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ABSTRACT

‘C3 glomerulopathy’ is a recent disease classification compris-
ing several rare types of glomerulonephritis (GN), including

dense deposit disease (DDD), C3 glomerulonephritis (C3GN)
and CFHR5 nephropathy. These disorders share the key histo-
logical feature of isolated complement C3 deposits in the glo-
merulus. A common aetiology involving dysregulation of the
alternative pathway (AP) of complement has been elucidated
in the past decade, with genetic defects and/or autoantibodies
able to be identified in a proportion of patients. We review the
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clinical and histological features of C3 glomerulopathy, relat-
ing these to underlying molecular mechanisms. The role of
uncontrolled C3 activation in pathogenesis is emphasized,
with important lessons from animal models. Methods, advan-
tages and limitations of gene testing in the assessment of indi-
viduals or families with C3 glomerulopathy are discussed.
While no therapy has yet been shown consistently effective,
clinical evaluation of agents targeting specific components of
the complement system is ongoing. However, limits to current
knowledge regarding the natural history and the appropriate
timing and duration of proposed therapies need to be
addressed.

INTRODUCTION

The association between glomerulonephritis (GN) and low
serum levels of complement proteins was first reported almost
100 years ago [1]. Sera from two children with a clinical diag-
nosis of nephritis complicating scarlet fever were found to
have markedly reduced haemolytic activity. In the 1960s, an
expansion in renal histological techniques and complement
biology revolutionized the diagnostic approach to GN. The
ability to detect complement C3 in serum [2] and early reports
of low serum C3 in patients with lupus nephritis [3] and mem-
branoproliferative GN (MPGN) [4, 5] coincided with the de-
velopment of an immunofluorescence technique for
identifying C3 deposits in renal sections [6]. The existence of a
C3 nephritic ‘factor’ (C3NeF) was inferred from the acceler-
ated C3 breakdown observed in vitro following the addition to
normal human serum of serum obtained from a patient with
‘persistent hypocomplementaemic glomerulonephritis’[7]. A
rare glomerular lesion characterized by dense intramembra-
nous deposits was recognized through the use of transmission
electron microscopy (EM) [8]. In the 1970s, dense deposit
disease (DDD) was taken up in the English-language medical
literature [9], where the conjunction of predominant C3 glo-
merular deposition and low serum C3 levels was attributed to
the activation of the alternative pathway (AP) of complement
[10]. In the 1980s, several reports in affected families [11–14]
indicated a genetic basis for some cases of DDD.

In the past decade, genetic defects in complement factor H
(CFH) and C3 have been demonstrated leading to AP comp-
lement dysregulation in DDD and several closely related forms
of GN, including the novel disease CFH-related protein 5
(CFHR5) nephropathy. These disorders share with DDD the
key histological feature of C3 deposits in the glomerulus, with
little or no immunoglobulin, the defining criterion for the new
disease classification, ‘C3 glomerulopathy’ [15]. This review
summarizes recent insights into the clinical and histological
features of C3 glomerulopathy. Genetic and autoimmune
mechanisms of disease are discussed, with animal models pro-
viding a ‘proof of concept’ for C3 activation in pathogenesis.
Significant limitations exist in current knowledge regarding
the natural history of C3 glomerulopathy, with implications
for the clinical evaluation of complement-based therapies.

