
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE SYSTEMS JOURNAL 1

A Multiqueue Interlacing Peak Scheduling Method
Based on Tasks’ Classification in Cloud Computing

Liyun Zuo, Shoubin Dong, Lei Shu, Senior Member, IEEE, Chunsheng Zhu, Student Member, IEEE,
and Guangjie Han, Member, IEEE

Abstract—In cloud computing, resources are dynamic, and the
demands placed on the resources allocated to a particular task
are diverse. These factors could lead to load imbalances, which
affect scheduling efficiency and resource utilization. A schedul-
ing method called interlacing peak is proposed. First, the resource
load information, such as CPU, I/O, and memory usage, is period-
ically collected and updated, and the task information regarding
CPU, I/O, and memory is collected. Second, resources are sorted
into three queues according to the loads of the CPU, I/O, and
memory: CPU intensive, I/O intensive, and memory intensive,
according to their demands for resources. Finally, once the tasks
have been scheduled, they need to interlace the resource load peak.
Some types of tasks need to be matched with the resources whose
loads correspond to a lighter types of tasks. In other words, CPU-
intensive tasks should be matched with resources with low CPU
utilization; I/O-intensive tasks should be matched with resources
with shorter I/O wait times; and memory-intensive tasks should
be matched with resources that have low memory usage. The effec-
tiveness of this method is proved from the theoretical point of view.
It has also been proven to be less complex in regard to time and
place. Four experiments were designed to verify the performance
of this method. Experiments leverage four metrics: 1) average
response time; 2) load balancing; 3) deadline violation rates; and
4) resource utilization. The experimental results show that this
method can balance loads and improve the effects of resource
allocation and utilization effectively. This is especially true when
resources are limited. In this way, many tasks will compete for the
same resources. However, this method shows advantage over other
similar standard algorithms.

Manuscript received June 07, 2015; revised January 20, 2016; accepted
March 06, 2016. This work was supported in part by the Natural
Science Foundation of Guangdong Province, China under Project no.
2014A030313729, in part by 2013 top Level Talents Project in “Sailing Plan”
of Guangdong Province, in part by 2014 Guangdong Province Outstanding
Young Professor Project, in part by the Science and Technology Key Project
of Guangdong under Grant 2014B010112006, and in part by Natural Science
Fund of Guangdong under Grant 2015A030308017. (Corresponding authors:
Shoubin Dong and Lei Shu.)

L. Zuo is with the School of Computer Science and Engineering, South
China University of Technology, Guangzhou 510006, China, and also with
Guangdong Provincial Key Laboratory of Petrochemical Equipment Fault
Diagnosis, Guangdong University of Petrochemical Technology, Maoming
525000, China (e-mail: liyun.zuo@lab.gdupt.edu.cn).

S. Dong is with the School of Computer Science and Engineering,
South China University of Technology, Guangzhou 510006, China (e-mail:
sbdong@scut.edu.cn).

L. Shu is with the Guangdong Provincial Key Laboratory of Petrochemical
Equipment Fault Diagnosis, Guangdong University of Petrochemical
Technology, Maoming 525000, China (e-mail: lei.shu@lab.gdupt.edu.cn).

C. Zhu is with the Department of Electrical and Computer Engineering,
University of British Columbia, Vancouver, BC V6T 1Z4, Canada (e-mail:
cszhu@ece.ubc.ca).

G. Han is with the Department of Information and Communication
Systems, Hohai University, Changzhou 213022, China (e-mail:
hanguangjie@gmail.com).

Digital Object Identifier 10.1109/JSYST.2016.2542251

Index Terms—Cloud computing, load balancing, multiqueue,
task classification, task scheduling.

I. INTRODUCTION

C LOUD computing involves a diverse range of application
tasks [1]. Their demands for resources differ accord-

ingly; some require large amounts of storage, and some require
CPUs with a powerful computing capacity; others are data
intensive and they have considerable I/O. These all cause
load imbalance. For example, real-time temperature measure-
ments, and bank deposits and withdrawals involve greater CPU
demands and need immediate responses. For these applica-
tion tasks, the task requests increase sharply as the amount of
user access increases. The system’s processing speed will be
slow, and it may crash, unable to continue service. Additionally,
some application tasks require reading and storing data from
a database, requiring frequent disk reading and writing to the
server, i.e., they require a lot of I/O.

However, there are many dynamic and uncertain factors
related to resources and load, such as the dynamically changes
in resource nodes over time. Requests for resources also
change over the years, seasons, and holidays. Apart from load,
resources themselves also undergo many changes, e.g., some
resources perhaps join or leave at any time. These dynamic and
uncertain factors can lead to a series of problems. If there are
too many resources and not enough load, then resources are
wasted, but if there is more load than resource capacity, then
the performance is affected. This can lead to load imbalance
and affect user satisfaction and resource utilization.

For these reasons, to maximize the diversity in user requests
and the dynamic factors of resources, not only scheduling meth-
ods are required to meet the needs of the response time but also
the load must be balanced for each resource in cloud computing.

Most methods balance loads in cloud computing by mov-
ing virtual machines, but this can involve high overhead costs
[2]–[7]. As such, it is preferable to consider load balancing
when scheduling tasks. However, existing studies on schedul-
ing methods usually only consider resources by moving vir-
tual resources [2]–[8] or only consider tasks by optimizing
the scheduling algorithm in cloud computing [9]–[14]. The
diversity in tasks and the dynamic factors of resources limit
effectiveness if they only leverage a single optimization method
for allocation in cloud computing. For this reason, it is neces-
sary to assess the scheduling method aimed at task diversity and
the dynamic factors of resources to facilitate load balancing and
improve system performance.

1932-8184 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/77000497?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE SYSTEMS JOURNAL

This paper proposes a multiqueue interlacing peak schedul-
ing method (MIPSM), here called MIPSM. This method is
based on the diversity of tasks and the dynamic factors of
resources. First, it collects resource and task information,
which includes the loads for the CPU, I/O, and memory of
resources, and the remands for the CPU, I/O, and memory
of tasks. Second, it sorts resources into three queues accord-
ing to the loads of the CPU, I/O, and memory from small
to large. At this time, it also divides tasks into three queues:
1) CPU intensive; 2) I/O intensive; and 3) memory intensive,
according to their remands for the CPU, I/O, and memory.
Last, it interlaces the resource usage peak when scheduling.
Some types of tasks should be scheduled to resources with
lighter loads. This could balance loads by making full use
of all the idle resources by interlacing the peak of resource
usages.

The contributions of this paper are summarized as follows.
1) First, this work proposes a framework model to manage

tasks and resources. The framework model includes the
task manager, the resource manager, and the scheduler.
The task manager can manage task requests and classify
tasks. The resource manager is used to collect the infor-
mation of resource loads and sort resources according
to their loads. The scheduler allocates tasks to resources
through MIPSM.

2) Second, it proposes a method of task classification. This
method is very simple. It only needs some simple math-
ematical calculation through the existing parameters and
does not need to cluster or make extra predictions.

3) Finally, the paper proposes an interlacing peak schedul-
ing method. It establishes three task queues and three
resource queues according to the load size for the CPU,
I/O, and memory, from small to large. It interlaces the
usage peak of resources when scheduling. Some types
of tasks, such as those relating to the CPU, should be
scheduled to resources whose type load (such as CPU)
is lighter, to balance the load and improve allocation
efficiency and resource utilization.

