
Detecting Distributed Signature-based Intrusion:
The Case of Multi-Path Routing Attacks

Jiefei Ma∗, Franck Le†, Alessandra Russo∗ Jorge Lobo‡
∗Imperial College London, †IBM T. J. Watson, ‡ICREA - Universitat Pompeu Fabra

Abstract—Signature-based network intrusion detection sys-
tems (S-IDS) have become an important security tool in the
protection of an organisation’s infrastructure against external
intruders. By analysing network traffic, S-IDS’ detect network
intrusions. An organisation may deploy one or multiple S-IDS’,
each working independently with the assumption that it can
monitor all packets of a given flow to detect intrusion signatures.
However, emerging technologies (e.g., Multi-Path TCP) violate
this assumption, as traffic can be concurrently sent across
different paths (e.g., WiFi, Cellular) to boost network perfor-
mance. Attackers may exploit this capability and split malicious
payloads across multiple paths to evade traditional signature-
based network intrusion detection systems. Although multiple
monitors may be deployed, none of them has the full coverage
of the network traffic to detect the intrusion signature. In this
paper, we formalise this distributed signature-based intrusion
detection problem as an asynchronous online exact string match-
ing problem, and propose an algorithm for it. To demonstrate
its effectiveness we conducted comprehensive experiments. Our
results show that the behaviour of our algorithm depends only
on the packet arrival rate: delay in detecting the signature grows
linearly with respect to the packet arrival rate and with small
communication overhead.

I. INTRODUCTION

Multi-path TCP (MPTCP) is a new set of IETF standardised
extensions to TCP [1] that allows end points to simultane-
ously use multiple paths between them to improve network
performance. This new capability has sparked a lot of interest
from both academia and industry, especially considering that
end devices (e.g., smartphones) commonly support multiple
access technologies (e.g., WiFi, 4G), and early empirical
studies [2], [3] have demonstrated that MPTCP could signif-
icantly increase end users’ throughput. To date, both Apple
iOS and Google Android support MPTCP. This technology
not only improves network performance and facilitates user
mobility [4], but is also beneficial to Cloud Service Providers
to take advantage of their rich connectivity to the Internet, and
increasing large number of peering links. While the benefits of
MPTCP are clear, its security is still being analysed [5], [6].
In particular, the capability of splitting traffic across multiple
paths opens new venues for sophisticated attacks that can
evade traditional intrusion detection systems.

Signature-based network intrusion detection systems (S-
IDS) have become an important security tool in the protection
of an organisation’s infrastructure against external intruders.
An organisation may deploy one or multiple S-IDS’, each
working independently with the assumption that it can monitor
all packets of a given flow to detect intrusion signatures. How-
ever, attackers may exploit the multiplicity of paths and split

malicious payloads across multiple paths to evade traditional
S-IDS’. Although multiple monitors may be deployed, none
of them has the full coverage of the network traffic to detect
the intrusion signature. We have easily recreated an attack that
evades detection by the popular open-source S-IDS Snort [7].

In this paper, we formalise this multipath signature-based
intrusion detection problem as an asynchronous online exact
string matching problem, and propose an algorithm for it
based on the Aho-Corasick matching algorithm [8]. As with
Aho-Corasick’s, the time complexity of our algorithm for
scanning the whole input string is linear with respect to the
size of the input string. Our proposed solution relies on: (1)
an automaton running on each monitor, for each partially
observed input string and (2) asynchronous communication
among the monitors. The overhead of the communication is
small since information exchanged is merely automaton states.
To demonstrate the effectiveness of our proposal we conducted
a comprehensive set of experiments to find signatures in
MPTCP traffic. Our experiments show that the behaviour of
the proposed algorithm is independent of factors such as the
size and number of MPTCP connections, and the number of
signatures in the flows or in the monitors database. It is only
the packet arrival rate at the monitors that matters. Delays
in detecting the signature grows linearly with respect to the
packet arrival rate. In absolute terms, with our prototype, for
a network throughput of 450Mbps, most delays (i.e., time to
detect the signature) are about 200 microseconds, and less
than 400 microseconds. A second important component is
the amount of communication traffic generated between the
monitors. In the unlikely scenario that a monitor needs to
communicate states to other monitors for each received packet,
the size of the messages in our implementation is 52 bytes
including the message headers. In practice, the communication
overhead varied from 1.56% to 0.52%, decreasing as the
throughput increases.

II. BACKGROUND

A. Network Intrusion Detection System

S-IDS’ analyze network traffic to compare packets against a
database of signatures from known malicious threats. S-IDS’
are commonly classified into active versus passive. Active
S-IDS’ can drop packets and halt an attack in progress. In
contrast, passive S-IDS’ raise alarms, and rely on humans to
take subsequent actions. In this paper, we focus on the passive
approach, considering that many commercial S-IDS’ are solely

passive [9]. We discuss how extensions for active S-IDS’ can
be made in Section VII.

S-IDS’ apply locally configured rules to each packet. For
example, Snort [7] rules consist of two main parts: the rule
header, and the rule options. The rule header specifies the
action (pass, drop, alert, log), protocol, IP addresses, and port
numbers, whereas the rule option section specifies the alert
message, and information about which parts of the packet
should be inspected to determine if the rule action should be
taken. The following illustrates a Snort rule. The first line
consists of the rule header, and the second line specifies the
rule options.

alert tcp any any -> 192.168.1.0/24 111 \
(content:"|00 01 86 a5|"; msg:"mountd access";)

The rule indicates that any TCP packet sent to any destina-
tion in the subnet 192.168.1.0/24, and to destination port 111,
with the exact string “—00 01 86 a5—” in the packet payload
should trigger an alert with the message “mountd access”. The
Snort signature database currently consist of about 4000 rules.

