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Abstract  

The impact that next-generation sequencing technology (NGS) is having on many aspects of 

molecular and cell biology, is becoming increasingly apparent. One of the the most noticeable 

outcomes of the new technology in human genetics, has been the accelerated rate of identification 

of disease-causing genes. Especially for rare, heterogeneous disorders, such as autosomal recessive 

primary microcephaly (MCPH), the handful of genes previously known to harbour disease-causing 

mutations, has grown at an unprecedented rate within a few years. Knowledge of new genes 

mutated in MCPH over the last four years has contributed to our understanding of the disorder at 

both the clinical and cellular levels. The functions of MCPH proteins such as WDR62, CASC5, PHC1, 

CDK6, CENP-E, CENP-F, CEP63, ZNF335, PLK4 and TUBGPC, have been added to the complex network 

of critical cellular processes known to be involved in brain growth and size. In addition to the 

importance of mitotic spindle assembly and structure, centrosome and centriole function and DNA 

repair and damage response, new mechanisms involving kinetochore-associated proteins and 

chromatin remodelling complexes have been elucidated. Two of the major contributions to our 

clinical knowledge are the realisation that primary microcephaly caused by mutations in genes at the 

MCPH loci is seldom an isolated clinical feature and is often accompanied either by additional 

cortical malformations or primordial dwarfism. Gene-phenotype correlations are being revisited, 

with a new dimension of locus heterogeneity and phenotypic variablity being revealed. 
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1. Introduction 

The enormous impact that next-generation sequencing technology (NGS) is having on many aspects 

of molecular and cell biology, is becoming increasingly apparent. One of the most noticeable 

outcomes of the new technology in human genetics, has been the accelerated rate of identification 

of disease-causing genes since the first publication of disease gene identification using whole exome 

sequencing (WES) [1]. Especially for rare, heterogeneous disorders, the handful of genes previously 

known to harbour disease-causing mutations, has grown at an unprecedented rate within a few 

years. The field of neurodevelopmental genetics has been prominent in reaping the benefits of these 

developments [2] [3] and primary microcephaly is no exception. The identification of the genetic 

defects causing profound developmental abnormalities not only provides unique insight into the 

underlying developmental and cellular processes, but also enables the development of molecular 

genetic tests to improve diagnosis and facilitate family planning. There have been many excellent 

reviews on both primary and postnatal microcephaly over the last five years.[4-9] The aim of this 

review is to focus on the most recent findings on autosomal recessive primary microcephaly (MCPH) 

and in particular to highlight how the new sequencing technologies have expedited the search for 

new genes. Knowledge of these genes and the proteins they encode has enabled the 

complementation of known pathways with new components and the linking of cellular mechanisms, 

thus painting a more complete picture of the molecular and cellular basis of MCPH.  

Microcephaly is a clinical term for a “smaller than normal head”. It may develop prenatally or 

postnatally and may have a genetic or non-genetic cause. Microcephaly accounts for a significant 

fraction of childhood intellectual disability, autism and epilepsy and occurs both in isolation and as 

part of a broad range of neurodevelopmental syndromes with or without other cortical 

malformations; and with or without growth retardation. Primary autosomal recessive microcephaly 

(MCPH) is a developmental disorder that is characterized by prenatal onset of abnormal brain 

growth, resulting in an occipitofrontal head circumference (OFC) at birth which is at least two to 
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three standard deviations below the mean for sex-, age and ethnicity. Patients have a characteristic 

head shape with sloping forehead [7, 10]. There are now 13 MCPH loci implicated in MCPH (Table 1), 

with mutations in the ASPM gene (MCPH5) accounting for 25-50% of cases [11-15], followed in 

frequency by mutations in WDR62 [16-18]. 

 

2. Next-generation sequencing (NGS) in patients with MCPH 

The mapping of disease loci in putative Mendelian forms of primary microcephaly, as in the case of 

many other rare genetic diseases, had been hindered by marked locus heterogeneity, small family 

sizes and diagnostic classifications that may not reflect the molecular pathogenesis. NGS 

technologies have relieved many of the these constraints by enabling the analysis of a large number 

of genes in a single assay, either in the form of a gene panel [19], the whole exome (WES) 

encompassing the coding and intronic flanking sequence of all known genes, or the whole genome 

(WGS)[20-22]. Although optimally performed in more than one individual, WES can be successful in 

identifying the disease-causing mutation(s) and gene in a single patient. Subsequent confirmation of 

the gene-phenotype association can be performed via the screening of additional patients. By 2010, 

there were seven known loci for primary microcephaly, labelled MCPH1 to 7, but only five known 

genes (Microcephalin/MCPH1, CDK5RAP2/MCPH3, ASPM/MCPH5, CENPJ/MCPH6 and STIL/MCPH7). 

The MCPH numbering has since been adjusted to accommodate newly-identified genes, of which 

there are now at least 13 (Table 1).  

Contributory to the success in identification of new disease genes for primary microcephaly has been 

fact that all the phenotypes described to date show an autosomal recessive inheritance pattern. In 

many cases it has been possible to refine the candidate genomic region to parts of one or more 

chromosomes, either via whole genome linkage analysis or homozygosity mapping in large, often 

consanguineous, families. Following up with WES in a single affected family member, with the 
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possible addition of an unaffected family member, has in many cases proved sufficient and 

successful in identifying the disease-causing mutations and disease gene. One of the greatest 

challenges of working with data generated by WES or WGS is the process of variant assessment, in 

order to prioritize variants for their potentially deleterious effects. This process involves filtering 

thousands of DNA variants, according to a process of elimination based on allele frequency, 

algorithms relating to possible functional effects at the protein level and evolutionary conservation 

of base pair changes, in order to eventually arrive at a single candidate disease-causing mutation for 

the disorder at hand. This process of filtering is substantially reduced under the hypothesis of 

autosomal recessive inheritance, most likely due to homozygosity for a single rare mutation or 

compound heterozygosity for two rare likely pathogenic mutations in the same gene in a single 

patient. The confirmation that each of the patient’s parents is heterozygous for one of the 

mutations, adds another piece of evidence towards the certainty that the mutations found are likely 

to be the disease-causing mutations in the patient. This has been clearly demonstrated by the 

success of disease gene identification using NGS not only in primary microcephaly, but also in other 

genetically heterogenous predominantly autosomal recessive disorders, such as primary ciliary 

dyskinesia [23]. The NGS approach has also exposed the unexpected constellation of compound 

heterozygosity despite consanguinity, that may have been missed when applying only homozygosity 

mapping and Sanger sequencing  [24]. 

