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Abstract—Wireless Sensor Networks (WSNs) are vulnerable
and can be maliciously compromised, either physically or re-
motely, with potentially devastating effects. When sensor net-
works are used to detect the occurrence of events such as fires,
intruders or heart-attacks, malicious data can be injected to
create fake events and, thus, trigger an undesired response,
or to mask the occurrence of actual events. We propose a
novel algorithm to identify malicious data injections and build
measurement estimates that are resistant to several compromised
sensors even when they collude in the attack. We also propose
a methodology to apply this algorithm in different application
contexts and evaluate its results on three different datasets
drawn from distinct WSN deployments. This leads us to identify
different trade-offs in the design of such algorithms and how
they are influenced by the application context.

Index Terms—Security management, Ad-Hoc and sensor net-
works, Mining and statistical methods

I. INTRODUCTION

IRELESS SENSOR NETWORKS are a low-cost, flex-

ible, and easy to deploy solution to monitor physical
phenomena, but they are also particularly vulnerable to ma-
licious attacks since deployments are often unattended; the
sensors are physically accessible; the sensor hardware has
limited computational resources; and the wireless interface is
difficult to secure.

WSNs are often used to detect events occurring in the
physical space across different applications such as military
surveillance [1f], health [2], and environment (e.g., volcano)
monitoring [3|]. Although these applications have different
tasks, they all collect sensor measurements and interpret them
to identify events, i.e. particular conditions of interest followed
by a remedial response. Such response may have significant
consequences and cost. Therefore, the measurements leading
to the event detection, become a critical resource to secure.

When the measurements are somehow replaced or modified
by an attacker, we deal with malicious data injections. The
attacker may make use of the injected data to elicit an event
response, such as evacuation in the case of fire, when no
event has occurred, or mask the occurrence of a true event,
such as the trigger for an intrusion alarm. Different means for
obtaining control over the measurements are possible. Many
of the studies in the literature address physical and network
layer threats (e.g., [4]-[9]]) by protecting the integrity of the
measurements during their transmission (e.g., with a crypto-
graphic hash function). However attacks may compromise the
measurements even before they are transmitted. For example,
an attacker may tamper with a sensor in the field and load a
software that reports false measurements. Another possibility

is that the attacker manipulates the environment by using
for instance a lighter to trigger a fire alarm. In this paper
we consider directly the scenario where an attacker gains
full control of one or more sensors and can run arbitrary
malware on them to fabricate new measurements and report
them in place of the observed ones. Our task consists of
detecting the incongruities between the observed and the
reported measurements. Although, in an environment manip-
ulation scenario there is no incongruity between observed and
reported measurements, a reported measurement still differs
from what would be reported in the absence of attacks. In
both cases the non compromised measurement is an unknown
variable, so it needs to be characterised through observable
properties, which in turn are not compromised.

In the presence of malicious data injections, there are few
observable properties that can help detection. One of them is
the loss of integrity of the sensor e.g., detect that it is running
malicious software. For such a scenario, software attestation
techniques have been proposed [10]-[13], but require further
evaluation in concrete deployments i.e., outside the controlled
environment of a research lab. Note, however, that injections
through environment manipulation cannot be detected through
attestation since the software is still genuine.

Beyond the integrity of the software, the measurements
reported by the sensors are themselves another observable
affected by malicious data injections. The approach pursued
in this paper is based on measurements analysis and its
applicability relies on the assumption that the measurements
are correlated under genuine circumstances, while compro-
mised measurements disrupt such correlations. The presence of
correlations indicates that the measurements contain redundant
information. Such redundancy is necessary, since without it,
there are no terms of comparison to detect anomalies other
than broad constraints such as the admitted measurements
range. Correlation instead adds more constraints to the mea-
surements, and allows less freedom for an attacker. Besides
correlation, detection of inconsistencies in the measurements
requires the presence of a non void subset of genuine sensors
in the network. This is typically the case since compromising a
sensor generally entails a cost for the attacker, as well as a risk
of being detected. However, if the subset of genuine sensors
is too small with respect to the measurements correlation,
the attack may be undetectable or, even if detectable, there
may be insufficient information to determine which sensors
are compromised and which are genuine.

To detect malicious data injections, we propose an algo-
rithm that characterises the relationships between the sensors’
reported values arising from the spatial correlations present



in the physical phenomenon. Even though correlation-based
analyses may easily spot a single malicious measurement, the
problem becomes more difficult in the presence of multiple
malicious measurements, originating from colluding sensors.
We define collusion as the process of injecting malicious mea-
surements through multiple sensors in a coordinated fashion.
We do not make assumptions about how colluding sensors
manifest but we highlight that collusion may enable elic-
iting/masking an event whilst remaining undetected and/or
lead to genuine sensors being considered as compromised.
The potential effects of collusion increase with the number
of sensors involved, until the attacker has enough power to
conduct any attack undetected. To ensure the detection is
resistant to collusion, we introduce novel ways of aggregating
measurements that are aimed at discarding malicious contri-
butions under attack and minimise the false positives under
genuine circumstances as well. We show that even though
our approach is based on simple and solid techniques (e.g.,
linear regression, weighted median, Pearson correlation) it can
detect sophisticated collusion attacks that have not been con-
sidered before. Indeed, we consider an attacker that selects the
sensors to compromise and injects real measurements, which
are chosen to maximise the correlation among compromised
sensors and minimally disrupt correlations with genuine sen-
sors. Furthermore, the low computational complexity of such
techniques makes the overall approach suitable for extensive
analysis of online data.

We also propose a novel more general methodology to apply
our algorithm in different application settings. In particular,
we show how the algorithm parameters can be derived from
tests and knowledge that are pertinent to the deployment
and application of the WSN, such as the event detection
criterion used. Indeed, many prior studies (e.g., [14]-[17]),
propose algorithms that are evaluated in a single deployment
or application setting, or even on a single simulated dataset.
Would the same algorithm work in a different setting? For
many reasons, this is not likely. In contrast, we show our work
to be applicable across three different application domains:
health-care monitoring, monitoring of volcanic activity, and
home fire alarms, each with different challenges. We build
realistic attacks that undermine the core objective of each
application and minimise the chance of detection.

The remainder of this paper is organised as follows: We
review the related work in Section [[I] and define the scope of
our work accordingly. We characterise the challenges originat-
ing from collusion attacks and introduce a detection algorithm
in Section In Sections and [VI] we describe the
three phases of our algorithm: Estimation, similarity check
and characterisation, each time identifying the aspects that
need to be customised to the application setting. Section
discusses the computational complexity of our approach.
We show how our methodology is tailored to three different
application settings in Section Finally, our conclusions
and directions for future work are presented in Section

II. RELATED WORK

Our proposed solution improves upon state-of-the-art ap-
proaches and provides:

1) A method to run the detection on broad neighbourhoods
where the measurements of two neighbours can signifi-
cantly differ (but are still correlated).

2) An extension of voting-based and trust-based frameworks
to estimation-based frameworks.

3) A general methodology to flexibly tailor the technique to
WSN applications that detect different kinds of events.

Contribution |1| consists of extending the assumption made
in [14]-[20] where the value of the sensed phenomenon is
required to be the same within a neighbourhood and measure-
ments differ only because of noise. This assumption allows to
easily estimate the ground truth and label the measurements as
outlying through e.g., one-class quarter sphere support vector
machines (SVM) [20]. However, this assumption is generally
valid only for very small neighbourhoods, where collusion
attacks can be successful by compromising all the sensors. To
resist collusion, it is necessary to broaden neighbourhoods and
cope with measurements that are significantly different. But in
the absence of a common ground truth, what should a sensor’s
reported measurement be compared against? Previous work,
such as [21]]-[23]], have proposed to detect inconsistencies
in the correlation within a neighbourhood by extracting a
unique overall consistency metric, to which every neighbour
contributes. This, however, allows colluding sensors to com-
pensate for each other and reduce the overall inconsistency,
whilst still disrupting the reported values [24].