In addition to the detection engine, S-IDS’ support pre-
processor modules with the main goal of re-assembling IP
fragments, or TCP segments. The preprocessor modules are
applied before the detection engine, and address attacks that
span multiple IP packets, rely on overlapping data, or exploit
TCP anomalies [10].

B. MPTCP

MPTCP is a new transport protocol that allows two end-
points to simultaneously use multiple paths between them. It
is defined as a set of extensions to TCP to retain compatibility
with and allow traversal of middleboxes such as firewalls,
NATs, and performance enhancing proxies. As a notable
feature, MPTCP introduces a 64-bit data sequence number
(DSN) to number all data sent over the MPTCP connection.
This allows the sender to retransmit data on different sub-
flows, and for the receiver to successfully re-order the received
bytes over the different paths.

III. NEW THREAT

This section describes how through MPTCP, attackers could
evade traditional S-IDS’. First, to illustrate the attack let us
assume the network depicted in Figure 1 consisting of a client
(victim) and a server (attacker). We further assume that the
network where the client resides deploys a S-IDS at each
ingress point to monitor and analyses all traffic between its
users and the Internet. Continuing the example of Section II-A,
we focus on the signature “00 01 86 a5”. We assume the client
and server have established a MPTCP connection, composed
of two flows. Each flow enters the network through a different
ingress point, and therefore traverses a different network S-
IDS.

The attacker can evade detection by splitting the signature
into multiple pieces (e.g., “00 01”, “86 a5”), and sending them
over the different flows. Because each S-IDS receives only a
fraction of the signature (e.g., “00 01”), neither monitor can
detect the attack. However, the client receiving all the bytes,

Victim
Attacker

00 01

86 a5

Fig. 1. New threat: With multi-path routing, attackers could evade
traditional S-IDS’ by splitting the signature (e.g., “00 01 86 a5”)
over different paths.

gets compromised. We have verified and confirmed the attack,
using the open-source S-IDS Snort.

We refer to this threat, as the multi-path signature detection
(MPSD) problem, and formulate it as follows:

• A source (i.e., the attacker) sends a data stream contain-
ing malicious segments to the destination (i.e., the victim)
via MPTCP;

• Each MPTCP sub-flow is intercepted by one host called
monitor that runs an S-IDS;

• The data stream is divided into packets, each of which is
associated with a sequence number;

• The source can select, delay and duplicate packets sent
to the different paths;

• Monitors are fully connected and have a list of malicious
data segment patterns (i.e., signatures).

We abstract the MPSD problem as an asynchronous online
exact string matching problem with the following definitions.
A string is a finite sequence of symbols from a given alphabet.
An annotated symbol is sk where s is a symbol from the
given alphabet and k is a positive integer associated with s.
An annotated string is a finite sequence of annotated symbols.

Let τ = s1s2 · · · sn be a string of length n, then
seqNo(τ, si) denotes the sequence number of a symbol
si in τ , i.e., seqNo(τ, si) = i, and assoc(τ) denotes
an annotated string obtained by associating each sym-
bol in τ with its sequence number, i.e., assoc(τ) =

s
seqNo(τ,s1)
1 s

seqNo(τ,s2)
2 · · · sseqNo(τ,sn)n = s11s

2
2 · · · snn. We

use symSet(φ) to denote the set of annotated symbols of
φ, i.e., symSet(assoc(τ)) = {s11, s22, · · · , snn}. Let P =
{p1, . . . , pn} be a finite set of strings, which we shall call the
keywords (i.e., it represents the set of signatures), and x be an
arbitrary string, we shall call it the text (i.e., it represents the
data stream). Let O = {o1, . . . , om} be an arbitrary set of m
arbitrary annotated strings, we shall call them the observed
texts, such that symSet(assoc(x)) =

⋃
oi∈O symSet(oi)

(i.e., each annotated symbol represents a packet). For example,
let xyabcz be the text, then x1y2a3b4 c5z6 is an annotated text,
and {x1y2c5a3, y2b4z6} is a possible set of two observed texts,
in which a3 is delayed after c5, and y2 is duplicated. Then, an
asynchronous online exact string matching problem is defined
as a set of m network nodes (monitors) {α1, . . . , αm} that
cooperatively find all the occurrences of any keyword in P
from x while each αi has only one observed text oi.

IV. PROPOSED ALGORITHM

A straw man proposal to the MPSD problem could rely on a
centralised approach, and have all the monitors select a leader
to act as the repository. Non-leader monitors forward all traffic
they observe to the leader. Then, the leader which obtains
full network traffic information can perform the signature
detection locally. However, there are two major limitations:
first, the total traffic volume will double due to the inter-
monitor communications. Second, the leader monitor can be
overloaded.

To address these limitations, we propose a fully distributed
solution where each monitor locally scans and processes its
monitored traffic. To prevent attacks that may split signatures
across multiple paths, we have monitors coordinate their ac-
tions, and exchange states. One important objective is to keep
the volume of inter-monitor communication low. To achieve
it, we have developed a new distributed algorithm, based
on the Aho-Corasick [8] automaton-based string matching
algorithm. The main idea consists in having all monitors
share asynchronously a global state of the string matching
automaton for each MPTCP connection. Each monitor receives
“segments” of the data stream (i.e., locally observed traffic
belonging to the same MPTCP connection), scans the received
segment locally, and broadcasts to other monitors the latest
automaton state as well as the segment’s relative position in the
data stream. The monitors update their local scans through the
received states. As such, the local scans of segments resemble
a global scan of the whole data stream. In the remainder of this
section, we first briefly introduce the Aho-Corasick algorithm,
and then describe our distributed algorithm in detail.

