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Abstract 

Internal instability is a form of internal erosion in broadly-graded cohesionless soils in which fine particles can 

be eroded at lower hydraulic gradients than predicted by classical theory for piping or heave. A key mechanism 

enabling internal instability is the formation of a stress-transmitting matrix dominated by the coarse particles 

that leaves the finer particles under lower effective stress. In this study discrete element modeling is used to 

analyze the fabric and effective stress distribution within idealized gap-graded samples with varying potential 

for internal stability. The reduction in stress within the finer fraction of the materials is directly quantified from 

grain-scale data. The particle size distribution, percentage finer fraction and relative density are found to 

influence the stress distribution. In particular, effective stress transfer within a critical finer fraction between 

24% and 35% is shown to be highly sensitive to relative density. 

 

 

  

mailto:thomas.shire09@imperial.ac.uk
http://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0001184


2 

 

2 

 

Introduction 

Internal instability is a form of internal erosion which occurs in broadly and gap-graded cohesionless and low-

plasticity soils (ICOLD 2013), when the coarse fraction of the soil is unable to prevent the erosion of the fine 

fraction under the action of seepage.  Moffat et al. (2011) draw a distinction between two types of internal 

instability, namely suffusion and suffosion. Where suffusion occurs, the finer particles are eroded through the 

coarse fraction “without any loss of [the load-carrying] matrix integrity or change in total volume”, whereas 

finer particle migration due to suffosion “yields a reduction in total volume and a consequent potential for 

collapse of the soil matrix”. Cohesionless soils can be subjected to backward erosion, contact erosion or 

suffusion depending on their position with respect to seepage direction and level of internal stability (ICOLD 

2013, Wan and Fell 2004).  

Internal instability occurs under the combined influence of three factors: (i) material susceptibility, (ii) critical 

stress condition and (iii) critical hydraulic load, shown in Venn diagram form in Figure 1 (after Garner and 

Fannin 2010). This paper focuses on the critical stress condition and the material susceptibility, specifically the 

distribution of stress between particles of different sizes in a potentially unstable gradation.  

Material susceptibility essentially refers to the material fabric and there are two key aspects. Firstly, the fine 

particles must be small enough to pass through the constrictions in the void network between the coarser 

particles (a geometric criterion). Secondly, the finer particles must not completely fill the voids between the 

coarse particles so that they carry a relatively low stress and are transportable under seepage (a stress criterion). 

Two important finer fraction values were identified by Skempton and Brogan (1994). Firstly, the critical finer 

fraction (S*) at which the finer particles fill the voids, which was estimated to fall between the narrow limits of 

finer fractions by mass, Ffine = 24% to 29% for dense and loose samples respectively, based on assumed 

minimum and maximum porosities.  Secondly, the finer fraction Smax at which the finer particles completely 

separate the coarse particles from one another, which Skempton and Brogan proposed is given as Ffine = 35%.  

Other aspects of material susceptibility which could contribute towards internal instability include 

inhomogeneity, low relative density, material segregation (ICOLD 2013) and stress anisotropy (Chang and 

Zhang 2013). 

If the two material susceptibility criteria (geometric and stress) are met, internal instability will initiate if a 

critical hydraulic gradient is applied to the soil. This critical gradient is lower than would be expected to cause 

failure by heave, as found experimentally by Skempton and Brogan (1994), Wan and Fell (2004) and Fannin 

and Moffat (2006) amongst others.  Skempton and Brogan (1994) postulated a grain-scale explanation, whereby 

the majority of the effective stress is carried by a matrix of coarse particles, leaving the loose finer particles 

under relatively low stress. These less-stressed fine particles reach a zero effective stress state, and become 

potentially mobile, at lower hydraulic gradients than would be expected from an examination of the average 

stress.  
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To quantify this effect, they proposed that a stress-reduction factor, α, can be defined as the proportion of the 

overburden acting on the loose fraction in the “no flow condition” i.e.: 

 σ′fine =  α σ′ 1 

where: σ′fine: effective stress transferred by the finer fraction; σ′: overburden effective stress;  α: stress-reduction 

factor.   

Combining the stress-reduction factor with Terzaghi’s classic theory for heave at zero effective stress, the 

critical hydraulic gradient for a cohesionless soil with no surface loading becomes: 

 ic =  αlabγ′/γw 2 

where: ic: critical hydraulic gradient for internal instability;  γ′: buoyant unit weight; γw : unit weight of water. 

Note that when α = 1, the soil is internally stable and Equation 2 becomes the Terzaghi relationship. Equation 

2 implies that lab  is an indirect measurement obtained permeameter tests. 

Using a stress-controlled permeameter, Moffat and Fannin (2011) found a linear relationship between effective 

stress level and critical hydraulic gradient for internally unstable soils. Li and Fannin (2012) subsequently 

proposed that the stress-reduction factor α is practically constant over a range of stress levels, allowing them to 

derive a generalized form of Equation 2 that can account for any imposed effective stress. The critical hydraulic 

gradient at the base of a soil element for upward flow becomes: 

 𝑖𝑐 =  𝛼 ( 𝜎̅𝑣0
′ + 𝛾′ 𝛾𝑤⁄  ) 3 

where 𝜎̅𝑣0
′  is the normalized vertical effective stress, 𝜎̅𝑣0

′ =  𝜎′𝑣0 𝛾𝑤⁄  ℎ, 𝜎′𝑣0 is the applied vertical effective 

stress at the top of the specimen and h is the length over which the hydraulic gradient is measured. The vertical 

effective stress is divided by h in order to take into account the decrease with h of critical hydraulic gradient 

observed by Li (2008) and Marot et al. (2012a).  Equations 2 and 3 are formulated for upward seepage flow. 