THE COMPLEMENT SYSTEM

The complement system comprises over 30 proteins either cir-
culating in plasma and other body fluids or localized to cell
membranes. It plays a physiological role in innate immunity
and inflammation leading to the elimination of microbial
pathogens (as well as apoptotic host cells and cellular debris)
[16]. Complement activation occurs via proteolytic cleavage in
three pathways: the classical, lectin and alternative pathways
[17, 18] (Figure 1). Whereas the activation of the classical
pathway usually requires immunoglobulin, AP activation
occurs spontaneously at a low level in the circulation due to
hydrolysis of the internal thioester bond of the C3 molecule
(so-called ‘C3 tickover’). C3 activation generates fragments
C3a and C3b, the latter binding complement factor B (Cfb) to
form the AP C3 convertase (C3bBb) that amplifies C3 acti-
vation in a positive feedback mechanism. The C3b amplifica-
tion loop (also known as the amplification loop of the
complement pathways [19]) is a powerful means through
which millions of C3b molecules are generated following the
initial activation of C3. The binding of additional C3b mol-
ecules to the AP C3 convertase generates a C5 convertase that
activates C5, yielding fragments C5a and C5b. C5b initiates
terminal pathway activation resulting in the formation of the
membrane attack complex (MAC, C5b-9). Fragments C3a and
C5a, generated through C3 and C5 proteolysis, respectively,
are anaphylatoxins.

The AP is inhibited by several regulatory proteins present
both in the circulation and on cell surfaces. CFH is encoded in
the regulators of complement activation (RCA) cluster of
chromosome 1q32 [20]. CFH competes with CFB for C3b
binding and thereby impedes the formation of the AP C3 con-
vertase. CFH also accelerates AP C3 convertase decay and is a
cofactor for complement factor I (CFI)-mediated proteolysis
of C3b. Membrane cofactor protein (MCP/CD46), encoded in
the RCA cluster and expressed exclusively on cellular surfaces,
is another complement regulatory protein with CFI cofactor
activity. CFI is a serine protease encoded by the CFI gene on

F IGURE 1 : Complement activation pathways and C3 amplification.
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chromosome 4q25. It cleaves C3b in the presence of cofactors,
generating iC3b and subsequently C3dg. Unlike C3b, iC3b
cannot participate in the C3b amplification loop.

C3 GLOMERULOPATHY

Isolated C3 deposition within the glomerulus is the defining
histological criterion for C3 glomerulopathy. This dis-
tinguishes C3 glomerulopathy from the more common,
immune complex-mediated forms of GN such as post-infec-
tious GN and MPGN Type I, where glomerular C3 together
with immunoglobulin is typical. The glomerular morphology
as demonstrated by light microscopy (LM) is heterogeneous.
EM resolves the C3 deposits and enables definitive separation
of DDD from the other subtypes of C3 glomerulopathy, where
a spectrum of appearances may be seen (Figure 2). Acquired
and genetic defects leading to AP complement dysregulation
in patients with C3 glomerulopathy are outlined below. A
renal biopsy diagnosis of C3 glomerulopathy should prompt
investigation of complement abnormalities including protein
levels, gene mutations and autoantibodies (Table 1).

HISTOLOGICAL AND CLINICAL FEATURES

Dense deposit disease

DDD takes its name from the transformation of the glo-
merular basement membrane (GBM) by extremely dark,
ribbon-like electron-dense deposits located within the lamina
densa (seen also within the mesangium, tubular basement
membrane and Bowman’s capsule) [21]. On LM, either a me-
sangioproliferative [22] or membranoproliferative [23] pattern
is most common, while infiltrates of neutrophils and cellular
crescents have also been reported in both native disease and
post-transplant recurrence [24]. While no mechanistic expla-
nation has been found for this variation, it is clear that the des-
ignation of DDD as a subtype of MPGN (Type 2) [10] is
inaccurate. Laser microdissection of glomeruli from DDD
kidneys has enabled mass spectrometric identification of
complement C3, MAC components, CFHR5, vitronectin and
apolipoprotein E [25]. The absence of CFB from glomerular
tissue is consistent with AP C3 convertase formation leading
to excessive C3 activation in the fluid phase, with subsequent
deposition of C3 breakdown products.

