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Abstract 

Genetically-encoded Förster Resonance Energy Transfer (FRET)-based sensors were 

developed that display a large ratiometric change upon Zn2+ binding, have affinities that 

span the pico- to nanomolar range, and can readily be targeted to subcellular organelles. 

Using this sensor toolbox we show that cytosolic Zn2+ is buffered at 400 pM in pancreatic 

β-cells, while substantially higher Zn2+ concentrations are found in insulin-containing 

secretory vesicles. 
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Zinc plays a critical role in many fundamental cellular processes, acting as a 

Lewis acid catalyst in numerous enzymes, having a structural function in DNA binding 

proteins and acting as a modulator in neurotransmission1-3. At the same time, low 

nanomolar concentrations of free Zn2+ can be cytotoxic, rendering zinc homeostasis a 

delicate balance that is not well understood.  While synthetic fluorescent sensors have 

been used to monitor zinc fluctuations in live cells2,4, they typically lack control over 

subcellular localization and often have insufficient affinity to detect the extremely low 

free Zn2+ concentrations. Genetically encoded FRET-based sensor proteins can be used to 

overcome these limitations5,6, but their application for imaging transition metal 

homeostasis has thus far remained underdeveloped.  

The FRET sensors reported here are based on a previously developed  Zn2+ sensor 

that showed high Zn2+ affinity (Kd = 140 fM), but suffered from a small change in 

emission ratio (15%)7. This CALWY sensor consists of two metal binding domains 

(Atox1 and domain 4 of ATP7B (WD4)) linked via a long flexible linker, with each 

domain providing two cysteines to form a single tetrahedral zinc binding pocket (Figure 

1a). First, we replaced the ECFP and EYFP domains by cerulean and citrine to improve 

brightness and reduce pH sensitivity of the fluorophores, respectively. Next, the 

ratiometric response was improved considerably by introduction of mutations (S208F, 

V224L) on the surface of both fluorescent domains that are known to promote 

intramolecular complex formation (Figure 1a-d)8. As a result, this sensor (eCALWY-1) 

displays efficient energy transfer in the absence of Zn2+, but shows a large, 2.4-fold 

decrease in emission ratio upon Zn2+ binding (Figure 1d,e).  The Zn2+ affinity of 

eCALWY-1 (Kd=2 pM at pH=7.1) was only 10-fold lower than that of the CALWY 
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sensor, showing that the interaction between the fluorescent domains was easily disrupted 

by zinc binding. Mutation of one of the zinc-binding cysteines within the WD4 domain 

(C416S) attenuated the Zn2+ affinity 300-fold, yielding eCALWY-4 with a Kd of 600 pM. 

Importantly, this mutation also abrogated the binding of Cu+, which was shown to induce 

an interaction between the metal binding domains in eCALWY-1 (Supporting Figure S4). 

Further fine-tuning of the Zn2+ affinity was achieved by shortening the linker between the 

metal binding domains, yielding a series of sensors (eCALWY1-6) that span the 

picomolar to nanomolar ranges and display at least a 2-fold ratiometric change upon zinc 

binding (Figure 1e).  

Next we tested the performance of the eCALWY sensors to monitor free cytosolic 

Zn2+ levels using pancreatic β-cells (INS-1(832/13)), a cell-type known to contain high 

zinc levels in granules specialized in insulin storage9,10. All sensors displayed 

homogeneous expression throughout the cytosol of the cells. A large increase in emission 

ratio was observed in cells expressing eCALWY-1 after addition of the membrane 

permeable zinc chelator N,N,N’,N’-tetrakis-(2-pyridylmethyl)-ethylenediamine (TPEN), 

indicative of a decrease in cytosolic zinc (Figure 2a,b). Subsequent perifusion with 5 μM 

of the zinc ionophore pyrithione had little effect, but together with 100 μM ZnCl2 the 

ratio rapidly returned to the starting level. Addition of TPEN or Zn2+/pyrithione did not 

affect the emission ratio of a non-binding sensor variant (Supporting Figure S5). 

Moreover, a consistent trend was observed for the emission ratio at the start of the 

experiment, changing from a fully saturated level for eCALWY-1 to nearly unsaturated 

for eCALWY-6 (Figure 2b-g). The sensor occupancy was calculated using equation (1), 

in which Rmax and Rmin are the steady-state ratios obtained after TPEN and zinc/pyrithione 
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addition, respectively, and Rstart is the ratio at the start of the experiment. A plot of the 

sensor occupancy as a function of its Kd shows a clear sigmoidal shape, that is best 

described by assuming a free Zn2+ concentration of 400 pM (Figure 2h). Interestingly, 

repeating these experiments in HEK293 cells showed very similar responses (Supporting 

Figures S7-8, Video S1), suggesting that the 400 pM level may be invariant among 

different cell lines. In fact, similar values have been reported using synthetic dyes in more 

indirect measurements on cell populations with Fluozin-3 in human colon cancer HT29 

(~600pM)11 and in fibroblastic L(TK)- cells with Zinbo-5 (~1000 pM)12. Previous studies 

that tried to estimate free cytosolic Zn2+ concentrations using protein-based sensors did 

not use internal calibration and/or were done outside the sensors’ detection range, 

resulting in either very high (180 nM) or very low (5 pM) numbers5,6. 