This paper is organized as follows. Related work is intro-
duced in Section II. The system model, description of the
problem, and queues of tasks and resources are shown in
Section III. The interlacing peak scheduling method is pre-
sented in Section IV. Complexity and optimization analysis are
performed in Section V. Experiments are shown in Section VI,
and this paper is concluded in Section VII.

II. RELATED WORK

Related work includes methods of task scheduling and clas-
sification. Studies of task scheduling are typically divided into
three categories according to scheduling targets in cloud com-
puting. The first category consists of scheduling methods based
on time, including the response times, the best time span, and
the completion time. The second is based on performance,
such as load balancing and resource utilization. The third is
multiobjective optimization, which includes the economic cost,
QoS, and energy consumption, with the exception of the above
targets.

A. Methods of Task Classification

There have been a vast number of studies about task diver-
sity. Any of these may help improve task scheduling efficiency
and resource utilization. Primarily, they leverage some meth-
ods by analyzing the characteristics of tasks and resources or
by task classification. For example, one previous work divided
the workload into distinct task types with similar characteristics
of requirements for resources and performance using the K-
means clustering algorithm [15]. Another classified user tasks
by QoS preferences, and established the general expectation
functions in accordance with task classifications to restrain
the fairness of the resources during the selection process [16].
A third focused on analyzing completion times and resource
usage, such as CPU, memory, and disk [17]. Its main target was
to enhance system performance, including the wait times for
task and resource utilization by historical information. Another
study analyzed task characteristics and established a model to
simulate resource usage patterns and predict resources to opti-
mize resource usage [18]. To plan capacity and schedule tasks,
another study assessed the workload and resource consump-
tion (CPU and memory usage) [19]. It divided tasks into small,
large, medium, and combinations of these. It classified tasks
using the k-mean clustering method, which is also used for
the Google computing clusters. However, it is highly complex.
The complexity of clustering by k-means renders the system
nonlinear. Locating the center of the cluster can affect the accu-
racy of task classification. The previous paper did not mention
how to allocate tasks after task classification. Another paper
focused on the prediction of task characterization [20]. That
paper only considered CPU utilization and did not take mem-
ory or I/O into account. Yet another paper considered several
systems of task characterization for allocation, distinguishing
between CPU- and memory-intensive job, large and small jobs,
and so on [21]. However, that paper did not propose any new
allocation methods. It did propose a new scheduling structure
capable of mixing together some scheduling methods such as
randomized first fit and Google algorithm; thus, tasks can select
suitable scheduling methods by task characterization.

B. Focus on Time

This type of research regards the scheduling time as the
main target. These studies primarily optimize scheduling algo-
rithms to reduce the associated time allocation using heuristic
algorithms and intelligent optimization algorithms, such as in
four previous studies [9], [12], [22], [23]. The first of these
studies involved a super-heuristic algorithm whose target was
to achieve optimal span [9]. The second proposed an adap-
tive scheduling algorithm on the Hadoop platform whose main
target was to reduce completion time [12]. The third pro-
posed two scheduling algorithms from three artificial neural
networks (ANNs) and RBF neural networks based on the
direct search algorithm optimization (DSO) whose main tar-
get was also to find the optimal span [22]. In order to meet
the needs associated with high performance and fast schedul-
ing, the fourth study proposed two scheduling algorithms to
select the earliest completion of each according to task priority



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZUO et al.: MIPSM BASED ON TASKS CLASSIFICATION IN CLOUD COMPUTING 3

and to minimize the total execution time of the main target’s
critical path tasks [23].

C. Focus on System Performance

This type of research primarily improves load balancing and
resource utilization, such as in nine previous studies [6], [7],
[24]–[30]. One of these studies proposed a two-stage central-
ized load balancing framework that had good scalability and
high availability and a dynamic algorithm for balancing loads
based on neural networks [24]. This assigns weights to each vir-
tual machine (VM) according to the load indicators and indica-
tors of neural networks, dynamically adjusting each VM weight
to meet the service level agreement (SLA). Another paper pro-
posed a load-balancing algorithm to balance VM loads and
ensure quality of service (QoS) [25]. It reduced the number
of VM migrations and migration times during task execution.
Another paper took the network performance and load balanc-
ing into account, allocating tasks to the nodes of the same types,
with minimal transmission link delays [26]. The policy was
combined with the first come first served (FCFS), the Min–Min,
and the Min–Max algorithms. Another paper balanced load
across nodes and reduced the average completion time using
the genetic algorithm [27]. Another proposed an improved
Min–Min algorithm based on user priorities to achieve load bal-
ancing, achieve the best span, and improve resource utilization
[28]. It is assumed that users may choose different levels of ser-
vice according to their needs. The costs corresponding to levels
are also different, divided among VIP users and resources to
schedule preferentially. But this method is very complex.

D. Multiobjective Optimization Scheduling

Many research has been devoted to multiobjective opti-
mization, e.g., the constraints of QoS [14], [31]–[33], energy
consumption [34], [35], [44], economic costs [3], [7], [14],
system performance [8], [11], [13], [37], [38], and all these
comprehensive [14], [29], [32], [33], [36], [45].

One previous work proposed a method of dividing resources
and budget, minimizing the completion time of tasks, and
improving resource utilization [13]. This method takes into
account the status of resources. Most other papers focused
solely on task optimization and did not considering resource
status. Another paper proposed a replication algorithm of the
earliest completion time based on task copy [37]. First, it
pretreats resources through fuzzy clustering and then sched-
ules tasks using a directed acyclic graph and task duplication.
Multi-input multioutput feedback control of a dynamic resource
scheduling algorithm was proposed to guarantee optimal effec-
tiveness under time constraints [38]. It considered task execu-
tion times, cost, and utilization of resources (CPU, memory).

There are some problems in the existing research working
through the above analysis. First, the methods described above
require communication, monitoring, and control, all of which
produce a certain delay. The complexity is relatively high, and
high complexity has negative impacts. Second, some methods
classify tasks by clustering. This also increases complexity.
Third, some methods move VM, but movement costs may be

TABLE I
MAIN NOTATION DEFINITIONS

high. Fourth, many methods of load balancing are based on
load prediction (predicting VM requests), but the diversity of
the task load and the diversity and heterogeneity in the cloud’s
hardware environment make it difficult to predict VM requests.
Finally, many methods simply optimize the scheduling method
itself without considering the dynamic demands of the task for
resources or differences in resource loads, with the exception of
the literature considering resource status [13].

This paper proposes a scheduling method. First, it not only
considers task diversity and reflects differences in demand for
resources but also considers the load state of the resource.
Second, it also needs to monitor the resource load but only
does so periodically and the monitoring process can be done
with tasks classification at the same time. In this way, the mon-
itoring process does not take up extra time at any point in the
process. Third, this method is relatively simple; it does not need
to move VMs or predict the load or runtime. This method is
easy to implement and does not involve differential or integral
calculation. It is not very complex.