We observe that each sensor can exploit correlations to
produce an estimate for the measurements of other sensors.
The estimates can then be aggregated with a collusion-resistant
operator that produces a final reliable estimate to be compared
with the reported measurement. An approach similarly based
on aggregation of individual sensors’ information is majority
voting [15]l, [17], [25], [26]], where each sensor votes for a
neighbour’s maliciousness and the votes are aggregated by
majority. Similarly, trust-management frameworks aggregate
individual beliefs about a sensor’s behaviour [[18]], [19], [27],
[28]]. A sensor’s behaviour is mapped to a trust value by
all its neighbours, and then the sensor’s trustworthiness is
obtained e.g., by averaging the trust values [28]. However, the
main drawback of these techniques is that they introduce an
additional variable - the vote, or trust value - about which an
attacker can lie with or without lying about the measurements
at the same time. Detecting such attacks incurs additional
computation and communication costs. In contrast, our con-
tribution [2] extends voting-based and trust-based frameworks
by aggregating measurements estimates rather than votes
or trust values. Such choice does not introduce additional
variables, since the estimates are directly calculated from the
raw measurements.

We show the limitations that estimation-based frameworks
overcome by analysing possible voting scenarios among the
sensors in Fig Consider at first nodes A, B, and C to
be compromised. In this case A is free to inject arbitrary
malicious data if B and C collude to not report on it and
act genuinely to avoid reports from D, E, F. If estimates were
available, we would notice that the measurements of B and C
are consistent with those of D, E, F (the reason why they don’t
report), but are not consistent with those of A. Alternatively,



*B‘

A
S
Al
IONA
DE F
T~

Fig. 1: Example WSN topology. Nodes represent sensors and
edges indicate a neighbour relationship.

consider nodes D, E, F to be compromised. Here nodes D
and E can inject any kind of measurements, although C may
report on them. Indeed, node F can avoid reporting on them
and report on C instead. Then, with a simple majority voting
approach [26], node C would appear as the compromised node.
Through the estimates instead, we can detect that there is no
valid reason for sensor F to endorse D and E and report
on C, uncovering the collusion attempt. A majority voting
approach will always fail when more than 50% of sensors are
compromised. However, such upper bound considers the best
case scenario, where all the genuine nodes report correct votes
without uncertainty. Our estimation-based framework instead,
considers the degree of uncertainty, which becomes the only
bounding factor. Indeed, our experiments in Sect. show
tolerance against up to 88% compromised nodes.

To the best of our knowledge, no previous papers develop
a general methodology showing how the algorithms can be
systematically tailored to different deployments and different
applications. Our contribution [3|deals with this aspect. We also
describe sophisticated collusion attacks that are application-
agnostic and therefore can be used as a generic testing criterion
for assessing the robustness of different algorithms.

III. OVERALL APPROACH

The estimation-based framework, which iteratively extracts
and aggregates measurements estimates, is at the core of our
detection mechanism. Estimates are iteratively computed on
new measurements and a similarity check compares them as
shown in Fig. 2] When the similarity check fails, we run a
characterisation step — an extensive analysis that identifies
the likely compromised sensors. The models used to build the
estimates are learnt during an initialisation, which serves to
customise our techniques to the specific WSN deployment and
whose output is the estimation models.

Estimation !

Estimate observed

measurements

Initialisation
Produce the
estimation models

Characterisation
Find compromised
Sensors

Detection

Fig. 2: Outline of the algorithm

During the initialisation, the network is assumed to be free
of compromise. The steps leading to the estimation models
are shown in Fig. 3al a) we first pre-process the data to

eliminate faulty readings, alleviate noise and transform the
data to extract the parameters of interest, b) we check if
the estimation models change significantly in the presence of
events, and if so we create a separate set of estimation models
for each modality of the physical phenomenon, ¢) we analyse
the data to test if the correlation detected allows to build a
linear model to perform the estimation, d) the validity of a
linear model is defined for each pair of sensors and allows to
identify the neighbourhood of a sensor as the set of sensors
with which there is a strong linear relationship, e) finally the
parameters that fit the estimation models are calculated.

The similarity check also needs to be customised to the
sensor deployment during the initialisation, according to the
steps shown in Fig. To assess if the estimates are similar
enough to the the reported measurements, a similarity metric
is required. Since the final goal of our detection scheme is
securing the event detection, the similarity metric should check
the integrity of observable properties that characterise the
event. Such properties can be derived from the event detection
criterion, i.e. the algorithm that is run on the measurements to
detect the presence of events. We define two main properties
that characterise most event detection criteria: the magnitude
and the shape of the measurements signal, based on which, we
build respective tests. Customisation involves: a) choosing a
similarity check based on such tests, b) tailoring the test to the
application according to the event detection criterion, ¢) tuning
a dissimilarity tolerance parameter to reach an objective false
positive rate (FPR).
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! I
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Fig. 3: Methodology scheme

The tasks pertinent to each step can be assigned to differ-
ent devices. However, in estimation-based frameworks, as in
voting- or trust-based frameworks, the final detection decision
should be taken by an entity that is not compromised, typically
the base station. The decision is taken based on the values
(votes, trust, measurements) received from the sensors. In
some cases, the deciding entity cannot perform such aggre-
gation alone e.g., when measurements are aggregated while
being collected in the network. In such cases the base station
can delegate the detection tasks to the aggregating nodes but
must also, additionally, verify the validity of the aggregation.
Techniques to detect injections in aggregated reports have
been proposed in [19], [29], [30] among others and are



complementary to the work we present here, which focuses
on the analysis of the raw sensor data. In the next section
we describe in detail the steps in Fig. |2| their rationale and
customisation.

IV. ESTIMATION

We model the sensing problem in WSNs considering a
generic sensors deployment .S, with |S| = N. We refer to the
measurement observed by sensor i (i € S) at time ¢ as O;(t),
while the measurement reported to the base station (or data
sink), is denoted by S;(t). We calculate O;(t), an estimate of
the observed measurement, from the measurements given by
i’s neighbours Sj¢ n(;)(t). For the moment we will consider all
the other sensors as neighbours but will review the selection of
neighbours in Sect. This aggregated estimate allows us
to detect if the sensor has reported a measurement that differs
significantly from it. Note that compromised neighbours could
collude, as mentioned in Sect. [II} to bias the estimate and make
it more consistent with the reported measurement. To avoid
this problem, we obtain separate (pairwise) estimates from
each neighbour. In a second step, the estimates are aggregated
by an operator that is resistant to compromised estimates. We
refer to the first part of this approach as pairwise estimation,
and to the second part as estimate aggregation.

A. Pairwise Estimation

The measurements of two sensors are related, and in
particular spatially correlated, because the sensed physical
phenomena affect and propagate across the environment in
which the sensors are placed. Ideally, the relationship could
be characterised in a mathematically precise way, given by
the laws of the physical phenomenon and its propagation. In
reality, environmental changes, noise, interactions with other
phenomena etc., constrain us to work with approximations and
more specifically inferred correlations that can be established
with a certain margin of error.

