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Model checking and logic-based learning together deliver automated support, especially in 

adaptive and autonomous systems.  

 

Figure 1. General verify-diagnose-repair framework.  

Figure 2. Train-controller example.  

Figure 3. Concrete instantiation for train-controller example.  

Figure 4. ILP for train-controller example.  

 

(table) Modeling languages, tools, and case studies for requirements-engineering applications; for 

more on Progol5, see http://www.doc.ic.ac.uk/~shm/Software/progol5.0; for MTSA, see 

http://sourceforge.net/projects/mtsa; for LTSA, see http://www.doc.ic.ac.uk/ltsa; and for TAL, see 

Forrest et al.[13]  

 

key insights  

* The marriage of model checking for finding faults and machine learning for suggesting repairs 

promises to be a worthwhile, synergistic relationship.  

* Though separate software tools for model checking and machine learning are available, their 

integration has the potential for automated support of the common verify-diagnose-repair cycle.  

* Machine learning ensures the suggested repairs fix the fault without introducing any new faults.  

 

Edward Feigenbaum and Raj Reddy won the ACM A.C. Turing Award in 1994 for their pioneering 



work demonstrating the practical importance and potential impact of artificial intelligence 

technology. Feigenbaum was influential in suggesting the use of rules and induction as a means for 

computers to learn theories from examples. In 2007, Edmund M. Clarke, E. Allen Emerson, and 

Joseph Sifakis won the Turing Award for developing model checking into a highly effective 

verification technology for discovering faults. Used in concert, verification and AI techniques can 

provide a powerful discovery and learning combination. In particular, the combination of model 

checking[10] and logic-based learning[15] has enormous synergistic potential for supporting the 

verify-diagnose-repair cycle software engineers commonly use in complex systems development. In 

this article, we show how to realize this synergistic potential.  

 

Model checking exhaustively searches for property violations in formal descriptions (such as code, 

requirements, and design specifications, as well as network and infrastructure configurations), 

producing counterexamples when these properties do not hold. However, though model checkers 

are effective at uncovering faults in formal descriptions, they provide only limited support for 

understanding the causes of uncovered problems, let alone how to fix them. When uncovering a 

violation, model checkers usually provide one or more examples of how such a fault occurs in the 

description or model being analyzed. From this feedback, producing an explanation for the failure 

and generating a fix are complex tasks that tend to be human-intensive and error-prone. On the 

other hand, logic-based learning algorithms use correct examples and violation counterexamples to 

extend and modify a formal description such that the description conforms to the examples while 

avoiding the counterexamples. Although these counterexamples are usually provided manually, 

examples and counterexamples can be provided through verification technology (such as model 

checking).  

 

Consider the problem of ensuring that a contract specification of an API satisfies some invariant. 



Automated verification can be performed through a model checker that, should the invariant be 

violated, will return an example sequence of operations that breaks the invariant. Such a trace 

constitutes a counterexample that can then be used by a learning tool to correct the contract 

specification so the violation can no longer occur. The correction typically results in a strengthened 

post-condition for some operation so as to ensure the sequence does not break the invariant or 

perhaps a strengthened operation pre-condition so as to ensure the offending sequence of operations 

is no longer possible. For example, in Alrajeh[4] the contract specification of the engineered safety-

feature-actuation subsystem for the safety-injection system of a nuclear power plant was built from 

scratch through the combined use of model checking and learning. 

 

Another software engineering application for the combined technologies is obstacle analysis and 

resolution in requirements goal models. In it, the problem for software engineers is to identify 

scenarios in which high-level system goals may not be satisfied due to unexpected obstacles 

preventing lower-level requirements from being satisfied; for instance, in the London Ambulance 

System[21] an incident is expected to be resolved some time after an ambulance intervenes. For an 

incident to be so resolved, an injured patient must be admitted to the nearest hospital and the 

hospital must have all the resources to treat that patient. This goal is flawless performance, as it 

does not consider the case in which the nearest hospital lacks sufficient resources (such as a bed), a 

problem not identified in the original analysis. Model checking and learning helped identify and 

resolve this problem automatically. Model checking the original formal description of the domain 

against the stated goal automatically generates a scenario exemplifying this case; logic-based 

learning automatically revises the goal description according to this scenario by substituting the 

original with one saying patients should be admitted to a nearby hospital with available resources. A 

similar approach has also been used to identify and repair missing use cases in a television-set 

configuration protocol.[3]  



  

The marriage of model checking and logic-based learning thus provides automated support for 

specification verification, diagnosis, and repair, reducing human effort and potentially producing a 

more robust product. The rest of the article explores a general framework for integrating model 

checking and logic-based learning (see Figure 1).  