DDD is usually diagnosed in children although adult cases
do occur, and in one series, over one fifth of affected individ-
uals were aged over 60 years [23]. Presenting features comprise
any of the following: proteinuria (sometimes with the nephro-
tic syndrome), haematuria, hypertension and renal failure.
Although low serum C3 (but not C4) is a common finding,
and reflects uncontrolled C3 activation in the circulation, it is
not specific for DDD and does not correlate with disease
activity [26]. Individuals with DDD may have acquired partial
lipodystrophy, in which subcutaneous fat is lost from the face
and upper body, often predating renal clinical manifestations.
A common basis in AP activation has long been recognized
[27]. DDD is also associated with ocular drusen [28], a

lipoproteinaceous deposition of complement-containing
debris localized between the retinal pigment endothelium and
Bruch’s membrane. This pathology is similar to age-related
macular degeneration [29]. Monoclonal gammopathy has
been noted as a finding in older patients [30, 31], although the
incidence may not exceed background rates in an older popu-
lation. Increased risk of diabetes mellitus type 1 in families
with DDD has also been reported [32].

Spontaneous clinical remission of DDD occurs only rarely
[33], whereas progression to ESKD despite conventional treat-
ment has been observed in 40–50% of patients with a diagno-
sis of ≥10 years [34, 35]. The outcomes of renal
transplantation are generally favourable, despite histological
recurrence being common (possibly universal) and contribut-
ing to the increased rates of allograft failure [36].

C3 glomerulonephritis

C3GN is a subtype of C3 glomerulopathy in which C3 de-
posits are found in the mesangium and capillary wall, where
they may be subendothelial or subepithelial. Discontinuous in-
tramembranous deposits are also sometimes seen on EM, but
without the osmiophilic, ribbon-like appearance characteristic
of DDD. As in DDD, subepithelial ‘hump’-like deposits classi-
cally associated with post-infectious GN may be present. Mass
spectrometry has revealed C3 and MAC components in laser
dissected glomeruli, similar to DDD [37]. In the original series
from France of 19 patients with C3GN [38], LM revealed
MPGN in approximately two thirds of the patients. Clinical
and laboratory features resembled those of DDD, with less
predilection for childhood. Unlike DDD, no association with
acquired partial lipodystrophy or ocular drusen exists for
C3GN, although monoclonal gammopathy is sometimes
found [39, 40]. Progression to ESKD is less common than in
DDD, but does occur, with histological recurrence post-trans-
plantation also reported [38, 41].

CFHR5 nephropathy

CFHR5 nephropathy is a form of C3GN that has been de-
scribed with autosomal dominant inheritance among Cypriot
families [42]. LM may show a mesangioproliferative or mem-
branoproliferative pattern; on EM there are typically suben-
dothelial and mesangial deposits with occasional subepithelial
deposits. Microscopic haematuria and episodes of synpharyn-
gitic macroscopic haematuria, clinically similar to IgA nephro-
pathy, occur in up to half of the affected individuals [43].
Serum C3 levels are almost invariably normal, suggesting that
excessive C3 activation occurs not in the circulation (as in
DDD) but within the glomerulus [44]. Progression to ESKD is
common in adulthood and occurs mostly in males (for
reasons that are unknown). Ten patients with CFHR5 nephro-
pathy are reported with successful transplantation [43], and
one other with disease recurrence following unrelated donor
transplantation [45].
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PATHOPHYSIOLOGY

Autoantibodies

C3NeF is an autoantibody that binds to a neoepitope on
the AP C3 convertase (but not to its individual components).
C3NeF stabilizes the convertase against CFH-mediated decay
and potentiates its C3 cleaving action, resulting in uncon-
trolled C3 activation and low serum C3 levels [46]. C3NeF is
common in DDD [47, 48], less so in C3GN, and absent in
CFHR5 nephropathy. Its role in DDD pathogenesis remains
controversial, given that fluctuating levels do not correlate
with the course of nephritis. C3NeF is also non-specific for
DDD, being found frequently in MPGN Type 1 [48] and
rarely in lupus nephritis [49] or individuals without renal
disease [50]. Recently, an autoantibody that binds to native
Cfb and stabilizes the AP C3 convertase has been reported in a
patient with DDD [51]. Two patients with DDD and autoanti-
bodies targeting both CFB and C3b have also been described
[52]. Inhibition of CFH by anti-CFH monoclonal light chains
[53, 54] or (possibly monoclonal) immunoglobulin [31] has
been reported in two patients with DDD, together with a case
of C3GN involving CFH autoantibodies [37].

