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ABSTRACT 

 

Schizophrenia is a severe psychiatric disorder with a world wide prevalence of 1%.  The 

pathophysiology of the illness is not understood, but is thought to have a strong genetic 

component with some environmental influences on aetiology. To gain further insight into 

disease mechanism, we used microarray technology to determine the expression of over 

30,000 mRNA transcripts in post-mortem tissue from a brain region associated with the 

pathophysiology of the disease (Brodmann Area 10: anterior prefrontal cortex) in 28 

schizophrenic and 23 control patients. We then compared our study (Charing Cross Hospital 

Prospective Collection: CCHPC) with that of an independent prefrontal cortex dataset from 

the Harvard Brain Bank (HBB). We report the first direct comparison between two 

independent studies. 51 gene expression changes have been identified that are common 

between the schizophrenia cohorts and 49 show the same direction of disease-associated 

regulation. In particular, changes were observed in gene sets associated with synaptic vesicle 

recycling, transmitter release and cytoskeletal dynamics. This strongly suggests multiple, 

small but synergistic changes in gene expression that affect nerve terminal function.  



INTRODUCTION 

 

Schizophrenia is a severe psychiatric illness with a world wide prevalence of 1%. The illness 

encompasses a number of domains of psychopathology: positive symptoms such as 

hallucinations and delusions, negative symptoms such as blunted emotional responding, lack 

of motivation and ideation, alongside intellectual decline, loss of insight and substantial 

impairment of personal and social function. Previous  studies have indicated a strong genetic 

component of the illness (1, 2), although the degree of concordance in monozygotic twin 

studies suggests that environmental factors also play an important role in the disease 

aetiology.  

 While genetic studies have begun to identify putative disease genes, the 

pathophysiology of schizophrenia still remains poorly understood (see ref. 3). In this context, 

microarray analysis has been applied to post-mortem samples for several psychiatric illnesses 

with some success (4, 5, 6). A series of array studies have been performed on schizophrenia 

sample sets of variable size (7, 8, 9 10). At a superficial level of comparison, there appears to 

be some correlation between functional gene groups such as myelin genes (11, 12, 13, 14), 

metabolic genes (9, 10) and to a lesser extent, genes associated with inflammatory processes 

(15, 16) and some nerve terminal genes (7, 9). An issue arising from array studies, however, 

concerns the lack of concordance between array data and other technology platforms (10). 

This is compounded further by the lack of any direct comparison between published array 

studies. Direct comparison of microarrays has been difficult as several important factors can 

confound this type of analysis, including for example, the quality of analysed samples, sample 

size, integrity of study and analytical platform (5). In addition, a major problem is access to 

basic RAW signal intensity data files (.cel) for an informative comparison of published data. 

This has prevented the application of similar criteria for analysis across data sets and 

consequently the derivation of any meaningful comparison (17).  

 In the present study, we have analysed transcriptomic changes from a carefully 

curated, well documented schizophrenia cohort collected at the Charing Cross campus of 

Imperial College, London – the Charing Cross Hospital Prospective Collection (CCHPC). We 

analysed samples from the anterior prefrontal cortex (Brodmann Area 10; BA10) from 28 

schizophrenic patients and compared these to 23 control samples from the same region. We 

analysed several publicly available studies that had similar patient and sample characteristics 

and selected the raw data deposited in the public domain by Glatt et al., 2005 (18) for the 

“McLean66” set from the Harvard Brain Bank (HBB) as the cohort and the quality of the 

available data matched our criteria. A series of published studies were eliminated because the 

RAW data were not available for direct analysis. Some studies were also eliminated due to 

experimental design (the latter representing the primary correlation with differential gene 



expression). The HBB samples are dissected from BA9 (dorsolateral prefrontal cortex), a 

prefrontal cortical area adjacent to BA10. Reports showing schizophrenia disease pathology 

and cortical dysfunction associated with both BA9 and BA10 provide some of the most 

replicated observations in schizophrenia research and particularly dysfunction in tasks that 

require cognitive control (19, 20).  

 This is the first direct comparison between two large independent studies and 

furthermore, it is also the first microarray report comparing two demographically distinct 

cohorts – the HBB (United States) and the CCHPP (United Kingdom). To the best of our 

knowledge, all published studies to date have analysed samples collected within the 

continental US or Australia. Our data show that it is possible to detect significant and 

common changes in gene expression between independent cohorts. Moreover, the 

overlapping set comprises genes of relatively restricted role with significant enrichment in 

genes associated with synaptic function. 



MATERIALS AND METHODS 

 
Tissue Collection Charing Cross Hospital (CCHPC). Samples were collected as part of a 

prospective collection program coordinated through Imperial College London, This was a 

group of elderly patients whose schizophrenic illnesses had started before the introduction of 

antipsychotic medication, and who had progressed to long-stay psychiatric nursing facilities. 

Demographic, diagnostic and clinical data were ascertained from personal knowledge and 

scrutiny of all case notes available (Table 1). Patients were diagnosed prospectively according 

to DSM-III criteria by AMM supplemented by scrutiny of all case notes. All of the patients 

met diagnostic criteria for residual schizophrenia with pronounced negative symptoms 

alongside attenuated positive symptoms and intellectual dysfunction. The mean age of onset 

was 26 years and duration between onset and death was almost five decades, with a mean of 

48 years. Two patients had been ill for 73 years. Thirteen patients were never discharged after 

their first admission, while only five had more than four periods of discharge in between their 

first admission and their death in hospital. Eleven patients had ECT in the past. Most patients 

had been treated with neuroleptic drugs when they became available, the mean duration of 

treatment was 33 years.  One patient was neuroleptic naïve at death.  Doses were relatively 

low, and only four patients took doses as expressed in chlorpromazine equivalents of more 

than 750mg per day. The ethnicity of patients was Caucasian. All patients with the agreement 

of their nearest relative or authorised representative, have given written informed consent for 

use of tissue obtained post mortem for research.   

 

Control brain samples were obtained from mentally normal individuals, The control group 

were Caucasian tissue donors for research from the community, Charing Cross Hospital and 

local nursing homes. The causes of death were similar in the control and schizophrenia 

cohorts, bronchopneumonia being the most common cause followed by carcinoma (lung, 

bowel, prostate, bladder, oesophagus) and to a lesser extent, ischaemic heart disease and 

coronary artery occlusion. At autopsy, gross examination of brains revealed no major atrophy. 

