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Abstract 

Current theory proposes that healthy neural dynamics operate in a metastable 

regime, where brain regions interact to simultaneously maximise integration and 

segregation. Metastability may confer important behavioural properties, such as 

cognitive flexibility. It is increasingly recognised that neural dynamics are constrained 

by the underlying structural connections between brain regions. An important 

challenge is, therefore, to relate structural connectivity, neural dynamics and 

behaviour. Traumatic brain injury (TBI) is a pre-eminent structural disconnection 

disorder, whereby traumatic axonal injury damages large-scale connectivity, 

producing characteristic cognitive impairments, including slowed information 

processing speed and reduced cognitive flexibility, that may be a result of disrupted 

metastable dynamics. Therefore, TBI provides an experimental and theoretical model 

to examine how metastable dynamics relate to structural connectivity and cognition. 

Here, we use complimentary empirical and computational approaches to investigate 

how metastability arises from the healthy structural connectome and relates to 

cognitive performance. We found reduced metastability in large-scale neural 

dynamics after TBI, measured with resting-state functional MRI. This reduction in 

metastability was associated with damage to the connectome, measured using 

diffusion MRI. Furthermore, decreased metastability was associated with reduced 

cognitive flexibility and information processing. A computational model, defined by 

empirically-derived connectivity data, demonstrates how behaviourally-relevant 

changes in neural dynamics result from structural disconnection. Our findings 

suggest how metastable dynamics are important for normal brain function and 

contingent on the structure of the human connectome. 
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Introduction 

To understand how cognitive-emotional functions emerge from the brain and are 

affected by disease requires an account of how neural ensembles act in concert to 

generate behaviour (Uhlhaas and Singer, 2006; Deco et al., 2008; Chialvo, 2010; 

Tognoli and Kelso, 2014). One approach is to consider the brain as a complex 

system (Friston, 1997; Chialvo, 2010). In this framework, current theory suggests an 

essential property of neural activity is metastability, a dynamical regime in which 

neural ensembles are able to coordinate rapidly, flexibly engaging and disengaging 

without becoming locked into fixed interactions (Friston, 1997; Shanahan, 2010; 

Tognoli and Kelso, 2014). Metastability is thought to confer optimal information 

processing capabilities, flexible behaviour and memory (Werner, 2007; Deco et al., 

2009a; Shanahan, 2010). However, there is little empirical evidence to support this 

hypothesis. We have previously shown, with both empirical and computational 

approaches that metastability at rest is higher than during a focused cognitive task 

(Hellyer et al., 2014). During a task, high metastability may be undesirable, where 

instead a specific configuration of brain systems is maintained over time (e.g., in 

coordinating specific visual and motor systems to perform a visually cued motor 

task). 

Theoretical studies demonstrate that the emergence of metastable dynamics is 

contingent on the coupling between modules of a dynamical system (Friston, 1997; 

Strogatz, 2001; Shanahan, 2010; Cabral et al., 2011). In particular, dynamic patterns 

of functional connectivity, consistent with metastable dynamics, emerge when 

coupling has “small-world” topology with short average path lengths and high 

clustering (Wildie and Shanahan, 2012) of modules. Recently, networks of 

anatomical connections have been incorporated within computational simulations of 

large-scale neural dynamics, suggesting metastable dynamics provide a link between 
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structural and functional connectivity (Deco et al., 2009b; Honey et al., 2009; Cabral 

et al., 2011; Hellyer et al., 2014). 

The disruption of neural dynamics is thought to be important in brain disorders 

(Uhlhaas and Singer, 2006), likely caused by abnormal structural connectivity 

(Friston, 2002; Bassett and Bullmore, 2006; Cabral et al., 2012; Sharp et al., 2014). 

Indeed, through the examination of brain disorders, we are able to explore the 

importance of structural connectivity for the organisation of functional connectivity.  A 

large body of work has examined the link between focal damage to the brain, such as 

in ischemic stroke, and cognition (Bird et al., 2004; Sharp et al., 2010a; Gratton et al., 

2012; Warren et al., 2014). However, structural disconnection is often intermingled 

with gray matter damage (Sharp et al., 2011; Bonnelle et al., 2012). In contrast, 

traumatic brain injury (TBI) frequently results in diffuse axonal injury (DAI), which 

disrupts long-distance white matter tracts connecting brain regions (Sharp et al., 

2011; Johnson et al., 2013b; Johnson et al., 2013a) but with neuronal bodies 

relatively spared. As such, it is a preeminent example of a white matter disconnection 

disorder (Sharp et al., 2014). Damage to white matter connectivity in TBI alters the 

spatiotemporal properties of functional brain networks (Kinnunen et al., 2011; Hellyer 

et al., 2013; Caeyenberghs et al., 2014; Jilka et al., 2014), resulting in long-term 

cognitive problems, including impairments in cognitive flexibility, memory and 

information processing speed (Bonnelle et al., 2011; Kinnunen et al., 2011; Jilka et 

al., 2014). Cognitive inflexibility after TBI may be observed as poor performance on 

tests of task switching (Kinnunen et al., 2011; Hellyer et al., 2013; Caeyenberghs et 

al., 2014; Jilka et al., 2014). Extreme inflexibility may manifest as perseveration, the 

repetition of a particular response, such as a phrase or gesture, despite the cessation 

of a stimulus. Therefore, TBI provides an ideal paradigm to examine how three 
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important levels of description – structure, functional dynamics and behaviour – 

converge. 

Here, using empirical and computational approaches, we investigate how 

metastability, defined as the standard deviation of the Kuramoto order parameter (as 

in (Shanahan, 2010; Cabral et al., 2011)), arises from the structural connectome and 

relates to behaviour. We test whether: (i) structural disconnection following TBI 

(measured using diffusion tensor imaging) is associated with reduced metastability 

(measured using resting-state fMRI); (ii) metastability is associated with behavioural 

measures of cognitive flexibility, memory and information processing. Furthermore, 

we use computational simulations to investigate the consequences of structural 

disconnection on large-scale neural dynamics, to demonstrate how disconnection 

following TBI results in altered metastability. 
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Materials and Methods 

Overview 

Our experimental approach is split into three different sections, described in detail 

below. An overview of the Methods is provided in Figures 1 and 2. In brief, firstly, we 

use resting state functional MRI (fMRI) to estimate empirical measures of 

metastability in healthy control subjects and in the presence of structural 

disconnection in TBI patients (Figure 1A&C). Secondly, we use a diffusion tensor 

imaging (DTI) approach to estimate both voxelwise (FA) and region of interest (ROI) 

level connectivity for each subject (Figure 2). Finally, we employ a range of both 

computational (using the Kuramoto model of phase oscillators) and empirical imaging 

based approaches, to describe the relationship between structural connectivity, 

metastability and neuropsychological performance (Figure 1C) 