A. Aho-Corasick Algorithm

The Aho-Corasick algorithm [8] is an automaton-based
string matching algorithm that has been widely used in net-
work intrusion detection systems such as Snort [7]. The main
advantage of the Aho-Corasick algorithm, comparing to other
string matching algorithms (e.g. the Boyer-Moore algorithm
[11]), is that it can scan for multiple signatures at the same
time and has time complexity of O(n) where n is the size of
the string to be scanned. Let Σ be the alphabet from which the
signatures and strings are formed. Given a set of signatures,
the Aho-Corasick algorithm computes a single deterministic
automaton 〈S, s0, O,Σ, δ〉 and the output function σ, where
S = {s0, s1, . . . , sn} is the set of states, s0 is the initial state,
O is the set of accepting states and δ is the transition function
that takes as input a state si from S and a symbol c from Σ
and gives as output a new state si+1. The output function σ
takes as input an accepting state s from O and gives as output
the set of detected signatures. For example, given a set of
signatures {he, she, his, hers}, the computed automaton and
the output function are shown in Figure 2.

Given a string, the algorithm scans its characters from the
beginning to the end only once, starting with the initial state
and using the characters to trigger state transitions. If any
accepting state is reached, the output (detected) signatures can
be recorded, and the algorithm may continue until the whole

statecur 0 1 {2, 5} {3, 7, 9}
symbol h s . e i h s . r h s . h s .

statenew 1 3 0 2 6 1 3 0 8 1 3 0 4 3 0

statecur 4 6 8

symbol e i h s . s h . s h .

statenew 5 6 1 3 0 7 1 0 9 1 0

stateaccepting 2 5 7 9

σ(stateaccepting) {he} {she, he} {his} {hers}

Fig. 2. Deterministic automaton for signatures {he, she, his, hers}:
(1) 0 is the initial state; (2) “.” means any symbol in Σ but not
mentioned in the column for a state.

string is scanned. For example, let the string be “ushers”, the
sequence of state transitions would be 0

u−→ 0
s−→ 3

h−→ 4
e−→

5
r−→ 8

s−→ 9, where signatures {she, he} are detected after the
4th character and signature {hers} is detected after the last
character. As such, the Aho-Corasick algorithm identifies all
the matching signatures in a given string.

B. Multi-path Signature Detection Algorithm

Fig. 3. MPSD Algorithm States

1) Overview: Our proposed algorithm is executed asyn-
chronously at each monitor, and consists of four execution
states as illustrated in Figure 3. First, a monitor starts at
the INIT state, where it creates a single automaton using the
Aho-Corasick algorithm for all the signatures in the database.
Then, it moves to the IDLE state, where it waits for two
types of information: received packets (called data packets)
from the network, and synchronisation messages (called sync
states) sent by other monitors. Every data packet causes the
monitor to enter the PROCESS PACKET state, whose actions
are described in Algorithm 1. Similarly, every synchronisation
message causes the monitor to enter the PROCESS STATE
state, whose actions are described in Algorithm 2. In both
execution states, the packet payload scanning procedure may
be invoked. This procedure is described in Algorithm 3.

To describe the different procedures in details, we introduce
three abstractions comprising a data packet, a flow state and
a sync state:

• A data packet, denoted with <mid, seqno,
payload, type>, contains the multipath connection
identifier, the sequence number in the connection data
flow (not the sub-flow’s sequence number), and the
content (e.g., sequence of characters). A data packet
can be one of three types – START, END and DATA
– marking the initiation, the termination and the data
transfer of a MPTCP connection.

• A flow state is created and maintained by a mon-
itor for each intercepted multipath connection. It
is denoted with <mid, cur_seqno, cur_state,
fin_seqno, packets>, where cur_seqno is a
sequence number indicating the next character in the
connection to be processed, cur_state is the latest
automaton state recorded locally, fin_seqno is the final
sequence number of the connection, and packets is
a priority queue that stores packets in ascending order
based on the sequence numbers and contains no dupli-
cates.

• A sync state is the means for monitors to synchro-
nise their local flow states, and is represented as
<mid, latest_seqno, latest_state>, where
latest_seqno and latest_state are the latest
sequence number and automaton state recorded by the
sender monitor for the given connection.

Algorithm 1 Process a received packet
1: procedure PROCESSPACKET(p : Packet)
2: if p.mid first seen then
3: fs ← <p.mid, −∞, 0, +∞, ∅>
4: store fs
5: else
6: fetch fs where fs.mid = p.mid
7: . Placeholder
8: if p.type = START then
9: fs.cur_seqno ← p.seqno +1

10: s ← <fs.mid, fs.cur_seqno, fs.cur_state>
11: BROADCAST(s) . Communication
12: else if p.type = END then
13: fs.fin_seqno ← p.seqno
14: if p.seqno ≥ fs.cur_seqno then
15: enqueue p to fs.packets
16: else
17: discard p
18: SCANIFREQUIRED(fs)

