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Abstract

We present AceCloud, an on-demand service for molecular dynamics simulations.
AceCloud is designed to facilitate the secure execution of large ensembles of simulations
on an external cloud computing service (currently Amazon Web Services).

The AceCloud client, integrated into the ACEMD molecular dynamics package,
provides an easy-to-use interface that abstracts all aspects of interaction with the cloud
services. This gives the user the experience that all simulations are running on their
local machine, minimising the learning curve typically associated with the transition

to using high performance computing services.
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$ acemd --submit *
$ acemd --status
Queued Running Completed
2] 5 25

$ acemd --retrieve

Introduction

In recent years classical molecular dynamics simulation has begun to prove an increasingly
powerful complement to experiment, as the timescales accessible through simulation ap-
proach biologically-relevant timescales.

These developments are underpinned by progress in both simulation technology and
methodology. In particular, the exploitation of specialised accelerator processors (known as
GPUs, belying their origin in the graphics processing field) has proven transformative for
the field. A modern GPU-based MD code — such as ACEMD,! GROMACS? or Amber? — is
able to simulation rates on a single low-cost GPU that may otherwise require several nodes
of a dedicated high performance compute cluster. This effective decoupling of MD from the
established HPC space has led to substantial (over an order of magnitude) reduction in cost
per unit of MD sampling.

This marked reduction in cost of MD sampling, yet without substantially increasing the
timescales accessible within any one simulation, has prompted the development of methods
based upon the analysis of ensembles of large numbers of independent simulations. Markov
modelling techniques, for example, have been demonstrated to be able to recover equilib-
rium properties and kinetic processes that occur over timescales far longer than that of any

one simulation.* Such studies are computationally-expensive and special-purpose infrastruc-



tures, for example GPUGRID?® and Folding@Home,® have been constructed to support these
activities by exploiting GPU computing resources provided by volunteers.

Recourse to unconventional sources of compute resource has been necessary because,
despite GPUs now well-established as a significant part of the contemporary HPC landscape
they have limited penetration in established HPC facilities.” In large part, this is attributable
to the need for software to be substantially refactored in order to run on a GPU. On a mixed-
workload system where only a faction of capacity is consumed by GPU-capable software, or
in the absence of funding for software development, for example, it can be difficult to justify
the cost of deploying GPUs. This has important implications for the broader uptake of
GPU-dependent ensemble-MD-based analytical methods: evaluation of these techniques is
limited to groups that already access to substantial GPU resources.

To address this problem we have developed AceCloud, a service that provides online,
on-demand access to compute resources for molecular dynamics simulation. AceCloud takes
advantage of the broader computing industry trend of ‘cloud’ computing® — effectively the
flexible rental of computing resources — to lower the barrier to entry for performing large-
scale molecular dynamics simulations. The capital setup costs of establishing in-house GPU
resources are negated and replaced by on-going operational costs that are proportional to
usage.

AceCloud natively supports the popular molecular dynamics codes ACEMD and GRO-
MACS, as well as permitting the easy execution of other third-party software, such as Am-
ber or NAMD. The current implementation of AceCloud targets the Amazon Web Services
(AWS)? Cloud computing platform.

To minimise the learning curve associated with cloud computing, AceCloud is accessed
through simple extensions to the ACEMD molecular dynamics code. This interface abstracts
all interaction with the supporting cloud infrastructure, and emulates, as far as is practicable,
the experience of running simulations locally on one’s own machine. This focus on ease-of-

use minimise the need for the user to change or adapt existing working practices, a burden



often encountered when transitioning from personal desktop to HPC computing systems.
In this manuscript we present the design and implementation of AceCloud along with

examples of use.

Design and Implementation

AceCloud is designed to execute and manage large ensembles of molecular dynamics simu-
lations on third party cloud resources. The user experience is intended to closely replicate
that of command-line program execution, without exposing the details of interaction with
the cloud service. All cloud operations (data transfer, virtual machine instantiation, etc) are
mediated by the client, giving the appearance of completely local execution.

Currently, AceCloud can target Amazon Web Services. AWS is presently (Jan 2015) the
only major cloud provider that makes available GPU-based compute resources.

The following sections detail the user client and user experience, and overview of the

AWS features used by AceCloud, and the implementation of the cloud-side compute service.

