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While the Taylor–Melcher electrohydrodynamic model entails ionic charge carriers, it
addresses neither ionic transport within the liquids nor the formation of diffuse space-
charge layers about their common interface. Moreover, as this model is hinged upon
the presence of nonzero interfacial-charge density, it appears to be in contradiction with
the aggregate electro-neutrality implied by ionic screening. Following a brief synopsis
published by Baygents & Saville (Third International Colloquium on Drops & Bubbles,
vol. 7, 1989, p. 7) we systematically derive here the macroscale description appropriate
for leaky dielectric liquids, starting from the primitive electrokinetic equations and ad-
dressing the double limit of thin space-charge layers and strong fields. This derivation
is accomplished through the use of matched asymptotic expansions between the narrow
space-charge layers adjacent to the interface and the electro-neutral bulk domains, which
are homogenized by the strong ionic advection. Electrokinetic transport within the elec-
trical ‘triple layer’ comprising the genuine interface and the adjacent space-charge layers
is embodied in effective boundary conditions; these conditions, together with the simpli-
fied transport within the bulk domains, constitute the requisite macroscale description.
This description essentially coincides with the familiar equations of Taylor & Melcher
(Annu. Rev. Fluid Mech., vol. 1, 1969, p. 111). A key quantity in our macroscale de-
scription is the ‘apparent’ surface-charge density, provided by the transversely-integrated
triple-layer microscale charge. At leading order, this density vanishes due to the expected
Debye-layer screening; its asymptotic correction provides the ‘interfacial’ surface-charge
density appearing in the Taylor–Melcher model. Our unified electrohydrodynamic treat-
ment provides a reinterpretation of both the Taylor–Melcher conductivity-ratio param-
eter and the electrical Reynolds number. The latter, expressed in terms of fundamental
electrokinetic properties, becomes O(1) only for intense applied fields, comparable with
the transverse field within the space-charge layers; at this limit, however, the asymp-
totic scheme collapses. Surface-charge advection is accordingly absent in the macroscale
description. Because of the inevitable presence of (screened) net charge on the genuine
interface, the drop also undergoes electrophoretic motion. The associated flow, however,
is asymptotically smaller than that corresponding to the the Taylor–Melcher circulation.
Our successful matching procedure contrasts the analysis of Baygents & Saville (1989),
who considered more general electrolytes and were unable to directly match the inner
and outer regions. We discuss this difference in detail.

1. Introduction

The Taylor–Melcher leaky dielectric model describes electrohydrodynamic phenom-
ena in poorly conducting liquids. In this model, volumetric charge is completely absent.
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The liquids are described as dielectric materials that nonetheless possess finite Ohmic
conductivities; this description reflects Taylor’s realisation (1966) that, however small
their conductivity is, poorly conducting liquids are fundamentally different from per-
fect dielectrics. Specifically, rather then satisfying the interfacial condition of electric-
displacement continuity, pertinent to dielectric liquids, the electric-field distribution is
set at steady state by the condition of electric-current continuity. With the inevitable
jump in the electric displacement, the field distribution satisfying the latter condition
is generally accompanied by a nonzero surface-charge distribution at the interface. The
electrical shear forces acting on the charged interface then give rise to fluid motion.
The model put forward by Taylor (1966) in the context of electrohydrodynamic drop

deformation was revisited by Melcher & Taylor (1969), and has since been the basis
for numerous investigations in electrohydrodynamic phenomena (Feng & Scott 1996;
Feng 1999; Craster & Matar 2005; Salipante & Vlahovska 2014). The interfacial current-
continuity condition was generalized to account for surface convection of charge, whose
relative magnitude is quantified by the electric Reynolds number. Taylor’s analysis, where
surface convection is neglected, thus corresponds to low values of this dimensionless
group. In this limit, and for a specified interface geometry, the electrostatic problem
is decoupled from the flow, satisfying a linear problem. This allows for straightforward
analytic solutions.
The charge carriers in the leaky dielectric model are accounted for only through the

prescription of (uniform) liquid conductivities. Thus, the Taylor–Melcher scheme avoids
the need to account for ionic transport — a nonlinear mechanism underlying electroki-
netic phenomena (Saville 1977). Analysis of leaky dielectric and electrokinetic flows have
therefore evolved more-or-less independently, with the two scientific communities being
essentially foreign.
Since the charge carriers in leaky dielectric liquids are typically ions (Saville 1997), a

troubling question arises. It is well known that the presence of charged interfaces in an
ion-carrying liquid results in the formation of adjacent diffuse (‘Debye’) layers, within the
liquid, of charge opposite to that on the interface. Since the Taylor–Melcher model does
not allow for volumetric charges, these two layers are absent in it. Moreover, it is not a
priori evident whether the surface-charge density appearing in the Taylor–Melcher model
may be viewed as a coarse-grained aggregate quantity, namely the ‘apparent’ charge of
the combined triple-layer system: after all, one might actually expect that this apparent
charge would vanish by screening.
This paradox, along with additional ambiguities in the Taylor–Melcher model, empha-

sizes the need for a unified electrohydrodynamic approach, starting from the fundamental
electrokinetic description. Our goal is to address this challenge in the context of Taylor’s
classical problem: a spherical drop in a uniform field. To account for the passage of cur-
rent through the drop interface, as postulated by Taylor, the physicochemical model of
the interface must allow for sorption of the charge carriers — here being simply the salt
ions. By applying an asymptotic limit which properly represents ‘leaky dielectric liquids,’
a systematic analysis would reveal whether the Taylor–Melcher model indeed emerges.
Since leaky dielectric liquids are poor conductors, their microscale description typi-

cally involves small ionic concentrations. Saville (1997) provides the characteristic value
10−7 m for the corresponding Debye thickness (see (4.7)). In electrokinetic phenomena
involving colloidal particles, this estimate is easily comparable with particle size; when
considering drops, however, which can reach millimeters in size, this estimate actually
suggests considering the limit where the ratio δ of Debye thickness to drop size is ex-
ceedingly small. This asymptotic limit has been extensively studied in the context of
electrokinetic phenomena involving solid particles (Morrison 1970; Derjaguin & Dukhin
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1974; O’Brien 1983; Anderson 1989; Schnitzer & Yariv 2012a), ion-selective granules
(Ben, Demekhin & Chang 2004; Yariv 2010), metal drops (Ohshima, Healy & White
1984; Schnitzer, Frankel & Yariv 2013a), and gas bubbles (Schnitzer, Frankel & Yariv
2014).
Another fundamental parameter appearing in the electrokinetic problem is the ratio

β of the drop-scale voltage associated with the applied field and the thermal voltage (≈
25 mv), see (4.35). For electrokinetic phenomena about small colloidal particles, Saville
(1977) provides the typical value 5×10−4 for β. This estimate assumes a particle of radius
0.1 µm in a field of magnitude 10 V cm−1; electrokinetic effects are observed also with
slightly larger particles and stronger fields allowing for β = O(1). Much larger β values
are found for drops in leaky dielectric fluids. These large values of the dimensionless field
are not only due to the large length scales, but also due to the strong fields which are
typically applied. Thus Saville (1997) provides the typical figure 103 corresponding to a
drop of millimetric size exposed to an electric field of magnitude 103 Vcm−1. The limit
δ ≪ 1 must therefore be accompanied by the limit β ≫ 1.
The above twofold limit was first employed in a short synopsis by Baygents & Saville

(1989). Specifically, Baygents & Saville (1989) considered the limit

1 ≪ β ≪ 1/δ, (1.1)

and applied it to a relatively standard electrokinetic model, where the microscale trans-
port of ions through the interface is modelled through simple sorption kinetics. (For the
above mentioned scenario of a millimetric drop in a strong electric field, (1.1) requires
a Debye length ≪ µm.) The fluid domain was asymptotically decomposed into ‘inner’
diffuse-charge layers, of O(δ) thickness, and ‘outer’ bulk regions, which are homogenized
by the intense ionic advection. Baygents & Saville (1989) were unable to directly match
the inner and outer regions, and suggested that a separate analysis of an intermediate
layer, of thickness 1/β, is required. The resulting matching procedure, however, is not
provided in that concise synopsis, nor is the consequent macroscale description. Baygents
& Saville (1989) do provide the eventual flow field, which is the same as that calculated
by Taylor (1966).
In the present paper we revisit the Baygents–Saville approach. We employ the same

microscale electrokinetic model used by Baygents & Saville (1989), which for the purpose
of brevity and clarity is here limited to binary electrolytes. In this case, we do manage
to match the inner and outer regions, and thereby obtain a macroscale ‘coarse-grained’
description, where the Debye-layer physics appear as effective boundary conditions. This
description closely resembles the equations outlined by Melcher & Taylor (1969), but with
several important differences. These include the absence of charge convection, the re-
interpretation of the conductivity-ratio parameter of Taylor (1966), and the appearance
of electrophoretic drop motion at a higher asymptotic order.
Our paper is constructed as follows. Following a physical description of the problem

in §2, we provide in §3 intuitive arguments, describing how coarse graining an electroki-
netic model can give rise to a leaky-dielectric-type model. We then shift to a systematic
treatment of the problem, formulating in §4 a microscale problem using the ab ini-

tio electrokinetic description, following Baygents & Saville (1989). In §5 we apply the
Baygents–Saville limit (1.1), and derive the outer-bulk description. The diffuse-charge
layers are described and analysed at leading order in §6. The analysis of the subsequent
asymptotic order is carried out in §7, where an asymptotic matching procedure provides
the requisite effective boundary conditions. The resulting macroscale model is recapit-
ulated in §8 using the familiar leaky dielectric scaling. In §9 we discuss the surprising
differences between our analysis and those in the synopsis of Baygents & Saville (1989).
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We conclude in §10, discussing at length the unique features of the macroscale description
we obtain, and in particular the differences with the Taylor–Melcher model.
To the best of our knowledge, the work of Baygents & Saville (1989) is the only attempt

to derive the equivalent of Taylor–Melcher model from the more primitive electrokinetic
description using the limit process appropriate for describing leaky dielectric liquids.
Our analysis, which succeeds in deriving such a macroscale model, provides a major step
towards a unified treatment of electrohydrodynamics.