There are three differences between this and other methods.
The first is the method of task classification. The method pro-
posed here divides tasks into three queues according to resource
demand. It is very simple and easy to implement. The second
is that it sorts resources into three resource queues according
to resource load states. Third, it selects resources by staggering
the usage peak during allocation. This method assigns certain
types of tasks to the same types of resources, the idlest. Thus,
this method can achieve effective load balancing. However, it
can assign three tasks, one from each of each of these three
queues, to different resources to perform at the same time. This
could significantly improve allocation efficiency.

III. SYSTEM MODEL

This section describes the system framework, the definitions
of tasks and resources, and the queues of resources and tasks.
The primary parameters and their meanings are listed in Table I.

A. System Framework

In this paper, the system framework model is shown in Fig. 1,
in which the task manager manages task requests that the user
submits. At the same time, it analyzes and processes these
requests and divides tasks into three queues: 1) CPU intensive;



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE SYSTEMS JOURNAL

Fig. 1. System framework model of the scheduler, task and resource manager.

2) I/O intensive; and 3) memory intensive, according to their
demands for resources.

The local resource manager monitors and manages local
resource nodes. It periodically monitors local virtual resources
to determine their CPU, I/O, and memory load information,
and to submit the information to the global resource man-
ager. The global resource manager periodically collects and
updates information from local resource managers. It then
divides resources into three queues according to the loads of
the CPU, I/O, and memory from small to large.

The scheduler collects this task and resource information
from the task manager and the global resource manager. The
scheduler is responsible for allocating tasks to resources using
the interlacing peak scheduling method, which this paper pro-
poses, according to this information regarding the tasks and
resources.

B. Definitions of Resources and Tasks

First, it is assumed that there are N resources U =
{u1, u2, . . . , ui, . . . , uN} and K tasks {T1, T2, . . . ,
Tj , . . . , TK} in the current system of cloud computing.
Here, cloud resources refer to virtual resources.

Definition 1: Resources: Here, a resource is a single vir-
tual machine. Each virtual resource cloud is defined by the
parameters of its CPU, I/O, and memory. That is to say, Ui =
(Ci, Oi,Mi). These three parameters are representative of CPU
utilization, I/O waiting time, and memory usage. These parame-
ters come from the global resource manager, which periodically
collects and updates information from local resource managers.

Definition 2: Tasks, Tj = (Cj , Lj ,Mj , Dj): The first three
parameters are 1) CPU usage; 2) task size; and 3) memory that
the user applies to use, and Dj is the deadline of the task. Task
size is the size of the task, and it is equal to the length of the
task. These parameters come from the task manager and are
submitted by users.

It is also necessary to determine I/O usage information,
excepting requests for CPU and memory. Definition 3 calcu-
lates the parameter of I/O usage as follows.

Definition 3: The I/O usage of the task Tj is defined as
Oj =

Lj

Cj
. Lj is the task size, and Cj shows the capacity of CPU

completing the task Tj . The I/O usage of the task Tj cannot be
determined directly. I/O usage is concerned to the task size and
the capacity of CPU. Here, I/O usage is estimated by the rate of
Lj and Cj .

Definition 4: According to these definitions, task resource
requirements and resource capacity in the system were defined
as follows. These parameters (Ci, Oi,Mi) reflect the resource
capacity which can provide the CPU, I/O, and memory. At
the same time, these parameters (Cj , Oj ,Mj) reflect the tasks
resource requirement of the CPU, I/O, and memory.

Assumption 1: It is assumed that the information of user
submitted is trusted, that the information regarding resource
demand, which is submitted by the user, is accurate where the
parameter Lj can be provided accurately. Dj is the deadline
by which the user expects that the task will be completed. The
parameters (Cj ,Mj) are the values estimated by the user and
are enough to complete the task.

Assumption 2: The parameters of the task may change dur-
ing its lifetime; most tasks have their phase behaviors. This
means that a task could be CPU intensive during one stage but
memory intensive during another stage. In this paper, for sim-
plicity, it is here assumed that these parameters are fixed and do
not change during the lifetime of the task.

Assumption 3: The resources are dynamic in cloud comput-
ing. Therefore, these parameters (Ci, Oi,Mi) are the original
value. According to the system model, the local resource man-
ager periodically monitors local virtual resources to determine
their CPU, I/O, and memory load information and to submit
the information to the global resource manager. The global
resource manager periodically collects and updates information
from local resource managers. This means that these parameters
(Ci, Oi,Mi) are updated periodically.

In cloud computing, virtualization technology can be used
to monitor resource usage. If the capacity of the resources that
the user is accessing, such as CPU and memory, exceeds that
requested by all users during actual implementation, the system
will cut off the task performance. This means that the task fails.
This shows that assumption 1 is reasonable.

IV. INTERLACING PEAK SCHEDULING METHOD BASED

ON MULTIQUEUE

This section introduces the MIPSM, based on task and
resource queues. It includes three parts: 1) task classification;
2) resource sorting; and 3) interlacing peak scheduling.

A. Tasks Classification

First, the task manager manages user-submitted task
requests. The task request information includes CPU usage,
task size, and memory in order to reflect the diversity of tasks
needed to collect the necessary information that tasks demand
for resources. Consequently, task classification needs informa-
tion regarding I/O usage. The I/O usage is calculated using the
task size and CPU. In this way, it collects all the information
for the CPU, I/O, and memory.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZUO et al.: MIPSM BASED ON TASKS CLASSIFICATION IN CLOUD COMPUTING 5

Second, it is necessary to determine the values of Cs, Os, and
Ms of CPU, I/O, and memory in the system before dividing the
tasks. Then, task classification must calculate the ratios of each
task of CPU, I/O, and memory in the system. For each task Tj ,
calculate these ratios C, O, and M by its parameters Cj , Oj ,
and Mj and Cs, Os, and Ms. The largest of these three ratios is
regarded as the task category Tjh

Tjh = max (C,O,M) = max

(
Cj

Cs
,
Oj

Os
,
Mj

Ms

)
. (1)

Finally, K tasks are divided into three queues QTC , QTO,
and QTM of a CPU intensive, b I/O intensive, and K − a− b
mem intensive by the task category Tjh as follows:

QTC = {T1, T2, . . . , TjC , . . . , Ta} (2)

QTO = {Ta+1, Ta+2, . . . , TjO, . . . , Ta+b} (3)

QTM = {Ta+b+1, Ta+b+2, . . . , TjM , . . . , TK−a−b}. (4)

For example, if Tjh = C, then the task Tj will be divided
into the queue of CPU intensive. If Tjh = O, then the task Tj

will be divided into the queue of I/O intensive.
Here, each one of the three queues makes up only one portion

of all tasks. The total of these three queues equals the number
of tasks.

B. Resource Sorting

First, the local resource manager collects information regard-
ing CPU utilization, I/O wait times, and memory usage from
local virtual machines. Next, it submits the information to the
global resource manager. Third, the global resource manager
sorts all resources according to these three parameters from
small to large, respectively, forming three queues QC , QO, and
QM as follows:

QC = {U1, U2, . . . , UiC , . . . , UN} (5)

QO = {U1, U2, . . . , UiO, . . . , UN} (6)

QM = {U1, U2, . . . , UiM , . . . , UN}. (7)

Here, all the resources sort rather than classify, due to the
amount and dynamism of the resources. Therefore, each of the
three queues includes all resources, unlike the task queues.