Genetic sequence variation

The genetic basis of a small number of C3 glomerulopathy
cases has been demonstrated through family studies showing
segregation of complement-related gene defects with the
disease phenotype. Two infant Algerian brothers were

reported with DDD, both of whom were seronegative for
C3NeF but who had low serum CFH, with consequent exces-
sive AP activation and low serum C3 [12, 55]. The genetic ab-
normality was subsequently identified as a homozygous
missense mutation in the CFH gene [55]. Familial cases of C3
glomerulopathy (classified morphologically as MPGN Type 3)
were also reported in association with resistance of the AP C3
convertase to inhibition by wild-type CFH [11, 14]. In a later
DDD pedigree, heterozygous deletion of two codons within
the C3 gene on chromosome 19p13 was found to produce a
hyperfunctional C3 molecule [56]. In C3GN, a report in infant
sisters from a consanguineous Turkish family demonstrated
homozygous deletion of a CFH codon resulting in circulating
mutant CFH [57, 58] that was predicted to display defective
binding to C3b [59]. A recent report of paternal isodisomy
leading to homozygous deficiency of CFH in a patient with en-
docapillary proliferative C3GN is also noteworthy [60].

Genetic association based on studies undertaken in affected
individuals and cohorts, but lacking family data, may be less
robust. The French C3GN series reported six patients with
heterozygous mutations in the CFH, CFI and MCP genes [38].
To these have now been added a report of C3GN (Case 3) and
another of well-characterized MPGN Type 1 (Case 2) in
patients with homozygous CFH deficiency [61], and further
cases of C3GN, MPGN Type 1 and DDD involving heterozy-
gous CFH and CFI mutations [35]. Two patients with DDD
and C3GN involving heterozygous mutations in CFH and
MCP, respectively, were included in a recent small trial of ecu-
lizumab [62] (discussed below), while two further cases are

F IGURE 2 : Spectrum of C3 glomerulopathy. Glomerular appearances on EM in patients with (A) DDD with typical osmiophilic, intramem-
branous, ribbon-like deposits; (B) CFHR5 nephropathy with subendothelial (long arrow) and ‘hump’-like subepithelial (short arrow) deposits;
(C) C3 glomerulopathy with intramembranous (long arrow) and mesangial (short arrow) deposits; (D) C3 glomerulopathy with complex, irre-
gular intramembranous and mesangial deposits; (E) discontinuous intramembranous deposits in the same patient; and (F) C3 glomerulopathy
with intramembranous deposits.
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reported of C3 glomerulopathy (described as DDD, but
without diagnostic EM) and heterozygous CFHmutations [63,
64]. Some of these heterozygous mutations have been shown
to cause complement dysregulation in patients with atypical
haemolytic uraemic syndrome (aHUS) [65] and thus seem
likely to confer a common susceptibility to C3 glomerulopa-
thy. However, a mechanistic explanation for C3 glomerulopa-
thy (as opposed to aHUS) due to heterozygous mutations is
currently lacking. This is in contrast to the evidence obtained
from animal models [66] supporting homozygous CFH
deficiency in the pathogenesis of C3 glomerulopathy (dis-
cussed below).

In addition to these (rare) mutations, common genetic var-
iants including single nucleotide polymorphisms in the CFH,
C3 and CFHR5 genes have also been recognized as modifying
risk of DDD [67]. Complement haplotypes (or ‘complotypes’)
combining polymorphisms in CFH [68, 69], CFHR1 [68] and
MCP [35] and conferring either increased risk or protection
have also been delineated. Such polymorphic variations might
be a factor in phenotypic differences between the histology of
DDD and C3GN due to CFH mutations, for example.

Functional assays have been critical in revealing the mechan-
isms underlying these genetic associations for C3 glomerulo-
pathy, and proving causality [70]. With the advent of next
generation sequencing, a candidate gene approach to C3 glo-
merulopathy is liable to identify not only genetic variations
(both mutations and polymorphisms) that contribute to
disease, but also those that are of no functional significance
[71]. Hence, functional and structural approaches will assume
even greater importance in validating genetic associations in
the future.