 

Basic Framework  

The objective of the framework is to produce—from a given formal description and a property—a 

modified description guaranteed to satisfy the property. The software engineer’s intuition behind 

combining model checking and learning is to view them as complementary approaches; model 

checking automatically detects errors in the formal description, and learning carries out the 

diagnosis and repair tasks for the identified errors, resulting in a correctly revised description.  

 

To illustrate the framework—four steps executed iteratively—we consider the problem of 

developing a contract-based specification for a simplified train-controller system.[20] Suppose the 

specification includes the names of operations the train controller may perform and some of the pre- 

and post-conditions for each operation; for instance, the specification says there is an operation 

called “close doors” that causes a train’s open doors to be closed. Other operations are for opening 

the train doors and starting and stopping the train. Two properties the system must guarantee are 

safe transportation (P1, or “train doors are closed when the train is moving”) and rapid 

transportation (P2, or “train shall accelerate when the block signal is set to go”) (see Figure 2).  

 

Step 1. Model checking. The aim of this step is to check the formal description for violations of the 

property. The result is either a notification saying no errors exist, in which case the cycle 

terminates, or that an error exists, in which case a counterexample illustrating the error is produced 



and the next step initiated. In the train-controller example, the model checker checks whether the 

specification satisfies the properties P1 and P2. The checker finds a counterexample demonstrating 

a sequence of permissible operation executions leading to a state in which the train is moving and 

the doors are open, thereby violating the safe-transportation property P1. Since a violation exists, 

the verify-diagnose-repair process continues to the next step.  

Step 2. Elicitation. The counterexample produced by the model-checking step is not an exhaustive 

expression of all ways property P1 may be violated; other situations could also lead to a violation of 

P1 and also of P2. This step gives software engineers an opportunity to provide additional and, 

perhaps, related counterexamples. Moreover, it may be that the description and properties are 

inconsistent; that is, all executions permitted by the description violate some property. Software 

engineers may therefore provide traces (called “witnesses”) that exemplify how the property should 

have been satisfied. Such examples may be manually elicited by the software engineer(s) or 

automatically generated through further automated analysis. In the simplified train-controller 

system example, a software engineer can confirm the specification and properties are consistent by 

automatically eliciting a witness trace that shows how P1 can be satisfied keeping the doors closed 

while the train is moving and opening them when the train has stopped.  

Step 3. Logic-based learning. Having identified counterexamples and witness traces, the logic-

based learning software carries out the repair process automatically. The learning step’s objective is 

to compute suitable amendments to the formal description such that the detected counterexample is 

removed while ensuring the witnesses are accepted under the amended description. For the train 

controller, the specification corresponds to the available background theory; the negative example is 

the doors opening when the train is moving, and the positive example is the doors opening when it 

has stopped. The purpose of the repair task is to strengthen the pre- and post-conditions of the train-

controller operations to prevent the train doors from opening when undesirable to do so. The 

learning algorithm finds the current pre-condition of the open-door operation is not restrictive 



enough and consequently computes a strengthened pre-condition requiring the train to have stopped 

and the doors to be closed for such an operation to be executed.  

Step 4. Selection. In the case where the logic-based learning algorithm finds alternative amendments 

for the same repair task, a selection mechanism is needed for deciding among them. Selection is 

domain-dependent and requires input from a human domain expert. When a selection is made, the 

formal description is updated automatically. In the simplified train-controller-system example, an 

alternative strengthened pre-condition—the doors are closed, the train is not accelerating—is 

suggested by the learning software, in which case the domain experts could choose to replace the 

original definition of the open-doors operation.  

 

The framework for combining model checking and logic-based learning is intended to iteratively 

repair the formal description toward one that satisfies its intended properties. The correctness of the 

formal description is most often not realized in a single application of the four steps outlined earlier, 

as other violations of the same property or other properties may still exist. To ensure all violations 

are removed, the steps must be repeated automatically until no counterexamples are found. When 

achieved, the correctness of the framework’s formal description is guaranteed.  

 

Concrete Instantiation  

We now consider model checking more formally, focusing on Zohar Manna’s and Amir Pnueli’s 

Linear Temporal Logic (LTL) and Inductive Logic Programming (ILP), a specific logic-based 

learning approach. We offer a simplified example on contract-based specifications and discuss our 

experience supporting several software-engineering tasks. For a more detailed account of model 

checking and ILP and their integration, see Alrajeh et al.,[5] Clarke,[10] and Corapi et al.[11]  

 

Model checking. Model checkers require a formal description (M), also referred to as a “model,” as 



input. The input is specified using well-formed expressions of some formal language (LM) and a 

semantic mapping (s: LM → D) from terms in LM to a semantic domain (D) over which analysis is 

performed. They also require that the property (P) be expressed in a formal language (LP) for which 

there is a satisfiability relation (⊨⊆ D x LP) capturing when an element of D satisfies the property. 