Though we are exploiting spatial correlations, in event
detection WSNs, we also need to account for a temporal
parameter, which is the propagation delay of the event. By
modelling the stream of measurements from sensors ¢ and j
as the random variables O;(I) and O;(m) respectively, we
define the inter-sensor delay J;; as the time it takes for the
event to propagate from ¢’s to j’s position. We estimate this
quantity as the value that maximises the Pearson correlation
coefficient and use it to align the measurements in time. We
assume that ¢; is small enough to perform the alignment
within the timeliness requirements of the event detection.
Note that the calculation of the inter-sensor delay absorbs
any synchronisation errors, so the method does not require
clock synchronisation. d;; can change with the value of the
measurements, so ideally, would need to be estimated for each
new measurement. This choice is cumbersome (calculation of
the Pearson correlation is expensive), and an attacker can also
try to subvert this calculation. Thus, we calculate it only once
for each new estimation model, by optimising the average
Pearson correlation coefficient. From now on, we use the
notations O; and O; to refer to two samples of the random

variables aligned by the calculated inter-sensor delay, i.e. O;(1)
and Oj (l + 5ﬂ)

At this point, we calculate Oij: an estimate of O; based on
O;. To characterise this quantity, we assume that O; can be
approximated with a linear combination of O; plus a residual
noise random variable ¢;;. We assume that noise is normally
distributed, after removing obvious outliers; when this condi-
tion cannot be satisfied, robust regression should be preferred
[35]. A linear relationship makes our estimation lightweight
both in time and space complexity (see Sect. [VII). Its validity
can also be tested statistically, and the neighbourhood of a
sensor can be defined as the set of sensors for which this
relationship holds. When this linear relationship holds less,
the estimate is weighted to have a smaller influence on the
final result (as shown in Sect. [[V-B]). We refer to the equation
that approximates O;; with a function of O; as the estimation
model described below.

Each estimation model can be extracted through linear
regression, which calculates the coefficients a;; and b;; in:

Oij = aijOj + bij (D
Thus, an estimation model is defined by the pair (a;j, bi;)
calculated as shown in Algorithm [I] In the absence of an a-
priori characterisation of random variables O; and Oj;, we use
their sample mean, sample variance and sample covariance,
respectively, estimated on real data.

Algorithm 1 Estimation models calculation

Input: O; i€ S
Olltpllt: (aij, b’J) Vi 7& ]
1: {Initialisation: align the measurements with the inter-
sensor delay}
2: for all : € S do

3: for all j € N(i) do {N(i) indicates ’s neighbours}
& ay =

5 bij = E [Oij — a;; E[0;]

6: store (aij, bU)

7. end for

8: end for

Regression schemes for anomaly detection in WSN have
been previously proposed in [23]], [31], [32]. However, [31]
and [32] apply regression in the temporal rather than the
spatial domain i.e., they estimate correlations between mea-
surements of a single sensor. In [23] the spatial domain
is also considered with multiple linear regression, however
this technique is sensitive to outliers, especially when they
are correlated because of collusion. In contrast we focus on
spatial correlations because an attacker can always introduce
measurement deviations slow-enough to make them appear
consistent. In the spatial domain the presence of genuine
sensors makes such deviations detectable.

1) The Validity of the Estimation Models: Estimating the
models between every pair of sensors at run-time is com-
putationally expensive. Moreover, the measurements used to
learn the models must be genuine, i.e., from non-compromised
sensors. The most secure and less expensive option is to learn



the models one-off with many historical samples. This choice
also allows to use more powerful devices and to extensively
analyse the data set to ascertain its integrity.

However, the estimation models are valid only when the
linear relationships remain stable through time. This may
not be true, especially when the measurements’ accuracy is
subject to degradatiorﬂ If degradation is due to faults and
a fault-detection module is present, the faulty sensors can
be excluded. Other changes in the models’ accuracy can
be handled by online model updates, that add information
extracted from newly collected measurements. Design of an
update criterion is beyond the scope of this paper, but we
emphasise that such updates require good confidence in the
integrity of the new data, otherwise an attacker can “poison”
the model e.g., to make anomalous data become normal.

Another important factor to consider for the validity of
the estimation models is that an event may induce different
relationships between sensors than those present in non-
event conditions. This is confirmed by the data sets we have
examined. We must therefore distinguish between different
modalities in which the network operates, each corresponding
to a set of estimation models. We consider the following three
modality assumptions:

1) Unique modality. The same relationships between sensors
hold in event or non-event conditions.

2) One modality in event conditions, a different one at rest.
This occurs when events induce a different spatial pattern,
but all events have similar patterns.

3) Infinite or unknown number of modalities. In the most
general case.

In this paper we cater for assumption 1) and also for 2) since
it is a straightforward extension of 1). Two different sets of
estimation models are computed: one in event conditions, the
other in non-event conditions. The estimation models learnt in
event condition apply when the detection criterion is satisfied
while those learnt in restful conditions are used when no
event is detected. Considering different modalities complicates
detection, so different modalities should be used only when
different behaviours in the relationships between sensors can
be identified (e.g., through a scatter plot).

A higher number of modalities can similarly be catered
for. However, we leave the more complex assumption 3) for
future work. In this case the estimation models could be fitted
to the measurements rather than learnt in advance. But the
measurements may themselves be compromised.

2) The Accuracy of the Estimation Models: The accuracy
of the estimates is influenced by several factors including
the accuracy of the linear relationships, noise, faults, and
the informative content of the measurements. Noise is a
common source of inaccuracy, especially for sensors in harsh
environments. Generally, noise signals can be removed or
reduced with standard filters. Another common cause for
wrong estimates is the presence of faults. Our algorithm
alone cannot discern if the wrong estimate was intentional
(malicious) or unintentional (faulty), but both will be detected
to enable a proper reaction. However we point out that our

lor when sensors are mobile but we focus here on infrastructure sensing.

solution is not designed to detect sensor faults, and a dedicated
fault-detection module should run in parallel for this task.

To increase accuracy, the analysis must be applied to the
data containing the information of interest, which may not be
the raw measurements but information derived from them. For
example, the heart voltage measured by electrocardiography
is less informative than its frequency. Another example, re-
garding the use of infrasound sensors for monitoring volcanic
eruptions, is shown in Section In such cases pre-
processing the raw signals improves the accuracy significantly.

The accuracy of the estimation models also depends on the
presence of a linear relationship between the sensors mea-
surement. Previous work (e.g., [14]-[17], [[19]]) has considered
a stronger assumption that does not allow spatial variations
between the sensors, i.e. the measurements are assumed to be
so close that their expected value is the same. We have instead
given broader applicability to our technique by assuming a
linear relationship between the measurements. For some WSN
applications such as target tracking, linear relationships can be
seen only at very close points, and if the WSN deployment is
not dense enough there may be no pair of sensors for which
such relationship holds. Therefore, the validity of the linearity
assumption needs to be checked beforehand, and we do so
with the squared Pearson correlation, which is a goodness of
fit metric for linear regression. In some cases, our approach can
also be applied when linear relationships cannot be found by
applying a non-linear transformation to achieve linearity [33]].
After the transformation, an increasing Pearson correlation
coefficient indicates whether the transformation is convenient.

The goodness of fit allows us also to measure the goodness
of the neighbours contribution and weigh it accordingly. Thus,
even when considering all the other sensors as neighbours,
uncorrelated neighbours will not degrade the result. However,
the complexity of the detection algorithm increases with the
neighbourhood size (see Section . Then, a network-wide
neighbourhood is realistic only in small scale deployments
while in large deployments, the neighbourhoods should be
restricted. Our principle for selecting the best neighbourhoods
is selecting the first sensors in a list sorted by descending
goodness of fit: this choice is more robust than distance based
criteria since, e.g., in the presence of obstacles, two sensors
may be very close but show poor correlation.