 

3. Recurring themes: centrosomes, centrioles, microtubule aberrations, cell cycle dynamics 

and DNA damage response 

The known MCPH genes encode proteins that are almost universally involved in the biology of 

centrioles, cellular organelles that are part of the centrosome and play critical roles in cell division 

and cell cycle checkpoints, thus highlighting the role of the centrosome and cell cycle dynamics in 

the aetiology of microcephaly (Figure 1). The assembly of a bipolar, microtubule spindle during 
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mitosis is essential for accurate chromosome segregation and in animal cells, spindle formation is 

organized by centrosomes. Centrioles need to be duplicated exactly once every cell division cycle, in 

coordination with DNA replication, in order to maintain genome stability [25]. Some of the MCPH 

proteins are core centriolar components, e.g. CENPJ, STIL and CEP135, others have a nuclear or 

cytoplasmic localization during interphase and only locate to the spindle poles during mitosis e.g. 

WDR62, ASPM and CDK6 [18, 26, 27] and yet others interact with known centrosomal proteins, e.g. 

CASC5 and PHC1. This raises the question as to how mutations in genes encoding centrosomal and 

spindle pole-associated proteins lead to microcephaly and/or growth retardation.  

During development of the mammalian cerebral cortex, neurons are generated from two principal 

classes of neural progenitor cells (NPCs), namely apical precursors (AP) which are somatic stem cell-

like neuroepithelial cells and radial glial cells, and basal progenitors (BP) [28]. With the generation of 

neurons, the neuroepithelium transforms into a tissue with numerous cell layers, with the layer 

lining the ventricle, known as the ventricular zone being the most apical cell layer that contains most 

of the progenitor cell bodies [29]. AP cells exhibit apical–basal polarity, undergo mitosis at the 

ventricular (apical) surface and their cell bodies constitute the ventricular zone (VZ) [29-31].With the 

switch to neurogenesis, neuroepithelial cells downregulate certain epithelial features, and give rise 

to radial glial cells, which exhibit residual neuroepithelial as well as astroglial properties [32-34]. 

Radial glial cells represent more fate-restricted progenitors than neuroepithelial cells and 

successively replace the latter [29, 35]. BP (or intermediate NPCs) originate from apical mitoses, 

translocate their cell bodies through the VZ in the basal direction, form the subventricular zone 

(SVZ), downregulate apical–basal polarity (at least in rodents) and undergo mitosis in the basal VZ or 

SVZ [35, 36]. The balance between NPCs and neurons is dependent upon three principal types of AP 

and BP cell divisions: self-expanding symmetric proliferative, self-renewing asymmetric BP- or 

neuron-generating, and self- consuming neurogenic divisions. The switch of neural stem and 

progenitor cells from proliferation to differentiation during development is apparently a crucial 

determinant of brain size [30, 37]; and as to be expected there are a multitude of factors that play a 
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role in this highly complex process. One of the key determinants in the type of NPC division is 

proposed to be the orientation of the mitotic spindle. This determines the orientation of the 

cleavage plane and therefore the position of the two daughter cells [38]. Spindle orientation helps 

determine the neurogenic outcome of asymmetric progenitor divisions, thereby influencing neuron 

output and cerebral cortical expansion.  

 

Compared to other cell types, cell cycle length can be remarkably short in developing 

neuroprogenitors [39]. Since these cells need to undergo rapid and temporally restricted expansion, 

efficient DNA replication is fundamental to ensure normal neural development. Concomitant with 

the progression of neurogenesis, cell-cycle length of cortical NPCs in the VZ is known to increase, and 

there are intriguing links between NPC cell-cycle length and neuron output [40]. Arai et al. [28] have 

elegantly shown that there are differences in cell cycle length between APs and BPs in the G1 and S 

phases of the cell cycle, and that BPs exhibit a substantially longer S-phase than APs, suggesting a 

greater time investment in quality control of replicated DNA in expanding NPCs [28]. 

 

The reduced volume of the cerebral cortex in primary microcephaly is suggested to result from 

aberrant neurogenesis, influenced by all of the above processes including cell division, DNA 

replication and genome maintenance. From the proteins so far identified as being affected by 

mutations in the MCPH genes, there is evidence for all of these processes being disrupted in one 

form or another.  Mitotic defects, such as aberrant spindle pole positioning has been demonstrated 

for ASPM after siRNA-mediated knockdown of ASPM in non-neural human cells [41], in Drosophila 

asp mutants and after similar knockdown of Aspm in mice [42]. Strong support for spindle 

misalignment and disrupted symmetric vs asymmetric cell divisions has also been provided by 

Mcph1-deficient mice in which premature switching of neuroprogenitors from symmetric to 

asymmetric division was observed [43]. Mcph1 deficiency abrogated the recruitment of checkpoint 

kinase 1 (Chk1) to centrosomes, resulting in premature cyclin-dependent kinase 1 (Cdk1) activation. 
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This in turn resulted in early mitotic entry and the uncoupling of mitosis from the centrosome cycle 

[44]. MCPH1 patient cells show premature chromosome condensation [45] and abnormal 

chromosome alignment has been observed in a mouse MCPH1 model [44]. Moreover, similar to 

ATR–Seckel syndrome cells, MCPH1-mutant cell lines show defective G2–M checkpoint arrest, 

nuclear fragmentation and supernumerary mitotic centrosomes after DNA damage, thus suggesting 

a role for MCPH1 in the ATR DNA damage response [43]. 

 

4. New genes, new phenotypes  

4.1 WDR62 

Traditionally, microcephaly was defined as a neurodevelopmental disorder characterized by 

markedly reduced size of the brain and cerebral cortex and profound mental retardation, but mostly 

with normal brain structure. However, simplified gyration, which was most usually associated with 

classical lissencephaly (the pachygyria-agyria spectrum), was also observed in patients with 

microcephaly and became known as microcephaly with simplified gyration (MSG, [46-48] or in very 

severe cases, microlissencephaly [49, 50]. Lissencephaly is characterized by abnormal organization of 

the cortical layers but normal brain volume and is therefore regarded as a disorder of neuronal 

migration. More recently, there has been increasing awareness that patients with defined MCPH 

also have reduced cortical gyration resembling pachygyria . The first surprise and one of the first 

studies employing NGS to this field, came with the publication of mutations in WDR62, mapping to 

the MCPH2 locus on chromosome 19q13 in patients with microcephaly and a wide range of cortical 

malformations, including pachygyria, polymicrogyria, schizencephaly and cerebellar hypoplasia [17]. 