Client Software and User Experience

The AceCloud client is implemented as an extension to the ACEMD molecular dynamics
simulation code. ACEMD has a command-line interface, with new AceCloud functions
being accessed via a new set of command-line switches (Table 1). The default behaviour
of ACEMD is to perform a molecular dynamics simulation on the machine on which it is
being run, starting from appropriate input files found in the current working directory. The
addition of the command line argument --submit is sufficient to cause ACEMD to instead
submit the job for execution on AceCloud (Figure 1 shows an example).

Whereas local execution is synchronous, with control not returning to the user until the
simulation is completed, AceCloud jobs are asynchronous. Control is immediately returned

to the user after submission, and additional commands are used to monitor job status and



retrieve results.

# (a) Execute ACEMD synchronously on local machine
$ acemd [input-file]

(b) Execute ACEMD asynchronously on AceCloud
acemd --submit .

Poll state of AceCloud simulations
acemd --status

- AH A H

Retrieve simulation results from AceCloud
acemd —--retrieve

- A H

Figure 1: Comparison of the commands required to run ACEMD (a) locally on GPUs directly
attached to the machine in use and (b) remotely on AceCloud. In the former, ACEMD
executes synchronously, running to completion before control is returned to the user. When
running via AceCloud, in contrast, execution is asynchronous: control is returned to the user
immediately, and the progress of the run must be monitored.

When a job is submitted to AceCloud, the whole contents of the directory specified in the
submission (omitting any large XTC or DCD trajectory files) are transferred to the cloud
and form the basis for the input for an AceCloud job.

AceCloud jobs are, by default, named after the directory in which their input resided.
Jobs can be further grouped into projects using an arbitrary user-supplied identifier. Group-
ing into projects allows collective operations to be easily performed - for example bulk
deletion or retrieval of results. The {project,directory} tuple s constrained to be unique for
all extant AceCloud jobs.

The status of all AceCloud jobs can be seen by using the --status option; this gives a
summary by project of the number of jobs pending, running and completed, analogously to
a gsub listing within a conventional cluster environment. An example of an AceCloud status
view is given in Figure 2.

Because AceCloud jobs run asynchronously, results of jobs must be retrieved by pulling

them back with the --retrieve option. The default behaviour of this option is to place the



results for finished simulations back to the directories from which they were originally created.
Results of finished simulations are stored by AceCloud (in S3) until the user performs a
retrieval and automatically deleted afterwards.

For long-running simulations, partial results can be obtained using the additional argu-
ment —-incremental. This instructs the client to use SSH and rsync to synchronise the
local copy of the output with the current progress of the simulation. rsync is used to ensure
that successive retrievals only copy new or changed data, so minimising network bandwidth
usage.

Running a retrieval as a non-terminating background process, with the options —-incremental,
provides the user experience most similar to having the simulations running locally. Output
appears incrementally in the job directories soon after its creation, without any further user

interaction with AceCloud being necessary.

# Get status of AceCloud jobs

$ acemd --status
Queued Running Completed Aborted Project
0 0 1 0 APOA1
1 10 9 0 DHFR

Figure 2: An example of querying the status of AceCloud jobs. In this instance, 21 jobs are
extant, grouped into two projects, APOA1 and DHFR. The DHFR project contains 20 jobs,
10 in progress, 9 completed and 1 pended to run.

AceCloud has built-in support for ACEMD and GROMACS simulations, and support for
running arbitrary third-party code (for example Amber or NAMD). When instantiated, the
AceCloud VM will determine whether to run ACEMD or GROMACS based on the presence
of specific files ( input for ACEMD, topol.tpr for GROMACS). If neither of these are
present, a file called run.sh will be executed. This provides a mechanism by which the user
may run arbitrary code on an AceCloud instance.

The MD codes Amber and NAMD, for example, are not included within AceCloud be-

cause of license restrictions. A user in possession of a suitable license may run their own



Table 1: AceCloud client command line arguments

Argument

Description

--command [command]

--device [devlist] [inputfile]

--submit [[--project prj-name] directory...]

--status [prj-name...]

--retrieve [prj-name...] [--loop] [--incrementall

--delete [--project prj-name] [dir-list]

--spots

--configure

—--verbose

—-xml

Give syntax and description of an ACEMD input file
command.

