a pre-control endemicity of 40%, 60%, and 80%microfilarial
prevalence. The solid line indicates the baseline age-specific contribution to the annual transmission potential (ATP, no. L3/person/year). This is obtained as
the product of multiplying the following factors: age- and sex-specific microfilarial loads; proportion of the population within each corresponding demographic
stratum; proportion of blackfly bites taken on each demographic stratum (Fig 3A); annual biting rate; and the constraining (negative) density-dependent
processes, acting on ingested microfilariae within the blackfly vector and on vector survival, that determine L3 output. The dotted lines correspond to the age-
specific contributions to the ATP after 15 years of vaccination. The shaded area illustrates the reduction in contribution to transmission by those aged less
than 20 years. Modelling assumptions on the initial vaccine efficacy and vaccine duration are as in Fig 4. The increasing contribution to ATP by older age
groups is mainly due to women for whommicrofilarial load and exposure to blackfly bites increases with age (Fig 3).

doi:10.1371/journal.pntd.0003938.g005
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Programme in West Africa (OCP, 1974–2002) and APOC (1995–2015) have cost over US$1
billion [49,50]—excluding economic costs (such as the donated ivermectin tablets and the time
spent volunteered by community drug distributors [51]). The economic value of the donated
ivermectin used in APOC (1995–2015) has been estimated to be US$3.9 billion (assuming 2.8
tablets per treatment and a commercial price of US$1.50 plus US$0.005 for shipping costs, per
tablet) [50]. This highlights the important role a vaccine could have in protecting the substan-
tial investments made by onchocerciasis control programmes, donors, and stakeholders in the
global health community.

Other Considerations and Research Needs
Based on elimination successes in Mali and Senegal [52,53], lessons learned when stopping
onchocerciasis control in the OCP, and projections of the ONCHOSIM model [54], APOC has
proposed provisional operational thresholds for treatment interruption followed by surveil-
lance (pOTTIS). These comprise a microfilarial prevalence (by skin snipping) less than 5% in
all surveyed villages and less than 1% in 90% of such villages, as well as less than 0.5 L3 larvae
per 1,000 flies [55]. It is important to emphasize that these pOTTIS are not necessarily equiva-
lent to transmission breakpoints, which represent a parasite density (and corresponding

Fig 6. Sensitivity of the long-term reduction in microfilarial load in individuals under 20 years of age to the assumed rate of decay of vaccine
efficacy. The mean duration of vaccine prophylactic (against incoming L3 larvae) and therapeutic (against microfilariae) activity is 1/the rate of decay (i.e. 5,
10, 20 and 50 years). We illustrate with a pre-control endemicity of 40%microfilarial prevalence. The solid line indicates the baseline (pre-control)
contribution of each group to the overall microfilarial load, which is the product of multiplying the age- and sex-specific microfilarial loads (Fig 3B) times the
proportion of the population within each corresponding demographic stratum (Fig 2). The dotted lines correspond to these contributions after 15 years of
vaccination for decreasing waning rates of the prophylactic and therapeutic effects of the vaccine; the lower the rate, the greater the reduction in microfilarial
loads achieved by the vaccination programme. Other assumptions as in Fig 4.

doi:10.1371/journal.pntd.0003938.g006
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prevalence) below which the worm population would not be able to maintain itself due to the
presence of Allee effects [11,56]. The magnitude of the transmission breakpoints is likely to be
very locale-specific, depending on factors such as the parasite distribution and reproductive
biology resulting from prolonged treatment, and the prevailing vector biting rates and compe-
tence for O. volvulus [57].

Although the pOTTIS have been validated in some foci—with low pre-control endemicity
and highly seasonal transmission by savannah members of S. damnosum s.l. [52,53,58]—they
will not necessarily hold in all epidemiological settings; particularly those with high pre-control
endemicity, transmission rates and vector density. Furthermore, the current entomological
threshold within these guidelines is measured per 1,000 flies and not per 1,000 parous flies
(those which have previously fed on blood, laid eggs and survived gonotrophic cycle(s)). Con-
sequently, it does not account for any potential differences in parity and survival rates among
vector species in different seasons, or for different vector mixes when more than one simuliid
species contributes to transmission in the same locale [59]. This, together with the poor sensi-
tivity of skin snipping when infection levels are low [60], can lead to misleading conclusions
regarding the level of ongoing transmission and potentially to treatment being stopped prema-
turely. An onchocerciasis vaccine would offer protection to populations after ivermectin distri-
bution has ceased, and may reduce the chance of infection recrudescence in areas where
treatment may have been stopped early. In addition, the use of an onchocerciasis vaccine

Fig 7. Model-predicted proportion of bites taken on each age group. The product of multiplying the age-and sex-specific exposure profiles to blackfly
bites (Fig 3A) times the proportion of hosts in each age and sex group according to the demographic characteristics of the population (Fig 2).

doi:10.1371/journal.pntd.0003938.g007
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would mitigate the consequences of a potential spread of ivermectin resistant O. volvulus
[20,21].