Image acquisition  

Standard protocols were used to acquire functional, structural and diffusion tensor 

MRI data using a Phillips Intera 3.0 Tesla MRI scanner, with an 8-array head coil, 

and sensitivity encoding (SENSE) with an under sampling factor of 2. For each 

participant, diffusion-weighted volumes with gradients applied in 64 non-collinear 

directions were collected. The following parameters were used: 73 contiguous slices, 

slice thickness=2mm, field of view 224mm, matrix 128×128 (voxel 

size=1.75×1.75×2mm3), b value=1000 and four images with no diffusion weighting 

(b=0s/mm2).  Earplugs and padded headphones were used to protect participants’ 

hearing during the scanning procedure. We additionally collected a standard high-

resolution T1 image for segmentation and image co-registration. During the resting 

state fMRI scan, subjects were asked to keep their eyes closed and to try not to fall 

asleep. Functional volumes were collected using a T2*-weighted gradient-echo-
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planar imaging sequence with whole-brain coverage (repetition time/echo time, 

2,000/30 ms; 31 ascending slices with thickness 3.25 mm, gap 0.75 mm, voxel size 

2.5×2.5×5mm, flip angle 90°, field of view 280×220×123 mm, matrix 112×87). 

Quadratic shim gradients were used to correct for magnetic field inhomogeneities 

within the brain.  

Participants 

63 traumatic brain injury (TBI) patients (16 female, mean age  ± SD: 37.4±12.37 

years) and 26 healthy control subjects (12 female, mean age  ± SD: 35.96±17.61 

years) were scanned using standard functional and structural MRI protocols (see 

below). The patients and controls overlapped with those used in Fagerholm et al (in 

press, Brain), where group demographics are reported in more detail. At the group 

level, patients and controls were matched for age (t87=-0.47, p=0.64) and gender. We 

did not hypothesise that there would be any effects of handedness, and so did not 

select subjects according to handedness. TBI patients were scanned in the chronic 

phase, 5.48±3.33 (months ±SD) post injury. Injury severity of TBI patients was 

classified according to the Mayo system (Malec et al., 2007): “Moderate-severe” (55 

patients); “Mild (probable)” (5); and “Symptomatic (possible)” (3). 49 patients had a 

clinically relevant episode of post-traumatic amnesia (PTA) following TBI. Where the 

mechanism of injury was known, the mechanism was: road traffic accident (21 

patients); assault (17); fall/syncope (15); sports injury/concussion (2); unknown (8). 

All participants gave written consent, were checked for contraindications to MRI 

scanning and had no history of significant neurological or psychiatric illness prior to 

TBI. The Hammersmith, Queen Charlotte’s and Chelsea research ethics committee 

awarded ethical approval for the study.  
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Neuropsychological assessment 

All but one patient (62, mean age  ± SD: 37.53±12.45 years) performed a paper and 

pencil, neuropsychological test battery. Our analysis focused on cognitive measures 

shown previously to be sensitive to impairments following TBI: Associative memory 

(AM), using the immediate recall and retention measure of the People Test from the 

Doors and People Test (Baddeley, 1986, 1992; Baddeley et al., 1994) and Executive 

function (EF), using the Trail Making Test alternating switch-cost index (Reitan, 

1958). In addition, a subset of 49 patients also completed the computerised Choice 

Reaction Time (CRT) task that assesses speed of processing (Rabbitt, 1966; Logan 

et al., 1984). It was for technical reasons, for example, relating to equipment error, 

that not all subjects completed all three neuropsychological tests. 

Neuropsychological assessment was performed immediately prior to the MRI 

scanning session by a trained experimenter; scoring for each test was performed 

according to the protocols provided by the original publisher of each test and no 

further selection based on neuropsychological outcome was performed. We present 

all collected data for each of these groups (i.e., no statistical subsampling on the 

basis of performance on any individual test has been performed). 

Analysis of functional imaging data (Figure 1A) 

Pre-processing of functional data was performed according to standard analysis 

approaches: briefly, this included realignment of EPI images to remove the coarse 

effects of motion between scans using FMRIB’s Motion correction tool MCFLIRT 

(Smith et al., 2004). T1 images for each subject were segmented into 164 cortical 

and subcortical regions using the Destreux Freesurfer atlas (Fischl et al., 2004). The 

segmented T1 images were registered to the motion corrected data using boundary-

based registration (Greve and Fischl, 2009).  Subsequently, mean BOLD time series 

for each region of interest (ROI) were extracted from the resting state scans. We 
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band-pass filtered the data between 0.01 and 0.2 Hz to remove sources of non-

neural noise and focus on slow modulations in BOLD, that have previously been 

associated with intrinsic connectivity networks (Niazy et al., 2011). Such band-pass 

filtering is an important step in transforming raw time series into phase space (see 

below). To account for variance related to head motion or non-neural physiological 

noise, during pre-processing we regressed out from the time course for each of the 

164 ROIs, the six motion parameter time courses estimated by MCFLIRT (Smith et 

al., 2004), the motion parameters squared as well as time series sampled from 

regions of white-matter and cerebrospinal fluid. To further reduce the possibility that 

effects are driven by head motion we controlled for motion at the group level, (i.e. 

across subjects) by including the estimate of mean framewise displacement in 

higher-level analyses as a regressor of no interest. 

To facilitate comparison of measures of metastability and synchrony between the 

computational model and empirical data, we transformed the empirical data into a 

complex phase representation, so the same analysis can be applied to both the 

empirical and computational simulation data. The transformation of functional 

neuroimaging data into phase representation for analysis has been previously 

performed using a variety of different approaches such as wavelet analysis 

(Kitzbichler et al., 2009; Chang and Glover, 2010), as well as the computationally 

simpler Hilbert transform on bandpass filtered data (Glerean et al., 2012). For 

simplicity, we perform the latter on each of the bandpass filtered 164 ROI time series 

from the empirical data, resulting in 164 phase time series. Measures of network 

dynamics were either calculated on all regions simultaneously (global) or within 

specific predefined intrinsic connectivity networks (local).  
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Definition of intrinsic connectivity networks from functional imaging data  

We defined a set of intrinsic connectivity networks (ICNs) from the resting state fMRI 

data, to allow us to optimise the computational model and to define networks from 

which to sample neural dynamics. To do this, we performed temporal concatenation 

independent component analysis (ICA) on each of the 164 ROI mean BOLD time-

series for an independent group of 10 healthy control subjects, using FSL MELODIC 

(Beckmann et al., 2005). The optimal decomposition estimated during Fast ICA 

resulted in the identification of 15 independent networks. These ICNs were used to 

tune the computational model (see below). Resulting components were thresholded 

at z>2.3, and surviving brain regions were included in that network. Each of these 

networks were then labelled by eye based on their resemblance to the canonical 

ICNs produced by (Smith et al., 2009). This resulted in the identification of seven 

canonical ICNs which were used in subsequent analyses (Visual, Auditory, Default 

Mode, Dorsal Attention, Salience and both Left and Right fronto-parietal control 

networks - Figure 3). These networks were used to sample metastability for both the 

empirical and simulated data.  