2. Physical problem

We consider essentially the same physicochemical problem as Baygents & Saville
(1989), motivated by the prototypic problem addressed by Taylor (1966). An immiscible
liquid drop of radius a∗ (dimensional quantities are decorated hereafter with an asterisk)
is suspended in another liquid. The viscosity and dielectric permittivity of the suspend-
ing liquid are respectively denoted µ∗ and ǫ∗; consistently with the original notation of
Taylor (1966), the viscosity and dielectric permittivity of the suspended drop are respec-
tively denoted µ∗/M and ǫ∗/S. For simplicity we consider symmetric electrolytes with
ionic valencies ±z; the two ionic species then possess an identical equilibrium concen-
tration (say C∗) at large distances away from the drop. The ionic diffusivites of cations
and anions within the suspending liquid are respectively denoted D±

∗ ; in view of the
Einstein–Smoluchowski relation, the respective diffusivities within the drop are MD±

∗ .
As in Baygents & Saville (1989), passage of current through the interface is made possible
by assuming that the ions undergo sorption there. Specifically, we employ the simplest
possible model of fast reactions, where the excess-surface concentration is proportional
to that in the solution.
A uniform and constant Electric field of magnitude E∗ is externally applied. Our interest

is in the steady-state flow which is reached in a reference frame co-moving with the drop.
As in Taylor (1966), we assume that capillary forces are strong enough so the drop
remains approximately spherical.
The only difference between the preceding problem and that considered by Baygents

& Saville (1989) is the limitation to a binary electrolyte.

3. Intuitive overview

It is useful to precede the detailed asymptotic treatment provided in the next sections
with an intuitive outline of some of the main results. In what follows, we employ heuristic
assumptions and gross approximations; all these are clarified and substantiated in the
systematic analysis appearing in the following sections.
As explained in §2, we assume sorption kinetics in the physicochemical model of the

interface, so as to allow for the passage of current. An inevitable consequence of that
model is the existence of interfacial charge, even in the absence of an applied field. This
‘equilibrium’ charge is screened by two diffuse-charge layers on both sides of the interface.
Their characteristic thickness 1/κ∗ is assumed thin compared with drop size a∗. Following
standard electrokinetic descriptions in the thin-double-layer limit (Schnitzer & Yariv
2012a) it is expected that the ions in the two diffuse layers are Boltzmann distributed
with the electric potential satisfying the one-dimensional Poisson–Boltzmann equations;
this triple-layer structure trivially generalizes the familiar Gouy–Chapman structure of
the electrical double layer. Using traditional notation we denote the potential difference,
at equilibrium, between the interface and the outer edges of the external and internal
diffuse-charge layers by ζ∗ and ζ̄∗, respectively. These are of the order of the thermal
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Figure 1. Schematic accompanying the intuitive overview of §3. Description from right to left: (i)
Asymmetric ionic sorption implies an ‘equilibrium’ interfacial charge, screened by two adjacent
diffuse layers. Sorption also allows electric currents associated with the applied field to pass
through the compound Taylor–Melcher interface, while resulting in only a slight perturbation
to the triple-layer structure. (ii) Gauss law on the depicted control-volume reveals that the
perturbed triple layer deviates from electro-neutrality. The overall, or apparent, charge per unit
area is Λ∗. (iii) The tangential field is approximately uniform on the Debye scale. Its action
on the apparent charge, itself induced by the field, results in a macroscopic stress jump which
drives the dominant flow field. (iv) The action of the field on the equilibrium charge distribution
results in steep electro-osmotic flow profiles. While this flow, and the macroscopic slip it entails,
is relatively weak, the viscous shear inflicted on the microscopic interface is strong. It is exactly
balanced by the interfacial electric stress associated with the equilibrium surface-excess ion
concentration.

voltage ϕ∗ = k∗T∗/ze∗ (k∗T ∗ being the Boltzmann temperature and e∗ the elementary
charge). We consider the limit where applied field is large compared with thermal scale
ϕ∗/a∗ but is nonetheless small compared with the transverse field in the narrow Debye
layers, which is of order κ∗ϕ∗:

ϕ∗

a∗
≪ E∗ ≪ κ∗ϕ∗. (3.1)

This assumption is represented by the Baygents–Saville limit (1.1) mentioned above.
We start with the effect of the applied field on the bulk liquid domains lying outside

the two diffuse-charge layers. These domains are approximately electro-neutral, with the
cation and anion concentrations being nearly identical. The ionic concentration is uniform
far away from the drop. In principle, concentration polarization on the drop scale may
by triggered by effective ‘surface’ currents which originate at the Debye-scale transport.
The extent and topology of such concentration non-uniformities are determined by a
balance between diffusion and advection by the field-induced flow, characterised by the
velocity scale U∗. With the applied field assumed strong, it is plausible that the flow is
strong as well, in the sense that the Péclet number Pe = a∗U∗/D∗ is large, D∗ being a
characteristic diffusivity. Thus, the ionic concentration is dominated by advection, and
possesses uniform values in the external and internal bulk domains. The concentration
value in the suspending liquid is simply given by the far-field concentration, namely c∗; the
drop concentration, say c̄∗, is generally different. Thus, bulk concentration polarization
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effects, often important in electrokinetic analyses (Chu & Bazant 2006; Mani & Bazant
2011; Schnitzer et al. 2013b), are here prevented by the dominance of advection. The
concentration deviations triggered by Debye-scale fluxes are confined to thin diffusive
layers where the concentration deviations from the respective bulk values are small.
It follows that the bulk fluid domains can be regarded as ‘Ohmic’ media of uniform
conductivities. In particular, the current density in the external bulk domain is, using
the Einstein–Smoluchowski relation,

z2e2∗(D
+
∗ +D−

∗ )

k∗T ∗
c∗E∗, (3.2)

where E∗ denotes the local electric field. The current density in the internal bulk domain
is similar, with Mc̄∗Ē∗ replacing c∗E∗, Ē∗ denoting the local field value.
With the Ohmic form (3.2), charge conservation in the bulk implies that the electric

potentials of the conservative fields E∗ and Ē∗ satisfy Laplace’s equation. To obtain ap-
propriate boundary conditions, we consider the conservation of charge in an infinitesimal
slab-shaped control volume spanning the triple layer. Assuming that the contribution of
tangential advection is small, we obtain an equality of radial bulk currents

c∗E∗ · êr ≈Mc̄∗Ē∗ · êr, (3.3)

where the fields E∗ and Ē∗ are evaluated at the outer edges of the external and inter-
nal diffuse layers, respectively, and êr is a unit vector in the radial direction. Assuming
furthermore that the tangential component of the electric field is approximately transver-
sally uniform across the triple layer, we find that the tangential component of the bulk
field is continuous across the ‘macroscale interface.’ Condition (3.3), in conjunction with
that continuity condition, serves to uniquely determine the bulk electric fields. Upon iden-
tifying Mc̄∗/c∗ with the conductivity ratio R, these are the same as the fields calculated
by Taylor (1966).
Since the applied field is assumed small compared with the Debye-layer field, the

perturbation to the equilibrium Debye cloud due to passage of current is small. This
perturbation however is crucial since it results in a nonzero transversely-integrated triple-
layer charge: it is the action of the applied field on this ‘apparent’ non-equilibrium surface
charge that gives rise to the dominant flow field. Indeed, applying the integral form of
Gauss law to the same slab-shaped control volume yields the apparent charge

Λ∗ ≈ ǫ∗E∗ · êr − S−1ǫ∗Ē∗ · êr, (3.4)

which is generally nonzero. In accordance with our underlying assumption (3.1) on the
applied-field magnitude, the O(ǫ∗E∗) magnitude of that charge is small compared with the
O(ǫ∗ϕ∗κ∗) equilibrium triple-layer charge. Due to screening, however, the latter trivially
vanishes. Given the assumption of a uniform tangential field in the triple layer, we find
that the dominant flow is animated by the action of that field upon the perturbation to the
equilibrium Debye cloud. We re-emphasize that the apparent charge is not concentrated
on the genuine interface, but is radially distributed, corresponding to a perturbation to
both the charge density in the two diffuse layers, and to the amount of adsorbed charge
at the interface. Its distribution is not provided by the above argument, nor is it required
when going on to determine the leading-order flow field.
Indeed, consider once again the same slab-shaped control volume. This time we employ

a integral tangential-momentum balance. Ignoring the stresses acting on the side panels,
this balance states that the macroscale jump τ∗− τ̄∗ of the viscous shear stress is provided
by the overall tangential electric force. Since the tangential field is approximately uniform
across the triple layer, this force is just the product of the field and the total charge in
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the control volume, i.e. the apparent charge Λ∗. Thus,

τ∗ − τ̄∗ ≈ −Λ∗E∗ · êθ, (3.5)

where êθ is a unit vector in the θ-direction. This is just the stress jump appearing in the
leaky dielectric model, and as such it implies the familiar scale U∗ = ǫ∗a∗E

2
∗/µ

∗.
To determine the flow field, an additional macroscale condition is required. Given the

action of the tangential field on the equilibrium Debye cloud, one may náıvely postulate
conclude that the missing condition is on of electro-osmotic slip. Indeed, while the action
of the applied field on the screened ‘equilibrium’ charge does not result in a macroscale
stress jump, it does result in a steep velocity profile that varies rapidly on the Debye scale
and appears on the macroscale as a finite jump in the tangential velocity component.
Electrokinetic theory implies however that the magnitude of that slip is O(ǫ∗ϕ∗E∗/µ∗);
its ratio to the Taylor–Melcher velocity scale is ϕ∗/a∗E∗, asymptotically small under
assumption (3.1). It thus follows that on the macroscale (3.5) should be supplemented
by a velocity continuity condition. The macro-flow problem thus coincides with that
specified by Melcher & Taylor (1969).
It should be noted that the electro-osmotic slip gives rise to a small electrophoretic

motion, which is of course absent in Taylor–Melcher model. It is also interesting to note
that the Debye-scale electrokinetic flow exerts viscous stresses on the genuine interface
which are stronger than (3.5). These strong stresses are however exactly balanced by the
(equally strong) microscale electric stress associated with the action of the applied field
on the charged interface. The macroscale stress-jump appearing in (3.5) thus represents a
delicate balance of the perturbed stresses at the microscopic interface. This is compatible
with the absence of electrokinetic parameters (such as the zeta potentials) in (3.5).
The goal of the preceding description, which is quite rough, is to provide an intuitive

physical picture of the linkage between transport on the micro- and macroscale. This
picture should hopefully aid the reader in following the mathematical analysis detailed
in the sections that follow. We now turn to that analysis, starting with the systematic
formulation of the physical problem described in §2.

