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Abstract

Mendelian randomisation (MR) estimates causal effects of modifiable phenotypes on an
outcome by using genetic variants as instrumental variables but its validity relies on the
assumption of no pleiotropy, i.e. the genes influence the outcome only through the given
phenotype. Excluding pleiotropy is difficult but the use of multiple instruments can indi-
rectly address the issue: if all genes represent valid instruments, their MR estimates should
vary only by chance. The Sargan test detects pleiotropy when individual genotype, phe-
notype and outcome data are measured in the same subjects. We propose an alternative
approach to be used when only summary data are available or when data on gene-phenotype
and gene-outcome come from different subjects. The presence of pleiotropy is investigated
using the between-instrument heterogeneity @ test (together with the I? index) in a meta-
analysis of MR Wald estimates, derived separately from each instrument. For a continuous
outcome, we evaluate the approach through simulations and illustrate it using published
data. For the scenario where all data come from the same subjects, we compare it with the
Sargan test. The () test tends to be conservative in small samples. Its power increases with
the degree of pleiotropy and the sample size, as does the precision of the I? index, in which
case results are similar to those of the Sargan test. In MR studies with large sample sizes
based on summary data, the between-instrument () test represents a useful tool to explore
the presence of heterogeneity due to pleiotropy or other causes.

Keywords: Mendelian randomisation; instrumental variables; pleiotropy; heterogeneity ()
test; I? index
1. Introduction

Genetic variants are increasingly being used as instrumental variables to provide esti-
mates of the causal association between modifiable intermediate phenotypes and outcomes.



This approach, called Mendelian randomisation (MR) is not affected by the confounding
and reverse causation typical of observational studies [1, 2, 3] and represents a method for
assessing causality in epidemiology when randomised clinical trials are not possible. If a
genetic variant, carried by an individual from birth and hence not modified by classical con-
founding factors or the presence of the outcome, is associated with increased levels of the
intermediate phenotype and the same variant is associated with the outcome, then one can
infer that the association between intermediate phenotype and outcome is causal [1, 2]. MR
can be used both to test for causality and to provide an unconfounded estimate of the effect
of the intermediate phenotype (hereafter referred to as phenotype) on the outcome. The
current availability of large collections of genome-wide association (GWA) data on pheno-
types and outcomes are a tremendous resource for exploiting the potential of the approach,
which in part explains the recent increase in MR studies published in the literature.

The most commonly used estimators for continuous outcomes are the two-stage least square
(2SLS) estimator and the Wald estimator, which provide the same estimate of the phenotype-
outcome causal effect in the case of a single instrument with linear associations between
instrument, phenotype, confounder and outcome and no statistical interactions [4, 5, 6, 7].
With the 2SLS estimator, the MR estimate is derived by a two-stage regression, where a lin-
ear regression of the phenotype on the instrument is performed in the first stage, followed by
a linear regression of the continuous outcome on the predicted value of the phenotype. This
analysis requires individual data on the genetic variant (G), phenotype (X) and continuous
outcome (Y') measured in the same subjects. On the other hand, the Wald estimator derives
the MR estimate indirectly as the ratio of the estimate of the G — Y association over the
estimate of the G — X association [7], so that it can be used when only summary data are
available for either association or when evidence on G — X and G — Y associations come
from different studies.

An important statistical problem for MR is weak instrument bias, which is evident when the
G — X association has low power. The strength of that association can be measured using
the F statistic (F) of the G — X regression, which depends on the sample size, N, the number
of instruments, m, and their effect sizes: F = %, where R? is the proportion of the
variance of the phenotype that is explained by the instruments. In the situation where data
on GG, X and Y come from the same subjects, the weak instrument bias of the MR estimator
has been shown to be in the direction of the confounded observational X — Y association,
and corresponds to approximately 100/F percent of the observational estimate. Thus, if F
is 20, the bias is about 5% of the observational estimate. Instruments with F higher than

10 are conventionally described as ’strong’ [3, 4, 8, 9, 10, 11].

The validity of the MR approach relies on three assumptions about the genetic variant used
as an instrumental variable (IV): 1) the IV should be associated with the phenotype; 2) the
IV should not be associated with any unobserved confounder of the association between phe-
notype and outcome; 3) the IV should be conditionally independent of the outcome given



the phenotype and any confounder, i.e. the genetic variant influences the outcome only
through the given phenotype [7]. The first assumption does not represent a problem since
only genetic variants associated with the phenotype are selected as instruments. The second
assumption is unlikely to be an issue either in the context of MR, given that the genetic
variant should not be associated with typical confounding factors [6]. The third assumption
is the crucial one because its violation can lead to misleading tests and biased MR estimates.

