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Previous analyses have suggested that immunity to non-cerebral severe malaria

due to Plasmodium falciparum is acquired after only a few infections, whereas

longitudinal studies show that some children experience multiple episodes of

severe disease, suggesting that immunity may not be acquired so quickly.

We fitted a mathematical model for the acquisition and loss of immunity to

severe disease to the age distribution of severe malaria cases stratified by symp-

toms from a range of transmission settings in Tanzania, combined with data

from several African countries on the age distribution and overall incidence

of severe malaria. We found that immunity to severe disease was acquired

more gradually with exposure than previously thought. The model also

suggests that physiological changes, rather than exposure, may alter the symp-

toms of disease with increasing age, suggesting that a later age at infection

would be associated with a higher proportion of cases presenting with cerebral

malaria regardless of exposure. This has consequences for the expected pattern

of severe disease as transmission changes. Careful monitoring of the decline in

immunity associated with reduced transmission will therefore be needed to

ensure rebound epidemics of severe and fatal malaria are avoided.
1. Background
A small minority of Plasmodium falciparum infections result in severe malaria, requir-

ing admission to hospital [1]. Immunity to severe malaria is known to develop with

repeat infections of P. falciparum, but the rate of acquisition of immunity is a subject

of on-going study [2]. Manifestations of severe malaria have been shown to vary

with age and transmission setting [3–9], and in response to changing transmission

[10], suggesting that both age and exposure affect the pathophysiology of the dis-

ease. Previous analysis suggested that immunity to non-cerebral severe malaria is

acquired after only one or two infections [11]. However, evidence from longitudinal

studies shows that some young children experience multiple episodes of severe

disease [12,13], suggesting that immunity may be acquired more gradually. Age

patterns of disease are further confounded by variation in exposure to P. falciparum
and immune responses, resulting in a high degree in variability in the number of

disease episodes among children living in the same area [1,14].

A shift in the burden of severe malaria from younger to older ages with decreas-

ing malaria transmission intensity is also associated with changes in the dominant

manifestations of disease. In high transmission settings, severe malaria is concen-

trated among young children over the age of six months who most commonly

present with severe malarial anaemia. At intermediate and low transmission

settings, cases present in older children and adults with an increasing proportion

of cerebral malaria [4,6,9,15–17], which is associated with higher case fatality

ratios [4,18–22]. Despite this, the higher case fatality ratio is more than offset

by the much lower incidence of severe malaria in low transmission settings,
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such that—overall—malaria-related mortality decreases with

decreasing transmission [10]. Thus, although there have been

concerns that malaria control may be accompanied by a para-

doxical increase in mortality when transitioning from very

high to intermediate levels of transmission [3,23–28], in practice,

this has not been observed in two areas where there have been

declines in transmission [10,29], perhaps due to the rapidity of

the declines to low levels of transmission in these areas. How-

ever, a recent increase in malaria hospital admissions in

western Kenya could be an example of this phenomenon [30],

and so it remains an open question.

Few studies have quantified the rate of development of

immunity to the different manifestations of severe malaria.

Quantifying these processes is important to allow the prediction

of the likely impact of interventions which are designed to

reduce exposure during early years, including seasonal malaria

chemoprophylaxis (SMC), use of insecticide-treated nets (ITNs)

and vaccination via the Expanded Programme for Immuniz-

ation (EPI), but which may leave older individuals at risk. A

better understanding of the rate at which immunity is acquired

is additionally likely to promote a better understanding of the

pathophysiology of severe malaria.

In 1999, Gupta et al. used a mathematical model fitted to

the age distribution of cerebral and non-cerebral malaria

incidence across different transmission settings in Kenya and

Gambia to estimate the rate of acquisition of immunity to these

syndromes [11,31]. This model assumed that infections were

acquired at a constant rate from birth, but that in young infants

the proportion of cases with severe disease was reduced by pas-

sive immunity from maternal antibodies and that the proportion

of cases with severe disease varied with exposure. Their analysis

suggested that immunity to non-cerebral malaria was acquired

after only a few infectious bites. However, in order to repli-

cate the age distribution of non-cerebral malaria, alternative

models were required that explicitly accounted for the exposure

to multiple antigenic types of malaria, and increasing virulence

of later infections [31]. The apparent contradiction between these

two analyses—one suggesting rapid acquisition of immunity to

severe disease and the other suggesting increasing case fatality

with increasing age—has yet to be resolved. Indeed, there are

still many unanswered questions about the development of

immunity to severe malaria [2,32].

