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ABSTRACT: Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) 

provides localized information about the molecular content of a tissue sample. To derive reliable 

conclusions about MSI data, it is necessary to implement appropriate processing steps in order to 

compare peak intensities across the different pixels comprising the image. Here, we review commonly 

used normalization methods, and propose a rational data processing strategy, for robust evaluation and 

modeling of MSI data. The approach includes newly developed heuristic methods for selecting 

biologically relevant peaks and pixels to reduce the size of a data set and remove the influence of the 

applied MALDI matrix. The methods are demonstrated on a MALDI MSI data set of a sagittal section 

of rat brain (4750 bins, m/z = 50-1000, 111 × 185 pixels) and the proposed preferred normalization 

method uses the median intensity of selected peaks, which were determined to be independent of the 

MALDI matrix. This was found to effectively compensate for a range of known limitations associated 

with the MALDI process and irregularities in MS image sampling routines. This new approach is 

relevant for processing of all MALDI MSI data sets, and thus likely to have impact in biomarker 

profiling, preclinical drug distribution studies, and studies addressing underlying molecular mechanisms 

of tissue pathology. 

 

KEYWORDS: mass spectrometry imaging, processing, normalization, peak selection, total ion current, 
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INTRODUCTION 

Molecular profiling methods such as mass spectrometry imaging (MSI) can be used to study 

topographic distributions of molecules. MSI generates a series of mass spectra, which are obtained from 

sequential locations forming a grid, covering the topology of a tissue slice.
1-5

 Thus, these high-

dimensional data can be interpreted as a full mass spectrum at a given spatial point (pixel), providing a 

molecular fingerprint for different spatially resolved regions, or as a map of a given ion abundance over 

a two-dimensional set of pixels, providing localized information for different biomolecules. Such 

localized molecular information provides the opportunity to directly investigate the link between tissue 

structure and function. 

Direct analysis of tissue with the soft ionization technique of matrix-assisted laser 

desorption/ionization (MALDI) mass spectrometry (MS) has been used to study the distribution of 

proteins,
1, 6-8

 lipids,
9-10

 metabolites
11-12

 and drugs,
13-14

 and has been performed on a large number of 

sample types,
1, 15-16

 such as plants,
12

 bacterial colonies,
17

 drug-treated tissue,
13

 and human surgical 

specimens such as cancerous tissue in brain, breast and ovaries.
6, 8, 18

 Whole animals sections have been 

imaged as part of preclinical drug evaluations.
14

 Data are typically processed and evaluated with 

standard MSI analysis software, such as BIOMAP
19

, ClinProTools
20

 or other such packages.
21

 The 

multivariate nature of MALDI MSI data sets has been addressed using approaches such as principal 

component analysis (PCA), which has been performed on selected MSI pixels
6, 22

 or the complete 

sample.
23

  

To retain maximum biological information, it is preferable to use all available pixels and m/z peaks. 

However, a side effect of the MALDI process is that the applied matrix is detected as peaks that 

interfere with the spectral profile, especially for m/z regions <1000. Evaluating the images of a priori 

determined m/z values is a commonly used approach, but this precludes identification of novel 

biomarkers for a given tissue type or lesion. Here, we propose a robust biological interpretation of these 

data by including all data, except pixels that are outside the sample border and m/z peaks that are 
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associated with the applied matrix. 