Knowledge of linkage of the MCPH2 locus to chromosome 19q was exploited by three groups who all 

used targeted NGS in custom arrays developed for the linked chromosome 19q13 region, in a few 

patients from families showing linkage to the region, to identify mutations in the WDR62 gene. Using 

this approach in single patients from four families with MCPH linked to the region, Nicholas et al. 
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[16] identified different homozygous mutations in WDR62, including four missense mutations, an 

unusual finding in MCPH-associated genes. Yu et al. [18] used a similar approach in two affected 

individuals, using a custom array designed to span a 148 kb linkage interval, while Bilgüvar et al. [17] 

performed whole genome genotyping in two affected family members, followed by WES of targeted 

homozygous regions in a single patient. The analysis in further patients revealed six more 

homozygous mutations in WDR62 providing convincing evidence as the gene mutated in MCPH2. 

WDR62 encodes a 1,523 amino acid protein with multiple WD40 repeats, with little initially known 

about its function. Immunofluorescent staining of endogenous WDR62 in HeLa cells revealed a cell 

cycle-dependent localization, with spindle pole localization at the M phase. Its subcellular 

localization closely matched that of the centrosomal protein CEP170, which supported a predicted 

co-localization via a proteomic study. WDR62 was found to be localized to the apical margin of 

neuroepithelium cells and it showed a subcellular co-localization with ASPM, at the spindle poles 

during mitosis. These studies strongly suggested a function for WDR62 in cell proliferation and 

spindle formation, as well as in neuronal migration, thereby suggesting a common mechanism 

underlying primary microcephaly and other cortical malformations. Post-mortem analysis of a 27-

week old foetus with mutations in WDR62, revealed a cortical pattern not dissimilar from that seen 

in LIS1-lissencephaly and DCX-subcortical heterotopia [18]. Mutations in WDR62 are now known to 

be second most common cause of MCPH after mutations in ASPM (MCPH5).  

4.2 NDE1 

 

In a further study illustrating the overlap between cellular processes causing lissencephaly and 

severe microcephaly, Alkuraya et al. [51] and Bakircioglu et al. [52] demonstrated that truncating 

mutations in the C-terminal domain of NDE1 were shown to cause a severe microlissencephaly 

syndrome resembling that described initially by Norman and Roberts [49, 50]. Whereas Alkuraya et 

al. used classical linkage analysis and Sanger sequencing of candidate genes to identify NDE1 as the 

disease-causing gene in two consanguineous families, Bakircioglu et al. used a combination of 
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autozygosity mapping (two families) and WES in a single patient from another family [52]. NDE1, 

originally identified as a critical regulator of a nuclear migration pathway, contains a 

homodimerisation domain as well as a highly conserved C-terminal NUDE_C domain, which allows its 

interaction with the dynein complex and is essential in centrosomal localization, mitosis and cell 

migration [51, 52]. The C terminus of NDE1 also includes a domain required for interaction with 

CENP-F, which directs NDE1 to kinetochores. Additionally, it was shown that Nde1 is phosphorylated 

by Cdk1 and that CDK1 phosphorylation at T246, within the C-terminal region that is disrupted by 

mutations in the patients they described, is required for cells to progress through the G2/M phase of 

mitosis[51].  

 

Immunofluorescence via transfection of NDE1 constructs into HeLa mitotic cells demonstrated 

normal co-localization of NDE1 with γ-tubulin at the centrosome in wild-type constructs and 

abolished centrosomal and kinetochore localization in cells transfected with mutant constructs [52]. 

NDE1 expression was seen in the neuroepithelium throughout the developing human brain[52]. The 

effect of NDE1 deficiency on brain size appears to be much more striking in humans than in mouse 

and indicates defects in cortical lamination as well as neurogenesis [53]. Moreover, the cellular 

functions of NDE1 appeared to be either redundant or unnecessary in tested tissues, other than in 

the neuroepithelium, with localization of NDE1 to the mitotic spindle during metaphase being 

specific to neuroepithelial stem cells [52].  

 

4.3 New genes, same phenotype 

 

5.1 CASC5 (MCPH4) 

Jamieson et al. [54] initially reported linkage after homozygosity mapping in a Moroccon family with 

classic MCPH, to chromosome 15q14, and the locus received the assignment of MCPH4. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
11 

 

Subsequently, the finding of mutations in the CEP152 gene located within the linkage region defined 

by Jamieson et al. was reported [55]. It became clear that there are two genes mutated in MCPH 

within this region of chromosome 4 when Genin et al. reported the finding of mutations in the 

CASC5 gene in their original Moroccan family and two further families[56]. These authors initially 

used Sanger sequencing and expression analysis on candidate genes within the linkage region in 

order to identify the disease-causing mutations in CASC5, however their subsequent analysis in order 

to eliminate the possibility of mutations in yet other genes within the region, involved targeted 

capture and NGS sequencing of the full genomic 2.7 Mb critical region on chromosome 15q. The 

CASC5 protein localizes to the kinetochore and performs two crucial functions during mitosis: 

correct attachment of the chromosome centromeres to the microtubule apparatus and spindle 

assembly checkpoint signalling. It interacts and binds to many other proteins essential to 

kinetochore function, including the proteins NDC80 and MIS12 referred to as the KMN (KNL1/Mis12 

complex/Ndc80 complex) network [57]. It had previously been shown that CASC5 knockdown in 

HeLa cells by siRNA caused a misalignment of chromosomes and premature entry into mitosis [58].  

CASC5 binds to BUBR1 (BUB1B) via its N-terminal domain. BUB1B loss of function in humans causes 

Mosaic Variegated Aneuploidy (MVA) syndrome 1, an autosomal recessive microcephaly phenotype 

associated with a mitotic chromosomal segregation defect leading to aneuploidy for various 

chromosomes in fractions of cells in many tissues [59]. Therefore it is suggested that the primary 

microcephaly caused by defective CASC5 and BUBR1 results from a common mechanism involving 

chromosome missegregation. No aneuploidy, abnormal mitoses or other nuclear anomalies have 

been observed in lymphoblasts from patients with CASC5 mutations [56], highlighting possible 

tissue-specificity for the expression of the defect. 