As for the patient group, the right hemisphere was sampled. Cases of widespread damage due 

to stroke were excluded. Histological screening was carried out and cases with evidence of 

Alzheimer’s disease, Parkinson’s disease or multiple sclerosis were excluded. The control and 

schizophrenia cohorts were collected over the same period and the storage conditions are 

identical. This study has been approved by the West London Mental Health Ethical Research 

Committee and complies with the conditions of the Research Governance Office of the 

Imperial College of Science, Technology and Medicine Clinical Research Office. 
 



Tissue Collection Harvard Brain Bank (HBB). The collection from the Harvard Brain 

Bank (HBB) comprises dorsolateral prefrontal cortex (BA9) brain regions from 16 

schizophrenic (13 male, 3 female), 18 bipolar (12 male, 6 female), 27 controls (19 male, 8 

female) and 3 schizo-affective (3 female) donors. Schizo-affective disorder and Bipolar 

samples were excluded from our analysis. Samples were collected as described by Glatt et al, 

2005 (18). Demographics include: age, gender, PMI, handedness, morbidity (see Methods in 

Ref. 22). The ethnicity of the HBB cohort is not absolutely clear as many samples are referred 

to as “white” and some are annotated with unknown ethnicity..  

 
Array Processing of CCHPC Samples. Total RNA was extracted from frozen BA10 

obtained from 62 donors using a Polytron type homogeniser (YellowLine DI 25 Basic) and 

TriZol reagent (Invitrogen, Paisley, UK) in a ratio of 1 ml of TriZol to 20 mg of tissue. RNA 

was further purified using RNeasy mini-columns (Qiagen, Valencia, CA) including on-

column DNAse-1 step and elution in water. Although pH was analysed in brain lysates using 

a pH meter, this was not considered to be rigorous enough to exclude or include samples and 

instead the RNA Integrity Number (RIN) was used to assess the quality of the RNA as the 

primary inclusion criterion. The quantity of extracted RNA was determined by 

spectrophotometry and quality was assessed using an Agilent 2100 Bioanalyzer (South 

Plainfield, NJ, USA to determine the RIN. Based on the RIN,  samples were classified into 

three quality groups – pass (RIN > 7.0; borderline (RIN 6.0 – 7.0); fail (RIN< 6.0). Following 

classification there were 41 pass (RIN range of samples 7.0 – 9.0: average = 7.7, 16 

borderline (RIN range of samples 6.0 – 6.9; average = 6.4) and 5 fail samples. Samples in the 

fail category were excluded from the study, and the remaining samples were randomized into 

4 batches, containing an equal number of schizophrenic/control and male/female samples, for 

target generation and hybridization. For each batch, 10 μg total RNA was processed to Biotin-

labeled cRNA and hybridized to HG-U133_Plus_2.0 GeneChips® in accordance with the 

Affymetrix protocol (Affymetrix, Santa Clara, CA, USA,). Arrays were scanned on a 

GeneChip Scanner 3000 and fluorescence intensity for each feature of the array was obtained 

by using GeneChip® Operating Software (Affymetrix, Santa Clara, CA, USA). A total of 57 

samples were successfully hybridized.  Sample progression for CCHPC is shown in 

Supplementary Fig.1. 

 

Array Processing of Harvard Brain Bank (HBB) Samples. Samples were processed and 

hybridized to Affymetrix HG-U133A GeneChips® as described by Glatt et al, 2005 (18). 

Agilent profiles were available for all HBB samples but not the RINs. Supplementary data in 

ref 22 indicate that the RNA samples were quality controlled by several indices, including the 

mean 28S:18S RNA ratio (1.11 vs. 1.07) and the mean 3':5' ratio of the RNA transcripts of the 



housekeeping genes G3PDH (1.57 vs. 1.44) and ACTB (2.42 vs. 2.33). These data suggest 

that the samples are of high RNA quality. In addition, we analysed the agilent profiles 

qualitatitively and as no HBB samples showed complete degradation of both 18S and 28S 

peaks by Agilent Bioanalyser, 43 samples were included for further analysis from the 

deposited RAW data. Sample progression for HBB is shown in Supplementary Fig.1. 

 

Microarray Quality Control of CCHPC Samples. Standard MAS5.0 Affymetrix quality 

control criteria were examined to determine the quality of the CCHPC microarray data. All 

samples had background levels (46.6 – 74.7) and scale factors (0.64 – 1.49) within the 

acceptable range with an average percent present of 44.4%. In order to ensure only the highest 

quality microarray data were used in the analysis, β-actin 3’/5’ ratios were assessed as a 

surrogate for quality. Six samples with a β-actin 3’/5’ ratio >3.8 failed this measure of quality 

and were excluded from further analysis. A gender check was performed as an additional 

quality control to ensure that all samples had been annotated correctly by assessing the gene 

expression levels of DDX3Y (205000_at) which is male specific and XIST (224589_at) 

which is female specific. From the final 51 samples selected for analysis, all males showed 

high expression of DDX3Y and all females showed high expression of XIST indicating that 

the samples had the correct gender annotation. The final number of samples used for 

statistical analysis comprised 23 control and 28 schizophrenia samples. 

 

Microarray Quality Control of HBB samples. MAS5.0 Affymetrix quality control was also 

used to analyse the HBB microarray data. All samples had background levels (47.1 – 99.9) 

and scale factors (0.63 – 4.22) within the acceptable range, with an average percent present of 

45.7 %. β-actin 3’/5’ ratios were also assessed as a surrogate for quality, and showed an 

evenly distributed range from 1.17 – 4.98. No outliers were detected from the microarray QC 

metrics and all samples were progressed to analysis. A gender check was performed to ensure 

that all samples were annotated correctly by assessing the gene expression levels of DDX3Y 

(205000_at) and XIST (224589_at). One sample (control, assay 1029) was labelled as female, 

but showed high expression of DDX3Y and low expression of XIST, a male-specific pattern 

indicating a mis-labelled sample. Due to the inconsistency between gene expression and 

gender allocation, this sample was excluded from further analysis. The final set of samples for 

analysis included: 26 controls (19 male, 7 female), 16 schizophrenia samples (13 male, 3 

female). 

 All measures used to compare samples showed that the two collections had 

comparable metrics, despite hybridization of the HBB samples to HG_U133A Affymetrix 



(half genome) microarrays and the CCHPC samples to HG_U133_plus_2.0 Affymetrix 

(whole genome) microarrays. 