Estimation of healthy structural connectivity network (Figure 2A) 

The mean location and probability of structural connections was estimated in a 

further group of 10 independent healthy control subjects (Figure 2A).  Structural T1 

images were segmented into white matter and the same 164 cortical and subcortical 

gray matter ROIs as used to sample the fMRI data, using Freesurfer (Greve & Fischl, 

2009). This produced a mask for each region in each participant’s T1 native space. 

Diffusion imaging data was reconstructed using the FSL diffusion toolkit using 

standard protocols (Behrens et al., 2003b). We further modelled the probability 

distribution of fibre direction within each voxel in order to account for crossing fibres 

(Behrens et al., 2003a). Non-linear registration was used to calculate a warp-field 
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between conformed Freesurfer space and the DTI b0 image, using the FSL non-

linear Image registration tool (Smith et al., 2004). The warp-field was then applied to 

masks for white matter and each of the 164 cortical and subcortical ROIs using 

nearest-neighbour interpolation. Individual gray matter masks were dilated by a 

single voxel and multiplied by the white matter mask, in order to generate ROIs to be 

used as seeds and targets for tractography at the boundary between white and gray 

matter surfaces (Gong et al., 2009).  

Probabilistic tractography, using 5000 random streamline samples per voxel was 

used to estimate the connectivity matrix 𝐶  between each of the 164 other regions 

alongside a spatial distribution of connective fibres between each region. The 

probability of connections between two regions  𝐶(!,!) was defined as the proportion 

of all fibres sent from region 𝑖 which successfully reached region 𝑗. As probabilistic 

tractography cannot determine directionality of connections between cortical regions 

and the size of seed and target ROIs may differ for each connection, we define 

𝐶(!,!)as the mean of the forward and reverse connections between regions, i.e. 

.𝐶(!,!) =
!
!
(𝐶 !,! + 𝐶 !,! ). To minimise the number of false positive connections, a 

thresholding approach was used to generate a binary matrix that retained 

connections with a consistent probability across all subjects from the tractography 

group (Gong et al., 2009). This resulted in a connectivity matrix with a density of 

26%. This is comparable with previously published datasets such as (Hagmann et 

al., 2008) – 26% and (van den Heuvel and Sporns, 2011) 14-21%. The relationship 

between the number of streamlines and the underlying information propagating 

properties of the tracts is unclear and this is likely to be a particular problem for long-

distance connections (Gigandet et al., 2008; Jones, 2010b, a). For this reason, we 

binarized our reference connectivity dataset. The length matrix (i.e., the length of 

tracts between pairs of regions) was estimated using the Euclidean distance between 
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the centres of gravity of each individual ROI in standard MNI152 space. Euclidean 

distance is inexact, since tracts are not likely to follow the shortest distance between 

regions, but it is a good first approximation of the distances and has been used 

extensively in a range of similar computational modelling approaches (Deco et al., 

2008; Deco et al., 2009b; Cabral et al., 2011). 

Estimation of individual structural connectivity (Figure 2B) 

Global and focal reductions of fractional anisotropy (FA) in TBI patients have been 

shown to bias tractography estimation in TBI patients (Squarcina et al., 2012), 

potentially resulting in spurious differences including false increases in structural 

connections following injury. This previous work suggested that sampling  FA along a 

known tract distribution estimated from an independent group of healthy control 

subjects is preferable to estimating tracts from TBI patients themselves. Therefore, 

we sampled FA projected through a set of tracts linking the 164 regions, defined on 

the independent group of 10 healthy controls. First, we used Tract-Based Spatial 

Statistics (TBSS) (Smith et al., 2006) to align the FA map of each patient and control 

subject to a common template. In order to reduce partial volume effects, these tracts 

were then skeletonized, resulting in a voxel-wise map of the white matter skeleton for 

each subject (Figure 4).  

We used random permutation testing (Nichols and Holmes, 2002; Smith et al., 2004; 

Winkler et al., 2014) to assess whether there was reduced FA in patients compared 

to controls (Kinnunen et al., 2011; Hellyer et al., 2013). We fitted a general linear 

model for each voxel within the skeleton. Whilst this approach gives a good overview 

of spatial distribution of damage, we further wished to estimate integrity of individual 

pre-defined ‘tracts’ for each patient and control, to define a structural connectivity 

matrix. Therefore, mean FA values were calculated from masks generated at the 
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intersection of voxels of the skeletonised map and each tract region of interest (as 

defined using tractography on independent controls, see the previous section). This 

resulted in a ‘tract integrity’ FA matrix for each patient and control (Figure 2C). In 

order to define ‘damage’ to tracts, rather than use an arbitrary threshold of these 

matrices (which is likely to remove valid tracts in both the patient and control 

population with naturally low FA, due to factors such as crossing fibres), we 

determined the tracts within which damage is likely, by estimating the normal 

distribution (mean and standard deviation) of FA values for each connection within 

the independent group of healthy controls (used to define the tractography). This 

information was then used to z-transform the FA values for each tract within each 

individual subject in the patient and control group. To simulate damage to the 

connectivity matrix 𝐶 , if any edge from the scaled FA matrix for an individual fell 

below a certain threshold (-1.6SD, which represents the position within the normal 

Gaussian distribution, where an individual event is distinct from noise with a nominal 

probability of approximately p<0.05) it was ‘lesioned’. Rather than removing the tract 

(which is overly destructive given the nature of the traumatic axonal injury, where the 

tract typically remains but shows evidence of damage) we instead reduced 

connectivity by a fixed amount (Figure 2C). This has the effect that each connectivity 

matrix has the same number of connections, while capturing any pattern of damage.  

Results reported are for a reduction of 50%, but the results were robust to a range of 

different damage values.  
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Graph theoretic metrics for structural connectivity 

In order to define changes in structural connectivity in relation to changes in 

neural dynamics, we assessed large scale structural connectivity using measures 

from graph theory, calculated using the Brain Connectivity Toolbox (Rubinov and 

Sporns, 2010). These measures are described briefly below: 

Degree (D).  

𝐷! = 𝐶!,!

!

!!!

 

The degree of each node 𝐷! within a weighted graph C , is defined as the sum of all 

directly connected edges to the node within the network. The mean degree defines 

how strongly interconnected all nodes within the network are (Freeman, 1978). 

Characteristic path length (𝑳) 

𝐿! =   
𝐷(𝑣,𝑤)!!!