The most likely cause of violation of the third IV assumption is pleiotropy, which occurs
when a genetic variant influences multiple intermediate phenotypes that separately affect
the outcome of interest. The assumption can be violated through other mechanisms includ-
ing canalization and population stratification. Developmental canalization occurs when a
genetic variant expressed during fetal development or post-natal growth stimulates compen-
satory processes that protect against the effect of that variant on the outcome in adulthood
[1], while population stratification occurs when ancestral sub-populations with different al-
lele frequency and outcome distributions confound the G — Y association [1, 5, 6].

1.1. Investigation of Pleiotropy

Ruling out pleiotropic effects on biological grounds is challenging even for well-studied
genes. However, the use of multiple independent genetic instruments not only increases the
power of the MR analysis [10], but it also allows investigation of pleiotropy [6, 12]. If all of
the genetic variants are valid instruments, their individual MR estimates will only vary by
chance and so a larger between-instrument heterogeneity would indicate a violation of the
IV assumptions, most likely due to pleiotropy in one or more of the genetic variants. When
using data on G — X and G — Y that were collected on the same subjects, formal testing of
pleiotropy can be performed using the Sargan test [13], an over-identification test associated
with the two-stage regression that tests the null hypothesis that all instruments provide
the same MR estimate [12]. The test requires that at least one of the instruments is valid
(e.g. not affected by pleiotropy), and the test statistic is NR2, where R? is the proportion
of the variance of the residuals of the second-stage regression explained indirectly by the
instruments. Under the null hypothesis, the test statistic follows a chi-square distribution
with m — 1 degrees of freedom [4]. Rejection of the null hypothesis indicates lack of validity
of at least one instrument, which could be due to pleiotropy or to a violation of the third
IV assumption due to some other cause.

In this study we investigate a simple approach to testing for the presence of pleiotropy, or
other causes of violation of the third IV assumption, that can be used in MR studies based
on multiple instruments when only summary data for G — X and G — Y associations are
available, or when evidence on the two associations come from different studies. The ap-
proach is based on the between-instrument heterogeneity observed in a meta-analysis of the
Wald estimates obtained separately for each of the instruments, with presence and magni-
tude of the heterogeneity evaluated using the heterogeneity @ test and the I? index. The @
test [14] is the statistical test most commonly used to assess the presence of heterogeneity
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in a meta-analysis, but it suffers from low statistical power when the number of estimates
to be pooled in the meta-analysis is small [15]. To overcome this problem and to provide
an estimate of the magnitude of the heterogeneity, Higgins and colleagues proposed the use
of the I? index, defined as the percentage of total variation in the estimates explained by
heterogeneity rather than sampling error, which is independent of the number of estimates
to be pooled [16, 17]. As with the Sargan test, this approach cannot detect pleiotropy if all
instruments share exactly the same pleiotropic effects, since all estimates would be similarly
biased and there would be no heterogeneity.

Through simulations of MR studies with continuous outcome, we measure the type I error
and power of our approach. We investigate scenarios with different degree of pleiotropy,
number of instruments and sample size, considering both situations where the evidence on
G — X and G — Y come from the same study and from separate studies. The paper is
organised as follows. The method is described in Section 2. In Section 3 we investigate the
performance of our approach through simulation work, comparing it to the Sargan test when
appropriate (G — X and G — Y data from the same study). An illustrative example using
published summary data on birth weight and fasting glucose levels in adults is provided in
Section 4.

2. Methods

2.1. Mendelian randomisation analysis

For the Mendelian randomisation analysis of summary data, the Wald estimator can be
used to obtain a MR estimate of the effect of X on Y for each instrument G}, separately,

A
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that is the regression coefficient of Gy on Y (Bk) is divided by the regression coefficient of
Gk on X (dk) [3, 18, 19]

The estimated variance of each Wald estimate can be approximated using the delta method
3, 18, 19] based on the first terms of the Taylor series expansion:
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where r is the correlation between the estimated regression coefficients for G— X and G-V,
which is equal to zero when X and Y come from separate studies. When individual subject
data are available from a single study, the Wald estimator gives identical results to the 2SLS
estimator and the Taylor series variance is extremely close to the variance estimates from
2SLS given by programs such as ivregress in Stata. A simpler variance approximation as-
sumes Var(ay) = 0 so that the variance of the MR estimator becomes Var(3;)/a2 [20, 21];
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this is close to the Taylor series variance for large samples but underestimates the variance
when the sample size is small.