 

CCHPC Data Analysis. The raw signal intensities (.cel files) for each scan were imported 

into the gene expression analysis software, ResolverTM version 4.0 (Rosetta Biosoftware, 

Seattle, USA). Signal extraction was performed within Resolver and the normalised data were 

then exported for further analysis (21). 

 An initial Principal Components Analysis (PCA) was performed on detected probe 

sets (28,065 probe sets, defined as detected in Rosetta Resolver v4.0 as probe sets with 

P<0.01 for detection in ≥ 20 samples) and indicated that the major source of variability (first 

principal component, PC1) was due to sample quality, measured using β-actin 3’/5’ ratios. 

There was no obvious structure due to disease (control vs schizophrenic) or gender. In order 

to account for the variability seen by the expression PCA, a PCA was performed on the QC 

metrics (average signal, background, standard deviation of the background, number present, 

raw q, scale factor, GAPDH 3’/5’ ratio, β-actin 3’/5’ ratio) and the scores from the first 

principal component (PC1) were taken to be used as a covariate in a subsequent analysis. This 

approach allows us to combine all of the information from the QC metrics into a single value 

that can be used in an analysis model to account for variability in data quality, due to sample 

degradation and other factors. The following model was used to analyse the final 51 (23 

control vs 28 schizophrenia) CCHPC BA10 samples: Scores from PCI of QC metrics PCA 

(covariate), age (covariate), gender (factor), disease (factor), disease*gender (interaction) and 

gender*age (interaction). All probe sets (54,613) were analysed, negative intensity values 

were floored to 1 and data were analysed on a log10 scale using SASTM v9.1. 

 

HBB Data Analysis. In order to allow comparison between the CCHPC and HBB 

collections, the HBB data were processed in a comparable manner to the CCHPC. The raw 

signal intensities (.cel files) for each scan were imported into the gene expression analysis 

software, ResolverTM version 4.0 (Rosetta Biosoftware, Seattle, USA). Signal extraction was 

performed within Resolver and the normalised data exported for further analysis (18).  

 The HBB samples had been binned into groups representing 10 year intervals rather 

than classified according to discrete age. For this reason, age was fitted as a categorical factor 

as opposed to a continuous covariate as used in the CCHPC analysis. The final factors used in 

the analysis were age, gender and disease. No interactions between factors were fitted. All 

negative intensity data were floored to 1 before log10 was taken. All data were analysed on a 

log10 scale using SAS Enterprise Guide v3.0 in concordance with the CCHPC data. 

 



Real Time PCR for CCHPC. Total RNA, as described previously for microarray analysis 

was further DNased through incubation (37oC, 10 min) with 1U DNase/10 μg total RNA 

(Ambion) to ensure removal of any contaminating genomic DNA. β-actin gene expression 

was analysed in the absence of reverse transcriptase to ensure the RNA samples were free of 

genomic DNA before converting to cDNA using the High Capacity cDNA Archive Kit 

(Applied Biosystems – according to protocol). Samples were diluted to a final concentration 

of 10 ng/μl of cDNA in 384 well format or 5 ng/μl in 96well format. PCR results were 

generated using the 5' nuclease assay (TaqMan) (22) and the ABI 7900HT Sequence 

Detection System (Applied Biosystems, Foster City, CA). Each reaction included cDNA from 

20 ng of RNA, 900 nM of each primer and 100 nM of probe and Universal PCR Master Mix 

(Applied Biosystems). Assay sequence information is indicated in Supplementary Table 2. 

PCR parameters were: 50°C for 2 min, 95°C for 10 min, 40 cycles of 95°C for 15 s, 60°C for 

1 min. A linear regression line calculated from the standard curves of serially diluted genomic 

DNA allowed relative transcript levels in RNA-derived cDNA samples to be calculated from 

the fluorescent signal in each run. The geometric mean of calculated abundance levels were 

calculated for technical replicates thus giving one abundance measure per sample. To identify 

which genes show a statistically significant difference in expression between the disease 

groups a linear mixed model analysis of variance was fitted to the data using SAS version 9.1. 

The same terms were used as were fitted to the Affymetrix data i.e., disease, gender, age. In 

addition a covariate was also included in the model to account for any change in expression 

due to the RNA loading of the samples (often referred to as normalising the data). This 

covariate was represented by the scores from the first principal component obtained from a 

PCA analysis of the three housekeeper genes (cyclophilinA[PPIA], glyceraldehyde phosphate 

dehydrogenase [G3PDH] and beta-actin [ACTB]). It can be shown that this technique is far 

more efficient at normalising Taqman data than more traditional techniques e.g. using ratios 

between the test genes and a housekeeper (23). 

 

Bioinformatic Data Analysis. Evaluating the entire microarray dataset, we assessed whether 

the functions of all genes showing differential regulation between cases or controls in both the 

CCHPC and HBB studies (p<0.05, intensity>30; n=1662) might be related to pathways and 

biological processes with relevance to schizophrenia. We compared differentially regulated 

genes using parametric analysis of gene expression (PAGE), a modified gene set enrichment 

analysis (GSEA) method (24). Our method was previously described in detail (25) and is able 

to identify genes that are over-represented in a pathway or defined functional grouping. Our 

analysis was undirected (i.e. no a priori selection of pathways was made) and only detected 

enrichment against a background of the genes tested in the experiment (i.e. the genes assayed 



on the HG_U133A chip; n=8444) rather than all genes. In order to enable this analysis, we 

have compiled a comprehensive database of interactions assembled from a diverse 

combination of public and commercial databases, supplemented by our own curated pathway 

data. Data sources included a number of GSK curated pathways, public domain curated data 

from the Gene Ontology (GO) consortium and the KEGG pathways database, and also 

commercially curated pathway data derived from the Ingenuity Pathways Knowledge Base 

(IPA) (Ingenuity Systems, Redwood City, CA), GeneGo (Encinitas, CA), NetPro Molecular 

Connections (Singapore) and Jubilant (Berkley Heights, NJ). 



RESULTS 
 

Charing Cross Hospital Prospective Collection (CCHPC). Following analysis of all probe 

sets (54,613) on the HG_U133_Plus_2.0 Affymetrix GeneChip® using the linear model 

described in the methods, the differentially expressed gene list was filtered to remove all low 

intensity probe sets (defined as median intensity <30 in either schizophrenic or control group) 

and probe sets that map to intronic regions or to the antisense strand. This left a total of 29464 

probe sets, of which 1846 (880 up-regulated, 966 down-regulated) showed a significant 

(P≤0.05) disease effect, with 1792 showing a significant (P≤0.05) gender effect, 8702 

showing a significant (P≤0.05) age effect and 13886 showing a significant (P≤0.05) effect due 

to quality correction (covariate from PC1 of PCA on QC metrics). A summary of probe sets 

for the 1846 significant changes in provided in Supplementary Table 1. 