However, Moffat and Fannin (2011) and Li (2008) show the onset of instability in stress-gradient space appears 

independent of whether upwards or downwards flow direction was used.  

Although the α-concept is based on hypothesized grain-scale behavior, the experimentally determined values 

on which the concept relies were calculated by comparing the observed critical hydraulic gradient to the 

theoretical value for heave. It is not experimentally possible to directly measure the stress in the finer soil 

fraction. 

A number of studies indicate that the role of the fine particles varies with finer fraction. For example, based on 

the results of direct shear tests on gap graded mixtures of glass beads, Vallejo (2001) concluded that at Ffine ≤ 

30% the shear strength was controlled primarily by the coarse particles with the finer fraction sitting loose 

within the voids, at Ffine = 30 - 60% both coarse and finer fractions contribute and at Ffine > 60% the finer fraction 
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alone controlled the strength. Thevanayagam et al. (2002) developed five fabric cases to classify the liquefaction 

potential of sands with non-plastic silt fines, and these are likely to have a broader application: 

(i) finer particles are fully confined within voids between coarse particles and provide no support to the coarse 

particles; 

(ii) finer particles are partially in contact with and provide some support to coarse particles; 

(iii) most finer particles are confined within voids but some finer particles separate coarse particles from one 

another, increasing the fragility of the soil; 

(iv) : 

1. coarse and fine particles both contribute towards shear strength; 

2. coarse particles are fully dispersed within a matrix of finer particles, which control shear strength 

Cases (i) to (iii) refer to finer fractions < S*, whereas (iv-1) and (iv-2) refer to finer fractions > S*. Case (i) 

materials are often referred to by dam engineers as “underfilled” (ICOLD 2013) and if the geometric criterion 

is met these materials are susceptible to suffusion (i.e. α ≈ 0). In relation to internal stability, Case (iii) materials 

can be considered a special form of Case (i) material, in which most finer particles are unstressed and susceptible 

to suffusion, but the few which are trapped between coarse particles are highly stressed. Case (iv) materials are 

“overfilled” and internally stable (α ≈ 1).  Case (ii) materials may be susceptible to suffosion if the stress in the 

fines supporting the coarse particles is low enough for them to be preferentially eroded and the geometric 

criterion is met. 

Discrete element modeling (DEM) is a numerical technique originally proposed by Cundall and Strack (1979) 

that allows a quantitative grain-scale assessment of the fabric of idealized granular materials. Shire and 

O’Sullivan (2013) used DEM to analyze the relationship between grain-scale fabric and the empirical criterion 

for assessing internal stability proposed by Kézdi (1979) for a series of idealized gap-graded soils with varying 

particle size distribution (PSD) and finer fractions at a single relative density level. The average number of inter-

particle contacts per particle fell as instability increased, representing an increase in the proportion of loose, 

erodible fine particles. Similarly, the number of coarse particles participating in stress transfer fell as instability 

increased.  

The objective of this study is to use DEM to further investigate the aspects of soil fabric which contribute 

towards internal instability. The DEM dataset used comprises larger samples than those considered by Shire 

and O’Sullivan (2013) and includes a wider range of finer fractions and relative densities. In particular the 

distribution of effective stress within a soil is examined by using the inter-particle contact force data provided 

in the DEM simulations to directly calculate α. The support provided to the soil matrix by the finer fraction is 

examined using α and the number of contacts each particle has with its neighbors.  Following a comparison of 

the DEM  values with experimental data, the relationships between  and various micro- and macro-scale 
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parameters are explored through a systematic variation of gap-ratio, finer fraction and relative density. Emphasis 

is placed on the sensitivity of effective stress transmission through the finer particles to the critical finer fraction 

values identified by Skempton and Brogan (1994).   

 

PSDs considered 

A total of 16 gradations were considered as detailed in Figure 2 and Table 1. The largest particle in each 

numerical specimen was 10 mm in diameter. Referring to Table 1, the susceptibility to instability is quantified 

according to two commonly used empirical criteria: (i) the (D′15/d′85)max ratio first proposed by Kézdi (1979), 

where D′ represents the coarse fraction and d′ the finer fraction; (ii) the (H/F)min ratio proposed by Kenney and 

Lau (1985), where F is the % by mass of the soil smaller than a diameter D, and H is the % passing between D 

and 4D.  

There is one linear gradation, termed “Dam Filter”, with a PSD matching that of a granular filter collected from 

a dam under construction in southern Europe. Being linear, Dam Filter does not have distinct coarse and fine 

fractions but has been given a nominal Ffine = 50% to indicate that it can be considered “overfilled”. The 

remaining 15 gradations are gap-graded. Two of the gap-gradations are similar to those considered in prior 

experimental research: “FR7” has approximately the same PSD as a physical specimen of spherical glass beads 

that was tested at the University of British Columbia (Li 2008) with a finer fraction of 30% and  a  gap ratio 

(D′0 /d′100) of 5.7. Skempton A is similar to the gradations “A” tested by Skempton and Brogan (1994) and 

“HF01” tested by Li (2008), both of which consisted of real sands and gravels. The finer fraction is 13% and 

the gap ratio is approximately 4. Both gradations are considered internally unstable by both the Kézdi and the 

Kenney and Lau criteria. However, as shown in Figure 2(a) while the PSDs are similar, the coarse fraction of 

the experimental samples is more widely graded than the DEM sample. This was necessary in order to limit the 

number of particles required and allow the simulations to run within a reasonable time. 