Run a simulation on the specified comma-separated list
of GPUs. If no input file name is specified, input is
assumed.

Run jobs on Amazon EC2. Submits each directory to
Amazon as a separate simulation. Each simulation is
allocated to the project prj-name that precedes it in the
argument list. If no directory is specified, the current
working directory will be used.

Return the status of all jobs in project summarised by
project, or all jobs in the project if --long is specified.
Retrieve the results of all completed simulations, or only
those in the specified projects. Results are placed in
the originating directories. Makes a single pass then
exits unless --1oop is specified. Add --incremental to
retrieve partial results from running simulations.
Delete simulations and pending output of the specified
project. If dir-list is specified only those named simula-
tions will be deleted. If no dir-list everything under the
project prj-name will be deleted.

Show current Amazon Spot pricing

Set Amazon configuration options. --configure help
for info.

Add as a qualifier to the above to produce verbose out-
put.

Add as a qualifier to the above to produce structured
output.




copy by placing the relevant executable, supporting libraries and simulation input files in a
directory, along with a run.sh crafted to execute it. An example of running Amber this way

is shown in Figure 3.

# Contents of submission directory
# Including AMBER executable, libraries
# And simulation input

$ 1s .
libcurand.so.4
mdl2.x

mdin

pmemd. cuda
prmtop

run.sh

# Contents of run.sh for running AMBER
$ cat run.sh

#!/usr/bin/bash

# Set environment to find library files

# submitted as part of the job

export LD_LIBRARY_PATH=$PWD:$LD_LIBRARY_PATH

# Execute AMBER
./pmemd.cuda -0 -p prmtop -c¢ md12.x -i mdin

# End

Figure 3: A example of running an arbitrary application via AceCloud, in this case the
pmemd program from Amber.? An input directory is prepared containing the pmemd binary
itself, along with a supporting library, the input files for the simulation itself and a run.sh
script written to run the program.

AceCloud on Amazon Web Services

AceCloud takes advantage of four major components of Amazon Web Services: the FElastic
Compute Cloud (EC2), Simple Storage Service (S3), Virtual Private Cloud (VPC), and
Identity and Access Management (IAM)

EC2 provides an Infrastructure-as-a-Service (laaS) presentation of compute resources.
The resource is provided as an instantiation of a virtualised machine (VM) running atop

physical hardware, within which the user is free to deploy an arbitrary operating system



image (known as an Amazon Machine Instance, or AMI).

EC2 provides numerous classes of VM, each representing a different set of resources (eg
number of CPU cores, amount of memory and storage, network connectivity) optimised for
particular use cases. Interaction with EC2 for provisioning, monitoring and control of VMs
is accomplished manually via an interactive Web console, '’ or programatically via a web
services RESTful API!! 12

EC2 instances are provisionable on demand, and most frequently billed at fixed hourly
rates. Of particular note is the availability of spot pricing. Instances obtained at spot prices
are charged at a variable rate that ostensibly® reflects underlying demand. If the spot price
rises above the limit set by the procurer when requesting an instance, those instances are
liable to be terminated and the resources reallocated to an entity prepared to pay the higher
rate. If the user of the instance is able to tolerate this potential inconvenience, spot pricing
can be substantially more cost-effective than standard on-demand pricing.

S3 is an object storage system accessible via a web services interface. Items of data stored
within S3 are referenced by a unique key and are treated as read-only, atomic objects. Objects
may be grouped into buckets, analogous to filesystem directories, which exist in a namespace
global to all AWS users. S3 provides an access control mechanism enabling buckets and
objects to be publicly read-writable, or limited in access to appropriately authenticated
entities. Where objects are subject to access control, presigned URLs may be created. These
contain a cryptographic signature that allow limited read or write access in the absence of
credentials.

Although S3 is substantially different to a conventional storage system, ' it nevertheless
provides (in the case of AceCloud) a useful storage area for simulation state that is persistent

and independent of the EC2 instance life-cycle.



AceCloud Compute Instances

Within the AceCloud design each user-submitted job is allocated its own instance of the
AMI that persists only for the duration of the job. Notably, there is no AceCloud server
process: the client interacts only with AWS web service endpoints and instances.