In addition to biological variation, several instrumental and experimental influences introduce 

systematic and random variations in signal intensity of MSI data sets. One commonly observed effect is 

a varying level of spectral response intensity, which affects image intensities. This is mainly caused by 

the inherent limitations of the MALDI technique and sample preparation protocols, such as uneven 

MALDI matrix coating, differential ionization efficiencies and crystal inhomogeneity.
16, 24-25

 

Normalization is commonly applied to address this issue, in order to transform measured intensities to a 

comparable scale, without altering the biological information. The normalization techniques applied to 

MSI data sets are often limited to basic procedures implemented in the commonly used software, which 

force all pixels to have equal total ion current (TIC)
24

, possibly excluding a high intensity signal, or 

normalization through scaling peak intensities by a factor calculated from a reference molecule, such as 

a matrix signal.
12

 These normalization techniques rely on a set of assumptions that may not be fulfilled, 

for example the fact that molecular composition changes in different tissues is not generally taken into 

account. Recently, normalization procedures that use the level of noise to normalize the signal intensity 

were reported for protein species, and the benefits and necessity of data normalization were 

impressively illustrated.
26

 Unfortunately, the suggested methods may be difficult to implement if 

apparent spectral noise is relatively low or absent, for example, in the analysis of phospholipids using a 

Qstar instrument platform (which may be matrix and solvent system dependent), and in cases where 

data are binned or where many signals are found in the m/z-range, reducing the opportunity for selecting 

m/z-variables representing noise only, and no molecular signal.  

Although it is clear that processing these highly complex imaging data will greatly influence the 

results of subsequent analyses,
24, 27

 there is still little understanding of the optimal approach. For 

example, the presence of heteroscedastic noise can adversely affect standard statistical and pattern 

recognition tools, however, variance stabilizing transformations are not commonly employed in the 

current MSI literature. Here, we propose a rationalized data processing strategy that includes heuristic 
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methods for selecting biologically relevant peaks and pixels to reduce the size and complexity of MSI 

data sets. Different normalization techniques were compared, and the underlying assumptions are 

discussed. An intuitive normalization based on the median pixel intensity is suggested, and the final 

processing scheme is demonstrated with a formalin fixed sagittal rat brain section, acquired with spatial 

resolution 100 m × 100 m and with m/z range of 50-1000. 
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MATERIALS AND METHODS 

MALDI MS imaging of formalin fixed rat brain was recently described.
28

 Briefly, a whole rat brain 

was fixed for 72 hrs, frozen to -20°C and bisected along the midline. Sagittal sections were taken at 12 

µm using a Leica cryostat and thaw mounted onto stainless steel MALDI target plates. Plates were 

coated in 5 mg/mL Alpha-cyano-4-hydroxy cinnamic acid (CHCA) matrix material, prepared in 80% 

methanol (0.1% trifluoracetic acid) using an automated matrix deposition system (TM sprayer from 

HTX Technologies, NC, USA). Plates were sprayed (8 cycle repeats) at 150 ºC, 10 psi, a flow rate of 

0.25 mL/min with a stage velocity of 500 mm/min. Mass spectrometry imaging was carried out on a 

QqTOF (Qstar Elite) mass spectrometer (Applied Biosystems, Foster City, USA), operated in positive 

ion reflectron mode. An Nd:YAG (355 nm) laser was operated at 20% available power (2.1 J) with a 

repetition rate of 500 Hz. Sequential spectra were acquired at a resolution of 100 m
2
 using the 

`dynamic pixel' setting (oMALDI, 5.1). 

The data from this experiment were imported into MATLAB (Natick, USA) with a bin size of m/z = 

0.2, and “unfolded” to form an array where each row represents a pixel and the columns represent the 

different m/z bins. The effects of the different normalization approaches were evaluated by showing 

single m/z images, and by evaluating the principal component analysis (PCA) scores for each pixel. Full 

details of the materials used, sample preparation and mass spectrometry technique are given in the 

Supporting Information. The data preprocessing and multivariate statistical methodology are also given 

there.  
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RESULTS AND DISCUSSION 

Mass spectra were acquired for the range m/z 50-1000 at 100 m
2
, thus the initial data set consisted of 

integrated signal intensities for 20535 pixels in 4750 bins. We describe an evaluation of predate 

processing steps for efficient handling and interpretation of this large and complex data set.  

