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Abstract 

In an effort to enhance the properties of polylactide (PLA), we have developed melt-

spinning techniques to produce both PLA/nanocellulose composite fibres, and a 

method akin to layered filament winding followed by compression moulding to 

produce self-reinforced PLA/nanocellulose composites. Poly(L-lactide) (PLLA) fibres 

were filled with 2 wt.% neat and modified bacterial cellulose (BC) in an effort to 

improve the tensile properties over neat PLA fibres. BC increased the viscosity of the 

polymer melt and reduced the draw-ratio of the fibres, resulting in increased fibre 

diameters. Nonetheless, strain induced chain orientation due to melt spinning led to 

PLLA fibres with enhanced tensile modulus (6 GPa) and strength (127 MPa), over 

monolithic PLLA, previously measured at 1.3 GPa and 61 MPa, respectively. The 

presence of BC also enhanced the nucleation and growth of crystals in PLA. We 

further produced PLA fibres with 7 wt.% cellulose nanocrystals (CNC), which is 

higher than the percolation threshold (equivalent to 6 vol.%). These fibres were spun 

in multiple, alternating controlled layers onto spools, and subsequently compression 

moulded to produce unidirectional self-reinforced PLA composites consisting of 60 
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vol.% PLLA fibres reinforced with 7 wt.% CNC in a matrix of amorphous PDLLA, 

which itself contained 7 wt.% of CNC. We observed improvements in viscoelastic 

properties of up to 175% in terms of storage moduli in bending. Furthermore, strains 

to failure for PLLA fibre reinforced PDLLA were recorded at 17%.  
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1. Introduction 

The development of self-reinforced thermoplastic polymer composites, in which both 

the reinforcing and the continuous phases are polymers with the same chemical 

composition provides several benefits, including the potential for recycling at the end 

of product life, as well as inherent compatibility between matrix and reinforcement 

phases. The processing of PLA into fibres facilitates strain induced polymer chain 

orientation and hence crystallinity in the axial direction of the fibres, leading to 

enhanced mechanical and thermal properties, as described further below [1-6]. Single-

polymer composites based on polyethylene (PE) fibres in PE matrices have been 

studied since 1975 [7]. Such self-reinforced polymer composites are commonly 

produced either by taking advantage of different melt (or flowing) temperatures of 

polymers with different thermal properties, or by fusing the exterior of fibres. Self-

reinforced PLA has for example been produced via a film stacking method whereby 

amorphous PLA sheets were inserted into layers of PLLA fibres and subsequently 

compression moulded [8]. Jia produced unidirectional (UD) self-reinforced PLA 

composites via film/yarn stacking, using approximately 21 vol.% fibre reinforcement 

and reported a tensile strength of 48 MPa, Young’s modulus of 3.29 GPa and 4-6 % 

strain to failure [9]. PLA fibres have been formed by melt-spinning with various draw 

ratios and processing conditions by several authors [1-6,10-12]. High modulus (5.5 

GPa) and strength (320 MPa) PLLA fibres with diameters down to 11 µm have been 

produced by a variation on melt-spinning using a compressed air-drag method to 

achieve spinning rates of up to 5000 m min-1 [3]. In other work, as spun PLLA fibres 

with diameters 270 µm were further hot drawn to obtain fibres with 150 µm which 

had much improved properties; i.e. the strength and modulus increased from 95 MPa 

and 2.2 GPa up to 600 MPa and 5.4 GPa, respectively [4]. Shrinkage resistance has 

also shown to improve with increasing fibre crystallinity [3,5]. Moreover, it is 
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possible to fill PLA fibres with nanosized reinforcements, such as clay [13], carbon 

nanotubes [14] and cellulose nanowhiskers [15]. Due to their high specific surface 

areas and size, these nanoparticles can act as nucleation sites for the crystallization of 

the polymer matrix phase [16-19]. In this context, nanocellulose produced by bacteria 

[20,21], otherwise known as bacterial cellulose (BC), is advantageous as a filler in 

PLA, due to its green credentials, it is inherently nanosized, and free of wax, lignin, 

hemicellulose and pectin, which are common in plant-based cellulosic materials [22]. 