Restricting the neighbourhoods does not ensure that all the
neighbours are equally correlated, hence the goodness of fit
should still be used to weigh the neighbours’ contributions. We
therefore introduce the prior weight (w;;), which is the good-
ness of fit normalised across a neighbourhood and captures the
relative a-priori confidence in the pairwise estimation model
between a sensor and one of its neighbours. By weighting
the neighbours appropriately, the accuracy increases with the
neighbourhood size.

B. Estimate Aggregation

For every new measurement collected by a sensor, multi-
ple pairwise estimates are calculated through the estimation
models. At this point we aggregate them into a final esti-
mate O; that approximates O; and allows us to detect the



presence of malicious data injections. To achieve this, O;
must aggregate estimates in a way that is both accurate and
minimally corrupted by malicious estimates. In particular, the
second requirement demands us to not trust the relationships
between different estimates. Indeed, different estimates for
the same measurements share some mutual information, or
in other words the information brought in by an estimate is
reduced by knowledge of other estimates. Nevertheless, such
property holds only in the absence of malicious interference.
With respect to malicious data injections instead, even two
estimates that are expected to be perfectly correlated bring in
independent information, since we assume independent proba-
bilities of compromise for different nodes. For this reason, our
weighting scheme does not consider inter-estimate correlation.

Two candidates to aggregate pairwise estimates are weighted
mean and the weighted median: both take as input a set of
estimates and their prior weights and return an aggregated
value. The weighted mean can achieve a smaller error than
those of the single estimates. However, it is highly sensitive
to compromise, since the final result is proportional to the
input values: even one compromised (outlier) estimate can
introduce an arbitrary deviation in the result. In contrast, the
weighted median |34] is more resistant to compromise. It first
sorts the values ascendingly, then arranges the weights with
the same order, transforms them into substrings with a length
proportional to the weight and picks the element at the half-
length of the resulting string. Its drawback is that by picking
one among all estimates, the error cannot be reduced further.

Since there is a trade-off between accuracy and compromise
resistance, we propose to combine the two operators with
the following heuristic: first, the weighted median operator
is applied; then the weighted mean is calculated with new
weights, the posterior weights (w;;), obtained as the prior
weights times a function which penalises values distant from
the result of the first step. Such function is the complementary
cumulative distribution function of the estimation error, where
the latter is calculated as the difference between the pairwise
estimates and the result of the weighted median.

pi; (0, 045) = P(|esj| > [0 — Oy51)
=1- erf(i‘oli_o”‘ ) @
ﬂstd(eij)

Where er f is the error function and std(e;;) is the residual
standard deviation [35]], calculated together with the respec-
tive estimation model. The overall procedure is detailed in
Algorithm [2| below, where (A)Z N(i) are the estimates for ¢’s
observed measurement from its neighbours and wi_N( ;) are
their respective prior weights.

Our novel algorithm gives a collusion-resistant and accu-
rate aggregation. It differs from robust aggregators, such as
the Orthogonalized Gnanadesikan-Kettenring (OGK) operator
[15], since it takes also the prior weights in input to cater for
the general case where the values are not equally pertinent
to the aggregate. As a consequence, the accuracy of our
aggregate always increases when adding more values if the
prior weights are correct, while the accuracy of OGK decreases
with the introduction of less accurate values. Moreover, our
operator exploits the residual standard deviation std(e;;) to

Algorithm 2 Calculation of the aggregated estimation

Input: wi_N(i), OinN(i)

Output: O;

c 0 = weightedMedian(wi_N(i)7 OiN(i))

: for all j € N (i) do {Calculate the posterior weights}
wy; = wy; - pij (0, Oy5)
wj'N ) .append(w;;)

end for
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8: return Oi

quantify how much a weight should be penalised; OGK instead
penalises all values equally, without considering their specific
uncertainty. The penalty applied by OGK depends on the data
variability measured with the median absolute deviation. This
is disadvantageous for collusion resistance, as an attacker may
seek to increase the estimates’ variability to be penalised less.

To control the aggregation result, an attacker must ensure
that the weighted median is one of the compromised estimates
and thus that the sum of the weights of compromised estimates
is > 0.5. This condition enables non-detectable injections
into a single sensor but is not sufficient to keep the attack
undetected. The attacker also needs to control the estimations
for the other compromised sensors. The total number of
sensors needed to keep all compromised sensors undetected
depends on the strength of the pairwise correlations. Instead,
the number of sensor needed to mask or elicit an event depends
on the event detection criterion. Our empirical evaluations
show that although a few sensors are generally required to
subvert the event detection, a substantial additional number of
sensors is required to avoid detection.

V. SIMILARITY CHECK

From the estimate aggregation step, each reported measure-
ment S; has an estimate OAZ of the observed value. To detect
data injections in S;, we compare the two using a similar-
ity metric that must be consistent with the event detection
criterion. So, two signals that are similar according to the
metric must also have similar effects on the event detection
and vice-versa. Here we propose two tests that capture the
characteristics of most event detection criteria. The magnitude
test verifies that reported measurements are close in magnitude
to their estimates. The shape test verifies that the estimate and
reported signal have a similar shape. The choice of the most
appropriate test, or a combination of the two should be made
at design time based on the event detection criterion.

A. Similarity Test 1: Magnitude

In some WSNs, events are triggered when measurements
are higher or lower than a reference value. For example, fire
alarms trigger when the temperature is above a threshold. An
attacker must therefore inject measurements, which differ in
magnitude with the observed ones. In such cases we use M; =



(Oi — S;) — the difference between the reported measurement
and its estimate — to build a magnitude test, which checks that
the difference is small enough.

We assumed that the regression residual, i.e. the error
between a value and its estimate, is zero-mean and normally
distributed. Even if O; is the result of the aggregation de-
scribed in Section the error ¢; = (Oi — O;) can still
be assumed to be normally distributed. Indeed, our aggregate
is a weighted mean of pairwise estimates, so it equals the
true value plus the weighted mean of the pairwise residuals as
shown below, where ¢;; denotes the residual in the regression
of sensor ¢’s measurement based on sensor ;’s.

Oi = Yjent wii0is = Xjeng
=0; + Z

’LU;; (O; + Eij)
b 3)
JEN (i) Wij€ij

Assuming that neighbours have independent residuals (e.g.,
because of independent noise), €; is a linear combination
of independent normally distributed samples, and is thus
normally distributed too [36]. Its mean is still zero, and its
variance is:

var(e;) = Z w 2var (€i) 4

JEN()

This equation has an important characteristic: the variance
of the estimate is a combination of the variances given by each
neighbour. Therefore, if a sensor joins or leaves the network,
it is sufficient that all its new/old neighbours recompute the
variance instead of learning a new one. Since #{E) follows

Stéli; y does
when the measurements are genuine. We refer to M; as the
magnitude deviation.

Related studies (e.g., [14], [37]) have defined the normal
samples with a confidence interval, characterised by the con-
dition |M;| < 6. The threshold # determines the trade-off be-
tween false positives and false negatives, and has been usually
set to & = 3: in this case only 0.3% samples are expected
to be beyond the interval. Though 0.3% may seem a small
percentage, it needs to be compared with the measurements’
sampling period. For instance, with a sampling period of 1
second, each genuine sensor will generate a false positive
about every 5.5 minutes. This may trigger the shutdown of
the sensor, reconfiguration and/or restart, which can be so
expensive that the cost of detection may be prohibitive.