2) Handling A Received Packet: In Algorithm 1, lines 2–
6 retrieve the corresponding flow state fs given a multipath
connection id associated with the packet, or create and store
a new flow state if none exists yet. When a new flow state
is created, its cur_seqno (resp., fin_seqno) is set to
− ∞ (resp., +∞) indicating that the starting (resp., final)

sequence number is unknown, and its cur_state is set
to the initial automaton state (i.e., 0). Lines 8–13 record
the first and the final sequence numbers of the multipath
connection in the flow state. As it is reflected in Algorithm 2
and Algorithm 3, the sequence number cur_seqno recorded
in the flow state marks the position of the next character in
the whole multipath connection to be scanned by any monitor.
Thus, the incremented sequence number of a START packet
replaces −∞ with the expected sequence number of the first
DATA data packet in the connection (line 9). Note that the
START packet and the first data packet may be received
by different monitors (i.e., sent down different sub-flows).
Therefore, the monitor receiving the START packet has to
tell others about the first data sequence number (lines 10–
11). The sequence number of an END packet is stored (line
13) in the flow state for future termination of the sub-flow

scans (see Algorithm 3). Lines 14–17 handle the packet based
on its sequence number. If the packet’s sequence number is
greater than or equal to that recorded in the flow state (which
is always the case for the END packet but not the case for the
START packet), the packet is enqueued to the buffer for further
processing1. Otherwise, the packet must have been scanned by
at least one of the monitors in the past (i.e., it is a duplicate
packet), and hence is simply discarded. Note that during the
enqueue operation (line 15) if the buffer already has a packet
with the same sequence number, then the newly received
packet is also a duplicate and therefore discarded. Finally,
the SCANIFREQUIRED procedure is called and the packet
scanning process may or may not be triggered depending
on further comparison of sequence numbers, as described in
Algorithm 3.

Algorithm 2 Process a received sync state
1: procedure PROCESSSTATE(s : Sync State)
2: if s.mid first seen then
3: fs ← <s.mid, −∞, 0, +∞, ∅>
4: store fs
5: else
6: fetch fs where fs.mid = s.mid
7: . Placeholder
8: if s.latest_state = ∞ then
9: remove fs

10: else
11: if s.latest_seqno > fs.cur_seqno then
12: fs.cur_seqno ← s.latest_seqno
13: fs.cur_state ← s.latest_state
14: SCANIFREQUIRED(fs)
15: else
16: discard s

3) Handling A Received Sync State: In Algorithm 2, lines
2–6 obtain the flow state fs of interest given the multipath
connection id associated with the received sync state s. If
the latest automaton state in s is ∞, which indicates that the
sender monitor has scanned the last data packet of the whole
multipath connection, then the receiver monitor removes the
current flow state to free resources. Otherwise, s’ sequence
number is compared with fs’. If s has a larger sequence
number (line 11), then the sender monitor must have received
and scanned some packets of the multipath connection. In this
case, the receiver monitor needs to “catch up”, by recording
the latest sequence number and automaton state from s (lines
12–13). Furthermore, SCANIFREQUIRED() is called so that
the receiver monitor can try to progress the scanning using its
locally buffered packets. In the case where s has a smaller or
equal sequence number (line 3), s is an out of date state and
can be simply discarded. Such situation may arise after two or
more monitors receive and process duplicates of some packet
independently and simultaneously.

4) Packet Payload Scanning: Algorithm 3 describes the
main procedure for packet scanning. Given a flow state fs, it
first (line 2–3) removes any out-of-date packets in the buffer
(i.e., packets with sequence numbers smaller than the current

1Note that, as in traditional passive S-IDS’, packets may get dropped when
the buffer is full, potentially impacting the correctness of the algorithm.

Algorithm 3 Process the packet buffer of a subflow
1: procedure SCANIFREQUIRED(fs : Flow State)
2: while fs.packets.head.mid < fs.cur_seqno do
3: dequeue fs.packet_buf
4: while fs.packets.head.mid = fs.cur_seqno do
5: p ← dequeue fs.packets
6: for all each character c in p.payload do
7: fs.cur_state ← NEXTSTATE(fs.cur_state, c)
8: fs.cur_seqno ← fs.cur_seqno +1
9: if fs.cur_state is an accepting state then

10: record OUTPUT(fs.cur_state)
11: if fs.cur_seqno = fs.fin_seqno then
12: fs.cur_state ← ∞
13: if fs.cur_seqno has changed value or fs.cur_state has

become ∞ then
14: s ← <fs.mid, fs.cur_seqno, fs.cur_state>
15: BROADCAST(s) . Communication
16: if fs.cur_state = ∞ then
17: remove fs

sequence number recorded by fs). A buffered packet at a
monitor becomes out-of-date if its duplicate is received and
scanned by another monitor. In this case, the current monitor
must receive a sync state with a larger sequence number,
which triggers the PROCESSSTATE() procedure and in turn
the current procedure. Next (lines 4–10), if the buffer is not
empty, and its head packet’s sequence number is equal to the
one currently recorded by fs, then the current monitor must
have the next data packet in the multipath connection and can
resume the scanning process. The head packet is dequeued
and scanned, and any detected pattern is stored as alerts. This
step is repeated until the buffer becomes empty or the head
packet has a larger sequence number than fs’, i.e., the current
monitor tries to advance in the scanning process as much
as possible. Finally, if the last data packet of the multipath
connection has been scanned, then the latest automaton state
in fs is replaced with ∞ (lines 11-12), before the state fs
is removed (lines 16–17). In addition, if either the sequence
number or the automaton state in fs has been modified since
the beginning of this procedure, then the latest flow state is
sent to the other monitors.