In an attempt to resolve some of these contradictions, we

estimate the rate of acquisition of immunity to different

forms of severe malaria by extending a published mathemat-

ical model of malaria transmission [33,34] to incorporate the

development of immunity to severe disease. The model is

fitted to data from Tanzania in which cases are stratified

according to the main symptoms of severe disease—severe

malarial anaemia, cerebral malaria and respiratory distress

[4]—as well as to a wider summary analysis of severe disease

patterns across different transmission intensities [5,35].
2. Material and methods
(a) Tanzanian study
Full details of the Tanzanian study are published elsewhere [4]

but are summarized briefly here. Data from hospital admissions

for severe malaria from northeastern Tanzania were collected

prospectively from nine hospitals over a period of one year

from February 2002, and from one hospital for a period of six

months from August 2002.
The population in this area is culturally and ethnically homo-

geneous, but exposed to highly variable levels of P. falciparum
transmission intensity, which depend on the altitude from sea

level to above 1800 m [36]. Children living in low-lying areas

have much higher admission rates for severe malaria than chil-

dren living in high-altitude villages [4]. In total, data from 1989

people with documented evidence of severe malaria (as defined

in [4]) and known place of residence were included in this study,

of whom 134 (6.7%) had a fatal outcome.

Severe malarial anaemia was defined as P. falciparum parasi-

taemia (of any density) with haemoglobin concentration (Hb)

less than 5 g dl21 (HaemoCue AB, Ängelholm, Sweden). Cerebral

malaria was defined as P. falciparum parasitaemia (of any density)

with Blantyre coma score (BCS) less than 4 and, if there was

reduced response to pain, blood glucose level greater than

38 mg dl21 (2.1 mmol l21), no convulsions within 1 h of diagnosis

and no anticonvulsants administered within 6 h of diagnosis.

Malaria with respiratory distress was defined as parasitaemia (of

any density) with lower chest wall inspiratory recession or abnor-

mally deep respiration. Patients who did not meet any of these

criteria but who met the criteria for inclusion in the study reported

in [4] are classified as ‘other severe malaria’ cases.

Each ward was classified into one of six groups of differing

transmission intensity: below 600 m, 600–1200 m and more

than 1200 m.a.s.l. in each of Kilimanjaro and Tanga regions.

The median journey time to the hospital that patients reported

was also used in the analysis.
(b) Other African data
To add information from areas with intermediate transmission,

which were not represented in the Tanzanian study, we also

used data on incidence of severe malaria from nine sites across

Africa collected together by Marsh & Snow [35], together with

data on the age distribution of severe malaria in each of these

sites and the parasite prevalence in 2–10-year-olds reported by

Okiro et al. [5]. In these studies, severe malaria was defined as a

hospitalized case with a positive blood smear for P. falciparum
where no other detectable cause for the clinical presentation

could be identified. Some of the data were summarized in [3], in

which the incidence of acute respiratory infection (ARI) was also

reported using the same method for calculating the denominator

population. The ARI incidence was similar between locations,

suggesting that the calculated denominator was in a similar ratio

to the true catchment population in the different sites.
(c) Model structure and estimation of parameters
We used a published transmission model [33], which has recently

been updated by fitting to extensive clinical disease data [34].

The model is described in full in the latter. In brief, the previously

published model incorporates individuals ageing and being con-

tinuously exposed to infection and acquiring immunity. The rate

of acquisition of this immunity depends on the level of exposure,

as measured by the entomological inoculation rate (EIR). There

are three effects of immunity in this previously published model:

(i) a reduction in the probability of initial infection, with the

most marked reductions in teenagers and adults, reflecting pre-

erythrocytic immunity, but with only modest effect; (ii) a gradual

reduction in the probability of developing clinical disease given

infection, representing the development of blood-stage immunity

over repeated exposures; and (iii) a lower parasite density in

asymptomatic infection following repeated exposure, leading to

a reduction in both the probability of detection and in onward

infectiousness to mosquitoes. The model is stratified by age and

by degree of exposure to mosquitoes. The model was validated

by fitting to age-stratified data on the incidence of clinical disease,

PCR positivity and parasite prevalence, and EIR measurements.
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Figure 1. Geographical characteristics of study area, severe disease incidence, population density and travel time to hospital by ward. The study was conducted in
northeastern Tanzania, where (a) the altitude increases from the coast in the southeast to the mountains in the northwest of the study area (altitude of each ward
in metres). There is also geographical variation in (b) the incidence of severe malaria according to admissions to hospital per 1000 head of population, (c) population
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the study marked with yellow diamonds).
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Here, we extended the model by adding another immunity

function to capture the peak incidence of severe disease at younger

ages than the peak incidence of uncomplicated malaria. As indi-

viduals are repeatedly infected with malaria, they acquire this

immunity, measured by the variable IVA. At birth, individuals

have some level of maternally derived immunity, IVM, which is

also determined by exposure of mothers. Mathematically, this

can be written as the level of this immunity in individuals of age

a in an area with EIR 1, increasing with exposure as

@IVA(a, 1)

@t
þ @IVA(a, 1)

@a
¼ L(a, 1)

L(a, 1)uV þ 1
� IVA(a, 1)

dV
,

where L(a,1) is the force of infection at age a, uV represents a period

during which immunity cannot be boosted following a previous

boost and dV governs the duration of immunity, representing the

assumption that this immunity would decline in the absence

of exposure. Maternal immunity IVM is assumed to be at birth a

proportion PVM of the acquired immunity of a 20-year-old in

the same transmission setting and to decay exponentially with

rate 1/dVM.

The proportion of new infections that develop into severe dis-

ease declines as this level of immunity increases, with a sigmoidal

function given by

u(a, 1) ¼ u0 u1 þ
1� u1

1þ fV(a)((IVA(a, 1)þ IVM(a, 1))=IV0)kV

� �
,

where u0 is the proportion in naive individuals, u0u1 is the pro-

portion in a maximally immune individual, and IV,0 and kV are
scale and shape parameters. fV(a) is a purely age-dependent func-

tion that allows the effect of immunity to differ by age, given by

fV(a) ¼ 12(12fV0)/(1þ(a/aV)gv) at age a, with parameters fV0, aV

and gV. Hence the incidence of severe malaria is u(a,1)L(a,1).

The parameters allow for a flexible functional form for the

dependence of the proportion u on either exposure or age. The

other model parameters not related to severe disease were

fixed at the values estimated by Griffin et al. [34].

For each incident case of severe malaria the proportion of severe

cases presenting with any individual symptom (severe anaemia,

cerebral malaria or respiratory distress) was assumed to be age-

dependent. The proportion of severe cases presenting with each

symptom was assumed to be independent of the others and there-

fore any combination of the three symptoms occurs with a

probability given by the product of the individual symptoms.

The proportion of severe malaria cases presenting with each

symptom at age a is

P(symptom) ¼ q0 þ (q1 � q0)(1� e�ra),

with a separate set of parameters q0, q1 and r for each symptom.

The case fatality ratio was estimated for each combination of

symptoms, with no age dependence (other than in the pro-

portion of cases presenting with each symptom).

We included a journey-time-dependent probability of cases

arriving in hospital as a number of studies have demonstrated

that longer journey times to hospital are associated with a

lower probability of arrival at a healthcare facility [37–39].
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Figure 2. Age distribution of cases admitted to hospital for severe malaria by setting. The observed incidence of severe malaria by age alongside the model fit. The
first two rows are data from Tanzania in order of increasing parasite prevalence: (a) Kilimanjaro high altitude, (b) Tanga high altitude, (c) Kilimanjaro mid-altitude,
(d) Tanga mid-altitude, (e) Kilimanjaro low altitude and ( f ) Tanga low altitude. The last three rows are data from datasets presented by Okiro et al. [5] and Marsh &
Snow [35], ordered by increasing parasite prevalence: (g) Bakau, Gambia; (h) Kilifi Township, Kenya; (i) Mponda, Malawi; ( j ) Foni Kansala, Gambia; (k) Sukuta,
Gambia; (l ) Kilifi North, Kenya; (m) Siaya, Kenya; (n) Kilifi South, Kenya; and (o) Ifakara, Tanzania. The shaded areas represent the 95% credible intervals of the fit.
These are the raw data, without the scaling for different case definitions and catchment areas in these two groups of studies.
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The differences in definition of the population at risk in the