In our analysis, the pooled MR estimate was obtained using inverse variance weighted fixed-
effect meta-analysis across instruments [21]:

ey - S A Var(BE)
Zk:l 1/Var( XY)

with standard error:

) m . ~1/2
SQ(BXY) = (Z m) .
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2.2. Testing and estimating the between-instrument heterogeneity

In large samples, the @) statistic follows a chi-square distribution with m — 1 degrees of
freedom under the null hypothesis of homogeneity [16]. It is defined as:

m
A(k
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k=1
where m is the number of estimates to be pooled (here corresponding to the number of

instruments), wy, is the weight for the estimate ng), and represents the precision (recip-
rocal of the variance) of the estimate, and pp is a weighted mean estimate calculated as

HF = Zwk@gg)f/ > W

The 12 index [16, 17], defined as the percentage of total variance in the estimates to be
pooled explained by heterogeneity rather than sampling error, is related to the @) statistic
through the equation:

2 %xloo, for Q>m—1
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with its 95% confidence interval equal to
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As a rough guide to judge the degree of heterogeneity, Higgins and colleagues have suggested
that I? values below 25% indicate mild heterogeneity, values over 50% suggest severe het-
erogeneity and between 25% and 50% the heterogeneity can be described as moderate [17].

2.3. Data simulation

We simulated genetic studies with sample size N composed of m biallelic genetic variants
Gy, in Hardy-Weinberg equilibrium [22] and with no linkage disequilibrium between them
(statistically independent). A continuous phenotype X was created that was affected by all
of the G, together with a continuous outcome Y affected by X and possibly, by a secondary
continuous phenotype Z (pleiotropic effect), and some continuous confounders U and C.

(a) (b)
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Figure 1: Mendelian randomisation with multiple independent instruments (a) without
pleiotropy; (b) with pleiotropy in one instrument

The simulation in the absence of pleiotropy followed the pattern illustrated in Figure 1a. The
genotypes g;r, coded as 0, 1, or 2, were randomly generated from a binomial distribution:

gir. ~ Binomial(2, fx),

with a random allele frequency f; generated uniformly between 0.1 and 0.9. The value of
U, for the ith subject, was generated as u; ~ Normal(0,1), and the value of the X created
with an additive genetic effect:

T; ~ Normal(Z QxGir + YU, JX>,
k=1

where «ay, is the effect of a single copy of the effect allele on X, « is the effect of U on X,
and ox is the standard deviation of the random error. The value of Y was generated from:

Y; ~ NOTmal(ﬁxyl‘i + nu;, O'y),

where [Bxy is the causal effect that we want to estimate, n is the effect of U on Y, and oy
is the standard deviation of the random error.



We fixed the proportion of the variance of the phenotype that is explained by each genetic
variant to be 1% (Rék + = 0.01), to reflect the reality that genetic variants in genetic as-
sociation studies typically have a small effect on a phenotype. This implies that under an
additive model of inheritance, the effect size of the single genetic variant on the phenotype

was q = % [23], and «y, varied between 0.141 and 0.236. We set the proportion of

the variance of X explained by U to be 0.25 (y = 0.5) and made oy = /1 — 0.25 — m0.01
23] so that the total variance of X was 1. We set oy equal to ox and set n = v and fxy = 1
so that X explained about 50% of the variance in Y.

Type I error probabilities for the ) test were obtained for 5, 10 and 20 instruments with
the G — X and G — Y data coming from one single study that evaluates both associations
or from two separate studies of equal size. In both scenarios we used sample sizes of 1, 000,
5,000, 10,000 and 20,000. For comparison, the simulations for one single study were also
analysed using 2SLS and the Sargan test.

The pattern followed by the simulation in the presence of pleiotropy is illustrated in Figure
1b. To investigate the power of the between-instrument () test, the pleiotropic instruments
were allowed to affect two intermediate phenotypes X and Z.

The genotypes and X were simulated as before and Z, which is affected by m’ of the genetic
variants, was simulated according as:

!

2 ~ Normal(Zpkgij + ¢c, Uz),
k=1

where py is the effect of the pleiotropic variant on Z, ¢; is the value of the confounder of
Z and Y generated from a standard normal distribution, ¢ is its effect size and o is the
standard deviation of Z; so that,

y; ~ Normal(Bxyx; + Bzyzi + nu; + 7¢;, 0y ),

where By is the effect of Z on Y, 7 is the effect of C' on Y, and oy is the standard deviation
of the random error in Y.

We set the value of the single genetic effect on the pleiotropic phenotype equal to the effect
on the primary phenotype (pr, = ay), and the proportion of variance explained by the con-
founders equal to 0.25 (y =n=¢ =7 =0.5). We also set oy = 07 = 0x.