 

Harvard Brain Bank Cohort (HBB). Following analysis of all probe sets (22,215) on the 

HG_U133A Affymetrix GeneChip® using the linear model described in the methods section 

above, the differentially expressed gene list was filtered to remove all low intensity probe sets 

(defined as median intensity <30 in either schizophrenic or control group) and probe sets that 

map to intronic regions or to the antisense strand. This left a total of 14608 probe sets, of 

which 870 (300 up-regulated, 570 down-regulated) showed a significant (P≤0.05) disease 

effect, with 3036 showing a significant (P≤0.05) gender effect, 3895 showed a significant 

(P≤0.05) age effect and 9982 showed a significant (P≤0.05) effect due to quality correction 

(covariate from PC1 of PCA on QC metrics). A summary of probe sets for the 870 significant 

changes is also provided in Supplementary Table 1 

 

Comparison of gene expression changes between the CCHPC and HBB cohorts. In order 

to compare the differentially expressed genes between the CCHPC and HBB cohorts, we 

identified probe sets that were assayed in common since the HG_U133_Plus_2.0 comprises 

probe sets from the HG_U133A and HG_U133B GeneChips®.  The 22,215 probe sets 

represented on the HG_U133A chip (and assayed for HBB samples) were extracted for the 

CCHPC samples and integrated with the HBB data. The commonly detected probe sets 

(median intensity >30 in either schizophrenic or control groups) from both studies were 

identified and those designed to intronic or antisense strands were removed, leaving 11,912 

reliable probe sets detected in both cohorts. Of these, 797 showed a significant (P≤0.05) 

change in the CCHPC cohort, and 725 showed a significant (P≤0.05) change in the HBB 

cohort, with 51 probe sets showing a significant (P≤0.05) change in both. Of these 51 probe 

sets, 49 probe sets (representing 49 genes) showed the same direction of disease-associated 

regulation (96 % similarity: 33 down-regulated versus 16 up-regulated). The gene symbol, 



HUGO symbol, Entrez geneID, AffyID, functional group and difference in expression 

between schizophrenia and control patients and corresponding p-value are shown in Table 2 

 The 49 commonly regulated genes were categorised according to functional properties, 

using recent literature reports and Uniprot definitions for function. The genes clustered into a 

relatively small number of functional groups that comprised synaptic vesicle 

recycling/secretion (e.g., ZnT3, RABGGTB, VAMP2, SYT5, WNK1, Doc2A), cytoskeletal 

regulation (e.g., ELMO1, OLFM1, WASF1, SEPT8), signal transduction (e.g., CACNB3, 

CACNG3, CAPNS1, CMKK2, PIK4CB) and transcription (e.g., ZBTB1, ZNF395). 

Additional genes were identified that represented other functions such as mitochondrial 

function (e.g., MRPS28, SLC25A11 and SNN), neurodevelopment (e.g., PHYHIP), and there 

was a small set of genes with unknown function (e.g., FLJ10925, KIAA0082 and TMEM24). 

The housekeeping genes (including β-actin) did not show any significant difference between 

control and schizophrenic groups. 

 The predicted mean expression and 95% confidence intervals were generated for the 51 

common genes in each cohort (Table 2). The 95% confidence intervals of the ratio 

(schizophrenic/control) between the means of the two disease groups were also calculated for 

both cohorts and the results for six example genes are shown in the interval plots in Fig. 1. 

The interval plots show the size of the up- or down-regulation for each gene in each cohort as 

well as the associated precision (variability). By viewing the data in this way we can easily 

compare the level of similarity in results between the two cohorts which, in this case, shows a 

high level of consistency between two independent cohorts. In addition, we also confirmed 

some of the overlapping (SLC30A3, VEGF, SYT5, TMEM24) and non-overlapping (FZDB, 

S100A12) genes within the CCHPC cohort by RT-PCR (Supplementary Fig. 2). Many of the 

genes altered in the arrays have not been confirmed by RT-PCR and although they are 

common to both disease cohorts should be considered to some extent as provisional 

observations. 

 In order to compare the broader pathway characteristics of each cohort, we performed 

an enrichment analysis of differentially regulated genes against all transcripts measured. We 

also combined the pathway enrichment results for the transcriptomics experiments to generate 

a combined p value and a combined false discovery rate (FDR) corrected p-value. In the 

combined analysis, genes showing differential regulation in our sample were significantly 

over-represented in a number of pathways which have been implicated in the pathogenesis of 

schizophrenia (see Table 3), including dysbindin signalling and glutamate signalling, 

cytoskeletal protein binding, neurogenesis, synaptogenesis, synaptic transmission, protein 

kinase signalling and previously curated network of schizophrenia responsive genes (Table 

3). In addition, when the gene sets were examined as a whole, we identified a significant 



enrichment of genes localised in the postsynaptic synaptome (based on data from Emes et al, 

2008 (26). Eighteen of the fifty one genes are localised in the synaptome; the expected 

nEumber is 3.2 (p=7e-10) and this analysis survived FDR correction (see supplementary data 

in ref.26). 



DISCUSSION 

 

Our objective was to conduct a transcriptional analysis of post-mortem tissue samples from 

schizophrenic donors compared to matched controls. We compared data from the CCHPC and 

HBB cohorts as the latter represented an independent study of comparable size and quality. 

 This enabled the first direct comparison between two well-archived and 

demographically distinct cohorts (European and North American). If it is assumed that both 

cohorts are independent and there is no correlation between genes then the proportion of 

genes that would be expected to be detected at the 5% level in both cohorts purely by chance, 

ignoring direction is 29.7 (0.05*0.05 = 0.0025 i.e., 0.25% of 11,912). However, if direction is 

taken into account then the proportion of genes that would be expected to be detected at the 

5% level that are up/down regulated in both cohorts purely by chance is 14.9 (0.05*0.025 

=0.00125 i.e., 0.125% of 11,912) and therefore, in the CC and HBB overlap we observe 3.3 

times the number of significant changes in the same direction than would be expected by 

chance. In addition, by using confidence intervals to view the data, we can easily compare the 

level of similarity in results between the two cohorts which, in this case, shows a high level of 

consistency between two independent cohorts. 