4. Problem formulation

We employ a dimensionless notation, using the standard electrokinetic scaling (Sav-
ille 1977). Length variables are normalised by a∗, ionic concentrations by C∗, electric
potentials by the thermal voltage

ϕ∗ =
k∗T∗
ze∗

(4.1)

(wherein k∗T∗ is the Boltzmann temperature and e∗ the elementary charge), stress vari-
ables by the Maxwell scale ǫ∗ϕ

2
∗/a

2
∗, and velocity variables by ǫ∗ϕ

2
∗/µ∗a∗.

4.1. Differential equations

The pertinent variables in the suspending liquid are the ionic concentration c±, the
electric potential ϕ, and the velocity field u. These are governed by the differential
equations of the standard electrokinetic model:
(a) Nernst–Planck ion conservation,

∇ · j± + α±u · ∇c± = 0, (4.2)

wherein the molecular fluxes of cations and anions, respectively normalised by D±
∗ C∗/a∗,



8 O. Schnitzer and E. Yariv

are due to diffusion and electro-migration,

j± = −∇c± ∓ c±∇ϕ. (4.3)

The ion drag coefficients

α± =
ǫ∗ϕ

2
∗

µ∗D
±
∗

(4.4)

appearing in (4.2) are independent of both the drop size a∗ and reference concentration
C∗. Moreover, because of the Stokes–Einstein relations, they are actually independent of
the liquid viscosity µ∗; rather, they are simply proportional to the size of the ions. For
typical ions in aqueous solutions, α± . 0.5 (Saville 1977).
(b) Poisson’s equation,

−2δ2∇2ϕ = c+ − c−, (4.5)

wherein

δ =
1

κ∗a∗
(4.6)

is the dimensionless Debye thickness, in which the Debye width 1/κ∗ is defined by

κ2∗ =
2ze∗C∗
ǫ∗ϕ∗

. (4.7)

(c) Stokes equations, subject to Coulomb body forces,

∇ · u = 0, ∇p = ∇2u+∇2ϕ∇ϕ, (4.8a, b)

where p is the pressure field.
Within the drop we denote the ionic concentrations by c̄±, the electric potential by

ϕ̄, and the fluid velocity by ū. These fields are governed by the following differential
equations:
(a) Nernst–Planck ion conservation,

∇ · j̄
±
+ α±ū · ∇c̄± = 0, (4.9)

where the molecular fluxes are again normalised by D±
∗ C∗/a∗:

j̄
±
=M

(

∓c̄±∇ϕ̄−∇c̄±
)

. (4.10)

(b) Poisson’s equation,

−2δ2S−1∇2ϕ̄ = c̄+ − c̄−. (4.11)

(c) Stokes equations, subject to Coulomb body forces,

∇ · ū = 0, ∇p̄ =M−1∇2ū+ S−1∇2ϕ̄∇ϕ̄, (4.12a, b)

wherein p̄ is the drop-phase pressure field.

4.2. Alternative formulation

An alternative description is obtained through the use of the mean (‘salt’) concentration
(normalised by C∗) and volumetric charge density (normalised by 2ze∗C∗)

c =
1

2
(c+ + c−), q =

1

2
(c+ − c−), (4.13a, b)

instead of the ionic concentrations c±. The ‘salt flux’ and ‘current density,’ defined by

j =
j+ + j−

2
, i =

j+ − j−

2
, (4.14a, b)
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then adopt the forms (see (4.3))

j = −∇c− q∇ϕ, i = −∇q − c∇ϕ. (4.15a, b)

(Because j± are normalised by different quantities, the quantities j and i do not possess
the meaning of true flux quantities. Nonetheless, their use is convenient.) Mutual addition
and subtraction of (4.2) yields the respective salt- and charge-conservation equations,

∇ · j +
α+ + α−

2
u · ∇c+

α+ − α−

2
u · ∇q = 0, (4.16)

∇ · i+
α+ − α−

2
u · ∇c+

α+ + α−

2
u · ∇q = 0. (4.17)

Note that Poisson’s equation (4.5) now reads

q = −δ2∇2ϕ. (4.18)

Within the drop, the corresponding quantities

j̄ =
j̄
+
+ j̄

−

2
, ī =

j̄
+
− j̄

−

2
(4.19a, b)

adopt the respective forms (see (4.10))

j̄ =M(−∇c̄− q̄∇ϕ̄), ī =M(−∇q̄ − c̄∇ϕ̄). (4.20a, b)

Mutual addition and subtraction of (4.9) yields here the analogs of (4.16)–(4.17),

∇ · j̄ +
α+ + α−

2
ū · ∇c̄+

α+ − α−

2
ū · ∇q̄ = 0, (4.21)

∇ · ī+
α+ − α−

2
ū · ∇c̄+

α+ + α−

2
ū · ∇q̄ = 0. (4.22)

Last, Poisson’s equation reads

q̄ = −δ2S−1∇2ϕ̄. (4.23)

4.3. Interfacial boundary conditions

In writing the interfacial boundary conditions we denote the surface concentrations of
cations and anions, normalised by 2C∗/κ∗, by Γ±. With that definition, we find from
(4.7) that

Γ+ − Γ− = interfacial charge density (normalised by ǫ∗κ∗ϕ∗). (4.24)

The boundary conditions are written using spherical polar coordinates (r, θ,̟), r = 0
coinciding with the drop centre and θ = 0 pointing in the applied-field direction. Because
of axial symmetry, all scalar fields are independent of the azimuthal angle ̟. Moreover,
the velocity fields admit the axially symmetry forms

u = uêr + vêθ, ū = ūêr + v̄êθ, (4.25a, b)

with velocity components that are independent of ̟. Similar forms apply to the ionic
fluxes, the salt fluxes, and the current densities.
The conditions consist of:
(a) Ion conservation,

êr ·
(

j± − j̄
±
)

+ 2δα±
∇s ·

(

Γ±u
)

= 0, (4.26)

where the first term represents molecular flux from the bulk, and the second term repre-
sents surface convection (in which ∇s is the surface-gradient operator).
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(b) Electric-potential continuity,

ϕ = ϕ̄. (4.27)

(c) The boundary form of Gauss law,

Γ+ − Γ− = −δ

(

∂ϕ

∂r
− S−1∂ϕ̄

∂r

)

. (4.28)

(d) Impermeability,

u = ū = 0. (4.29)

(e) Velocity continuity,

v = v̄. (4.30)

(f) Shear-stress balance,
(

∂v

∂r
− v

)

−M−1

(

∂v̄

∂r
− v̄

)

− δ−1
(

Γ+ − Γ−
) ∂ϕ

∂θ
− δ−1 ∂

∂θ

(

Γ+ + Γ−
)

= 0, (4.31)

where the last two terms respectively represent the electric shear stress and the Marangoni
effect (see Baygents & Saville 1991).
In addition to conditions (4.26)–(4.31), the surface concentrations Γ± are subject to ki-
netic conditions governing ionic adsorption and desorption. Following Baygents & Saville
(1989) we assume fast kinetics with a linear concentration dependence,

Γ± = K±c± = K̄±c̄±, (4.32)

wherein (K±, K̄±) are adsorption coefficients, normalised by 2/κ∗. As will become evi-
dent, O(1) values of (K±, K̄±) correspond to O(1) zeta potentials.

4.4. Additional conditions

The boundary conditions at r = 1 are supplemented by appropriate far-field conditions.
Thus, at large distances away from the drop the concentrations approach a unity value
(in agreement with definition of C∗ as the equilibrium concentration)

c→ 1, q → 0 (4.33a, b)

and the electric field becomes uniform

ϕ ∼ −βr cos θ, (4.34)

wherein

β =
a∗E∗
ϕ∗

(4.35)

is the dimensionless magnitude of the applied field.
In contrast to standard electrohydrodynamic descriptions, the presence here of equi-

librium charge necessitates the allowing of possible drop motion, say with velocity u∞,
relative to the otherwise quiescent liquid. In the co-moving frame in which the preceding
description is provided, this motion implies the far-field condition

u → −u∞ı̂ (4.36)

where ı̂ is a unit vector in the applied-field direction. The velocity u∞ is not a priori

prescribed. Rather, it is determined from the condition that the drop is force free,
∮

dA n̂ ·

{

−pI +∇u+ (∇u)† +∇ϕ∇ϕ−
1

2
∇ϕ · ∇ϕI

}

= 0, (4.37)
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where both Newtonian and Maxwell stresses are accounted for. Here, I is the identity
dyadic and † denotes tensor transposition. Note that condition (4.37) is trivially satisfied
in the Taylor–Melcher description.

5. The Baygents–Saville limit

We employ the Baygents–Saville limit where the diffuse-charge layers are thin and the
electric field is strong

δ ≪ 1, β ≫ 1, (5.1)

with

δβ ≪ 1. (5.2)

Since the applied electric field is O(β), so too is the electric-potential distribution. We
therefore postulate, subject to a posteriori verification, the following asymptotic expan-
sion:

ϕ = βϕ−1 + · · · . (5.3)

On the other hand, condition (4.33a) suggests that c remains O(1) even under intense
fields:

c = c0 + · · · . (5.4)

In view of Poisson’s equation (4.18) and (5.3), the volumetric charge density q is O(δ2β),
and is hence (see (5.2)) asymptotically small (consistently with (4.33b). Thus, leading-
order electro-neutrality prevails in the limit addressed herein. Finally, anticipating the
Taylor–Melcher flow scaling, we postulate an O(β2) velocity field,

u = β2u−2 + · · · (5.5)

with similar expansions for p and u∞. Comparable expansions apply in the drop phase,
namely

ϕ̄ = βϕ̄−1 + · · · , c̄ = c̄0 + · · · , q̄ = O(δ2β), ū = β2ū−2 + · · · . (5.6a, b, c, d)

With q and q̄ being O(δ2β), the electro-migration terms in the salt-flux expressions
(4.15a) and (4.20a) are O(δ2β2) and hence asymptotically small compared with the O(1)
diffusive terms: see (5.2). We accordingly postulate

j = j0 + · · · , j̄ = j̄0 + · · · , (5.7a, b)

wherein

j0 = −∇c0, j̄0 = −M∇c̄0. (5.8a, b)

On the other hand, the current densities are dominated by electro-migration, and are
accordingly asymptotically large

i = βi−1 + · · · , ī = βī−1 + · · · ; (5.9a, b)

here,

i−1 = −c0∇ϕ−1, ī−1 = −Mc̄0∇ϕ̄−1. (5.10a, b)

The leading O(β2) salt balances (4.16) and (4.21) are dominated by convection,

u−2 · ∇c0 = 0, ū−2 · ∇c̄0 = 0. (5.11a, b)

It follows that c0 and c̄0 are constant along the streamlines of the respective leading-
order flow fields u−2 and ū−2. Since we anticipate at leading order to obtain Taylor’s
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quadrupolar flow structure, we make the a priori assumption that the streamlines in the
suspending liquid are open, extending to infinity. Condition (4.33a) thus implies

c0 ≡ 1. (5.12)

Given this result, it is readily verified that all higher-orders corrections to c0 trivially
vanish; we therefore conclude that

c ∼ 1 + exponentially-small terms. (5.13)

Of course, such an argument cannot be employed for the calculation of the salt concen-
tration c̄0 inside the drop. In the Appendix we nonetheless prove that c̄0 is uniform as
well. Its value, however, is yet undetermined.
Because of the small charge density in the bulk, the leading O(β) charge balances

(4.17) and (4.22) are dominated by conduction

∇ · i−1 = 0, ∇ · ī−1 = 0. (5.14a, b)

Substitution of (5.10a) and use of the O(1) salt uniformity, we obtain Laplace’s equations
in both phases.