Tanzania study compared with the pooled summary studies from

elsewhere in Africa give rise to markedly different scales for the

overall incidence of disease for a similar age profile of disease (i.e.

a similar transmission setting as defined by parasite prevalence),

and we accounted for these differences by introducing scaling

factors (see electronic supplementary material for further details).

The model was fitted to the data on incidence of different types of

severe disease by age. The EIR in each setting was primarily informed

by the parasite prevalence in that setting as the modelled relationship

between EIR and parasite prevalence had previously been validated

against a large number of settings [33,34]. Further details of the

model-fitting methodology and the parameter estimates are given

in the electronic supplementary material, text S1.
3. Results
People in the Tanzanian study lived at a wide range of altitudes,

leading to a high degree of variability in malaria risk (figure 1a),
with hospitals placed in areas of highest population density

(figure 1cd). By far the highest incidence of severe malaria

was seen in the low-altitude area in the southwest, near the

sea, in Tanga (figure 1b). Just under half (47%) of the severe

malaria cases, and 78% of cases who died, presented with at

least one of cerebral malaria, severe malarial anaemia or respir-

atory distress, and 8% of cases were admitted with more than

one of these syndromes. The combination of respiratory distress

and anaemia accounted for 60% of all cases with more than one

syndrome. In the highest transmission area (Tanga, altitude

below 600 m), the majority of admissions were in the youngest

age groups (43% aged below 1 year), the most common mani-

festation was severe malarial anaemia (47% of cases) and 3%

of cases presented with cerebral malaria.

The best-fitting mathematical model captured the differ-

ences in admission patterns by age (figure 2) across the wide

range of settings. As was previously described by Okiro et al.
[5], these data show the age shift in severe malaria from



0

0.02

0.04

0.06

0.08

pr
ob

ab
ili

ty
 o

f 
se

ve
re

 m
al

ar
ia

0 10 20 30
infections

2

20

200

EIR

(a)
severe anaemia

cerebral malaria
respiratory distress

other

0

0.2

0.4

0.6

0.8

pr
op

or
tio

n 
w

ith
 s

ym
pt

om

0 5 10 15 20
age (years)

(b)

other

severe anaemia

cerebral malaria

respiratory distress

anaemia, cerebral

anaemia, respiratory

cerebral, respiratory

all symptoms

0 20 40 60 80
case fatality ratio (%)

(c)

0

5

10

15

20

25

ca
se

 f
at

al
ity

 (
%

)

0 5 10 15 20
age (years)

(d)

Figure 3. Model functions estimated by fitting to the data. (a) Proportion of infections that progress to severe malaria plotted against the number of infections
experienced so far, for three different EIRs. (b) Proportion of cases of severe malaria of a given age that will present with severe anaemia, cerebral malaria,
respiratory distress or none of these symptoms. (c) The case fatality ratio for severe malaria in this cohort depending on the combination of symptoms ( point
estimates, dots; 95% confidence intervals, bars). (d ) Given a case of severe disease, the age-dependent symptoms (b) combined with the symptom-related mortality
(c) can be combined to give a case fatality ratio by age (solid line), which can be compared with the observed data (blue). For (b) and (d ), the lines represent the
best fit and the shaded areas represent the 95% credible intervals. In (b) and (c), ‘other’ refers to those with severe malaria as defined in [4], but without severe
anaemia, cerebral malaria or respiratory distress.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

282:20142657

5

younger to older ages as the transmission intensity decreases.

Figure 3a shows the estimated proportion of infections that

develop into severe malaria, plotted against the expected

number of infections experienced so far. Overall, the pro-

portion of infections resulting in severe disease is very low.

In high transmission settings this proportion rises at first

(due to loss of maternal immunity), before gradually falling.

