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Summary 

This review will summarise the current state of our knowledge concerning the involvement of 

iron in various neurological diseases and the potential of therapy with iron chelators to retard 

the progression of the disease.  We first discuss briefly the role of metal ions in brain function 

before outlining the way by which transition metal ions, such as iron and copper, can initiate 

neurodegeneration through the generation of reactive oxygen and nitrogen species. This 

results in protein misfolding, amyloid production and formation of insoluble protein 

aggregates which are contained within inclusion bodies. This will activate microglia leading 

to neuroinflammation. The evidence for metal involvement in Parkinson’s and Alzheimer’s 

Disease as well as  Friedreich’s Ataxia and Multiple Sclerosis will be presented.  Preliminary 

results from trials of iron chelation therapy in these neurodegenerative diseases will  be 

reviewed. 
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Introduction 

 The human brain  gives us the power to speak, imagine and problem solve as well as 

the ability to perform  a number of tasks, which include the control of body temperature, 

blood pressure, heart rate and breathing, accept information  from various senses, such as 

visual, auditory and smell, as well as allowing one to think, dream, reason and experience 

emotions.  However it is difficult to imagine how mental entities such as thoughts and 

emotions could be implemented by physical entities such as neurons, glial cells and synapses 

or by any other type of mechanism.  For these reasons, the way in which the brain can 

perform such functions remains one of the greatest scientific challenges of the 21st century. 

Recently the Human Brain Project has been launched by the European Commission (1], 

which should go a long way to improving our understanding of brain function in health and 

disease, as well as the changes which occurs with aging.  It has as its goal to lay the technical 

foundations for a new model of ICT-based brain research, driving integration between data 

and knowledge from different disciplines, and catalysing a community effort to achieve a new 

understanding of the brain, new treatments for brain disease and new brain-like computing 

technologies.  Thanks to the progress of modern medicine, and to improved living standards, 

the life expectancy of the human race continues to increase steadily, unlike other mammals. 

However, the downside is that as our population ages, so the risk of contracting one of a 

number of neurodegenerative diseases also increases. The most common of these are 

dementias, characterised by decline in cognitive faculties and the occurrence of behavioural 

abnormalities which interfere with the capacity of the afflicted individual to carry out normal 

daily activities. It most often affects elderly individuals and the most common is Alzheimer’s 

disease (AD). Dementia prevalence increases with age; in the USA whereas 5.0% of those 

aged 71–79 years are affected, this climbs to 37.4% of those aged 90 and older [2].  

In this review, we outline some of the mechanisms underlying neurodegenerative diseases 

which involve the essential metal iron, and discuss some of the preliminary results which have 

used the therapeutic strategy of chelation to remove potentially toxic iron from the brain. 

The importance of metals in the brain 
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A number of important biological functions in the brain require metal ions such as 

potassium, sodium, calcium and zinc together with the redox-active iron and copper [3].   For 

example; the fast transmission of electrical impulses between neurons and along their axons to 

muscles and endocrine tissues, the maintenance of ionic gradients and the synthesis of 

neurotransmitters require these metal ions. The opening and closing of gated sodium and 

potassium channels to generate electrochemical gradients across the plasma membranes of 

neurons allows the transmission of nervous impulses, not only within the brain, but also the 

transmission of signals from the brain to other parts of the body.   

The function of proteins is often dependent on their shape and their charge, and the 

binding of Ca
2+

 to proteins, just like the phosphorylation of the hydroxyl groups of Ser, Thr or 

Tyr residues by protein kinases, can trigger changes in both shape and charge. This ability of 

Ca
2+

 and phosphoryl groups to alter local electrostatic fields and thereby protein conformation 

and function are the two universal tools of signal transduction in biology. In most cells, 

including nerve cells, fluxes of Ca
2+

 ions play an important role in signal transduction 

regulating a wide range of cellular processes through ligand-gated channels, such as the 

NMDA receptor, activated by the glutamate agonist N- methyl-D-aspartate or voltage-gated 

Ca
2+

 channels. The transient rise in cytosolic Ca
2+

 levels initiated by extracellular signals, 

leads to the binding of Ca
2+

 by Ca
2+

-sensor proteins, like calmodulin and synaptotagmin 1, 

which in turn activate a great variety of enzymes. Two target proteins for calmodulin in 

mammalian brain are calcineurin, a heterodimeric phosphatase, which is be involved in 

synaptic plasticity [4] and the Ca
2+

/calmodulin-dependent protein kinase CaMKII, which 

plays a central role in Ca
2+

 signal transduction [5], and is the most abundant protein in the 

postsynaptic density [6], the region of the postsynaptic membrane physically connected to the 

ion channels which mediate synaptic transmission.   