  %100
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The fact that the occupancies of the entire sensor series can be described by a 

single concentration of free Zn2+ is important, because it implies that the intracellular free 

Zn2+ concentration is strongly buffered and not perturbed significantly by the presence of 

low μM concentrations of the sensors. To further test this buffering capacity, INS-

1(832/13) β-cells expressing eCALWY-4 were cultured overnight in media containing 

either 100 μM EDTA or a Zn2+-buffer providing 5 μM of free Zn2+. Cells that were 

cultured in the presence of 100 μM EDTA showed free cytosolic Zn2+ concentrations that 

were similar to cells grown in normal medium, but nanomolar or higher free Zn2+ levels 

were observed in cells cultured in the presence of excess Zn2+ (Figure 2i-j). Strikingly, 

when the latter cells were perifused with buffer containing 100 μM EDTA, cytosolic zinc 
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levels rapidly decreased to ~400 pM, showing that these cells efficiently restore their 

intracellular Zn2+ levels once excess zinc is removed (Figure 2i-j). No significant 

decrease in cytosolic zinc was observed for normally cultured cells after perifusion with 

100 μM EDTA.  

To verify that the cytosolic environment does not affect the sensor Kd, we 

calibrated the eCALWY-4 sensor in situ by perifusion of cells treated with α-toxin using 

buffers containing different free zinc concentrations. The in situ determined Kd confirmed 

that the intracellular conditions are only weakly affecting the zinc affinity (Supporting 

Figure S9). Specificity over biologically relevant Ca2+ levels could be demonstrated by 

depolarizing INS-1(832/13) cells with KCl to elicit Ca2+ influx. Despite a clear increase 

in cytosolic Ca2+ to 1 μM, no change in the emission was observed in cells expressing 

eCALWY-5 (Supporting Figure S10).  

Since control over intracellular localization is a key advantage of genetically 

encoded sensors, we next targeted the eCALWY sensors to the insulin granules of INS-

1(832/13) cells via fusion to the C-terminus of vesicle targeted membrane protein 2 

(VAMP2)13. As we anticipated higher free zinc concentrations in these vesicles9, we also 

employed a low affinity Zn2+-sensor (eZinCh; Kd=1μM at pH=7.1 and 250 μM at 

pH=6.0, Supporting Figure S11). eZinCh displays a 4-fold increase in emission ratio 

upon zinc binding and is similar to the previously reported ZinCh14, but contains cerulean 

and citrine as fluorescent domains. Colocalization studies with a granule-localised 

neuropeptideY-mCherry fusion protein showed that VAMP2-eCALWY-1, VAMP2-

eCALWY-6 and VAMP2-eZinCh were indeed exclusively localized in insulin-containing 

granules (Figure 3a; Supporting Figure S12). The low emission ratios observed for the 
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eCALWY variants prior to stimulation suggests saturation with Zn2+ (Figure 3b), while 

eZinCh appears to be empty. No changes in emission ratio could be induced using either 

TPEN or Zn2+/pyrithione for VAMP2-eCALWY-1 and VAMP2-eZinCh, probably 

reflecting an inability of these agents to induce sufficient changes in the intravesicular 

free Zn2+ concentration (Supporting Figure S13). However, robust and reversible 

ratiometric changes were observed for VAMP2-eZinCh upon addition of monensin 

(Figure 3b; supplementary video S2). This Na+/H+ exchanger increases the pH of 

granules from ~ pH 6.0 to pH 7.1, simultaneously increasing the affinity of eZinCh and 

inducing Zn2+ release from the insulin-Zn2+ complex.  Changes due to the pH sensitivity 

of the fluorescent domains could be excluded since monensin addition did not induce 

similar ratiometric changes for a non-binding variant of eZinCh (eZinCh-NB) or any of 

the eCALWY variants. These results imply that the VAMP2-eCALWY sensors are 

saturated with Zn2+ under normal conditions (Kd=0.5 μM at pH 6.0 for VAMP2-

eCALWY-6, Supporting Figure S14) and that VAMP2-eZinCh is mostly Zn2+-free, thus 

suggesting that the free Zn2+ concentration in these vesicles resides between 1 and 100 

μM. 

In conclusion, we have developed a new generation of Zn2+ probes that can be 

used to image low concentrations of free Zn2+ dynamically and in real time in living cells. 

