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Eurocode 2 presents two alternative methods for accounting for arching action in beams. The simplest option is to

reduce the component of shear force owing to loads applied within 2d of the support by the multiple av/2d (where

av is the clear shear span and d is the effective depth). Eurocode 2 also allows short-span beams to be designed

with the strut-and-tie method (STM), raising the question of which method to use. This paper presents a simple

strut-and-tie model for short-span beams. The stress fields used in the STM are shown to be broadly consistent with

those calculated with non-linear finite-element analysis. The STM is shown to give good predictions of shear

strength, particularly when the concrete strength is calculated in accordance with the recommendations of Collins

and Mitchell. The accuracy of the simplified design method in Eurocode 2 is shown to be highly dependent on the

stirrup index. The paper also presents data from eight beams tested by the authors which show that aggregate

fracture has little if any influence on the shear strength of short-span beams.

Notation

Asl area of longitudinal reinforcement

Asw area of steel provided by each stirrup

a shear span between centre line of bearing plates

av clear shear span between inner edges of plates

b beam width

C9i vertical distance from top of the beam to the

centreline of indirect strut III at stirrup i

c distance from bottom of the beam to centroid of

flexural reinforcement

d effective depth

f 9c concrete cylinder strength

fcsb concrete strength in direct strut at bottom node

fcnt concrete strength at top node

fyd design yield strength of reinforcement

h overall height of the beam (h ¼ d + c)

lb length of bottom bearing plate

lt length of top bearing plate

n number of effective stirrups

nlp number of loading points (1 or 2)

P total load

Si distance from stirrup to rear face of the top

node

SI stirrup index defined for short-span beams

SI ¼ nAswfy/(bhf 9c)

Td longitudinal force transmitted to bottom node

by direct strut I

T 9i longitudinal force transmitted to bottom node

by indirect strut III

Tsi force resisted by each stirrup

V shear force

Vc concrete component of shear resistance

Vd shear contribution of direct strut

Vs stirrup contribution to shear

VRd,c shear strength of member without shear

reinforcement

wstrut strut width at bottom node

z lever arm (0.9d for shear in Eurocode 2)

� fraction of total tensile force transferred by

direct strut to bottom node in strut-and-tie

model

ªc, ªs partial factors for concrete and steel

respectively

�L principal tensile strength in concrete

�l strain in tie

Ł inclination of direct strut

º fraction of shear carried by direct strut in strut-

and-tie model

� strength reduction factor for cracked concrete in

shear

rl longitudinal reinforcement ratio rl ¼ Asl/(bd)

� stress in concrete at node boundary

�9i angle to the horizontal made by a line drawn

from the top of stirrup i to the bottom of the

node
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Introduction

Considerable experimental work has been carried out

over the past 50 years into the shear behaviour of re-

inforced concrete (RC) beams, with particular emphasis

on slender beams with shear span to effective depth

ratios av/d . 2 (where av is the clear shear span and d is

the effective depth) and on deep beams with av/d , 1.

Short-span beams with av/d ratios ranging from 1 to 2,

have been studied to a lesser extent. It is well known that

the shear strength of RC beams increases significantly

owing to arching action when loads are applied within

approximately twice the beams’ effective depth of the

support. The behaviour of short-span beams differs sig-

nificantly from slender and deep beams. When av/d is

between 1 and 2, the diagonal crack forms indepen-

dently of flexural cracks and the beam remains stable

after the formation of the diagonal crack, which typi-

cally runs between the inner edges of the bearing plates

(see Figure 1). The shear strength and ductility of short-

span beams can be enhanced by adding transverse rein-

forcement. Kong et al. (1970) have shown that vertical

stirrups are more efficient than horizontal links for av/d

. 1. Vertical stirrups increase shear strength if they

cross the diagonal shear crack and are considered effec-

tive for design purposes if placed within the central

three quarters of the clear shear span av. It is convenient

to define the effective amount of transverse reinforce-

ment in short-span beams in terms of a stirrup index

SI ¼ nAsw f y=(bhf 9c), where n is the number of stirrups

within the central three quarters of the clear shear span

av, Asw is the area of steel provided by each stirrup, f y is
the yield strength of steel, b is the beam width, h is the

overall height and f 9c is the concrete cylinder strength.

Existing design methods

Short-span beams without shear reinforcement

Eurocode 2 (BSI, 2004) uses Equation 1 to determine

the shear strength of slender beams without shear rein-

forcement

VRd,c ¼
0:18

ªc
100:rl fckð Þ1=3 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
200=d

p� �
bd (1)

where ªc is the partial factor for concrete which equals

1.5, rl ¼ Asl/(bd); fck is the concrete cylinder strength;

d is effective depth; and b is member width.

Equation 1 accounts semi-rationally for size effects,

dowel action, reinforcement ratio and concrete strength.

Eurocode 2 reduces the design shear force by the multi-

ple av/2d to account for the increase in shear strength

due to arching action in short-span beams. BS 8110

(BSI, 1997) adopts the alternative approach of multi-

plying the basic shear resistance Vc, which is calculated

similarly to VRd,c in Eurocode 2, by an ‘enhancement’

factor equal to 2d/av.

Design of short-span beams with vertical shear

reinforcement

Model Code 1990 (MC90 (CEB–FIP, 1993)).

MC90 uses Equation 2 below, which was initially

proposed by Schlaich et al. (1987), for the design of

vertical shear reinforcement in short-span beams

Fw ¼ 2a=z� 1

3� NSd=F
F (2)

where Fw is the design shear force for the stirrups, F is

the design shear force, a is the distance between the

centre line of the applied load F and the support, z is

the lever arm (0.9d where d is the effective depth) and

NSd is axial force (tension positive). It is noteworthy

that Fw only depends on a/z and not the stirrup index

SI ¼ nAsw f y=(bhf 9c) which is inconsistent with the ex-

perimental results presented in this paper.

Eurocode 2. When loads are applied within 2d of

the support, Eurocode 2 reduces the component of

the shear force owing to loads applied within 2d of

the support by the multiple av/2d. For vertical stir-

rups, the design shear resistance calculated this way

equals

VEd ¼ Maximum(�Asw fyd, VRdc) (3)

where �Aswfyd is the resistance of the shear reinforce-

ment within the central three quarters of the shear span

and VRdc is given by Equation 1.