Another metal ion that has been extensively implicated in brain function is Zn
2+

 [7]. 

The mammalian forebrain contains a subset of glutamatergic neurons that sequester zinc in 

their synaptic vesicles, which is released into the synaptic cleft during synaptic transmission. 

Zinc may act as a critical neural messenger through its ability to regulate NMDA receptor 

activity.  Excessive synaptic release of Zn
2+

 followed by entry into vulnerable neurons 

contributes to severe neuronal cell death. 

The redox-active metal ions copper and iron are both essential for normal brain 

function [8, 9]. Deficiency of copper during the foetal or neonatal period, will have adverse 



4 

 

effects both on the formation and the maintenance of myelin.  Excess “free” copper is 

however also dangerous, due to its capacity, like iron, to participate in redox reactions, 

generating toxic reactive oxygen and nitrogen species. Copper serves as an essential cofactor 

for two key proteins involved in neurotransmitter synthesis, dopamine β-hydroxylase, which 

transforms dopamine to nor-adrenaline, and peptidyl-α-amidating monooxygenase involved 

in the amidation of neuropeptides.  Iron is involved in many fundamental biological processes 

in the brain, including oxygen transport, DNA synthesis, nitric oxide metabolism and 

mitochondrial respiration, as well as as for several specific neuronal functions in myelin 

synthesis and neurotransmitter synthesis and metabolism [9]. Since iron is involved in many 

central nervous system processes [9] which might affect infant behaviour and development, 

iron deficiency has adverse effects on pre- and post-natal  brain development.  With ageing, 

there is an elevation of brain iron (within ferritin and neuromelanin) in specific brain regions, 

i.e. frontal cortex, caudate nucleus, putamen, substantia nigra and globus pallidus, with no 

apparent adverse effect. However, ill-placed excessive amounts of iron in specific 

intracellular compartments or in specific regions of the brain, lead to neurodegenerative 

diseases [10, 11] through mechanisms described in the next section.   

Metal-based neurodegeneration  

 Over the last decade, it has become more and more widely accepted that inflammation, 

associated with dysfunction of metal ion homeostasis (Fe, Cu, Zn) resulting in concomitant 

oxidative stress, are key factors in a large number of neurodegenerative diseases [10, 11]. 

Support comes from the observation that AD, PD and many other neurodegenerative diseases 

are characterised by increased levels of these metal ions in specific regions of the brain.  

The ‘metal-based neurodegeneration hypothesis’ is briefly outlined here [10. 11]. Redox-

active metal ions (Fe, Cu), present within specific brain regions, can generate oxidative stress 

by production of reactive oxygen and nitrogen species (ROS, RNS). The chemistry of iron 

with oxygen and its two-electron reduction product, hydrogen peroxide has been reviewed[12, 

13]. The one-electron reduction of H2O2, the well-known Fenton reaction gives the hydroxyl 

radical, OH
. 
 [ Equation 1]:, one of the most reactive free radical species known, which can 

react with a wide number of cellular constituents. 

  Fe
2+

+ H2O2      Fe
3+

 

  +  .OH  +  OH
-
  [1] 
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When ROS are generated by redox metals in proximity to membrane phospholipids 

they initiate peroxidation of polyunsaturated fatty acids in the phospholipids, and the lipid 

hydroperoxides which are generated will break down to form a variety of lipid-derived α,β-

unsaturated 4-hydroxyaldehydes [14, 15],  of which the most prominent are 4-hydroxynonenal 

(HNE) and 4-hydroxy-2-hexenal (HHE).    

Both ROS and RNS play important roles in signal transduction and gene expression. 

The first RNS to be discovered, the free radical nitric oxide (NO
.
), is an omnipresent 

intercellular messenger in all vertebrates, modulating blood flow, thrombosis, and neural 

activity.  Although NO
.
 is often described as highly toxic and reactive, it has become evident 

that most of its cytotoxicity is due to the much more powerful oxidant peroxynitrite 

(ONOO
−
), formed from the reaction between NO

.
 and superoxide (O2

•−
) [ Equation2], which  

can oxidize methionine and nitrate tyrosine residues in proteins. 