It is also important to note that models such as EPIONCHO, ONCHOSIM, and others have
been primarily calibrated with data collected in transmission areas of African savannah
[32,57], an exception being the SIMONmodel [61], parameterised for a forest setting but not
currently used for decision support in Africa. It is also important to note that models such as
EPIONCHO, ONCHOSIM, and others have been primarily calibrated with data collected in
transmission areas of African savannah [32,53], an exception being the SIMONmodel [57],
parameterised for a forest setting but not currently used for decision support in Africa. Forest
simuliid species do not exhibit the same degrees of density-dependent constraint on the frac-
tion of incoming microfilariae that successfully establish in the thoracic muscles of the flies
[57], resulting in higher numbers of L3 larvae per forest fly [62] and corresponding transmis-
sion potentials [63]. This could mean that forest blackflies are more efficient transmitters of
infection, although little is known about other density dependencies that might mitigate this
effect, such as the degree of density-dependent excess mortality inflicted on infected blackflies.
Parasitological data on infection intensity (microfilarial loads) combined with entomological
data on annual biting rates collected from communities in forest settings could help to infer
vector efficiency indirectly, yet such data are somewhat scarce. It remains an important
research need to parameterise onchocerciasis models to reflect the epidemiology and

Fig 8. The profile of protection against incoming worms after 15 year of vaccination for different rates of decay of vaccine efficacy. The mean
duration of vaccine prophylactic (against incoming L3 larvae) and therapeutic (against microfilariae) activity is 1/the decay rate (i.e. 5, 10, 20 and 50 years).
The lower the waning rate, the greater the reduction in incoming worms achieved by the vaccination programme. Other assumptions as in Fig 4.

doi:10.1371/journal.pntd.0003938.g008
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transmission of forest onchocerciasis, as it is in these areas that onchocerciasis–loiasis co-
endemicity represents a barrier to elimination [14], and the use of an onchocerciasis vaccine
would be highly desirable as one of a number of complementary interventions forming a multi-
pronged strategy.

Other modelling studies have been conducted to explore the epidemiological impact of hel-
minth vaccines such as for human [40,44] and zoonotic [64] schistosomiasis, and hookworm
infection [65]. In particular the latter also explored vaccination of older age groups (school-age
children). We refrained from doing this because it has been shown that helminth vaccines may
not be efficacious in hosts who are already infected due to the immunomodulatory effects of hel-
minth infection [66]. However, in areas of intense onchocerciasis transmission where ivermectin
has not yet been deployed, the under 5-year olds may be patently infected and the 1-year olds
pre-patently infected. These challenges will have to be taken into account when optimising the
design of the vaccines and vaccination programmes. Since skin and blood samples are seldom
taken from these age groups during onchocerciasis surveys, data to inform the (immuno-)epide-
miology of the infection in young children are scarce (but see [67,68]). The development of O.
volvulus-specific biomarkers for detection of active infection is a pressing research need [69,70].

A potential caveat of the vaccination strategy discussed in this paper would be the possibility
of SAEs was there cross-reactivity betweenO. volvulus and L. loa with respect to the therapeutic
effect of the vaccine against microfilariae. However, the amino acid identity between the three
candidateO. volvulus proteins and their counterparts in L. loa amount only at 52% forOv-RAL-
2, 58% forOv-CPI-2M and 71% for Ov-103, and therefore it is unlikely that there would be sub-
stantial cross efficacy at immunologically-mediated killing of microfilariae. Notwithstanding
this seemingly low risk, this issue has not yet been tested in animal models of loiasis, but experi-
mental models are being developed [71] that would allow investigation of this question if a pat-
ent infection could be established. More recently, a newly developed co-infection model of O.
ochengi and L. loamicrofilariae in Mongolian jirds (Meriones unguiculatus) has been established
at the University of Buea, Cameroon, by Dr. Fidelis Cho-Ngwa (personal communication). This
immunocompetent jird model was developed for the simultaneous testing of potential macrofi-
laricides onO. ochengi and L. loamicrofilariae in the same animal. This counter screen is impor-
tant in confirming that a drug, whilst killing adult worms in vitro or in vivo, will not kill L. loa
microfilariae in a host with a fully intact immune system (as occurs in co-infected humans).
This model could be also used to investigate the question of immunological cross reactivity (the
similarity between O. volvulus andO. ochengi for all three proteins mentioned above is�99%),
by immunizing with the recombinant antigens and then challenging with O. ochengi and L. loa
microfilariae, following their mortality and any ensuing pathology.

Developing quantitative tools that allow rigorous exploration of the considerations
described above will be essential for assessing the true cost-effectiveness of onchocerciasis vac-
cination. In particular, this work highlights the importance of developing spatially-explicit
transmission models with which to investigate and quantify the probability of infection being
re-introduced in successfully controlled areas from others with ongoing transmission. The
results of the analysis clearly show the importance of obtaining reliable estimates of the dura-
tion of vaccine protection, i.e. the reciprocal of the rate at which vaccine efficacy would decay.
This property of the vaccine will be more important than initial vaccine efficacy in terms of the
long-term impact of vaccination campaigns
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