Further, BC is highly crystalline, with a degree of crystallinity of about 90% [23], and 

a Young’s modulus of 114 GPa [24] and a tensile strength of potentially up to 6000 

MPa [25]. Bacterial/plant-based cellulose can further be hydrolysed to form cellulose 

nanowhiskers (CNW), also termed cellulose nanocrystals (CNC). PLA/cellulose 

nanowhisker (CNW) filled with 1-3 wt.% CNW (derived from microcrystalline 

cellulose) composite fibres have been produced, however, these fibres showed no 

significant influence on mechanical properties was observed [15]. The presence of 

CNW in PLA has been reported to reduce the shrinkage of PLA fibres, and improve 

their creep resistance due to the CNW impeding chain mobility [15]. Higher draw 

ratios lead to increased strain induced polymer chain orientation. Multi-wall carbon 

nanotubes have been used to filled PLA fibres with draw ratios up to 36.5. However, 

with more than 5 wt.% nanotube loadings drawability was reported to decrease [14]. 

PLLA fibres have been melt-spun to diameters 11.2 µm and were later coated with 

CNW derived from hydrolysed cotton in polyvinyl acetate (PVAc) for tissue 

engineering applications [26]. These PLLA fibres were produced by melt-spinning 

from a 2 mm diameter die, at a speed of 400 m min-1. The high draw ratio resulted in 

neat PLLA fibres with a modulus and strength of 4.9 GPa and 208 MPa, coating with 

CNW containing PVAc resulted in improvements of up to 45% in terms of tensile 

modulus [26]. PLA/CNW fibres of diameters as low as 300 nm have been produced 

by electrospinning [27], whilst no mechanical data were provided, the CNW were 

shown to act as heterogeneous nucleating sites for PLA crystallisation, exhibiting 

reduced cold crystallisation onset temperatures from 69 °C to 65 °C in the presence of 

2.5 wt.% CNW. 

Our motivation for this work was to produce PLA/BC composites fibres with a 

constant loading fraction of 2 wt.% BC and to study the effect of BC surface-only 

modification on their properties. These PLA/BC composite fibres were used to 
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manufacture all-PLA self-reinforced unidirectional composites. Such all-PLA 

composites might find applications in non-structural automotive parts, consumer 

products and structural packaging, and enable downstream recycling of all material 

components by remoulding, without requiring separation. We have previously 

produced BC reinforced PLA composites and shown that surface-only BC 

modification via organic acid esterification rendered the otherwise hydrophilic BC 

hydrophobic [28]. This modification was shown reduce the contact angle of PLLA 

droplets on BC nanofibrils, and hence improve the interfacial adhesion between BC 

and PLA, and resulting in improved tensile and viscoelastic properties in the 

composites [28].  

Further, it is known that loadings of 6 vol.% (equivalent to 7 wt.%) cellulose 

nanocrystals in PLA can form percolating networks [16], in this work, we report a 

process based on filament winding and post consolidation, that allows for the 

production of unidirectional all-PLA composites, with CNC present in the PLLA 

reinforcing fibres as well as the amorphous PDLLA matrix, at percolated network 

thresholds. 

2. Materials and Methods 

2.1 Materials 

PLLA was purchased from Biomer (L9000, Mw ≥ 150 kg mol-1, D-content ~1.5%) 

and was used as the matrix for the polymer fibres. Amorphous PDLLA was obtained 

from Nature Works (4060D) and was ultimately used as the matrix for PLLA fibre 

reinforced PLA composites. 1,4-Dioxane (Sigma-Aldrich, ACS Reagent, ≥ 99% 

purity) was used as solvent for PLA. Pyridine (analaR NORAMPUR, ≥ 99.7% 

purity), methanol (GPR, ≥ 99% purity), ethanol (GPR, ≥ 99% purity) were purchased 

from VWR. p-Toluenesulfonyl chloride (Aldrich, ≥ 99% purity) was purchased from 

Sigma-Aldrich. Sodium hydroxide (purum grade, pellets) was purchased from Acros 

Organics. All materials were used as received without further purification. Polyimide 

(Kapton®) tape and film were obtained from DuPont. Bacterial cellulose nanofibrils 

(BC) were extracted from commercially available nata-de-coco (CHAOKOH coconut 

gel in syrup, Ampol Food Processing Ltd., Nakorn Pathom, Thailand). H2SO4 was 

used to hydrolyse the BC to cellulose nanocrystals (CNC). 
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2.2 Extraction and surface-only modification of BC via organic acid esterification  

BC was extracted from nata-de-coco, rinsed, blended, homogenized, purified to 

remove any remaining microorganisms and soluble polysaccharides [29], followed by 

multiple centrifugation, rinsing and homogenization cycles to return the aqueous 

dispersion of BC to neutral pH, according to our previous work [28,30]. BC was then 

modified via an organic acid esterification procedure, described in detail [28]. Briefly, 

dispersions of BC were solvent exchanged into pyridine from water through methanol 

and esterified with either hexanoic acid or dodecanoic acid in the presence or p-

toluenesulonyl chloride. After the reaction, the reaction medium was quenched with 

ethanol and the modified cellulose product rinsed several times with ethanol and 

solvent exchanged into dimethyl carbonate [28]. Neat and modified BC were 

dispersed in water and dimethyl carbonate respectively at a concentration of 0.4% (g 

mL-1), flash frozen in Petri dishes by immersion in liquid nitrogen and subsequently 

freeze-dried (Edwards Modulyo freeze dryer, UK). BC functionalised with hexanoic 

and dodecanoic acid are here termed C6-BC and C12-BC, respectively.  