∇2ϕ−1 = 0, ∇2ϕ̄−1 = 0. (5.15a, b)

If follows that Coulomb body forces do not affect the leading O(β2) momentum balances

∇p−2 = ∇2u−2, ∇p̄−2 =M−1∇2ū−2, (5.16a, b)

which, together with the respective continuity equations,

∇ · u−2 = 0, ∇ · ū−2 = 0, (5.17a, b)

govern the leading O(β2) flow.
The preceding leading-order equations are supplemented by the far-field conditions,

ϕ−2 ∼ −r cos θ, u−2 → −u∞−2ı̂, (5.18a, b)

and the leading O(β2) force-free condition
∮

dA n̂ ·

{

−p−2I +∇u−2 + (∇u−2)
† +∇ϕ−1∇ϕ−1 −

1

2
∇ϕ−1 · ∇ϕ−1I

}

= 0, (5.19)

which, in principle, is affected by both Newtonian and Maxwell stresses.
Of course, the electro-neutral approximation derived in the the limit (5.1)–(5.2) is

incompatible with the boundary conditions (4.26)–(4.32). That non-uniformity can be
traced to the singular nature of the small-δ limit, manifested by the multiplication of the
highest derivative in (4.18) and (4.23) by a small parameter. Equations (5.3)–(5.19) thus
only represent the outer (‘bulk’) regions in an inner–outer decomposition of the pertinent
fluid domains. The corresponding inner regions are the two boundary (Debye) layers of
width O(δ) formed about the interface r = 1. These are addressed next.

6. Debye-layer analysis

The Debye layers about r = 1 are resolved using the stretched radial coordinate

Z =
r − 1

δ
. (6.1)

Hereafter, the sphere r = 1 is reinterpreted as an effective boundary at which asymptotic
matching effectively takes place, as opposed to the genuine interface Z = 0.
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We employ capital letters to denote Debye-layer fields, using the generic transforma-
tion

f(r, θ) = F (Z, θ), f̄(r, θ) = F̄ (Z, θ). (6.2a, b)

Using the volumetric charge densities Q and Q̄, we define the effective ‘surface-charge’
densities (normalised by 2ze∗C∗/κ∗) of the two diffuse layers,

Q =

∫ ∞

0

Q dZ, Q̄ =

∫ 0

−∞

Q̄dZ, (6.3a, b)

which are accordingly functions of θ alone. We additionally define the apparent surface-
charge density, normalised by 2ze∗C∗/κ∗

Λ = Γ+−Γ− +Q+ Q̄. (6.4)

In view of (4.7), the normalising scale 2ze∗C∗/κ∗ is equal to ǫ∗κ∗ϕ∗, used for normalising
the surface-charge density Γ+−Γ− on the literal interface, see (4.24).

6.1. Expansions

Consider now the asymptotic expansions in the exterior Debye layer (with similar ex-
pansions holding in the interior layer). We postulate the following expansion of the ionic
concentrations

C± = C±
0,0 + δβC±

1,−1 + · · · , (6.5)

with similar expansions for C and Q. We also postulate the electric-potential expansion

Φ = βΦ0,−1 + Φ0,0 + δβΦ1,−1 + · · · , (6.6)

and the following expansion of radial ionic fluxes

êr · J
± = βJ±

0,−1 + δβ2J±
1,−2 + δβJ±

1,−1 + · · · , (6.7)

which imply, in turn, for the radial salt flux and current density,

êr · J = βJ0,−1 + δβ2J1,−2 + δβJ1,−1 + · · · , (6.8)

êr · I = βI0,−1 + δβ2I1,−2 + δβI1,−1 + · · · . (6.9)

Following (5.5), we also propose for the tangential velocity

V = β2V0,−2 + βV0,−1 + δβ2V1,−2 + · · · . (6.10)

The continuity equation (4.8a) in conjunction with the impermeability condition (4.29)
then implies an O(δβ2) radial velocity

U ∼ O(δβ2). (6.11)

Note that the pre-factors in the various expansions of velocity and flux-like variables
always involve β; this is plausible since in the absence of an applied field the system is in
equilibrium with no flow or net fluxes. It is also worth noting that the asymptotic limit
(5.1)–(5.2) does not determine the magnitude of the pre-factor δβ2 relative to unity; this
however does not pose any restriction on the resulting analysis.
In addition to the expansions within the fluid domains, we also need to present asymp-

totic expansions of the interfacial ionic concentrations. In view of the kinetic condi-
tions (4.32), we anticipate similar expansions as those of the Debye-layer concentrations,
see (6.5):

Γ± = Γ±
0,0 + δβΓ±

1,−1 + · · · . (6.12)

Note that Q and Q̄, and hence also Λ, possess similar expansions.
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6.2. Preliminary results

From the O(β) balance of Poisson’s equation we find ∂2Φ0,−1/∂Z
2 = 0, implying that

Φ0,−1 must grow linearly with Z: Φ0,−1 = A(θ)Z +B(θ). Asymptotic matching with the
O(β) bulk potential reveals that A = 0; as Φ0,−1 is independent of Z, it is simply an
extrapolation of the bulk potential ϕ−1. Similarly, Φ̄0,−1 is an extrapolation of the bulk
potential ϕ̄−1 within the drop. We write these results in the form

Φ0,−1 ≡ ϕ−1, Φ̄0,−1 ≡ ϕ̄−1; (6.13a, b)

hereafter, bulk variables appearing in Debye-scale equations are understood to be eval-
uated at the macroscale boundary r = 1. The microscale continuity condition (4.27) at
Z = 0 then furnishes the effective continuity condition

ϕ−1 = ϕ̄−1. (6.14)

With transverse non-uniformities in the electric potential appearing only at O(1), the ra-
dial Debye-layer electric fields retain their O(δ−1) equilibrium scaling, just as in standard
electrokinetic phenomena under moderate applied fields (Yariv 2009).

Consider now the momentum balance in the radial direction, where the O(δ−1β2) vis-
cous stresses are dominated by the O(δ−3) Coulomb body forces. This implies that the
Z-derivatives of P and P̄ are O(δ−2): the O(δ−2) pressure field is accordingly trans-
versely nonuniform. Moreover, since the pressure variations in the bulk are at most
O(β2), asymptotically smaller than δ−2, large-Z matching excludes the possibility of a
transversely-uniform Debye-layer pressure term which is ≫ δ−2.

The momentum balances in the tangential direction, at leading O(δ−2β2), is accord-
ingly unaffected by the Debye-layer pressure; they merely read:

∂2V0,−2

∂Z2
= 0,

∂2V̄0,−2

∂Z2
= 0. (6.15a, b)

Asymptotic matching with the leading O(β2) bulk flow then reveals that V0,−2 and V̄0,−2

are transversely uniform; just as the leading-order potentials, they constitute extrapola-
tions of the corresponding bulk variables (see (4.25)):

V0,−2 ≡ v−2, V̄0,−2 ≡ v̄−2. (6.16a, b)

The microscale continuity condition (4.30) at Z = 0 then results in the effective continuity
condition

v−2 = v̄−2 at r = 1, (6.17)

governing the bulk fields. This condition is supplemented by the effective impermeability
condition

u−2 = ū−2 = 0 at r = 1, (6.18)

which simply follows from the Debye scaling (6.11) of the radial velocities.

With the transversely-uniform leading-order velocities (6.16), the continuity equation
implies that the leading O(δβ2) radial component must vary linearly with Z. It then
follows from the radial momentum balance that the pressure associated with the leading-
order flow is only O(δβ2), asymptotically smaller than the O(δ−2) pressure associated
with the combination of O(1) volume-charge density and O(δ−1) transverse electric field
in the Debye layer, which we consider next.
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6.3. Leading-order Debye cloud

The presumed absence of O(δ−1) radial ionic fluxes implies (see (6.7))

∂C±
0,0

∂Z
± C±

0,0

∂Φ0,0

∂Z
= 0,

∂C̄±
0,0

∂Z
± C̄±

0,0

∂Φ̄0,0

∂Z
= 0. (6.19a, b)

Integration in conjunction with large-Z asymptotic matching furnishes the Boltzmann
distributions

C±
0,0 = e∓Ψ , C̄±

0,0 = c̄0e
∓Ψ̄ , (6.20a, b)

wherein c̄0 is the uniform salt concentration within drop (yet to be determined) and

Ψ = Φ0,0 − ϕ0, Ψ̄ = Φ̄0,0 − ϕ̄0 (6.21a, b)

are the excess potentials within the suspending liquid and the drop, respectively. In view
of the matching requirement, these variables must vanish as Z → ±∞, respectively. The
charge densities associated with (6.20) are

Q0,0 = − sinhΨ, Q̄0,0 = −c̄0 sinh Ψ̄ . (6.22a, b)

Substitution into the O(1) balances of Poisson’s equations

∂2Ψ

∂Z2
= −Q0,0,

∂2Ψ̄

∂Z2
= −SQ̄0,0, (6.23a, b)

followed by integration (using the decay conditions at ±∞) yields the first-order equa-
tions

∂Ψ

∂Z
= −2 sinh

Ψ

2
,

∂Ψ̄

∂Z
= 2

√

Sc̄0 sinh
Ψ̄

2
. (6.24a, b)

We define the zeta potentials as the leading-order voltage drops between the interface
and the respective bulk values,