 

Peak selection  

Peak selection decreases the number of non-informative peaks, reduces the data set size and 

subsequent modeling times, and has been shown to be necessary to obtaining useful multivariate models 

for MSI data.
18, 29

 However, the quality and quantity of spectral information varies between pixels, and 

thus a simple criterion for rejection of noisy variables such as signal-to-noise ratio is not directly 

applicable. For this data set we consecutively apply two pragmatic methods, based on the localization of 

matrix peak signals to remove matrix-related peaks, and the presence of anatomical structure to remove 

non-anatomically distributed peaks, which resulted in a systematic peak selection, retaining ~10% of the 

original data.  

 

Approach A for peak selection: the use of matrix peaks to remove non-biological variables 

Preliminary data analysis demonstrated that some peaks were more prominent in the region outside 

the tissue sample than within the sample boundaries, a significant number of which arise from the 

matrix compound. These peaks, although possibly informative, do not directly convey information on 

biological localization of endogenous molecules; hence these peaks were removed, based on the 

correlation to the matrix-related peaks (described in the Supporting Information). Ions that had a 

negative correlation with matrix-related peak intensities were retained. It is clear from examples in the 

different correlation regions, shown in Figure 1 A, that positive correlations indeed correspond to 

variables with a higher signal intensity outside the tissue region than within the tissue, and are therefore 

unlikely to be biologically relevant (e.g. m/z 212.0, [CHCA + Na]
+
), whereas peaks with a negative 
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overall correlation (e.g. m/z 769.4), display an anatomically relevant distribution. Interestingly, this 

analysis increases the current understanding of the contribution from the MALDI matrix solution to the 

acquired MSI spectra. Typically, a short list of matrix peaks would be identified by researchers and 

removed prior to analysis, yet in this study 3526 out of 4750 bins were found to be correlated with the 

matrix distribution patterns. This shows that many more m/z values in the data set may be associated 

with the matrix than are usually considered. It should be noted that some peaks removed with this 

approach could be from molecules that were delocalized as a result of the matrix application process (in 

particular if no signal was retained within the sample boundary). Exclusion of these peaks seems 

reasonable, because they would not convey information on the localization of the molecule in tissue 

anymore, however, identification of this phenomenon and the corresponding ions would be important if 

one was specifically interested in these molecules or would like to optimize the sample preparation 

process. Manual inclusion of peaks is, of course, possible, but the severe delocalization may give results 

that are difficult to interpret and potentially less biologically meaningful. 

 

Approach B for peak selection: using image anatomy to find relevant variables  

The peak selection resulting from approach A could be improved for this data set, since noisy 

variables were still included in the resulting selection. Although many multivariate modeling 

approaches are able to cope with noisy variables, the model strength decreases with a large number of 

non-informative variables. For univariate methods, the effects of noise can be even more problematic. 

Therefore, identification of the variables retained in the selection of approach A that lack any relation to 

anatomy was proposed as a second filter. An indicator of image-related intensity distribution of the 

variable was defined as the percentage of variance explained (VE) in the first singular value of a 

singular value decomposition made for each m/z image. If high intensity regions for an m/z image are 

randomly distributed, the variance explained by the first singular value will be low, e.g. for m/z 407.2, 

see Figure 1 B. On the other hand, if there is any structure in the image, more variance is modeled, as is 
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shown for m/z 873.6 in Figure 1 B (more details can be found in the Supporting Information). 

A “VE-threshold” was developed as a pragmatic and user-friendly cut-off for the variable selection 

approach B, which is a heuristic parameter based on pareto-efficiency considerations, calculated as the 

sum of all explained variances divided by the number of variables (which was 1224, as we only evaluate 

the variables that were selected with approach A). Variables for which the explained variance in the first 

singular value was higher than this VE-threshold of 24.3%, were retained and colored green in Figure 1 

B. It should be noted that the VE-threshold percentage will vary for different data sets, as the levels of 

variance explained and number of variables change. A high level of explained variance would also be 

obtained for m/z images that are high in the surrounding and low in the sample region, such as the 

matrix peaks. Therefore, it is necessary to conduct variable selection with approach A prior to peak 

selection with approach B. The research question will determine whether only peak selection approach 