𝑉(𝐶) − 1
 

Path length (𝐿!) is the average distance of an individual vertex to all its connected 

neighbours (𝑣 ∈ 𝑉(𝐶)) in a network C , weighted by the inverse of the weight of 

connectivity ( 𝐷 ) i.e. higher weight connections are interpreted as a shorter 

connection length. The mean of this value across all nodes (𝐿) is the measure of 

characteristic path length within a network (Watts and Strogatz, 1998). 

Clustering coefficient (𝑲)  

𝐾! =
2𝑒!

𝑘!(𝑘! − 1)
 

The weighted clustering coefficient of a node (𝐾!) is the average connectivity strength 

of all "triangles", i.e. all neighbours (𝑒!) which also directly connect to each other as 
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pairs (𝑘!) around a specific node (i). The mean across nodes (𝐾) is used as a 

measure of network clustering (Watts and Strogatz, 1998). 

Small-worldness (𝝈) 

𝜎 =   
𝐾.𝐾!!

𝐿. 𝐿!!
 

Small-world networks have low characteristic path length and high clustering 

coefficient. An often applied metric of 'small-worldness' is the small world index (𝜎 - 

SWI), (Sporns, 2006; Humphries and Gurney, 2008). This compares the path length 

(L) and clustering coefficient (K) to equivalent measures of a suitable Erdös-Rényi 

random network (Humphries and Gurney, 2008) (𝐾 and 𝐿 repectively). If 𝜎 > 1, a 

network is considered small-world.  

Differences in 𝜎, and 𝐾 may be artifactually driven by reduction in the mean degree 

of individual networks. In order to correct for this potential source of estimation error, 

we controlled for variation of mean degree across each subject’s structural 

connectivity graph by normalising the mean degree of each graph (i.e. dividing C  by 

the mean of connected vertices in 𝐷 ) before calculating 𝜎 , and 𝐾 . In this way, 

changes in each of these measures will be driven by altered network topology, rather 

than simply global changes in connectivity strength. 

Computational simulation of neural dynamics (Figure 1B) 

In order to explore the effect of structural disconnection on neural dynamics, we used 

the simple Kuramoto model of coupled phase oscillators (Acebrón et al., 2005). We 

chose this model, partly as it has been shown to be able to simulate macroscopic 

neural dynamics related to underlying structural connectivity (Shanahan, 2010; 

Cabral et al., 2011; Hellyer et al., 2014; Messe et al., 2014). It has also been shown 

to capture the same essential aspects of macroscopic dynamics as far more complex 
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models based on tens of thousands of simulated neurons (Bhowmik and Shanahan, 

2013). Compared to such complex and computationally far more intensive models, 

the Kuramoto model provides a good trade off between complexity and plausibility, 

modelling a few key parameters of structural and functional relationships between 

nodes. By using the less computationally intensive Kuramoto model we were able to 

explore large parameter spaces and simulate many individual subjects’ dynamics. 

The activity of each of the 164 brain regions (which we define here as a node) is 

represented in our model by the phase of a Kuramoto oscillator. The phase of each 

node over time is described by the Kuramoto equation (Kuramoto, 1984; Acebrón et 

al., 2005): 

dθ!
dt

=   ω! +   
1

N + 1
   C!,!   sin(
!

!!!

θ ! (t − D!,!) −   θ!(t))          N = 164 

The natural frequency ω defines the phase change of an un-coupled node per time-

step. In our simulations, as in previous work (Cabral et al., 2011), we fixed the natural 

frequency to match known oscillations within the gamma frequency range (ω  = 

60Hz). The connectivity matrix   C  is a binary connectivity matrix determined by the 

empirical strength of white matter connections, or lesioned using individual tract 

integrity data (see above). The distance matrix D , determined by the empirical 

length of connections between regions, imposes time delay on phase interactions 

between nodes. This is analogous to the simulation of a delay caused by neural 

conduction between regions of the brain. 

We introduce two control parameters to the coupling and delay of the network; the 

global coupling parameter (k), and mean global velocity v , such that 𝐶 = 𝑘 𝐶  and 

𝐷 = 𝐷 /𝑣. The behavior of the Kuramoto model in terms of global metastability and 

synchrony, by modulation of the parameters   𝑘 and 𝑣, has been explored previously 

(Shanahan, 2010; Cabral et al., 2011). For completeness, we also present a traversal 
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of this parameter space (Figure 8), using the baseline binary connectivity dataset 

defined using 10 healthy controls (see: ‘Estimation of healthy structural connectivity 

network’ above). The presence of multiple local maxima of both metastability and 

synchrony within the 𝑘, 𝑣  plane makes it challenging to optimise though a gradient-

descent approach. Therefore, we randomly selected 6000 pairs of model parameters 

within the 𝑘, 𝑣  plane and executed the model for each pair. We then used nearest 

neighbour interpolation to create the parameter space 𝑘, 𝑣  presented in Figure 8.  

Validation of computational simulation 

To validate the computational simulation against empirical functional connectivity 

derived from fMRI BOLD data, we followed the approach to simulating BOLD activity 

previously demonstrated in the literature (e.g.,(Cabral et al., 2011)), using the sine of 

the high-frequency activity of the Kuramoto model as the neural input to the Balloon-

Windkessel haemodynamic model (Friston et al., 2000), low-pass filtered the 

resulting time courses at <0.25 Hz, and downsampling to a 2 second sampling rate. 

Unlike previous approaches to model validation that have assumed that the spatio-

temporal organisation of correlations within empirical fMRI BOLD time courses are 

univariate, we used an ICA approach to compare empirical BOLD activity (defined 

using the ICA decomposition described above) with the output of our computational 

models.  Simulated BOLD time-courses from each of the computational models were 

decomposed into 15 spatially independent time-courses. Spatial components from 

the empirical and modelled ICAs were then ‘matched’ using spatial correlation of their 

maps. Since the order of components extracted by MELODIC varies, we determined 

maximal correspondence between empirical and model components by calculating 

the pair-wise spatial correlation between functional connectivity maps for all pairs of 

components and reordering the resulting correlation matrix so as to maximize entries 

along the diagonal. An evaluation function was defined as the mean correlation 
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between the empirical spatial maps and the modeled spatial maps for the top n (here 

n=5) matched components in the computational model compared to the empirical 

data, providing an objective measure by which the fit of individual regions of the 

global parameter space to empirical data may be compared against one another 

(Figure 8). We present the results for ICA using 15 components in both empirical and 

modelled data, and n = 5; however, varying each of these parameters produced 

qualitatively similar results. 

Synchrony and metastability measures of neural dynamics (Figure 1C) 

The order parameters R t  and Φ t  can be jointly defined by: 

  R t e!! ! =
1
N

e!!!(!)
!