Increasing the threshold reduces false positives, but de-
creases the detection rate. However, in event detection WSNs
the false positives can be partly reduced without losing the
detection rate by elaborating magnitude deviations in the
same way as the event detection criterion elaborates the
measurements. Specifically, if events are detected by applying
a function to the measurements in a Wg-long time window,
we can apply the same function to the magnitude deviations
in the same time window. Consecutive magnitude deviations
are unlikely to cause genuine anomalies with a long duration,
unless there is a permanent fault that the fault-detection
module should detect. Anomalies due to compromise, instead,
have a longer duration as the attacker aims to subvert the

the standard normal distribution, also M;

event detection result. The final step consists of comparing
the elaborated magnitude deviation to the threshold Ty;. In
our experiments, we ran the algorithm on genuine historical
data with different values of T); and selected the lowest value
of T, that achieves a reasonable false-alarms frequency (cal-
culated as sampling frequency over FPR) for that application.

B. Similarity Test 2: Shape

Some event detection algorithms trigger based on changes
in the time evolution of measurements such as changes in trend
or of frequency. These are characteristics of the shape of the
signal rather than its magnitude.

A metric that measures similarity in the shapes of two
signals is the Pearson correlation coefficient. Since our pur-
pose is to check the shape of the measurements used for
event detection, we calculate this coefficient within a moving
time window of size Wg: the event detection time window.
Calculating Pearson correlation for all sensor pairs in a
neighbourhood would have a computational complexity of
O(NZWEg), with Ny being the neighbourhood size. In con-
trast, we evaluate the Pearson correlation coefficient of a sen-
sor’s measurements with its estimates, achieving a complexity
of O(N% + WgNy). Indeed, we compute the coefficient
RS 0, between Wx consecutive values of S; and OZ and
compare it against the distribution of R, 5 . Specifically, if
the coefficient is below the medlarﬂ we check if at least
100 — Cr% samples are expected to be so low by testing

~ Ry 6, —MED(R, 5 .
Ry o, = — = o Fo,0) 1, where Dp, is the Cr-th
percentﬂe .of ROi,éi' S

To eliminate the need for the distribution of R, 5 , the

quantities M ED(ROi Oi) and Dp, are approximated with

MED(R,, »,) and Dp, respectively. These are calculated
with a heuristic described in Algorithm [3] for a generic sensor
1. We find the best neighbour j*, for which the median Pearson
correlation coefficient is maximum. Then we approximate
MED(Ry, 5,) with its median and Dp, with its respective
distance to the C'r-th percentile.

Algorithm 3 Characterisation of the distribution of Rg, o,

Input: Rij.jenei)(r), Cr

Output' MED(R ,Oq‘,)?ﬁRi

1: fOI'alleN()dO

2 MEDg,, = MED(Ry;(r))

3 MEDR” append(MEDRij)
4 LoV —{p .y < MEDg,,}
5. Dg,, = percentile(MEDg,, — R;;(r*°V),Cg)
6: DR .append(Dg, ;)

7: end for

8: ]* — a/rg\maxjeN(i)(MEDRij)

% MED(RO‘L7O‘L) = MEDRij []*]

10: Dg, = DRij [5*]

11: return (MED/(EQ Oi),DRi)

2We characterise the samples below the median since the injected measure-
ments are supposed to have a low correlation with the real values.



In the absence of the distributions R;;c () (r), we estimate
MEDRg,; and Dg,, on historical data. Note that we could
estimate M ED(ROh o},) and Dp, empirically, by running the
whole algorithm on an ad-hoc dataset. However, the latter must
be disjoint from the data used to learn the estimation models,
otherwise the results could be biased by overfitting [38]]. More-
over, the parameters would only be valid for the configuration
of sensors in the ad-hoc dataset. Instead, the heuristic removes
the need for an ad-hoc dataset and automatically adapts when
sensors join or leave the network. B

For genuine sensors S; = O;, then RSi,O,; < 1 for Cr%

genuine samples. We thus define R s,.0, as the shape deviation
and calculate C'r as the lowest value that achieves a reasonable
false-alarms frequency. The false positives due to short term
anomalies can be reduced in a similar way to that used in
the magnitude test i.e., by computing the median of Wg,,
consecutive correlation coefficients calculated on overlapping
time windows. Wy,,, should never exceed Wg, otherwise the
information from disjoint time windows would be merged.

VI. CHARACTERISATION

When the similarity check fails for a sensor, the sensor
may have been compromised by malicious data. However, in
some cases the similarity check could also fail on genuine
sensors, because the wrong modality was chosen (e.g., a non-
event modality rather than an event modality) or because the
estimation was disturbed by compromised sensors.

The latter occurs when several nearby sensors collude in
providing malicious estimates. However, to bias the estimates
for genuine sensors by a certain quantity and increase their
deviation, compromised nodes typically need to inject mea-
surements that have even larger deviations (if they do not
need this, colluding sensors have probably enough influence
over the measurements to remain undetected). Therefore, our
characterisation step consists in removing the sensors with the
highest deviation, one by one, and recomputing the similarity
check on the remaining sensors in the neighbourhood. Each
time we remove a sensor, which we presume compromised,
the genuine sensors gain in consistency with their estimate
whereas colluding sensors lose the benefits of the removed
sensor’s estimates. The procedure stops when all the remaining
sensors pass the similarity check. The overall characterisation
algorithm is shown in Algorithm ] where SCheck is the
similarity check and D; is the generic deviation (coming from
the magnitude/shape tests) calculated for the similarity check.

Another factor to consider when the similarity check fails
is the modality assumption (Sect. [V-AT). When different
modalities are used in event conditions and non-event con-
ditions, there is some uncertainty about which modality to
use because malicious data may have compromised the event
detection output. In this case, the wrong estimation model
may be used and genuine sensors may fail it. Our solution
is to run Algorithm [ in both modalities when the similarity
check fails and then choose the modality in which the smallest
compromised set is returned. It is reasonable to choose the
correct modality based on a majority approach, as the attack
costs increase with the number of measurements that need to

Algorithm 4 Characterisation algorithm
Input: D; Vi€ S
QOutput: compromisedSet

1: compromisedSet={}

2: residualSet=S
3: while ORiEresidualSet(SCheCk(Di)failS) do
4 st = argmaxiETesidualSetDi
5:  compromisedSet.append(s™*)
6
7
8
9

residualSet.remove(s™)
forall j € S:s" € N(j)do
N(j) = NG)\ s*
recompute D
10:  end for
11: end while
12: return compromisedSet

be controlled. Note that this is different from event detection
with majority voting, since the measurements are not required
to trigger in majority, but to reflect event propagation and show
graceful transitions in their measurements.

VII. COMPLEXITY ANALYSIS

Our approach relies on computations on raw measurements,
which are carried out by a trustworthy node. When the base
station collects all the measurements, it is a good candidate for
this role as it has a global view, which is useful to deal with
collusion of compromised nodes [25]]: we refer to this scenario
as centralised. This is also the case when the measurements are
collected through intermediate aggregators but the aggregation
is lossless. When the intermediate aggregators perform a lossy
aggregation, the base station can instead delegate the detection
task to the aggregators rather than forcing delivery of all raw
data. In this case, which we refer to as distributed, the base
station must also assess the integrity of the processing at the
aggregators. The centralised and distributed solutions have
different computational and communication overheads, which
we analyse below.