When the AMI is instantiated it boots a Linux operating system image (derived from
Amazon Linux) and immediately downloads the job input from S3 via the URL provided
in instance metadata and executes the requisite program. Once the run is complete any
output generated is stored in S3 via the specified URL and the instance shuts down and is
terminated.

Although there is no runtime limit imposed on the instance, there is a limit of 1GB for
the total size of output data, imposed by the size of the underlying filesystem and object
size limits in S3.

The EC2 Instance type currently used by AceCloud is g2.2xlarge, which provides 8
threads of an Intel E5-2670 Xeon CPU, 15GB of RAM and a single Nvidia K520 GPU,
based on the compute capability 3.0 GK104 silicon, with 1536 CUDA cores at 800MHz.

Performance data is given below.

Security

Ensuring data security is an important consideration when using external third-party com-
puting resources or transferring data over public networks. AceCloud is designed with a
minimal vulnerability surface: VM instances are configured to expose SSH as the only
network-visible service and all data movement is performed via HTTPS (to and from S3)
or via SSH connections (partial result retrieval). Each AceCloud client install automatically
generates its own unique SSH keypair- no third-party SSH access is possible, nor is password
authentication permitted.

AceCloud uses the AWS Virtual Private Cloud (VPC) service to provide logical network

isolation for EC2 instances. The VPC can be further configured to route all communications
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via a dedicated Virtual Private Network (VPN) connection back to the user’s local infras-
tructure. This VPC connection further secures the transmission of potentially sensitive data
between client and cloud.

AceCloud requires read-write access to EC2, S3 and VPC services. Rather than assign
full access to the user’s AWS account, limited credentials can be generated using the Identify
and Access Management (IAM) servce. These restrict the client to interacting only with the
specified services. Multiple sets of such credentials can be created, allowing several users to
independently use a single AWS account (eg for billing purposes).

To provide maximal protection to the Amazon account, EC2 instances never receive any
(IAM) access credentials. Instead, pre-signed URLs generated and provided by the client
are are used to allow the instance limited access to S3.

For users for whom compliance to industrial or regulatory standards is required, AWS
complies to many of the major industry assurance programmes, include SOC1-3, ISO27001
and ISO9001 (A full list is given at'®). AWS services are replicated in several different
geographic regions. Users subject to regulatory issues may prefer to restrict their use to

resources within certain territories for compliance purposes.

Cost-Optimisation

As mentioned above, EC2 instances are available with fixed or spot pricing. For the instance
type used by AceCloud, the spot price is often as much a 10 times lower than the on-
demand price. Historic trend for the spot pricing for the three US regions are given in
Figure 4, showing long periods of low pricing interspersed with peaks indicating transient
peaks in demand.

Because the price differential between on-demand and spot is so marked, AceCloud is
designed to use the latter. Furthermore the client always attempts to allocate jobs to the
cheapest zone within the AWS region it has been configured to use. The user may examine

the spot pricing across the all AWS regions with the -—spots option. Since spot pricing is

11



volatile, the user sets a maximum bid price that they are prepared to pay for access. If the
spot exceeds that threshold, instances are liable for termination, but costs remain controlled.
While the spot remains below the set limit, the user’s running instances incur charges at the
prevailing spot price for the zone they are running in.

The state of any instances that are terminated is lost. To guard against unnecessary
loss of data, the best practice is to periodically perform incremental retrieval of results from

long-running or important simulations.

Product : Linux/UNIX v Instance type: g2.2xlarge v Daterange: 3 months v Availability zone: All zones v
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Figure 4: Historic spot pricing over a 3 month period for one AWS region. Pricing is
most frequently at a low floor level below the fixed on-demand price, with occasional spikes
reflecting peaks in demand (Data and graphs taken from AWS Web Console).

MD Capabilities and Performance

AceCloud has built-in support for ACEMD! and unmodified GROMACS (Version 5.0).2
ACEMD supports simulations parameterised with AMBER and CHARMM force fields, run-

ning in NVE, NVT or NPT ensembles with the PME treatment of long-range electrostatics.
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Additionally, metadynamics simulations may be performed with PLUMED, ! versions 1.3
and 2.0. The AceCloud version of GROMACS supports any simulation type that can be
completely specified within a normal TPR-format input file.