NO
.
 +     O2

.-
   ONOO

-
   [2] 

Proteins are a major target of both ROS and RNS, and numerous oxidative 

modifications, reversible and irreversible forms have been characterized, which may change 

both the structure and the function of the oxidized protein, Figure 1. It is clear that a 

distinction must be made between those, mostly reversible, at low concentrations, which play 

an important role in cellular signalling and the essentially irreversible modifications which 

generate high levels of ROS and RNS with deleterious effects. A significant portion of such 

ROS-induced modifications will result in the addition of reactive carbonyl functional groups 

to proteins, generically termed “protein carbonylation” [16, 17]. Most of these carbonyl 

groups are generated from lipid peroxidation, from glucose-protein or glucose-lipid 

interactions (glycation) or from oxidative modification of amino acids in proteins (amino acid 

oxidation).  

 The damaged proteins become misfolded, aggregate, and finally overwhelm the 

ubiquitin/proteasome protein degradation system, such that the aggregated, ubiquinated proteins 

accumulate as deposits of characteristic fibrillar, protein-containing aggregates inclusion bodies 

in the affected tissues and organs. The presence of such intracellular inclusions or extracellular 

plaques, known as amyloid, is a common hallmark of many neurodegenerative diseases, 

including Alzheimer's disease (AD), Parkinson's disease, and prion diseases [18]. However, for 

protein aggregates to be properly described as amyloid, they should have the characteristic 

‘cross-β’ X-ray fibre diffraction pattern [19]. The current definition of amyloid is 'an 
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unbranched protein fibre whose repeating substructure consists of β strands that run 

perpendicular to the fibre axis, forming a cross-β sheet of indefinite length' [20]. Amyloid fibres 

have very special mechanical properties, are extremely resilient to proteolytic attack, and are 

not easily degraded.  The pioneering work of Chris Dobson and his colleagues has clearly 

demonstrated that many, if not all, proteins can adopt an amyloid-like conformation under 

appropriate conditions [18, 24]. 

Iron chelation and neurodegeneration 

The possible therapeutic use of iron chelators to remove the excess amounts of iron 

from specific brain regions which occurs in different neurodegenerative diseases has received 

considerable attention over the past few years.   The iron chelator should essentially be able to 

penetrate cellular membranes as well as the blood brain barrier, target the region of iron 

accumulation without depleting transferrin bound iron from the plasma, and be able to remove 

the chelatable iron from the site of accumulation or to transfer it to other biological proteins 

such as circulating transferrin. [25]  Since the majority of patients with neurodegenerative 

disease will have normal iron homeostasis, low doses of the chelator need to be used to 

minimise side effects. The MRI technique T2*  has been extensively used to monitor changes 

in the iron content of specific brain regions, which appears at best to be semiquantitative, the 

results being influenced by  differences in crystal structure and/or unequal ferritin clustering 

in these specific brain regions as well as by size of the magnetic particle [26].  The chemical 

structures of  three iron chelators which have been approved for clinical use in the treatment 

of beta-thalassaemia, desferrioxamine, deferiprone and desferasirox are shown in Figure 2.  

Two of these iron chelators are orally active, deferiprone and desferasirox, which has made 

their use in the treatment of neurodegenerative diseases more appropriate. 

Parkinson’s disease 

Changes in brain iron homeostasis occur in Parkinson’s Disease patients, with elevated levels 

of iron, in the form of H-ferritin and neuromelanin, occurring  in the substania nigra, SN.  

Furthermore in the early stages of PD,  no changes in iron content of other brain regions have 

been noted.   Neuroinflammation and neurodegeneration occurs in the SN, probably due to the 

presence of Lewy bodies and precipitated α-synuclein, activating microglia, which will 

accumulate iron as a result of up regulation of the iron transporter ferroportin.   One of the 
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main pathological hallmarks of PD is the preferential degeneration of dopaminergic neurons, 

which supports a direct role of dopamine itself in promoting the disorder.  The oxidative 

chemistry of dopamine, may ultimately lead to the formation of free radicals and reactive 

quinone species.  Such dopamine-derived quinones may react with several cellular targets 

which could foster the processes involved in the pathogenesis of PD and contribute to the 

progression of the disorder.  