5) Inter-Monitor Communications: Monitors communicate
with each other through messages containing sync states.
Sending sync states as soon as they are generated (i.e., in
Algorithm 1, line 10, and in Algorithm 3, line 15) may intro-
duce unnecessary inter-monitor communications. For example,
suppose a sequence of consecutive data packets p1, p2, p3 are
received by a monitor m in order, and m can scan them
immediately (i.e., the current sequence number in the flow
state is equal to p1’s), then m generates three sync states
s1, s2, s3 in order. If all these states are sent, then the recipient
monitors performs three flow state updates but the first two are
unnecessary. In order to avoid such situation and to reduce
communication, we use an outgoing sync state buffer with
size one, and implement the following enhancements: (1)
the BROADCAST() and FLUSHSTATEBUFFER() procedures,
defined in Algorithm 4. FLUSHSTATEBUFFER(mid) is called
at line 7 in both Algorithm 1 and Algorithm 2, where mid
is from the received packet or sync state; every time after

PROCESSPACKET() or PROCESSSTATE() finishes, if there is
no more received data packet or sync state, then FLUSHSTATE-
BUFFER(mid) is called, where mid is a fresh id that is not
associated with any existing flow state (i.e., this causes any
buffered sync state to be sent out).

Algorithm 4 Buffered Inter-Monitor Communications
Require: buff_s : Sync State . A buffered outgoing sync state; NULL if

none is buffered

1: procedure BROADCAST(s : Sync State)
2: FLUSHSTATEBUFFER(s.mid)
3: buff_s ← s

4: procedure FLUSHSTATEBUFFER(mid : a multipath connection id)
5: if buff_s 6= NULL and buff_s.mid 6= mid then
6: send buff_s to all other monitors
7: buff_s ← NULL

C. Properties of the MPSD Algorithm

We discuss now key properties of our algorithm.
Lemma 1: At the time a data packet is selected to be scanned

by a monitor, all packets before it in the same multipath
connection must have been scanned (possibly by different
monitors) in order.

Lemma 2: Assuming that every packet in a multipath
connection is received by at least one monitor and no buffer
overflow occurs, every data packet is eventually scanned by at
least one monitor.

The full proofs of Lemma 1 and Lemma 2 are given in an
extended version of this paper [12] available online.

Theorem 1: Assuming that every packet in a multipath
connection is received by at least one monitor, if there exists
a malicious pattern in the connection and no buffer overflow
occurs, then MPSD detect the pattern.

Proof 1: Using Lemma 1 and Lemma 2, we can show that
the distributed scanning of a multipath connection by any
number of monitors resembles a centralised scanning of the
connection using the Aho-Corasick algorithm. The theorem
therefore holds.

Proposition 1: Given a multipath connection with n packets
(excluding duplicates) and intercepted by m monitors, suppose
the sender switches between the paths k (k ≤ n) times to send
the packets, then in the best case there are k × (m − 1) sent
sync states and in the worst case there are n × (m − 1) sent
sync states.

Proof 2: Every time the sender switches between the paths
to send the packets, there are two consecutive packets ph and
ph+1 received by two different monitors (say Mi and Mj).
By Algorithm 3, Mi must generate and broadcast (i.e., send
to m−1 other monitors) a sync state after ph. Therefore, k is
the least number of sync states generated for the connection. In
the worst case, if the sender sends the packets down different
paths in a round-robin fashion, then k = n and hence there
are at least n sync states generated (and broadcasted). Also by
Algorithm 3, there is at most one sync state generated for each
packet. Therefore, there are at most n generated sync states.

Remark 1: In practice, if k < n, the number of sync states
generated is between k and n, depending on the network
speed. If the network speed is fast enough such that every
time a packet is scanned, the next packet is already buffered at
some monitor, then there will be only k required sync states.
However, if the network speed is so slow that the monitors
always have to wait for the next packet, then there will be n
sync states generated. This can be observed in the experiments
described in Section V-C.

Remark 2: Duplicate data packets, either sent by the TCP
protocol (e.g., due to packet loss) or created intentionally
by the attacker, do not increase the communication overhead
significantly. The maximum number of sync states an attacker
could theoretically cause the algorithm to generate and broad-
cast is m× n. This is achieved assuming that (i) the attacker
duplicates each data packet and sends them down all paths, and
(ii) all monitors receive and scan the packet before receiving
the corresponding sync state from at least one other monitor.
In practice, this worst case is virtually impossible to occur
due to asynchronicity of the communication channels. Further
duplicates of the same packet are ignored by the monitors.

V. EVALUATION

A. Experimental Setting

Fig. 4. Experiment Network Setup

We implemented the MPSD algorithm in C. As packets
traverse a monitor, we make a copy of each packet, record the
captured time, and extract key fields of the packets including
the MPTCP connection token, the MPTCP sequence number,
and packet payload. The entire distributed signature scanning
process is therefore passive, and does not affect the data
transfer between clients and servers.

To evaluate the performance of our proposed solution, we
set up a local network as depicted in Figure 4, consisting of
four machines, directly connected through gigabit cables. Each
machine has an Intel i7-2600 (dual core @ 3.40 Ghz), and runs
Ubuntu 12.04 (64-bit). The victim machine, B, is in a network
protected by two monitors, machines X and Y, deployed at the
ingress points. The attacker machine, A, sends data to B using
MPTCP, with two sub-flows (paths A-X-B, and A-Y-B) each
going through a different ingress point.

Signatures and data files are randomly generated ASCII
texts. A malicious data file contains at least one substring
matching a signature and that substring is called a (malicious)
pattern. Patterns are artificially injected at a splitting position,

so that the pattern spans over two packets. A splitting position
in a data file can be calculated based on the fact that most
MPTCP data packets (except the last one in the connection)
have payloads of size 1428 bytes.