ζ = Ψ(Z = 0), ζ̄ = Ψ̄(Z = 0). (6.25a, b)

Using (6.20), the ionic concentrations about Z = 0 are

C±
0 (Z = 0+) = e∓ζ , C̄±

0 (Z = 0+) = c̄0e
∓ζ̄ . (6.26a, b)

The kinetic conditions (4.32) thus read at O(1)

Γ±
0,0 = K±e∓ζ = K̄±c̄0e

∓ζ̄ , (6.27)

providing four equations for the five unknowns Γ±
0,0, ζ, ζ̄ and c̄0. An additional equation

is provided by the O(1) balance of Gauss law’s (4.28)

Γ+
0,0 − Γ−

0,0 = −
∂Ψ

∂Z
+ S−1 ∂Ψ̄

∂Z
at Z = 0, (6.28)

which, upon substitution of (6.24), becomes

Γ+
0,0 − Γ−

0,0 = 2

(

sinh
ζ

2
+
√

c̄0/S sinh
ζ̄

2

)

. (6.29)

Since (6.27) and (6.29) are algebraic equations, Γ±
0,0 and the zeta potentials ζ and ζ̄ are

independent of θ (and then so are Ψ and Ψ̄). These variables, together with c̄0, depend
only upon the adsorption coefficients (K±, K̄±) and the permittivity ratio S. Specifically,
(6.27) readily yield

c̄0 =

√

K+K−

K̄+K̄−
. (6.30)
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Finally, transverse integration of (6.22) using (6.24) yields

Q0,0 = −2 sinh
ζ

2
, Q̄0,0 = −2

√

c̄0/S sinh
ζ

2
. (6.31a, b)

Substitution of these results and (6.29) into (6.4) yields zero apparent charge at O(1)

Λ0,0 = 0, (6.32)

representing the expected screening of the interfacial charge by the surrounding Debye
layers.

Of course, the effective conditions (6.14) and (6.17)–(6.18) are insufficient to determine
the leading order electric field and fluid flow. To obtain the requisite additional boundary
conditions, we must go beyond leading-order analysis in the Debye layers.

7. Effective boundary conditions

We now go beyond the leading-order structure of the Debye layers, where asymptotic
matching serves to provide effective boundary conditions governing the bulk fields.

7.1. Effective current continuity

Within the Debye layer, nonzero transverse ionic fluxes appear at O(β). The O(δ−1β)
balances of the Nernst–Planck equations (4.2) read

∂J±
0,−1

∂Z
= 0,

∂J̄±
0,−1

∂Z
= 0. (7.1a, b)

Thus, the O(β) fluxes are transversely uniform (but may depend upon θ). Consider
now the leading O(β) balances of the surface conservation equations (4.26). Since the
advection term is only O(δβ2), it is subdominant to the O(β) diffusive fluxes (see (5.2)).
We accordingly find:

J±
0,−1 = J̄±

0,−1 at Z = 0. (7.2)

In view of the transversal uniformity of J±
0,−1 and J̄±

0,−1, the left-hand side may be
evaluated at any Z(> 0) and the right-hand side may be evaluated at any Z(< 0).
Mutual subtraction thus implies

I0,−1 = Ī0,−1 (7.3)

where, again, the left-hand side may be evaluated at any Z(> 0) and the right-hand side
may be evaluated at any Z(< 0). This current-density constancy, in conjunction with
the requisite matching with the outer currents, yields an effective current-continuity
condition

êr · i−1 = êr · ī−1. (7.4)

Specifically, substitution of (5.10) and (5.12) yields the effective condition

∂ϕ−1

∂r
=Mc̄0

∂ϕ̄−1

∂r
. (7.5)

With the effective conditions (6.14) and (7.5), the outer potentials ϕ−1 and ϕ̄−1 are
completely determined. Note that charge convection does not appear in the effective
surface-charge balance (7.5).
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7.2. Effective Gauss-type condition

Consider now Poisson’s equation (4.18) at O(δβ) :

−
∂2Φ1,−1

∂Z2
= Q1,−1, −S−1 ∂

2Φ̄1,−1

∂Z2
= Q̄1,−1. (7.6a, b)

We integrate these equations with respect to Z, the first from 0 to ∞ and the second
from −∞ to 0. Use of the matching requirements

∂Φ1,−1

∂Z
(Z → ∞) →

∂ϕ−1

∂r
,

∂Φ̄1,−1

∂Z
(Z → −∞) →

∂ϕ̄−1

∂r
, (7.7a, b)

then yields

−
∂ϕ−1

∂r
+
∂Φ1,−1

∂Z
(Z = 0) = Q1,−1, (7.8)

−S−1∂Φ̄1,−1

∂Z
(Z = 0) + S−1 ∂ϕ̄−1

∂r
= Q̄1,−1. (7.9)

The derivatives at Z = 0 are related by the O(δβ) balance of Gauss’s condition (4.28),
namely:

Γ+

1,−1 − Γ−
1,−1 = −

∂Φ1,−1

∂Z
+ S−1 ∂Φ̄1,−1

∂Z
at Z = 0, (7.10)

Use of (6.4) thus provides the macroscale apparent surface charge at O(δβ)

Λ1,−1 =
∂ϕ−1

∂r
− S−1 ∂ϕ̄−1

∂r
. (7.11)

In view of (6.32), this is the leading-order apparent net charge.

7.3. Flow

Since V0,−2 is independent of Z, the first nontrivial balance of the tangential momentum
balance is associated with the leading O(β) correction to the Debye-scale velocity. Upon
making use of (6.13), this balance yields at O(δ−2β):

∂2V0,−1

∂Z2
= −

d2Ψ

dZ2

∂ϕ−1

∂θ
, M−1∂

2V̄0,−1

∂Z2
= −S−1 d

2Ψ̄

dZ2

∂ϕ−1

∂θ
. (7.12a, b)

(Note that at this order there are no Debye-scale tangential pressure gradients.) A single
integration yields

∂V0,−1

∂Z
= −

dΨ

dZ

∂ϕ−1

∂θ
, M−1 ∂V̄0,−1

∂Z
= −S−1 dΨ̄

dZ

∂ϕ̄−1

∂θ
, (7.13a, b)

where the integration constants (functions of θ) must vanish by asymptotic matching
with the O(β2) shear rate in the bulk. Consider now the leading O(δ−1β) balance of the
shear-stress jump condition (4.31),

∂V0,−1

∂Z
−M−1∂V̄0,−1

∂Z
=

(

Γ+

0,0 − Γ−
0,0

) ∂ϕ−1

∂θ
at Z = 0. (7.14)

Upon substitution of (7.13) and Gauss’s condition (6.28), it is evident that this condition
is trivially satisfied.
We accordingly address the leading O(δ−1β2) correction of the tangential momentum

balances, associated with transverse variations of the O(δβ2) tangential velocities. In
view of (6.13) and the O(δβ) balance of Poisson’s equation, and given the absence of
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O(δ−1β2) tangential pressure gradients, these balances read

∂2V1,−2

∂Z2
= Q1,−1

∂ϕ−1

∂θ
, M−1∂

2V̄1,−2

∂Z2
= Q̄1,−1

∂ϕ̄−1

∂θ
. (7.15a, b)

Respective integration of these equations from 0 to ∞ and from −∞ to 0, in conjunction
with the matching conditions

∂V1,−2

∂Z
(Z → ∞) =

∂v−2

∂r
,

∂V̄1,−2

∂Z
(Z → −∞) =

∂v̄−2

∂r
(7.16a, b)

yields

∂v−2

∂r
−
∂V1,−2

∂Z
(Z = 0) = Q1,−1

∂ϕ−1

∂θ
, (7.17a)

M−1

[

∂V̄1,−2

∂Z
(Z = 0)−

∂v̄−2

∂r

]

= Q̄1,−1

∂ϕ̄−1

∂θ
. (7.17b)

We now consider the O(β2) balance of the shear-stress jump condition (4.31):

∂V−2,1

∂Z
− v−2 −M−1

(

∂V̄−2,1

∂Z
− v̄−2

)

=
(

Γ+
1,−1 − Γ−

1,−1

) ∂ϕ−1

∂θ
at Z = 0. (7.18)

Substituting (7.17) while making use of (6.14) and the definition (6.4) furnishes the
effective shear-stress jump condition

∂v−2

∂r
− v−2 −M−1

(

∂v̄−2

∂r
− v̄−2

)

= Λ1,−1

∂ϕ−1

∂θ
, (7.19)

which entail the apparent charge Λ1,−1, itself provided by the effective Gauss condition
(7.11). Since condition (7.19) together with (6.17)–(6.18) is sufficient to determine the
bulk Stokes flows, we have successfully obtained a closed macroscale model.

7.4. Conductivity ratio

The effective condition (7.5) is expressed in terms ofMc̄0. This product is actually equal
to the conductivity ratio R used by Melcher & Taylor (1969). To see that, we note that
the dimensional current densities in the suspending and drop phases are respectively
provided by the expressions

ze∗
D+

∗ C∗

a∗
j+ − ze∗

D−
∗ C∗

a∗
j−, ze∗

D+
∗ C∗

a∗
j̄
+
− ze∗

D−
∗ C∗

a∗
j̄
−
. (7.20a, b)

(As already mentioned, neither of the dimensionless quantities i nor ī represents a true
current density because of the different nondimensionalization of cationic and anionic
fluxes.) These densities may be expressed in terms of j and i through (4.14). As i is
O(β) while j is asymptotically smaller, we find that at leading O(β) the ionic fluxes

j± are respectively given by ±i (and, similarly, j̄
±
are respectively given by ±ī). More-

over, at that leading order i = −∇ϕ and ī = −Mc̄0∇ϕ̄, see (5.10) and (5.12). Thus,
the dimensional current densities (7.20) in the suspending and drop phases are respec-
tively proportional to the dimensional electric fields, −(ϕ∗/a∗)∇ϕ and −(ϕ∗/a∗)∇ϕ̄, the
proportionality coefficients being

ze∗
C∗

ϕ∗

(

D+
∗ +D−

∗

)

, Mc̄0ze∗
C∗

ϕ∗

(

D+
∗ +D−

∗

)

. (7.21a, b)

Accordingly, the respective expressions (7.21) constitute the conductivities of the sus-
pending fluid and the drop. The ratio of the drop conductivity to that of the suspending
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electrolyte is

R =Mc̄0. (7.22)

7.5. Electrophoretic velocity

We now consider the leading-order electrophoretic velocity. We first observe that the
structure governing the harmonic O(β) potential ϕ−1 does not allow for a monopole
term. Indeed, the problem governing the O(β) potentials ϕ−1 and ϕ̄−1 is uncoupled to
the flow, and is animated by the inhomogeneous far-field condition (5.18a); so, aside from
an additive constant, both potentials must be proportional to cos θ. In the absence of a
monopole term, and with a far-field approach to a uniform field, the electric field associ-
ated with ϕ−1 cannot result in a net electrostatic force at O(β2), see Rivette & Baygents
(1996). The force acting on the drop at that asymptotic order in solely contributed by
Newtonian stresses associated with leading-order O(β2) flow (represented by the first two
terms in the integrand of (5.19)). Since that flow (as well as the comparable flow within
the drop) is governed by the homogeneous Stokes equations (5.16) with a constraint of
a zero hydrodynamic force, symmetry arguments imply that u∞ must vanish at O(β2):

u∞−2 = 0. (7.23)

As discussed in §10.5, drop electrophoresis does appear at a higher asymptotic order.