 

5.2 CDK6 (MCPH12) 
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Homozygosity mapping after genome-wide linkage analysis in a consanguineous eight-generation 

family with seven affected and two unaffected individuals and parents identified a new MCPH locus 

on chromosome 7q21.11-q21.3 [27]. Despite having head circumferences ranging from -4 to -6 SD 

below the mean, patients had a relatively mild phenotype with mild intellectual disability. Sanger 

sequencing of the coding region of candidate genes within the linkage interval in four of the patients 

revealed a homozygous novel missense mutation in the CDK6 (cyclin-dependent kinase 6) gene, 

which was also confirmed to co-segregate with the MCPH in the family. Since no further mutation in 

CDK6 was detected in additional MCPH families, the authors used post-hoc WES in a single patient in 

the family in order to demonstrate that no other mutations were present in other genes relative to 

the phenotype in the family. 

CDK6 was previously known to demonstrate cytoplasmic and nuclear localization in various cell types 

[60]. Co-staining with the centrosomal marker, Pericentrin, showed that CDK6 surrounded 

pericentrin. Furthermore, CDK6 accumulated at the centrosome throughout the mitotic cycle, 

thereby resembling the distribution of WDR62 during mitosis. Analysis of patient fibroblasts revealed 

substantial abnormalities, including an aberrant microtubule network in interphase, abnormal 

spindle alignment during mitosis and misshapen nuclei. Some cells with misshapen nuclei had only a 

single centrosome, others had supernumerary centrosomes. Patient fibroblasts showed a reduced 

growth rate when compared to controls and fluorescence-activated cell sorting (FACS) analysis of 

patient and control primary fibroblasts detected a higher percentage of late-apoptotic patient cells 

[27].  

A new role for centrosomal proteins in cell motility and polarity was observed via gap analysis in 

patient fibroblasts and cells in which CDK6 been knocked down [27]. Perturbation in the migration of 

neurons and glia cells has been suggested in patients with mutations in WDR62 [18, 61] and ASPM 

[14]. Studies on the LIS1 gene, which encodes a microtubule-stablilising protein acting primarily at 
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the centrosome [62, 63], established the importance of centrosomal function in both neurogenesis 

and migration [64].  

 

6 Same gene, new phenotype 

6.1 STIL and Holoprosencephaly 

 

Mutations in STIL were originally identified in patients with primary microcephaly (MCPH7, [65]. 

There have subsequently been only one report of mutations in STIL in patients with MCPH7 

[66],bringing the total of MCPH-associated mutations to four. Thus STIL mutation is a rare cause of 

MCPH. STIL (SCL/TAL1 interrupting locus, also known as SIL) is a centrosomal protein that was 

identified as a candidate vertebrate homolog of the key centriole duplication factors SAS-5 in C. 

elegans and Ana2 in Drosophila [67]. It was subsequently shown to be an essential component of the 

centriole replication machinery in mammalian cells [68]. Overexpression of STIL results in excess 

centriole formation; whereas siRNA-mediated depletion of STIL leads to loss of centrioles and 

abrogates PLK4-induced centriole overduplication. Additionally, it was shown that STIL is necessary 

for SAS6 recruitment to centrioles, suggesting that it is essential for daughter centriole formation, 

interacts with the centromere protein CPAP and rapidly shuttles between the cytoplasm and 

centrioles [69]. Consistent with the requirement of centrioles for cilia formation, Stil–/– mouse 

embryonic fibroblasts lack primary cilia, a phenotype that was reverted by restoration of STIL 

expression [68]. Most recently, post-natal WES revealed two novel STIL mutations in a compound 

heterozygous constellation in a foetus with microcephaly and a structural brain anomaly consistent 

with holoprosencephaly [70]. Subsequently, WES from a single patient from an extended 

consanguineous family revealed another recessive STIL splice mutation in patients with 

microcephaly and lobar holoprosencephaly [71], thus confirming STIL mutation as a cause of 

holoprosencephaly. 
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Holoprosencephaly (HPE) is a midline brain malformation that results from incomplete forebrain 

division. The HPE spectrum ranges from the severe, often lethal alobar type with no separation of 

the cerebral hemispheres, to semilobar HPE, the milder lobar HPE, the middle interhemispheric 

fusion variant, and finally to microform HPE with no overt brain malformations or neurologic findings 

[72]. Inactivation of Stil in mice causes embryonic lethality and midline neural tube defects, including 

holoprosencephaly-like malformations with a complete lack of midline separation at the anterior 

end of the cranial neural folds [73]. Taken together, these data suggest that STIL can be added to the 

list of HPE-causing genes in humans. 

 

6.2 CENPJ, CEP152 and Seckel syndrome 

 

Both the CENPJ and CEP152 genes were initially identified to cause primary microcephaly (MCPH6: 

[74] and MCPH4, later MCPH9[55], with patients showing an isolated brain phenotype. Mutations in 

both CEP152 and CENPJ have subsequently been identified in patients with Seckel syndrome [75, 

76]. Independently, using a WES approach, the same Turkish founder mutation was identified in 

another patient with Seckel syndrome[75]. Both CENPJ and CEP152 are centrosomal proteins. CENPJ 

has been shown to have roles in centrosomal integrity, centriole duplication and elongation, mitotic 

spindle assembly/disassembly and mitosis [77-79]. It localises to the centrosome where it docks 

itself on the centrioles through PCNT, to facilitate mitotic spindle nucleation [80, 81]. Depletion of 

CENPJ resulted in arrest of cells in mitosis [77]. Thus, CENPJ apparently plays an essential role in the 

regulation of the cell cycle via its action on the centrosome. Additionally, CENPJ works as a 

transcriptional co-factor to STAT5 which plays an important role in regulating cell growth, 

differentiation, and survival [82]. 
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Analysis of the subcellular localization of asl (asterless), the Drosophila ortholog of CEP152, showed 

it to be associated with the periphery of centrioles, where it is involved in the initiation of centriole 

duplication [83]. Expression of CEP152 in HEK293T cells revealed fluorescence staining of the 

centrosomes, where it co-localized with pericentrin. The morphology of CEP152-deficient Seckel 

fibroblasts during interphase and during different stages of mitosis revealed that a substantial 

number of Seckel fibroblasts contained multiple, differently sized nuclei and centrosomes, 

micronuclei and fragmented centrosomes during interphase. During metaphase, CEP152-deficient 