!!!

 

Where N is the total number of regions within the network and the level of synchrony 

between phase time courses is described by  R t , in terms of how coherently phase 

changes over time (Shanahan, 2010; Cabral et al., 2011). During fully synchronous 

behaviour R t    = 1; whereas R t    = 0 where phase across all phase time series is 

fully asynchronous. The phase of all the input phase time series is described by Φ t  

but is not used in the present work. For both empirical and simulated timeseries, we 

measured neural dynamics in terms of mean global synchrony (R) , and global 

metastability as the standard deviation σ!  of global synchrony across the same 

period (Shanahan, 2010; Cabral et al., 2011). In addition to global measures of 

dynamics, to evaluate measures of network dynamics in both the empirical and 

simulated data, we calculated separate mean synchrony and metastability measures 

for the phase timeseries of regions within the 7 empirical ICNs defined earlier (See 

‘Definition of intrinsic connectivity networks from functional imaging data’)  
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Results 

Widespread disruption to the structural connectome after traumatic brain 

injury 

To demonstrate that white matter connectivity is disrupted following traumatic brain 

injury (TBI) in the group of patients studied, we performed standard tract-based 

spatial statistics (TBSS) to compare white matter integrity, measured by fractional 

anisotropy (FA), between patients and healthy controls, using age and total gray 

matter volume as covariates of no interest. In the between-group contrast of Patients 

< Controls, there was widespread reduction in FA across the white matter skeleton 

(Figure 4A). FA reduction was particularly pronounced in the inter-hemispheric fibres 

of the corpus callosum (where damage was widespread, but most extensive in the 

body and genu), as well as tracts within the superior longitudinal fasiculus, 

corticospinal tract, and the anterior and posterior limbs of the internal capsule. 

Additionally, a strong reduction of FA was observed within the fornix and corona 

radiata. This distribution of widespread changes to white matter integrity is typical of 

injury following TBI and is consistent with our previous TBSS-based findings 

(Kinnunen et al., 2011). 

To explore how network level measures of structural connectivity are changed 

following TBI, we tested for group-wise differences between graph theoretical 

measures of large-scale structural connectivity between healthy controls and TBI 

patients using age as a covariate of no interest. There was a significant reduction in 

patients compared to controls in small-worldness (t86=-3.10, p<0.01), clustering 

coefficient (t86=-2.04, p<0.05) and mean degree (t86=-3.42, p<0.001). In addition, 

patients had a significantly higher characteristic path length compared to healthy 

controls (t86=3.07, p<0.01). 
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Empirical measures of metastability of large-scale neural dynamics are 

reduced following traumatic brain injury  

We assessed the metastability of large-scale neural dynamics following TBI, 

measured using 164 regional phase time courses derived from resting-state fMRI 

BOLD data in both patients and controls (Figure 1A). We compared metastability 

across the whole brain and within ICNs between patients and controls, including age, 

gray matter volume and mean absolute movement as covariates of no interest. 

Global metastability was significantly reduced in TBI patients compared to controls 

(t84=-2.63, p<0.05 1-tailed), Figure 5. Patients also showed lower metastability in the 

salience network (t84 = -3.68 p<0.001), a left fronto-parietal network (t84 = -2.41, 

p<0.02) and dorsal attention network (t84 = -2.27, p<0.05); these survive multiple 

comparison correction by FDR (q<0.1). A potential confound for measuring 

widespread neural dynamics in the TBI patient population is the presence of cortical 

contusions. Thirty-two patients in the TBI group were found to have focal gray matter 

lesions, suggestive of cortical contusions, on T1-weighted structural imaging. It is 

possible that these lesions affected the BOLD time courses extracted and the 

resulting metastability calculations. We therefore repeated the calculation of global 

metastability after removing brain regions whose anatomical segmentation 

overlapped with focal lesions in any patients (Figure 4B) (i.e., time courses from 

affected regions were not analysed in any patients or controls). Reduction in global 

metastability in TBI patients compared to controls following this adjustment was 

similar to the original analysis (t84=-2.63 p<0.01).  

To establish whether the differences we report were due to changes in metastability 

(i.e., temporal variability in how synchronous the brain is) rather than simple temporal 

variability in the BOLD signal, we performed a follow up analysis.  We calculated the 

standard deviation of: a) the mean BOLD signal across all 164 regions; and b) the 
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mean BOLD signal of each region. In a GLM using age, gray matter volume and 

mean absolute displacement as covariates of no interest, we found no group-wise 

effect in the standard deviation of the mean global BOLD signal (t84=0.22 p=0.82). 

For each of the 164 regions, no single region showed a significant effect of group 

(FDR correcting for multiple comparisons; even without correcting for multiple 

comparisons only four regions had a group-wise effect with p lower than 0.05 with the 

lowest value p=0.04). 

Empirical measures of metastability after traumatic brain injury predict 

cognitive performance 

To investigate whether empirical measures of global metastability relate to the 

cognitive impairments seen in the TBI population, we regressed measures of 

metastability against measures of cognitive flexibility, associative memory, and 

information processing speed, including age and mean absolute movement during 

the fMRI run as covariates of no interest. In patients, there was a significant negative 

relationship between global metastability and switch cost index (SCI, where higher 

SCI suggests poorer flexibility) (t58=-2.21, p<0.05, Figure 6 Top) and median reaction 

time (t44=-3.46, p<0.01, Figure 6 Middle). Global metastability was positively related 

to immediate memory recall, i.e. improved performance (t58=2.49, p<0.05, Figure 6 

Bottom), and retention (t58=2.780, p<0.01, Figure 6 Bottom). These results were from 

a multiple regression model containing age, motion and total gray matter volume as 

covariates of no interest. The results survive multiple comparison correction with 

FDR (q<0.1). 

Frontal disconnection following TBI predicts global measures of empirical 

metastability 
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We explored how regional structural disconnection may relate to metastability. We 

calculated the mean FA across the whole white matter skeleton and compared it with 

global metastability, in patients and controls, with age as a covariate of no interest. 

We observed a significant main effect of group (t84=-2.12, p<0.05) and interaction 

between group and FA (t84=2.04, p<0.05). We further explored this relationship at a 

regional level, performing a voxelwise regression of metastability on FA within both 

groups separately. In healthy control subjects, no region of the white matter skeleton 

was significantly associated with global metastability. Within the patient group, there 

was a significant association between global metastability and integrity of the white 

matter skeleton, predominantly within the white matter linking the frontal lobe with the 

thalamus through the anterior thalamic radiation (Figure 7). However, when the two 

groups were compared directly, there were no voxels surviving multiple comparison 

correction for a group by FA interaction, so these group differences should be treated 

with some caution. 