For a variant with a pleiotropic effect, the regression coefficient of Y on G} adjusted for
all confounders is pp8zy + arfBxy, so the relative importance of the pleiotropic pathway
compared with the pathway of interest is prfzy/crfBxy. When there are several inde-
pendent instruments the combined effect of all of the instruments on Y has the form
S pkBzy + D axBxy where the first summation is over the pleiotropic variants and the
second summation is over all pleiotropic and non-pleiotropic variants. Thus, if there are m
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instruments and the first m’ of these are pleiotropic, we measured the amount of pleiotropy

by,

P— Bzy Z;nzl Pk

Bxy Z;nzl (677

Under this definition P = 100% implies that the pleiotropic effect of Gy on Y via Z is the

same as the effect of interest via X. In the simulations we had a single pleiotropic pathway

so that all pleiotropic variants acted through the same variable Z and we kept 87y = Bxy
fixed and varied the magnitude of the pleiotropy by changing py.

x100.

The power to detect heterogeneity due to pleiotropy was evaluated with the degree of
pleiotropy, P, set to 50%, 100% and 200%. Pleiotropy was introduced into 20% of the
total number of instruments. When pleiotropy was present in more than one instrument the
same degree of pleiotropy was given to each instrument.

We repeated each analysis 10,000 times. As well as the type I error and power of the @
test, we recorded the percentage of simulations for which I? fell in each of the categories,
[0 —25); [25 — 50); [50 — 100].

3. Results

3.1. Type I error

The results for the type I error of the () test in the absence of pleiotropy are reported
in Table 1. Since the results are based on 10, 000 simulations, the type I errors will have a
standard error of 0.2% when the type I error is 5% falling to 0.1% when the type I error is
1%. The test is conservative as the type I error is always lower than the nominal level of 5%.
The type I error gets closer to its nominal value with increasing sample size but for a given
sample size it tends to decrease with increasing number of instruments. The differences
between one study and two studies are small and consistent with the natural variation in
the simulations. In scenarios with a single study or two studies, the distribution of I values
is positively skewed with the mass of the distribution concentrated on values smaller than
25%. However, the interpretation of I? as an indicator of heterogeneity is not independent
of sample size or number of instruments and high I? values may be observed even in the
absence of pleiotropy, with small numbers of instruments and large sample sizes. A formal
test based on I? would have the same properties as the ) test as the two statistics are
connected by the formula given in section 2.2, I? = 100(Q — (m — 1))/Q. Thus, when there
are m = 5 instruments, @ would be significant at the 5% level if it is above x2(0.95) = 9.49
and I? would be significant if it is above 100(9.49 — 4)/9.49 = 58%.

To investigate the cause of the conservatism of the () test we plotted the ordered () statis-
tics generated under the null against the expected values from a chi-square distribution with

8



Table 1: Type I error in a nominal 5% @ test and corresponding values of I1? in the absence
of pleiotropy, for scenarios with G — X and G — Y data from a single study or from two
separate studies. N = sample size, IVs = number of instruments. All the values are reported
as percentage.

1.4
5.4
6.5
7.6

0.1
2.1
2.6
3.2

0.0
0.1
0.2

Single Study Two Studies
Type I I2 Type I I2
N 1IVs error 0—25 25-—-50 50-100 error 0—-25 25-—-50 50-100

1,000 5 0.6 88.6 10.3 1.1 0.6 90.7 7.9
5,000 5 3.5 77.1 16.6 6.3 3.0 79.3 15.3
10,000 5 4.5 75.0 17.3 7.7 3.8 771 16.4
20,000 5 4.4 75.4 16.3 8.3 4.0 75.5 16.9
1,000 10 0.3 95.2 4.8 0.0 0.2 95.8 4.1
5,000 10 2.6 83.5 15.6 0.9 2.8 84.5 134
10,000 10 3.9 80.8 17.3 1.9 3.4 81.8 15.6
20,000 10 4.5 79.7 17.9 2.4 4.3 80.2 16.6
1,000 20 0.1 99.0 1.0 0.0 0.1 99.0 1.0
5,000 20 2.5 90.1 9.3 0.3 2.2 90.7 9.2
10,000 20 3.4 86.5 13.1 0.4 3.2 88.5 11.3
20,000 20 4.2 86.6 13.9 0.5 4.1 86.8 12.7

