
Sharing Data Through Confidential Clouds:
An Architectural Perspective

Daniele Sgandurra∗, Francesco Di Cerbo†, Slim Trabelsi†, Fabio Martinelli‡, Emil Lupu∗
∗Department of Computing, Imperial College London, UK

Email: {d.sgandurra, e.c.lupu}@imperial.ac.uk
†Product Security Research, SAP Labs, France

Email: {francesco.di.cerbo, slim.trabelsi}@sap.com
‡IIT-CNR, Via G. Moruzzi 1, I-56100 Pisa, Italy

Email: fabio.martinelli@iit.cnr.it

Abstract—Cloud and mobile are two major computing
paradigms that are rapidly converging. However, these models
still lack a way to manage the dissemination and control of
personal and business-related data. To this end, we propose a
framework to control the sharing, dissemination and usage of
data based on mutually agreed Data Sharing Agreements (DSAs).
These agreements are enforced uniformly, and end-to-end, both
on Cloud and mobile platforms, and may reflect legal, contractual
or user-defined preferences. We introduce an abstraction layer
that makes available the enforcement functionality across differ-
ent types of nodes whilst hiding the distribution of components
and platform specifics. We also discuss a set of different types of
nodes that may run such a layer.

I. INTRODUCTION

Outsourcing data storage and management to the Cloud,
usually for improved availability and sharing, entails an in-
herent loss of control by Cloud tenants. Therefore, additional
means of data protection and usage control must be provided
to allow organizations to safely share their data on the Cloud.
Protecting data, and in particular personal data in the sense of
European and National Legislations1, is essential to citizens
and organizations across all sectors, including government,
healthcare and public administrations. In fact, data sharing
between individuals and organizations through the Cloud can
only be achieved by providing assurances on data protection.
Furthermore, the data originator should be able to retain
control over data usage to avoid uses for different, and
unanticipated, purposes.

The goal of our project2 is to provide a framework for
information sharing among organizations that permits confi-
dential and secure operations, with a strong emphasis on legal
and regulatory aspects, and that is convenient for end-users.
Currently, many organizations share data in an ad hoc fashion
(e.g., by e-mail) or with contracts that are not automatically
enforced an/or that rely on good behavior of the recipients.
With our framework, organizations can effectively deploy
contracts to share data with users, and other organizations,
and automatically enforce the requirements and constraints
over their subsequent use. In our architecture, an electronic

1“Opinion 4/2007 on the concept of personal data”, available at: http://ec.
europa.eu/justice/policies/privacy/docs/wpdocs/2007/wp136 en.pdf

2http://www.coco-cloud.eu/

Contract, or Data Sharing Agreement (DSA), is a formal
document that regulates how organizations and/or individuals
share data. In this paper we introduce an uniform enforcement
component that seamlessly enforces DSAs through Cloud
services and mobile devices. We detail how this component
behaves as an abstraction layer that makes available the DSA
enforcement functionality across different types of nodes,
while at the same time hiding the distribution of components
and platform specifics.

The paper is structured as followed. In Sect. II we de-
scribe the architecture and its main components, whereas In
Sect. III we detail the layer that implements the enforcement
and publishing functionality on different types of Cloud and
mobile nodes. Section IV describes the types of nodes that can
participate in the framework. In Section V we discuss related
work. Finally, in Sect. VI we conclude the paper.

II. ARCHITECTURE

In this section we give a high-level description of the
proposed architecture, by describing the rationale, its main
structure, and how it caters for different types of nodes, and
how it interacts with external and legacy services. One of the
key requirements for the framework is that it should cater for
a variety of access and storage modalities for the information.
In particular, Coco Cloud supports several deployment and
service models, since its services may be offered in a public,
private, or hybrid Cloud, and in IaaS or SaaS services. To this
end, Coco Cloud makes available several typologies of nodes
used to instantiate the framework according to the chosen
models and the business needs. Across these different types of
nodes, and their combinations, the framework provides access
and distribution transparency as well as transparent enforce-
ment of data protection. Hence, it must abstract out from the
specifics of each platform and encapsulate distribution and
coordination of enforcement in an abstract layer that provides
uniform access to its functionalities.