C. Interlacing Peak Scheduling Method

The interlacing peak scheduling method, as the name sug-
gests, interlaces the resource usage peaks when scheduling
tasks to resources.

The principle of this method is that the CPU, I/O, and mem-
ory usages do not conflict with each other. For example, some
task requests for big data computing need only a small quan-
tity of I/O resources; however, they require significant CPU
resources to compute and process. This is so it can effectively
achieve load balancing because it makes full use of all idle
resources by interlacing the peak resource usage.

First, the task manager manages task requests submitted by
users. The task request information includes CPU usage, task

Fig. 2. Interlacing peak scheduling method based on task and resource queues.

size, and memory. Thus, it obtains all the information from the
CPU, I/O, and memory. It then divides tasks into three queues
that are 1) CPU intensive; 2) I/O intensive; and 3) memory
intensive, according to these three parameters.

Second, the interlacing peak scheduling method needs to col-
lect the resource load information, such as the CPU, I/O, and
memory usage. For this reason, the local resource manager
monitors the local virtual resource loads to collect their CPU,
I/O, and memory load information. Then, the local resource
manager submits the information to the global resource man-
ager, which periodically collects and updates the CPU, I/O, and
memory load information from local resource managers. At the
same time, the global resource manager sorts the resources into
three queues according to the CPU, I/O, and memory loads
from small to large. The resource manager only sorts, so each
of three queues includes all the resources. This is different from
the task queues.

Finally, the scheduler allocates tasks to resources using the
interlacing peak scheduling method. This method is based
on resource sorting and task classification. It interlaces the
resource usage peaks when scheduling. Some types of tasks
should be scheduled to the resources whose load (the type
of load is corresponding to the task type) is lighter. The
CPU intensive tasks are scheduled to those resources with low
CPU utilization; the I/O intensive tasks are scheduled to those
resources with short I/O wait times, and the memory intensive
tasks are scheduled for resources with low memory usage. The
details of the process are shown in Fig. 2.

Fig. 2 depicts the scheduler process allocating tasks to
resources. There are two kinds of queues: 1) the task queue and
2) the resource queue. The task queue includes three queues:
1) CPU intensive; 2) I/O intensive; and 3) memory intensive.
The resource queue also has three queues. They are formed by
sorting the CPU, I/O, and memory loads from small to large.
The scheduler then allocates the tasks to the resources.

The implementation of MIPSM is shown as the pseudocode
of Algorithm 1.

D. Effectiveness of the Algorithm

As shown in the description of Section IV-B, MIPSM stag-
gers the resource usage peaks when scheduling. It assigns
certain types of tasks to the types of resources that are the idlest.
In this way, it prevents resources from becoming overloaded or
too idle, so it balances the load effectively. However, MIPSM



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE SYSTEMS JOURNAL

Algorithm 1 Multiqueue Interlacing Peak Scheduling

Input:
T1, T2, . . . , Tj , . . . , TK , Tj = (Cj , Lj ,Mj , Dj), QC , QO,
QM , Cj , Oj , Mj , Cs, Os, Ms

Output:
(Tj , Qx)

1: BEGIN
2: FOR j=1 to K
3: Calculate Oj using Definition 3;
4: Calculate Tjh using Formula 1;
5: IF Tjh = C Then
6: x=C;
7: Tj → QC ;
8: END IF
9: IF Tjh = O Then
10: x=O;
11: Tj → QO;
12: END IF
13: IF Tjh = M Then
14: x=M;
15: Tj → QM ;
16: END IF
17: END FOR
18: END

divides tasks into three queues; it can assign three tasks, one
from each of the three queues, to different resources so that
they are performed at the same time. This method can greatly
improve allocation efficiency. This method’s effectiveness in
load balancing is proven below.

It is assumed that in the cloud computing system, there
are N resources U = {u1, u2, . . . , ui, . . . , uN} and K tasks
{T1, T2, . . . , Tj , . . . , TK}, three resource queues QC , QO, and
QM , and a task set including three queues QTC , QTO, and
QTM of a CPU intensive, b I/O intensive, and K − a− b mem
intensive.

Proof: The interlacing peak scheduling method can make
the system resources load balance according to MIPSM. �

Proof: 1) When N ≥ K, tasks are assigned according to
Algorithm 1 as follows:

QTC → {U1, U2, . . . , Ua} (8)

QTO → {U1, U2, . . . , Ua+b} (9)

QTM → {U1, U2, . . . , Uk−a−b}. (10)

This ensures that tasks are assigned to idle resources, and the
system’s CPU utilization, I/O wait time, and memory roughly
are same to maintain load balancing.

2) When N < K, the number of resources is less than the
number of tasks, so the tasks need to be assigned in batches.

First, the front h(h = �N
3 �) tasks are selected in the queue

assigned by Algorithm 1 as follows:

QTC → {U1, U2, . . . , Uh} (11)

QTO → {U1, U2, . . . , Uh} (12)

QTM → {U1, U2, . . . , Uh}. (13)

Second, the remaining K − h tasks will be assigned to the
next batch. If K − h < N , then the �K−h

3 � tasks will be
assigned to the three resource queues; otherwise, it takes the
front �N

3 � tasks to assign again, and the remaining K − 2h
tasks will be assigned to the next batch.

In this case, each resource can receive at least one task, and
the amounts of CPU utilization, I/O waiting time, and memory
usage are equal. The system resources keep the load balanced.

Quod Erat Demonstrandum (QED).

V. COMPLEXITY AND OPTIMIZATION ANALYSIS

OF MIPSM

As indicated in the description given in Section IV, MIPSM
divides tasks into three task queues: QTC , QTO, and QTM ,
according to the tasks demand for resources. At the same time,
it sorts resources to form three resource queues: QC , QO, and
QM , according to the load state of resources. Finally, MIPSM
staggers the peak resource usage when scheduling and assigns
certain tasks to the resources that are the idlest. In this way, it
can balance load effectively, which was proved in Section IV. It
can also assign three tasks, on from each of the three queues,
to different resources and set them to perform at the same
time. This can significantly improve scheduling efficiency. This
section describes the analysis of the optimization effects and
complexity of MIPSM.

A. Complexity of Algorithm

The complexity of the scheduling algorithm may have some
effect on the system. MIPSM includes three parts: 1) task clas-
sification; 2) resource sorting; and 3) scheduling; the MIPSM
complexity analysis is performed from these three parts.

The algorithm’s time complexity is related to the number
N of resources and the number K of tasks. The task clas-
sification time complexity is O(K). The complexity of the
sorting resource time is O(N lgN). Finally, the scheduling
time complexity is O(K). Therefore, the total time complexity
is O(N lgN +K). In fact, resource sorting and task clas-
sification can occur at the same time, and resources only
sort periodically. The actual time complexity is less than
O(N lgN +K).

For space complexity, resource sorting and task classification
are both O(1), and the scheduling algorithm is also O(1). For
this reason, the total space complexity is O(1).

The scheduling method in this paper is simple and does not
involve differential or integral calculations; the time complexity
and space complexity are relatively low.