0.5

m — 1 degrees of freedom. The results are shown in Figure 2. In all cases the @) statistics
are less dispersed than would be expected under a chi-square distribution with the under-
dispersion much more noticeable at low sample sizes. The results for single studies and for
two separate studies are both shown on each plot but they are so similar that they are dif-
ficult to distinguish by eye. Two factors affect these plots. First, small samples are affected
by weak instrument bias that makes some of the MR estimates for individual instruments
very unstable, and second, there is a positive correlation between the estimates and their
variances, as can be seen from the Taylor approximation to the variance given in section
2.1 in which the variance is proportional to the square of the Wald estimator; this same
correlation is also present in the 2SLS analysis and in a slightly weaker form when the vari-
ance approximation that assumes Var(ax) = 0 is used (data not shown). This correlation
means that when an individual MR estimate is randomly high it will tend to have a large
variance and therefore a low weight, w;, in the @) statistic. Large positive deviations are
down-weighted and as a result the () statistic is under-dispersed. With small samples, there
is greater weak instrument bias which means that the sampling distribution of the Wald
estimates is more skewed towards large estimates and the impact is greater. In larger sam-
ples the weak instrument bias is less, the sampling distribution is more symmetrical and the
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Figure 2: Quantile-Quantile plots of the @) statistic. The columns represent sample sizes of
1,000, 5,000 and 10,000, the rows represent 5, 10 and 20 instruments. Results for a single
study are shown as circles and for two studies are shown as crosses.

effect of the correlation tends to cancel between randomly high and randomly low individual
IV estimates.

3.2. Power

Table 2 shows the apparent power of the () statistic when the pleiotropy index P = 100%),
but this has to be interpreted considering that the type I error does not reach the nominal
level. Corresponding results for P = 50% and P = 200% are given in supplementary Tables
S1 and S2. The power of the @) test to detect pleiotropy increases with sample size and, for
a fixed small sample size (1,000 — 5,000), decreases with the number of instruments when
G — X and G —Y data came from a single study. An opposite trend is observed when data
came from two separate studies.

Figure 3 shows how the power increases with the strength of the pleiotropy as measured by
the index P. The power is greater when the G — X and G—Y associations come from a single
study reflecting the greater precision of the individual IV estimates. Even relatively large
sample sizes will have low power to detect heterogeneity below 100%, which corresponds to
a pleiotropic pathway of equal strength to the pathway that we are seeking to measure.
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Table 2: Power of the @ test for a 5% significance level and corresponding values of I? when
the pleiotropy is 100% and affects 20% of the variants, for scenarios with G — X and G —Y
data from a single study or from two separate studies. N = sample size, [Vs = number of
instruments. All the values are reported as percentage.

Single Study Two Studies
12 12

N IVs Power 0-25 25-50 50—-100 Power 0—-25 25-50 50-—100
1,000 5 4.4 62.5 26.4 11.1 1.7 80.1 16.5 3.4
5,000 5 86.6 2.2 5.8 92.0 37.8 20.2 27.5 52.3
10,000 5 99.7 0 0.1 99.9 80.4 3.2 8.6 88.2
20, 000 5 100 0 0 100 99.3 0 0.3 99.7
1,000 10 2.2 79.8 18.6 1.6 0.8 86.1 10.3 0.6
5,000 10 83.6 3.6 17.5 78.9 44.6 21.1 40.5 38.4
10,000 10 99.7 0 0.4 99.6 89.4 1.5 11.2 87.3
20,000 10 100 0 0 100 100 0 0.1 99.9
1,000 20 0.6 95.3 4.7 0 0.4 96.8 3.2 0
5,000 20 77.0 9.4 46.2 44.4 46.9 27.1 56.8 16.1
10,000 20 99.7 0.1 3.8 96.1 92.8 1.8 26.9 71.3
20,000 20 100 0 0 100 100 0 0.3 97.7

The use of a less conservative significance level (10%) to increase the power of the @ test,
as has been recommended [24], makes no difference to power when the sample is very large
(20, 000) for any level of pleiotropy, and it makes a difference of limited magnitude for smaller
sample sizes (Table S3).

The results for the I index also reflect those of the @ test. The ability of I* to detect
pleiotropy increases with increasing sample size, but decreases with increasing number of
instruments, for both scenarios of a single study and two studies (Table 2). Only when the
sample size reaches 20,000 do we see severe (> 50%) levels of heterogeneity in almost all
simulated samples. Table 2 also shows that the ability of I to detect pleiotropy is better
for the scenario where G — X and G — Y data came from the same study.

Data on the effects of the pleiotropy on the pooled MR estimate is given in the supplement.
The magnitude of the bias in the MR estimate is proportional to the degree of pleiotropy
(Table S4). In general, the bias increases with increasing number of instruments in both
scenarios with one single study and two separate studies. The overall bias in MR estimates
is smaller when G — X and G — Y data came from two separate studies, partly due to the
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Figure 3: Power of the Q) test and the Sargan test for a 5% significance level in scenario with
10 instruments for different sample sizes and pleiotropy, P = 50% (dotted line), P = 100%
(dashed line) and P = 200% (solid line).

presence of small-sample bias that is in the opposite direction (towards the null) to the bias
induced by the pleiotropic effect (away from the null). Finally, the coverage for the MR
estimate decreases with increasing sample size, number of instruments and magnitude of
pleiotropy.