Genetic structure variation

Genes encoding the five CFHR proteins are positioned in
close proximity to the CFH gene within the RCA gene cluster
on chromosome 1q32, where a high degree of sequence hom-
ology predisposes to genomic duplications, deletions and the
formation of hybrid genes. These structural changes are de-
tected using copy number variation (CNV) techniques, as in
CFHR5 nephropathy, where the heterozygous internal dupli-
cation of exons 2 and 3 of the CFHR5 gene was identified by
multiplex-ligation probe amplification (MLPA). The physio-
logical role of CFHR proteins is at present unknown. Homozy-
gous deletion of the CFHR1 and CFHR3 genes is a common
polymorphism in healthy subjects [72] and is further associ-
ated with the presence of CFH autoantibodies in patients with
aHUS [73, 74]. In a series of 68 DDD patients, however, none
had combined homozygous CFHR1/3 deletion despite a rate
of 3% among control subjects [75]. A genome-wide associ-
ation study [76] found that this polymorphism was also
associated with a reduced susceptibility to IgA nephropathy
across three cohorts. The latter is intriguing in light of the
clinical similarities between CFHR5 nephropathy and IgA ne-
phropathy.

ANIMAL MODELS— INS IGHTS AND
LIMITATIONS

Animal models have provided a ‘proof of concept’ for excessive
C3 activation in the pathogenesis of C3 glomerulopathy. They
have also revealed novel disease mechanisms relating to AP
complement dysregulation, providing a focus for research and
development of targeted therapies. Two experimental models
of genetic CFH deficiency, porcine [77–82] and murine [83–
88], exhibit low serum C3 levels and renal disease analogous to
human C3 glomerulopathy. Whereas the CFH mutation in
Norwegian Yorkshire piglets occurred in nature, the mouse
model was engineered in the laboratory through targeted
homozygous Cfh gene deletion [83]. Subendothelial electron-
dense deposits were preceded in both piglets and mice by
accumulation of C3 along the GBM, a sequence that has not
been reproduced in some human transplantation series [89].
Administration of murine [87] or purified human [88] CFH to
the knockout Cfh−/− mice resulted in normalization of
plasma C3 levels and resolution of GBM C3 deposition. Mice
with combined homozygous deficiency of Cfh and Cfb (Cfh
−/−.Cfb−/−) did not develop these changes, attributable to an

Table 1. Investigations in C3 glomerulopathy

Investigations of the complement cascade

Measurement of complement serum proteins

Complement C3

Complement factor H (CFH)

Complement factor I (CFI)

Complement factor B (CFB)

Testing for the presence of C3NeF

Testing for the presence of autoantibodies

CFH autoantibodies

CFB autoantibodies

Quantifying MCP MCP/CD46 expression on peripheral
blood mononuclear cells.

Screening for mutations

Direct exon sequencing of genes encoding complement
regulatory proteins and C3 convertase components

CFH

CFI

MCP/CD46

CFHR1-5

CFB

C3

Assessment of copy number variation (CNV) across the
CFH-CFHR locus

[Reproduced from Fakhouri et al. [15] with the permission of
the authors.]
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inability in the absence of Cfb to form the C3 convertase that
amplifies C3 activation.