 

2.3 Hydrolysis of BC to obtain CNCs 

Acid hydrolysis of BC (previously dispersed in water) was carried out by stirring BC 

continuously in 60% (w/w) H2SO4 at 60°C for 1 hour [31] to produce CNCs with 

average dimensions 25 nm x 280 nm. Specifically, the amount of H2SO4 solution used 

for the hydrolysis was based on the dry weight of cellulose (800 ml solution per 1 g 

dry weight cellulose). After hydrolysis, the suspension was centrifuged and diluted 

several times, until pH neutral. The CNCs were solvent exchanged from deionised 

water (dH2O) into dioxane through acetone (3 times per solvent exchange, with 

centrifugation and homogenization steps in between) and a sample taken in order to 

ascertain their wet:dry ratio for the production of PLA/CNC composite feedstock, 

described below.  

 

2.4 Preparation of (composite) spheres as masterbatch for extrusion/melt-spinning  

In this work, thermally induced phase separation (TIPS) [32] was used to produce 

composite spheres, as detailed in our previous work [28]. The method enables the 

homogeneous dispersion of large quantities of dry BC, modified-BC, as well as CNCs 

in a polymer melt using conventional extrusion processes at later stages. Five types of 

composite feedstock were made: PLLA + 2 wt.% BC; PLLA + 2 wt.% C6-BC; PLLA 
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+ 2 wt.% C12-BC; PLLA + 7 wt.% CNC; PDLLA containing 7 wt.% CNC. For the 

production of CNC containing composite spheres, the concentration of CNCs was 

adjusted to the correct amount relative to PLA in 1,4-dioxane and the solution 

homogenised at 20,000 rpm to disperse them in solvent prior to subsequent freezing 

in liquid nitrogen and freeze-drying [28]. Neat PLLA and PDLLA spheres were also 

produced as feedstock [28]. Briefly, the resulting mixtures were poured separately 

into individual 50 ml syringes and added drop wise into a bath of liquid nitrogen to 

rapidly induce phase separation. The precipitates were collected in a 500 ml round 

bottom flask and subsequently freeze-dried to yield porous neat polymer and 

composite spheres, measuring circa 2-4 mm in diameter, suitably small to enter the 

extruder feed port.  

 

2.5 Extrusion and melt-spinning of PLA fibres  

The neat polymer and composite spheres were fed into a twin-screw micro-extruder 

(5 cm3 micro-extruder, DSM, The Netherlands) kept at 180 °C and a screw rotational 

speed of 10 rpm. After the addition of all the spheres, the screw speed was increased 

to 40 rpm for 30 min to promote mixing of BC/CNCs in the molten or flowing 

polymer. Finally, the polymer was extruded at a screw rotation speed of 10 rpm. The 

extrudate was taken from the exit gate (die diameter = 1 mm) and linked directly to 

the fibre spinning apparatus (DSM XPlore, The Netherlands); a start-up torque of 75 

mN was used and the fibres spun at a speed of 100 m min-1 directly onto cardboard 

spools. The spinning speed was maintained constant for all produced fibres. All fibre 

types produced are summarised in Table 1. 

 

2.6 Physical and thermal properties of the PLA fibres 

Scanning electron microscopy (SEM) was used to assess the morphology and 

diameters of the fibres (analysed using Image-J). The glass transition temperature, 

crystallisation and melting behaviour of neat PLA and composite fibres were 

determined using differential scanning calorimetry (DSC Q2000, TA Instruments, 

UK) in a He atmosphere. DSC was used to assess the crystallinity of PLLA, both first 

and second heating curves were analysed to assess the influence of drawing ratio on 

crystallinity and the capacity for nanocellulose to act as nucleation sites for PLA 

crystallisation. A heating-cooling-heating regime was used as follows, from room 

temperature (RT) to 200 °C at 10 °C min-1, held at 200 °C for 1 min, cooled to RT at 
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50 °C min-1, held for 1 min then re-heating as aforementioned. The crytallinity of the 