Standard truss (BS 8110). BS 8110 takes the de-

sign shear strength as V ¼ Vc + Vs where Vc is the de-

sign shear strength without stirrups and Vs is the

contribution of the shear reinforcement which is calcu-

lated with a 458 truss. BS 8110 increases the concrete

contribution Vc by the multiple 2d/av when av , 2d.

Modified truss (Vd + Vs). The 458 truss used in

BS 8110 would seem to underestimate the contribu-

tion of the shear reinforcement in short-span beams

since the inclined shear crack typically extends be-

tween the loaded areas. In this case, the contribution
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Figure 1. Typical crack pattern and load paths in a short

span beam 1 , av/d , 2 with stirrups (beam AL3, tested by

the authors at Imperial College London)
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of the shear reinforcement Vs ¼ nAswfy where n is the

effective number of stirrups within the shear span.

Consideration of vertical equilibrium suggests that the

shear strength equals Vd + Vs where Vd is the contri-

bution of the direct strut (i.e. arching action) and Vs
is the contribution of the stirrups. The modified truss

gives a notional upper bound to the shear capacity if

Vd is taken as VRdc(2d/av) where VRdc is calculated

with Equation 1.

Proposed strut-and-tie model for short-span beams

Eurocode 2 allows short-span beams to be designed

using the strut-and-tie method (STM). The STM pre-

sented in this section is applicable to symmetrically

loaded beams with either one or two point loads

(nlp ¼ 1 or 2). The geometry of the authors’ strut-and-

tie model is defined in Figure 2. The bearing stress

under the loading and supporting plates was limited to

�fcd and 0.85�fcd respectively as recommended in Euro-

code 2 for compression–compression (CC) and com-

pression–tension (CT) nodes. The stress distribution is

assumed to be non-hydrostatic in the nodes and to be

uniformly distributed across the width of the node faces

as shown in Figure 2. The load is assumed to be

transferred from the loading plate to the supports

through a direct strut (strut I) acting in parallel with the

truss system (strut II–stirrups–strut III) shown in Fig-

ure 1. The stirrups are assumed to yield at failure as

observed in the tests of Clark (1951), Regan (1971) and

others for stirrup indices up to around 0.1.

The strength of struts I and II is reduced by cracking

and transverse tensile strains induced by the stirrups.

Strut III, is fan shaped like strut II, but the concrete in

this region is essentially uncracked. The failure load P

can be defined in terms of the tensile strength of the

effective stirrups as follows

P ¼ 2

1� ºð Þ :
Xn

1

TSi (4)

where
Pn

1TSi is the sum of the forces TSi resisted by

each stirrup (TSi ¼ Aswfy) and n is the number of effec-

tive stirrups which is defined as the number within the

central three-quarters of the shear span av. The propor-

tion of the shear force taken by the direct strut (strut I)

is defined by º. The force in the tensile reinforcement

at the bottom node (T) can be subdivided into two

components T ¼ T 9i + Td, where T 9i and Td, respectively,

equal the longitudinal component of force in strut III

and the direct strut

T 9i ¼ TSi:
Xn

1

cot�9i (5)

Td ¼ �T (6)

Td ¼
º

1� º
: cot Ł:

Xn

1

TSi ¼
�T 9i
1� �

(7)

where �9i is the angle to the horizontal made by a line

drawn from the top of stirrup i to the bottom node as

shown in Figure 2, and Ł is angle of inclination of the

centreline of the direct strut to the horizontal. The

angles Ł and �9i are defined as follows

cot Ł ¼ av þ lbº=2ð Þ þ ltº=4ð Þnlp
h� c�� T 9i þ Td=2ð Þ=bf cnt½ �

� � (8)

cot�9i ¼

av þ lb � 2 n� ið Þ þ 1½ �=2n
� �

1� ºð Þ:lb � Si þ lt=2ð Þnlp
h� 2cþ 2 n� ið Þ þ 1=2n

� �� 	
1� �ð Þ:2c� C9i

(9)

where av is the clear shear span, nlp is the number of

loading points at the top of the beam (1 or 2), lb – lt is

i 2� i 1�
C�i

n l1p t /2

λn llp t/2

T b�i cnt/ f

T b�d cnt/ f
T bi cnt/ f
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n
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Figure 2. (a) Proposed strut-and-tie model for short span

beams with vertical shear reinforcement (example for one

point loading and two stirrups; nlp ¼ 1 and n ¼ 2);

(b) stresses at nodal regions
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the length of the bottom–top bearing plates respective,

h is height, c is the distance to the centroid of the

longitudinal reinforcement, f cnt is the concrete strength

at the top node which is assumed to equal �fcd, n is the

number of stirrups, b is the beam width, i is the stirrup

number, Si is the distance from stirrup i to the rear face

of the top node and C9i is the vertical distance from the

top of the beam to the intersection of the centreline of

indirect strut III with stirrup i.

The upper boundary of strut III is assumed to be

linear to simplify the calculation of C9i which is given

by

C9i ¼
T 9i

bf cnt
:
av � Si þ ltnlp=2

av
(10)

The geometry of the bottom node is completely defined

in terms of the length of the bearing plate (lb) and 2c

(where c is defined in Figure 2) once º and � (see

Equation 6) are known. The ultimate load is taken as

the lowest value corresponding to either flexural fail-

ure, crushing of the direct strut or bearing failure.

Crushing of the direct strut was the critical failure

mode in the majority of beams studied in this paper.

The strength of the direct strut is given by the least

product of its cross-sectional area and the effective

concrete strength. The strength of concrete in the strut

is reduced by the effects of cracking and transverse

tensile strain. Eurocode 2 defines the design concrete

strength in the strut as 0.6�f cd where � ¼ (1 � fck/250)
and fcd ¼ fck/ªc. Alternatively, Collins and Mitchell

(1991) propose that the concrete strength in the strut

(fcsb) should be taken as

fcsb ¼ � fck= 0:8þ 170�1ð Þ (11)

where � is a capacity reduction factor and

�1 ¼ �L þ �L þ 0:002ð Þ cot2 Ł (12)

where �L is the strain in the tie.

Both of these approaches are compared in this paper.

The STM was found to give good results if the strength

of the direct strut was calculated in terms of its width

at the bottom node (wstrut)

wstrut ¼ ºlb sin Łþ 2c� cos Ł (13)

Limiting the stress in the strut to f csb and imposing

vertical equilibrium at the bottom node leads to

º

1� º
:
Xn

1

TSi ¼ ºlb sin
2 Łþ c� sin 2Ł

� 	
bfcsb (14)

Equations 4–10 and Equation 14 can be solved for P or

Asw as required using an iterative solution procedure.