7.6. Effective normal-stress jump

In the preceding derivation, the drop shape was taken to be spherical. This is tantamount
to assuming a large surface-tension coefficient (small capillary number). The preceding
results thus correspond to the leading-order description in a formal expansion in the small
capillary number. The leading-order deviation from sphericity can be readily determined
once the normal-stress jump associated with the leading-order description is caluclated
(Leal 2007).
This approach was indeed used extensively in electrohydrodynamic analyses (Torza,

Cox & Mason 1971), where the normal-stress jump was evaluated using the Taylor–
Melcher model. This raises a fundamental question, since the drop deformation is actually
affected by the miscroscale stresses at the genuine interface: is it legitimate to employ
the macroscale stresses toward calculation of that deformation?
In Appendix B we evaluate the microscale stress jump across the interface and show

that it coincides with the one ‘naively’ evaluated using the macroscale model. The cal-
culation scheme used in applications of the Taylor–Melcher model is thus substantiated.

8. Recapitulation

We have obtained a closed macroscale formulation consisting of bulk differential equa-
tions and effective boundary conditions. These allow to calculate the leading-order bulk
potentials ϕ−1 and ϕ̄−1, apparent surface charge density Λ1,−1, and bulk velocity fields
u−2 and ū−2. No electrophoresis occurs at the leading-order flow problem, which accord-
ingly describes the flow about a stationary drop.
Recall that in the present electrokinetic normalization, electric potentials are scaled by

ϕ∗, velocities by ǫ∗ϕ
2
∗/µ∗a∗, and surface-charge densities by ǫ∗κ∗ϕ∗. In this dimensionless

description, the electric potential is O(β), the fluid velocity is O(β2), and the apparent
surface-charge density is O(δβ). These correspond to the respective dimensional scales

a∗E∗, ǫ∗a∗E
2
∗/µ∗, ǫ∗E∗. (8.1)

We have therefore recovered the leaky dielectric scaling of Melcher & Taylor (1969).
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To recapitulate the macroscale model in a simple form we now use (8.1) to respectively
normalise the electric potentials, the fluid velocity fields (with the pressure consistently
normalised by ǫ∗E

2
∗ ), and the surface-charge density. We summarize below the leading-

order macroscale problem using the above leaky dielectric scaling, decorating the new
dimensionless variables with a prime.
The electric potentials ϕ′ and ϕ̄′ satisfy Laplace’s equation (cf. (5.15)),

∇2ϕ′ = 0, ∇2ϕ̄′ = 0. (8.2a, b)

the continuity condition (cf. (6.14))

ϕ′ = ϕ̄′, (8.3)

the current-continuity condition (cf. (7.5) and (7.22))

∂ϕ′

∂r
= R

∂ϕ̄′

∂r
, (8.4)

and the far-field condition (cf. (5.18a))

ϕ′ ∼ −r cos θ. (8.5)

The solenoidal velocity fields u′ = êru
′ + êθv

′ and ū′ = êru
′ + êθv

′ satisfy the homo-
geneous Stokes equations (cf. (5.16))

∇p′ = ∇2u′, M∇p̄′ = ∇2ū′, (8.6a, b)

the impermeability condition (cf. (6.18))

u′ = ū′ = 0, (8.7)

tangential-velocity continuity (cf. (6.17))

v′ = v̄′, (8.8)

shear-stress continuity (see (7.19))

∂v′

∂r
− v′ −M−1

(

∂v̄′

∂r
− v̄′

)

= Λ′ ∂ϕ
′

∂θ
, (8.9)

and far-field attenuation (cf. (7.23))

u′ → 0. (8.10)

The apparent surface-charge density Λ′ appearing in (8.9) is provided by the effective
Gauss condition (cf. (7.11))

Λ′ =
∂ϕ′

∂r
− S−1 ∂ϕ̄

′

∂r
. (8.11)

Finally, the conductivity ratio R appearing in (8.4) is provided by (cf. (6.30) and (7.22))

R =M

√

K+K−

K̄+K̄−
. (8.12)

The derived macroscale model thus differs from the Taylor–Melcher model in that
surface-charge convection is absent in (8.4). It accordingly coincides with the model solved
by Taylor (1966) in his pioneering analysis, where charge convection was neglected as a
mere convenience. In the absence of that nonlinear mechanism, the electrostatic problem
is linear and uncoupled to the flow; it can thus be solved independently. With the electric
field (and the surface-charge density) known, the linear flow problem is readily solved.
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The resulting quadrupolar flow structure, provided in Melcher & Taylor (1969), confirms
a posteriori the assumption made in §5 of an open-streamlines topology.
As shown in §7.6, the normal-stress jump evaluated based upon the macroscale model

coincides with the true jump, as predicted by the microscale variables. The above macroscale
description may accordingly be utilzed to evaluate drops deformation at small Capillary
numbers. Given (4.35), the O(β2) normal-stress jump in the electrokinetic normalization
(where stresses are scaled by ǫ∗ϕ

2
∗/a

2
∗) corresponds to a jump of order ǫ∗E

2
∗ — the famil-

iar leaky dielectric stress scale. Using that scale, the normal-stress jump is provided by
(cf. (B 13))

− p′ + p̄′ + 2

(

∂u′

∂r
−M−1 ∂ū

′

∂r

)

+
1

2

[

(

∂ϕ′

∂r

)2

− S−1

(

∂ϕ̄′

∂r

)2
]

−
1

2

(

1− S−1
)

(

∂ϕ′

∂θ

)2

. (8.13)

Given its coincidence with the Taylor–Melcher description, our macroscale model would
predict the same deformation from a spherical shape as that calculated by Torza et al.

(1971).

9. Comparison with Baygents & Saville (1989)

9.1. Direct inner–outer matching?

As already mentioned, the microscale model employed herein is essentially that used
by Baygents & Saville (1989). The only simplification here is the focus upon binary
electrolyte solutions, as opposed to the more general case of N ionic species considered
by Baygents & Saville (1989). The limit process (5.1)–(5.2) used to derive the macroscale
model is also adopted from Baygents & Saville (1989). In contrast to our successful
matching procedure, however, Baygents & Saville (1989) found it impossible to directly
match the inner (Debye layer) and outer (bulk) regions. In what follows we discuss the
difference between their analysis and ours.
In the course of their matching procedure, Baygents & Saville (1989) obtained N equa-

tions relating the dimensionless dipole strength of the drop to the 2N ionic mobilities
(inside and outside the drop) and 2N ionic “bulk” concentrations. They then explain that
these equations over-specify the dipole strength “since the ionic mobilities and bulk con-
centrations are fixed quantities”: see Eq. (4.2) et seq. in Baygents & Saville (1989). Given
this over-specification, Baygents & Saville (1989) concluded that the inner and outer re-
gions cannot be matched directly and resorted to a separate analysis of an intermediate
boundary layer, of thickness 1/β, where “all three transport modes (convection, diffusion,
and electromigration) are important”. That layer resembles the diffusive boundary layer
appearing in forced-convection heat- and mass-transfer problems (Acrivos & Goddard
1965). The details of that intermediate-layer analysis and its matching with the inner
and outer regions are not provided by Baygents & Saville (1989); they nonetheless as-
sert that these procedures eventually results in the familiar quadrupolar flow of Taylor
(1966).
It appears that Baygents & Saville (1989) have overlooked the Einstein–Smoluchowski

relation, which implies that the ratio of the ionic conductivities in the respective phases
is independent of the specific species k (1 ≤ k ≤ N) considered. This is clearly illustrated
in the binary case (N = 2) addressed in the present paper, where it is readily verified
that the two equations governing the dipole strength simply coincide, giving its value
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(in the present notation) as (Mc̄0 − 1)/(Mc̄0 + 2). Moreover, since Mc̄0 coincides with
the conductivity ratio R (see (7.22)), this dipole strength turns out identical to that
that would be obtained from the electrohydrodynamic model (8.2)–(8.11): see indeed e.g.
Eq. (25) in Melcher & Taylor (1969). It thus seems that the general approach of Baygents
& Saville (1989), allowing for arbitrary number N of ionic species, tends to obscure the
above-mentioned simplifying points. Indeed, for N > 2 the “bulk” concentrations are not
necessarily identical, significantly complicating the interpretation of Eq. (4.2) in Baygents
& Saville (1989). It is unclear whether the simplifying arguments we have employed may
be extended to the general problem of N > 2.

9.2. Diffusive boundary layer

Does the present analysis also give rise to the emergence of a diffusive boundary layer?
The O(β2) ionic convection across the O(δ)-wide Debye layer results in O(δβ2) ‘surface
current’ of salt. As this current is generally nonuniform, ionic conservation implies that a
comparable flux must be supplied from and into the electro-neutral bulk. It may appear as
though this salt flux would give rise to O(δβ2) salt gradients in the bulk; these, however,
are incompatible with (5.13). A diffusive boundary is thus formed, where diffusion is
balanced by advection; its thickness is accordingly 1/β. (By (5.2), this narrow layer is
much thicker than the Debye layer.) To accommodate the salt fluxes emerging from the
Debye layer, the ratio of the excess-salt concentration in that layer to its O(1/β) thickness
must be O(δβ2): that excess concentration thus turns out O(δβ), and is accordingly
asymptotically small.
We have encountered similar incompatibilities in various electrokinetic problems (Yariv,

Schnitzer & Frankel 2011; Schnitzer & Yariv 2012b; Schnitzer, Frankel & Yariv 2013a),
where they are also resolved by the introduction of an intermediate diffusion layer. In
these problems, the presence of the diffusive layer had no effect on the leading-order inner
and outer solutions, hence its resolution was not required for a successful leading-order
asymptotic matching between them. The situation in the present problem is similar. The
structure of the diffusive boundary layer is thus tacitly ignored in the preceding analysis.