B. Performance metrics

To measure the performance of our proposed solution, we
record the following information for each MPTCP connection:
the number of packets received by each monitor, the number
of sync messages received by each monitor, the total time
for each monitor to process a sub-flow, the total download
time at the client (B) and all the detected patterns with their
detection time. All the events are time stamped using the
local system clocks. From this information, we compute the
following metrics:
• Pattern detection delay: It measures the time it takes for

a pattern to be detected by one monitor after the pattern
arrives at the victim. In order to avoid errors introduced
by network clock synchronization, the delay is calculated
as the difference between the time of detection of the
pattern and the time the packet containing the second
half of the split pattern is received at the monitor. This
computation does not take into account the network delay
between the monitors, and client. It therefore represents
an upper bound of the time difference between the time
an alarm may be raised at a monitor, and the time the
victim gets compromised. The actual delay is likely to
be smaller as it may take additional time (network delay)
for the malicious packet to arrive at the client.

• Communication overhead (and ratio): It measures the
amount of traffic between the monitors during a MPTCP
connection, and is calculated as the number of bytes
(and states) received by all the monitors divided by
the number of bytes (and packets) passing through the
monitors coming from the sender to the receiver.

• Download Speed: It is the total amount of data sent by
the attacker divided by the total download time by the
victim for a MPTCP connection.

We conducted four sets of experiments, each designed
to test whether or how certain parameters (e.g., data file
size, pattern location, concurrent connections, etc.) may affect
the algorithm performance in terms of detection delay. To
evaluate the algorithm performance with different network
speeds, we also rate limited the link speed from 54Mbps
to 450Mbps. Therefore, each experiment has been tested on
three configurations for the paths going through X and Y: (1)
54Mbps/54Mbps, (2) 54Mbps/450Mbps modelling asymmet-
ric communication channels as is common in mobile devices,
and (3) 450Mbps/450Mbps. We describe each experiment in
details and present their results in the next section.

C. Experimental Results

1) Experiment 1 (Pattern Position vs. Performance): The
goal of this experiment is to check whether the position
of an artificially injected pattern can affect the algorithm
performance. Given a randomly generated data file of 2MB,

and a randomly generated signature of 20B, there are 1468
(i.e., 2MB / 1428B) splitting positions. 50 data files were
obtained by inserting the pattern at the 29th, 58th, . . ., 1450th
splitting positions. Each data file was sent from A to B 20
times, resulting in 1000 runs (and 1000 MPTCP connections).

Fig. 5. Exp.1, 54Mbps/54Mbps

The detection delays and the communication overhead under
the 54Mbps/54Mbps setting are given in Figure 5, where run
IDs 1 − 19, 20 − 39, . . . at the x-axis are for the 1st, 2nd, . . .
insertion positions. Figure 5 shows that both detection delays
and communication overhead are fairly constant across all
runs, with an average delay of 36.51 microseconds and an
average communication overhead of 1.43%. Experiments for
the 54Mbps/450Mbps and 450Mbps/450Mbps settings (whose
plots are omitted due to space limitations) also show constant
detection delays and communication overheads.

We include the detection delays and the communication
overheads across all three settings in the box-and-whisker plots
of Figure 6. In each plot, the point in the box represents the
median delay (or communication overhead) values and the
edges represent the first quartile (q1) and the third quartile
q3. The whiskers extend to the most extreme values not
considered outliers, and outliers are plotted individually as
red crosses. A value is considered an outlier if it is larger
than q3 + 1.5× (q3− q1) or smaller than q1− 1.5× (q3− q1).
For our results, the top whisker is the most relevant since
there are a few outliers above it, but they are not significant
since the points below the whisker correspond to more than
the 95th percentile of all the data (Figure 13 in the extended
paper [12] gives the cumulative distribution function (CDF)
plot). The dashed line at the top collapses outliers that are too
large to appear in the plot. The box plots show that the larger
the total capacity of all paths, the faster the download speed.
And as the download speed increases, the detection delay also
increases whereas the communication overhead decreases. The
decreasing behaviour of communication overhead conforms
to the remark for Proposition 1. To explain the increasing be-
haviour of detection delay, we conjecture that as the download
speed increases, the packet arrival rates at the monitors become
larger. As the individual packet scanning speed by any monitor

remains constant, there is a larger chance for the malicious
packet to stay in the buffer for longer time, and hence increases
detection delay. However, the increased rate of detection delay
is much smaller than that of download speed. According to the
trend of the medians (y = 0.2385x + 20.7149), the median
detection delay at 1000 Mbps download speed is estimated to
be 259 microseconds.

Fig. 6. Exp.1, Box Plots Across Different Settings

Finally, from the results of Experiment 1 we conclude that
detection delay and communication overhead are not affected
by the position of the pattern in the multipath connection.

2) Experiment 2 (Number of Patterns vs. Performance):
The goal of this experiment is to check whether the total
number of injected patterns in a data file can affect the
algorithm performance. We randomly generated a data file of
2MB, and inserted 1, 2, . . ., 50 randomly generated patterns
(20B each) at random splitting positions. We repeated this 20
times, resulting in 1000 runs (and 1000 MPTCP connections).

The results for the 54Mbps/54Mbps setting and the box
plots across different settings are given in Figure 10 and Figure
11 of the extended paper [12], as they are almost identical
to those for Experiment 1, not only in terms of the constant
behaviour in the detection delays and the communication
overheads, but also the distributions of the values (see Figure
13 and Figure 14 in the extended paper for CDF plots). We
conclude that detection delay and the communication overhead
are not affected by the number of patterns in the multiple
connection.

