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Frequencies of the Ricker wavelet

Yanghua Wang'

ABSTRACT

The Ricker wavelet is theoretically a solution of the
Stokes differential equation, which takes into account the
effect of Newtonian viscosity, and is applicable to seismic
waves propagated through viscoelastic homogeneous media.
In this paper, we defined the time-domain breadth and the
frequency-domain bandwidth of the Ricker wavelet and de-
veloped quantities analytically in terms of the Lambert W
function. We determined that the central frequency, the geo-
metric center of the frequency band, is close to the mean fre-
quency statistically evaluated using the power spectrum,
rather than the amplitude spectrum used in some of the pub-
lished literature. We also proved that the standard deviation
from the mean frequency is not, as suggested by the literature,
the half-bandwidth of the frequency spectrum of the Ricker
wavelet. Moreover, we established mathematically the rela-
tionships between the theoretical frequencies (the central
frequency and the half-bandwidth) and the numerical mea-
surements (the mean frequency and its standard deviation)
and produced each of these frequency quantities analytically
in terms of the peak frequency of the Ricker wavelet.

INTRODUCTION

The Ricker wavelet is a theoretical waveform obtained by solving
the Stokes differential equation (Ricker, 1943, 1944). Because this
equation takes into account the effect of Newtonian viscosity, the
Ricker wavelet is representative of seismic waves propagating
through viscoelastic homogeneous media, i.e., the Voigt model.
Mathematically, the Ricker wavelet is the second derivative of a
Gaussian function; therefore, it is symmetric in the time domain.
However, in reality, seismic signals are often not symmetric and
instead are close to the first or one-and-a-half derivatives of a Gaus-
sian function (Ricker, 1953; Hosken, 1988). Nevertheless, various

derivatives of a Gaussian function have similar amplitude spectra,
altered from a Gaussian distribution and thus the Ricker wavelet is
often used in seismic analysis, for example, wavefield simulation,
reflectivity inversion, attenuation evaluation, etc.

In the frequency domain, the amplitude spectrum of the Ricker
wavelet and the spectra of various derivatives of a Gaussian are
asymmetric. Physically, asymmetry can represent the frequency-
dependent attenuation behavior of seismic waves in viscoelastic me-
dia. In this paper, we attempt to analyze the character of the Ricker
wavelet, especially the key parameters describing the frequency
spectrum. We first define the time-domain wavelet breadth and
the frequency-domain bandwidth of the Ricker wavelet. These
two quantities are the time and frequency durations, defined at a
half of the waveform peak and the amplitude spectrum peak, respec-
tively. The definitions of time breadth and frequency bandwidth
lead to an inverse exponential equation. The solution of this equa-
tion is a special function known as the Lambert W function (Lam-
bert, 1758, 1772; Euler, 1779; Corless et al., 1996). By using the
Lambert W function, we are able to analytically present not only the
frequency bandwidth (Wang, 2015) but also the time-domain
breadth of the Ricker wavelet.

The geometric center of the frequency band is referred to as the
central frequency. Once we analytically derive the central fre-
quency of the Ricker wavelet, we are able to find the relationship
between the central frequency and the mean frequency. The latter
is a statistical quantity that can be evaluated practically from the
discrete Fourier spectrum of the seismic data. In the published
literature, some works implement the evaluation of the mean fre-
quency using the power spectrum (Cohen and Lee, 1989, 1990;
Barnes, 1993; Loughlin and Tacer, 1997; Loughlin and Davidson,
2001; Carter and Kendall, 2006; Wang, 2014), and other works use
the amplitude spectrum (Quan and Harris, 1997; Hu et al., 2013). We
derive expressions analytically for both statistical cases and prove
that the central frequency is close to the mean frequency evaluated
from the power spectrum rather than the amplitude spectrum.

The literature also suggests that the standard deviation from
the mean frequency could be considered as the half-bandwidth
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(Berkhout, 1984; Cohen and Lee, 1989, 1990; Gram-Hansen, 1991;
Barnes, 1993). In this paper, however, we prove that the standard
deviation is not the half-bandwidth of the Ricker wavelet. We derive
the relationship between the frequency bandwidth, which is a theo-
retical parameter, and the standard deviation, which is a statistical
quantity evaluated from either the power spectrum or the amplitude
spectrum of the Ricker wavelet.