B. Optimization

According to the principle of MIPSM, three queues of tasks
can be executed in different resources at the same time. Ideally,
the whole system would have been optimized three times. In a
worst-case scenario, there may be three tasks, one from each of
the three queues, sent to the same resource at the same time
in the original state. In this case, optimization is zero.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZUO et al.: MIPSM BASED ON TASKS CLASSIFICATION IN CLOUD COMPUTING 7

TABLE II
VM SETUP OF DATA CENTER

TABLE III
TASK SETUP OF DATA CENTER

In this way, the upper limit of optimization is 3 and the
lower limit is 0.

However, the worst case only occurs in the original state. The
load balancing of system resources can improve with the imple-
mentation of MIPSM. Afterward, this worst-case scenario will
not happen again. The optimization limit must be greater than 0.

VI. EXPERIMENTS

Some experiments were designed using Cloudsim 3.0 to con-
firm the performance of MIPSM [39]. There were two types
of experiments. First, some simulation experiments used the
tasks, which were generated by Cloudsim and had clear CPU,
memory, and I/O (Sections VI-A–VI-F). Second, in order to
demonstrate the effect in real application, some experiments
used real-world workloads (Section VI-G) .

A. Experiment Setup

A data center was simulated using Cloudsim 3.0. It had 100
hosts. There were 10 virtual machines on each host. The setup
is as shown in Table II.

Each experiment generated a series of task requests. Each
of these task requests has an obvious need for CPU, I/O, and
memory. The number of tasks is K = 500 (N > K) and K =
1200 (N > K) to fully verify the method’s performance. Task
parameters are as shown in Table III.

There are two basic algorithms Min–Min [40], [41] and
least connection (termed LC) [42], to compare with MIPSM.
The Min–Min algorithm has better completion time, and the
LC algorithm has better load balancing because it prefers idle
resources every time.

B. Experiment Metrics

Experiments use four performance-evaluation indicators.
The first is average response time, which is used to evalu-
ate scheduling performance. The second is the load balancing,
used to verify resource load balancing by the utilization of ran-
domly selected resources. The third is the deadline violation
rate, which is the feedback effect of QoS because a perfect
stable system requires feedback to verify its performance. The
fourth is the resource utilization.

Fig. 3. Average response time with different task arrival rates when K = 500
and K < N.

The main objective of MIPSM is efficiency and load balanc-
ing. Load balancing is reflected through CPU, I/O, and memory
resource usage. Scheduling efficiency is reflected through the
response times and deadline violation rates. The response time
of each task is from the task submitted to return the result.
It includes the waiting time tj−wait and the completion time
tj−complete. The average response time tresponse is calculated
as (14). For the deadline violation rates, if the running time of
task Tj is greater than the deadline Dj , the task is considered to
violate the deadline constraints. The deadline violation rate v is
calculated as (15)

tresponse =

∑
(tj−wait + tj−complete)

K
(14)

v =
nd

K
∗ 100% (15)

where nd is the number violating the deadline time in K task.
The experiments in real-world workloads’ part used three

metrics: 1) the average resource utilization of the system; 2) the
average response time; and 3) the average slowdown. The aver-
age resource utilization of the system was used to show the
average utilization of CPU, memory, and I/O. The average
response time was used to verify the efficiency of alloca-
tion. The slowdown reflected the overhead of these methods
indirectly. The slowdown is calculated as

slowdownj =
tj−wait +max(tj−complete, 10)

max(tj−complete, 10)
(16)

where max(tj−complete, 10) means if the completion time is
less than 10 s, the completion time will be replaced with 10.

C. Response Time

The first experiment verified task-scheduling performance by
response time. The task arrival rates were 40, 60, 80, and 90
tasks/s. The results are shown in Figs. 3 and 4.

Figs. 3 and 4 show that the average response times of all
these three algorithms increase as the task arrival rates increase,
especially when the arrival rate is 80. MIPSM showed the best
performance; the Min–Min algorithm performed better than the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE SYSTEMS JOURNAL

Fig. 4. Average response time with different task arrival rates when K = 1200
and K > N.

Fig. 5. CPU utilization with different resources when K = 500 and K < N.

LC algorithm in these three algorithms. At first, MIPSM was
less than the Min–Min algorithm, but MIPSM was better than
the Min–Min algorithm with increase in the arrival rate; when
K > N , MIPSM had more obvious advantages. This is because
the Min–Min algorithm prioritized small tasks and gave prefer-
ence to good resources, so it showed better performance when
there were fewer tasks. When there are more tasks, MIPSM is
better because it considers the scheduling performance and load
balancing. In this way, it can keep the load balanced when the
quantity of resources is lower than that required by tasks and
demonstrates good performance on an average response time.

D. Load Balancing

The second experiment verifies the performance of task
scheduling through load balancing. The experiment selected
10 resources at random and then observed their CPU, I/O, and
memory usage. The experiment ran 10 times and average values
are shown. The results are shown in Figs. 5–10.

Figs. 5–10 show there to be obvious fluctuations in CPU,
I/O, and memory usage for the Min–Min and LC algorithms.
However, fluctuations in MIPSM were very slight. This means
that MIPSM had the best effect on load balancing. It showed

Fig. 6. CPU utilization with different resources when K = 1200 and K > N.

Fig. 7. I/O utilization with different resources when K = 500 and K < N.

Fig. 8. I/O utilization with different resources when K = 1200 and K > N .

greater resource utilization than the other two. The Min–Min
algorithm showed the worst load balancing, while the LC algo-
rithm always preferred idle resources, so it can balance loads.
However, this is still less than MIPSM, especially when the
number of tasks is high. The Min–Min algorithm always pre-
ferred good resources, which caused considerable load imbal-
ances. For the two cases of K < N and K > N , the resource
utilization of K > N was higher.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZUO et al.: MIPSM BASED ON TASKS CLASSIFICATION IN CLOUD COMPUTING 9

Fig. 9. Memory utilization with different resources when K = 500 and
K < N .

Fig. 10. Memory utilization with different resources when K = 1200 and
K > N .

E. Resource Utilization

The third experiment was used to verify the schedul-
ing method’s resource utilization. First, experiment randomly
selected 10 resources to observe the resource usage when K <
N and K > N ; here, the resources included CPU, I/O, and
memory. Second, these three algorithms were scheduled twice
(once one ended, the next was randomly generated). The task
arrivals of each time were 10, 40, 60, 80, and 90. Third, the
experiment was performed 10 times. For every algorithm, the
scheduling was successfully executed 100 times. For this rea-
son, resource utilization was here defined as the number of
times each resource was scheduled. The results are shown as
Figs. 11 and 12.

Figs. 11 and 12 show resource utilization. The utilization
of ten resources with MIPSM showed little difference. The
LC algorithm was similar to MIPSM, meaning that these two
algorithms both balanced the load very well. The Min–Min
algorithm was the worst. The fluctuation ranges in MIPSM, LC
and Min–Min algorithm were 4%, 6%, and 18%, respectively,
when K < N . However, when K > N , there was resource
competition. The fluctuation ranges of these three algorithms
were 5%, 9%, and 24%, respectively; MIPSM and the LC
algorithm still performed better than the Min–Min algorithm.

Fig. 11. Resource utilization of 10 resources randomly selected when
K = 500 and K < N.