Preliminary chelation studies  of one PD  patient (deferiprone 30mg/kg/day for 32 months), 

who presented with a variety of symptoms including  dysarthria and orofacial dystonia, with 

iron accumulation in many brain regions including the dentate nuclei, substantia nigra and red 

nuclei as assessed by T2* MRI showed some positive rsults.  After 6 months there was an 

improvement in many of the symptoms, after 1 year an improvement in the UPDRS score, 

while the T2* MRI showed a rapid onset decrease in iron accumulation in the bilateral dentate 

nuclei, with a milder but later decline in the substantia nigra.  No significant change in the 

iron content of the red nuclei was reported [27].  Since this initial observation of the beneficial 

effect of deferiprone, two further clinical trials have investigated the efficacy and safety of 

deferiprone in double-blind placebo studies for the treatment of Parkinson’s Diseases.   Either 

R2* or T2* MRI sequences were utilised, UPDRS motor scores were analysed, and serum 

ferritin, a marker of iron stores and inflammation, was also measured.   One study indicated 

that deferiprone, 30mg/kg/day, slightly improved motor signs after 12 months of treatment,  

decreased motor handicap progression (mean change in UPDRS motor score =-2) while the 

iron content in substantia nigra was significantly decreased, (mean change in R2* MRI 

sequence =0.6) after one year.  Three of the 40 patients in the study developed neutropenia or 

agranulocytosis which resolved rapidly with cessation of the oral therapy [28,29). In the other 

study, a small improvement in UPDRS scores was evident after 6 months of deferiprone 

therapy, (either 20mg/kg or 30mg/kg), significant decreases of iron in specific brain regions 
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were detected by T2* MRI, and the drug was well tolerated by all of the patients apart from 2 

who developed neutropenia [30].  

Alzheimer’s disease, AD 

High levels of zinc, copper and iron are present in the insoluble amyloid plaques in 

post mortem AD brains, such that disequilibrium of these essential trace elements possibly 

plays a role in the misfolding process which occurs with amyloid, Aβ, aggregation.  The 

toxicity of any excessive amounts of iron is exemplified by the fact that increased amounts of 

iron will influence furin activity, (which is important for the activation of secretases), such 

that low levels of furin (induced by high levels of iron) will preferentially enhance the 

amyloidogenic pathway.  In addition, iron may modulate APP processing, by virtue of the 

presence of a putative iron responseive element in APP mRNA [31].  Downregulation of APP 

will cause a decrease in the production of APP, and possibly lead to a reduction in amyloid 

protein, while iron influx will reverse this inhibition, and cause iron accumulation within 

neurons. 

Early studies [32] showed that there was a significant reduction in the rate of decline 

of daily living skills in the 48 AD patients who received desferrioxamine (125mg 

i.m.2xdaily/5times /week for 24 months) when compared to AD patients receiving placebo.   

Despite such positive results, there have been no other clinical studies reported where any of 

the iron chelators have been investigated for their clinical efficacy in this disease. 

Currently only one family of metal binding agents, PBT2 (5,7-dichloro-2-

(dimethylamino)-methyl)-8-hydroxyquinoline) is in clinical trials for the treatment of 

Alzheimer’s and Huntington’s Diseases.  It mainly binds excesses copper and zinc and 

possibly iron in the brain, thereby diminishing the amount of amyoid plaque formation and 

relocating these metal ions to depleted cellular and neuronal compartments.  AD patients who 

received 250mg/day showed a significant reduction in cerebrospinal fluid  Aβ concentration, 

while some cognitive improvement (executive function) was also noted. [33].  

Friedreich’s ataxia. FRDA 

Friedreich’s ataxia is the most common of the hereditary ataxias, the occurrence being 

one case in 50,000 individuals in the Caucasian population, and is caused by triplet repeat 

extensions in the frataxin gene.  The first symptoms usually develop during childhood or 
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puberty with a life expectancy between 40 and 50 years The most common mutation in the 

frataxin gene  is an expanded GAA trinucleotide repeat in intron 1 of the frataxin gene which 

occurs in approximately 96% of frataxin patients. The severity of the disease depends on the 

number of repeats. Iron accumulates in the mitochondria in FRDA, and there is a deficiency 

of i) mitochondrial Fe-S cluster containing proteins, e.g-aconitase, ii) respiratory chain 

electron transporters on complex I-III, which results in oxidative stress and free radical 

accumulation.    The highest concentration of frataxin is found in the heart, spinal cord and 

dorsal root ganglia.  The essential role of frataxin in mitochondrial iron metabolism is only 

partially understood;  it may regulate iron handling in mitochondria, (as an iron binding 

protein) and, as such, prevent iron from generating oxidative stress.  However, it most likely 

functions as an iron chaperone for the biosynthesis of Fe-S clusters and perhaps also haem.   