The remaining 13 gap-gradations belong to one of three series of PSDs with varying finer fractions and gap 

ratios but very uniform coarse and fine fractions. Each of these is named either “Gap Narrow XX”, “Gap Med 

XX” or “Gap Wide XX” where XX is a number representing the finer fraction by % mass. The Gap Narrow 

gradations have a gap ratio of 3 and are internally stable according to the Kézdi and Kenney and Lau criteria, 

the Gap Med gradations have a gap ratio of 4 and are borderline unstable according to the Kézdi method and 

unstable according to the Kenney and Lau criterion. The Gap Wide gradations have a gap ratio of 7.5 and are 

unstable according to both the Kézdi and the Kenney and Lau criteria.  

The coarser and finer fractions for each gradation in the “Gap” series are very uniform, with Cu = 1.2. This was 

necessary in order to reduce the total number of DEM particles required, and the computational resources 

required for the simulations. However, for these PSDs the Kenney and Lau criterion provides a very sharp 

distinction in stability, with gradations with gap ratio = 3 being classified as highly stable, and those with gap 

ratio = 4 being highly unstable. For the same gradations the Kézdi criterion varies almost linearly with gap ratio. 
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Additionally, Li and Fannin (2008) found that the Kézdi criterion was more successful than the Kenney and 

Lau criterion at predicting internal instability in gap-graded soils. Therefore the Kézdi criterion is used as an 

empirical measure of internal stability in the remainder of the discussion here.  The idealized gap-gradings used 

here allowed easy identification of the coarse and fine fractions. In a broadly-graded sample, the point at which 

the PSD should be split into coarse and fine fractions is not clear. The work to date on this issue is summarized 

in ICOLD (2013). 

 

DEM Simulations 

The DEM simulations were carried out on cubic samples using a modified version of  the open-source DEM 

code Granular LAMMPS (Plimpton 1995). Periodic boundary conditions were used to create a sample which is 

effectively of infinite size and is free from the boundary effects associated with rigid boundaries, allowing 

particle numbers to be kept to a reasonable level. A Hertz-Mindlin contact model was used and the simulation 

input parameters were Poisson’s ratio ν = 0.3, shear modulus G = 27.0 GPa and particle density ρ = 2670 kg/m³, 

which are approximately equal to experimentally derived values for spherical glass beads used by Barreto 

(2008). Particles are initially placed in random, non-touching positions within the periodic cell using an in-

house placement code, creating a fully homogeneous, high porosity sample, which then undergoes periodic 

compression.  

The periodic compression method for sample generation proposed by Cundall (1988) was used here. The 

periodic boundaries and the particles contained within move as if part of a continuum subjected to a uniform 

strain field. In addition to the particle movement due to the imposed strain field, during compression, particles 

also moved due to the resultant force of all contact forces. A stress-controlled servo-control algorithm imposed 

a strain rate that reduced as the initial target isotropic stress level of p′ = (σ′1 + σ′2 + σ′3) / 3 = 50 kPa was 

approached, where σ′1 , σ′2 ,  σ′3 are the three principal stresses.  This modeling and simulation approach has 

been used by Thornton (2000) amongst others. In order to achieve a range of final void ratios, different 

coefficients of inter-particle friction were used during the compression stage, i.e.  μ = 0.0, μ = 0.1 and μ = 0.3, 

which are termed “dense”, “medium” and “loose” respectively. This yielded a more systematic variation in 

packing density than has hitherto been achieved or considered in experimental studies.  To allow a consistent 

comparison of the results, the friction was changed to μ = 0.3 for all samples when p′ = 50 kPa. Each simulation 

had a minimum of 500 coarse particles; a parametric study in which the number of particles was varied showed 

this was sufficient to achieve a representative element volume (REV), meaning there was no statistically 

significant change in the results with an increase in the number of particles within the periodic cell. Further 

details are given in Shire (2014).  

A large number of particles (up to 304,205) and a very wide range of particle sizes were used, meaning that the 

computational cost of the simulations was very high. In order to run such demanding simulations, this work 

made use of the UK's national high-performance computing service, HECToR, and the Curie HPC facility, 

which was accessed through the European PRACE program. Even with these state of the art facilities, the larger 
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simulations required a run time of several weeks to complete. The size of the simulations necessitated the use 

of spherical particles. Although this is an idealization of real sands, and particle shape is known to affect the 

filtration properties of sands (Marot et al., 2012b), prior experimental research has also used spherical glass 

beads to remove the influence of shape and the justification for empirical design rules such as Kézdi (1979) and 

Kenney and Lau (1985) also assume spherical particles. The samples were homogeneous and isotropic, and 

gravity was neglected. Neglecting gravity is necessary where periodic boundaries are used and it results in some 

samples having coordination numbers, Z, less than one (Z = the average number of inter-particle contacts per 

particle in a sample).  This allows easy identification of those particles which are participating in effective stress 

transfer. Were gravity to be enabled, and a rigid base boundary added in place of periodic boundaries, the 

minimum coordination number would be 1 as the unconnected particles would fall to rest on other particles. 