 In agreement with previous studies, we did not detect any genes that are linked to the 

dopamine hypothesis in either cohort. Neither were genes associated with myelin function 

observed to change in either cohort. This contrasts with some previous array studies which 

report modulation of several oligodendroglial genes (11, 12, 13). There is, however, little 

consistency between the specific genes in these studies and the significance of these 

observations is unclear. Furthermore, several of these genes (CNP, MAG, OLIG2) were 

analysed by Mitkus et al., (14) who did not observe any difference between levels in 

schizophrenic patients and controls. We did not detect astrocyte or microglial markers or 

significant numbers of metabolic genes It is possible that the latter reflects the condition of 

the samples as mitochondrial gene modulation has been linked to agonal/pH state (27, 28, 29). 

We also did not detect any genes which have been proposed as disease candidates based on 

genetic studies, although our data support modulation within the reported networks for DISC1 

and dysbindin (30, 31) A major confounding factor for microarray analysis is patient 

exposure to drugs of abuse, to smoking and to treatment medication. The patients in the 

CCHPC were institutionalised and had no access to drugs of abuse including alcohol. We 

analysed for a correlation with drug exposure (chlorpromazine equivalents at death, 

neuroleptic treatment years, high/low dose) in the CCHPC but none was detected for the forty 

nine common genes. In addition, genes thought to be regulated by chronic smoking (32 and 



Supplementary Table 2 therein) were also assessed but none were present in the overlapping 

gene set described here. 

 Fifty one differentially expressed genes were identified that were common between 

the cohorts and forty nine of these showed the same direction of regulation. Many have not 

been identified previously in post-mortem studies of schizophrenia or in genetic association 

studies and cluster broadly into three functional groups; synaptic vesicle function, 

cytoskeletal regulation and signal transduction.  

 

Synaptic Vesicle Function: A large number of genes were present that regulate synaptic 

vesicle (SV) release and recycling (33, 34). These include the SV integral membrane proteins, 

VAMP2 (synaptobrevin 2), synaptotagmin 5 and zinc transporter 3 (down-regulated) and the 

vesicle associated protein Rab geranyl geranyl transferase (up-regulated). VAMP2 

(synaptobrevin 2) forms part of the tripartite vesicle fusion complex together with the 

presynaptic plasma membrane proteins, syntaxin and SNAP-25. This release complex is 

thought to mediate the fusion event between the vesicle and plasma membranes and is tightly 

regulated by a hierarchy of modulating proteins that include the Munc family members, Munc 

13 and Munc 18 (see below) (33). Synaptotagmin 5 belongs to the calcium-sensitive 

synaptotagmins that regulate vesicle release (33) and it appears to be preferentially localised 

to large dense core vesicles that are associated with peptide hormone release (35). The zinc 

transporter type 3 (ZnT3) is particularly intriguing as it is the only modulated gene that 

regulates vesicle content. ZnT3 is highly brain-specific (36) and is localised to synaptic 

vesicles in various neuronal populations (37). ZnT3 is responsible for vesicular zinc 

accumulation although the role of vesicular zinc is unclear. Studies in ZnT3 targeted–null 

mice have not revealed a phenotype associated with schizophrenia symptoms (38, 39) and 

there are no robust hypotheses supporting Zn disruption in the illness. However, ZnT3 is up-

regulated following a series of pathological stimuli (40) and may warrant further investigation 

as expression appears to correlate with the expression of the vesicular glutamate transporter 

type 1 (41) which in turn shows an inverse relationship with dysbindin expression (42). 

Reduced levels of vesicular zinc release may have pleiotropic effects, for example, released 

zinc regulates NMDA receptor activity, which is linked to schizophrenia (43). In addition, a 

series of genes that are dependent on zinc binding for their function are present in the 

overlapping gene set e.g., RABGGTB, ZBTB1, ZNF395, ZBBX. Rab3a undergoes a cycle of 

association and detachment from the synaptic vesicle membrane during vesicle release. The 

geranylation step, performed by Rab geranyl geranyl transferase (RABGGTB), is essential for 

the re-attachment of Rab3a to the SV membrane during the regeneration of the releasable 

vesicle pool in the nerve terminal (33, 34). In addition, ARF3, ARL4L, ARPP-19, genes 

associated with vesicle trafficking, are down regulated. Several regulators of vesicle secretion 



are also modulated. DOC2α, a double cortin containing protein specifically expressed in 

neurons and localised to SVs (44) is involved with transmitter release via Munc13 regulation. 

WNK1, a kinase associated with MUNC-18 regulation (45) and therefore calcium-dependent 

fast transmitter release is up-regulated. Septin 8 belongs to an emerging family of presynaptic 

proteins that appear to regulate vesicle release (46).  

 Additional genes that are likely to influence vesicle release were also detected. The 

beta3 and gamma3 subunits of voltage-dependent calcium channels were decreased and 

increased, respectively, suggesting a possible modulation of voltage dependent calcium 

activation in the nerve terminal (47). Furthermore, calpain small subunit was also down-

regulated. This is the common heterodimeric partner for the calcium dependent calpains 1 and 

2 which target, amongst other proteins, components of the cytoskeleton and are involved in 

long-term potentiation and nerve terminal remodelling. 

 Taken together, these data strongly suggest a primary deficit of vesicle release (fast 

transmitter vesicles and large dense core granules) and possibly cellular trafficking. The 

molecules discussed above function at different points in the hierarchy of vesicle regulation 

ranging from vesicle trafficking (ARF3, ARL4L, ARPP-19) to priming (DOC2a) and release 

(VAMP2, SYT5, RABGGTB)  (Fig. 2). 

 

Signal Transduction: Expression changes in genes associated with signal transduction were 

observed representing the inositol pathway (PI4Kinase), GPCR signalling (GNG3, VIPR1) 

and trophins (VEGF, SH2B adaptor protein). PI4 kinase regulates the first committed step in 

the synthesis of IP3 which is the primary mediator of rapid intracellular calcium release. 

VEGF, a potent endothelial mitogen involved in vascularisation and angiogenesis has, more 

recently, been shown to exert a number of trophic effects in the nervous system, promoting 

neurite outgrowth, promoting nerve regeneration and causing proliferation of astrocytes and 

Schwann cells. VEGF has not previously been implicated in schizophrenia but it has been 

shown to be neuroprotective for dopaminergic neurons in models of Parkinson’s disease. 

Furthermore, tumor–derived VEGF promotes angiogenesis and tumour growth but this 

mechanism is attenuated by dopamine (48, 49). 