In mice with homozygous deficiency of Cfi (Cfi−/−), ab-
normal mesangial C3 deposits and mesangial expansion were
noted but without C3 deposition along the GBM or develop-
ment of MPGN [86]. This was the case even when Cfi knock-
out was accompanied by homozygous (or heterozygous) Cfh
deficiency, and is accounted for by differences in the AP acti-
vation state. In the absence of Cfi, C3b resulting from C3 acti-
vation cannot be further cleaved to fragments iC3b and C3dg.
As a result, in mice with homozygous Cfi deficiency (irrespec-
tive of the Cfh genotype) C3 circulates predominantly in the
form of C3b. It appears, therefore, that Cfi-mediated cleavage
of C3b is critically important for the development of DDD-
like renal disease, implicating C3b metabolites (and specifi-
cally iC3b [87]) in pathogenesis. The administration to a Cfh
−/−.Cfi−/− double knockout mouse of autologous Cfi led to
cleavage of circulating C3b and the concomitant appearance
of C3 staining along the GBM. In support of these experimen-
tal data, homozygous CFI deficiency has not been reported as
a cause of C3 glomerulopathy in humans. Therapeutic strat-
egies that target iC3b, inhibiting its deposition in renal glo-
meruli, might therefore be an effective means of preventing C3
glomerulopathy, regardless of the specific genetic or auto-
immune abnormality. The attempt to recapitulate C3 glomer-
ulopathy due to CFHR mutations through animal models has
been limited by major differences between the human and
rodent CFHR gene families.

TREATMENT

Basic measures in the treatment of C3 glomerulopathy include
blood pressure control and antiproteinuric therapy especially
with ACE inhibitors. While steroids and other immunosup-
pressants might seem logical based on renal histology showing
inflammation, the results have been inconsistent [34]. More-
over, the increased risk of infection associated with these
agents is of particular concern in patients with underlying ab-
normalities of innate immunity, in whom complement acti-
vation and inflammation triggered by infection could
exacerbate nephritis. Long-term plasma infusion has been re-
ported with success in the sisters with familial C3GN related
to circulating mutant CFH [57]. Administration of CFH (if it
becomes available) may be efficacious in the rare
CFH deficiency states. However, it would not be predicted to
influence genetic factors that result in Cfh-resistant C3
convertases [56].

Therapeutic inhibition of complement C3 or C5 holds
promise, depending on which of these molecules, once acti-
vated, is the principal cause of renal damage (Figure 3). Eculi-
zumab is a monoclonal antibody that prevents C5 activation,
and is approved for use in patients with paroxysmal nocturnal
haemoglobinuria and aHUS. In DDD, several cases are re-
ported of successful treatment with eculizumab [90, 91], in-
cluding one patient with post-transplant recurrence associated
with progressive renal failure [92]. However, unsuccessful use
of eculizumab is also reported [90], suggesting that prevention

of C5 activation may not always be efficacious. This is sup-
ported by the results of a recent prospective, uncontrolled trial
in six adult patients with DDD or C3GN [62]. At the con-
clusion of a one-year course of eculizumab, an improvement
in clinical and/or histological parameters was observed in four
patients, including all three receiving eculizumab (and
additional immunosuppressive therapies) for recurrent disease
post-transplantation. Two patients with GN in native kidneys
(one each with DDD and C3GN) had a marked decline in
renal function whilst receiving eculizumab. A putative role for
eculizumab in disease flares is suggested by the observation in
DDD patients with rapidly progressive GN that glomerular de-
posits contain C5 [93]. Of note, however, in the mouse model
of C3 glomerulopathy, prevention of C5 activation attenuated
but did not abrogate disease [84]. The investigators for the
eculizumab trial concluded that ‘there is a clear need for
additional anticomplement therapies that offer the possibility
of complement control at the level of the C3 convertase
instead of C5’ [62].

CONCLUSIONS

A renal biopsy finding of glomerular C3 deposits with little or
no immunoglobulin suggests C3 glomerulopathy and should
trigger investigation for complement dysregulation. An im-
proved understanding of the natural history of disease would
have clear implications for treatment, in terms of identifying
those patients who stand to benefit, and the appropriate time
points for intervention. While immunosuppressive therapy
has not been shown consistently to ameliorate disease, agents
targeting specific components of the complement system are
undergoing clinical evaluation. Defining the contributions of
C3 and C5, respectively, to pathogenesis is thus a key research
aim. Recent insights into pathogenetic links between C3 glo-
merulopathy and much more common forms of GN including
IgA nephropathy underline the expanding importance of
complement dysregulation in the pathophysiology of GN.
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F IGURE 3 : Therapeutic complement blockade in C3GN.
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