Given a formal description M and a property P, the model checker decides if the semantics of M 

satisfies the property s(M) ⊨ P.  

 

Model checking goes beyond checking for syntactic errors a description M may have by performing 

an exhaustive exploration of its semantics. An analogy can be made with modern compilers that 

include sophisticated features beyond checking if the code adheres to the program language syntax 

and consider semantic issues (such as to de-reference a pointer with a null value). One powerful 

feature of model checking for system fault detection is its ability to automatically generate 

counterexamples that are meant to help engineers identify and repair the cause of a property 

violation (such as an incompleteness of the description with respect to the property being checked, 

or s(M) ⊭ P and s(M) ⊭ ¬P), an incorrectness of the description with respect to the property, or 

s(M) ⊨ ¬P), and the property itself being invalid. However, these tasks are complex, and only 

limited automated support exists for resolving them consistently. Even in relatively small simplified 

descriptions, such resolution is not trivial since counterexamples are expressed in terms of the 

semantics rather than the language used to specify the description or the property, counterexamples 

show symptoms of the cause but not the cause of the violation itself, and any manual modification 

to the formal description could fail to resolve the problem and introduce violations to other 

desirable properties.  

 



Consider the example outlined in Figure 3. The formal description M is a program describing a 

train-controller class using LM, a JML-like specification language. Each method in the class is 

coupled with a definition of its pre-conditions (preceded with the keyword requires) and post-

conditions (preceded by the keyword ensures). The semantics of the program is defined over a 

labeled transition system (LTS) in which nodes represent the different states of the program and 

edges represent the method calls that cause the program to transit from one state to another. 

Property P is an assertion indicating what must hold at every state in every execution of the LTS 

s(M). The language LP used for expressing these properties is LTL. The first states it should always 

be the case (where *  means always) that if a train tr is moving, then its doors are closed. The 

second states the train tr shall accelerate within three seconds of the block signal b at which it is 

located being set to go. To verify s(M) ⊨ P, an explicit model checker first synthesizes an LTS that 

represents all possible executions permitted by the given program M. It then checks whether P is 

satisfied in all executions of the LTS.  

 

In the train-controller example, there is an execution of s(M) that violates P1 ∧ P2; hence a 

counterexample is produced (see Figure 3). Despite the simplicity and size of this counterexample, 

the exact cause of the violation is not obvious to the software engineer. Is it caused by an incorrect 

method invocation, a missing one, or both? If an incorrect method invocation, which method should 

not have been called? Should this invocation be corrected by strengthening its precondition or 

changing the post-condition of previously called operations? If caused by a missing invocation, 

which method should have been invoked? And under what conditions?  

 

To prepare the learning step for a proper diagnosis of the encountered violations, witness traces to 

the properties are elicited. They may be provided either by the software engineer through 



specification, simulation, and animation techniques or through model checking. Figure 3 includes a 

witness trace elicited from s(M) by model checking against (¬P1 V ¬P2). In this witness, the train 

door remains closed when the train is moving, satisfying P1 and satisfying P2 vacuously.  

 

Inductive Logic Programming  

Once a counterexample and witness traces have been produced by the model checker, the next step 

involves generation of repairs to the formal description. If represented declaratively, automatic 

repairs can be computed by means of ILP. ILP is a learning technique that lies at the intersection of 

machine learning and logic programming. It uses logic programming as a computational mechanism 

for representing and learning plausible hypothesis from an incomplete or incorrect background 

knowledge and a set of examples. A logic programs is defined as a set of rules of the form h f b1, 

…, bj, not bj+1, …, not bn, which can be read as whenever b1 and … and bj hold, and bj+1 and 

… and bn do not hold, then h holds. In a given clause, h is called the “head” of the rule, and the 

conjunction {b1 , …, bj, not bj+1, …, not bn} is the “body” of the rule. A rule with an empty 

body is called an “atom,” and a rule with an empty head is called an “integrity constraint.” Integrity 

constraints given in the initial description are assumed to be correct (therefore not revisable) and 

must be satisfied by any learned hypothesis.  