For the WSN nodes that do not act as aggregators, the
estimation-based framework adds no overhead, because no
additional software is run on the sensor nodes to manage
votes or trust values like in [19]]. For the base station and
aggregators, the most computationally expensive operation of
our approach is the calculation of the estimation models. When
this operation is done one-off, powerful devices may be used
offline, but when this is not possible, for instance because there
is not enough historical data, the models need to be estimated
in real time. In this case using external devices may be
infeasible, and an efficient calculation is required to estimate
the models with the sensor nodes. We deal with this problem
with incremental regression, which updates the model through
D new samples with a complexity O(D) [39]. The overall
complexity in the distributed case is thus O(DN4Ny) for
each aggregator, where N 4 is the number of sensors managed
by the aggregator and Ny is the average number of neighbours
used for the estimations. Similarly, in the centralised approach
the complexity is O(DN Ny). This complexity is generally



low for a base station, but may be high for an aggregator: in
this case random sampling and neighbourhood size reduction
reduce D and Ny respectively. Note that new sensors joining
the network require the computation of further regression
problems, 2Ny on average, so the total overhead for a new
node joining is O(DNy).

Besides the calculation of the the estimation models, the
estimations calculation and the similarity check have a com-
putational overhead. Each aggregated estimation requires Ny
multiplications and sums, while the similarity check has a
complexity O(Wg) (for the shape test it is the complexity of
Pearson correlation and for the magnitude test it is the com-
plexity of the operators commonly used, such as mean, me-
dian, etc.). Since these operations need to be repeated for each
sensor, the overall time complexity is then O(N% + WgNy)
and O(NyN + WgNy) for the centralised and distributed
case respectively. Note that the neighbourhood size is the
parameter to reduce in large WSNs, e.g., if neighbourhoods
are structured into a tree, the complexity can be reduced to
O(Nlog(N) + WgNy) and O(log* (N) + WgNy) in the
centralised and distributed cases respectively.

We consider now the communication overheads. Since in the
centralised solution the data needs to be conveyed to the base
station anyway, our framework does not introduce additional
overhead as we do not transmit additional packages like in
[25]]. In the distributed scenario, instead, the base station needs
to assess the integrity of the aggregation at each aggregator.
For this task, solutions have been proposed with a communi-
cation overhead sublinear in IV, such as the aggregate-commit-
prove approach [29]. This technique is based on three steps.
First the aggregator collects the measurements aggregates
them. Then, it reports the result to the base station together
with a commitment value. The base station challenges the ag-
gregator by requiring some of the measurements and additional
information to verify the commitment value. Based on such
information, the base station proves with a certain probability
that the committed measurements are authentic and have not
been changed during the challenge. Note that although the
aggregation alleviates the communication overhead, it also
introduces the overhead of verifying the integrity of the
processing done by the aggregators. Additionally, since the
detection is only performed within a cluster, an adversary may
be able to compromise a significant number, or even all, of
the sensors in a cluster. The trade-offs involved would benefit
from a more detailed investigation which we plan to address
in our future work.

VIII. EXPERIMENTS

Different WSN applications sense different processes, have
different semantics and different deployments. It would be
cumbersome to design new data injection detection algorithms
for each new set of circumstances. Yet few, if any, algorithms
proposed in the literature have been shown to work in different
scenarios or identify how they can be tailored to them.

In the previous sections: We have seen that we use estima-
tion models to make each sensor express its expectation about
the measurement a neighbour should report (see Sect. [[V).

We provided algorithms to compare the calculated estimates
with the reported measurements (see Sect and to detect
the compromised sensors in case such comparison indicates
the presence of malicious data injections (see Sect. [VI). We
framed all these operations into a methodology that leads the
final deployment into specific WSN applications.

We now evaluate our algorithms and methodology in three
very different contexts: Monitoring health parameters (Sect.
[VIII-A), detecting volcanic eruptions (Sect. and home
fire alarms (Sect.[VIII-C). In each case, we divide the data into
two datasets: A historical dataset, from which the estimation
models and other parameters are learnt, and a test set, which
represents the online measurements and is used for evaluation.

Ideally, we would need datasets containing both genuine
measurements and malicious data injections in order to cal-
culate the False Positive Rate (FPR) and the False Negative
Rate (FNR). However, real malicious data injections are not
common yet, so we need to simulate the attacks in each case
to study our algorithm’s behaviour. Since it is reasonable to
assume that the test sets used in our experiments are free
from malicious injections, the FPR estimates are still reliable.
However, FNR estimates are not, so we omit them.

We consider both attacks where non-existent events are
elicited and where real events are masked. We recognise that
a broad range of attacks can be conceived according to: i) the
number of sensors compromised, if) whether the compromised
sensors can be chosen, iii) the amount of time available for the
attack, iv) whether the neighbouring sensors’ measurements
can be overheard, and v) whether the attack needs to be
carried out at a specific moment. A systematic investigation
of all data injection attacks has not, to our knowledge, been
carried out. Our threat model considers attackers that: i) have
compromised a subset of sensors (its size depending on the
application), ii) can target the best sensors (i.e., those that can
mislead the event detection algorithm with maximum chance
of remaining undetected), iii) have infinite time for the attack,
iv) can overhear the measurements of the other sensors, and
v) carry out the attack as soon as possible.

We simulate the attacks by injecting measurements de-
scribing normal circumstances (i.e. absence of faults and
compromise) but that subvert the event detection result, i.e.
elicit a non existent event, or mask a real event. In some
cases, the attacker may need to inject measurements substan-
tially different from the observed ones, but this will not be
easily noticeable because the data describes wrong but still
normal circumstances. Moreover, the measurements injected
from different compromised sensors collude to be perfectly
adherent to the expected correlation, thus estimates from two
compromised sensors will always support each other. Note that
such sophisticated attacks require a sound and well-planned
strategy, and thus are difficult to automate. The purpose of
the following experiments is indeed to show that, even with
sophisticated collusion strategy, our algorithm is capable of
detecting the attack and, under certain conditions, to correctly
characterise the compromised sensors. Even though experi-
ments based on naive principles, such as random increases in
the measurements magnitude or amplification of noise power,
lead to experiments that are easier to automate and to results



that are easier to interpret, they do not give any information
about the ability to detect attacks in real scenarios.

Since our experiments noticeably differ from those carried
out in state-of-the-art papers, we implemented the common
majority-voting framework [[15]], [17], [25]], [26] and compared
the results with those obtained with our estimation-based
framework. To make the comparison as fair as possible, we
considered votes given by local applications of the similar-
ity check chosen for our algorithm. Hence, if we use the
magnitude test, the votes will be pairwise magnitude tests

tij ) < Tyr; instead if we use the shape test, the votes

std(eij)

will be pairwise shape tests Rsis, 7MED(RO 0;) < Ts. We
set the threshold T3 or T's to achieve the same FPR achieved
by our algorithm and classify as compromised the nodes for
which at least 50% votes are reported. When we introduce
collusion, we assume that compromised nodes do not report
on themselves, while they report on the genuine nodes.

A. PhysioNet Dataset

We start with the PhysioNet MIMIC II Waveform Database
[40], which contains thousands of recordings collected from
bedside patient monitors in adult and neonatal intensive care
units. We consider blood pressure (mean, systolic, and dias-
tolic), heart rate, pulse, respiration and oxygen saturation. Note
that we are considering sensors measuring different physical
phenomena, however our algorithm is still applicable since
it abstracts from the physical meaning of the measurements
and only requires that there is correlation between them. We
use the event detection algorithm described in [41] and tested
on the PhysioNet MIMIC Database, a predecessor of the one
we use. An event is triggered when there are high temporal
variations in the measurements of the sensors within a time
window, which in our experiments is 40 samples long. Table
summarises the experiment setup.

TABLE I: PhysioNet experiment setup

PhysioNet
D Content Health-related parameters
ata . . .

Sampling period 1 minute

Number of sensors 8

Historical data size 6282 samples per sens.