A or both A and B is more appropriate, depending on the relevance of biologically real peaks without 

localization; additionally, it is good practice for the user to inspect the images of peaks that were 

removed as a quality control step. 
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Figure 1. Peak selection process of the sagittal rat brain MALDI MSI data. (A) The average 

correlation of each variable with the 10 selected matrix related peaks (Figure S-1 A) is shown. Retained 

variables are shown in orange. Images of 2 selected variables demonstrate that positive correlations 

correspond to higher intensity outside the sample (m/z 212.0) and negative correlations show more 

relevance to the biological tissue (m/z 769.4). (B) The variance explained (VE) by the first singular 

value of a singular value decomposition of the image for each variable is plotted. Variables with lower 

levels of explained variance (e.g. m/z 407.2) conveyed less anatomical relevance. The VE-threshold was 

calculated as 24.3%, and values above this VE-threshold are retained (shown in green, e.g. m/z 873.6). 
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Pixel selection 

For image interpretation and statistical analyses, it is beneficial to discard pixels that clearly do not 

arise from sample regions, and we based this selection on the peak intensity profiles of pixels. A fast 

method to select the sample pixels was found based on the ratio of the total ion current (TIC) of the 

informative peaks (selected after variable selection with approaches A and B, 564 variables) versus the 

TIC of all original 4750 variables. The TIC is the sum of the peak intensity values for a pixel, and the 

ratio of the TICs based on the full and selected peak lists is shown for all pixels in Figure 2 A. It is 

observed that pixels with a higher TIC from selected variables (TIC564) compared to the total TIC 

(TIC4750), colored red, correspond to sample pixels. Application of a manually chosen threshold 

log10(TIC564/TIC4750) > -0.5 results in the selection of the pixels colored green in Figure 2 B. To create a 

fully continuous set of pixels, pixels were included in the final data set if 6 or more pixels in the 

enclosed 3 × 3 pixel region had been selected with the TIC-ratio threshold. The final pixel selection 

(13176 out of 20535) is shown in Figure 2 C. 

 The sizes of the data set after the different processing steps are listed in Table S-1. The reduction of 

data set size decreases computational cost and increases model quality and therefore interpretability.
30

 

We advise users to investigate the signal outside the selected sample region to detect delocalization of 

signal and to evaluate the matrix application step, prior to extensive data processing and modeling 

efforts, to ensure data quality. Some instruments allow for a non-rectangular, closer outline of the tissue 

section to be imaged, and although this may be time-saving, it potentially endangers the opportunity to 

investigate distant pixels to determine the matrix-related peaks and perform unbiased quality control. 
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Figure 2. Pixel selection based on TIC. (A) A relatively high value of the total ion current (TIC) from 

the 564 selected variables (TIC564) versus the TIC from all 4750 variables (TIC4750) corresponds to 

pixels from the sample, as shown in this image colored with log10(TIC564/TIC4750). (B) A threshold of 

log10(TIC564/TIC4750) > -0.5 results in the selection of the green-colored pixels. (C) The final continuous 

pixel selection. 
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Normalization  

Normalization is a procedure that adjusts the individual mass spectra with the goal of making pixels in 

an MSI image comparable: a correction is made for an experimental bias that would result in higher (or 

lower) signal intensities in some pixels than in others. Normalization is necessary due to factors such as 

matrix heterogeneity and application, differential ionization efficiency, ion suppression due to varying 

sample complexity and composition, instrumental variation and varying levels of analyte solubility and 

extraction from different tissue regions.
10, 16, 24-26

 Normalization correction should address analytical and 

technical variation, rather than biological variation of interest, and is widely accepted to be necessary 

for analysis of MSI data, especially to correct for differences in matrix solution coverage and efficiency 

of analyte incorporation in MALDI.
31

 Commonly used methods of normalization in mass spectrometry 

and their influence on the identification of biomarkers in a non-image setting have been described 

elsewhere.
32-35

 