 

In general, ILP requires as input background knowledge (B) and set of positive (E+) and negative 

(E−) examples that, due to incomplete information, may not be inferable but that are consistent with 

the current background knowledge. The task for the learning algorithm is to compute a hypothesis 

(H) that extends B so as to entail the set of positive examples (B ∧ H ⊨ E+) without covering the 

negative ones (B ∧ H ⊭ E−). Different notions of entailment exist, some weaker than others;[16] for 

instance, cautious (respectively brave) entailment requires what appears on the right-hand side of 



the entailment operator to be true (in the case of ⊨) or false (in the case of ⊭) in every (respectively 

at least one) interpretation of the logic program on the right. ILP, like all forms of machine learning, 

is fundamentally a search process. Since the goal is to find a hypothesis for given examples, and 

many alternative hypotheses exist, these alternatives are considered automatically during the 

computation process by traversing a lattice-type hypothesis space based on a generality-ordering 

relation for which the more examples a hypothesis explains, the more general is the hypothesis.  

 

“Non-monotonic” ILP is a particular type of ILP that is, by definition, capable of learning 

hypothesis H that alters the consequences of a program such that what was true in B alone is not 

necessarily true once B is extended with H. Non-monotonic ILP is therefore well-suited for 

computing revisions of formal descriptions, expressed as logic programs. The ability to compute 

revisions is particularly useful when an initial, roughly correct specification is available and a 

software engineer wants to improve it automatically, or semi-automatically, according to examples 

acquired incrementally over time; for instance, when evidence of errors in a current specification is 

detected, a revision is needed to modify the specification such that the detected error is no longer 

possible. However, updating the description with factual information related to the evidence would 

simply amount to recording facts. So repairs must generalize from the detected evidence and 

construct minimal but general revisions of the given initial specification that would ensure its 

semantics no longer entails the detected errors. The power of non-monotonic ILP to make changes 

to the semantics of a given description makes it ideal for the computation of repairs. Several non-

monotonic ILP tools (such as XHAIL and ASPAL) are presented in the machine learning literature 

where the soundness and completeness of their respective algorithms have been shown. These tools 

typically aim to find minimal solutions according to a predefined score function that considers the 

size of the constructed hypotheses, number of positive examples covered, and number of negative 

examples not covered as parameters.  



 

Integration. Integration of model checking with ILP involves three main steps: translation of the 

formal description; counterexamples and witness traces generated by the model checker into logic 

programs appropriate for ILP learning; computation of hypotheses; and translation of the 

hypotheses into the language LM of the specification (see Figure 4).  

 

Consider the background theory in Figure 4 for our train example. This is a logic program 

representation of the description M together with its semantic properties. Expressions 

“train(tr1)” and “method(openDoors(Tr)) f train(Tr)” say tr1 is a train and 

openDoors(Tr) is a method, whereas the expression “f execute(M, T), requires(M, 

C), not holds(C, T)” is an integrity constraint that captures the semantic relationship 

between method execution and their pre-conditions; the system does not allow for a method M to be 

executed at a time T when its pre-condition C does not hold at that time. Expressions like 

execute(openDoors(Tr), T) denote the narrative of method execution in a given execution 

run.  

 

The repair scenario in Figure 4 assumes a notion of “brave entailment” for positive examples E+, or 

E+ must be consistent with B ∧ H, and a notion of “cautious” entailment for E−, or E− must be 

inconsistent with B ∧ H. Although Figure 4 gives only an excerpt of the full logic program 

representation, it is possible to intuitively see that, according to this definition of entailment, the 

conjunction of atoms in E+ is consistent with B, but the conjunction of the negative examples in E− 

is also consistent with B, since all defined pre-conditions of the methods executed in the example 

runs are satisfied. The current description expressed by the logic program B is thus erroneous. The 

learning phase, in this case, must find hypotheses H, regarding method pre- and post-conditions, 

that together with B would ensure the execution runs represented by E− would no longer be 



consistent with B. In the train-controller scenario, two alternative hypotheses are found using 

ASPAL.  

 

Once the learned hypotheses are translated back into the language LM, the software engineer can 

select from among the computed repairs, and the original description can be updated accordingly.  

 

Applications. As mentioned earlier, we have successfully applied the combination of model 

checking and ILP to address a variety of requirements-engineering problems (see the table here). 

Each application consisted of a validation against several benchmark studies, including London 

Ambulance System (LAS), Flight Control System (FCS), Air Traffic Control System (ATCS), 

Engineered Safety Feature Actuation System (ESFAS) and Philips Television Set Configuration 

System (PTSCS).  