Test set size 3412 samples per sens.
Event Criterion Described in [41], based on temporal
detection variations

Time window size 40

Similarity check Shape test

Similarity check parameters Wgm = 10, Cr = 99.7
Algorithm Modality assumption Unique modality for event presence

and absence
FPR 0.002
Expected false positive frequency | 1 in 8 hours

Fig. [a] shows the original measurements from the dataset
and the events detected. To simulate malicious data injections,
we assume that an attacker has compromised 3 sensors and
injected measurements registered by the same sensors while
monitoring healthy patients. If the attacker chose uncorrelated
sensors, well correlated neighbours would detect the attack.
Instead, we choose 3 correlated sensors and inject correlated
values from the same sensors in non-event conditions that
also show the best correlation with the remaining sensors:
the sensors for mean, systolic, and diastolic blood pressure.

As shown in Fig. @], no event is detected after the attack,
although the patient is subject to a life-threatening condition.

To apply our algorithm, we first need to define the similarity
check. Since the event detection triggers on fast increasing or
decreasing measurements, regardless of their magnitude, we
chose the shape test. The shape deviation for the data after
the malicious data injections is shown in Fig. Note that
one of the genuine sensors also fails the shape test in the last
part; this is due to the collusion effects explained in Sect. [VI}
Nevertheless, the characterisation algorithm described in Sect.
correctly returns the set of compromised sensors, and does
not include any genuine sensors.

We have run the experiments with other sets of compro-
mised nodes and verified that the attacker needs to compromise
at least one more sensor to become undetected — the one
closest to those already compromised (Fig. Ab). When this
sensor is also compromised, each compromised sensor has
4 genuine neighbours and 3 compromised ones, but there is
not enough information to determine if the estimates of the
genuine neighbours disagree because of errors or because the
other sensors are malicious. Nevertheless, we conclude that in
this scenario an attacker needs to compromise 50% (4 out of
8) sensors to remain undetected.

We have applied majority voting as well and obtained no
detection at all when 1 or 2 compromised sensors were inject-
ing malicious measurements. In the case of Fig. with 3
compromised sensors, it did not identify any malicious sensor
but also misclassified 2 genuine sensors as compromised.

B. Home Fire Alarm Dataset

Our second dataset originates from a WSN conceived for
monitoring homes to generate fire alarms. It is available from
the NIST website [42]] as part of the Home Smoke Alarm Tests
project (see NIST Technical Note 1455 [43]]). We considered
the portion of data collected by three groups of temperature
sensors in three adjacent rooms, each group made up of 5
sensors placed on a wall at different distances from the ceiling.
Table [[I| summarises the experiment setup.

TABLE II: Home Fire Alarm experiment setup

Home Fire Alarm

Temperature readings in a room at
different distance from the ceiling
Sampling period 2 seconds

Number of sensors 15

Historical data size 14769 samples per sens. at rest, 800
in event mod.

9210 samples per sens. at rest, 312
in event mod.

Content
Data

Test set size

Event Criterion One sensor observes 3 consecutive
detection measurements above 50 °C

Time window size 3

Similarity check Magnitude test

Similarity check parameters Ty =3
Algorithm Modality assumption One modality for event-presence,

one modality for event-absence
0.003 in event mod., O at rest
1 every 3000 fires

FPR
Expected false positive frequency

In this case, we adopted the second modality assumption
(Sec. where different relations between sensors are
present in event and non-event conditions. Intuitively, in the
absence of a fire, temperatures are broadly uniform but a fire
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Fig. 4: PhysioNet Dataset: masking attack. Alarm conditions are present and the compromised sensors mask them all. The
shape test fails on 2 compromised sensors and also on a genuine one, because of collusion.

introduces spatial patterns across the rooms that are signif-
icantly different. Linear relationships are therefore derived
for both modalities, the event detection algorithm defines
which modality applies, and finally the estimates are calculated
according to that modality.

Our synthetic attack consists of eliciting a false fire alarm.
Here, an event is detected when a fixed temperature is reached,
in compliance with the detection algorithm for fixed temper-
ature heat detectors [43]. Such devices generally trigger at
temperatures between 47°C and 58 °C, so we chose 50°C
in our experiment. To make the signals more credible we
considered 3 compromised sensors that collude in reporting
high temperatures. We simulated the injection by progressively
increasing the measurements of 3 sensors as shown in Fig. [5a]
This eventually triggers a false fire alarm.

We adopted a similarity check using the magnitude test
since the event is detected based on the magnitude of measured
values. As explained in Sect. [V-A] our magnitude test reflects
the event detection criterion, which triggers alarms when the
temperature is high. As shown in Fig. [5a the event is detected
around sample 7700, hence, in the first place, the estimation
models learnt under event-conditions apply here. Note that
the measurements of the genuine sensors are not consistent
with the presence of the fabricated event, hence the similarity
check fails for most of them as shown in Fig. 5B and the
characterisation algorithm identifies 12 nodes (10 of which are
genuine). Since the check failed, the characterisation algorithm
(see Section needs to decide if the event modality is the
correct one and it does so by running the detection again on
the same measurements but with the estimation models for the
non-event modality. This time, the characterisation algorithm
returns the 3 compromised sensors, a smaller set than the
12 nodes identified with the event modality, so the non-event
modality is correctly chosen and the compromised sensors are
correctly detected. The magnitude deviation under the non-

event modality is shown in Fig.

We have run the experiments with other sets of compro-
mised nodes and verified that the attacker needs to compromise
at least 7 sensors to remain undetected. In this scenario, 11
sensors are identified in the non-event modality and 8 sensors
(all the genuine ones) in the event modality, therefore the
event modality is wrongly chosen and the genuine sensors
are classified as malicious. We conclude that in this scenario
the attacker needs to compromise at least 47% sensors for a
successful undetected attack.

For this experiment majority voting detected correctly the
compromised nodes when 1 sensor was compromised. De-
tection succeeds with 2 compromised nodes but misclassifies
2 genuine sensors. In the case shown in Fig. [5a] with 3
compromised sensors, detection fails and 4 genuine nodes are
misclassified. Note that the real limit of majority voting here
is 13% (2 sensors), which is far below the 50% theoretical
limit. Such limit requires correct votes from the genuine nodes,
which are guaranteed only with perfect correlation.

C. Reventador Volcano Dataset

We finally consider a dataset gathered from a WSN of
infrasound sensors deployed at the Reventador volcano by the
Harvard Sensor Networks Lab [44]]. The network consists of
16 sensor nodes deployed every 200-400 metres along a side
of the volcano. The sensors are connected to a remote base
station, which waits for the sensors to trigger the presence of
an event (which may reflect earthquakes related to eruptions):
if at least 30% sensors trigger, the base station collects the
lasts 60 seconds of data from all the sensors to analyse the
event. The event detection algorithm, given in [44] is based
on temporal changes in the measurements average. Here we
consider the measurements shown in Fig. [6a] which trigger the
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event detection’| Table [Tl summarises the experiment setup.