Seckel lymphocytes showed aneuploidy in approximately 14% of metaphase spreads, with 

incorrectly aligned chromosomes, monopolar spindles with a single large centrosome, triple spindles 

with differently sized and structurally compromised centrosomes, and prematurely separated sister 

chromatids [75]. Most strikingly, CEP152-deficient cells appeared to be arrested at early anaphase in 

Seckel cells, compared to the wildtype population. The authors suggested that this block may have 

resulted from problems with chromatid alignment, uneven pulling forces in the spindle, or activation 

of a checkpoint that responds to weakly attached or misaligned chromosomes. Cell cycle analysis in 

CEP152 knockdown cells using short hairpin RNA suggested that CEP152 deficiency delays S-phase 

entry. Furthermore, fewer Seckel cells progressed to the G2/M phase and an increased proportion of 

cells stayed in G0/G1. These findings suggested altered ATR-mediated checkpoint activity and 

increased replicative stress in CEP152-deficient cells. CEP152 was found to be a binding partner of 

the protein CEP63, another centrosomal protein which had been previously implicated in mitotic 

entry and spindle formation [84, 85] and was subsequently implicated in MCPH [86]. CEP63 was 

found to be mutated in patients with MCPH and proportionate short stature, diagnosed as MCPH 

with growth retardation or mild Seckel syndrome [86]. 

 

Although mutations in the CENPJ gene appear to be very rare, the first three mutations identified 

(two frameshift truncating and a single missense mutation) all caused a phenotype of MCPH with 

normal growth (MCPH6 [74]). The mutation reported by Al-Dosari et al. [76] was a splice mutation 
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which was shown at the mRNA level to result in the deletion of one to 3 exons. There is no simple 

explanation for the Seckel phenotype in these patients, but a plausible explanation provided by the 

authors was of possible brain-specific expression of transcripts affected by mutations that cause 

microcephaly without growth retardation. 

 

6.3 CENPE (MCPH13) and Microcephalic Primordial Dwarfism (MPD) 

Mirzaa et al. [87] reported a brother and sister, born of unrelated parents of European descent, with 

microcephaly, poor overall growth, and developmental delay. Both had intrauterine growth 

retardation and microcephaly apparent on prenatal ultrasound, as well as similar dysmorphic facial 

features, including sloping forehead, prominent nose, and mild micrognathia. At age 5 years, the 

older sib, a boy, had microcephaly (-9 SD), short stature (-7 SD), small hands and feet, mild spasticity, 

and severely delayed psychomotor development with absent speech and poor gross and fine motor 

skills. Brain imaging at age 17 days showed a diffuse, severely simplified gyral pattern with partial 

agenesis of the corpus callosum and cerebellar hypoplasia. Skeletal survey showed subtle widening 

of the ribs and possible metaphyseal areas of sclerosis in the distal femurs and proximal tibias. The 

hands appeared osteopenic, and the metacarpals were relatively short. Mirzaa et al. [87] noted that 

the skeletal findings were not characteristic of a specific bone dysplasia, particularly not of 

microcephalic osteodysplastic primordial dwarfism II (MOPDII), but suggested that those features 

may become more apparent with age. Additional features in the boy included well-controlled 

infantile seizures and congenital restrictive cardiomyopathy, which were not found in his affected 

sister. He died of pneumonia at age 8 years. At age 3 years, the sister had microcephaly (-7 SD) and 

mild short stature (-2 to -3 SD), as well as delayed psychomotor development, but not as severe as 

that in her brother. It was concluded  that the phenotype was part of the spectrum that includes 

primary microcephaly and microcephalic primordial dwarfism [87].  
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Using WES, followed by annotation of biological function and pathway membership of candidate 

genes harbouring two possibly pathogenic mutations, mutations in the CENPE gene were identified 

as the disease-causing mutations in the family [87]. CENP-E is required for spindle microtubule 

capture to the kinetochore, making these findings the first example of a core kinetochore defect 

contributing to MPD. In patient LCLs, mitotic cells exhibited a barely detectable CENP-E signal, as did 

PCNT-defective LCLs from a MOPDII patient. Impaired PCNT function mimicked impaired CENP-E 

function with respect to CENP-E localization, CENP-E-dependent BubR1 phosphorylation, mitotic 

spindle organization and mitotic progression. This indicated that spatially distinct proteins that play 

different roles in mitosis can manifest with similar cellular phenotypes.  

 

6.4 Meier-Gorlin Syndrome and Microcephaly and Primordial Dwarfism (MPD) 

Microcephalic primordial dwarfism (MPD), which is characterized by severely impaired growth 

beginning from early fetal life, is the defining feature of a group of disorders comprising several 

distinct disease entities, including Seckel syndrome [88], microcephalic osteodysplastic primordial 

dwarfism type II (MOPD II,[89] and Meier-Gorlin syndrome (MGS). Mutation of PCNT was reported in 

the context of two overlapping forms of primordial dwarfism, viz Seckel syndrome and MOPDII [90]. These 

disorders share common features of intrauterine growth retardation, severe postnatal short stature 

and marked microcephaly. Bone abnormalities are also common, however each disorder is 

distinguished by specific clinical features, e.g. MGS is characterized by severely reduced or absent 

patellae and small or abnormal ears. Recently, mutations in genes encoding ORC1, ORC4, ORC6, 

CDT1 and CDC6, which all encode proteins required for DNA replication origin licensing, were 

identified in patients displaying Seckel syndrome (SS) and/or Meier-Gorlin syndrome (MGS) [91, 92].  