At an EIR of two infectious bites per person per year, the

proportion of infections resulting in severe disease falls more

rapidly, presumably because of age-related gains in immune

system competence (i.e. at low EIRs, children age more

between each infection), but still takes several infections to

fall below 1/10 of the initial proportion. The presentation of

different symptoms was estimated to be modified by age,

with the proportion of cases presenting with severe anaemia

declining from 55% (95% CI: 49–62) at birth to 21% (18–25)

at age 10 years (figure 3b). The proportion of cases presenting

with cerebral malaria increased from 2% (0.5–4) at birth to
14% (11–16) by age 10 years. The proportion of cases present-

ing with respiratory distress was approximately constant after

the first year of life at 10%, consistent with previous analyses of

these data, which found that the variable most closely associ-

ated with respiratory distress was travel time to hospital [4].

As expected, among children admitted with severe malaria,

the case fatality ratio increased with the number of syndromes

present and was higher for cases of cerebral malaria than for

cases of severe malarial anaemia (figure 3c). The combination

of age-related symptoms and symptom-related mortality

gives an overall case fatality ratio of the fitted model between

6% and 7%, increasing gradually with age, although there is

some indication that the fitted value underestimates the case

fatality ratio at older ages (figure 3d ). As shown in electronic

supplementary material, figure S3, the assumption that the

occurrence of each symptom depends only on age may not

be valid as there were some differences in symptoms seen

between two areas of differing transmission intensity.
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In the fitted mathematical model, the incidence of severe

malaria increases with parasite prevalence, reaching a plateau

when the prevalence in 2–10-year-olds is approximately 50%

(figure 4). A slight decrease in incidence at very high preva-

lence was estimated but the uncertainty means that a

continuing plateau or slight increase cannot be ruled out.

Figure 5 shows the model-predicted age patterns of parasite

prevalence, incidence of clinical malaria and incidence of severe

malaria. As has previously been described [8], the model pre-

dicts a more rapid acquisition of immunity to severe malaria,

followed by development of immunity to clinical malaria and

finally in older children/adults to parasitaemia.
4. Discussion
Our analysis demonstrates that variations in patterns of severe

malaria with age and transmission intensity can be explained

by exposure- and age-driven acquisition of immunity, which

determine the incidence of severe malaria, coupled with

age-dependent physiological changes, which determine the

dominant clinical syndrome of severe malaria. In accordance

with previous studies [11,31], our analysis shows an increase

in immunity with cumulative exposure. However, by includ-

ing multiple syndromes and fitting a model across multiple

transmission intensities simultaneously we estimate a more

gradual acquisition of immunity to severe disease than pre-

viously suggested. While the overall risk of severe disease

varies with force of infection, we were able to explain patterns
of severe disease syndromes using a model of a solely physio-

logical, age-dependent process. In particular, the proportion of

the first few infections that lead to severe disease is highly

dependent on the EIR (figure 3a). In a high-transmission set-

ting, the first 30 infections are experienced very rapidly, and

each individual infection has a low probability of progressing

to severe disease episodes as initially infants are protected by

maternal immunity, and then immunity is acquired rapidly.

In a lower-transmission setting (e.g. EIR ¼ 2), infections are

experienced more slowly, and therefore maternal immunity
is less important, but age-related gains in immune system com-

petence decrease the proportion of infections that result in

severe malaria. This interaction between acquisition of immu-

nity to severe disease and age is a complex dynamic process,

and our model provides a mechanism for investigating how

disease patterns may change as transmission reduces.

In addition to the dynamics of severe disease overall, we

have modelled the effect of age on symptoms. The proportion

of severe cases presenting with severe malarial anaemia is esti-

mated to decline steadily with age, whereas the proportion of

cases presenting with cerebral malaria increases, and the

proportion of cases presenting with respiratory distress was

estimated to be independent of age. These observations

suggest that the observed variation in severe disease presen-

tation with age across a wide range of transmission settings

may be driven by a combination of variation in the rate of

acquisition of immunity to severe disease per se with exposure

and a declining proportion of severe cases developing severe

malarial anaemia with age. The increased proportion of

severe cases developing cerebral malaria with increasing age,

although real, is likely to have a smaller effect on the overall

pattern of disease. The balance between acquired immunity

and exposure results in an increasing incidence of severe

malaria with increasing EIR, which appears to tail off slightly

at very high EIR, as suggested by Snow et al. [3]. This combined

modelling approach also allows us to show the shift in the

burden of parasitaemia, clinical disease and severe disease

with age in different transmission settings, as discussed by

Marsh & Kinyanjui [40] and Langhorne et al. [2], showing the

different age shifts in each type of infection (figure 5).