In the present study, seven methods of normalizing the spectral intensities of each pixel were 

evaluated. The factor by which the peak intensities of each individual pixel would be divided for each of 

these normalization methods is shown in Figure 3, where „informative peaks‟ refers to peaks that 

remained after variable selection with approaches A and B. Histogram matching is the only method that 

does not involve the division by a scalar normalization factor, and could therefore not be displayed. It is 

clear from Figure 3 that the different normalization approaches deliver drastically different results, and 

subsequent data analysis is greatly dependent on an appropriate choice of normalization method. The 

assumptions underlying each of the normalization methods are fully discussed in the Supporting 

Information, and are summarized here. 
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Figure 3. Normalization of MALDI MSI data of the sagittal rat brain section. The color scale for 

each image represents the factor by which the spectrum in an individual pixel would be divided for six 

normalization methods. Red represents the division by a higher factor and blue a lower factor. 
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1. Normalization to the intensity of a reference molecule is one method of normalizing the pixels.
12

 

Here, an m/z which is representative of a homogeneously distributed endogenous species is selected, 

such that normalization corrects for analytical and not biological variation. In this study, we normalized 

to m/z 184.0, which is the phosphocholine head group, and is expected to be relatively homogeneously 

distributed in this tissue type, which is reflected in the peak intensities that are displayed in Figure 3. 

Normalization to a reference molecule in MALDI remains a challenging task: variations in 

concentration, relative detection efficiency and adduct formation complicate the use of endogenous 

molecules.
36

 This method would be more appropriate if an external, labeled calibration molecule was 

used as an internal standard,
16

 but this is complicated by practical issues such as choice of compound 

and deposition method and may require extensive optimization. 

 

2. Normalization to the TIC of “matrix-related peaks” is a correction for uneven matrix coating, 

which is performed by dividing peak intensities in a pixel by the sum of the peak intensities of all 

variables that were deleted with approach A for peak selection (the 3526 peaks that correlated with the 

intensities of the matrix ions). Normalization to matrix peaks is based on the assumption that more 

analyte is measured if there is more matrix signal present, as it is the matrix that co-crystallizes with the 

analytes. However, discrepancies in this relation are highlighted in Figure S-2, which shows that a false 

adjustment of the peak intensities for pixels could be the result of normalization to the TIC of matrix-

related peaks.  

These findings concur with published studies reporting that the degree of analyte incorporation in the 

matrix may vary, and that different analytes can be heterogeneously incorporated within the matrix 

crystals,
3, 31

 which would cause this normalization method to be inappropriate.  

 

3. Normalization to the TIC of all data involves the division of peak intensities in a pixel by the 

sum of all original 4750 variables, and is identical to normalization to the mean signal intensity (except 
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for a uniform scaling factor related to the number of variables). Although this is the most commonly 

used normalization method,
6-8, 10, 22, 25-26, 30

 the problems observed for normalization to matrix-related 

peaks persist in this approach: high matrix concentration without co-crystallized analyte, crystal 

inhomogeneity and differential ionization efficiency will negatively affect the accuracy of this 

normalization. Because of these reasons, normalization to the TIC of all 4750 variables can create a 

false difference between compared pixels, see Figure S-2 and Figure 5 C. As with the normalization to 

matrix-related peaks, a “halo” effect is also observed for the TIC of all data, where a higher TIC is 

observed around the edge of the sample (see Figure 3).
30

 This information should, in fact, be used 

during quality control.  

 

4. Normalization to the TIC of “informative peaks” is the division of peak intensities in a pixel 

by the sum of the 564 peak intensities after variable selection (the normalization factor is shown in 

Figure 3). Here, the rationale is that biological constituents might vary in concentration across different 

regions, but these will largely average out. The normalization based on informative peaks seems robust 

to the matrix-related issues discussed above.  