Eukaryotic chromosomal DNA replication involves coordinated initiation from multiple origins and 

has to be carefully regulated throughout the cell cycle. It is possible that much of this regulation 
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occurs at the level of initiation of DNA synthesis. Replication in S phase of the cell cycle initiates from 

replication origins, which become “licensed” during the G1 phase [93-96]. Licencing begins with the 

binding of the origin recognition complex (ORC) followed by recruitment of the pre-replication 

complex (pre-RC) proteins, CDC6, CDT1 and the MCM2 to MCM7 helicase. The ORC comprises six 

components, ORC1 to ORC6, with ORC2 to 5 forming the core complex and ORC1 dissociating from 

the complex during the transition from the G1 to S phases [97]. There is increasing evidence that the 

ORC complex has additional important functions in heterochromatisation [98] and that ORC proteins 

localize to centrosomes [98], with siRNA depletion of ORC1 resulting in Cdk2 and cyclin E-dependent 

centriole and centrosome reduplication [99]. 

 

Cells from patients with Seckel syndrome can exhibit significantly impaired DNA damage response 

[100] [101]. While Seckel fibroblasts lacking ATR show no activation of H2AX upon UV- or 

hydroxyurea-(HU) treatment, which is essential in response to DNA damage and increased 

replicative stress, pericentrin-deficient cells derived from patients with MOPD II show no defects in 

ATR-dependent H2AX activation, but instead have defects in UV induced G2-M checkpoint arrest 

[100, 101]. Furthermore, Kalay et al. [75] recently reported that CEP152-deficient Seckel cells are 

more sensitive to DNA-damaging agents, and show an increased and prolonged activation of DNA 

damage response pathways[75]. 

 

Importantly Stiff T et al.[102] in investigations of cells from patients with MGS with regard to loss of 

origin licensing, found the surprising result that in addition to reduced licensing capacity in all cells 

and modest defects in centrosome and centriole copy number and organization, the greatest effect 

of siRNA on licensing components were marked defects in cilia formation. The findings of Stiff et 

al.[102] in cells in which ORC1, ORC4, ORC6, CDT1, and CDC6 had been depleted resulted in 

dramatically impaired cilia formation, providing strong evidence that loss of origin licensing proteins 

substantially delays, although not fully ablates ability to form primary cilia. Thus impaired 
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ciliogenesis was recognised as a novel pathogenic mechanism underlying the defects observed in 

patients with MGS. 

 

7  New genes, new mechanisms 

 

7.1 Microcephaly and cilia 

Primary cilia are sensory organelles that nucleate from a basal body, made up of the mother 

centriole and associated pericentriolar proteins [103, 104]. They are found in most types of 

mammalian cells and function as mechano- and chemosensory organelles by using intraflagellar 

transport proteins to receive and transduce extracellular signals [105]. Cilia formation and 

centrosome/centriole biogenesis are overlapping and interdependent processes and therefore it can 

be expected that defects in centrosome function would affect cilia formation/biogenesis. The first 

hint that cilia dysfunction may be involved in microcephaly and growth retardation was the evidence 

that PCTN is associated with the basal body of primary cilia and is required for primary cilia 

biogenesis in olfactory cilia [106-108]. 

Mutations in centriole biogenesis have been reported in primary microcephaly and Seckel syndrome, 

disorders without the hallmark clinical features of ciliopathies. Very recently, mutations in the genes 

encoding PLK4 kinase, a master regulator of centriole duplication and its substrate and TUBGCP6, 

were identified in individuals with microcephalic primordial dwarfism and additional congenital 

anomalies previously associated with ciliopathies, including retinopathy, thereby extending the 

phenotypic spectrum associated with centriole dysfunction. PLK4 is a key regulator of centriole 

biogenesis [109, 110]. 

Individuals with PLK4 mutations displayed profound microcephaly (OFC in order of -11.6 S.D) and 

substantial growth retardation of prenatal onset, with markedly reduced height in keeping with the 

diagnosis of microcephalic primordial dwarfism [111]. Neuroimaging revealed a marked reduction in 
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cortical size with simplified gyration, brainstem and cerebellar hypoplasia. In addition, ocular 

anomalies were frequently observed, best summarised as severe generalized retinopathy. Whole 

exome sequencing of an unrelated patient with a similar phenotype including retinopathy revealed 

the patient to be homozygous for a frameshift mutation in TUBGCP6 and screening of another 12 

individuals with microcephaly and retinal dystrophy revealed TUBGCP6 mutations in a further three 

patients. Interestingly, TUBGCP6 is a direct phosphorylation target of PLK4 kinase, thus indicating 

that both proteins act in the same pathway to cause a microcephaly retinopathy phenotype. 

Homozygous TUBGCP6 mutation had previously been reported in a single Amish patient with 

microcephaly and chorioretinopathy, after WES [112], which no doubt helped focus the search on 

TUBGCP6. 

Based on the known role of PLK4 in centriole biogenesis, Martin et al. [111] investigated centriole 

biogenesis in patient-derived fibroblasts during mitosis. They found that mitotic spindle formation 

was affected in patient cells with reduced centriole number and monopolar spindles most frequently 

observed. The latter can be predicted to result in delayed mitotic progression and mitotic errors and 

increased cell death, although this was not observed in PLK4-mutant fibroblasts. Zebrafish depleted 

of plk4 transcripts via targeted splice-site blocking morpholinos showed significantly reduced overall 

body size, with the reduction in size correlating with the extent of transcript depletion. Further 

experiments to investigate the lower cell numbers in zebrafish embryos, indicated that increased 

apoptosis may also contribute to the lower cell numbers in these embryos. The authors postulated 

that a reduction in mitotic and cell cycle efficiency and the promotion of cell death may be sufficient 

to cause reduced organism size such as the observed dwarfism in patients.  

The retinopathy phenotype was also investigated in plk4-morphant zebrafish, showing a loss of 

photoreceptors, as well as variable reduction in eye size, consistent with the ophthalmological 

findings in patients with PLK4 and TUBGCP6 mutations. A reduced number of ciliated cells was found 

in the photoreceptor layer in zebrafish and in serum-starved fibroblasts from affected individuals, 
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with an absence of basal bodies correlating with the absence of cilia. Additional cilia-related 

phenotypes, such as left-right asymmetry, were observed upon the injection of higher doses of plk4 

morpholinos in the zebrafish, accompanied by many cells having no remaining centrioles. This 

allowed the conclusion that the observed ciliopathy phenotype was most likely directly attributable 

to the absence of basal bodies.  