Fig. 12. Resource utilization of 10 resources randomly selected when
K = 1200 and K > N.

MIPSM was better than the LC algorithm. This showed the
advantage of MIPSM with respect to resource utilization and
load balancing.

F. Violation Rate of Deadline

The fourth experiment confirmed the scheduling QoS by
assessing deadline violation rates. The rates at which deadlines
for different task arrival rates were missed are shown in Figs. 13
and 14.

Figs. 13 and 14 show that the deadline violation rate
increases as the task arrival rates increase accordingly. MIPSM
shows the best performance in three algorithms. The Min–Min
algorithm was found to be better than that of the LC algorithm.
When K > N , resource competition took place, which left
the deadline violation rates of three methods relatively large.
However, the deadline violation rates of MIPSM are all less
than 8%. This is an acceptable limit.

G. Experiments by Real-World Workload

The experiments used real workload, in this case the
high-performance computing cluster of Shenzhen the Beijing



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE SYSTEMS JOURNAL

Fig. 13. Violation rate of deadline with different task arrival rates when
K = 500 and K < N.

Fig. 14. Violation rate of deadline with different task arrival rates when
K = 1200 and K > N.

Genomics Institute (BGI) [43]. The real workload data were
collected from March 5 to March 11, 2012. The workload
included 232 339 tasks. These tasks required not only a CPU,
but also memory and I/O. The users were required to esti-
mate the resources for their tasks when submitting them to
the BGI system. This is consistent with the definition given in
Section III.

Some similar methods were compared to MIPSM. First, the
method of task classification in one previous paper was com-
bined with the interlacing peak scheduling method [19]. Here,
the tasks that required a large CPU were scheduled to the CPU
resource queue. The tasks of large memory were assigned to
the memory queue, and the tasks whose CPU and memory were
medium and small were scheduled to the I/O queue. The exper-
iments also used the FCFS algorithm in the real BGI system
and the first fit algorithm in the paper [21].

In order to evaluate the performance with different load, the
original arrival time interval of tasks was compressed to pro-
duce heavier load data than the original data. Five load data
(whose load values were 1, 1.25, 1.5, 1.75, and 2, respectively)
were selected. A load value of 1 means the original arrival time
interval, 1.25 indicated that the arrival time interval was 1/1.25
times to the original values, a value of 1.5 indicated that the

Fig. 15. Average CPU utilization with different load of real-world workload.

Fig. 16. Average memory utilization with different load of real-world
workload.

Fig. 17. Average I/O utilization with different load of real-world workload.

arrival time interval was 1/1.5 times, and so on. The results are
shown as Figs. 15–19.

In these figures, the term “real” refers to the actual data in the
real system and its load value was 1. The results showed that
the resource utilization was associated with the load. MIPSM,
a previous work, Firstfit, and LC had better performance than



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZUO et al.: MIPSM BASED ON TASKS CLASSIFICATION IN CLOUD COMPUTING 11

Fig. 18. Average response time with different load of real-world workload.

Fig. 19. Average Slowdown with different load of real-world workload.

the real system. For the average response time and slowdown,
when the load was low, the difference of all methods was small,
and they were all better than the original system and FCFS.
However, when the load was high, the average response time
and slowdown of MIPSM and of the previous work were supe-
rior to Firstfit, LC, Min–Min, and FCFS [19]. The advantage
with respect to response time of Min–Min slowly disappeared
as the load increased. This proved that task classification and
the interlacing peak scheduling method were very effective.
Besides, the method described in the previous work was slightly
worse than MIPSM [19]. This is because the task classification
in that work produced more time overhead when using k-means
clustering method in the second step [19].

VII. CONCLUSION

In cloud computing, resource load dynamics, task diver-
sity, and the differences in resource task demand can lead to
load imbalance and affect the efficiency of task scheduling and
resource utilization. In order to solve these problems, a MIPSM
is here proposed. First, tasks were divided into three queues:
1) CPU intensive; 2) I/O intensive; and 3) memory intensive.
Second, the resources were sorted according to CPU utilization
loads, I/O wait times, and memory usage. Last, three queues
of tasks were scheduled to those resources whose loads for

the corresponding metric (CPU, I/O, or memory) were lighter
than the others. This method was found to balance loads effec-
tively through theoretical verification. The simulation system
was designed to verify the performance through experimen-
tation. MIPSM was compared to the Min–Min algorithm and
the LC algorithm because the Min–Min algorithm had advan-
tages on scheduling times and the LC algorithm had advantages
on load balancing. The results showed the average response
time of MIPSM to be similar to the Min–Min algorithm when
K < N . MIPSM gradually shows its advantages when K >
N . For resource utilization, MIPSM performed slightly better
than the LC algorithm when K < N . However, MIPSM had
more advantages when K > N . The deadline violation rate of
MIPSM showed the best performance out of the three meth-
ods because MIPSM not only considered the state of tasks
but also that of resources. Consequently, it balanced loads
and improved resource utilization, especially for large num-
bers of tasks, demonstrating a greater advantage than other
methods.

REFERENCES

[1] C. Zhu, V. C. M. Leung, X. Hu, L. Shu, and L. T. Yang, “A review of key
issues that concern the feasibility of mobile cloud computing,” in Proc.
IEEE Int. Conf. Cyber, Phys., Soc. Comput. (CPSCom), 2013, pp. 769–
776.

[2] A. Beloglazov and R. Buyya, “Managing overloaded hosts for dynamic
consolidation of virtual machines in cloud data centers under quality of
service constraints,” IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 7,
pp. 1366–1379, Jul. 2013.

[3] Z. Xiao, W. Song, and Q. Chen, “Dynamic resource allocation using vir-
tual machines for cloud computing environment,” IEEE Trans. Parallel
Distrib. Syst., vol. 24, no. 6, pp. 1107–1116, Jun. 2013.

[4] J. Luo, L. Rao, and X. Liu, “Dynamic resource allocation using vir-
tual machines for cloud computing environment,” IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 3, pp. 775–784, Mar. 2014.

[5] J. Cao, K. Li, and I. Stojmenovic, “Optimal power allocation and load dis-
tribution for multiple heterogeneous multicore server processors across
clouds and data centers,” IEEE Trans. Comput., vol. 63, no. 1, pp. 45–58,
Jan. 2014.

[6] B. Prabavathy, K. Priya, and C. Babu, “A load balancing algorithm for
private cloud storage,” in Proc. 4th IEEE Int. Conf. Comput. Commun.
Netw. Technol. (ICCCNT), 2013, pp. 1–6.

[7] R. A. M. Razali, R. A. Rahman, N. Zaini, and M. Samad, “Virtual
machine migration implementation in load balancing for Cloud comput-
ing,” in Proc. 5th Int. Conf. Intell. Adv. Syst. (ICIAS), Kuala Lumpur,
Malaysia, Jun. 3–5, 2014, pp. 1–4.

[8] L. Yang et al. “Real-time tasks oriented energy-aware scheduling in vir-
tualized clouds,” IEEE Trans. Cloud Comput., vol. 2, no. 2, pp. 168–180,
Feb. 2014.