Cytosolic levels of free Zn2+ were found to be buffered at ~400 pM, which coincides with 

the Zn2+-buffering capacity of metallothioneins15. Intriguingly, cytosolic Zn2+ 

concentrations are maintained at a level that is sufficient to fully saturate native Zn2+ 

proteins (which typically show Kd’s of 1-10 pM), but approximately 10-fold below the 

low nM concentrations that have been reported to inhibit several cytosolic proteins3. We 
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also demonstrate that these probes can be targeted to subcellular organelles, including 

secretory granules. This ability to study Zn2+ homeostasis on a (sub)cellular level in real 

time provides exciting new opportunities to enhance our understanding of the role of zinc 

homeostasis in health and disease.  
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Figure legends 
 
Figure 1: Design and properties of eCALWY-1, a genetically-encoded Zn2+ sensor 

based on conformational switching. Schematic representation of the CALWY (a) and 

eCALWY-1 (b) sensor design. ATOX1 and the fourth domain of ATP7B (WD4) are used 

as metal binding domains. The CALWY sensor suffers from a small FRET change due 

the presence of a distribution of conformations in the Zn2+-free state, whose average 

energy transfer efficiency is only slightly higher than the amount of energy transfer in the 

Zn2+-bound state. Emission spectra of CALWY (c) and eCALWY-1 (d) before (black 

line) and after (red line) addition of 0.9 mM Zn2+ in 1 mM HEDTA (c) or EGTA (d). 

Zn2+ titrations of the eCALWY variants (e), showing the ratio of citrine and cerulean 

emission (R527/475) as a function of Zn2+ concentration using 420 nm excitation. The 

solid lines depict fits assuming single binding events and corresponding Kd’s are listed 

for each variant.  Measurements were performed using ~ 1 µM protein in 150 mM Hepes, 

100 mM NaCl, 10% (v/v) glycerol, 1 mM DTT pH 7.1 at 20 ºC. Free zinc concentrations 

from the picomolar to the nanomolar range were obtained by using different chelators 

such as EDTA as buffering system (Supporting Table S2).  

 

 

Figure 2: Determination of cytosolic free Zn2+ concentration in INS-1(832/13) cells 

using a toolbox of eCALWY variants. (a) False colored spinning disc confocal 

microscopy images of INS-1(832/13) cells expressing eCALWY-4 after 60, 380, and 440 

s of the experiment described in (b-f). (b-f) Responses of single INS-1(832/13) cells 

expressing the different eCALWY variants to perifusion with Krebs-Hepes/Bicarbonate 

(KB) buffer containing 50 μM TPEN  (1),  5 μM pyrithione (2) or 5 μM pyrithione/100 
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μM Zn2+ (3) using epifluorescence microscopy. KB comprised of 140 mM NaCl, 3.6 mM 

KCl, 0.5 mM NaH2PO4, 0.5 mM MgSO4, 1.5 mM CaCl2, 10 mM Hepes, 2 mM NaHCO3 

and 3 mM glucose, pH 7.4. (h) Sensor occupancy in INS-1(832/13) cells as a function of 

the sensor Kd for different eCALWY variants as determined from the traces in 

Supplementary Figure S7 using equation (1); error bars indicate the standard deviation. 

The dashed lines depict the expected responses assuming free zinc concentrations of 50, 

100, 200, 400 (solid line), 800, 1600 and 3200 pM, respectively. (i) Effect of culturing 

conditions on the ratiometric response of eCALWY-4 expressed in INS-1(832/13) cells. 

Cells were cultured deprived of zinc (100 μM EDTA), under normal conditions, or in 

excess zinc (5 μM of buffered Zn2+) for 20 h. During imaging, cells were perifused with 

KB-plus (KBP), to which 100 μM EDTA (1), 50 μM TPEN (2), or 5 μM pyrithione/100 

μM ZnCl2 was added. KBP is similar to KB, but contains 25 mM NaHCO3 instead of 2 

mM to prevent cytosolic pH changes from affecting fluorescence. (j) Bar diagram 

displaying the occupancy of eCALWY-4 in the experiments depicted above (Figure 2i) at 

the start of perifusion with KB that mimics culturing conditions, and after 10 minutes of 

perifusion with KB containing 100 μM EDTA. Error bars indicate the standard deviation. 

 

Figure 3: Subcellular targeting of Zn2+ probes to insulin storing granules. (a) CLSM 

images of INS-1(832/13) cells co-transfected with VAMP2-eCALWY-1 and 

neuropeptideY-mCherry. The VAMP2-eCALWY-1 emission was obtained using 

excitation at 440 nm, while excitation at 595 nm was used to image NPY-mCherry. The 

scale bar represents 10 μm. (b) Ratiometric response of INS-1(832/13) cells expressing 

different VAMP2-eCALWY variants, VAMP2-eZinCh and VAMP2-eZinCh-NB to 

perifusion with 10 μM monensin (1), followed by KBP buffer (2). 
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Note: Supplementary information is available. 
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