A computational simulation of macroscopic neural dynamics resembles 

empirically-defined intrinsic connectivity networks  

In order to explore how measures of metastable neural dynamics responds to 

structural disconnection (i.e. after TBI), we explored a computational simulation of the 

brain at rest using the Kuramoto model, constrained by the white matter structural 

connectivity between 164 brain regions, defined using white matter tractography. We 

validated the model by comparison with resting-state functional connectivity derived 

from fMRI BOLD.  

Previous work has explored the dynamics of the Kuramoto model in relation to the 

strength and structure of coupling between nodes (Shanahan, 2010; Cabral et al., 

2011; Cabral et al., 2012; Wildie and Shanahan, 2012). This work suggests that the 

model behaviour is highly sensitive to two constants, the global coupling parameter 
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(K) and mean global velocity V , which is determined by a distance matrix D . In 

order to understand the effects of these constants on our 164 node model, using 

coupling defined by the reference binary reference connectivity matrix (see: 

‘Estimation of healthy structural connectivity network’), we performed a parameter 

space search using 6000 randomly generated pairs of parameters 𝑘, 𝑣 , within the 

plane 𝑘(!…!) and 𝑉(!…!").  The behaviour of global metastability as well as mean 

global synchrony of the system as a function of K is shown in (Figure 8). We 

observed that for increasing values of K, the system tends towards maximum global 

synchrony, after passing through an intermediate phase where metastability is 

maximal. To reduce the complexity of further computations, we selected a point in 

the V  dimension based on plausible physiology, such that V =11ms-1, following 

(Cabral et al., 2011).  

For the model output for each 𝑘, 𝑣  pair, we used independent component analysis 

(ICA) to decompose the 164 node time courses into a set of simulated ICNs. These 

simulated ICNs were then correlated with a set of resting-state networks derived from 

the empirical BOLD fMRI resting state data in the same 10 independent healthy 

control subjects used in the tractography step (see Materials and Methods). We 

found that the correlation between the simulated and empirically defined networks 

was highest near the point of maximal metastability (Figure 8). The emergence of 

functional networks around the region of maximal metastability suggests that such a 

rich dynamical regime is an important organising principle of how structural 

connectivity may allow functional networks to form in the brain. 

Empirically-defined macroscopic structural disconnection leads to reduced 

metastability in a simulation of macroscopic neural dynamics 

To examine the effect of macroscopic structural disconnection following TBI on 

simulated neural dynamics, we used individualised structural connectivity matrices in 
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patients and controls (see Materials and Methods, Figure 2C) to define coupling 

within the Kuramoto model (Figure 1B). Global metastability was calculated for 

simulations of the model executed separately for each subject’s connectivity matrix. 

Runs were repeated for a range of values of the coupling constant, K (Figure 9 Left). 

In the region of ideal maximum metastability identified in the parameter search 

(K=3.5, see above), global metastability was significantly reduced in patients 

compared to controls (t84=-4.90, p<0.0001) (Figure 9 Right). 

To further explore the effect of structural disconnection on simulated dynamics, we 

applied the same analysis to compute metastability within subsets of regions 

involved in canonical ICNs. Simulations using structural connectivity from individual 

TBI patients had significantly lower metastability within the dorsal attention network 

(t84=4.15, p<0.001), a right fronto-parietal network (t84=-1.99, p<0.05), default mode 

network (t84=-3.75, p<0.001), salience network (t84=-3.62, p<0.001), primary auditory 

(t84=-4.06, p<0.001) and low-level visual networks (t84=-2.45, p<0.02). Simulated 

results were obtained from multiple regression using age and total gray matter 

volume as covariates of no interest and are FDR corrected for multiple comparisons 

(q<0.1). 

We assessed how well the simulated metastability predicts empirical metastability.  

Global empirical metastability was entered as the dependent variable of a linear 

regression, with global simulated metastability as a predictor variable, and age, total 

gray matter volume, and the motion estimate for the empirical data as covariates of 

no interest. The overall model was able to significantly predict empirical measures of 

metastability (F83 =5.95, R2 = 0.24, P<0.0001), with a significant effect of simulated 

metastability (T83 = 3.30, P<0.001)  

To evaluate the extent to which global simulated metastability is determined by 

changes to macroscopic structural connectivity, we used linear regression with graph 
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theoretical measures and group (patients or controls) as a covariate. This analysis 

showed small world index (t84=2.91, p<0.001), clustering coefficient (t84=2.36, 

p<0.05) and mean degree (t84=5.96, p<0.001), were significant positive predictors of 

simulated global metastability. An increase in characteristic path length was 

associated with reduced metastability (t84=-5.62, p<0.001). 
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Discussion 

We considered two interrelated questions: how does high-level behaviour arise from 

the structural connectivity of the brain; and how does disruption of network structure 

alter behaviour? Metastability has been suggested as a fundamental property of 

neural dynamics, serving as a conceptual bridge between brain structure and 

behaviour (Tognoli and Kelso, 2014). Here, we used traumatic brain injury (TBI) as a 

model to interrogate the relationship between metastability (here defined as the 

standard deviation of the Kuramoto order parameter), structural connectivity and 

behaviour. Following TBI, metastability measured using fMRI is reduced compared to 

age-matched healthy control subjects. The level of metastability relates to 

behavioural impairment on a range of cognitive tasks. Importantly, using both 

empirical and computational modelling, we show that reduction in metastability 

following TBI is associated with damage to structural network topology, providing a 

demonstration of how metastable dynamics relate to behaviour through structural 

connectivity. 

Diffuse axonal injury (DAI) is a common pathology in TBI, accounting for much of the 

morbidity and mortality after injury, preferentially damaging long-distance tracts 

(Adams et al., 1989; Geddes et al., 1997). We demonstrate a significant reduction in 

the ‘small-worldness’ of the structural connectome in TBI patients compared to 

controls, alongside a reduction in metastability. Previously, the relationship between 

network topology and metastability has been shown in computational simulations 

(Shanahan, 2010; Wildie and Shanahan, 2012); (Cabral et al., 2012). Our 

computational findings, alongside empirical observations, provide further support for 

a relationship between altered topology and metastable dynamics. We show that this 

relationship depends on the amount of structural damage (e.g., mean FA and 

average node strength) but also it depends on higher-order metrics such as 
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clustering coefficient and small-worldness. The relationship between small-worldness 

of the structural connectome and metastability makes intuitive sense. Short overall 

path lengths facilitate increased global synchronization, while local modular 

architecture may provide some reservoir of different states, preventing the system 

from getting “stuck” in a synchronized state. However, the relationship between 

network topology and metastability may not be straightforward, involving 

heterogeneous time delays between nodes. Alternative descriptions of the network 

structure may be more effective at relating damage to altered metastability (e.g., the 

importance of scale-free, or rich club structure (Senden et al., 2014)); more 

computational and theoretical work is needed. 