 

Cytoskeletal Regulation: In addition to calpain small subunit, expression changes in other 

genes associated with modulation of the actin cytoskeleton and microtubule structure were 

identified including ELMO1, WASF1, SEPT8 and OLFM1 which is a confirmed interactor 

with the schizophrenia-associated gene, DISC-1 (which in turn is a modulator of nerve 

terminal function). Actin is a major cytoskeletal protein found both pre- and post-synaptically 

and the modulation of actin dynamics by the genes described here may be linked to cyto-

architectural changes associated with synaptic modulation (50) The WASF1 downregulation 



we observed is of particular interest as Kim et al. 2006 (51) showed it to be a key regulator of 

actin-dependent morphological processes in mouse neurons. Loss of WASF1 function in vivo 

or in cultured neurons resulted in a decrease in mature dendritic spines. This suggests that 

WASF1 may play an important role in the regulation of dendritic spine morphology in 

schizophrenia. 

 

Smaller groups of genes represented in the overlap set included those associated with brain 

development such as phytanoyl-CoA hydroxylase interacting protein and a series of 

transcription factors and genes associated with transcriptional regulation/RNA processing, for 

example, GATA3 and ZNF395. In order to try to place these observations into a wider 

pathway context, we carried out an enrichment analysis on the total detected gene set in each 

cohort for dominant gene interactions and pathways. This identified an over-representation of 

genes involved in dysbindin signalling (31) and synaptic transmission (33, 34), further 

supporting the hypothesis from the common gene set for synaptic dysfunction in 

schizophrenia. Several important caveats nonetheless remain and we cannot at this point 

exclude the possibility that these gene changes are in some way influenced, for example, by 

medication (although our data suggest otherwise) or are secondary to an underlying pathology 

or its consequences. 

 

In summary, we identified 49 genes that are differentially regulated and common to two 

independent schizophrenia cohorts. Furthermore, the genes cluster into a relatively small 

number of functional groups that are associated with synaptic function via synaptic vesicle 

regulation, signal transduction or cytoskeletal dynamics. The broader bioinformatics 

comparison between the cohorts supports this and the data strongly suggest more than any 

previous microarray study that one of the primary sites of schizophrenia disease pathology is 

localised at the nerve terminal and in particular at the presynaptic site. This is in agreement 

with previous suggestions for a synaptic pathology in schizophrenia based on genetic 

observations (52) and genomic studies (7 and reviewed in 53). Although the transcriptional 

effects are small, as reported in previous studies, the cumulative effect of disturbance of many 

genes acting at multiple points in the vesicle life cycle and at hierarchies of regulation within 

the presynaptic terminal, is likely to have significant impact on synaptic transmission and 

remodelling that may underlie the pathology of the illness. 
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 Legends to Figures 

Figure 1 Confidence interval Comparisons 

Six forest plots showing the 95% confidence intervals of the disease ratio (schizophrenic / 

control) between the means of the two disease groups for the CCHPC and HBB cohorts for 

selected genes. The width of the blue boxes in each plot represents the size of the difference 

between the ratios of the two cohorts i.e. there is no box in the plot of results from VIPR as 

the disease ratios from the two cohorts are identical. 

Figure 2. Schematic representation of a nerve terminal showing the functional 

localisation of a subset of genes directly associated with presynaptic function.  

Genes associated with cytoskeletal regulation and signal transduction are also shown as they 

are likely to influence nerve terminal function. Pale blue circles = small synaptic vesicles; 

purple circle = large dense cored vesicle; red hatching = postsynaptic receptors; small green 

circles = actin polymers. 

 

Supplementary Figure 1. Flow schematic for CCHPC and HBB samples  

CCHPC samples were processed for microarray analysis and compared to microarray data 

reported in Glatt et al. (18). This schematic illustrates the steps of QC progression and reasons 

for sample omission in each cohort. 

 

Supplementary Figure 2. Confirmation of microarray findings using QPCR 

(A) Confirmation of a sub-set of the overlapping CCHPC and HBB genes (SLC30A3, 

VEGF, SYT5, TMEM24) using QPCR. Genes are also shown from the CCHPC set 

that were not in the overlapping group (FZDB, S100A12). (B) Fold changes and p 

values are shown for both microarray and QPCR analysis. 

 

 



Table1: Summary of patient demographics for samples that were included in the 
statistical analysis. 
 
  Schizophrenic Control 
 BA10 region    
Number of samples  28 23 
Gender (Males / Females)  19 / 9 13 / 10 
Age Mean 73.3 69.0 
 SD 15.2 21.6 
 Median 78.0 71.0 
 Range 28-97 25-94 
PMD (Hours) Mean 8.1 9.4 
 SD 6.5 4.4 
 Median 4.8 9.5 
 Range 3-30 4-17 
Brain pH Mean 6.2 6.5 
 SD 0.2 0.3 
 Median 6.2 6.5 
 Range 5.7-6.6 5.7-6.9 
 

 



      CC    HBB   
Gene 
Symbol 

HUGO 
symbol 

Entrez
Gene 
ID 

Affy ID Functional 
Category 

BA10 
Fold 

Change 
(Model)

Lower 
95% 
CI 

Limit 

 Upper 
95% 
CI 

Limit 

BA10 
Disease 
P value 

BA9 
Fold 

Change 
(Model)

Lower 
95% 
CI 

Limit 

 Upper 
95% 
CI 

Limit 

BA9 
Disease 
P value 

ARF3 ARF3 377 200011_s_at Vesicle Function -1.11 -1.20 -1.02 0.0224 -1.10 -1.20 -1.01 0.0245 
ARF4L ARL4D 379 203586_s_at Vesicle Function -1.18 -1.31 -1.06 0.0028 -1.20 -1.44 -1.00 0.0469 
ARPP-19 ARPP-19 10776 221482_s_at Vesicle  Function -1.12 -1.21 -1.04 0.0041 -1.20 -1.35 -1.07 0.0030 
CACNB3 CACNB3 784 209530_at Vesicle  Function -1.18 -1.31 -1.05 0.0055 -1.26 -1.44 -1.10 0.0011 
CACNG3 CACNG3 10368 206384_at Vesicle Function  -1.25 -1.53 -1.01 0.0375 -1.47 -1.99 -1.08 0.0144 
DOC2A DOC2A 8448 205744_at Vesicle Function   -1.12 -1.27 -1.00 0.0497 -1.30 -1.63 -1.04 0.0225 
RABGGTB RABGGTB 5876 209181_s_at Vesicle Function   1.08 1.02 1.15 0.0061 1.24 1.05 1.48 0.0152 
SEPT8 SEPT8 23176 208999_at Vesicle Function  1.17 1.03 1.32 0.0139 1.31 1.00 1.71 0.0482 
SLC30A3 SLC30A3 7781 207035_at Vesicle Function  -2.00 -3.11 -1.28 0.0033 -2.42 -5.21 -1.13 0.0247 
SYT5 SYT5 6861 206161_s_at Vesicle Function  -1.22 -1.40 -1.08 0.0030 -1.40 -1.95 -1.01 0.0452 
VAMP2 VAMP2 6844 201557_at Vesicle Function  -1.11 -1.23 -1.00 0.0403 -1.28 -1.60 -1.01 0.0379 
WNK1 WNK1 65125 211994_at Vesicle Function  1.10 1.01 1.19 0.0245 1.16 1.00 1.34 0.0457 
DKFZP564K
0822 