We thus introduce an abstraction layer (called Enforcement
& Publishing layer, see Fig. 1) as a uniform component
that offers an entire set of enforcement functionalities for
the DSAs on each node regardless of its characteristics. The
implementation of the layer on each different type of node



may vary: some of the services may be implemented locally,
others may be implemented by having recourse to remote
services, such as in a SaaS implementation. For example,
information created and published on a mobile node may need
to be analyzed remotely to be associated with the correct
DSA. Interfacing of nodes with local and remote storage,
e.g. a Cloud storage with S3 protocol, also happens at this
level. Such a layer focuses on the enforcement of the policies
resulting from the DSA, including both access rights to the
data and obligations associated with data usage. These policies
are enforceable in the sense that they can be interpreted by
automated components.

Concerning Cloud nodes, according to chosen service and
deployment model, we distinguish between: (i) Cloud as
applications and storage nodes, for access and use of the
data: in Fig. 1, this is the third node on the left, which is
instantiations of a generic Coco Cloud node that includes
both applications to access the protected data and also a
storage space (also mobile and desktop/laptop nodes have
similar requirements); Cloud as a storage service nodes: in
Fig. 1, the rightmost node, which is an instantiation of a public
provider storage node where the content of protected data is
not processed nor accessed by provider applications, and data
are only stored and replicated.

Figure 1. Overview of the Architecture

This distinction is important because it relates to the dif-
ferent types of access, enforcements and threats. In particular,
a Coco Cloud node containing applications needs to access
the content of the data exchanged, may change it, create
new data, share or disseminate them further. In this case, the
layer mediates between these applications and the protected
resources by enforcing all policies on content access specified
in the DSA. Examples of Coco Cloud nodes, as shown in
Figure 1, include: (i) mobile node: this is any mobile device
that includes the layer; (ii) desktop/laptop node: this is a
standard desktop or laptop computer that includes the layer;
(iii) Cloud node: this is a SaaS node, which is accessed
remotely via a specific interface by a client node, and that
includes the layer to access its functionalities.

In the second set of nodes, storage nodes, a framework-
aware provider does not need to access the information con-
tent, and it is exploited for its storage capabilities only. In

these cases, a public provider is treated as an honest-but-
curios provider, i.e. one provider willing to provide a set
of enforcement functions, without modification, but at time
may be tempted to access confidential data. Such a (storage)
provider still needs to enforce those policies that relate to
the container in which the data is encapsulated. For example,
it may need to delete the container under a data retention
or privacy policy, record any copies or which clients have
downloaded it.

We consider the data content to be encapsulated in a Data
Protected Object (DPO) encrypted with a content key (or a
reference to it, e.g. to a trusted authority) and also containing
other metadata, such as the policies relating to data usage. In
case of CASS nodes, because access to the information content
is not required, access to the DPO content itself is also not
needed. However, the meta-data and policies on the container
management may also be confidential, so DPOs are included
into a higher level container called a Data Object Container
(DOC), which may be encrypted in turn.

When a node wants to protect some data through DSAs,
a new object is created through the enforcement layer. The
relevant DSAs are attached to the object as enforceable poli-
cies. The created object has a layered structured where all, or
a subset of, its DSAs can be understood and enforced by the
nodes participating in the framework. This layered structure
depends on, among the others, node location, node type
etc. Usage control requires that the applications be certified
and trusted (i.e., their integrity checked) to access raw data.
However, the architecture is flexible enough to define several
different kinds of layered policies format.

III. ENFORCEMENT AND PUBLISHING LAYER

The enforcement and publishing layer is responsible for (i)
the enforcement of DSA (through the enforcement subsystem)
or (ii) the publishing of new object(s) under DSAs (through
the publishing service). The protected objects can be stored
locally or remotely through the Storage Adapter, or sent to
another node of the architecture.