Most recently, mutations in CENPF were identified in patients with mid-gestation fetal lethality, 

dysmorphic craniofacial features, cerebellar vermis hypoplasia, cleft palate, duodenal atresia and 

bilateral renal hypoplasia, in a non-consanguineous Caucasian family. MCPH was evident by mid-

gestation in the affected foetuses. Candidate chromosomal regions possibly linked to the phenotype 

were identified by genome-wide SNP analysis in the family, followed by WES in a single affected and 

single unaffected family member. Two novel non-synonymous variants in the CENPF gene were 

identified to be the disease-causing mutations in the family, confirming the expected compound 

heterozygosity in the affected patients. Further WES in a large cohort of patients with primary 

microcephaly, identified two nonsense mutations (one common to the first family), in a patient with 

MCPH (OFC <-4 SD below the mean), associated with mild to moderate learning difficulties. The 

clinical findings in these patients suggested a ciliopathy disorder, which was reinforced by the finding 

of a basal body localisation of the CENP-F protein in ciliated fibroblasts. Moreover, CENP-F co-

localised with Ninein at the sub-distal appendages of the mother centriole of mouse IMCD3 (kidney 

medulla/collecting duct epithelial) cells and zebrafish cenpf morphants displayed many features of a 

ciliopathy, including body axis curvature, laterality heart defects, hydrocephalus and pronephric 

cysts [113]. CENPF had previously been identified as a kinetochore protein [114] and to be 

associated with the Ndel1/Nde1/Lis1/dynein microtubule motor complexes [115]. It has also been 

shown to co-localise with IFT88 along the ciliary axoneme and co-migrate with other IFT-B 

components. CENP-F is dynamically expressed throughout the cell cycle, found at the kinetochore, 

stabilising the attachment of microtubules to the centromere, at early prophase until anaphase; and 

at the spindle mid-zone during early anaphases, before migration with cytoplasmic dynein-1 to the 
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spindle poles. Depletion of CENP-F in vitro results in mitotic delay, failure of kinetochore assembly 

and misalignment of chromosomes in a subset of mitotic cells [116]. 

 

7.2 Microcephaly and chromatin-remodelling complexes 

7.2.1 ZNF335 (MCPH10) 

The nuclear zinc finger protein, ZNF335/NIF-1, was identified as the causative gene for one of the 

most severe forms of MCPH so far described [117]. Patients with mutations in ZNF335 had an OFC of 

nine SD below the mean and died within one year of age. Extreme microcephaly was accompanied 

by a severely simplified gyral pattern and subarachnoid fluid separating the brain and skull, thus 

indicating possible degeneration. Although the gene was identified as causing this severe 

microcephaly and neurodegeneration syndrome using conventional linkage and positional cloning, 

the mutation was confirmed and further characterized using mRNA-transcriptome sequencing (RNA-

seq)[117].The trithorax (TrxG) and polycomb (PcG) chromatin-remodeling complexes work in 

opposition to activate or silence gene expression, respectively [118]. The TrxG complex regulates 

developmental expression of many genes that are important for patterning, cell proliferation, and 

stem cell identity, by maintaining genes in an active state [119]. The activation of gene expression by 

TrxG occurs via the methylation of lysine 4 on histone H3 (H3K4) [120]. Genetic ablation of ZNF335 

led to early embryonic lethality in mice, and Emx1-Cre-driven knockout led to virtual absence of 

cortical structure[117]. Loss of ZNF335 in neurons caused premature cell-cycle exit of progenitors, 

leading to a precocious depletion of the progenitor pool. A critical downstream target of ZNF335 is 

REST/NRSF, representing a pathway that is critical for this neurogenetic function. These studies 

provided the first evidence for an upstream regulator of gene expression having an effect on the 

balance between progenitor cell division and differentiation. 

 

7.2.2 PHC1 (MCPH11) 
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After linkage analysis and subsequent Sanger sequencing of candidate genes failed to identify the 

causative mutations and gene in a consanguineous family with two children affected with MCPH and 

four unaffected children, WES was performed on DNA from a single affected individual. This analysis 

successfully identified a single missense mutation in the PHC1 gene which co-segregated with the 

MCPH in the family [121]. The affected individuals, who were homozygous for the mutation, had 

primary microcephaly (4.3 to 5.8 SD below the mean) with no additional structural brain 

abnormalities and mild intellectual disability. The PHC1 protein is part of a polycomb repressive 

complex (PRC1), the members of which function as transcriptional repressors that silence specific 

genes via chromatin remodelling. PRC1 members have been shown to play critical roles in the DNA 

repair pathway [122] and also interact with geminin, which has an established role in cell cycle 

control [123] [124] to promote its degradation. Awad et al. [121] showed reduced H2A 

ubiquitination, impaired recruitment of PHC1 to chromatin regions in response to DNA damage and 

reduced repair of DNA lesions in patient cells. This was the first report of a polycomb group gene 

(PcG) to be mutated in MCPH, and is reminiscent of the deficient DNA damage repair associated with 

mutation of the PNKP gene in patients with Microcephaly, Seizures and developmental delay (MCSZ, 

[125]. 

 

Conclusions 

We have come a long way in a relatively short space of time from the original definition of primary 

microcephaly as a phenotype, to an improved understanding of the phenotypic spectrum of 

disorders which have primary microcephaly as the dominant clinical feature. The panoramic view of 

the genome provided by NGS technologies is not only providing us with novel insight into DNA 

variation, but also an open mind to phenotypes and their clinical classification. Although the 

concepts of locus heterogeneity and a single gene causing multiple syndromes are not new to 
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human genetics, the extent to which these are being revealed through next-generation sequencing 

technology is remarkable.  