10. Concluding remarks

Starting from a ‘first-principles’ electrokinetic description of a drop exposed to an
externally imposed electric field, we have derived a macroscale description valid in the
double limit of thin Debye layers and strong applied field. This limit, first identified
by Baygents & Saville (1989), represents electrohydrodynamic flows of leaky dielectric
liquids. Our description nearly coincides with the Taylor–Melcher model; moreover, the
drop deformation may also be calculated using the stresses predicted by the macroscale
model. On the other hand, our analysis reveals that charge convection, explicit in the
general description of Melcher & Taylor (1969), does not enter the macroscale description.
Another difference with the scheme of Melcher & Taylor (1969) has to do with the
conductivity ratio. While in Melcher & Taylor (1969) this ratio is considered as a specified
parameter, representing liquid properties, our analysis reveals that the ‘conductivity’ of
the drop phase depends upon the adsorption kinetics at the interface, and is accordingly
a function of the liquid–liquid system considered. Finally, our analysis elucidates the
role played by the nonzero net charge of the drop and the accompanying diffuse-charge
layer. These new insights into the fundamentals of electrohydrodynamics may be useful in
studying phenomena in which the validity of the leaky-dielectric model is dubious, such
as vesicles (Salipante & Vlahovska 2014) and electrowetting with electrolytes (Monroe
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et al. 2006), or systems in which both electrokinetic and electrohydrodynamic effects are
important (Schnitzer et al. 2014).
In what follows we address these issues in detail, and discuss the relation between our

unified approach and the problem of drop electrophoresis in the thin Debye-layer limit.

10.1. The Baygents–Saville limit

In deriving the macroscale model for the electrokinetic transport we have employed the
Baygents–Saville limit (5.1)–(5.2). Following this derivation, the necessities for imposing
the restrictions specifying this limit process become evident. The assumption β ≫ 1
results in uniform salt concentrations in both the suspending liquid and the drop phase.
It also results in the domination of the fore–aft symmetric O(β2) electrohydrodynamic
flow pattern over the O(β) electro-osmotic flow animating the drop phoretic motion. The
restriction (5.2) is also necessary for the self-consistency of our asymptotic expansions:
when β scales as 1/δ, tangential ionic advection with the Debye layer become O(δ−2)
large, thus necessitating a transversely varying O(δ−1) normal fluxes. The Debye layer
is not at quasi-equilibrium, and the entire scheme collapses.
The limitations imposed by the Baygents–Saville limit are naturally met in leaky dielec-

tric electrohydrodynamic phenomena. As drops are typically much larger than colloidal
particles, (5.1) is easily satisfied for virtually all practical values of the salt concentration
C∗: see definitions (4.6) and (4.35). Incidentally, these definitions also imply that the
product δβ is independent of the drop size a∗: satisfaction of (5.2) thus essentially limits
the magnitude of the applied field E∗, or, more precisely, of E2

∗/C∗.
Note that, at least until recently (Schnitzer et al. 2013a; Schnitzer & Yariv 2013;

Schnitzer et al. 2014), virtually all electrokinetic analyses of drops under electric fields
had actually addressed the limit of weak applied fields, see e.g. Ohshima et al. (1984)
and Baygents & Saville (1991).

10.2. Absence of surface-charge convection

The linearity of the electrostatic problem, which enables analytic solution of the macroscale
model, follows from the absence of surface convection of charge. In our macroscale model,
this absence automatically follows from the Baygents–Saville limit (1.1). Indeed, for the
effective O(δβ2) surface current associated with the leading O(β2) flow to enter the ion
conservation equations (4.26) at the O(β) leading-order, β must be O(δ−1). Such large
values of the applied field do not satisfy the restriction (5.2).
In fact, the surface current associated with the leading O(β2) flow is asymptotically

smaller than O(δβ2). Indeed, as the O(β2) tangential velocity is transversely uniform
(see (6.16)), the O(δβ2) surface current is simply provided by its product with the ap-
parent O(1) Debye-layer charge; the latter, however, vanishes by screening: see (6.32). It
may therefore appear that the leading-order surface current is due to the leading O(δβ)
apparent charge, and is accordingly O(δ2β3). Note however that another source for a
surface current is the O(β) electro-osmotic flow, which we did not bother to calculate.
As this flow is transversely nonuniform, it results through advection of the O(1) ionic
densities in an O(δβ) surface current. The Baygents–Saville restriction (5.2) does not de-
termine which of these two effects dominates. The corrections implied by these currents
to the charge-conservation condition (7.5), where the Ohmic currents are O(β), are of
relative orders (δβ)2 and δ, respectively.
In the electrohydrodynamic literature, the neglect of charge convection is convention-

ally associated with the assumption of small electric Reynolds number (see Melcher &
Taylor 1969). Consider indeed the typical dimensional magnitude of the respective charge
conduction and convection terms in a surface-charge balance (e.g. Eq. Il in Melcher &
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Taylor (1969)). The former is of order σ∗E∗, σ∗ being a typical conductivity, while the
latter, represented by a surface-divergence term, is of order Λ∗v∗/a∗, where Λ∗ is the ap-
parent surface-charge density; in the leaky dielectric description, that density is of order
ǫ∗E∗. It follows that the ratio of charge convection to conduction is of order ǫ∗v∗/σ∗a∗.
This is the electric Reynolds number Ree.
Following our derivation of the electrohydrodynamic Taylor–Melcher model as a coarse-

grained description, this number is easily estimated. Consider the simple case of equal
diffusivities D±

∗ = D∗, where α
± are identical, = α say (see (4.4)). The bulk conductivity

σ∗ is then given by 2ze∗C∗D∗/ϕ∗, see (7.21). Using the leaky dielectric velocity scale
ǫ∗a∗E

2
∗/µ∗ we readily find using definitions (4.1), (4.4), (4.6) and (4.35) that

Ree = αδ2β2. (10.1)

Since α is typically O(1) (see (4.4) et seq.), the electric Reynolds number is asymptotically
small in the Baygents–Saville limit (1.1) underlying our electrokinetic description: see
figure 2.
In the classical paper of Melcher & Taylor (1969), charge convection is presented in

the electrohydrodynamic model (see their Table I). It is then neglected throughout when
performing steady analyses of specific configurations — in particular, in the analysis of
the flow about a leaky dielectric drop. This neglect is introduced as an additional as-
sumption. As Melcher & Taylor (1969) had no underlying electrokinetic model to provide
the magnitude of the bulk conductivity, they could not have obtained the estimate (10.1).
Note that the parts of the analysis of Melcher & Taylor (1969) which deal with insta-

bilities and fluid motion driven by alternating currents allow for finite electric Reynolds
number. Moreover, charge convection was incorporated in several electrohydrodynamic
models (see Xu & Homsy 2006; Feng & Scott 1996; Salipante & Vlahovska 2010) in an at-
tempt to improve upon Taylor’s initial analysis. In view of estimate (10.1), these studies
fall outside the Baygents and Saville régime, and hence their electrokinetic interpretation
remains unclear.

10.3. The conductivity ratio: a material property?

The macroscale equations depend upon the permittivity ratio S, the viscosity ratio M ,
and the conductivity ratio R, just as in the model outlined by Melcher & Taylor (1969).
Melcher & Taylor (1969) consider these parameters as given material ratios. In our scheme
there is however a conceptual difference between the permittivity and viscosity ratios S
andM and the conductivity ratio R: while the former two represent (ratios between) true
material properties (and actually appear in the microscope formulation), the latter is a
derivedmacroscale quantity, which does not appear in the original formulation. In view of
expression (8.12), moreover, R depends upon the adsorption coefficients (K±, K̄±) (nor-
malised by 2/κ∗), and accordingly cannot be considered a material property. Putting
it differently, while the conductivity of the suspending liquid can be conceptually mea-
sured in an experiment, independently of the drop, the same does not hold for the drop
conductivity.
This difference with the Taylor–Melcher model should be viewed with caution, however,

given our simplistic modelling of charge transfer across the interface and our simplifying
assumption of a strong binary electrolyte. A more realistic description of ionic transport
would incorporate bulk reactions (see e.g. Saville 1997) and allow only some of the ionic
species to pass through the interface. Within the framework of such a general model, one
can envisage two scenarios where the drop-phase conductivity is effectively a property
of the drop, unaffected by the passage of currents. The first is realized in the limit of
fast reactions, while the second occurs when the ionic composition in the two liquids
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β
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≪ 1
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linear electrokinetics
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Baygents–Saville limit
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Ree≫1

Ree ∼ O(1)

Figure 2. The Taylor–Melcher leaky dielectric essentially constitutes a coarse-grained electroki-
netic model in the Baygents–Saville limit of strong fields β ≫ 1 and thin Debye layers, δ ≪ 1,
with 1 ≪ β ≪ δ−1. This limit corresponds to small electric Reynolds numbers, Ree ≪ 1, which
is consistent with the absence of surface-charge advection in the derived macroscale model.

consists of a high concentration of ‘inert’ salt ions (for which the adsorption coefficients
vanish), which essentially determines the bulk conductivity, and a small concentration of
ions which undergo interfacial sorption, thereby enabling the passage of electric current
through the interface.

10.4. Highly conducting drops

A familiar feature of the flow field predicted by the leaky-dielectric model is that it
vanishes in the limit R ≫ 1. This implies that, for sufficiently large R, the (formally
subdominant) electrokinetic flow associated with the presence of equilibrium charge be-
comes comparable to the (formally dominant) leaky-dielectric flow. The field strengths at
which this transition occurs, and hence at which the leaky-dielectric cannot be expected
to apply, can be easily estimated from our analysis. On the one hand, inspection of the
macroscale equations of section §8 reveals that the Taylor–Melcher flow vanishes like 1/R
as R → ∞; this corresponds to an O(β2/R) flow in terms of the electrokinetic scalings
of section §4. On the other hand, our analysis reveals that the electrokinetic velocity is
O(β), and does not vanish with R. Thus the derived macroscale model collapses when
β ∼ O(R).