nanocomposites was calculated as described in the literature [19, 28], using a melting 

enthalpy of 100% crystalline PLLA of 93.7 J g-1, and corrected for the amount of 

PLLA present. The only difference being that in order to determine the crystallinity 

for the fibres for the first heating curve induced by melt-spinning, the entropy of cold 

crystallisation was subtracted from the melting enthalpy. The crystallinity for the 

second heating curve was calculated using the method in [28]. Single fibre tensile 

tests were conducted to determine the mechanical properties of the fibres. Fibres were 

carefully mounted on card sample holders and bonded between further sections of 

card using epoxy resin (Araldite Rapide), to give a gauge length of 20 mm. As 

aforementioned, a section ~10 mm in length was taken from each fibre in the post 

bonded region away from the test specimen for SEM analysis and diameter 

determination. Tensile tests were conducted at 21 °C with a crosshead speed of 15 µm 

s-1, according to BS ISO 11566:1996 using a TST 350 tensile testing rig (Linkam 

Scientific Instrument Ltd.) equipped with a 20 N load cell. The gauge length was 20 

mm. The displacement and load were recorded and converted to stress and strain, 

based on the actual fibre diameters determined via SEM/image analysis prior to 

testing. The modulus, ultimate tensile strength (UTS), strain at UTS, break tenacity, 

and strain at break were then calculated. 

 

2.7 Fabrication of UD PLLA/PDLLA composites  

The fabrication process of UD PLLA/PDLLA composites is shown schematically in 

Fig. 1. Fibres of amorphous PDLLA and semi-crystalline PLLA (with or without 

BC/CNCs) were melt spun directly on top of one another onto the take-up spool of the 

fibre spinning rig (described in 2.5), in a layer-by-layer approach, utilising different 

controlled pitches, to ensure that a PLLA fibre volume fraction to PDLLA of 0.6 was 

maintained. These spools containing the two PLA fibres were then taken for 

compression moulding to produce consolidated, aligned PLLA fibre reinforced 

PDLLA composites. The first layer was PDLLA/PDLLA + 7 wt.% CNC in order to 

provide matrix during subsequent compression moulding to the reinforcing 

PLLA/composite fibres. This process continued sequentially until a total of 5 

alternating compositions had been deposited on the spool. The cardboard spools with 

the layered composites on their outside were wrapped with PTFE release film and 
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compression moulded at 150 °C (below the melt point of PLLA, yet well above the Tg 

of PDLLA) with a force of 15 kN for 5 min, this resulted in the tubular spool being 

squashed flat, concomitantly allowing the fibres to maintain their alignment and yield 

flat composite samples. In order to improve consolidation of this material, composite 

specimens were cut, stacked, and wrapped in polyimide film and tape for 

confinement, then pressed further in a brass mould to produce samples for dynamic 

mechanical analysis (DMA) (tensile and 3-point bending modes) as well as tensile 

testing. Specimens measured 4 mm width x 0.5 mm thick, with spans 20 mm for 

DMA and 50 mm for tensile testing, with a gauge length of 30 mm. Specimens were 

produced to allow assessment of fibre dominant and matrix dominant properties by 

testing in the direction of the unidirectional fibres and transverse to them. All UD 

composites, composite and monolithic samples produced are summarised in Table 1. 

 

2.8 Viscoelastic and static mechanical properties of the composites 

The viscoelastic behaviour of the nanocomposites was characterised using DMA 

(Tritec 2000, Triton Technology Ltd., Keyworth, UK). DMA was performed in both 

three-point bending and tensile modes. The storage modulus, loss modulus and energy 

dissipation factor (tanδ) were measured from 30 °C to 120 °C using a heating rate of 5 

°C min-1 at a frequency of 1 Hz. Tensile tests were conducted in accordance with BS 

EN ISO 527: 1996 using an Instron universal material testing machine (Instron 4502, 

Instron Corporation, MA, USA) equipped with a 1 kN load cell. Samples were tested 

at 1 mm min-1. 

 

3. Results and discussion 

3.1 Physical and thermal properties of PLA fibres 

Neat PLA fibres exhibited a smooth morphology (Fig. 2a) the addition of BC/CNC 

acted to increase the rugosity of the fibres (Fig. 2b-e). The diameter of the fibres 

increased concomitantly with cellulose content due to increase in the melt viscosity at 

constant winding speeds (see Table 2). Neat PLLA fibres and PLLA fibres filled with 

2 wt.% C6-BC exhibited the highest draw ratios, 44.4 and 46.7 %, respectively. Draw 

ratios were substantially reduced for PLA fibres containing 7 wt.% CNC, to 17.2%. 