To interact with the enforcement and publishing layer, there
are two possibilities. In the first one, a framework-aware
application is used, e.g. one that knows how to invoke the
functionalities of the enforcement & publishing layer, which
are exported through a set of layer API. This interaction
is possible because when such an application is developed
it is linked against a library that allows the application to
invoke the layer functions natively. In particular, the API is
used to invoke the functions of the framework layer. As an
example, this set of API includes the function to publish a
protected object, to request access to a protected object, to
store a protected object, etc. In the second case, a legacy
application is interfaced with the framework layer through
a protocol/application adapter, whose goal is to convert the
invocations/requests of the application (e.g., to read or to store
a file) to requests to the layer using its exported API. As an
example, the adapter has to append some metadata to the data
to be published through the enforcement & publishing layer or



to invoke the functions to enforce the DSAs when accessing
a protected file. This adapter is logically not a part of the
layer, since it is a distinct component whose only function is
to translate, if needed, application’s request in native format
into layer-compliant requests.

A. Enforcement Subsystem

A fundamental component of the framework layer is the
enforcement subsystem. The enforcement subsystem is respon-
sible of enforcing the attached DSA policies on either DOP
or DOC. Examples are enforcement of obligations, continuous
authorizations and managing mutable attributes (e.g., attribute
which counts a number of data copies in the system). In
contrast with a traditional access control architecture, which
considers all access requests as short lived and atomic, us-
age control also constrains access in terms of dynamically
changing attributes and needs to interface with local context
services through a publish/subscribe mechanism, which allows
the enforcement to receive notification whenever some events
have occurred (e.g., a period of time has elapsed). In the
framework, different nodes may be trusted to a different degree
and, on some platforms, the integrity of the enforcement may
be a crucial factor in governing the access. In particular, data
should not be accessed (or no longer be accessed) if there
are reasons to believe that the integrity of the node, or of the
enforcement system, has been compromised.

B. Publishing Service

The other important functionality of the framework layer is
the Publishing Service, which is the component of the frame-
work used to publish new objects (files) protected under the
relevant DSAs. To publish protected objects, the layer needs
to understand which DSAs need to be associated with them.
This can be either chosen by the user (i.e., a discretionary
decision) or it might be based on attributes of the object itself
(i.e., a mandatory decision), or the context in which the object
has been created (e.g., which application, in which folder, at
which point in time). When such a protected object is created,
i.e. a protected object containing data and DSA (also called a
bundle), it is ready to be consumed on any other enabled node.
A storage adapter is used to store the bundle either locally, on
an external storage or sent to another framework node.

C. Storage Adapters

An adapter is used for converting a request from a for-
mat into another one. In particular, adapters may reside
outside the enforcement & publishing layer, such as the
Protocol/Application Adapter, or inside the layer, such as
the Storage Adapter. This adapter is the component used to
store, and retrieve, protected object regardless of their location,
which can be local, a Cloud storage or a remote node. To this
end, the storage adapter is responsible of invoking the proper
functions, e.g. system calls to save the object locally, S3/Swift
API calls to save the object on an external Cloud storage or
layer API calls to send the file to another framework node.

IV. TYPES OF NODES

As we have described previously, a generic node is any node
that participates in the framework that is capable of running
the enforcement & publishing layer to access and publish files.
In a typical scenario, a user of an organization exploits the
framework to share data with several other organizations with
which it has drawn a set of multilateral DSA. This user can
access, or publish, documents protected under such DSAs by
either using a legacy application or an application aware of
the framework. There are at lest three types of node that can
exploit the framework, which will be detailed in the following.