[9] C. Tsai et al. “A hyper-heuristic scheduling algorithm for cloud,” IEEE
Trans. Cloud Comput., vol. 2, no. 2, pp. 236–250, Feb. 2014.

[10] P. P. Hung, T. A. Bui, and E. N. Huh, “A new approach for task scheduling
optimization in mobile cloud computing,” in Frontier and Innovation in
Future Computing and Communications, New York, NY, USA: Springer,
2014, pp. 211–220.

[11] T. Xiao et al. “A novel security-driven scheduling algorithm for
precedence-constrained tasks in heterogeneous distributed systems,”
IEEE Trans. Comput., vol. 60, no. 7, pp. 1017–1029, Jul. 2011.

[12] Z. Tang et al. “A self-adaptive scheduling algorithm for reduce start
time,” Future Gener. Comput. Syst., vol. 43, no. 6, pp. 51–60, Jun. 2015.

[13] S. Di, C. Wang, and F. Cappello, “Adaptive algorithm for minimizing
cloud task length with prediction errors,” IEEE Trans. Cloud Comput.,
vol. 2, no. 2, pp. 194–206, Feb. 2014.

[14] Y. Wang and W. Shi, “Budget-driven scheduling algorithms for batches of
MapReduce jobs in heterogeneous clouds,” IEEE Trans. Cloud Comput.,
vol. 2, no. 3, pp. 306–319, Mar. 2014.

[15] Q. Zhang, M. F. Zhani, R. Boutaba, and J. H. L. Hellerstein,
“HARMONY: Dynamic heterogeneity? Aware resource provisioning in
the cloud,” in Proc. 33rd IEEE Int. Conf. Distrib. Comput. Syst., 2013,
pp. 511–519.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE SYSTEMS JOURNAL

[16] B. Xu, C. Zhao, E. Hu, and B. Hu, “Job scheduling algorithm based on
Berger model in cloud environment,” Adv. Eng. Softw., vol. 42, no. 4,
pp. 419–425, Apr. 2011.

[17] Q. Zhang, J. L. Hellerstein, and R. Boutaba, “Characterizing task usage
shapes in Google’s compute clusters,” in Proc. Large Scale Distrib. Syst.
Middleware Workshop (LADIS), 2011, pp. 1–6.

[18] I. S. Moreno, P. Garraghan, P. Townend, and J. Xu, “An approach for
characterizing workloads in Google cloud to derive realistic resource uti-
lization models,” in Proc. 7th IEEE Int. Symp. Serv.-Oriented Syst. Eng.,
2013, pp. 49–60.

[19] A. K. Mishra, J. L. Hellerstein, W. Cirne, and C. R. Das, “Towards
characterizing cloud backend workloads: insights from Google compute
clusters,” in ACM SIGMETRICS Perform. Eval. Rev., vol. 37, no. 4,
pp. 34–41, Mar. 2010.

[20] A. Khan, X. Yan, S. Tao, and N. Anerousis, “Workload characterization
and prediction in the cloud: A multiple time series approach,” in Proc.
IEEE Netw. Oper. Manage. Symp. (NOMS), 2012, pp. 1287–1294.

[21] M. Schwarzkopf and A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: flexible, scalable schedulers for large compute clusters,” in
Proc. 8th ACM Eur. Conf. Comput. Syst., 2013, pp. 351–364.

[22] B. Tripathy, S. Dash, and S. K. Padhy, “Dynamic task scheduling using
a directed neural network,” J. Parallel Distrib. Comput., vol. 75, no. 1,
pp. 101–106, Jan. 2015.

[23] H. Topcuoglu, S. Hariri, and M. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,” IEEE
Trans. Parallel Distrib. Syst., vol. 13, no. 3, pp. 260–274, Mar.
2002.

[24] C. C. Li and K. Wang, “An SLA-aware load balancing scheme for
cloud datacenters,” in Proc. IEEE Int. Conf. Inf. Netw. (ICOIN), 2014,
pp. 56–63.

[25] M. Mesbahi, A. M. Rahmani, and A. T. Chronopoulos, “Cloud light
weight: A new solution for load balancing in cloud computing,” in Proc.
Int. Conf. Data Sci. Eng. (ICDSE), 2014, pp. 44–50.

[26] Y. F. Wen and C. L. Chang, “Load balancing job assignment for cluster-
based cloud computing,” in Proc. 6th IEEE Int. Conf. Ubiq. Future Netw.
(ICUFN), 2014, pp. 199–204.

[27] T. Wang et al. “Load balancing task scheduling based on genetic algo-
rithm in cloud computing,” in Proc. 12th IEEE Int. Conf. Depend., Auton.
Secure Comput. (DASC), 2014, pp. 146–152.

[28] H. Chen et al. “User-priority guided Min-Min scheduling algorithm
for load balancing in cloud computing,” in Proc. Natl. Conf. Parallel
Comput. Technol. (PARCOMPTECH), 2013, pp. 1–8.

[29] V. Behal and A. Kumar, “Cloud computing: Performance analysis of
load balancing algorithms in cloud heterogeneous environment,” in Proc.
5th Int. Conf. Confluence Next Gener. Inf. Technol. Summit (Confluence),
2014, pp. 200–205.

[30] K. A. Nuaimi et al. “A survey of load balancing in cloud computing:
Challenges and algorithms,” in Proc. 2nd Symp. Netw. Cloud Comput.
Appl. (NCCA), 2012, pp. 137–142.

[31] M. A. Rodriguez and R. Buyya, “Deadline based resource provision-
ing and scheduling algorithm for scientific workflows on clouds,” IEEE
Trans. Cloud Comput., vol. 2, no. 2, pp. 222–235, Feb. 2014.

[32] M. Hu and B. Veeravalli, “Dynamic scheduling of hybrid real-time tasks
on clusters,” IEEE Trans. Comput., vol. 63, no. 12, pp. 2988–2997, Dec.
2014.

[33] K. Li and X. Tang, “Energy-efficient stochastic task scheduling on hetero-
geneous computing systems,” IEEE Trans. Parallel Distrib. Syst., vol. 25,
no. 11, pp. 2967–2876, Nov. 2014.

[34] P. Agrawal and S. Rao, “Energy-aware scheduling of distributed sys-
tems,” IEEE Trans. Autom. Sci. Eng., vol. 11, no. 4, pp. 1163–1175, Apr.
2014.

[35] J. Mei, K. Li, and K. Li, “Energy-aware task scheduling in heterogeneous
computing environments,” Cluster Comput., vol. 12, no. 2, pp. 537–550,
Feb. 2014.

[36] R. Duan, R. Prodan, and X. Li, “Multi-objective game theoretic schedul-
ing of bag-of-tasks workflows on hybrid clouds,” IEEE Trans. Cloud
Comput., vol. 2, no. 1, pp. 29–42, Jan. 2014.

[37] Z. Liu et al. “Resource preprocessing and optimal task scheduling
in cloud computing environments,” Concurrency Comput. Pract. Exp.,
vol. 31, no. 2, pp. 1–22, Feb. 2014.

[38] Q. Zhu and G. Agrawal, “Resource provisioning with budget constraints
for adaptive applications in cloud environments,” IEEE Trans. Serv.
Comput., vol. 5, no. 4, pp. 497–511, May 2011.