In ground breaking research Boddaert and colleagues [25], were the first to investigate 

the efficacy of deferiprone in the treatment of FRDA patients.  They showed that treatment 

with deferiprone, either 20 or 30mg/kg/day, for 6 months in 9 FRDA patients aged between 

14 and 23 years, reduced the iron content of the dendate nuclei, which was associated with 

significant neurological improvements e.g manipulative dexterity, speech fluency, reduction 

in neuropathy and ataxia gait particularly in the youngest patients.  This occurred relatively 

rapidly, 2 months after the commencement of treatment, the larger the iron accumulation the 

more robust and proportional the change evoked by the chelator.  In addition, the authors 

suggested that the form of iron chelated was the labile iron pool, with iron possibly being 

bound to enzymes such as hydroxylases, as well as to ferritin. Interestingly no other brain 

region investigated, i.e. the pallidal nuclei, the thalamus and cerebellar white matter region 

showed any significant changes in iron accumulation, as detected by T2* measurements over 

the period of the chelation therapy.   In another study by Velasco-Sanchez et al., [34] 

deferiprone, 20mg/kg/day, together with the antioxidant idebenone was administered to 20 

FRDA patients, aged between 8 and 25 years.  The  chelation of iron from the dentate nuclei 

occurred after 11 months of treatment, (as assessedby T2* MRI),  which was similarly 

associated with a stabilising effect on neurological function, e.g.  a significant recovery of 

kinetic functions, although gait and posture scores worsened.  

Multiple sclerosis, MS 

MRI and histological studies have shown global alterations in iron levels in the brains of MS 

patients  in deep grey matter structures, which are associated with increased disability and 
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grey matter atrophy. In addition,   increases in the iron stored by macrophages and microglia 

are also evident which may indicate that a pathogenic process is occurring.   Iron overload is 

also evident  in macrophages which will promote a pro-inflammatory M1 activation state (see 

below). Such increases in iron have generally been thought to be detrimental. The possible 

causes of iron accumulation and deposition in the CNS include degeneration of 

oligodendrocytes and myelin, infiltration of immune cells into sites of neurodegeneration, 

release of haem following vascular haemorrhage, dysregulation of iron transport proteins 

and/or other regulatory molecules, and other pathologies [35]  (Reviewed by Stephenson et 

al., 2014) . Oligodendrocytes are the most metabolically active cells in the brain (probably 

owing to their role in myelination), and contain an abundance of iron-requiring enzymes that 

are important for oxidative metabolism. In addition, oligodendrocytes are rich in ferritin-

bound and myelin sheaths in actively demyelinating MS lesions such that this is one obvious 

potential source of the iron accumulation observed in activated macrophages and microglia 

Neuroinflammation 

Neuroinflammation plays an important role in the pathogenesis of many of the 

neurodegenerative diseases.  Such inflammation is induced possibly by the presence of 

misfolded proteins which act as a catalyst for the activation and sustained activity of glial 

cells.  Glial cells, i.e. microglia, astrocytes and oligodendrocytes have important roles in the 

brain. Microglia play an important role in maintaining normal CNS function, as well as 

continually searching for alterations in brain homeostasis through their constant scanning 

dynamic ramifications.  They are involved in the maintenance of the synapses, having 

receptors for a wide variety of neurotransmitters, thereby directly interacting with termini, 

spines, astrocytic processes and the synaptic clef [36].  Astrocytes provide biochemical and 

nutritional support for endothelial cells, (in the blood brain barrier) and neurons as well as 

being involved in the release of pro-and anti-inflammatory cytokines but the latter is at a 
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lesser extent than microglia.  The main function of oligodendrocytes is to provide support and 

insulation to axons in the central nervous system. 