10.5. Net drop charge and electrophoresis

We now discuss the net drop charge — namely the total charge held by the interface
in the absence of external field. In the Taylor–Melcher description, the dipolar charge
distribution clearly implies that such a net charge is absent. Moreover, no diffuse layer
accompanies, either explicitly or implicitly, the local interfacial charge. Indeed, in the
introduction to his review paper, Saville (1997) wrote that “With ... leaky dielectrics,
diffuse layers associated with equilibrium charge are usually absent.” This claim is refuted
here: our electrokinetic analysis naturally allows the presence of equilibrium charge at the
interface, which is screened by diffuse-charge layers. The amount of equilibrium charge
is simply set by the interfacial kinetics, and would vanish only for specifically chosen
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combinations of the respective coefficients. In the physicochemical model (4.32), zero
drop charge is realized for K+ = K− = K̄+ = K̄− and S = 1 — see (6.27) and
(6.29). In the general case, then, the charge on the genuine interface is nonzero. In fact,
the presence of nonzero interfacial charge is actually necessary for the validity of our
asymptotic scheme, which hinges upon the induced charge being a small perturbation.
Our analysis reveals that, remarkably, the electrophoretic motion engendered by the

net drop charge constitutes an asymptotic correction to the Taylor–Melcher flow, itself
animated by a perturbation to that equilibrium charge. The appearance of electrophore-
sis at a higher order might be consistent with existing experiments, where the drop
indeed tends to move under the electric field. (Such motion was considered as an in-
evitable inconvenience that interferes with the convenient observation and measurement
of electrohydrodynamic drop deformation, see Taylor 1966 and Vizika & Saville 1992.)
Our unified approach provides the means for understating this inevitable motion, which

apparently goes hand in hand with the Taylor–Melcher flow. The calculation of drop elec-
trophoresis in our scheme requires continuing the asymptotic analysis towards deriving
a higher-order macroscale model. Such an analysis reveals that drop electrophoresis is
animated by both shear and a two-sided electro-osmotic slip mechanism. While the latter
is already implied in our analysis (see (7.13)), the calculation of the shear contribution
entails a complicated calculation, including the resolution of the two diffusive boundary
layers. In the limit of a highly-viscous drop, one can show that the shear contribution
becomes trivial. The drop thus migrates according to a Smoluchowski-type formula, with
the zeta potential appearing therein being that of the external Debye layer. Interest-
ingly then, the equilibrium charge in that case cannot be straightforwardly inferred from
electrophoretic measurements.
The compatibility of nonzero net charge with the absence of electrophoresis at leading

order is clearly a manifestation of the delicate limit process (1.1), representing the strong
fields characterising Taylor–Melcher flows. This compatibility casts doubts regarding the
applicability of the scheme developed by Zholkovskij, Masliyah & Czarnecki (2002). In
that paper, which proposes a different approach to model the transition from electrokinet-
ics to electrohydrodynamics, the Taylor–Melcher description is developed for an arbitrary
Debye length. In sharp contrast to Baygents & Saville (1989), this is accomplished via
a weak-field approximation. Putting aside the validity of such an approximation in de-
scribing Taylor–Melcher flows, it appears that the main shortcoming in the analysis of
Zholkovskij et al. (2002) is the necessity of assuming zero net charge; as the authors
explain, this corresponds to artificially specifying appropriate ratios of the kinetic pa-
rameters. Similarly, the recent stability analysis of Gambhire & Thaokar (2014) also
makes use of an effective weak-field linearisation. In that paper the authors avoid the
arbitrariness in the kinetic approach of Zholkovskij et al. (2002) by focusing upon inert
solute which does not adsorb to the genuine interface. While this gives rise to a consistent
physical model, the absence of ionic transport through the interface renders it insufficient
when attempting to describe the electrokinetics underlying the leaky–dielectric model.

This research was supported by the Israel Science Foundation (grant no. 184/12).

Appendix A. Salt uniformity

Since the flow fields u−2 and ū−2 are steady in the co-moving reference frame we
employ, equations (5.11) state that c0 and c̄0 are constant along the respective streamlines
of these fields. For open streamlines which originate at infinity such constancy would
readily provide the values of c0 using its far-field distribution (given here by (4.33a)),
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thus leading to the uniform salt distribution (5.12). We now show that c̄0 is uniform as
well. We follow a method devised by Batchelor (1956) in the different context of vorticity
dynamics at large-Reynolds-number flow.

The proof makes use of (i) the fact that the streamlines of the steady flow ū−2 are
bounded by the drop boundary and are accordingly all closed; and (ii) the axial symmetry
of the leading order flow, which is justified a posteriori. We employ the integral form of
the salt balance equation (4.21),

∮

S

dA n̂ ·

{

j̄ +

(

α+ + α−

2
c̄+

α+ − α−

2
q̄

)

ū

}

= 0, (A 1)

wherein S is the boundary of an arbitrary domain lying entirely within the drop phase
and n̂ is a unit vector normal to S. Specifically, consider a streamline of ū and imagine
the torus-like surface S formed by rotating it about the symmetry axis. As n̂ · ū = 0 on
that surface, (A 1) reads

∮

S

dA n̂ · j̄ = 0. (A 2)

We now consider the limit δ → 0, where ū → ū−2. Because of axial symmetry, ū−2 is
derived from a Stokes streamfunction, say ψ̄−2. Since c̄0 is constant on the streamlines of
ū−2, it follows that it is a function of ψ̄−2. As δ → 0, then, S is given by a constant-ψ−2

surface, while j̄ → j̄0:
∮

ψ̄
−2=const

dA n̂ · j̄0 = 0. (A 3)

Use of (5.8b) then yields:
∮

ψ̄
−2=const

dA
∂c̄0
∂n

= 0. (A 4)

At this point we conceptually construct a system of (ξ, η) orthogonal coordinates in
the meridian plain with ξ = ψ̄−2 and the level curves of η orthogonal to those of ψ̄−2.
The fluid domain is therefore described via a curvilinear (ξ, η,̟) coordinate system, ̟
being the azimuthal angle already defined in §4.3. In these coordinates, c̄0 is a function
of ξ alone, independent of η and ̟. Moreover, since the integration domain in (4.3) is a
consent-ξ surface, it is evident (tacitly choosing n̂ pointing in the direction of increasing
ψ̄−2) that on that surface ∂c̄0/∂n = (1/hξ)dc̄0/dξ, where hξ is the metric coefficient
associated with the curvilinear coordinate ξ (in general a function of both ξ and η).
Since dc̄0/dξ, a function of ξ, is constant on the integration surface, it may be taken
outside the integral. Equation (A 4) becomes

dc̄0
dξ

∮

ξ=const

dA

hξ
= 0. (A 5)

Since hξ > 0, this implies that

dc̄0
dξ

= 0. (A 6)

Since the integration domain is an arbitrary stream surface, (A 6) holds for all values of
ξ(= ψ̄−2). It follows that c̄0 is independent of ψ̄−2 and hence uniform.
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Appendix B. Normal-stress jump

Expressed in terms of the Debye-layer variables, the microscale normal-stress jump
across the interface is provided by the expression:
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∂Z

)2
]

−
1

2

(

1− S−1
)

(

∂Φ

∂θ

)2

.

(B 1)
In what follows we express this quantity in terms of the macroscale variables.
Inspection of the radial momentum balance in the Debye layer suggests the pressure

expansion

P = δ−2P−2,0 + δ−1βP−1,−1 + δ−1P−1,0 + β2P0,−2 + · · · . (B 2)

The radial momentum balance at leading O(δ−3) reads

∂P−2,0

∂Z
=
∂2Φ0,0

∂Z2

∂Φ0,0

∂Z
. (B 3)

Since the bulk pressure is only O(β2), and given the exponential decay of Φ0,0 as Z → ∞,
integration of (B 3) simply yields

P−2,0 =
1

2

(

∂Φ0,0

∂Z

)2

. (B 4)

A similar expression is obtained for P̄−2,0:

P̄−2,0 =
1

2S

(

∂Φ̄0,0

∂Z

)2

. (B 5)

Substitution into (B 1) thus reveals that the stress jump at O(δ−2) trivially vanishes.
Continuing on, the radial momentum balance at O(δ−2β) reads

∂P−1,−1

∂Z
=
∂2Φ0,0

∂Z2

∂Φ1,−1

∂Z
+
∂2Φ1,−1

∂Z2

∂Φ0,0

∂Z
. (B 6)

Noting again the rapid decay of Φ0,0 and the absence of O(δ−1β) bulk pressure, we obtain

P−1,−1 =
∂Φ0,0

∂Z

∂Φ1,−1

∂Z
, (B 7)

with a similar expression in the drop phase,

P̄−1,−1 = S−1 ∂Φ̄0,0

∂Z

∂Φ̄1,−1

∂Z
. (B 8)

Substitution into (B 1) reveals that the stress jump at O(δ−1β) vanishes as well.
Returning to the radial momentum balance, this time at O(δ−2), we find

∂P−1,0

∂Z
= 2

(

∂Φ0,0

∂Z

)2

, (B 9)

representing the effect of drop curvature. Integrating with respect to Z from 0 to ∞,
where P−1,0 must vanish due to the absence of O(δ−1) pressure term in the bulk, we
find that P−1,0(Z = 0) is provided by a quadrature of ∂Φ0,0/∂Z. Since this derivative
in independent of θ (see §6.3), so must be P−1,0(Z = 0). A similar argument applies for
P̄−1,0(Z = 0). Since a uniform normal-stress jump does not contribute to a deformation
from sphericity, it may be disregarded.
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Finally, the radial momentum balance at O(δ−1β2) reads

∂P0,−2

∂Z
=
∂2U1,−2

∂Z2
+
∂2Φ1,−1

∂Z2

∂Φ1,−1

∂Z
. (B 10)

Integrating, and using the matching conditions

P0,−2 → p0,−2,
∂U1,−2

∂Z
→

∂u0,−2

∂r
,

∂Φ1,−1

∂Z
→

∂ϕ0,−1

∂r
, (B 11)

we find that

P0,−2 −
∂U1,−2

∂Z
= p0,−2 −

∂u0,−2

∂r
−

1

2

(

∂ϕ0,−1

∂r

)2

+
1

2

(
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)2

. (B 12)

Repeating the calculation for the drop-phase pressure at this order, we find that the first
non-vanishing (and non-constant) normal-pressure jump is O(β2), namely

β2

{

−p0,−2 + p̄0,−2 + 2

(

∂u0,−2

∂r
−M−1 ∂ū0,−2
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(
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(
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]

−
1

2
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)2
}

. (B 13)

This however is the expression which would be provided using the effective macroscale
model.
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