3.3. Comparison with the Sargan test

Table 3 shows the results for the type I error probability of the Sargan test when using the
2SLS regression based on individual data from a single study. The type I error probability
of the Sargan test is always close to the nominal significance level, and is more stable than
the @ test for all sample sizes and numbers of instruments. When individual level data are
available, the 2SLS analysis is able to use all of the instruments in a single regression. Thus
if there are 5 instruments, they will together explain 5% of the variance while the individual
variants each explain 1%. Although the average F statistic for the 5 instruments is of similar
average size to the F statistic for the single instrument regression, the @) statistic requires
that all 5 regressions have F> 10 while the Sargan test only requires a single F statistic to
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Table 3: Type I error in a nominal 5% Sargan test by sample size (N) and number of
instruments (IVs), in the absence of pleiotropy for the scenario with individual data from
one single study. Values are reported as percentage.

N IVs Typel error

1,000 5 4.9
5000 5 4.9
10,000 5 4.9
20,000 5 4.8
1,000 10 5.4
5,000 10 5.1
10,000 10 4.9
20,000 10 5.4
1,000 20 5.1
5,000 20 5.0
10,000 20 4.9
20,000 20 5.0

be over 10.

The results for the power of the Sargan test for scenarios with 10 instruments are reported
in Figure 3, while results for the scenarios with 5 and 20 instruments are given in the sup-
plementary Figure S1. As with the () test, the power increases with increasing sample size,
extent of pleiotropy, and number of instruments. For high levels of pleiotropy (200%), the
power reaches 80% with 10 instruments and a sample size smaller than 5,000. The Sargan
test out-performs the ) test, reflecting the better calibration of the type I errors. This
advantage of the Sargan test over the () test is more evident with larger numbers of instru-
ments, although the two tests performed similarly when the study is very large.

4. Illustrative example: birth weight and glucose levels in adulthood

Many observational studies have been performed to investigate the association between low
birth weight and adult fasting glucose levels, but they have led to different conclusions
(25, 26, 27]. However, estimates from these studies could have been affected by confound-
ing. We used the MR approach described in Section 2.1 to estimate a causal association
of low birth weight with fasting glucose levels, using published results of two meta-analyses
of GWA studies (equivalent to the scenario of two separate studies, i.e. a meta-analysis of
G — X and a separate meta-analysis of G — Y'), and we explored the possible presence of
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pleiotropy with the @ test and the I? index. The results of the GWA meta-analyses for
birth weight and glucose are available on the websites of the Early Growth Genetics (EGG)

Consortium [28] and the Meta-Analyses of Glucose and Insulin-related traits Consortium
(MAGIC) [29], respectively.

As instruments, we chose seven independent genetic variants from the GWA meta-analysis
on birth weight which had p-value lower than 107° in the discovery sample and which were
replicated, i.e. the p-value in the combined analysis of discovery and replication studies was
smaller than the genome-wide significance threshold of 5x107®. In order to control for the
selection bias due to the winner’s curse, i.e. the overestimation of the genetic effects in the
discovery stage associated with the selection of 'top hits’ [29], for the MR analysis we used
the estimates obtained from the replication analysis performed on 25 studies, with a total
of 42,415 individuals. Even though these seven instruments all together explained a very
low percentage of the variability of birth weight (0.7%), due to the large sample size only
one instrument had an F statistic smaller than 10 (Table 4). The F statistic for all SNPs
together was 33.9.

IVs Estimate (95% Cl)
rs900400 CCNL1 —’—— -0.05 (-0.16, 0.06)
rs9883204 ADCY5 b -0.41 (-0.61, -0.22)
rs1042725 HMGA2 ‘—0— -0.02 (-0.17,0.14)
rs6931514 CDKAL1 _.__ -0.19 (-0.36, -0.02)
rs4432842 5q11.2 —‘—'—— -0.29 (-0.68, 0.10)
rs724577 LCORL _.__ -0.19 (-0.41, 0.03)
rs1801253 ADRB1 —0—— -0.15 (-0.40, 0.10)
Overall (I-squared = 57.0%, p = 0.030) <> -0.16 (-0.22, -0.09)
-.682 0 .6‘82

Figure 4: Forest plot of the MR estimates from the seven instruments. The size of the
squares is proportional to the precision of the MR estimates for each polymorphism, with
the horizontal lines indicating their 95% confidence intervals. The combined MR estimate is
represented by the centre of the diamond, with the lateral tips indicating its 95% confidence
interval. The solid vertical line is the line of no effect.