The reduced draw ratio for hexanoic modified BC (C6-BC) is indicative of improved 

compatibility with PLLA, over unmodified BC or C12-BC, as demonstrated in our 

previous work on monolithic BC/PLA composites [28]. In our work we used a freeze-
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drying approach to produce the extrusion and melt-spinning masterbatch in order to 

prevent BC hornification.   

 

First and second heating traces for neat PLLA and 2 wt.% BC (modified and 

unmodified) - filled PLLA are shown in Fig. 3, with key data (Tg, Tm, Tc and 

percentage crystallinity, χc) summarised in Table 3. There is no significant difference 

between the samples in terms of Tg and Tm. However, the onset crystallisation 

temperature on second heating is clearly reduced in the presence of BC. This is due to 

BC/CNC acting as nucleation sites for crystal growth, as previously reported for 

monolithic samples [16-19]. Melting (Tc) occurred at 90.9 °C for PLLA filled with 7 

wt.% CNC, compared to neat PLLA at 109.2 °C (in second heating). PLLA fibres 

possess a crystallinty of 45.6% (based on 1st heating), representing strain or 

orientation induced crystallinity, whereas PLLA filled with 7 wt.% CNCs posses 

crystallinity of 34.0%. Similarly, lower Tc values  are evident for the 2 wt.% BC filled 

fibres compared to neat PLLA. These lower (Tc) values are explained by the reduced 

drawing ratio reducing the orientation-induced crystallization; the presence of the 

cellulose increased the viscosity of the polymer melt resulting in larger diameter 

fibres. On the second heating however, PLLA and 7 wt.% CNC/PDLLA possessed 

crystallinities of 43.4% and 51.1%, respectively. This is further evidence that the 

CNCs act as effective sites for crystal nucleation and growth. PLA/CNC fibres (filled 

with 1-3 wt.% CNW) were reported to have crystallinities of 16-18% [15], the lower 

crystallinities reported in their work are due to the lower draw ratio they used, of 2, 

resulting in fibres 90-95 µm diameter.  

 

The single fibre tensile properties are summarised in Table 2 and representative 

stress-strain curves shown in Fig. 4. The tensile strength and modulus for all fibre 

types are proximal. Neat PLLA fibres exhibited the highest modulus of 6.06 GPa due 

to spinning induced chain orientation and higher draw ratios compared to the other 

fibre types. This enhanced crystallinity masked the effects of the BC/CNC fibre 

reinforcement in terms of single fibre mechanical properties. PLLA fibres filled with 

2 wt.% C6-BC exhibited the highest yield strength of all fibres, 141 MPa, in 

comparison to neat PLLA at 127 MPa (Table 2). C6-modified BC has been shown to 

result in improved tensile strengths for monolithic samples in our previous work [28], 

due to enhanced compatibility with PLA. All fibres exhibit strain-hardening, with 
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strains to failure well above monolithic PLA (typically 2-4%), 26 % for neat PLLA, 

and 150% for PLLA filled with 2 wt.% BC, respectively. Strain-to-failure of the 

fibres increased concomitantly with increased starting fibre diameter (lower draw 

ratio). Strain-hardening was more evident for neat PLA and PLLA filled with 2 wt.% 

C6-BC. These fibres experienced the highest draw ratios (Table 2) and exhibited the 

highest crytallinities due to orientation (first heating curve, Table 3). It is also evident 

that fibres of lower orientation induced crystallinity and larger starting diameters 

exhibited higher strains to failure (Table 2). Neat amorphous PLA samples exhibited 

the highest break tenacity, of 208 MPa, with neat PLLA and C6-BC filled PLLA 

having proximal values of 182 MPa and 170 MPa, respectively. Previously reported 

PLA/CNW-loaded fibres (at 1-3 wt.%) exhibited far lower moduli of 2.5-2.7 GPa, 

and strengths of 49-56 MPa [15], our improved performance is due to higher draw 

ratio and higher induced crystallinity within the fibres. 

 

3.2 Physical and viscoelastic properties of unidirectional self-reinforced PLA 

composites 

Composites reinforced with unidirectional PLLA or PLLA/CNC fibres exhibited 

greatly enhanced storage moduli both in bending and in tension over neat PLA, as 

shown in Figs. 5a-d. For comparison, the storage moduli of all samples at 20 °C are 

given in Table 4. Those filled with CNC, in both matrix and in the UD fibres 

exhibited storage moduli at 20 °C of 11.6 GPa (bending), 7.0 GPa (tension), 

compared to neat PLA at 4.2 (bending) and 2.8 GPa (tension). UD self-reinforced 

PLA without CNC also exhibited an enhanced storage modulus at 6.8 GPa (bending) 

and 4.9 GPa (tension). These improvements are due to i) the significant strain-

orientation induced crystal alignment in PLLA and PLLA/CNC fibres, and ii) the 

presence of the CNC reinforcing phase present both in the fibres and the matrix. 