 It should be noted that different biological complexity, e.g. across different tissues, could 

negatively skew normalization to the TIC of informative peaks, as well as normalization to the TIC of 

all peaks. TIC-based normalization methods are also prone to the influence of a few high-intensity peaks 

(see also Figure 5 C),
26

 and low-quality (noisy) pixels are problematic. 

 

5. Probabilistic quotient normalization (PQN) is based on the median fold change of all peak 

intensities with respect to a reference spectrum (most commonly the median of the analyzed data).
37

 

This robust method may be less appropriate for normalization of MSI data, as is illustrated in Figure S-

3, where the distribution of fold changes (based on the 564 selected peaks) for six anatomical regions 

are shown based on their different spectral profiles. Although the grey matter areas of the hippocampus, 
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cerebral cortex and cerebellar cortex show roughly symmetrical, Gaussian fold change distributions, 

supporting the use of PQN, the corpus callosum, optic chiasm and cerebellar white matter show uneven 

distributions around the median fold change, with fold changes for e.g. the cerebellar white matter of up 

to 60 (see Figure S-3 C). This characteristic of different tissue composition, present in MSI data, is 

prohibitive for the application of PQN, which is based on the assumption that less than 50% of the 

variables change across the different spectra.  

 

6. Normalization by histogram matching is the process of converting the measured peak intensities 

to the values of the median spectrum, with respect to the rank order. Thus, the m/z variable with the 

highest intensity in a pixel is replaced with the highest value of the median spectrum, the second highest 

m/z variable is replaced with the second highest value in the median spectrum, etc.
35

 This is a very 

robust approach, based on rank orders rather than intensity values, but the disadvantage is that the 

potentially informative intensity values are discarded. Moreover, the different composition of tissues 

could result in different peak intensity distribution histograms, which would reduce the effectiveness of 

this normalization method. 

 

7. Normalization to the median intensity of the informative peaks is the division of peak 

intensities in a pixel by the median of the 564 peak intensities after variable selection (the normalization 

factor is shown in Figure 3). This is a compromise approach given the advantages and disadvantages of 

the methods listed so far: it does not assume constant molecular composition (as does PQN) or peak 

intensity distribution (as does histogram matching), it is not affected by differential co-crystallization 

(because only the selected peaks are included) and it is more robust to a few high-intensity peaks (unlike 

TIC-based normalizations, see also the comparison of normalization results for the simulated data set in 

Figure 5 C). Although the median intensity of the selected peaks is only an approximation to the 

normalization factor, and no theoretical basis can be given to further support this pragmatic 
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normalization method, it seems to be robust and is intended to be able to deal with most data sets.  

Normalization should make the ratio of non-differentially abundant molecular features equal to one, 

and this was assessed by evaluating box-plots showing the distribution of fold changes of the peak 

intensities with respect to the median spectra for three different anatomical regions, as shown in Figure 

4. After normalization to the median intensity of informative peaks, the fold changes are centered 

around one, indicating that this normalization method results in roughly similar spectral peak intensity 

distributions within each of the three anatomical regions (similar plots for normalization to TIC of 

informative peaks and histogram matching are shown in Figure S-4).  

It should be noted that normalization to the median of informative peaks does not require comparable 

spectra for the different pixels, as PQN does, and thus the highly different spectral profiles of e.g. the 

optic chiasm and the hippocampus could now be more easily compared, with a reduced normalization 

bias. Erroneous spectra, e.g. without any signal or with an unusually low signal-to-noise ratio, would be 

inflated by most of the above mentioned methods (normalization to a reference compound could cope 

with the artifact in certain cases), and these spectra should regardless of normalization method be 

identified and removed prior to further data interpretation.  
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Figure 4. Effect of normalization to the median of informative peaks. (A) Three anatomical regions 

of 25 pixels were selected. Legend: OC: optic chiasm; HC: hippocampus; CX: cerebral cortex. (B) Box-

plots show the distribution of the fold changes with respect to the median of each anatomical region 