Solving Equations 4–10 and Equation 14 in their gen-

eral form allows the spacing of the vertical reinforce-

ment to be modelled. The solution procedure is

simplified if the stirrups are assumed to be uniformly

distributed within the shear span with the resultant

stirrup force located at the centre of the clear shear

span. In this case, Equations 4–10 and Equation 14 can

be solved with the algorithm shown in Figure 3 if the

stresses under the loading and supporting plates are less

than �f cd and 0.85�fcd respectively. The algorithm in

Figure 3 typically gives very similar solutions to the

rigorous procedure described above in which the actual

stirrup positions are modelled.

It should be noted that the parameter ºi which de-

fines the proportion of load resisted by the direct strut,

decreases with the increasing stirrup index. The in-

crease in strength owing to stirrups is mainly attributa-

ble to the resulting reorientation in the geometry of the

bottom node. For large values of SI, º can become zero

in which case the direct strut vanishes making the

model no longer applicable. It is questionable whether

all the stirrups yield at failure as assumed in the model

when º ¼ 0. The minimum stirrup index at which

º ¼ 0, SImax ¼ Pmax/(2bhf c) can be found by solving

Equations 15 and 16. These equations were derived by

differentiating Equation 13 with respect to º and substi-

tuting º ¼ � ¼ 0 into Equations 4 to 10 to obtain the

load at which the direct strut disappears.

Pmax ¼ 2
lb þ 2c cot2 Ł= cot�9

� 	
1þ cot2 Ł


 �
bf csb (15)

cot�9 ¼ 1

2
:

av þ lb

h� c� ˜=2
;

cot Ł ¼ av

h� ˜
;

T 9i ¼
Pmax

2
: cot�9

(16)

where ˜ ¼ T 9i
bfcnt

Equations 15 and 16 can be solved iteratively for ˜
and hence Pmax. The stirrup index SI was only greater

than SImax in one of the 143 beam tests with stirrups

analysed in this paper, (beam V355/3 tested by

Lehwalter, 1988), which indicates that the STM is

applicable in the majority of practical cases.

Members without vertical shear reinforcement

(º ¼ 1). In short-span beams with no shear rein-

forcement, the entire load is transferred from the

loading plate to the support through the direct strut

(strut I in Figure 1). In this case, analysis of the

bottom node gives

P ¼ 2 lb sin
2 Łþ c sin 2Ł

� 	
bfcsb (17)

Consideration of vertical equilibrium and geometry at

the top node also gives

P ¼ 4 tan Ł d � a� lt 2� nlpð Þ
4


 �
tan Ł

� 

b� fcd (18)

The failure load (P) and the strut inclination Ł can be

calculated by solving Equations 17 and 18.
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Influence of aggregate fracture on shear

strength

The authors tested two sets of four centrally loaded

short-span beams to assess the influence of aggregate

fracture on shear strength. The first set of beams are

labelled AL0 to AL4 inclusive where A is the series

reference, L denotes limestone aggregate and the num-

ber of stirrups in each shear span varies between 0 and

4 as indicated. The second set of beams AG0 to AG4 is

designated similarly with G denoting gravel aggregate.

Figure 4 shows details of the beams and loading ar-

rangement, both of which are fully described elsewhere

(Sagaseta, 2008). The beams measured 500 mm high

by 135 mm wide and were simply supported over a

span of 1320 mm between the centrelines of supports.

The flexural reinforcement consisted of two layers of

two H25 bars. The effective depth d to the centroid of

the flexural reinforcement was 438 mm as shown in

Figure 4. The coarse aggregate had a maximum size of

10 mm and was limestone in the AL beams and gravel

in the AG beams. The beams were intended to have

similar concrete cylinder strengths of around 60 MPa

but the concrete delivered by the supplier had cylinder

strengths of 68.4 MPa and 80.2 MPa for the AL and

AG beams respectively. The cracks passed completely

through the limestone aggregate but only through a

small proportion of the gravel aggregate.

The loading plate measured 210 3 135 mm on plan.

Failure was encouraged to develop in the left hand

shear span by making the length of the right-hand

bearing plate 200 mm compared with 125 mm in the

left-hand span. The increased length of the right-hand

bearing plate results in a 20% increase in strength

according to the STM or 8% according to the simpli-

fied method in Eurocode 2 (Equation 3). Of the eight

beams tested, six failed in the left-hand shear span with

av/d ¼ 1.12 as expected and only two (AG4, AL2)

failed in the right-hand span with av/d ¼ 1.04. The

Step 1: Estimate and cotλ θi i

Step 2: Calculate �i

Step 3: Calculate tensile forces andT T�i d

Step 4: Calculate values for step 1i �

Step 5: Check for convergence

Step 6: Calculate solution

Analysis: for :Design

if 0 Change section size, , or (stirrups might not yield)i�1 cd t b� f l lλ

if 1 No stirrups required (provide minimum quantity of shear reinforcement)i�1 �λ

with

�i �
C l

c
1

2
i b(1 cot )

2 cot

� �θ λ

θ
l

i
� 0       where

( )
Si

1
1

csb1
=

−

∑.
n

i

i

T
C

bf

λ

λ

if | | and |cot cot |
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λ λ θ θi i i

i i

� �

�

1 1

1

� � � �

� �

i tolerance tolerance

λ λ θ θcot coti i�1

otherwise go to step 6
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+

=
−

∑
n
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1
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− ∑
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Figure 3. Proposed algorithm for solving simplified strut-and-tie model for short-span beams with stirrups; refer to Figure 2 for

notation. Note: i) in STM-EC2, f csb is taken as 0.6�f cd; ii) in STM-Collins, f csb is obtained iteratively in steps 2–3 using

Equation (11); the tensile strain in the tie is obtained from the force T 9i þ Td
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measured and predicted failure loads of the beams are

given in Table 1. All of the beams failed in shear but

the flexural reinforcement yielded in beams AG3 and

AG4. The majority of the beams failed in ‘shear com-

pression’, which was characterised by crushing of the

concrete near the loading plate at failure. The diagonal

shear crack ran below the direct strut in these beams

and only extended to the inner edges of the plates near

failure as shown in Figure 5(a).