The g2.2xlarge EC2 instance type is equipped with an Nvidia K520 GPU. This device is
able to attain a rate of 105ns/day on the DHFR benchmark (23k atoms, cutoff=9A, dt=4fs,
PME, NVT). This represents approximately 50% of the performance of the Tesla K40, the
current top-end GPU at the time of writing. Despite the relatively low performance, the cost
means they are still economic to use. Furthermore, for ensembles of simulations the overall
throughput is of greater importance than that of any one individual simulation (provided
that exceeds some acceptable minimum).

The operation of both codes is in no way affected by the virtualised execution environ-
ment. Simulation outputs will be equivalent to that produced by execution on local physical

resources, subject to the limits of reproducibility for the code in question.

Usage Example

AceCloud is well-suited to executing ensembles of simulations, such as those employed by
De Fabritiis et al in protein-ligand free binding and ab initio protein folding protocols.*17
An example of a 10-way ensemble of the benzamidine-trypsin model system is available for
download from.!'® This section provides a summary of the steps required to execute this
ensemble on AceCloud.

Pre-requisites AceCloud access is provided via the current free release of ACEMD,!
which should be downloaded and installed. An Amazon Web Services account is also re-
quired; these can be created via http://aws.amazon.com/).

AceCloud requires a subscription to the AceCloud Molecular Dynamics Product in the

Amazon Web Service Marketplace. The product page is found at https://aws.amazon.

com/marketplace/pp/BO0Q5ECSOG. Follow the instructions there to subscribe, but do not
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launch any instances.
Finally, the client must be provided with access credentials for the Amazon account.
These are obtainable from.® The client is configured with these credentials using the option

--configure auth, eg:
$ acemd --configure auth XXXX-KEY-XXXX  XXXX-SECRET-XXXX

Running Simulations Submit each of the 10 simulation inputs using the --submit

argument:

$ acemd --submit --project bentryp *

To monitor the progress, use --status:

$ acemd --status
Queued Running Completed Aborted Project
0 10 0 0 bentryp

$ acemd --status --long

Project Status Name

bentryp RUNNING /home/tmp/Benzamidine-Trypsin/0
bentryp RUNNING /home/tmp/Benzamidine-Trypsin/1
bentryp. " RUNNING /home/tmp/Benzamidine-Trypsin/9

Jobs will progress from Queued through Running to Completed. Once all jobs are in
the Completed state, the output can be retrieved back to the submission directories with
--retrieve. To obtain partial output from uncompleted simulations, append the argument

--incremental. —--verbose can be added to see the operations in progress.

$ acemd --retrieve
[Ctrl-C to terminate]
$1s 0

log

output.xtc

These simulations are each configured to run for 20ns. The compute resources currently
used by AceCloud can execute these simulations at a rate of 65ns/day, meaning that the
ensemble will complete within 8 hours. This throughput exceeds that attainable on a work-

station equipped with 4 Tesla K40 GPUs (= 11h).
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Discussion

Molecular dynamics is an established method for in silico investigation of biomolecular pro-
cesses. In previous work?® we have made the case that, as a result of technological and
methodological developments, MD is poised for transition from a research context into rou-
tine industrial and commercial use.

In logistical terms MD simulation remains challenging to employ: the scale and spe-
cialisation of the computing resource required to support state-of-the-art methods'” put it
beyond casual or occasional use of any group without access to dedicated high performance
computing resources. To mitigate this problem, and promote the wider uptake of MD in
general, we have developed AceCloud. By exploiting ‘cloud computing’ — the broad trend in
the IT sector towards flexible deployment of compute resources and services through third-
party providers — we are able to provide low-cost, on-demand access to MD simulation as a
robust, production-quality service.

We believe AceCloud will be useful tool for users of molecular dynamics simulation in
both industry and academia, and provide a platform for innovation in higher-level protocols,
for example adaptive sampling.'” Furthermore, AceCloud is an exemplar in delivering access
to scientific computing — generally considered the purview of specialised high performance
computing centres — through a general-purpose cloud resource provider. The operational
benefits that accrue from cloud use are, we contend, substantial and this mode of deployment
will become an increasingly common way of delivering resource-intensive computation to

end-users across a wide range of scientific disciplines.
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