(before and after normalization); m/z variables for which the median was zero in any of the regions were 

excluded.  
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Data transformation 

For this MSI data set, the variance increases with peak intensity (see Figure S-5), as was confirmed by 

calculating the correlation between the mean and standard deviation of the peak intensity of individual 

peaks evaluated across all pixels. Logarithmic scaling was performed (see Supporting Information) to 

remove this heteroscedasticity, and increase the importance of lower intensity but structurally 

informative variables in subsequent modeling steps,
27

 which is especially appropriate if a peak selection 

is performed, such as in this study. After transformation, mean-centering of the data was performed, 

which subtracts the average intensity for each m/z variable. 

 

Effects of normalization on single m/z images and multivariate data analysis  

The processing of the MSI data, namely peak and pixel selection, normalization, log transformation 

and mean-centering, resulted in a reduced data set of 13176 pixels × 564 m/z variables. Figure 5 A 

shows images for five m/z values based on unnormalized and normalized data (normalized to the 

reference peak m/z 184.0, TIC of all peaks and the median of informative peaks); see Figure S-6 for 

results of the other normalization methods. Unnormalized images show artifacts associated with laser 

oversampling, manifested as stripes in the ion image, these anomalies are clearly the result of analytical 

variation and not a genuine biological feature. Normalization to the TIC of all peaks does not fully 

compensate for these irregularities, while normalization to a selected reference peak appears to 

introduce speckled noise to the images. These ion intensities reveal less tissue anatomy and distinctness 

between regions than the newly suggested robust normalization approach to the median of informative 

peaks.  

The robustness of normalization to the median of informative peaks is especially clear for the 

simulated data set with extreme peak intensities, shown in Figure 5 C: 3 regions of 5 by 5 pixels had 

their signal at m/z 772.4 artificially increased. The result of extreme peak intensity values in localized 

regions on the TIC-based normalization is clear from Figure 5 C: the acute peak intensity reductions in 
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the specific regions for TIC-based normalization are reflected as odd green squares in the hippocampus. 

In contrast, the normalization to the median intensity of selected peaks is not at all affected by a highly 

prevalent but localized peak (comparable to the insulin-rich regions in the pancreas as highlighted by 

Deininger et al.
26

). Thus TIC or other sum- or mean-based approach are prone to highly incorrect 

normalization factors for extreme high-intensity, localized signals, and the normalization based on 

median signal intensity is an elegant method to overcome this challenge and avoid detrimental 

normalization artifacts. 

To evaluate the effect of the different normalization approaches on multivariate modeling, principal 

component analysis (PCA) was performed on the various data sets. PCA models the main variance in 

the data, and each pixel has a new set of coordinates in the calculated model, the scores, based on the 

m/z peak intensities for that pixel. The scores on a given principal component (PC) in the PCA model 

are used to color-code the image: pixels with high scores for a given PC will be shown in red, and pixels 

with low scores for this PC are shown in blue. The scores on PC 1 are biologically relevant for all data 

sets, irrespective of normalization, and show a clear distinction between grey and white matter (see 

Figure S-7). From Figure 5 B, it is clear that PC 2 is used to model analytical variation related to edge 

effects (TIC of all peaks), raster effects (horizontal stripes in the unnormalized data, especially visible in 

the cerebral cortex), and non-anatomical intensity variations for normalization to the single ion intensity 

at m/z 184.0. In contrast, anatomically relevant variation is being modeled on PC 2 for the data set that 

was normalized to the median of informative peaks, whilst these other data sets model a similar 

variation in PC 3. PCA results were comparable for the data normalized with histogram matching, the 

median or TIC of the informative peaks, and the probabilistic quotient normalization. 