Activated microglial cells have been implicated in both the initiation and progression of 

neurodegenerative diseases.  When challenged microglia are capable of acquiring diverse and 

complex phenotypes, which permits them to participate in the cytotoxic response, immune 

regulation and injury resolution. This is characterised by four main phenotypes, classically 

activated M1 with cytotoxic properties; M2a an alternate activation which is involved in 

repair and regeneration; M2b with an immune-regulatory phenotype; or M2c with an 

acquired-deactivating phenotype. (Figure 3 )  Activated microglia, M1 phenotype, will 

release many pro-inflammatory mediators which induce neuronal injury and death.  However 

to date, there have been few investigations of the microglia phenotype in the different 

neurodegenerative diseases, or of therapeutic strategies which are able to switch the M1 

phenotype to a M2 phenotypes thereby possibly reducing disease progression.   

Parkinson’s Disease, PD 

In the PD brain proliferation of microglia is observed early in the disease process and was 

reported to remain relatively static and unrelated to the extent of striatal degeneration and 

disease severity, [reviewed in 37]. However the advanced dopaminergic degeneration in 

symptomatic PD has been associated with an overproduction of cytotoxic cytokines, which 

could indicate that microglia are polarised to a mainly M1 phenotype in advanced PD disease, 

[38].  Therefore multiple phenotypes may exist in PD, such that the disease progression or 

retardation may shift between the different phenotypes. 

Alzheimer’s disease (AD)   
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Alzheimer’s disease (AD) is characterised by a classical neuropathology: intraneuronal 

accumulations of hyperphosphorylated microtuble-associated protein tau known as 

neurofibrillary tangles (NFTs), and extracellular deposition of amyloid β-peptide (Aβ) known 

as amyloid or senile plaques.  Age-dependent neuro-inflammatory changes may play a 

significant role in this process,  where microglia switch from an M2 to M1 phenotype.  It was 

originally hypothesised (the amyloid cascade hypothesis) that the abnormal processing of 

APP, (occurring either spontaneously or genetically) induces overproduction of Aβ42 

fragments, which accumulate in the brain and activate  the innate immune system, which 

causes AD  [39].  However, there are certain observations which do not concur with this 

hypothesis.  Firstly the removal of Aβ from the brains of animal models and humans does not 

halt the progression of the disease and secondly Aβ is often present in healthy brains  [40].  

Although there is increased inflammation in AD, both in the serum, ( Il-1β and TNFα),  and 

brain tissue  (IL-6),  the levels of cytokines determined may be insufficient to elicit significant 

neuronal damage in the AD brain.   There is  an increase in the number  of ‘activated’ 

microglia cells (of unknown phenotype)  surrounding senile plaques in the cerebral cortex, Aβ 

deposits are present in T cell,  and there is a significant decrease in CD200 protein and mRNA 

in AD hippocampus and inferior temporal gyrus, but not cerebellum.[40].  Therefore a second 

hypothesis has been presented indicating that neuronal damage that occurs in AD is not 

entirely due to Aβ deposition or intracellular tau accumulation but caused by an abnormal 

immune response. There seems to be some controversy with respect to the functioning of the 

M1 and M2 phenotypes in AD brains.  M1 phenotype, have been identified in some AD 

mouse models e.g APP + PS1, which appeared to inhibit Aβ clearance while M2a or M2c 

phenotype enhanced Aβ clearance [40].  In contrast Wilcock, [41] indicated that M1 

phenotype lowered amyloid load but exacerbated neurofibrillary tangle pathology, while M2a 
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phenotype is accompanied by elevated amyloid load and appears to ameliorate neurofibrillary 

pathology 

 

Multiple sclerosis 

MS is an auto-immune disorder of the CNS characterised by inflammatory destruction of the 

myelin sheath of the long axons of motor neurons, the oligodendrocytes being the principal 

target of the inflammatory attack.  Focal lymphocytic infiltration occurs which leads to 

damage to the myelin and axons.  The hallmark sign is the formation of the sclerotic plaque 

which represents the end stage of a process involving inflammation, demyelination and 

remyelination, oligodendrocyte depletion and astrocytosis, neuronal and axon deheneration 

[42].  Initially inflammation is transient and remyeliation occurs but it is not durable. This 

could indicate that the phenotype of the microglia is altering, the M1 phenotype exacerbating 

the disease, by the production of proteases, glutamate, ROS and other cytotoxic agents 

thereby promoting myelin breakdown. Alternatively a switch to the M2 phenotype would 

assist in CNS repair through the production of neurotrophic factors and clearance of myelin 

debris. 