There are, of course, limitations to the use of hospital

admission data for studies of severe illness. First, whether

people with severe malaria come to the hospital at all, and

how severely ill they are when they arrive, will be affected by

access, both spatial and economic, and treatment-seeking be-

haviour [38]. Hospital data may thus not be representative of

patterns of disease in the community, and in particular, may

under-represent disease incidence and presentation in infants

and very young children who are less able to attract attention

to their illness [41,42]. Hospital data may also misrepresent

the true incidence of different disease syndromes. For example,

severe anaemia has a slower and less dramatic presentation

than cerebral malaria, which may be more likely to cause

death before effective treatment can be obtained, and this

may result in biased estimates of relationships with age and

exposure. In addition, the BCS, used to define cerebral malaria,

may underestimate the incidence of this syndrome in infants,

particularly below eight months of age, as they have not yet

fully developed the ability to localize pain [43].

Furthermore, previous or subsequent episodes of mild or

severe disease were not recorded for these cases. Ideally we

would test our model predictions in longitudinal studies

incorporating severe and uncomplicated malaria and

asymptomatic exposure into the model framework. However,

the resulting close monitoring and active case detection

of malaria are likely to result in prompt and effective

treatment of non-severe malaria such that severe malaria

becomes less likely.

It should also be stressed that the majority of these datacome

from a small number of sites within a small number of countries.

Studies such as this should be repeated in many other countries

across Africa before the model can be reliably used to predict the

patterns and absolute burden of severe malaria elsewhere.



0

0.05

0.10

0.15

pr
ob

ab
ili

ty
 d

en
si

ty

0 5 10 15 20
age (years)

(a)

0

0.1

0.2

0.3

0.4

0.5

pr
ob

ab
ili

ty
 d

en
si

ty

0 5 10 15 20
age (years)

severe malaria
clinical malaria

parasite prevalence

(b)
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Factors that could affect the patterns of severe disease include

nutritional status, socio-economic status, human and parasite

genetics and seasonality. Furthermore, health systems vary

widely across Africa, as does access to ACTs, which will affect

the incidence of severe disease [44].

There are also limitations to this modelling approach. We

have assumed that immunity to severe disease is acquired

as a direct consequence of exposure but do not consider the

biological mechanisms by which this immunity is acquired.

Strain-specific immunity is one mechanism that can reproduce

the observed relationship between age and disease risk

[45–47]. However, antibody- and T-cell-mediated immunity

to conserved antigens that is gradually acquired with exposure

could also reproduce these risk relationships. Moreover, age-

related changes in the predominant mechanisms of immunity

(e.g. the balance between humoral and cellular mechanisms

or between inflammatory and regulatory responses [48]) may

explain the age-dependent changes in the proportions of differ-

ent disease syndromes. Uncovering the biological mechanisms

conferring both susceptibility and resistance to severe disease

will aid future vaccine design as well as improve our under-

standing of the immune correlates of protection.

Given the progressive declines in transmission that have

been observed in many settings in the last decade, it is likely

that both the incidence and pattern of severe disease will con-

tinue to change in the coming years. If transmission continues

to decline, reduced acquisition of immunity in young children

coupled with gradual loss of immunity in older children and

adults will leave a larger proportion of the population suscep-

tible to severe disease. Although the absolute risk of severe
disease—at any age—is expected to decline and remain low

as long as transmission continues to decline, a very large at-

risk population will emerge that is highly vulnerable should

malaria transmission start to rise again. This at-risk population

will include a large proportion of older children and adults,

and this analysis suggests that severe disease is likely to present

as cerebral malaria, with an associated high case fatality ratio.

Careful monitoring of the decline in immunity associated with

reduced transmission will therefore be needed to ensure

rebound epidemics of severe and fatal malaria are avoided.
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