Whole exome sequencing has rapidly expedited the identification of genes involved in MCPH, and 

the use of disease-specific gene panels for diagnostics is accelerating the time to genetic diagnosis 

for many patients and families. Just as array comparative genome hybridization (aCGH) exposed the 

considerable copy number variation in the human genome, the comprehensive nature of the new 

technologies has made us aware of the extensive sequence variability present in certain genes, even 

within the coding sequence. This is training us to refine our discriminatory powers for distinguishing 

variants based on their predicted pathogenicity. The accumulation of whole exome and whole 

genome data has stimulated efforts to create comprehensive public DNA variant and disease 

databases, which are constantly expanded and can be freely interrogated. Having started with the 

1000 Genomes Project, we can now access not only variant databases with data from approximately 

6500 exomes (National Heart, Lung and Blood Institute Grand Opportunity, NHLBI GO Exome 

Sequencing Project, ESP) and 60,706 exomes from the Exome Aggregation Consortium (ExAC 

Browser, http://exac.broadinstitute.org/),  as well as databases combining variant and phenotype 

data with supporting evidence, e.g. ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/). We can now 

differentiate between genes that are tolerant of genetic functional variation and those which are 

intolerant and more likely to harbour mutations causing severe Mendelian disease, by calculation for 

example of their Residual Variance Intolerance Score (RVIS, [126]. Although this is an on-going 

process and we are by no means at the end of it, we have come a long way towards not only 

providing more genetic diagnosis but also more accurate diagnosis. At the moment most studies 

employing NGS technology are only looking at sequence variation and not as much effort has been 

directed towards complex structural variation (inversions, translocations, insertion/deletions, Alu 

repeats). The ability to reliably detect structural variation from NGS data is analytically challenging 

(Xie C and Tammi MT 2009) and will remain the task for the future. A further challenge remains in 

the development of more sophisticated methods of analysis for multigenic findings. A number of 
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these have already been reported, however their effect remains unknown , e.g.[127, 128] and it can 

be expected that there will be more to come. Further NGS technologies, such as RNA sequencing 

(RNA-seq,), chromatin immunoprecipitation in combination with NGS (ChIP-seq) and single cell 

genomics offer the potential to further explore the functional effects of mutations on the proteins 

and pathways in which they are involved, as well as address yet unanswered questions about the 

effects of MCPH proteins on brain growth and size. 
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Table 1. Genes associated with primary microcephaly described in this article 

Gene OMIM 

(gene) 

Chromo-

somal 

localization 

MCPH 

design-

ation 

Phenotype OMIM 

(pheno-

type) 

Technique used for 

gene identification 

Original 

publication 

MCPH1 607117 8p23.1 MCPH1 Primary 

microcephaly 

251200 Linkage analysis, 

positional cloning 

(linkage  

Jackson et al. 

(2002) 

WDR62 613583 19q MCPH2 Primary 

microcephaly and 

MCD 

604317 WES Yu et al. (2010), 

Nicholas et al. 

(2010) 

CDK5RAP2 608201 9q33.2 MCPH3 Primary 

microcephaly 

604804 Linkage and 

subsequent positional 

cloning 

Bond et al. 

(2005) 

CASC5 609173 15q15.1 MCPH4 Primary 

microcephaly, mild 

to moderate ID 

604321 WGL, homozygosity 

mapping, gene 

expression arrays, 

Sanger sequencing, 

Genin et al. 

2012 

ASPM 605481 1q31.3 MCPH5 Primary 

microcephaly, mild 

to moderate ID 

608716 Positional cloning Bond et al. 2002 

CENPJ 609279 13q12.12 MCPH6 MCPH and Seckel 

syndrome 

608393 Linkage with 

subsequent positional 

cloning; WES 

Bond et al. 

(2005), Al-

Dosari et al. 

(2013),  

STIL 181590 1p33 MCPH7 Primary 

microcephaly with 

mild to severe ID; 

microcephalic lobar 

holoprosencephaly 

612703 Homozygosity 

mapping and 

positional cloning 

Kumar et al. 

(2009), Borck et 

al. (2015) 

CEP135 611423 4q12 MCPH8 Primary 614673 GWL followed by Hussain et al. 
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microcephaly, severe 

ID, no speech 

Sanger sequencing, 

post-hoc WES 

(2012) 

CEP152 613529 15q21.1 MCPH9 Primary 

microcephaly and 

Seckel syndrome 

614852 Homozygosity 

mapping using SNP 

genotyping, Sanger 

sequencing 

Guernsey et al. 

(2010), Kalay et 

al. (2010) 

ZNF335 610827 20q13.12 MCPH10 Extreme 

microcephaly 

615095 Linkage, positional 

cloning, RNA-seq 

Yang et al. 

(2012) 

PHC1 602978 12p13.31 MCPH11 Primary 

microcephaly, mild 

ID 

615414 WES Awad et al. 

(2013) 

CDK6 603368 7q21.2 MCPH12 Microcephaly with 

mild ID 

616080 WGL, homozygosity 

mapping, post-hoc 

WES 

Hussain et al. 

(2013) 

CENPE 117143 4q24 MCPH13 Microcephalic 

primordial dwarfism 

616051 WES Mirzaa et al. 

(2012) 

CENPF 600236 1q41 - Primary 

microcephaly with 

ciliopathy 

NA WGL and WES Waters AM et 

al. (2015) 

PLK4 605031 4q28.2 - Microcephalic 

primordial dwarfism 

and 

chrorioretinopathy 

(MCCRP2) 

616171 WGL linkage followed 

by WES in 1 affected  

Martin et al. 

(2014) 

TUBGCP6 610053 22q13.33 - Microcephalic 

primordial dwarfism 

and 

chorioretinopathy 

(MCCRP1) 

251270 WES Puffenberger et 

al. (2012), 

Martin et al. 

(2014) 

CEP63 614724 3q22.2 - Microcephaly and 

short stature, Seckel 

syndrome 6 

614728 Sanger sequencing of 

candidate genes 

Sir et al. (2011) 
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ID: Intellectual disability; MCD: malformation of cortical development; NA: not available; WES: whole exome sequencing; WGL, whole genome linkage; 

RNA-seq: RNA sequencing 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Ciliogenesis: 

CENPF, ORC1, 

ORC4, ORC6, 

CDC6,  PLK4, STIL

Microtubule and spindle organization, 

kinetochore association:

ASPM, CASC5, CDK5RAP2, CDK6, 

CENPE, CENPF, CENPJ, PCNT, 

TUBGCP6, WDR62

M G1

S

G2

Initiation of DNA 

replication: ORC1, 

ORC4, ORC6, CDC6

G2-M checkpoint 

arrest and DNA 

damage response: 

CDC6, CEP152, 

MCPH1, ORC1, ORC4, 

ORC6, PHC1, PNKP

Core centriolar

components and 

centriole duplication: 

CDK5RAP2, CEP63, 

CEP135, CEP152, 

ORC1, PLK4, STIL, 

TUBGCP6
Spindle orientation, 

neurogenesis and neuronal 

migration : ASPM, MCPH1, 

WDR62, ZNF335