We looked at the association of these instruments with fasting glucose levels in the meta-
analysis of 21 studies, with a total sample size of 46, 186 individuals. All the data used in
the MR analysis are reported in Table 4.

The results of the MR analysis using one instrument at a time are reported in Table 4 and
Figure 4. The meta-analysis of the seven MR estimates results in a statistically significant
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combined effect of —0.155 (95% confidence interval: —0.223 to —0.088; p-value: 6.8x107°),
indicating a protective effect of birth weight on fasting glucose levels in adults, with a reduc-
tion of 0.155 mmol/L in fasting glucose levels per standard deviation unit increase in birth
weight. With a standard deviation for birth weight of 484 gr in the genetic association study
28], this corresponds approximately to an effect of —0.0003 mmol/L on fasting glucose levels
per 1 gr increase in birth weight.

The Forest plot in Figure 4 shows the strong effect of two genetic variants: rs9883204 in
the ADCY'5 gene and rs6931514 in the CDK AL1 gene, which are already known as type
2 diabetes loci [27, 30, 31, 32]. There is statistically significant evidence of heterogeneity
across instruments, with a @ test p-value of 0.03, and an I* index of 57% (95% CI: 0%
to 81%). These results suggest that the third IV assumption may be violated for some of
the instruments. The Forest plot also shows that the heterogeneity is primarily due to the
variant in the ADC'Y'5 gene that showed the largest effect. Exclusion of this variant from the
MR analysis leads to a non-statistically significant @) test (p-value= 0.450) and a reduction
of the I? index to 0% (95% CI: 0% to 75%), with still a statistically significant MR estimate
of —0.098; (95% CI: —0.168 to —0.027; p-value: 6.6x1073).

Table 4: Illustrative example: Data and findings of the MR analyses for the individual
instruments. IV = instrument, Chr = chromosome, AF = frequency of the reference allele
from the meta-analysis on glucose levels, N = sample size, R? = percentage of the variance
of birth weight explained by the instruments, F = F statistic, § = effect estimate, se =
standard error, p = p-value.

Birth weight Fasting glucose MR analysis

v Gene Chr Allele AF| N* RZ F 153 se P N B se P B se P

rs900400 CCNL1 3 0.39[34,329 0.25 84.9 —0.072 0.007 7.5x10—22[45,727 0.004 0.004 0.371 |[—0.049 0.056 0.383
rs9883204 ADCY5 3 0.76(34,721 0.12 42.7 —0.058 0.009 2.4x10~ 145,726 0.024 0.005 9.3x10—8|—0.414 0.101 4.0x10~>
rs1042725 HMGA2 12 0.50 (41,828 0.10 42.4 —0.045 0.007 1.1x10~11|46,186 0.001 0.004 0.819 |—0.018 0.080 0.824
rs6931514 CDKAL1 6 0.29 (42,415 0.10 43.7 —0.050 0.007 5.9x10—12|45,056 0.010 0.004 0.019 |—0.192 0.086 2.6x10~2
rs4432842  5¢11.2 5 0.30 (26,808 0.02 6.5** —0.024 0.009 8.0x10~3 |46,171 0.007 0.004 0.080 |—0.292 0.199 0.143
rs724577 LCORL 4 0.73]29,057 0.06 17.4 —0.039 0.009 1.2x105 |45,062 0.007 0.004 0.069 |—0.190 0.114 9.6x10—2
rs1801253 ADRB1 10 0.26 (23,071 0.05 12.2 —0.037 0.010 3.9x10~* |42,074 0.006 0.005 0.213 |—0.151 0.128 0.238

Qaoaasaa

The R? are calculated using the formula 2AF(1 — AF)32 [23]. *N varies since a different number of studies contributed to the
data for the individual genetic variant. **This genetic variant is considered as weak instrument, because its F is smaller than
10.

The sensitivity analysis excluding the instrument with the strongest effect therefore con-
firmed the negative association between birth weight and glucose levels in adulthood. Al-
though sensitivity analyses can help identify sources of heterogeneity and may point to
variants with possible pleiotropic effects, the investigation of causes of pleiotropy relies on
biological knowledge.
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5. Discussion