In geophysical analysis, frequency quantities such as the central fre-
quency and the bandwidth can be used to describe seismic resolution,
and changes in these quantities can be exploited to measure the attenu-
ation coefficients of subsurface media. However, field seismic signa-
tures might differ from the Ricker wavelet, the second derivative of a
Gaussian. If they are close to fractional derivatives of a Gaussian, their
spectra could be similar to the Ricker amplitude spectrum. In this pa-
per, we will see that the power spectrum, rather than the amplitude
spectrum, of the Ricker wavelet is close to a Gaussian distribution.

THE RICKER WAVELET

The Ricker wavelet is defined in the time domain as

r(7) = (1 - %a)%rz) exp (—%wzrz) (1)

where 7 is time (in seconds) and w,, is the most energetic frequency
(in radians per second). It is symmetric in the time domain and has a
zero mean, as [*_r(r)dr = 0.

The Ricker wavelet r(7) is normalized to unity. The breadth of
this wavelet is defined by the time duration at one-half of the wave
peak, r(z) = 1, which leads to the equation
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Figure 1. Lambert W function. The minimal of the real x variable is
—e~!, where W(—e~!) = —1. Separated from this point denoted by
a cross, the Lambert W function has two branches, W_;(x) for
W(x) < =1 and Wy(x) for W(x) > —1.

11 11 Je
(E_Za)f)rz) exXp (E—Zwé’LJ) = T (2)

This is the inverse exponential equation,

z exp z =X, 3)

_1 _1_1,2
where x = ;+/e and z =5 — o,

equation is

72. The solution of this special

7= W(x), “4)

where W(x) is the Lambert W function, displayed in Figure 1
(Wang, 2015).

By solving equation 2, we may obtain the half-breadth of the
Ricker wavelet, as

- l_w(V—E). )

According to the Lambert W function in Figure 1, when
x:%\/—z0.41218, W(iﬁ)%O.SOMO]. Therefore, the half-
breadth of the Ricker wavelet is

088521

w

(6)
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P

For a sample Ricker wavelet shown in Figure 2a, defined arbi-
trarily to have its most energetic angular frequency at 60z rad/s
(equivalent to the ordinary frequency of 30 Hz), the full-time
breadth is 27, ~ 9.4 ms. This time quantity of the arbitrarily chosen
30-Hz wavelet might provide us with an insight on the time-domain
seismic resolution limit.

THE FREQUENCY BAND AND THE CENTRAL
FREQUENCY

The Fourier transform of the Ricker wavelet may be expressed

as
2w w?

R(w) = —— 5 exp <— —2), 7
@y

where  is the angular frequency. Because the frequency spectrum
is real and nonnegative in value, it is just the amplitude spectrum
|R(w)| = R(w) of a Ricker wavelet with any possible time delay in
the time domain.

To verify that the most energetic frequency w,, is the peak fre-
quency corresponding to the maximum amplitude, we can set the
derivative of the amplitude spectrum, with respect to the frequency,

to zero:
OR 4w ( a)2> ( wz)
T 22 (1-2 Vexp(-Z ) =0. ®
ow /1w, w? w?

This leads to the peak frequency w = w,,.
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As is known, the Ricker wavelet is the second derivative of a
Gaussian function. Although the amplitude spectrum of a Gaussian
is still a Gaussian distribution, the amplitude spectrum of the Ricker
wavelet is the Gaussian distribution multiplied by a factor w? and
thus is asymmetric in the frequency domain. Hence, the peak fre-
quency is different from the central frequency, the geometric center
of the frequency band. As noted for the first time by Wang (2015),
the definition of the frequency band and the central frequency of a
Ricker wavelet can be expressed in terms of the Lambert W func-
tion. These results are summarized here for the sake of com-
pleteness.

For the amplitude spectrum of the Ricker wavelet, the peak is
R(w,) =2(e\/mw,)™". The frequency band is measured at a half
of this maximum as

1
eyaw,’

R(w) ©)

which leads to the inverse exponential equation

w? w? 1
- ) =——, 10
< w%) ‘”‘p( wz,) 2 {10

with a solution expressed in terms of the Lambert W function:

2 1
—;:W(—ze) (1)

The Lambert W function has two branches W_; (x) for W(x) < —1
and W(x) for W(x) > —1, separated at point (—e~!, —1), denoted
by a cross in Figure 1. Then, the frequency band [w;;, wz] is

given by
1
we1 =y | =Wy 50 )

1
Wypy = CUp _W—l (— Z) . (12)

The analytical expression of the central frequency is

() () o

and the half-bandwidth is

Numerical approximations of Wy(x) and W_;(x) for x =
—(2¢)7! are

W, (— 1) ~ —0.231961,
2e
1
wW_, (— —) ~ —2.67835. (15)
2e

Hence, the frequency quantities are

(w1, 0p) = (0.481623w),,1.636567w,),
W, ~ 1.059095wp,
wp = 0.577472w,. (16)

For the sample Ricker wavelet defined with the peak angular
frequency of w, ~ 188.5 rad/s, the full frequency band is 2w, ~
217.7 rad/s (Figure 2b).