3) Experiment 3 (Data Stream Size vs. Performance): The
goal of this experiment is to check how the size of data file
affects the algorithm performance. We randomly generated
data files of size 128KB, 256KB, 512KB, . . ., 64MB. For
each data file, we inserted a randomly generated pattern of
20B at a random splitting position, and sent it from A to B.
We performed this 50 times, i.e., 500 runs (and 500 MPTCP
flows). The results under the 54Mbps/54Mbps setting are given
in Figures 7

The result for detection delay is very similar to those
of the previous two experiments. However, the result for
communication overhead differs: it first increases from 0.69%
to just above 1.39%, and then stays unchanged. Looking at
the download speeds of the individual runs, we discovered
that the download throughput increases with the file sizes until
reaching a maximum value for files of size 2 MB. In addition,
the communication overhead for runs 200-249 (i.e., file size of
2MB) is around 1.43%, which is the same as in the previous

Fig. 7. Exp.3, 54Mbps/54Mbps

two experiments. The box plots across different settings are
given in Figure 12 in the extended paper [12], as they are very
close to those in the previous two experiments.

The results indicate that the data file size does not affect
detection delay, but it may affect the download speed which
in turn affects the communication overhead.

4) Experiment 4 (Number of Concurrent Connections vs.
Performance): The goal of this experiment was to check
whether and how concurrent MPTCP flows can affect the
algorithm performance. For N = 2, 4, . . . 64, we created N
data files of size 1MB, each of which contained a pattern (of
size 20B) inserted at a random splitting position. We then sent
N files from A to B independently and simultaneously. For
each N we did it 20 times, i.e., there were 300 runs and 6300
MPTCP flows in total. The results under the 54Mbps/54Mbps
setting are given in Figure 8.

Fig. 8. Exp.4, 54Mbps/54Mbps

The results for this experiment are very similar to those
of the first two experiments, except that a few connections
(about 1%) have unexpectedly small communication overhead.
We conjecture that this is due to the MPTCP scheduler, which
made fewer path switching while sending the packets for those
connections.

The box plots across different settings are given in Fig-

Fig. 9. Exp.4, Box Plots Across Different Settings

ure 9. Differently from all previous experiments, the download
speeds are much smaller. This is because the download speed
was calculated for each connection, and there were multiple
connections sharing the paths at the same time. The plot
for communication overhead across three settings also looks
differently from all previous experiments’: it does not decrease
as the total capacity of all paths increases. We believe this is
because all the individual download speeds are relatively slow
and are closed to each other, and hence the communication
overhead fluctuates around 1.21%.

Based on these results, we conclude that the number of
concurrent multipath connections does not affect the detection
delay.

a) Memory Requirement: The execution of the MPSD
algorithm requires two main types of memory space: (boot-
strap) space for storing the automaton, i.e., the signatures,
and (runtime) space for storing data structures during the
scanning. Approaches (e.g., [13]) have been proposed to
reduce the automaton space. The runtime space required is
the size needed to store the maximum number of flow states
simultaneously maintained by a monitor, which is almost the
same as the total number of packets buffered in all the flow
states. During our experiments, we observed that the maximum
packet buffer size at any monitor at any time was 10 under the
54Mbps/54Mbps setting and 27 under the 450Mbps/450Mbps
setting.

b) Inter-Monitor Communication Links: The commu-
nication ratio r measures on average how many messages
between the monitors are required based on the traffic on
the network, and is calculated as the total number of sync
states divided by the total number of packets. Let Pd be the
traffic (in Mb) on the whole network per second, let Sd and
Sm be the maximum size of a data packet and the maximum
size of a packet containing a sync state, respectively, then the
throughput of each inter-monitor link Pm can be calculated as
Pm = Pd×r×(SmSd). In our experiment, Sd is 1500B and Sm
is 52B. Consider the worst case where r = 100%, and suppose
Pd is 1000Mbps, then Pm = 1000× 1× (52/1500) = 34.67
Mbps is the minimum throughput that each inter-monitor link
needs to guarantee.

c) Adversary Attacks Using Ambiguity: One of the as-
sumptions of MPSD (and most S-IDS) is that a data packet
cannot be modified. However, [14] shows an attack that

exploits this assumption. For instance, the attacker first sends a
non-malicious packet with small enough TTL to cause it to be
dropped between the S-IDS and end-host. Then, the attacker
sends the packet again with injected malicious data and large
enough TTL to reach the end-host. As such, the packet is
considered by the S-IDS as duplicate and not scanned. Such
attacks can be addressed by MPSD similarly as in the single-
path case, for instance by making the monitors topology-
aware ([14]). As future work, we will investigate whether it is
possible to create more complex attacks in the case of multi-
paths and develop counter-measures.

VI. RELATED WORK

Because of their importance, a large amount of research
has been devoted to network intrusion detection [15], [7],
[16], [11], [8], [17], [13], [18], [19], [20], [10], [21]. While
several approaches have been developed, exact string matching
is among the most widely adopted technique because of its
simplicity and accuracy. However, none of the existing work
prevents the attack presented in this paper.

More specific to MPTCP, threats analyses have been per-
formed [5], [6]. However, these analyses focus on the protocol
(e.g., if one could launch a man-in-the-middle attack), do not
describe how attackers could exploit MPTCP to evade network
intrusion detection systems, and how to prevent them.