Concluding remarks 

 Considering the importance of metal ions in the normal functions of the human brain, 

it is not surprising that  dysregulation of metal homeostasis should have harmful effects on 

brain function. A growing body of data supports the view that the redox-active metals iron 

and copper can generate oxidative stress and inflammation, leading to protein misfolding and  

aggregation associated with many neurodegenerative diseases.  There is increasing evidence 

that disruption of iron regulation plays a key role in the aetiology of Alzheimer's disease, 

Parkinson's disease, Huntington’s disease, Friedreich's ataxia and a number of other 

neurological disorders. The therapeutic utilisation of iron chelators in neurodegenerative 

diseases is still in its infancy. However, advances in non-invasive techniques, notably MRI 

have enabled us quantify, albeit it approximately, brain iron content in specific brain regions, 

which allows us to evaluate the effects of chelation therapy in removing iron.  Secondly 

neuroinflammation plays an important role in the progression of each neurodegenerative 

disease, such that identification of the microglia phenotype is clearly important, and if M1 

phenotype is present, therapeutic agents to switch such a phenotype to a more protective 
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phenotype could be of therapeutic value. The preliminary results for iron chelation in a 

growing number of neurodegenerative diseases have been reviewed here, and are globally 

positive. In view of the relative paucity of other therapeutic possibilities the use of iron 

chelators as well as neuroinflammation inhibitors for the treatment of these disorders, may be  

encouraging portents for the future.    
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Figure Legends 

Figure 1: The production of protein carbonyls. From Dalle-Donne [16]. (a) This can 

arise from direct oxidation of amino-acid side chains (Pro, Arg, Lys, and Thr). (b) 

Protein carbonyl derivatives can also be generated through oxidative cleavage of 

proteins, via the α-amidation pathway or through oxidation of glutamine side chains, 

leading to the formation of a peptide in which the N-terminal amino acid is blocked by 

an α-ketoacyl derivative. (c) The introduction of carbonyl groups into proteins can 

occur by Michael addition reactions of α,β-unsaturated aldehydes, such as 4-hydroxy-

2-nonenal, malondialdehyde and 2-propenal (acrolein), derived from lipid 

peroxidation, with either the amino group of lysine, the imidazole moiety of histidine, 

or the sulphydryl group of cysteine (advanced lipoxidation end products). (d) Carbonyl 

groups can also be introduced into proteins by addition of reactive carbonyl 

derivatives (ketoamines, ketoaldehydes and deoxyosones), produced by the reaction of 

reducing sugars or their oxidation products, to the amino group of lysine residues, by 

mechanisms referred to as glycation and glycoxidation. This eventually yields 

advanced glycation end products, such as carboxymethyllysine and pentosidine. From 

[16]. 
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Figure 2: Chemical formulas of the iron chelators desferrioxamine, deferiprone and 

desferasirox currently in clinical use for iron loading syndromes and in experimental 

clinical trials for the treatment of neurodegenerative diseases. 
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Figure 3. Microglia phenotypes. A detrimental/pro-inflammatory immune cell M1 

phenotype is acquired upon classical activation of resting microglia by either LPS or 

INF-gamma, while IL-4, IL-10 or IL-13 typically induce an anti-inflammatory M2 

phenotype (M2a, M2b, M2c) representing an alternative, apparently beneficial, 

activation state more related to a fine tuning of inflammation, scavenging of debris, 

promotion of angiogenesis, tissue remodeling and repair. M1 cells release pro-

inflammatory cytokines such as IL-6, TNF-alpha, IL-1 beta and free radicals, that 

contribute to amplifying the neuroinflammatory response. Pro-inflammatory cytokines 

exert cytotoxic effects on oligodendrocytes and neurons leading to demyelination and 

axonal damage. M2 cells release neurotrophic factors such as GDNF, BDNF, bFGF, 

IGF-1, TGF-beta, HGF that provide trophic support to neurons in the injured area, in 

part by potentiating the recruitment, proliferation and differentiation of 

oligodendrocyte precursor cells.[43]. 

 

 

 

 

 

 