FREQUENCY QUANTITIES EVALUATED USING
THE POWER SPECTRUM

For a practical application when we have discrete frequency spec-
trum of seismic data, we can statistically evaluate the mean fre-
quency rather than the central frequency. The formulas for
evaluating the mean frequency and the standard deviation, based
on the power spectrum, are

_ & wR*(w)dow
" PR (w)de

0 (1 0 V22 12
0, = (fo (w—w,)*R (a))dw) ’ (a7

f(;"’ R*(w)dw
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Figure 2. (a) Ricker wavelet r(z), where 7 is time. The breadth of
the wavelet is 27,. (b) Frequency spectrum R(w), where w is the
angular frequency of wavelet (7). The central frequency is .,
and the bandwidth is 2w,,.
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where R?(w) is the power spectrum of the Ricker wavelet. Because
the Ricker wavelet is real valued, we only consider the frequency
range from zero to positive infinite.

The three definite integrals in the two expressions above are de-
rived in Appendix A:

N 3
D= | R(0)do=—r—,
‘ A (@) 8v270,

® w, (15 3w\ o
D;= 2R (@)dw =—2— —Tm) _Tm
(18)
Then, the mean frequency is
D 4 /2
Wy = D—? =3 \/;w,, ~ 1.0638460,, (19)

and the standard deviation is

D 5
w5 - —~ 43848w,. (2
b= 7 0.343848w,.  (20)
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Figure 3. (a) Statistical frequency evaluation using the power spec-
trum of the Ricker wavelet. The solid vertical lines indicate the cen-
tral frequency w, and the half-bandwidth w,,. The dashed vertical
lines are the mean frequency w,, and standard deviation w,. (b) Stat-
istical frequency evaluation using the amplitude spectrum. The
dashed vertical lines are mean frequency ) and standard
deviation @,,). The power spectrum is closer to a Gaussian distri-
bution (in the dashed curve) than the amplitude spectrum will be.

Wang

For the sample Ricker wavelet defined with the peak angular
frequency of @, ~ 188.5 rad/s, the mean frequency is ®,,~
200.5 rad/s, in contrast to the central frequency w, =~ 199.6 rad/s,
and two times the deviation is 2w, ~ 129.6 rad/s, in contrast to
the full frequency band is 2w, ~ 217.7 rad/s. Using the two statis-
tical parameters (w,,, ®,), We can construct an equivalent distribution
in Gaussian,

_ 2
P(w) :izexp<—lw—2>. @)

P10 2 w;

As plotted in the dashed curve in Figure 3a, this Gaussian distribution
is very close to the power spectrum of the Ricker wavelet.

Once we evaluate the mean frequency w,, and the standard der-
ivation @, statistically, we are able to calculate the peak frequency
o, and then, following expression 16, the central frequency . and
the half-bandwidth w,,. Because the central frequency, the mean fre-
quency, the half-bandwidth, and the standard derivation are all ex-
pressed in terms of the peak frequency w,, the relationships for
deriving the central frequency and the half-bandwidth are given by

D))
-l )

(22)

They are approximately w, =~ 0.995534w,, and w;, ~ 1.679438w,,.
Because the mean frequency w,,, evaluated from the power spec-
trum, is very close to the central frequency w,, practically, we
can use the evaluated mean frequency as an approximated central
frequency in seismic analysis.

FREQUENCY QUANTITIES EVALUATED USING
THE AMPLITUDE SPECTRUM

In some of the published literature, the mean frequency is evalu-
ated based on the amplitude spectrum, rather than the power spec-
trum. For the Ricker wavelet, the amplitude spectrum |R(w)| =
R(w). The mean frequency and the standard deviation can be evalu-
ated by

J&° oR(w)dw
Dm(a) = fooR Cl) da)
0

2R(w)dw\ 1/2
WDo(a) = <f0 a}o @ ) ( ) w) , (23)

where parentheses in the subscripts “(a)” indicate that these
quantities are evaluated from the amplitude spectrum. The three def-
inite integrals in these two expressions are also derived in Appen-
dix A:
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2
S RN