The relative opening and sliding displacements of

the main shear crack were monitored during the test by

means of crosses made up of transducers (linear vari-

able displacement transducers (LVDTs)) and Demec

targets. The crack displacements from each method

agreed well with each other and visual measurements

of crack width (Sagaseta, 2008). A parallel set of push-

off tests were carried out using the same types of

aggregate as in the beams (Sagaseta, 2008). The push-

off specimens were pre-cracked before loading. Despite

the aggregate fracturing, shear stresses as high as

5.6 MPa were measured in the limestone push-off spe-

cimens with similar concrete strengths and shear rein-

forcement ratios to the AL beams. Figure 6 shows the

relative crack opening (w) and sliding (s) displacements

in the beams tested in this program. The average ratio

between w and s at the main shear crack was w/s ¼ 3

compared with w/s ¼ 0.5 in the push-off tests implying

that crack opening was dominant in the short-beam

tests.

The difference in aggregate types does not seem to

have affected the crack patterns or strengths of the

beams. For example, beam AG0 had a higher concrete

Cross-section
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0

d
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Figure 4. (a) Cross-section of beams A; (b) test arrangement: geometry, position of stirrups, loading plates and instrumentation

(LVDTs)

Table 1. Summary of short beams tested by the authors (beams A)

Beam Critical av/d rv: % SI Vtest: kN Pcalc/Ptest
(STM–Eurocode 2)

Pcalc/Ptest
(Eurocode 2)

Pcalc/Ptest
(NLFEA){

AG0 1.12 0 0 326 1.27 0.53 0.95

AG2 1.12 0.22 0.020 563 0.82 0.35 0.90

AG3* 1.12 0.34 0.031 655 0.73 0.45 0.82

AG4* 1.04 0.45 0.041 707 0.71 0.56 0.53y

AL0 1.12 0 0 366 1.04 0.45 0.80

AL2 1.04 0.22 0.024 532 0.79 0.37 0.98

AL3 1.12 0.34 0.036 481 0.92 0.61 0.97

AL4 1.12 0.45 0.048 602 0.77 0.65 0.83

Mean 0.88 0.50 0.84

SD 0.19 0.11 0.14

COV% 21.6 21.9 17.3

Notes: fy(stirrups) ¼ 550 MPa, fy (longitudinal) ¼ 580 MPa

* Flexure reinforcement started to yield at failure

rv ¼ Asw/(ab) 3 100
y The analysis stopped prematurely
{ NLFEA – non-linear finite-element analyses
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strength and rougher crack surface than AL0 but failed

at a lower load. Higher shear stresses are likely to have

developed along the main shear crack in beam AG0

than in AL0, since the crack opening and sliding dis-

placements were similar in each beam (see Figure 6).

The relatively low strength of beam AG0 seems to be

related to the orientation of the shear crack which ran

diagonally between the corners of the strut from first

cracking, as shown in Figure 5(b). This type of failure

is usually designated as ‘shear-proper’. Similar differ-

ences in failure mode were observed in beams AL2 and

AL3 with two and three stirrups respectively. Beam

AL3 failed in shear-proper (see Figure 5(b)) at a lower

load than AL2 which failed in shear compression (see

(b)
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Figure 5. Superimposed crack pattern and strut-and-tie model in beams failing in: (a) shear compression ((AL0, AG2) (AL2,

AL4, AG3, AG4 similar but not shown); and (b) shear proper (AG0, AL3)
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Figure 5(a)). It appears that the strength of the direct

strut depends on the position and orientation of the

shear crack which varies randomly. The consequent

variation in the strength of the direct strut would appear

to explain the large scatter apparent in data from short-

span beam tests, which is greatest for beams without

stirrups where the contribution of the direct strut is

greatest. These observations suggest that

(a) random variations in the orientation of the diagonal

crack have a greater effect on shear strength than

variations in local crack roughness owing to aggre-

gate fracture

(b) the influence of aggregate interlock is likely to be

greatest in beams without stirrups that fail in

shear-proper.

Sagaseta (2008) obtained reasonable predictions for

the shear strength of short-span beams which fail in

shear-proper, for example beam AG0, by calculating

the strength of the direct strut in terms of shear friction

along the crack. The drawback of this approach is that

the predictions are highly dependent on the values

assumed for crack inclination, friction and cohesion, all

of which are difficult to assess unless experimental data

are available. The method also underestimates the

strength of beams which fail in shear compression.

Therefore, the adoption of a constant strength reduction

factor for the concrete seems more suitable for design.

Comparison between STM and NLFEA

predictions

Non-linear finite-element analyses (NLFEA) were

carried out on the beams tested in this project, using

plane stress elements to check the geometry and stress

distributions assumed in the STM. The NLFEA was

performed with the commercial package DIANA v9

(DIANA, 2005) using the multi-directional fixed crack

model which is based on strain decomposition and

combines plasticity for compression (Drucker–Prager)

and smeared cracking for tension. Reinforcement is

modelled as embedded elements with a Von Mises

perfectly plastic material. Table 1 gives the failure

loads calculated with NLFEA using the material prop-

erties summarised in Table 2.

The orientation of the cracks along the direct strut,

stiffness of the beam and the predicted failure load

were found to be sensitive to the concrete tensile

strength adopted in the analysis. The results were poor

if the measured concrete tensile strengths from Brazi-

lian tests were used in the analysis. Much better results

were obtained when the concrete tensile strength was

taken as fct ¼ 0.33(f 9c )
0:5 in accordance with the recom-

mendations of Bresler and Scordelis (1963), which

provide lower values of fct than the Brazilian tests. The

comparison between the measured and predicted failure

loads was better than expected since the concrete

strength was not reduced in the NLFEA to account for

transverse strains. However, the predicted failure load

was found to be sensitive to variations in the strength

of the highly stressed elements adjacent to the loading

plate shown in Figure 7(a). The strength of these

elements is increased by the confinement provided by

the loading plate, which is not modelled in the two-

dimensional model used by the authors. The strength of

Table 2. Parameters applied in the non-linear finite element

analysis

Concrete AG AL Steel Stirrups and

plates

Long.

Reinf.