It should be emphasized that the two most commonly used normalization methods, i.e. normalization 

to the TIC of all peaks or a reference peak, gave markedly different PCA results compared to the 

normalization method here suggested, which is the result of PC 2 being used for the modeling of 

uncorrected analytical variation. It should also be noted that from these analyses it was especially clear 



 

22 

that normalization is necessary, as unnormalized data showed a characteristic raster effect.  
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Figure 5. Results of normalization on single m/z images and principal component analysis. (A) 

MALDI images for five selected m/z values are color-coded with intensity (after log-transformation, 

blue for the lowest signal, red for high) and show the changes incurred by different normalization 

methods. (B) The score value of each pixel on the second principal component (PC 2) in a principal 

component analysis was used for color-coding. Legend: TIC (peaks): normalization to the TIC of all 

peaks; Median (informative): normalization to the median of informative peaks. The results for other 

normalization methods and other principal components are shown in Figure S-6 and Figure S-7. (C) 

Image for m/z 804.4 in the original data set, for normalization the TIC of all peaks and the median of 

informative peaks, and the results of these two normalization methods for m/z 804.4 after the signal at 

m/z 772.4 was artificially increased in 3 regions (5 by 5 pixels) in the hippocampus. 
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Summary of data processing stream: 

It is difficult to conduct a systematic evaluation of all possible processing approaches, because there 

are many combinatorial options of various methods for each different processing stage, and more 

importantly because there is no objective evaluation criterion: there is no clear metric that could be used 

to assess which of the different processing options is better. Therefore, the pragmatic processing choices 

used here to process the MALDI MSI data were based on rational arguments, such as pareto-efficiency 

for the VE-threshold as a variable selection cut-off, and a discussion of the assumptions and robustness 

for the different normalization methods has been provided. A flowchart for the processing approach 

suggested in this paper is shown in Figure 6. Note that changing the order for any of these steps can 

have a large effect on the resulting data set, and it is necessary to identify informative peaks in order to 

perform the proposed pixel selection and normalization procedures. 

Data processing approaches should be robust and transferable to other data sets. A choice of necessary 

processing steps and a tailoring of parameters may be required for different m/z ranges and acquisition 

methods. Nonetheless, preliminary results on other sample types, including fresh (unfixed) brain tissue, 

demonstrated that the data processing workflow in Figure 6 was directly applicable for various data 

sets.  



 

26 

 

Figure 6. Flowchart of MSI data processing. The consecutive processing steps for MSI data, 

including peak and pixel selection, normalization and data transformation, followed by multivariate 

modeling, are shown. A table indicating the properties of the different normalization methods is added 

in step 3 as a simplified summary, for more details please consult the text and the Supporting 

Information. 
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CONCLUSIONS 

Data processing is a critical, non-trivial step for reliable information recovery from spatially resolved 

molecular profiles obtained by MALDI MS imaging, and this work suggests some solutions for a 

number of current bottlenecks in the processing of MALDI MSI data. The assumptions of various 

normalization methods are often not fulfilled, for example due to effects of the MALDI process, causing 

normalization involving matrix peaks to be ineffective, and the non-standard composition of different 

tissues. An alternative normalization based on the median intensity of informative peaks is suggested 

and should be more robust to these commonly occurring problems; although this method is unlikely to 

fully correct all possible experimentally and analytically induced differences, it is clearly an 

improvement compared to the commonly used normalization methods. The proposed work-flow, with 

simple and pragmatic processing steps, is not theoretically limited to any type of tissue. Intelligent 

handling and review of MSI data is expected to become increasingly important in the future, as this 

method increases in popularity and more applications are realized. We present here a first step towards a 

more sophisticated and accessible data analysis of these vast, highly informative, data sets. We hope this 

will assist in increasing the opportunities for MALDI MSI in existing and new applications, and to 

increase confidence in the reliability and reproducibility of the data, further establishing MSI as an 

invaluable and complementary tool to standard histological approaches.  
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