Then, the mean frequency is

Ds; 2w,
Onia) = . =g % 1128379, 25)

and the half-bandwidth is

IDg 34
wo‘(a) = D_4 = a)p E - ; ~ 0476194a)p (26)

For the sample Ricker wavelet with the peak angular frequency of
607 rad/s, the mean frequency is ,,,) ~?221.7 rad/s, and two
times the deviation is 2w, = 179.5 rad/s. For comparison, Fig-
ure 3b plots a Gaussian curve defined with these two parameters:

w

If we use the amplitude spectrum to evaluate the mean frequency
and the deviation, we have the following two relationships for the
central frequency and the half-bandwidth:

S e )
i) () (o)

(28)

They are approximately o, ~0.938598w,,(4) and w;, ~1.212682w,,).

As shown in Figure 3 with respect to a comparison between the
power spectrum and the amplitude spectrum, the power spectrum is
more concentrated than the amplitude spectrum. The mean fre-
quency evaluated from the power spectrum is closer to the central
frequency (@,, = 1.004486w,.) than that evaluated from the ampli-
tude spectrum (@, (q) & 1.065454w,). The standard deviation of the
power spectrum (@, ~ 0.344w),) is narrower than that in the ampli-
tude spectrum (@,(,) ~ 0.476w,). Figure 3 also shows that the
power spectrum is closer to a Gaussian distribution (in the dashed
curve) than the amplitude spectrum would be.

CONCLUSIONS

In this paper, we have analyzed the Ricker wavelet and particu-
larly its frequency attributes. The results of this analysis can be sum-
marized as follows:

1) We have defined the time breadth and the frequency bandwidth
and presented them analytically in terms of the Lambert W
function.

2) We have proved that the central frequency can be approximated
by the mean frequency, evaluated using the power spectrum
rather than the amplitude spectrum as used in some areas of
the published literature.

3) We have found that the standard deviation about the mean fre-
quency is not, as suggested by the literature, the half-bandwidth
of the frequency spectrum.

Moreover, we have established mathematical relationships between
the theoretical parameters (the central frequency and the bandwidth)
and the statistical quantities (the mean frequency and the standard
deviation) evaluated from either the power spectrum or the ampli-
tude spectrum of the Ricker wavelet.
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APPENDIX A
THE DEFINITE INTEGRALS

This appendix summarizes the derivation of the definite integrals
used in expressions 17 and 23 to evaluate the mean frequency and
the standard deviation.

The three definite integrals in expression 17, evaluation based on
the power spectrum of the Ricker wavelet, are given as the following:

) o 4 4 2, 2
D, :/ R2(w)da):/ %exp(—%)dw
0 0 7w, a)p

1 o 4t 2w? \/Ew
z\/_ —exp| —— |d| —
271'Cl)p 0 Cl)p C()p CU[,

D, = /0O oR?*(w)dw
0
o 4 20
= —6€Xp -3 dw
0 7w wy,
1 [ 20*\2 2w? d 2w
= — | exp| ——- —
ar )y \w2) P\ a2 )\ a2

1 ©

= 2 —y)d
e y*exp(—y)dy

1
. A2
o (A-2)
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" yexp(—y)dy

3w, (5 32 3 4\F ?
= —_——— — - — A-
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where x = v2w/w, and y = 2w’ /»?. The derivations above have
applied the following definite integral formulas:

o0 3
/ x* exp(—x?)dx = ﬁ,
0 8
V2

/oo(ax6 + bx*) exp(—x?)dx = TS (5a +2b),
0

A "y exp(—y)dy = 2. (A-4)

Then, the mean frequency is w,, = D,/D;, and the standard

deviation is w, = \/D3/D;.
The three definite integrals in expression 23, evaluation based on
the amplitude spectrum, are given as the following:

(A-5)

Wang

=2, (A-6)

20,0, [ w? w?
ﬁ 0 @y @y, @y,
2 ©
=— [ (02x*+ w?x?) exp(—x?)dx
7

20,0, [

NG y exp(—y)dy

_232+1 20,2
“\aTz) 2\ E )

where x = @/, and y = o?/ a)2 In the derivation above, we have
used the followmg definite 1ntegrals

/oo x? exp(—x?)dx = ﬁ,

0 4

/m(ax4 + bx?) exp(—x?)dx = %ﬁa + \/TE ,
0

/O yexp(—y)dy = 1.

(A-7)

(A-8)

Then, the mean frequency is @,

deviation is @,(,) = \/Dg/Ds.

= Ds/D, and the standard
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