However, those particles would still not participate in stress transmission. This approach means that factors 

known to affect internal stability such as stress-induced anisotropy and soil inhomogeneity cannot be 

considered.  

Simulations were terminated when the mean normal stress reached the target level and coordination number 

remained constant for 20,000 simulation cycles.  The mechanical coordination number, Zmech,  is the number of 

contacts per particle considering only particles with two or more contacts, i.e. those particles that are likely to 

transmit stress. Four samples generated with μ = 0.3 reached a stable p′ = 50 kPa  with Zmech  remaining constant 

and < 4, for over 1,000,000 DEM cycles. In these simulations fine particles become trapped between two larger 

particles, creating a meta-stable fabric similar to Case (iii) proposed by Thevanayagam et al. (2002).  To ensure 

that the samples were as stable as possible an additional simulation termination rule was adopted where, 

considering  particles with two contacts only, less than 0.5% of contacts were “sliding” i.e., Ft = μ Fn, where Ft 

is tangential contact force and Fn is normal contact force. 

An important aspect of internal stability is the size of the inter-void constrictions between the stress transmitting 

matrix.  While it is possible to determine constriction sizes within DEM samples (e.g. Shire et al. 2013), here 

the focus is on the role which finer particles play in the stress transmitting matrix .  The stress acting on the 

fines will control the initiation of erosion; the constriction sizes are relevant for controlling subsequent particle 

transport and should be considered in future DEM analyses looking at progression of soil erosion.  
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Calculation of stress-reduction factor 

Equations 1 to 3 were developed to consider the heterogeneity of the stress transfer within an internally unstable 

soil. In a DEM model the smallest volume over which stress can be quantified is a single particle, although in 

reality the stress distribution within a particle is highly heterogeneous (Russell et al. 2009).  Potyondy and 

Cundall (2004) give an expression for the average stress tensor within a particle, 𝜎̅𝑖𝑗
𝑝

, loaded solely by 𝑁𝑐,𝑝 point 

contact forces: 

 𝜎̅𝑖𝑗
𝑝

=  
1

𝑉𝑝
∑ 𝑓𝑗

𝑐

𝑁𝑐,𝑝

𝑐=1

(𝑥𝑖
𝑐 −  𝑥𝑖

𝑝
) 4 

where: 𝑉𝑝 and 𝑥𝑖
𝑝
: particle volume and centroidal position;  𝑓𝑗

𝑐: contact force transmitted at contact position 𝑥𝑖
𝑐.  

The average stress tensor for a sample consisting of 𝑁𝑝 particles and their surrounding void space is: 

 𝜎′𝑖𝑗 =  
1

𝑉
∑(𝜎̅𝑖𝑗

𝑝
 𝑉𝑝)

𝑁𝑝

𝑝=1

 5 

where:  V is the total sample volume (solid + void).  As an isotropic stress state has been used for all DEM 

simulations presented here, the α-factor is defined in terms of the mean normal stress  𝑝′. 

 p′fine =  αDEM p′   6 

Following Equation 5, the mean normal stress for the sample is calculated using:  

 𝑝′ =  
1

𝑉
 ∑(𝑝𝑝 𝑉𝑝)

𝑁𝑝

𝑝=1

 7 

where: 𝑝𝑝: particle mean normal stress. The mean normal stress for the finer fraction is: 

 𝑝′𝑓𝑖𝑛𝑒 =  
(1 − 𝑛)

∑ 𝑉𝑝
𝑁𝑝,𝑓𝑖𝑛𝑒

∑ (𝑝𝑝 𝑉𝑝)

𝑁𝑝,𝑓𝑖𝑛𝑒

𝑝=1

 8 

where: n: sample porosity; 𝑁𝑝,𝑓𝑖𝑛𝑒: number of particles belonging to the finer fraction. Note that Equation 2, 

which defines lab, fundamentally differs from Equations 6 – 8, and DEM can be > 1. Consequently one cannot 

expect lab to equal DEM.  
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Relationship between α and (D′15/d′85)max 

The void ratio (e), coordination number (Z), and stress-reduction factor (DEM) for DEM simulations at p’=50 

kPa are presented in Table 2. Figure 3 shows the relationship between (D′15/d′85)max and αDEM for all the 

numerical simulations carried out, αlab for Skempton A, FR7 and a database of experimental results compiled 

by Li (2008) with additional data from Wan and Fell (2004). The best fit line to the experimental data found by 

Li (2008) is also included. Each DEM data point is colored by the relative density of the sample. Note that for 

a selected number of simulations the mean normal stress was increased to p’ = 200 kPa in 25 kPa increments.  

The α-factor was found to be practically constant over this stress range (Shire, 2013).  