TABLE III: Reventador experiment setup

Reventador Volcano
D Content Infrasound readings along a side of
ata
the volcano
Sampling period 0.01 seconds
Number of sensors 8
Historical data size 28471 samples per sens.
Test set size 8398 samples per sens.
Event Criterion EWMA [44], based on changes in
detection average
Time window size 6000 samples
Similarity check Shape test
Similarity check parameters Wsm =1, Cr = 99.7
Algorithm Modality assumption Uniquev modality for event presence
and absence
FPR 0
Expected false positive frequency | 0

Before running the experiments, we note that infra-sound
data is made up of high-frequency oscillations around zero.
Applying our algorithm to the raw data would be inappropriate
since the measurements are mostly uncorrelated and uninfor-
mative. In infrasound measurements, the valuable information
is mostly contained in the trend of the peak values, which
can be captured with a pre-processing step that averages the
measurements’ absolute value in a short time window. From
the graphs in [6a] we note that peak values are generally
consistent for about 400 data samples, so we used a pre-
processing time window of 400 samples. The pre-processed
measurements are shown in Fig. [6b]

For this experiment, we simulate masking attacks that
silence the event detection by injecting measurements taken
from the same sensors, but in restful conditions, i.e. when
there is no volcanic activity. In the pre-processed data, injected
measurements appear as roughly constant data, i.e. without
increasing/decreasing trends. According to the event detection

3Note that only 8 sensors are analysed since the remaining 7 sensors were
not working during the observed time.

algorithm described in [44], an event occurs when 2 or more
sensors trigger (30% of 8). We observe that the event is
triggered by all the sensors except sensor 4, which is the one
with a roughly flat signal in Fig. [6b] So, to mask the event,
an attacker needs to compromise at least 6 sensors that do not
include sensor 4. As conveyed in Section [V} the similarity
check should be tailored to the event detection algorithm,
that in this case is a exponentially-weighted moving average
(EWMA). Since EWMA triggers with temporal variations of
the average signal, including sudden but small variations, the
shape test is more appropriate than the magnitude test for the
similarity check.

We first ran an experiment that simulates a scenario where
only sensor 2 is injecting malicious measurements. The results
are shown in Table We note that the shape test unequivo-
cally recognises the inconsistency of the measurements from
sensor 2. Sensor 4 is also not triggering, however the similarity
check does not fail on it since its measurements are consistent
with the estimation models, which indirectly captured the
characteristic that the sensor may not trigger even if all the
other sensors are triggering.

We then progressively increased the number of sensors
injecting malicious measurements. In Table we report the
output from the characterisation algorithm in the order in
which sensors are found. Note that whenever the similarity
check fails, the genuine nodes that failed the test because
of the collusion effect are finally classified as genuine. With
the exception of sensor 5, all the compromised sensors are
correctly detected by the characterisation algorithm. Sensor 5
is the sensor in Fig. [6bl whose measurements mostly dissociate
themselves from the others. The behaviour of this sensor
is therefore less predictable, and a considerable deviation is
required to make the similarity check fail.

When sensors {1,2,3,5,6,7} are all injecting malicious mea-
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Fig. 6: Reventador Dataset. Alarming conditions are present. The measurements are noticeably more correlated after the

transformation.

TABLE IV: Reventador shape deviation. The values that failed the shape test are in boldface

Compromised Sensors | Event masked | S7 dev. S dev. S3 dev.
2 NO 0.03 25.13 0.32
2,6 NO 0.07 25.27 0.23
1,2,6 NO 8.12 25.15 4.47
5,6,7 NO -0.01 0.31 0.09
5,6,7,8 NO 2.04 6.50 7.22
1,2,3,5,6,7 YES 4.28 11.72 15.14
1,2,3,5,6,7,8 YES -0.05 -0.07 -0.05

Sq dev.  Ssdev. Sedev. Sy dev. Sgdev. | Characterisation output
-0.04 0.05 -0.04 -0.07 0.03 2

-0.05 0.06 8.48 0.03 0.08 2,6

0.01 0.07 8.66 2.52 1.40 2,6,1

-0.05 0.89 8.55 13.36 0.08 7,6

-0.05 0.89 8.41 13.17 6.75 7,6,8

0.04 0.48 5.63 8.07 6.94 3,2,7,1,6

0.40 -0.98 -0.05 -0.14 -0.10 N/A

surements, the masking attack eventually succeeds. However,
our algorithm still detects the attack, even though 75% sensors
are reporting malicious measurements, as the colluding sensors
did not succeed in making the measurements credible. The
attacker needs to compromise all the triggering sensors (88%
of the total) to carry out an undetected masking attack as
shown in the last row of Table

In the same settings, majority voting fails with 1 compro-
mised node (13%). With 2 or 3 compromised nodes (25%,
37%), the detection succeeds but 2 genuine nodes are classified
as malicious. With 4 (50%) nodes, it reaches its theoretical
limit, so detection clearly fails. Instead, our algorithm detects
the attack without false positives when even 75% sensors are
compromised and reaches its limit at 88%.

D. Discussion

Our current approach has shown to detect malicious inter-
ference also with sophisticated attacks, based on injection of
credible measurements. Based on our characterisation algo-
rithm, we are able to detect correctly the set of compromised
sensors when the number of genuine sensors is low compared
to the expected correlation. Note that, in our approach, the
number of compromised sensors that can be tolerated is
correlation-dependant. In one of our experiments attacks could
be detected whenever fewer than 88% sensors were com-
promised. Voting-based frameworks instead, cannot tolerate
more than 50% compromised sensors and, when our algorithm
tolerated less than 50% compromised sensors, majority voting

tolerated a substantially lower percentage. The reason behind
this result is that the correlation between the sensors used in
the experiments is not high enough to guarantee correct votes
from all the genuine sensors and votes become inaccurate.
Our approach deals with such inaccuracy by merging the
contributions from each sensor, weighting the contributions
according to their expected accuracy and discarding potentially
unreliable contributions.

We have also seen that the attack detection does not
always mean correct identification of the compromised nodes,
especially when the correlations change dramatically between
restful and event conditions. In this case indeed, we can
easily detect the presence of a problem but cannot easily
infer whether the restful or event-related measurements are
correct. Our approach chooses the most likely condition, but
we foresee the possibility of rejecting the detection when there
is not enough confidence in it. The final decision may be taken
otherwise and may require human intervention.

IX. CONCLUSIONS AND FUTURE WORK

In this paper we have focused on detecting malicious data
injections in event detection WSNs, in particular when collu-
sion between compromised sensors occurs. We have proposed
an algorithm that can be customised and used in different
applications, and for different kinds of events.

Dealing with collusion and the occurrence of events makes
the problem of detecting malicious data injections significantly
more complex because both affect the dynamics of the system




and comparisons between measurements. Furthermore, they
interact with each other as collusion may leverage deviations
in sensed values introduced by the event.

Addressing this challenge has exposed several trade-offs in
the design of the algorithm. Firstly, resistance to collusion re-
quires to compare measurements over a broader set of sensors
and thus introduces additional complexity and computational
cost. This trade-off is particularly visible in the selection
of neighbourhoods, which becomes a simple ranking-based
choice when using our pairwise estimation models. Another
trade-off arises when merging information with potentially
malicious sources. While information coming from genuine
sensors increases the estimates accuracy, it is important to
select only information that appears reliable. Colluding sensors
should not be allowed to compensate for each other in the
detection metric whilst still injecting malicious data. This
requires the use of pairwise comparisons and an aggregation
operator that is accurate in the presence of genuine measure-
ments as well as resistant to malicious data.

From applying our methodology in three applications, where
requirements and the nature of the events is markedly different,
we conclude that the development of a general framework to
cope with malicious data injection in event detection WSNs is
possible. However, it requires customisation of the parameters
based on a collection of historical data and information about
the application’s goals and requirements. The methodology
for customisation, on the other hand, can be provided with
a generic but well defined procedure.

Experimental results validated the choice of structuring the
detection on top of simple techniques that, without introduc-
ing significant overhead in the sensor nodes, achieve high
detection rates. These results encourage us to pursue further
investigations in this area. In future work, we aim to extend
the methodology to cases where events cause unpredictable
changes in the spatial patterns. We also aim to investigate
WSN applications where more sophisticated regression meth-
ods (e.g., polynomial regression or generalised linear models
[35], [38]]) may be more appropriate.
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