Our modelling results support the empirical findings, demonstrating that alterations in 

structural topology from TBI reduce simulated metastability. This suggests a 

mechanistic link between reduction in small-worldness and neural dynamics. The 

results of the simulations are consistent with computational models based on 

abstract network architectures (Friston, 1997; Shanahan, 2010) and those defined by 

anatomical connectivity (Deco et al., 2009b; Cabral et al., 2011). This work suggests 

how network topology allows the emergence of metastability, implicating sparseness 

(Friston, 1997) and small-worldness (Shanahan, 2010; Cabral et al., 2011; Cabral et 

al., 2012; Wildie and Shanahan, 2012; Messe et al., 2014). More recently, networks 

with “rich-club” organization have been shown to support a broad repertoire of 

dynamic states (Senden et al., 2014). Such rich dynamics are reminiscent of the 

emergence of metastability; however, such a link is speculative. Future work could 

explore in more detail whether other graph theoretical properties, such as the 

presence of a strong “rich club”, better explain the alterations in metastability that we 

observed, leading to a more refined explanation of how complex neural dynamics 

emerge from the network topology of the brain.  
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Our FMRI empirical results were acquired at rest, in the absence of any explicit 

behavioural requirements. The rest state is when metastability is likely to be best 

suited to efficient cognitive flexibility. Rest, which must be distinguished from low 

arousal states such as sleep or sedation, can be thought of as a “jack-of-all-trades” 

state when the brain is in a broad exploratory regime. The dynamical regime during 

at rest may constitute an upper limit for flexibility of the neural dynamics. We have 

previously shown, with both empirical and computational approaches, that 

metastability at rest is higher than during a focused cognitive task (Hellyer et al., 

2014). During a task, high metastability is less desirable, since a specific 

configuration of brain systems is recruited (e.g., in coordinating specific visual and 

motor systems to perform a visually cued motor task). However, the dynamical 

regime during this task will still reflect the level of metastability at rest, in terms of 

how the system can transition from rest to a task state efficiently and reliably. With 

low metastability at rest (e.g. following TBI), the system is likely to take longer and be 

less reliable, transitioning between cognitive states, showing a reduced repertoire of 

brain configurations required to facilitate task performance.   

Metastability may be consistent with other descriptions of the brain as a dynamical 

system, such as self-organised criticality. Critical systems balance the competing 

demands of information propagation around a system with the need to maintain 

stable functional long and short scale functional relationships (Beggs and Plenz, 

2003; Beggs, 2008). Such behaviours maximise information flow and capacity (Shew 

and Plenz, 2013) which is likely important for efficient cognitive function. Previous 

empirical work has provided evidence of metastable dynamics in systems 

demonstrating signatures of self-organised criticality (Haldeman and Beggs, 2005; 

Kitzbichler et al., 2009). A closely related question is whether metastable dynamics 

underlie cognitive function at finer spatio-temporal scales, in common with other 
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measurements of brain activity and structure that show “scale-free” properties 

(Werner, 2007). Within the framework of self-organised criticality, an alteration in 

metastability may accompany a shift away from the critical state, associated with a 

decrease in efficiency of information storage, or processing capacity of the brain. 

Such a description has an intuitive link to cognitive deficits post TBI. The extent to 

which this change in metastable activity is invariant of scale (i.e. is present at the 

level of microscopic neural circuits as well as the macroscopic scale) is unclear. If 

metastability is indicative of a self-organised critical system then it may be expected 

that the macroscopic dynamics changes described here may cascade across all 

spatial and temporal scales of the brain - from local neuronal circuits to the systems 

level description explored here. Examination of neural dynamics at a range of spatial 

and temporal scales using electrophysiological or optogenetic approaches in 

behaving animal models (e.g. Scott et al., 2014) may therefore be helpful in exploring 

these mechanisms in more detail. 

We found reduction in metastability related to cognitive impairments on three tasks 

assessed: cognitive flexibility, speed of information processing and associative 

memory. The switch cost index of the Trail Making Test, which involves rapidly and 

accurately switching between competing task demands, assesses cognitive flexibility 

and intuitively maps onto reduced metastability (which reflects reduced dynamical 

flexibility). This relationship may help explain perseveration following TBI: structural 

damage to white matter tracts limits the metastability of the brain which limits 

cognitive flexibility. However, the relationship between metastability and behaviour 

was not specific to cognitive flexibility, being present for the other two measures 

tested. All three tasks involve the integration of information across large-scale brain 

networks (Sharp et al., 2010b; Spreng and Grady, 2010; Bonnelle et al., 2011; Erika-

Florence et al., 2014; Jilka et al., 2014). These tasks require communication between 
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sensory, motor and cognitive control regions, so altered global metastability may 

affect them all. This suggests large-scale metastability may be an important 

dynamical mechanism underlying general cognitive function.  However, there may be 

different ways metastability can break down, evident as altered dynamics within 

specific brain networks, resulting in different profiles of impairments. The prominence 

of frontal network damage relating to metastability supports the clinically-established 

association between cognitive inflexibility and frontal lesions. Future work, with a 

larger group of patients, performing a broader range of behavioural tasks in the 

scanner, and imaging with higher temporal resolution would better characterize both 

across-subject variance in network metastability and associated patterns of 

behavioural impairment, beyond the domains studied here. Information about altered 

neural dynamics could provide a sensitive biomarker to stratify patients and be used 

to design individualized treatments, involving electrical stimulation, pharmacological 

intervention or neurofeedback (Sharp et al., 2014). 

There are a number of limitations to the work. Our results show a relationship 

between metastability, individual cognitive performance and underlying structure in 

the TBI patients rather than in both the patients and controls. This may in part be 

because we had limited behavioural data on the healthy control subjects; also 

patients tend to be much more variable (in terms of behavioural impairment, neural 

dynamics and structure), and therefore relationships may be easier to detect. 