It is important to firstly compare the direct DEM measurements (αDEM) with the indirect experimentally-derived 

values (αlab).  The stress-reduction α-factor calculated from the DEM simulations for Skempton A ranged from 

αDEM = 0.04 for the dense sample to αDEM = 0.15 for the loose sample. Experimentally, Skempton and Brogan 

(1994) obtained αlab = 0.18 using a 139mm diameter permeameter while Li (2008) reported αlab = 0.13 using a 

279mm diameter permeameter. Both experimental studies used a specimen preparation technique in which the 

material was placed moist in the permeameter and was not densified prior to testing. It is therefore not 

unreasonable to compare these physical specimens to the loose DEM specimen, and so the agreement can be 

considered good.  On the other hand, the DEM calculated stress-reduction factor for specimen FR7 is highly 

sensitive to relative density. αDEM = 0.19, 0.70 and 1.17 for the loose, medium and dense states respectively. A 

value of αDEM > 1 signifies that the calculated stress is slightly higher in the finer particles than in the coarser 

particles. These high values are a consequence of the stress definition adopted.   While this conflicts with the 

upper limit of =1 implied by Equation 2, αDEM can reasonably be taken as an index of stability and so the 

calculated values are presented in all tables and figures here.   Experimentally, Li (2008) found αlab = 0.07 as 

the best-fit to a number of experiments using 102 mm and 279 mm diameter permeameters. FR7 was also tested 

using a preparation technique which would result in a loose specimen. The loose DEM state also shows the finer 

particles to be carrying just a fraction of the overall stress (αDEM,loose = 0.19 and αlab = 0.07), therefore the 

agreement between numerical and experimental results is reasonable for the loose case, although there is a very 

wide range of scatter in the DEM results.  

It is not surprising that better agreement between experimental and numerical analyses is found for Skempton 

A than FR7. Skempton A has a finer fraction of around 13%, far below the critical finer fraction. The finer 

particles will therefore sit loose and understressed within the voids, regardless of relative density. FR7, with 

Ffine = 30% sits within the transitional limits of 24% and 35% from under to overfilled. Within these limits a 

change in relative density causes a dramatic change in fabric as the voids between the coarse particles become 

just too small to contain the finer particles. This is demonstrated by the large increase in coordination number 

with density as shown in Table 2 for FR7. This represents the large number of finer particles making contact 

with one another and with the coarse particles. The micro-structural response of gap-graded soils above, below 

and within these limits is studied in the following sections.  
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Referring to finer fraction values in Table 1 and void ratio values in Table 2, within each “Gap” series of PSDs 

the minimum void ratio was reached at 25% finer fraction for the medium and dense samples, and for the loose 

samples it was found at 30% finer fraction for Gap Narrow and Gap Med, and at 35% finer fraction for Gap 

Wide. One would expect to find the critical finer fraction at the minimum void ratio (Skempton and Brogan 

1994) and, as the critical finer fraction should also reduce with increasing relative density, it is no surprise that 

this pattern should be found. However, although void ratio may highlight where the critical finer fraction is for 

a given gap-grading and within a given grading α increases with decreasing e, when all samples are considered 

together there is apparently no relationship between e and α. 

Considering the entire dataset presented on Figure 3, the general trend for both experimental and numerical data 

is of decreasing α with (D′15/d′85)max. However, within these data there is considerable scatter, showing that 

(D′15/d′85)max alone is insufficient to characterize the effective stress distribution. Referring to Figure 3,  the 

available experimental data indicate that samples with (D′15/d′85)max < 5 are internally stable (e.g. Fannin and 

Moffat 2006) as the finer particles are too large to be transported through the constrictions between the coarse 

particles, regardless of finer fraction and how much stress they carry.  Samples with (D′15/d′85)max > 7, which 

fail the geometric condition, have a tendency to be highly unstable, but can also be internally stable, depending 

on finer fraction. Where finer particles are loose and under-stressed, they will be able to migrate through the 

voids – it is therefore the stress in the finer fraction which controls internal stability for these samples. The DEM 

results, which measure only stress and do not account for whether loose finer particles may be transported 

through the voids, show a large degree of scatter and a high dependency on relative density. In the following 

sections the macro and micro-scale variables that can be measured in DEM will be used to examine changes in 

fabric which can give a scientific framework to this apparent scatter.  

 

Analysis of factors influencing α 

The data presented in Figure 3 indicate the absence of a simple relationship between  and (D′15/d′85)max.  

Recalling the discussion on finer fraction by Skempton and Brogan (1994), the relationship between Ffine and α 

is presented in Figure 4 with a schematic showing the change in fabric with Ffine. The Dam Filter sample has 

been assigned a nominal Ffine = 50%. Three types of behavior can be observed:  

(i) α < 0.4 at Ffine < 24%: underfilled behavior (coarse grain supported fabric). Finer particles carry reduced 

stress and will be mobile if the geometric condition is met. 

(ii) α > 0.8 at Ffine > 35%: overfilled behavior: Fine and coarse play approximately equal roles in stress transfer. 

The material should be internally stable.  

(iii) transitional behavior for 24% < Ffine < 35%: α is highly sensitive to relative density, with α > 0.75 typically 

for dense samples and α < 0.5 typical for loose samples. There is a trend of increasing α with Ffine.  
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The transitional zone is bound by the limits identified by Skempton and Brogan (1994)  (S* and  Smax). As can 

be seen in Figure 4, within the transitional zone the samples with the largest gap-ratios have lower α-values than 

those with smaller gap-ratios. For any given sample with Ffine > 24% α generally increases with relative density. 

For some samples with Ffine < 24% α decreases with increasing relative density. This response is tentatively 

attributed to the stress transmitting matrix becomes more stable as the relative density increases. 