 

The size of our case studies was not problematic. In general, our approach was dependent on the 

scalability of the underlying model checking and ILP tools influenced by the size of the formal 

description and properties being verified, expressiveness of the specification language, number and 

size of examples, notion of entailment adopted, and characteristics of the hypotheses to be 

constructed. As a reference, in the goal operationalization of the ESFAS, the system model consists 

of 29 LTL propositional atoms and five goal expressions. We used LTL model checking, which is 

coNP-hard and PSPACE-complete, and XHAIL, the implementation of which is based on a search 

mechanism that is NP-complete. We had to perform 11 iterations to reach a fully repaired model, 

with an average cycle computation time of approximately 88 seconds; see Alrajeh et al.[4] for full 

details on these iterations.  

 

Related Work  



Much research effort targets fault detection, diagnosis, and repair, some looking to combine 

verification and machine learning in different ways; for example, Seshia[17] showed tight 

integration of induction and deduction helps complete incomplete models through synthesis, and 

Seshia[17] also made use of an inductive inference engine from labeled examples. Our approach is 

more general in both scope and technology, allowing not only for completing specifications but also 

for changing them altogether.  

 

Testing and debugging are arguably the most widespread verify-diagnose-repair tasks, along with 

areas of runtime verification, (code) fault localization, and program repair. Runtime verification 

aims to address the boundary between formal verification and testing and could provide a valid 

alternative to model checking and logic-based learning, as we have described here. Fault 

localization has come a long way since Mark Weiser’s[22] breakthrough work on static slicing, 

building on dynamic slicing,[1] delta debugging,[23] and others. Other approaches to localization 

based on comparing invariants, path conditions, and other formulae from faulty and non-faulty 

program versions also show good results.[12] Within the fault localization domain, diagnosis is 

often based on statistical inference.[14]  

 

Model checking and logic-based reasoning are used for program repair; for example, Buccafurri et 

al.[8] used abductive reasoning to locate errors in concurrent programs and suggest repairs for very 

specific types of errors (such as variable assignment and flipped consecutive statements). This 

limitation was due to the lack of a reasoning framework that generalizes from ground facts. Logic-

based learning allows a software engineer to compute a broader range of repairs.  

 

A different, but relevant, approach for program synthesis emerged in early 2010[18] where the 

emphasis was on exploiting advances in verification (such as inference of invariants) to encode a 



program-synthesis problem as a verification problem. Heuristic-based techniques (such as genetic 

algorithm-based techniques[13]) aimed to automatically change a program to pass a particular test. 

Specification-based techniques aim to exploit intrinsic code redundancy.[9] Contrary to our work 

and that of Buccafurri et al.,[8] none of these techniques guarantees a provably correct repair.  

 

Theorem provers are able to facilitate diagnosing errors and repairing descriptions at the language 

level. Nonetheless, counterexamples play a key role in human understanding, and state-of-the-art 

provers (such as Nitpick[6]) have been extended to generate them. Beyond counterexample 

generation, repair is also being studied; for instance, in Sutcliffe and Puzis[19] semantic and 

syntactic heuristics for selecting axioms were changed. Logic-based learning offers a means for 

automatically generating repairs over time rather than requiring the software engineer to predefine 

them. Machine-learning approaches that are not logic-based have been used in conjunction with 

theorem proving to find useful premises that help prove a new conjecture based on previously 

solved mathematical problems.[2]  

 

Conclusion  

To address the need for automated support for verification, diagnosis, and repair in software 

engineering, we recommend the combined use of model checking and logic-based learning. In this 

article, we have described a general framework combining model checking and logic-based 

learning. The ability to diagnose faults and propose correct resolutions to faulty descriptions, in the 

same language engineers used to develop them, is key to support for many laborious and error-

prone software-engineering tasks and development of more-robust software.  

 

Our experience demonstrates the significant benefits this integration brings and indicates its 

potential for wider applications, some of which were explored by Borjes et al.[7] Nevertheless, 



important technical challenges remain, including support for quantitative reasoning like stochastic 

behavior, time, cost, and priorities. Moreover, diagnosis and repair are essential not only during 

software development but during runtime as well. With the increasing relevance of adaptive and 

autonomous systems, there is a crucial need for software-development infrastructure that can reason 

about observed and predicted runtime failures, diagnose their causes, and implement plans that help 

them avoid or recover from them.  
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Pull Quotes  

The marriage of model checking and logic-based learning thus provides automated support for 

specification verification, diagnosis, and repair, reducing human effort and potentially producing a 

more robust product.  

 

Model checking automatically detects errors in the formal description, and learning carries out the 

diagnosis and repair tasks for the identified errors, resulting in a correctly revised description.  

 

Machine-learning approaches that are not logic-based have been used in conjunction with theorem 

proving to find useful premises that help prove a new conjecture based on previously solved 

mathematical problems.[2]  

 

 

 