Furthermore, the storage modulus remained markedly higher than monolithic PLA at 

temperatures above Tg to 120 °C (Figs. 5a and 5c). This production route enables 

CNCs to be incorporated into amorphous PLA matrix phases at an amount known to 

form a percolating network (at 6 vol. % CNC, equivalent to 7 wt.% CNC) that is itself 

reinforced by PLLA fibres themselves containing 7 wt.% CNC with fibre mechanical 

properties enhanced by strain-induced chain orientation and PLA crystal alignment 

due to drawing. Contrary to our previous findings based on monolithic PLLA 

composites filled with C6-BC and C12-BC [28], we observed a significant reduction in 
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the tanδ peak in the presence of 7 wt.% CNC, as well as UD PLLA fibres in 

amorphous PDLLA-based matrices. The loading fraction of CNC, at percolated 

network threshold and strain-induced chain orientation in neat PLLA fibres evidently 

had a profound impact on the mobility of the polymer chains, as shown in Figs. 5b 

and 5d. Habibi et al. [33], produced CNC-g-PDLA composites, and at 10 % CNC the 

storage modulus reported was 4.15 GPa at 25 °C. Here we measured storage moduli 

up to 6.69 GPa at 20 °C in tension for the composites filled with 7 wt.% CNC, in both 

matrix and in the UD fibres. 

 

Static tensile testing of self-reinforced PLA revealed significant improvements in 

modulus and strength due to the presence of UD PLLA fibres and CNC in both the 

PLLA fibres and PDLLA matrix, of 123% and 35% when compared against the neat 

PDLLA matrix, respectively (Table 5). Most interestingly the strain to failure of UD 

fibre self-reinforced PLA was increased to 17.1% (no cellulose present), a 185% 

improvement in the strain to failure of PDLLA, which is due to drawing of the PLLA 

fibres, as shown for single fibre tensile tests (Fig. 4). Whilst the presence of CNC 

acted to improve the modulus and strength, the strain-to-failure was low in 

comparison to those filled with UD PLLA fibres, this is due to the percolating 

network in the matrix, impeding chain movement in the PDLLA. Samples tested with 

UD fibres perpendicular to test direction exhibited lower properties than neat the 

PDLLA matrix, which seem to suggest poor fibre/matrix adhesion and/or 

consolidation is required. To our knowledge there are no examples of such self-

reinforced UD PLA/nanocellulose composites, and very few on melt processed 

monolithic PLA/nanocellulose composites with nanocellulose loadings of > 5 wt.%. 

In other work, PLLA composites filled with 5 wt.% C6-modified cellulose achieved a 

Young’s modulus of 1.63 MPa [28]. Martínez-Sanz reported that 5 wt.% 

poly(glycidylmethacrylate)-grafted CNC reinforced PLLA has a Young’s modulus of 

2.61 GPa and tensile strength of 49 MPa [34]. Both these values are significantly 

lower than the moduli reported here.  

 

Whilst the work here focused on self-reinforced PLA/BC in amorphous PLA as 

matrix, this technique could potentially be applied to produce self-reinforced UD PLA 

composites with a higher performance using stereo-complex PLA as the matrix for 

the fibre/composite reinforcement phase. The melt point of stereo-complex PLA is 
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significantly higher than PLLA or PDLA, depending on composition, at circa 230°C 

[35], giving a suitable processing window of circa 50°C for the production of self-

reinforced PLA composites.  

 

4. Conclusions 

PLA fibres filled with BC and CNC, melt-spun at the same speed (100 m min-1) 

exhibited reduced draw ratios, in comparison with those spun using neat PLA. 

Surface-only modification of BC with hexanoic acid, acted to improve the draw ratio 

(at 2 wt.% C6-BC loading in PLLA). Whilst the nanocellulose acted as a nucleation 

agent for PLA crystal growth, the effect of the filler on composite behaviour is 

masked by the effect of strain-induced chain orientation during melt-spinning. Strain 

induced chain orientation due to melt spinning resulted in PLLA fibres with enhanced 

modulus and strength, the incorporation of 2 wt.% C6-BC into PLA resulted in 

moderate strength improvement. Filling the PLA above the percolating network 

threshold of CNC by extrusion followed by melt-spinning resulted in even lower draw 

ratios, whilst these fibres had lower mechanical properties, their strain to failure 

significantly increased over fibres filled with 2 wt.% BC and neat PLA fibres. 