ECOP 81552 208091_s_at Transcription 
/RNA processing 

-1.11 -1.18 -1.04 0.0018 -1.06 -1.12 -1.00 0.0484 

GATA3 GATA3 2625 209604_s_at Transcription  -1.15 -1.33 -1.00 0.0472 -1.11 -1.22 -1.02 0.0228 
HNRPM HNRNPM 4670 200072_s_at Transcription/   1.08 1.01 1.15 0.0223 1.15 1.01 1.31 0.0368 
HTATIP KAT5 10524 214258_x_at Transcription / -1.05 -1.11 -1.00 0.0415 -1.12 -1.24 -1.01 0.0352 
PNN PNN 5411 212037_at Transcription/  1.09 1.04 1.14 0.0011 1.19 1.04 1.37 0.0151 
SAP30 SAP30 8819 204900_x_at Transcription   1.10 1.01 1.21 0.0370 1.21 1.02 1.43 0.0274 
FLJ23049 ZBBX 79740 220269_at Transcription/   -1.19 -1.42 -1.00 0.0475 -1.29 -1.66 -1.01 0.0401 
ZBTB1 ZBTB1 22890 213376_at Transcription   1.11 1.02 1.20 0.0137 1.21 1.03 1.43 0.0238 
ZNF395 ZNF395 55893 218149_s_at Transcription  1.17 1.00 1.37 0.0462 1.33 1.01 1.76 0.0459 
CAMKK2 CAMKK2 10645 207359_at Signalling   -1.16 -1.31 -1.03 0.0165 -1.49 -2.09 -1.06 0.0230 
CAPNS1 CAPNS1 826 200001_at Signalling -1.09 -1.17 -1.01 0.0323 -1.19 -1.40 -1.01 0.0420 
GNG3 GNG3 2785 222005_s_at Signalling -1.12 -1.27 -1.00 0.0475 -1.30 -1.66 -1.02 0.0372 

Table 2.  Gene identifications of transcripts showing common changes in expression between CCHPC and HBB cohorts 



LRCH4 LRCH4 4034 204692_at Signalling 1.20 1.04 1.38 0.0151 1.15 1.03 1.27 0.0117 
PIK4CB PI4KB 5298 206139_at Signalling -1.16 -1.31 -1.04 0.0109 -1.11 -1.21 -1.01 0.0236 
LNK SH2B3 10019 203320_at Signalling 1.11 1.03 1.20 0.0108 -1.09 -1.18 -1.01 0.0325 
VEGF VEGFA 7422 210513_s_at Signalling 1.33 1.03 1.71 0.0309 1.23 1.01 1.50 0.0369 
VIPR1 VIPR1 7433 205019_s_at Signalling -1.32 -1.70 -1.02 0.0371 -1.32 -1.62 -1.07 0.0105 
RCBTB1 RCBTB1 55213 218352_at Nuclear protein  1.10 1.00 1.21 0.0455 1.15 1.01 1.30 0.0301 
JMJD1A JMJD1A 55818 212689_s_at Nuclear protein 1.14 1.06 1.22 0.0008 1.20 1.06 1.37 0.0062 
NAP1L1 NAP1L1 4673 208754_s_at Nuclear protein 1.07 1.02 1.14 0.0114 1.19 1.03 1.37 0.0187 
RPL39L RPL39L 116832 210115_at Nuclear Protein -1.35 -1.65 -1.11 0.0037 -1.27 -1.54 -1.05 0.0161 
CLIPR-59 CLIP3 25999 212358_at Cytoskeleton -1.14 -1.26 -1.04 0.0090 -1.17 -1.33 -1.02 0.0228 
MCF2L  23263  Cytoskeleton 1.23 1.01 1.50 0.0416 1.22 1.02 1.47 0.0309 
NRBP NRBP1 29959 217765_at Cytoskeleton  -1.22 -1.40 -1.07 0.0038 -1.25 -1.53 -1.02 0.0313 
OLFM1 OLFM1 10439 213131_at Cytoskel/ DISC1 -1.16 -1.32 -1.02 0.0212 -1.18 -1.36 -1.03 0.0222 
NEK7 NEK7 140609 212530_at Centrosome 1.11 1.03 1.19 0.0088 1.22 1.01 1.48 0.0412 
ACTR1A ACTR1A 10121 200720_s_at Cytoskeleton -1.12 -1.25 -1.01 0.0405 -1.25 -1.54 -1.01 0.0418 
ELMO1 ELMO1 9844 204513_s_at Cytoskeleton -1.12 -1.24 -1.02 0.0190 -1.26 -1.55 -1.02 0.0340 
HRIHFB2122 TRIOBP 11078 202795_x_at Cytoskeleton 1.13 1.04 1.23 0.0075 1.19 1.02 1.40 0.0292 
WASF1 WASF1 8936 204165_at Cytoskeleton -1.11 -1.22 -1.01 0.0291 -1.15 -1.27 -1.04 0.0091 
ABCA1 ABCA1 19 203504_s_at Cholesterol  1.14 1.01 1.29 0.0337 1.28 1.04 1.57 0.0220 
PHYHIP PHYHIP 9796 205325_at Development -1.11 -1.21 -1.02 0.0217 -1.24 -1.40 -1.10 0.0007 
UQCRC1 UQCRC1 7384 201903_at Mitochondrial  -1.11 -1.23 -1.01 0.0344 -1.18 -1.36 -1.02 0.0272 
MRPS28 MRPS28 28957 219819_s_at Mitochondrial 