Mobile Node: An instantiation of a generic node can
be any mobile device capable of running the enforcement &
publishing layer. For example, it can be a corporate mobile
device, i.e. belonging to the organization and as such more
controlled, or personal devices used as a work tool within
organizations adopting the “bring your own device” (BYOD)
paradigm. In these scenarios, the layer is responsible of
providing strong assurance that the BYOD devices cannot
be compromised and that the access to the data cannot be
given without checking DSA policies (e.g., by “turning off”
some components, such as the enforcement subsystem). To
this end, a pluggable component of the layer, called Integrity
Manager, is responsible, when requested by the threat model,
of checking the integrity of the system. The goal of this
component is to verify that the system, and the layer itself, are
running untampered with. In this cases, the Integrity Manager
might exploit techniques such as remote attestation [1], with
the help of Trusted Platform Module (TPM) [2], TrustZone
technologies [3], in combination with Mobile Device Man-
agement (MDM), to create a chain of measurements.

Desktop/Laptop Node: In this scenario, a desktop or
a laptop is used to access the framework functions, e.g. to
create new objects or to be able to access existing protected
objects. Usually, either legacy applications are used to access
the protected objects or ad hoc applications might be created
to interface with the layer (e.g., a plugin for a Web Browser).
In these cases, the desktop and laptop nodes are under strict
control of the organization, e.g. with respect to what software
can be installed, who can access the devices, etc., and hence
the security requirements are less strict then the mobile case,
although also in this scenario a component to check the
integrity of the node (Integrity Manager) might be included,
and exploited, if the threat model requires it.

SaaS Cloud Node: In this scenario, the enforcement &
publishing layer is running on a Cloud node (either belonging
to a private or a public Cloud infrastructure), and also the
applications that need to interact with other nodes of the
architecture, or with protected objects, run on the Cloud node
itself. Basically, this scenario describes a SaaS node and, as
in most of these cases, the Cloud node is typically accessed
by users using a remote client through a set of exported
APIs (e.g., REST). The threat model in these cases, and the
corresponding use of the Integrity Manager, is related to the
trust associated with the Cloud Provider hosting the SaaS
application.



Storage Node: When a protected object needs to be
stored (e.g., when it has been published), it can be stored
on a remote Cloud storage, for example to be shared between
two or more organizations. The storage node, i.e. the Cloud
service provider, is framework-aware, which means that it runs
a (stripped) version of the enforcement & publishing layer able
to cope with DOC policies only. The functionalities of the
layer in an aware storage node are limited, as an example, on
enforcing DSA on DOC objects, such as policies on geography
placement, validity time, and similar ones. In contrast, the
layer does not need to include functionalities to publish or
access the object directly, since this is only a storage node.
This scenario caters for honest-but-curious provider, i.e. a
provider who (1) stores the outsourced protected objects with-
out tampering with their integrity; (2) honestly executes every
framework operation and returns protected objects on request;
(3) may try to access user’s data, inside a protected object,
improperly. In a nutshell, this scenario depicts a provider that
respects the integrity of the objects (and of the enforcement)
but may not respect the confidentiality of the data.

V. RELATED WORK

Within the FP7 Consequence Project an enhanced enforce-
able policy language has been defined. This environment has
been further extended to enforcement on TPM platforms and
use of attestation in the policy conditions [4] [5]. However,
much of the focus has been on the enforcement for data
dissemination in crisis management scenarios where issues
of intermittent connectivity must be addressed. To this end
a novel policy-based trust management framework has been
defined that allows recursively devolving authority for policy
and attribute evaluation [6]. DataSafe [7] is an architecture that
uses policies to protect data from attacks from untrusted third-
party application, such as untrusted third party applications. To
this end, DataSafe provides dynamic instantiations of secure
data compartments and continuously tracks and propagates
hardware tags to identify sensitive data by enforcing unby-
passable output control. Guardat [8] is an architecture that
enforces data access policies at the storage layer, where the
controller can be implemented in a trustlet isolated using a
protected container with Intel SGX.