However, we also acknowledge that the lack of relationships in the healthy controls 

mean we can not claim that metastability is important for understanding individual 

differences in cognitive performance or structural network topology, beyond the 

patient group. A second limitation is based on the constraints inherent in tractography 

measured with diffusion MR. The structural connectivity matrices and graphs 

generated were undirected, in so much as feed-forward and feed-back connectivity of 
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individual regions had a uniform effect on node-node functional interaction, which is 

unlikely to be the case in vivo. In addition, long distance connections, for example 

inter-hemispheric pathways, may be difficult to resolve accurately since uncertainty in 

streamline location increases with the length of the tract (Jones, 2010b, a). The 

computational model, a system of coupled oscillators, is obviously a dramatic 

simplification of brain function. For example, the simulation is built on a relatively low-

dimensional connectivity matrix of 164 regions. However, despite these limitations, 

the simulation provides important insights into the relationship between brain 

structure and function, broadly consistent with empirical findings. Such models, at 

least at the level of global network dynamics, replicate the broad changes in BOLD 

seen with fMRI, even though the model is based only on network topology (Deco et 

al., 2008; Deco et al., 2009b; Cabral et al., 2011; Cabral et al., 2012; Messe et al., 

2014), with no modelling of the functional specialisation of individual nodes. These 

limitations mean that precise, quantitative comparisons between the simulations and 

the brain were not expected, although perform surprisingly well. Future work could 

consider whether our findings generalise to other computational oscillators models at 

comparable scales, such as the Wilson-Cowan model. Difficulties with the 

measurement of BOLD fMRI signal, such as partial volume effects, regional 

differences in vascular reactivity or susceptibility artefacts would also make 

quantitative comparisons challenging. Finally, the data we present here was collected 

in eyes closed state. Recent work has suggested subjects may not consistently 

remain conscious throughout an extended resting scan (Tagliazucchi and Laufs, 

2014). This opens up the possibility that subjects varied in whether they drifted in and 

out of sleep and this could have affected empirical measurements of metastability. 

Therefore, future work, should exclude this possibility, with the use of concurrent 

EEG to directly detect sleep states (Tagliazucchi and Laufs, 2014). 
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In summary, we found large-scale structural disconnection is associated with 

reduced metastability, linked to impaired cognitive flexibility and other behavioural 

impairments. The link between damaged structural connectivity following TBI and 

reduced metastability (demonstrated both in empirical and simulated data) provides 

evidence that metastability is contingent on the integrity of the underlying structural 

network topology. This suggests a mechanistic link between structure, neural 

dynamics and behaviour. The results indicate a compelling link between brain 

structure and function, and suggest the framework of metastable dynamics offers an 

account for understanding the brain in health and disease.  
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Legends 

Figure 1: Overview of experimental design. A, fMRI was used to estimate global 

measures of network dynamics during rest in 63 Patients and 26 Controls. B, We 

used a computational model to simulate neural dynamics using dynamic systems 

framework constrained by structural connectivity. C We used a Hilbert transformation 

of the fMRI data and the phase output of the computational model to compare the 

global dynamics of empirical data and the dynamics of a computational model 

constrained by white matter structural connectivity. 
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Figure 2: Estimation of structural disconnection in traumatic brain injury 

patients versus controls. A, To define a standardised connectivity matrix to 

perform computational simulation, probabilistic tractography was performed in 10 

independent age matched healthy control subjects, resulting in a binary connectivity 

graph and spatial estimates of probable tract location for each connected edge (see 

materials and methods). B, Measures of tract integrity (FA) were estimated in each of 

the 63 Patients and 26 healthy controls by generating a ‘skeleton’ for each subject 

using the pre-processing steps of TBSS. C, For each edge of the reference 

connectivity matrix, each subject’s FA skeleton was projected though the spatial 

mask for each edge, resulting in a 164 region ‘white matter integrity’ matrix for each 

subject. C, For each subject, the reference binary connectivity map was weighted 

according to relative reduction in tract integrity in each individual subject (see 

materials and methods), resulting in a individual weighted connectivity matrix for 

each of the 63 TBI patients and 26 Healthy controls. 
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Figure 3: Independent component analysis (ICA) of fMRI data in macroscopic 

ROIs. ICA was used to decompose ROI data from 164 cortical and subcortical 

regions of the brain in 10 healthy control subjects into 15 components. Here, 7 of the 
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resulting components which best resembled canonical ‘resting state networks’ have 

been reconstructed into Montréal Neurological Institute (MNI) 152 space according to 

the 164 region model with a Gaussian blur of 3mm (isotropic) for ease of 

visualisation. 

Figure 4: Structural brain damage following traumatic brain injury. A) 

Widespread white matter disruption following traumatic brain injury measured by 

TBSS of Fractional anisotropy (FA). Contrasts between traumatic brain injury < 

healthy control subjects (Red-Yellow). Contrasts overlaid on a standard Montréal 

Neurological Institute 152 T1 1 mm brain and the mean FA skeleton (in green), 

thresholded at P ≤ 0.05, corrected for multiple comparisons using Threshold Free 
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Cluster Enhancement (TFCE) (Smith et al., 2006). B) Lesion probability maps of 

cortical contusions across 63 TBI patients. Estimated by a neuroradiologist on the T1 

structural images. The colour bar indicates the number of patients who had lesions at 

each site, overlaid on a standard Montréal Neurological Institute 152 T1 2 mm brain. 

Figure 5: Empirical Metastability at rest is significantly reduced in patients 

compared to controls. Mean measures of metastability (±1SEM) estimated using 

phase transformed functional time-course extracted from 63 Patients and 26 Control 

subjects suggest that global measures of metastability are reduced following TBI. 
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Figure 6: Global 
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Metastability predicts behavioural outcome. Measures of global metastability 

during rest significantly correlate with scores of task-switching (Top, Red n=62), 

Information Processing speed (Middle, Purple, n=49), and Logical Memory (Bottom, 

Blue and Green, n=62). 

Figure 7: Empirical metastability in patients is associated with cortical 

connectivity within the frontal lobes. Multiple regression of empirical global 

metastability (Red-Yellow) with skeletonised FA values in 63 TBI patients (age 

included as a covariate of no interested). Results overlaid on a standard Montréal 

Neurological Institute 152 T1 1 mm brain and the mean fractional anisotropy skeleton 

(in green), thresholded at P ≤ 0.05, corrected for multiple comparisons using 

Threshold Free Cluster Enhancement (TFCE) (Smith et al., 2006).  
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8: A large-scale neural network model predicts functional connectivity where 

metastability is maximised. Plots of a parameter space exploration of the 

Kuramoto model the using 6000 randomly generated pairs of the coupling and delay 

parameters 𝑘, 𝑣 , within the plane 𝑘(!…!)  and 𝑉(!…!") , here expressed as mean 

velocity (ms-1). Global Synchrony (Top). Global Metastability (Middle), and 

Correlations of the 5 best-matching simulated and empirical ICNs (Bottom). For ease 

of further computation we set velocity at a biologically plausible value (Cabral et al., 

2011), which equates to ~ 11ms-1 (dashed line)  

Figure 9: Simulated global metastability is decreased in traumatic brain injury 

patients compared to controls A, Mean metastability (±1SEM) for in patients 

(n=63) and controls (n=26) in the computational model for a range of different 

coupling strengths (K). v = 11ms -1.  B, Mean measures of metastability estimated 

within the model (±1SEM) for 63 patients and 26 healthy control subjects suggest 

that global measures of metastability simulated from structural connectivity in TBI 

patients are reduced compared to healthy controls. 
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