Figure 5(a) and (b) present the variation of α with (D′15/d′85)max for the loose and dense states respectively. In 

each case trend lines are drawn for samples with a specific finer fraction, and the Dam Filter sample is taken as 

an internally stable benchmark. In the loose state, samples of all finer fractions show a reduction in α as the 

(D′15/d′85)max ratio increases. This comprises a large initial reduction between (D′15/d′85)max ≈ 2 and (D′15/d′85)max 

≈ 6, with a less significant reduction thereafter. At high (D′15/d′85)max ratios, the finer particles are smaller than 

the voids between the coarse particles, meaning they can pack efficiently within the voids and sit loose with 

little interaction with the load-carrying coarse particles, whereas at low (D′15/d′85)max ratios the finer particles 

mismatch with the coarse particle voids and the resulting interaction causes the finer particles to join the stress-

transfer mechanism.  This is shown schematically in Figure 5(a).  The reduction in α with (D′15/d′85)max is 

replicated at the other densities for the samples with Ffine ≤ 18%. For samples with Ffine ≈ 25% the α values 

increase with density, but a sharp reduction in α is still observed with (D′15/d′85)max. Samples with Ffine ≥ 30% 

are sensitive to density, and have an internally stable fabric in medium and dense states, with α ≈ 1.  

 

Micro-scale analysis of α 

Figure 6 shows the relationship between the proportion of particles forming the load-carrying matrix, Pstrong, and 

α, where the load-carrying matrix is defined by those particles which participate in the “strong force chains”, 

i.e. those carrying at least one above average magnitude contact force. There is a strong relationship between 

Pstrong and α, indicating that if even a small number of coarse particles form a stress transmitting matrix, the fines 

carry reduced stress.  

A more detailed look at the role of the finer fraction is possible by considering partial coordination numbers 

(Minh and Cheng 2013). Figure 7(a) shows the variation of α with fine coordination number, where:  

 

𝑍𝑓𝑖𝑛𝑒 =  
∑ (𝐶𝑖

𝑓𝑖𝑛𝑒−𝑓𝑖𝑛𝑒 𝑁𝑝,𝑓𝑖𝑛𝑒

𝑖=1
+  𝐶𝑖

𝑓𝑖𝑛𝑒−𝑐𝑜𝑎𝑟𝑠𝑒 
) 

𝑁𝑝,𝑓𝑖𝑛𝑒
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where 𝑍𝑓𝑖𝑛𝑒: fine coordination number; 𝑁𝑝,𝑓𝑖𝑛𝑒: total number of fine particles; 𝐶𝑖
𝑓𝑖𝑛𝑒−𝑓𝑖𝑛𝑒

 : number of contacts 

between fine particle i and other fine particles; 𝐶𝑖
𝑓𝑖𝑛𝑒−𝑐𝑜𝑎𝑟𝑠𝑒

: number of contacts between particle i and coarse 

particles. 

A similar result is obtained if  is plotted against the overall coordination number, Z (Shire, 2013). In gap-

graded soils fine particles are far more numerous than the coarse, even when their volumetric proportion is much 
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lower. This means that Zfine ≈ Z. Here, Zfine is considered to emphasise that it is the role of the finer particles in 

fabric and stress-transfer which is being considered. In Figure 7(a) three types of fabric can be identified, each 

of which is similar to a fabric case identified by Thevanayagam et al. (2002), as shown schematically in Figure 

7(b). Each fabric case can be related to one of the three types of internal erosion identified by Moffat et al. 

(2011): suffusion, suffosion and piping. The micro-mechanical boundaries for the cases here are Zfine = 2, which 

represents the minimum value at which finer particles are on average connected to the stress-transfer 

mechanism, and α = 0.5. Case (i) and Case (iii) soils could be susceptible to suffusion (if the geometric criterion 

is met). They have fabrics in which the finer particles are generally loose. The finer particles may be susceptible 

to erosion at low hydraulic gradients but as they are unconnected to the stress-transfer matrix their loss would 

not threaten stability. These fabrics emerge in soils which are underfilled, i.e. the finer particles are insufficient 

to fill the voids between the coarse particles. Case (ii) may represent soils which are susceptible to suffosion. 

The finer particles in these materials carry low stress rather than being loose, and they are connected to the 

stress-transfer matrix so their loss would threaten matrix stability. This is because although effective stress is 

transferred by highly stressed particles in strong force chains, these strong force chains are prevented from 

collapsing due to lateral support from weaker forces, as shown by Tordesillas et al. (2009) and illustrated 

schematically in Figure 7(b). This type of fabric will emerge in soils in which there is a relatively large size 

ratio between coarse and fine (allowing the finer particles to pack efficiently in the voids) and which have finer 

fractions around the critical value (Ffine = 25-35%).  Case (iv) materials have a stress-transfer matrix which is 

well distributed between coarse and fine. These materials would be internally stable but could be susceptible to 

other forms of internal erosion (e.g. piping).  