VI. CONCLUSION

The challenges of sharing data, whilst preserving some
degree of control over its usage, can be met by extending
and integrating techniques from Enterprise Rights manage-
ment, policy-based access and usage control, key management
and trust management. Explicit and automatically enforceable
Data Sharing Agreements are necessary to establish the trust
relationships between the parties, their expectations, rights and
duties which translate into the usage control policies to be
enforced. However, the integration of the techniques involved
in their enforcement and catering for the wide spectrum of
devices and services involved into a common, extensible and
modular architecture, is a significant challenge. A common
middleware layer is necessary, not only to hide the distribution

aspects, but also to hide how services and functionality is
brought to the point of use. This enables the layer to transpar-
ently offer all the functionalities on all devices even if some
of these may be offered remotely, and to abstract from how
the services are provided. Data are protected within containers
and associated with policies. Different policies may apply to
the management of an opaque (i.e., encrypted) container, and
then to the usage of the data, each needing to be enforced by
a different provider. This leads to the encapsulation of policy
layers, where each layer contains those policies that apply to
the management of its immediate contents.

In this paper we have described the design principles of an
architecture to control the sharing, dissemination and usage
of data on Cloud. We have described the enforcement &
publishing layer, which is the component responsible for
creating objects and enforcing the policies on the protected
objects. Furthermore, we have shown how such a layer can
be instantiated onto different types of node. Currently, the
architecture is being validated on three Pilot implementations,
catering for three industry verticals, each offering a wide range
of use-cases.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the FP7 EU-funded project Coco Cloud (grant No.
610853).

REFERENCES

[1] G. Coker, J. Guttman, P. Loscocco, A. Herzog, J. Millen, B. O’Hanlon,
J. Ramsdell, A. Segall, J. Sheehy, and B. Sniffen, “Principles of remote
attestation,” Int. J. Inf. Secur., vol. 10, no. 2, pp. 63–81, Jun. 2011.
[Online]. Available: http://dx.doi.org/10.1007/s10207-011-0124-7

[2] S. Pearson, “Trusted computing platforms, the next security solution,” HP
Labs, 2002.

[3] J. Winter, “Trusted computing building blocks for embedded linux-
based arm trustzone platforms,” in Proceedings of the 3rd ACM
Workshop on Scalable Trusted Computing, ser. STC ’08. New
York, NY, USA: ACM, 2008, pp. 21–30. [Online]. Available:
http://doi.acm.org/10.1145/1456455.1456460

[4] V. Gowadia, E. Scalavino, E. C. Lupu, D. Starostin, and A. Orlov,
“Secure cross-domain data sharing architecture for crisis management,”
in Proceedings of the Tenth Annual ACM Workshop on Digital Rights
Management, ser. DRM ’10. New York, NY, USA: ACM, 2010, pp.
43–46. [Online]. Available: http://doi.acm.org/10.1145/1866870.1866879

[5] A. Gopalan, V. Gowadia, E. Scalavino, and E. Lupu, “Policy driven
remote attestation,” in Security and Privacy in Mobile Information and
Communication Systems, ser. Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering,
R. Prasad, K. Farkas, A. Schmidt, A. Lioy, G. Russello, and F. Luccio,
Eds. Springer Berlin Heidelberg, 2012, vol. 94, pp. 148–159. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-30244-2 13

[6] E. Scalavino, V. Gowadia, R. Ball, E. C. Lupu, and G. Russello, “Mobile
paes: Demonstrating authority devolution for policy evaluation in crisis
management scenarios,” Policies for Distributed Systems and Networks,
IEEE International Workshop on, vol. 0, pp. 53–56, 2010.

[7] Y.-Y. Chen, P. A. Jamkhedkar, and R. B. Lee, “A software-hardware
architecture for self-protecting data,” in Proceedings of the 2012 ACM
Conference on Computer and Communications Security, ser. CCS ’12.
New York, NY, USA: ACM, 2012, pp. 14–27. [Online]. Available:
http://doi.acm.org/10.1145/2382196.2382201

[8] A. Vahldiek, E. Elnikety, A. Mehta, D. Garg, P. Druschel, A. Post,
R. Rodrigues, and J. Gehrke, “Guardat: A foundation for policy-protected
data,” MPI-SWS, Tech. Rep. 014-002, MPI-SWS, 2014.