In a MR study, the third IV assumption states that the instrument should affect the outcome
only through the phenotype of interest and a violation of this assumption could lead to false
conclusions about the causality of the phenotype and outcome association. The assumption
is violated in the presence of pleiotropy but pleiotropy is difficult to rule out even for well-
studied genes. The use of multiple instruments (genetic variants) with independent effects
on the intermediate phenotype represents an indirect approach to evaluating pleiotropy and
other causes of heterogeneity, since their MR estimates should vary only by chance when all
of the instruments are valid. Heterogeneity can be tested using the Sargan over-identification
test [4, 13], but this test can only be used when individual level data are available on the
genetic variant, phenotype, and the outcome. This precludes its use in situations, which
are likely to become more and more common, where summary data on gene-phenotype and
gene-outcome associations are obtained from separate sources, often represented by differ-
ent international genetics consortia. In this paper we propose an alternative approach to
assessing possible violations of the third assumption, based on the between-instrument het-
erogeneity in a meta-analysis of Wald estimates across multiple instruments, that can be
used in this case. In particular, our aim was to evaluate the between-instrument () test as
a tool to provide statistical evidence for the possible presence of pleiotropy.

Through simulations we evaluated our approach, in terms of type I error probability and
power of the @) test, for scenarios differing in the magnitude of pleiotropy, number of in-
struments, sample size and whether gene-phenotype and gene-outcome data come from the
same or from separate studies. Our results suggest that the @) test performs well when
the sample size is large and when the gene-phenotype and gene-outcome data come from
the same study. When data come from two separate studies, a large sample (> 20,000) is
needed to detect a weak or moderate pleiotropic effect. However, such large sample sizes are
not uncommon in genome-wide association that combine data across studies collaborating
within an international consortium. A similar behaviour was observed for magnitude and
precision of the I? index, a measure of the heterogeneity across estimates in a meta-analysis.

Recently published MR studies have used up to 20 instruments [33, 34, 35], with the main
purpose of generating more precise MR estimates [11]. For that reason, we assessed whether
the power to detect pleiotropy with our approach increased when increasing the number of
instruments used. Although the combined effect of all of the instruments will explain more
variance in the phenotype, the @) test requires that each of the variants used separately is
able to produce a reasonable estimate of the causal effect of phenotype on the continuous
outcome and thus increasing the number of instruments does not compensate for sample size.

The type I error rate of our approach is conservative, especially for small sample size. This
conservatism is a result of the correlation between the Wald estimator and its variance, which
means that large positive deviations in the individual MR estimates are down-weighted by
having a large variance. The chi-square approximation becomes better when increasing the

16



sample size, since this tends to cancel the effects of such correlation. In practice, the use of
summary data on gene-phenotype and gene-outcome associations from large genome-wide
association consortia, which is the setting of interest in this paper, can address this issue
by guaranteeing large sample sizes in future MR studies. Our approach assumes that the
(@ statistic has a chi-square distribution under the null hypothesis of no pleiotropy, which
requires that the meta-analysed statistics (MR estimates of the individual genetic variants)
are statistically independent. However, even when the genetic variants are independent (no
linkage disequilibrium) and the G — X and G — Y data come from separate studies, there
remains the theoretical possibility of a weak correlation between MR estimates induced by
the fact that the genetic associations are estimated on the same individuals for all variants.
Both the simulations and the illustrative example confirm the lack of precision in the estimate
of the I? index when the number of estimates to be pooled is small, with large confidence in-
tervals containing the value of zero even in the presence of high 1% values [36, 37, 38, 39, 40].
The confidence intervals of the 12 index become narrower when increasing the number of
instruments for both scenarios with one single study and two separate studies.

In terms of pooled MR estimates across instruments, our simulations show not only biased
estimates induced by pleiotropy, but also the presence of a bias related to the sample size in
scenarios with no pleiotropy. However, the small-sample bias is also present when perform-
ing a two-stage least squares regression analysis with individual data. The small-sample bias
seems to be related to the strength of the instrument, and gets smaller when increasing the
variance of the phenotype explained by the instruments (data not shown).

Our findings show that, in MR studies based on large sample sizes, the between-instrument
@ test represents a good tool to detect heterogeneity among MR estimates. However, it does
not give information on the source of that heterogeneity, which could be due to pleiotropy as
well as other reasons, such as confounding by population stratification. This is true also for
the Sargan test, which does not provide information on the conditions leading to the rejec-
tion of the null hypothesis, and cannot identify which instruments are not valid. Moreover,
neither test would be able to detect pleiotropy in the situation where all of the instruments
share the same pleiotropic effect, leading to similarly biased MR estimates (Tables S4-S5).
The Sargan test out-performs the () test when the study is small, given the better calibration
of the type I errors. The two tests perform similarly when the sample is very large.

Data on birth weight trait has been contributed by the EGG Consortium and has been
downloaded from www.egg-consortium.org. Data on glycaemic traits have been contributed
by MAGIC investigators and have been downloaded from www.magicinvestigators.org.
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