Ec: MPa 42 600 35 000 Es: GPa 200 200

� 0.2 0.2 � 0.3 0.3

fct: MPa 2.95 2.70 fy: MPa 550 580

Gf : N/mm 0.113 0.101

f 9c: MPa 80.2 68.4

Notes: Concrete – multi-directional fixed crack model: threshold

angle Æ ¼ 608, shear retention factor � ¼ 0.1, Drucker–Prager plasti-

city (� ¼�¼ 108) with parabolic hard strain stiffening; fct according

to Bresler and Scordelis (1963)

Steel – Perfect plasticity (Von Mises)

AG0 (0·95 )Vtest

AL4 (0·80 )Vtest
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Figure 7. Principal compressive stresses (in MPa) predicted

in the NLFEA and superimposition of experimental crack

pattern and STM: (a) beam AG0; and (b) beam AL4
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beam AG4 was underestimated since the authors were

unable to find a converged solution.

The STM assumes a uniform stress distribution un-

der the loading plates whereas the NLFEA shows stress

concentrations at the edge of the loading plate, as

shown in Figure 7. The stress concentrations in the FE

model depend on the stiffness assumed for the loading

platen and the cracking model adopted for concrete.

The stress concentration near the edge of the loading

plate in the NLFEA resulted in a slightly steeper strut

than predicted in the STM as shown in Figure 7(a).

Even so, the numerical predictions agreed well with

those of the STM for beams such as AL4, where the

orientations of the direct strut were similar in both the

STM and NLFEA (see Figure 7(b)). The sizes of the

nodes were also similar in the NLFEA and STM for

beam AL4.

The NLFEA predicted that the shear reinforcement

yielded prior to failure, as measured and assumed in

the STM. The results shown in Figure 8 for beams

AG3 and AL3 correspond to the stirrups in the critical

span (av/d ¼ 1.12). The NLFEA predicted higher stres-

ses in the stirrups at the intersection with the diagonal

crack as measured. The strains derived from the Demec

gauge readings are generally larger than measured with

the strain gauges or predicted in the NLFEA. This is

somewhat surprising but appears to be related to the

strain gauges not coinciding with cracks, more than

one crack forming within the Demec gauge lengths and

spalling of the cover zone. The tensile strains in the

flexural reinforcement of beam AG0 were similar at the

inner edge of support and beam centreline respectively

as predicted in the STM. The gradient in the tensile

strain along the flexural reinforcement predicted by the

STM model agrees well with the measured strains and

NLFEA predictions for beams AL3 and AG3 as shown

in Figure 9.

Assessment of design methods for beams

with stirrups

The accuracy of the STM, the modified truss and the

simplified design methods in MC90 and Eurocode 2

were assessed with a database of 143 beams that failed
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in shear (Clark 1951; Kong et al., 1970; Kong and

Rangan, 1998; Lehwalter, 1988; Rawdon de Paiva and

Siess, 1965; Regan, 1971; Sagaseta, 2008; Sarsam

and Al-Musawi, 1992; Tan et al., 1995, 1997; Vollum

and Tay, 2001; Zhang and Tan, 2007). The clear shear

span to effective depth ratio (av/d ) of the beams ana-

lysed varied between 0.25 and 2.4. Table 3 gives details

of the 47 beams with av/d ratios between 1 and 2. The

top and bottom bearing plates were of equal length in

the majority of the beams (i.e. lt.nlp/2 ¼ lb). The mate-

rial factors of safety were taken as 1.0 in all the

analyses. No significant differences were found be-

Table 3. Experimental data for short-span beams with stirrups (av/d ¼ 1�2)

Tests with stirrups (av/d: 1–2) Pcalc/Ptest

Ref. Beam av/d h: mm d: mm b: mm f 9c:

MPa

SI Ptest: kN MC90 Vd+Vs Eurocode

2

STM–

Eurocode 2

STM–

Collins

1 V3511/3 1.25 600 560 250 17 0.154 970 0.73 1.19 1.30 – –

2 J6 1.57 305 272 152 32 0.046 292 0.32 0.89 0.58 0.87 0.71

J10 1.10 305 272 152 32 0.031 272 0.30 0.99 0.66 1.05 0.99

J17 1.10 305 272 152 40 0.054 530 0.34 0.74 0.68 0.72 0.70

J19 1.10 305 272 152 35 0.028 366 0.22 0.75 0.51 0.84 0.78

J20 1.10 305 272 152 35 0.028 320 0.25 0.86 0.58 0.97 0.91

J8 1.68 305 254 152 34 0.029 370 0.16 0.59 0.34 0.81 0.64

3 E-1.62-3.23 1.30 500 463 110 51 0.042 440 0.45 0.96 0.83 1.06 0.92

4 III-2N/1.50 1.41 500 443 110 78 0.052 670 0.53 1.00 0.94 1.10 1.08

III-2S/1.50 1.41 500 443 110 78 0.066 800 0.56 0.98 0.99 0.99 1.00

5 5 1.14 200 180 100 44 0.058 220 0.40 0.92 0.81 0.83 0.84

6 1.14 200 180 100 44 0.115 250 0.70 1.21 1.42 0.87 0.93

6 B1-1 1.72 457 390 203 23 0.065 558 0.35 0.87 0.59 0.83 0.71

B1-2 1.72 457 390 203 25 0.060 513 0.38 0.96 0.64 0.95 0.81

B1-3 1.72 457 390 203 24 0.064 570 0.34 0.86 0.57 0.82 0.70

B1-4 1.72 457 390 203 23 0.065 536 0.36 0.91 0.61 0.86 0.74

B1-5 1.72 457 390 203 25 0.062 483 0.40 1.02 0.68 0.99 0.84

B2-1 1.72 457 390 203 23 0.109 602 0.54 1.12 0.91 0.90 0.81

B2-2 1.72 457 390 203 26 0.096 644 0.50 1.06 0.85 0.90 0.81

B2-3 1.72 457 390 203 25 0.101 670 0.49 1.01 0.81 0.84 0.76

B6-1 1.72 457 390 203 42 0.036 759 0.26 0.70 0.43 0.91 0.72

C1-1 1.33 457 390 203 26 0.039 555 0.29 0.83 0.51 0.95 0.84

C1-2 1.33 457 390 203 26 0.038 622 0.26 0.74 0.45 0.86 0.76

C1-3 1.33 457 390 203 24 0.042 492 0.33 0.92 0.57 1.02 0.90

C1-4 1.33 457 390 203 29 0.035 572 0.28 0.83 0.50 1.01 0.88

C2-1 1.33 457 390 203 24 0.064 580 0.42 0.94 0.73 0.92 0.85

C2-2 1.33 457 390 203 25 0.061 602 0.40 0.92 0.70 0.92 0.84

C2-4 1.33 457 390 203 27 0.056 576 0.42 0.97 0.73 1.01 0.92

C3-1 1.33 457 390 203 14 0.072 447 0.36 0.92 0.63 0.75 0.72

C3-2 1.33 457 390 203 14 0.073 401 0.41 1.02 0.70 0.83 0.79

C3-3 1.33 457 390 203 14 0.073 376 0.43 1.09 0.75 0.89 0.85

C4-1 1.33 457 390 203 24 0.041 619 0.26 0.74 0.46 0.82 0.76

C6-2 1.33 457 390 203 45 0.022 848 0.19 0.61 0.39 0.94 0.84

C6-3 1.33 457 390 203 45 0.023 870 0.19 0.59 0.38 0.91 0.81

C6-4 1.33 457 390 203 48 0.021 857 0.19 0.61 0.39 0.97 0.86

D1-6 1.66 381 314 152 28 0.029 349 0.19 0.68 0.41 0.95 0.73

D1-7 1.66 381 314 152 28 0.029 358 0.18 0.66 0.40 0.94 0.72

D1-8 1.66 381 314 152 28 0.029 372 0.18 0.64 0.38 0.90 0.69

E1-2 1.74 381 314 152 30 0.080 444 0.42 0.95 0.73 0.96 0.82

7 S5-4 1.64 350 292 250 89 0.011 953 0.12 0.53 0.35 1.14 0.83

S5-5 1.40 350 292 250 89 0.008 1147 0.09 0.45 0.34 1.04 0.81

8 AG2 1.13 500 438 135 80 0.020 1126 0.18 0.50 0.35 0.82 0.84

AG3 1.13 500 438 135 80 0.031 1309 0.23 0.52 0.45 0.73 0.77

AG4 1.13 500 438 135 80 0.041 1414 0.28 0.56 0.56 0.71 0.75

AL2 1.13 500 438 135 68 0.024 1064 0.19 0.51 0.37 0.79 0.80

AL3 1.13 500 438 135 68 0.036 961 0.31 0.68 0.61 0.92 0.95

AL4 1.13 500 438 135 68 0.048 1204 0.33 0.64 0.65 0.77 0.81

max. 1.74 600 560 250 89 0.154 Avg. 0.33 0.82 0.62 0.90 0.82

min. 1.10 200 180 100 14 0.008 S.D. 0.14 0.20 0.23 0.10 0.09

tests 47 Cov. 0.42 0.24 0.37 0.11 0.11

References: (1) Lehwalter, 1988; (2) Regan, 1971; (3) Tan et al., 1995; (4) Tan et al., 1997; (5) Vollum and Tay, 2001; (6) Clark, 1951;

(7) Kong and Rangan, 1998; (8) Sagaseta, 2008. Avg. ¼ average, S.D. ¼ standard deviation and Cov. ¼ covariance

Sagaseta and Vollum
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tween the predictions of the simplified STM solution

procedure described in Figure 3 and the more general

solution procedure described in the text which accounts

for the actual position of the stirrups. Results are given

for the STM with the strength of the direct strut calcu-

lated in accordance with Eurocode 2 (STM–Eurocode

2) and the recommendations of Collins and Mitchell

(1991) (STM–Collins). The concrete contribution (Vd)

was taken as (2d/av)Vc in the modified truss model

where Vc was calculated with Equation 1.

Figure 10 shows that the STM is the only method to

accurately account for the influence of the stirrup index

SI on shear strength. Figure 11 show that the STM–

Collins predicts the influence of av/d most realistically

and that the STM–Eurocode 2 tends to give unsafe

predictions when av/d . 2. When av/d . 2 the strength

should be taken as the greatest of the values given by

sectional analysis and STM–Collins. Table 3 shows

that the STM was the most accurate of the methods

considered for beams with stirrups and 1 , av/d , 2.

Figure 12 shows the proportion of shear force taken by

the direct strut (º) in the STM decreases with increas-

ing SI, which is not the case for the modified truss,

Eurocode 2 or MC90 where Pcalc/Ptest varies signifi-

cantly with stirrup index (see Figures 10(a)–(c)). This

explains why the coefficients of variation in Pcalc/Ptest
in Table 3 are significantly greater for Eurocode 2

(37.7%) and the modified truss model (Vd + Vs)

(24.1%) than for the STM (10%).

Predictions for members without shear reinforcement

A total of 104 short-span beams (Cheng et al., 2001;

Clark, 1951; de Cossio and Siess, 1960; Kong et al.,

1970; Lehwalter, 1988; Leonhardt and Walter, 1964;

Mathey and Watsein, 1963; Moody et al., 1954,

Oh and Shin, 2001; Placas, 1969; Reyes de Ortiz,

1993; Sagaseta, 2008; Smith and Vantsiotis, 1982; Tan

and Lu, 1999; Tan et al., 1997; Vollum and Tay, 2001;

Walraven and Lehwalter, 1994; Zhang and Tan, 2007)

without stirrups were analysed with the STM and the

sectional design method in Eurocode 2 with partial

factors ªc and ªs equal to 1.0. The Eurocode 2 shear

capacity was taken as Vcalc ¼ (2d/av)VRdc where VRdc is

given by Equation 1 and 2d/av > 1. Table 4 gives

detailed results for the 67 beams with 1 , av/d , 2.

All of the results are presented in Figure 13, which

shows that the accuracy of both methods is relatively

independent of av/d but STM–Eurocode 2 gives signif-

icantly greater values for Pcalc/Ptest. Table 4 shows that

STM–Eurocode 2 predicts the mean strength of the
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beams with 1 , av/d , 2 most accurately but overesti-

mates the strength of a significant number of beams.

Table 4 also shows that STM–Collins tends to give safe

predictions for the beams with strengths that are over-

estimated by STM–Eurocode 2.

Tables 3 and 4 give coefficients of variation (COV)

for each design method for beams with and without

stirrups and 1 , av/d , 2. For example, the COV for

STM–Eurocode 2 was 11% for beams with shear rein-

forcement and 26% for beams without stirrups. Com-

parison of the strengths of notionally identical beams

tested by Clark (1951), Kong and Rangan (1998),

Vollum and Tay (2001) among others suggest that a

significant proportion of the greater scatter in Pcalc/Ptest
for beams with little or no shear reinforcement is in-

herent in the test data.