[39] R. N. Calheiros, R. Ranjan, A. Beloglazov, A. F. Cesar, R. De, and
R. Buyya, “CloudSim: A toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algo-
rithms,” Softw. Pract. Exper., vol. 41, no. 1, pp. 23–50, 2011.

[40] G. Liu, J. Li, and J. Xu, “An improved min-min algorithm in cloud
computing,” in Proc. Int. Conf. Modern Comput. Sci. Appl., 2013,
pp. 47–52.

[41] C. Zhu, X. Li, V. C. M. Leung, X. Hu, and L. T. Yang, “Job scheduling
for cloud computing integrated with wireless sensor network,” in Proc.
6th IEEE Int. Conf. Cloud Comput. Technol. Sci. (CloudCom), 2014,
pp. 62–69.

[42] Z. Yang, L. Huang, and M. Xiao, “Flow-based transmission scheduling in
constrained delay tolerant networks,” J. Comput., vol. 7, no. 1, pp. 179–
186, 2012.

[43] Z. Cao, S. Dong, B. Wang, and L. Zuo, “Workload analysis and modeling
of high performance computing trace of biological gene sequencing,” J.
Softw., vol. 25, no. S2, pp. 90–100, 2014.

[44] G. Han, Y. Dong, H. Guo, L. Shu, and D. Wu, “Cross-layer optimized
routing in wireless sensor networks with duty-cycle and energy harvest-
ing,” Wireless Commun. Mobile Comput., vol. 15, no. 16, pp. 1957–1981,
2015.

[45] G. Han, W. Que, G. Jia, and L. Shu, “An efficient virtual machine con-
solidation scheme for multimedia cloud computing,” JSensors, vol. 16,
no. 2, pp. 1–17, 2016.

Liyun Zuo received the B.S. degree in engineer-
ing and management from Zhengzhou University,
Zhengzhou, China, in 2003, and the M.S. degree
in computer science from Huazhong University of
Science and Technology (HUST), Wuhan, China, in
2006. Currently, she is pursuing the Ph.D. degree
in computer science and engineering at South China
University of Technology (SCUT), Guangzhou,
China, from September 2013.

She is an Associate Professor with Guangdong
University of Petrochemical Technology, Maoming,

China. Her research interests include cloud computing, resource evaluation, and
scheduling optimization.

Shoubin Dong received the Ph.D. degree in elec-
tronic engineering from the University of Science and
Technology of China (USTC), in 1994.

She is a Professor with the School of Computer
Science and Engineering, South China University of
Technology (SCUT), Guangzhou, China. She was a
Visiting Scholar at the School of Computer Science,
Carnegie Mellon University (CMU), Pittsburgh, PA,
USA, from 2001 to 2002. She is currently the Deputy
Director of Communication and Computer Network
Laboratory (CCNL), Guangdong Province, China.

Her research interests include high-performance computing, big data process-
ing, and next generation Internet.

Lei Shu (M’07–SM’16) received the Ph.D. degree in
computer engineering from the National University
of Ireland, Galway, Ireland, in 2010. Until March
2012, he was a Specially Assigned Researcher with
the Department of Multimedia Engineering, Graduate
School of Information Science and Technology,
Osaka University, Suita, Japan. Since October 2012,
he has been a Full Professor with Guangdong
University of Petrochemical Technology, Maoming,
China. Since 2013, he has been serving as a
Ph.D. Supervisor at Dalian University of Technology,

Dalian, China, and as a Master Supervisor Beijing University of Posts and
Telecommunications, Beijing, China. Meanwhile, he is also working as the
Vice-Director of the Guangdong Provincial Key Laboratory of Petrochemical
Equipment Fault Diagnosis, Maoming, China. He is the Founder of Industrial
Security and Wireless Sensor Networks Laboratory. He has authored more
than 200 papers in related conferences, journals, and books. His current H-
index is 17. His research interests include wireless sensor networks, multimedia
communication, middleware, security, and fault diagnosis.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZUO et al.: MIPSM BASED ON TASKS CLASSIFICATION IN CLOUD COMPUTING 13

Dr. Shu is a member of European Alliance for Innovation (EAI), and
Association for Computing Machinery (ACM). He is serving as the Editor in
Chief for EAI Endorsed Transactions on Industrial Networks and Intelligent
Systems, and an Associate Editor for a number of famous international jour-
nals. He served as a Co-Chair for more than 50 various for international
conferences/workshops, e.g., IEEE International Wireless Communications &
Mobile Computing Conference (IWCMC), IEEE International Conference on
Communications (ICC), IEEE Symposium on Computers and Communications
(ISCC), IEEE International Conference on Computing, Networking, and
Communications (ICNC), Chinacom, especially the Symposium Co-Chair
for IWCMC 2012, ICC 2012, the General Chair for Chinacom 2014,
Qshine 2015, the Steering Chair for InisCom 2015; TPC members of
more than 150 conferences, e.g., International Conference on Distributed
Computing in Sensor Systems (DCOSS), IEEE International Conference on
Mobile Ad hoc and Sensor Systems (MASS), ICC, Globecom, International
Conference on Computer Communication and Networks (ICCCN), IEEE
Wireless Communications and Networking Conference (WCNC), ISCC. He
was the recipient of the Globecom 2010 and ICC 2013 Best Paper Award.

Chunsheng Zhu (S’12) received the B.E. degree
in network engineering from Dalian University
of Technology, Dalian, China, in 2010, and the
M.Sc. degree in computer science from St. Francis
Xavier University, Antigonish, NS, Canada, in 2012.
Currently, he is pursuing the Ph.D. degree in electrical
and computer engineering at the University of British
Columbia, Vancouver, BC, Canada, from September
2012.

He has more than 50 published or accepted papers
by refereed international journals (e.g., the IEEE

TRANSACTIONS ON INDUSTRIAL ELECTRONICS, the IEEE TRANSACTIONS

ON COMPUTERS, IEEE TRANSACTIONS ON INFORMATION FORENSICS AND

SECURITY, IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING,
IEEE SYSTEMS JOURNAL, IEEE ACCESS) and conferences (e.g., IEEE
Globecom, IEEE ICC). His research interests include wireless sensor networks
and cloud computing.

Guangjie Han (S’03–M’05) received the Ph.D.
degree in computer science from the Northeastern
University, Shenyang, China, in 2004.

Currently, he is a Professor with the Department
of Information and Communication System, Hohai
University, Nanjing, China. He was also a Visiting
Research Scholar at Osaka University, Suita, Japan,
from 2010 to 2011. He was a Post-Doctoral
Researcher of Computer Science with Chonnam
National University, Gwangju, Korea, in February
2008. He worked with ZTE Company, Shenzhen,

China, from 2004 to 2006, where he held the position of Product Manager.
He has authored more than 100 papers in related international conferences and
journals. He holds 37 patents. He has served as a reviewer of more than 50 jour-
nals. His research interests include sensor networks, computer communications,
mobile cloud computing, multimedia communication, and security.

Dr. Han is a member of ACM. He has served in the editorial board of up to
seven international journals, including Journal of Internet Technology and KSII
Transactions on Internet and Information Systems. He has served as a Co-Chair
for more than 20 international conferences/workshops; a TPC member of more
than 50 conferences.