Furthermore we reported a route to produce UD PLLA/CNC fibre reinforced PDLLA, 

with or without CNCs at percolating thresholds (7 wt.% CNC) via controlled layer-

by-layer filament winding and subsequent consolidation. Consolidation was 

conducted at temperatures sufficient to allow the PDLLA/CNC matrix to flow, 

wetting the PLLA/CNC composite fibres. We observed improvements in viscoelastic 

properties of up to 175% in terms of storage modulus in bending. Furthermore strains 

to failure for PLLA fibre reinforced PDLLA were recorded to be as high as 17%. This 

processing route is adaptable for other thermoplastic polymers, and is extendible to 

stereo-complex PLA reinforced semi-crystalline matrices, with applications at higher 

temperatures than amorphous PLA.   
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FIGURES AND TABLES 
 

 
Fig. 1. Schematic of the filament winding based production method for UD self-
reinforced PLA composites. Letter (A) in the SEM image represents the PDLLA 
matrix filled with CNC, and (B) the PLLA fibre filled with CNC.  
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Fig. 2a.  
 

 
Fig. 2b.  
 

 
Fig. 2c.  
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Fig. 2d.  
 

 
Fig. 2e.  
 
Fig. 2. SEM images of (a) neat PLLA fibre, (b) PLLA + 2 wt.% BC, (c) PLLA + 2 
wt.% C6-BC, (d) PLLA + 2 wt.% C12-BC, and (e) PLLA + 7 wt.% CNC. 
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Fig. 3. First and second heating DSC profiles comparing addition of 2 wt.% modified 
and unmodified BC on neat PLLA (melt-spun fibres). 
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Fig. 4. Representative stress-strain profiles from single fibres tested in tension. 
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Fig. 5a. Storage modulus of the PLLA fibre reinforced PDLLA composites and 
monoliths, measured in three-point bending.  
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Fig. 5b. Loss factor tanδ of the PLLA fibre reinforced PDLLA composites and 
monoliths, measured in three-point bending.  
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Fig. 5c. Storage modulus of the PLLA fibre reinforced PDLLA composites and 
monoliths, measured in tension.  
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Fig. 5d. Loss factor tanδ of the PLLA fibre reinforced PDLLA composites and 
monoliths, measured in tension. 
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TABLES: 
 

Table 1. Overview of samples produced.  
Composite fibres and 
monolithic fibres  

UD composite, composite and monolithic samples produced 

Neat PDLLA Neat PDLLA monolith 
Neat PLLA Neat PLLA monolith 
PLLA + 2 wt.% BC *UD PLLA fibres at 60 vol.% in PDLLA matrix 
PLLA + 2 wt.% C6-BC  *UD ‘PLLA + 7wt.% CNC’ fibres at 60 vol.% in ‘PDLLA + 7wt.% CNC’ matrix 
PLLA + 2 wt.% C12-BC  PLLA + 7wt.% CNC  
PLLA + 7 wt.% CNC PDLLA + 7wt.% CNC  
PDLLA + 7 wt.% CNC  
Note that C6-BC and C12-BC, denote hexanoic acid and dodecanoic acid modified bacterial cellulose, 
respectively; * UD composites tested at 0° and 90° degrees to fibre direction. 
 

Table 2. Mechanical properties and initial fibre diameters for single fibres tested in 

tension. 

Fibre sample Modulus 
[GPa] 

UTS 
[MPa] 

Strain 
at UTS 

[%] 

Break 
tenacity 
[MPa] 

Strain at 
break [%] 

 
Fibre 
dia. 
[µm] 