VII. CONCLUSION AND FUTURE WORK

We presented a new network attack that exploits MPTCP
and evades existing signature-based intrusion detection mecha-
nisms. To address the problem, we also proposed a distributed
signature-based intrusion detection algorithm that defines the
S-IDS problem in terms of a distributed exact string matching
problem where monitors, located on different paths, share a
global state of the string matching automaton for each MPTCP
connection. Different sub-flows, with split signatures, may
be received by different monitors. The monitors scan each
received packet locally and broadcasts its automaton state to
all the other monitors. The broadcast enables the monitors to
synchronise their local scans. Through comprehensive exper-
imental results we have shown that the performance of the
algorithm depends only on the network throughput. Delays
in detecting the signature grows linearly with respect to the
throughput, whereas the communication overhead decreases
with the increase of the throughput.

In future work, we will investigate optimizations to further
reduce the detection delay, an aspect that is key for active S-
IDS. More specifically, in the current implementation, when
receiving out-of-order packets, each monitor waits for some
sync state before scanning the received packets. Instead,
monitors could process those received out-of-order packets
and only store the first m bytes of the payload, where m
is the maximum size of the signatures. This would allow
signatures to be detected more quickly. We will implement
this evaluation, and evaluate its performance.

ACKNOWLEDGMENT

This research was sponsored by the U.S. Army Research Laboratory
and the U.K. Ministry of Defence and was accomplished under Agreement
Number W911NF-06-3-0001. The views and conclusions contained in this
document are those of the author(s) and should not be interpreted as repre-
senting the official policies, either expressed or implied, of the U.S. Army
Research Laboratory, the U.S. Government, the U.K. Ministry of Defence
or the U.K. Government. The U.S. and U.K. Governments are authorized to
reproduce and distribute reprints for Government purposes notwithstanding
any copyright notation hereon.

REFERENCES

[1] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. (2013, Jan.) Tcp
extensions for multipath operation with multiple addresses. [Online].
Available: http://www.rfc-editor.org/rfc/rfc6824.txt

[2] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design,
implementation and evaluation of congestion control for multipath tcp,”
in Proceedings of NSDI, 2011.

[3] Y.-C. Chen, Y.-s. Lim, R. J. Gibbens, E. M. Nahum, R. Khalili, and
D. Towsley, “A measurement-based study of multipath tcp performance
over wireless networks,” in Proceedings of IMC, 2013.

[4] L. Deng, D. Liu, and T. Sun. (2014) Mptcp proxy for mobile
networks. [Online]. Available: http://www.ietf.org/id/draft-deng-mptcp-
mobile-network-proxy-00.txt

[5] M. Bagnulo, “Threat analysis for tcp extensions for multipath operation
with multiple addresses,” 2011, RFC 6181.

[6] M. Bagnulo, C. Paasch, F. Gont, O. Bonaventure, and C. Raiciu,
“Analysis of mptcp residual threats and possible fixes,” January 2014,
internet-Draft, Internet Engineering.

[7] M. Roesch et al., “Snort: Lightweight intrusion detection for networks.”
in LISA, vol. 99, 1999, pp. 229–238.

[8] A. V. Aho and M. J. Corasick, “Efficient string matching: an aid to
bibliographic search,” Communications of the ACM, vol. 18, no. 6, pp.
333–340, 1975.

[9] R. Bace and P. Mell, “Nist special publication on intrusion detection
systems,” DTIC Document, Tech. Rep., 2001.

[10] T. H. Ptacek and T. N. Newsham, “Insertion, evasion, and denial of
service: Eluding network intrusion detection,” DTIC Document, Tech.
Rep., 1998.

[11] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,”
Communications of the ACM, vol. 20, no. 10, pp. 762–772, 1977.

[12] “Detecting distributed signature-based intrusion: The
case of multi-path routing attacks (extended version),”
http://wp.doc.ic.ac.uk/arusso/project/declarative-networking-for-net
work-and-security-management-of-hybrid-and-dynamic-networks/info
comm15-ext/.

[13] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, “Deterministic
memory-efficient string matching algorithms for intrusion detection,” in
INFOCOM, 2004.

[14] U. Shankar and V. Paxson, “Active mapping: Resisting nids evasion
without altering traffic,” in Proceedings of the 2003 IEEE Symposium
on Security and Privacy, ser. SP ’03, 2003, pp. 44–.

[15] H.-J. Liao, C.-H. Richard Lin, Y.-C. Lin, and K.-Y. Tung, “Intrusion
detection system: A comprehensive review,” Journal of Network and
Computer Applications, vol. 36, no. 1, pp. 16–24, 2013.

[16] B. Commentz-Walter, A string matching algorithm fast on the average.
Springer, 1979.

[17] S. Wu, U. Manber et al., “A fast algorithm for multi-pattern searching,”
Technical Report TR-94-17, University of Arizona, Tech. Rep., 1994.

[18] K. Ilgun, “Ustat: A real-time intrusion detection system for unix,”
in Research in Security and Privacy, 1993. Proceedings., 1993 IEEE
Computer Society Symposium on. IEEE, 1993, pp. 16–28.

[19] T. F. Lunt and R. Jagannathan, “A prototype real-time intrusion-detection
expert system.” in IEEE Symposium on Security and Privacy. Oakland,
CA, USA, 1988, pp. 59–66.

[20] V. Paxson, “Bro: a system for detecting network intruders in real-time,”
Computer networks, vol. 31, no. 23, pp. 2435–2463, 1999.

[21] M. Handley, V. Paxson, and C. Kreibich, “Network intrusion detection:
Evasion, traffic normalization, and end-to-end protocol semantics.” in
USENIX Security Symposium, 2001, pp. 115–131.