 
-1.09 -1.16 -1.01 0.0215 1.20 1.03 1.39 0.0191 

SLC25A11 SLC25A11 8402 209003_at Mitochondrial -1.10 -1.17 -1.02 0.0101 -1.16 -1.30 -1.03 0.0121 
SNN SNN 8303 218032_at Mitochondrial -1.11 -1.21 -1.01 0.0292 -1.11 -1.21 -1.01 0.0232 
PSMD13 PSMD13 5719 201233_at Ubiquitin  -1.18 -1.32 -1.05 0.0054 -1.21 -1.41 -1.05 0.0116 
FLJ10925 C7ORF43 55262 220659_s_at Unknown -1.18 -1.35 -1.03 0.0182 -1.52 -1.96 -1.18 0.0020 
TMEM24 C2CD2L 9854 204757_s_at Unknown -1.22 -1.40 -1.08 0.0027 -1.44 -1.72 -1.20 0.0002 
KIAA0082 FTSJD2 23070 212380_at Unknown -1.11 -1.23 -1.01 0.0398 -1.15 -1.26 -1.04 0.0071 
 



Table 3. Summary of top 20 pathways following PAGE analysis (FDR < 0.0002) 

 

Pathway name  Source no. genes*
FDR P 
combined

Psychiatric 
Rationale†

Kinase Protein families  Jubilant (23/228) 1.68E-11 General
Receptor protein tyrosine kinase docking protein:SH3/SH2 adaptor protein activity  NetPro (37/300) 1.20E-06 General
NEF Mediated Pathway--Acquired Immuno Deficiency Syndrome  Jubilant (10/64) 1.20E-06
Intracellular Signaling Cascade:Phosphatidylinositol 3-Kinase Mediated Signaling  NetPro (44/428) 2.80E-06 General
Dysbindin signalling  GSK (14/63) 3.49E-06 Schizophrenia
Glutamate signalling network  GSK (34/273) 3.94E-06 General
Insulin_Signaling  GenMAPP (19/160) 6.89E-06
Regulation_of_Actin_Cytoskeleton_KEGG  GenMAPP (15/142) 7.61E-06 General
Focal_adhesion_KEGG  GenMAPP (20/185) 2.20E-05
Amyloid beta-peptide Signaling Pathway--Alzheimers  Jubilant (11/113) 3.97E-05 Cognition
Alzheimers Responsive Genes  Jubilant (15/157) 4.11E-05 Cognition
MAPKinase Signaling Pathway  Biocarta (7/87) 4.11E-05 General
TGFbeta Signaling Pathway--Growth and Differentiation  Jubilant (10/66) 4.69E-05 General
Ligand-dependent nuclear receptor activity:Vitamin D3 receptor activity  NetPro (21/158) 5.44E-05 Schizophrenia
Transcription_Ligand-dependent activation of the ESR1/SP pathway  GeneGo (5/39) 6.46E-05 Schizophrenia
Calcium_regulation_in_cardiac_cells  GenMAPP (16/137) 6.67E-05
 Jubilant:Thrombopoietin Signaling Pathway--Thrombopoiesis  Jubilant (16/137) 0.000212
 Jubilant:AR Mediated Pathway--Prostate Cancer  Jubilant (12/99) 0.000212
 GOA:Neurotransmitter Secretion: BP  GOA (7/65) 0.000343 General
 NetPro:Regulation of transcription  NetPro (20/152) 0.000345  
 

*Column indicates number of genes showing significantly different regulation between cases and controls versus the total number of 

genes in the pathway tested in the experiment. † Pathway rationale in psychiatric diseases is based on co-occurrence of disease and 

pathway terms in literature.  

 



Figure 1: Confidence interval 
Comparisons
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Supplementary Figure 2.   
A)  mRNA expression levels measured by Real Time PCR in post-mortem brain 
samples of schizophrenics and controls (Geometric Mean with 95% confidence 
intervals of normalised abundance, copies of total RNA detected per 20ng of total 
RNA). Details of primers used are given in Supplementary Table 2. 
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B) Comparison of fold changes obtained for Microarray and QPCR and associated 
levels of significance. 
 
  Microarray QPCR  
       
  Fold Change Corrected P-

Value
 Fold Change Corrected 

P-Value 
       
FRZB  -1.61 0.003  -1.45 0.008 
SLC30A3  -2.00 0.003  -1.19 0.009 
SYT5  -1.22 0.003  -1.12 0.050 
TMEM24  -1.22 0.003 -1.11 0.020 
VEGF  1.33 0.031  1.40 0.041 
S100A12  1.75 0.0134  4.04 0.0007 
 
 



Supplementary Table 2. Primers used for QPCR  

 

Gene Forward Primer 
Sequence 

Reverse Primer Sequence Probe sequence (5' FAM, 3' 
TAMRA) 

FRZB GAAGCTTCGTCATC
TTGGACTCAG 

ATTTAGTTGCGTGCTTG
CCG 

TCAGAAGTCTGGCAGGAACT
CGAACCC 

SLC30
A3 

TGTGTCTCTGTGCC
TATGTGGC 

CAGCACCAACAGAGGG
ATGG 

TCTGCTCCATCCATGTGTCT
GTTTGGG 

SYT5 GAGACCGGCCAAA
GCCAAG 

AGAAGACAGGAATGGT
TCAGATGG 

CCCACCCTTAAGCTTCCTCT
GACGGTT 

TMEM
24 

GACCTCTCCAACGC
AACGG 

CCTTGGGTTTGGATTTG
AAGG 

TTTCTCGCCGCCTTATCAAG
CGCTTT 

VEGF ATCCCTGTGGGCCT
TGCTC 

CCTCGGCTTGTCACATC
TGC 

TCCTGCAAAAACACAGACTC
GCGTTGC 

S100A
12 

GCTCCACATTCCTG
TGCATTG 

TGGTGTTTGCAAGCTCC
TTTG 

CATCTGGAGGGAATTGTCAA
TATCTTCCACC 

ACTB GAGCTACGAGCTG
CCTGACG 

GTAGTTTCGTGGATGCC
ACAGGACT 

CATCACCATTGGCAATGAGC
GGTTCC 

GAPD
H 

CAAGGTCATCCATG
ACAACTTTG 

GGGCCATCCACAGTCT
TCTG 

ACCACAGTCCATGCCATCAC
TGCCAT 

PPIA CATCTGCACTGCCA
AGACTGA 

CCACAATATTCATGCCT
TCTTTCA 

CCAAACACCACATGCTTGCC
ATCCA 
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