Design recommendations

Comparison of Figures 11(c) and 11(d) suggests that

the proposed STM is most reliable when the concrete

strength in the direct strut is calculated in accordance

with Equation 11 (Collins and Mitchell, 1991). This is

further illustrated in Figures 14(a)–(c), which compare

the predictions of various design methods, including

STM–Eurocode 2 and STM–Collins, with test data
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Table 4. Summary of database of members without stirrups (av/d ¼ 1–2)

Tests without stirrups (av/d: 1–2) Pcalc/Ptest

Ref. Beam av/d h: mm d: mm b: mm f 9c: MPa r: % Ptest: kN STM–

Eurocode 2

STM–

Collins

Eurocode 2 BS 8110

9 BI-1 1.29 457 403 203 26 3.05 626 0.64 0.59 0.46 0.50

BI-2 1.29 457 403 203 23 3.05 621 0.59 0.54 0.45 0.49

BII-3 1.29 457 403 203 22 1.88 524 0.67 0.57 0.51 0.49

BII-4 1.29 457 403 203 27 1.88 626 0.67 0.56 0.46 0.43

BIII-5 1.29 457 403 203 26 1.85 577 0.70 0.59 0.49 0.46

BIII-6 1.29 457 403 203 26 1.85 581 0.70 0.59 0.49 0.46

BIV-7 1.29 457 403 203 25 1.86 582 0.66 0.56 0.48 0.45

BIV-8 1.29 457 403 203 25 1.86 608 0.65 0.55 0.46 0.44

BV-9 1.29 457 403 203 24 1.16 448 0.83 0.64 0.52 0.49

BV-10 1.29 457 403 203 27 1.16 537 0.79 0.60 0.46 0.43

BVI-11 1.29 457 403 203 26 1.17 448 0.90 0.69 0.54 0.51

BVI-12 1.29 457 403 203 26 1.17 537 0.75 0.58 0.45 0.43

BV-13 1.29 457 403 203 23 0.75 445 0.81 0.57 0.45 0.43

BV14 1.29 457 403 203 27 0.75 448 0.94 0.64 0.47 0.45

BVI-15 1.29 457 403 203 26 0.75 359 1.13 0.77 0.58 0.55

BVI-16 1.29 457 403 203 23 0.75 377 0.97 0.68 0.53 0.51

10 III-24a 1.14 610 533 178 18 2.72 592 0.71 0.61 0.54 0.56

III-24b 1.14 610 533 178 21 2.72 605 0.79 0.68 0.55 0.57

III-25a 1.14 610 533 178 25 3.46 534 1.05 0.92 0.66 0.71

III-25b 1.14 610 533 178 18 3.46 578 0.71 0.63 0.54 0.58

III-26a 1.14 610 533 178 22 4.25 841 0.60 0.54 0.40 0.43

III-26b 1.14 610 533 178 21 4.25 792 0.61 0.55 0.42 0.45

III-27a 1.14 610 533 178 22 2.72 694 0.72 0.61 0.49 0.50

III-27b 1.14 610 533 178 23 2.72 712 0.74 0.63 0.49 0.50

III-28a 1.14 610 533 178 24 3.46 605 0.89 0.78 0.58 0.62

III-28b 1.14 610 533 178 23 3.46 681 0.76 0.67 0.51 0.54

III-29a 1.14 610 533 178 22 4.25 778 0.65 0.59 0.44 0.47

III-29b 1.14 610 533 178 25 4.25 872 0.65 0.59 0.41 0.44

11 V311 1.25 1000 930 250 16 1.69 735 0.78 0.71 0.80 0.72

V321 1.25 1000 930 250 16 1.69 778 0.73 0.67 0.75 0.67

V322 1.25 1000 930 250 14 1.69 752 0.68 0.63 0.75 0.67

V811 1.25 200 160 250 19 1.90 281 0.81 0.58 0.54 0.55

12 2 1.10 320 270 190 21 2.07 531 0.52 0.43 0.41 0.40

13 R4 1.99 305 272 152 34 1.46 302 0.51 0.29 0.34 0.33

R5 1.99 305 272 152 34 0.97 169 0.92 0.48 0.53 0.51

R6 1.99 305 272 152 34 1.46 249 0.63 0.35 0.41 0.40

14 1 1.14 200 180 100 44 2.23 137 1.05 0.95 0.74 0.76

2 1.14 200 180 100 44 2.23 201 0.71 0.65 0.50 0.52

3 1.14 200 180 100 44 1.26 145 0.99 0.79 0.60 0.59

4 1.28 200 160 100 44 2.51 161 1.19 0.88 0.50 0.55

7 1.14 200 180 100 25 2.23 135 0.66 0.61 0.62 0.64

8 1.14 200 180 100 25 2.23 165 0.54 0.50 0.51 0.52

9 1.14 200 180 100 25 2.23 178 0.50 0.46 0.47 0.48

10 1.21 200 180 100 25 2.23 180 0.39 0.38 0.44 0.45

11 1.21 200 180 100 25 2.23 134 0.52 0.51 0.59 0.61

12 1.21 200 180 100 25 2.23 133 0.53 0.51 0.59 0.61

15 1 1.10 400 363 150 51 1.80 560 1.03 0.83 0.50 0.48

2 1.24 400 363 150 36 1.80 440 0.75 0.63 0.50 0.48

3 1.38 400 326 150 32 2.06 310 0.89 0.68 0.59 0.57

3B 1.38 400 326 150 49 2.06 580 0.67 0.51 0.36 0.35

4 1.38 400 326 150 33 2.06 490 0.84 0.59 0.38 0.36

16 0C0-50 1.16 356 305 102 21 1.93 232 0.69 0.58 0.51 0.49

0B0-49 1.16 356 305 102 22 1.93 298 0.56 0.47 0.41 0.39

0D0-47 1.75 356 305 102 20 1.93 148 0.75 0.47 0.53 0.50

17 1-500/1.5 1.46 500 444 140 42 2.60 680 0.60 0.48 0.33 0.34

2-1000/1.5 1.53 1000 884 140 39 2.60 940 0.78 0.63 0.39 0.38

3-1400/1.5 1.55 1400 1243 140 44 2.60 1380 0.76 0.62 0.36 0.35

4-1750/1.5 1.56 1750 1559 140 43 2.60 940 1.32 1.03 0.64 0.60

18 III-1/1.50 1.41 500 443 110 78 2.58 370 1.34 1.14 0.60 0.62

(continued)
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from Kong and Rangan (1998) for beams in which the

only parameters varied were (a) the shear span, (b) the

stirrup index and (c) the area of flexural reinforcement.