The cases can be further illustrated by examining the fabric evolution of sample Gap Med 25, which for the 

loose, medium and dense states has Case (i), (ii) and (iv) fabrics respectively. Figure 8(a) gives the proportion 

of coarse-coarse, coarse-fine and fine-fine contacts in the loose, medium and dense samples, and Figure 8(b) 

gives the proportion of contact types of above average magnitude or “strong” contacts only. Figure 8(a) also 

includes the α-factor for each sample. The loose sample, with Case (i) fabric is dominated by coarse-coarse and 

coarse-fine contacts. Only around 10% of all contacts are between two fine particles, and almost all of these are 

of below average magnitude. The coarse-coarse contacts make up around 2/3 of all above average magnitude 

contacts, and unsurprisingly they dominate stress-transfer, as illustrated by α = 0.18. In the medium sample, 

which has Case (ii) fabric, most contacts in the sample are between fine particles. Coarse-coarse contacts make 

up only around 2% of all contacts in the sample, but around 20% of strong contacts. Fine-fine contacts make up 

60% of all contacts, but only around 30% of strong contacts. This demonstrates that many finer particles will 

carry only weak contact forces, and will therefore be understressed. The overall contact fabric of the dense 

sample is similar to the medium sample. However, fine-fine contacts play a more prominent role in the strong 

contact fabric indicating that the finer particles play a larger role in stress-transfer. This is also demonstrated by 

the difference in the stress-reduction factor, with α = 0.33 and 0.76 for the medium and dense samples 

respectively.  
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Conclusions 

This paper presents a micro-scale analysis of an observed macro-scale phenomenon, internal instability. A total 

of 48 DEM simulations at three relative density levels, covering a wide range of gap-gradations as well as a 

uniform gradation were carried out. Analyses of the results of these simulations provide theoretical evidence to 

confirm the hypothesis by Skempton and Brogan (1994), supported experimentally by Moffat and Fannin 

(2011), that internal instability can occur at lower hydraulic gradients than would be required for failure by 

heave or piping because finer particles carry less stress than would be expected from looking at the average 

stress conditions alone. The reduction in stress in the finer fraction is quantified by the α-factor, which is 

calculated at the micro-scale using DEM variables. Where the simulations could be directly compared to 

existing experimental data with similar gap-ratios and fines contents, the agreement was reasonable. Although 

the gradings are not identical, they are believed to be similar enough to warrant comparison.  Systematic 

variation of the PSD and relative density allowed a more thorough consideration of the factors influencing stress 

heterogeneity (i.e. ) than had hitherto been possible experimentally. 

Figure 3 generally supports the experimental finding of Li (2008) that there is a relationship between  and 

(D’15/d’85)max. However the analyses presented in Figures 4 and 6 show the significant influence of the 

percentage finer fraction and relative density on α, which is not captured in the simple (D’15/d’85)max index.  

Taking account of the discussion presented by Skempton and Brogan (1994) that the finer fraction is critical to 

understanding stress-transfer in gap-graded soils and looking in detail at the DEM simulation data, a conceptual 

framework summarizing the key factors affecting stress-transfer is proposed.  Referring to Figure 9,  depends 

on both (D’15/d’85)max and Ffine.  It is clear that the sensitivity of to (D’15/d’85)max depends on whether the soil 

is overfilled, underfilled or transitional. In all cases if (D’15/d’85)max is low, the finer particles are of similar size 

to the voids, and can therefore  become part of the stress transfer mechanism, and  approaches 1. As 

(D’15/d’85)max increases, the size of the finer particles relative to the voids decreases and the particles can 

completely fit within the voids. For these soils, α will depend on the percentage finer fraction, Ffine.  Skempton 

and Brogan (1994) proposed that the critical finer fraction below which the finer particles will play a diminished 

role in stress-transfer was S* = 24-29% depending on relative density, with an upper limit at Smax = 35% above 

which the finer particles would completely separate the coarser particles from one another and the material will 

be internally stable. Referring to Figure 4, Skempton and Brogan’s limits seem to be broadly appropriate, 

although it should be noted that even at Ffine = 35% some of the loose samples continue to transmit reduced 

stress through the finer fraction.  

From the DEM data, if the Ffine < 25%, the soil can be considered underfilled and the finer particles will sit loose 

in the voids. If the finer particles can fit through the constrictions in the void network, there is potential for the 

suffusion form of internal instability. If Ffine > 35%, the soil is overfilled, where the finer particles completely 

fill the voids and stress transfer is shared between coarse and fine. Overfilled soils can be considered internally 

stable. 
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The behavior of transitional soils which fall between Skempton and Brogan’s critical upper and lower limits S* 

and Smax is poorly understood and had not previously been studied in detail.  For these soils  is determined by 

the relative density of the material, and an increase in relative density significantly enhances the stress in the 

finer fraction and therefore internal stability. This finding has a practical relevance as in soils with Ffine ≥ 25% 

which may be susceptible to internal instability, remedial work to increase the in situ relative density should 

yield an increase in stability. However, soils with Ffine < 25% would not see a significant increase in stability 

with densification.  

Fabric categories identified by Thevanayagam et al. (2002) for the liquefaction potential of sands with non-

plastic silts are useful to describe the fabric of internally unstable soils. Three types of fabric which overlap with 

one or more of the cases proposed by Thevanayagam et al. can be identified at the micro-scale, in particular by 

examining the number and magnitude of contacts between particles. Each fabric type identified could be 

susceptible to one of three forms of internal erosion identified by Moffat et al. (2011):  

1. Case (i) and (iii) materials, in which the coarse particles dominate stress transfer and the finer particles sit 

loose within the voids between. These materials are susceptible to suffusion, i.e. the finer particles can be 

eroded with no loss of matrix integrity.  