Draw 
ratio 

PDLLA 5.20 
SD 0.4 

115 
SD 10 

2.8 
SD 0.2 

208 
SD 7 

41.0 
SD 16.0 

30.7 
SD 1.5 32.6 

PLLA 6.06 
SD 1.5 

127 
SD 28 

2.7 
SD 0.5 

182 
SD 38 

26.1 
SD 3.2 

22.5 
SD 1.7 44.4 

PDLLA + 2 wt.% 
BC 

4.15 
SD 0.6 

112 
SD 9 

2.9 
SD 0.3 

138 
SD 18 

150 
SD 43 

34.5 
SD 2.1 29.0 

PLLA + 2 wt.% 
BC 

5.87 
SD 0.6 

123 
SD 12 

2.5 
SD 0.2 

114 
SD 14 

36.6 
SD 17.6 

25.0 
SD 1.1 40.0 

PLLA + 2 wt.% 
C6-BC 

5.73 
SD 0.6 

141 
SD 11 

3.0 
SD 0.2 

170 
SD 18 

17.0 
SD 3.0 

21.4 
SD 1.2 46.7 

PLLA + 2 wt.% 
C12-BC 

5.72 
SD 0.3 

123 
SD 6 

2.7 
SD 0.2 

120 
SD 9 

38.4 
SD 15.4 

26.1 
SD 1.1 38.3 

PLLA + 7 wt.% 
CNC 

3.35 
SD 0.6 

70 
SD 13 

2.4 
SD 0.4 

110 
SD 44 

158.4 
SD 14.3 

58.0 
SD 6.7 17.2 

PDLLA + 7 wt.% 
CNC 

3.08 
SD 0.5 

58 
SD 7 

2.1 
SD 0.3 

93 
SD 8 

83.0 
SD 9.2 

40.1 
SD 1.9 24.9 

	
  
Table 3. Thermal properties assessed via DSC for melt-spun fibres. Where, Tg, Tm, Tc 

and χc are glass transition temperature, melting temperature, temperature of cold 

crystalisation, and percentage crystallinity, respectively. 

Fibre sample Heating 
curve 

Tg  
[°C] 

Tc  
[°C] 

Tm  
[°C] 

χc 
[%] 

PLLA  1st 57.1 75.0 166.4 45.6 
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2nd 58.2 109.2 169.9 43.4 

PLLA + 2 wt.% 
BC 

1st 57.8 80.5 166.7 34.4 

2nd 60.8 94.7 169.2 44.2 

PLLA + 2 wt.% 
C6-BC 

1st 59.5 78.3 165.8 36.9 

2nd 58.0 99.9 170.2 41.4 

PLLA + 2 wt.% 
C12-BC 

1st 59.9 78.1 166.8 36.6 

2nd 57.6 92.4 168.6 46.6 

PLLA + 7 wt.% 
CNC 

1st 57.1 81.2 167.6 34.0 

2nd 59.4 90.9 167.5 51.1 

 
Table 4. Storage modulus in bending and tension measured at 20 °C for fibre 

reinforced composites and monoliths. 

Sample 
Storage 

modulus in 
bending [GPa] 

Storage 
modulus in 

tension [GPa] 
Neat PLLA 4.20 SD 0.6 2.76 SD 0.2 
Neat PDLLA 4.14 SD 0.4 2.83 SD 0.2 
PLLA/Non-Orientated CNC 7.00 SD 0.6 4.63 SD 0.3 
PDLLA/Non-Orientated CNC 3.89 SD 0.3 2.79 SD 0.6 
PLLA fibres (0°) in PDLLA 6.81 SD 0.6 4.87 SD 0.6 
PLLA fibres (90°) in PDLLA 4.73 SD 0.2 2.64 SD 0.3 
PLLA/CNC fibres at 60 vol.% in PDLLA/CNC 11.55 SD 0.5 6.96 SD 0.6 

 
 

Table 5. Tensile properties of monolithic PDLLA and UD PLLA and PLLA/CNC in 

amorphous PDLLA and PDLLA/CNC reinforced matrices, where ET is tensile 

modulus, σUTS is ultimate tensile strength, σ is failure strength, εyield is yield strain, 

and ε represents strain at break. 

Sample ET [GPa] σUTS [MPa] σT [MPa] εyield [%] ε [%] 

Neat PDLLA 
2.52 

SD 0.06 

48.4 

SD 2.5 

44.0 

SD 1.0 

2.7 

SD 0.2 

6.0 

SD 2.0 

PLLA fibres (0°) in PDLLA 
3.65 

SD 0.18 

65.6 

SD 2.5 

59.9 

SD 2.2 

2.9 

SD 0.1 

17.1 

SD 9.9 
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PLLA fibres (90°) in PDLLA 
2.39 

SD 0.06 

- 12.9 

SD 1.2 

0.6 

SD 0.1 

0.6 

SD 0.1 

PLLA/CNC fibres (0°) at 60 

vol.% in PDLLA/CNC 

3.75 

SD 0.09 

53.7 

SD 3.7 

52.5 

SD 3.5 

2.0 

SD 0.4 

2.1 

SD 0.5 

PLLA/CNC fibres (90°) at 

60 vol.% in PDLLA/CNC 

2.67 

SD 0.11 

- 13.4 

SD 4.4 

0.5 

SD 0.2 

0.5 

SD 0.2 

 