All the beams of Kong and Rangan (1998) shown in

Figure 14 failed in shear unless noted otherwise. Figure

14 shows (a) shear strengths calculated assuming the

flexural reinforcement remained elastic and (b) the

shear force corresponding to flexural failure. Compari-

son of the STM–Eurocode 2 and Vflex lines with the

test data in Figures 14(a)–(c) shows that the STM–

Eurocode 2 incorrectly predicts the failure mode in a

significant number of cases. The STM–Eurocode 2 can

significantly overestimate the shear strength of beams

with av/d . 1.64 as shown in Figure 14(a). Figure

14(a) also shows that the shear strength calculated with

Equation 3 can be (a) independent of the shear span for

beams with uniform stirrup spacing and (b) less than

that given by the variable strut inclination method for

shear reinforcement in Eurocode 2. Neither of these

results is consistent with the test data. Figure 14(a) also

shows strengths calculated with the method used in BS

8110 but with Vc given by Equation 1 from Eurocode

2. The method gives conservative results but is more

realistic than Equation 3 in Eurocode 2. Figures 14(a)–

(c) show that STM–Collins gives reasonable predic-

tions of the affect of varying av/d, SI and flexural rein-

forcement ratio on shear strength. The STM–Collins

also has the advantage that the predictions of the STM

tend to become progressively safer as av/d increases.

Conclusion

This paper presents a strut-and-tie model for short-

span beams which is shown to provide more accurate

predictions of shear strength than existing simplified de-

sign equations. The strength of the direct strut can either

be calculated in accordance with Eurocode 2 (STM–

Eurocode 2) or in accordance with the recommendations

of Collins and Mitchell (1991) (STM–Collins). Analysis

of test data shows that STM–Eurocode 2 is valid for

a/d , 2, where the shear span a is measured between the

centres of the bearing plates. The restriction on a/d is

unnecessary for STM–Collins since the model becomes

progressively more conservative as av/d increases above

2. The realism of the STM was investigated with NLFEA

for beams tested by the authors. Good agreement was

obtained between the strains measured in the shear and

longitudinal reinforcement and calculated in the STM

and NLFEA. The STM strength predictions were more

reliable than those from the NLFEA, which were sensi-

Table 4. (continued)

Tests without stirrups (av/d: 1–2) Pcalc/Ptest

Ref. Beam av/d h: mm d: mm b: mm f 9c: MPa r: % Ptest: kN STM–

Eurocode 2

STM–

Collins

Eurocode 2 BS 8110

19 B0-1 1.72 457 390 203 24 0.98 242 0.98 0.80 0.67 0.63

B0-2 1.72 457 390 203 24 0.98 188 1.26 1.04 0.86 0.82

B0-3 1.72 457 390 203 24 0.98 256 0.92 0.76 0.63 0.60

C0-1 1.33 457 390 203 25 0.98 349 0.85 0.85 0.61 0.58

C0-3 1.33 457 390 203 24 0.98 334 0.89 0.86 0.63 0.59

20 L-1 1.41 305 252 152 21 3.36 232 0.90 0.58 0.56 0.61

21 AG0 1.12 500 438 135 80 3.33 652 1.27 1.33 0.53 0.57

AL0 1.12 500 438 135 68 3.33 731 1.04 1.05 0.45 0.49

max. 1.99 1750 1559 250 80 4.25 Avg. 0.79 0.65 0.52 0.52

min. 1.10 200 160 100 14 0.75 S.D. 0.21 0.19 0.11 0.10

tests 67 Cov. 0.26 0.28 0.21 0.20

References: (9) Mathey and Watsein, 1963; (10) Moody et al., 1954; (11) Lehwalter, 1988; (12) Leonhardt and Walter, 1964, (13) Placas, 1969;

(14) Vollum and Tay, 2001; (15) Reyes de Ortiz, 1993; (16) Smith and Vantsiotis, 1982; (17) Cheng et al., 2001; (18) Tan et al., 1997;

(19) Clark, 1951; (20) de Cossio and Siess, 1960; (21) Sagaseta, 2008. Avg. ¼ average, S.D. ¼ standard deviation and Cov. ¼ covariance
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Figure 13. Influence of av/d on performance of STM-

Eurocode 2 and Eurocode 2 methods for short span beams

without stirrups; data from Clark (1951), Moody et al.

(1954), de Cossio and Siess (1960), Leonhardt and Walter

(1964), Mathey and Watsein (1963), Placas (1969), Kong et

al. (1970), Smith and Vantsiotis (1982), Lehwalter (1988),

Reyes de Ortiz (1993), Walraven and Lehwalter (1994), Tan

et al. (1997), Tan and Lu (1999), Cheng et al. (2001), Oh and

Shin (2001), Vollum and Tay (2001), Zhang and Tan (2007),

Sagaseta (2008) (refer to Table 4 for tests with 1, av/d , 2)

Sagaseta and Vollum
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tive to the parameters assumed in the model and subject

to convergence difficulties near failure. Analysis of test

data showed that the performance of the simplified de-

sign method in Eurocode 2 for short-span beams is highly

dependent on the stirrup index SI. Similar problems were

observed in the MC90 design method, which provides

rather conservative results. The proposed STM over-

comes this variability in accuracy with SI since the con-

tribution of the direct strut reduces as the SI increases.

The STM is most accurate for beams with stirrups and

gives the most consistent results when the strength of the

direct strut is calculated with the formula of Collins and

Mitchell (1991). The scatter in the predictions for beams

without stirrups reflects the variability in the test data,

which appears to be largely attributable to variations in

the orientation of the diagonal shear crack within the

direct strut.

The influence of aggregate fracture on the shear

strength of short-span beams was investigated experi-

mentally. Analysis of the relative crack displacements

and comparison of the predicted and measured failure

loads suggests aggregate fracture has little if any influ-

ence on the shear strength of short-span beams but

more tests are required to confirm this. The orientation

of the main diagonal shear crack with respect to the

direct strut appears to have a much more significant

effect than crack roughness for the specimens tested.
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