2. Case (ii) materials, in which the coarse particles dominate stress transfer, but the well-connected but 

understressed finer particles play a supporting role. These materials are susceptible to suffosion, i.e. the 

finer particles can be removed by hydraulic gradients less than would be expected to cause heave, but their 

removal would cause some rearrangement of the load-carrying matrix.  

3. Case (iv) materials, in which coarse and fine both form an integral part of the load-carrying matrix. These 

materials are internally stable could be susceptible to other forms of internal erosion (e.g. piping).  
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Sample Particles Ffine (%) (D’15/d’85)max   (H/F)min  

Skempton A 172684 13 11.7(unstable) 0.21 (unstable) 

FR7 176082 30 7.0 (unstable) 0.06 (unstable) 

Dam Filter 20083 N/A 1.4 (stable) 2.2 (stable) 

Gap Med 18 19997 18 4.6 (borderline 

unstable) 

0.13 (unstable) 

Gap Med 25 36928 25 4.5 (borderline 

unstable) 

0.13 (unstable) 

Gap Med 30 39595 30 4.5 (borderline 

unstable) 

0.09 (unstable) 

Gap Med 35 50357 35 4.5 (borderline 

unstable) 

0.13 (unstable) 

Gap Med 45 81297 45 4.4 (borderline 

unstable) 

0.57 (unstable) 

Gap Narrow 18 8563 18 3.4 (stable) 2.33 (stable) 

Gap Narrow 25 13205 25 3.4 (stable) 2.33 (stable) 

Gap Narrow 30 16810 30 3.4 (stable) 2.33 (stable) 

Gap Narrow 35 19304 35 3.4 (stable) 1.93 (stable) 

Gap Wide 18 114287 18 8.6 (unstable) 0.08 (unstable) 

Gap Wide 25 187488 25 8.4 (unstable) 0.05 (unstable) 

Gap Wide 30 267329 30 8.4 (unstable) 0.13 (unstable) 

Gap Wide 35 304205 35 8.4 (unstable) 0.13 (unstable) 

Table 1. PSDs used for DEM analysis.  
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Sample Relative density α e Z 

Skempton A Loose 0.15 0.370 0.01 

Medium 0.06 0.332 0.01 

Dense 0.04 0.299 0.01 

FR7 Loose 0.19 0.278 0.17 

Medium 0.70 0.247 4.90 

Dense 1.17 0.225 5.82 

Dam Filter Loose 0.91 0.463 2.62 

Medium 1.01 0.435 3.82 

Dense 1.09 0.394 5.04 

Gap Med 18 Loose 0.17 0.443 0.17 

Medium 0.10 0.381 0.18 

Dense 0.13 0.303 0.24 

Gap Med 25 Loose 0.18 0.348 0.15 

Medium 0.33 0.289 3.09 

Dense 0.76 0.262 5.33 

Gap Med 30 Loose 0.24 0.320 0.64 

Medium 1.05 0.299 4.41 

Dense 0.99 0.274 5.55 

Gap Med 35 Loose 0.34 0.325 3.08 

Medium 0.86 0.317 4.62 

Dense 1.15 0.288 5.63 

Gap Med 45 Loose 0.77 0.403 3.74 

Medium 1.05 0.380 4.84 

Dense 1.16 0.336 5.78 

Gap Narrow 18 Loose 0.31 0.474 0.47 

Medium 0.28 0.405 0.65 

Dense 0.39 0.337 1.19 

Gap Narrow 25 Loose 0.40 0.402 0.62 

Medium 0.56 0.345 2.36 

Dense 0.94 0.317 5.11 

Gap Narrow 30 Loose 0.49 0.379 1.21 

Medium 0.80 0.352 3.95 

Dense 1.06 0.323 5.43 

Gap Narrow 35 Loose 0.58 0.385 2.29 

Medium 0.88 0.366 4.39 

Dense 1.14 0.333 5.58 

Gap Wide 18 Loose 0.09 0.445 0.03 

Medium 0.04 0.385 0.02 
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Dense 0.02 0.307 0.03 

Gap Wide 25 Loose 0.12 0.325 0.03 

Medium 0.03 0.233 1.66 

Dense 0.22 0.200 5.50 

Gap Wide 30 Loose 0.17 0.295 0.04 

Medium 0.80 0.246 4.89 

Dense 1.17 0.224 5.86 

Gap Wide 35 Loose 0.23 0.277 3.77 

Medium 0.86 0.266 4.92 

Dense 1.19 0.241 5.87 

Table 2. Coordination number, mechanical coordination number, void ratio and stress-reduction factor values 

for each simulation. 
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Figure 1. Venn diagram showing contributory factors to internal instability (adapted from Garner and Fannin 

2010)  
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Figure 2. PSDs of samples analyzed: (a) Wider gradations; (b) Narrower gradations.  
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Figure 3. Variation of α with (D′15 / d′85)max for DEM and experimental data 
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Figure 4. Variation of stress-reduction α with finer fraction.  
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Figure 5. Variation of stress-reduction α with (D′15/d′85)max : (a) Loose; (b) Dense. 
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Figure 6. Variation of stress-reduction α with probability of a particle forming part of a strong force chain 
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Figure 7. (a) Variation of stress-reduction α with fine-coarse coordination number; (b) Fabric cases identified 

by Thevanayagam et al. (2002) 
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Figure 8. Contact types within sample Gap Med 25: (a) all contacts; (b) “strong” contacts only 
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Figure 9. Factors affecting stress transfer.   

 

 


