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Abstract  

Macrophages increase and are highly activated in chronic obstructive pulmonary 

disease (COPD). Muscarinic receptor antagonists inhibit acetylcholine stimulated-

release of neutrophilic chemoattractants suggesting that acetylcholine may regulate 

macrophage responses. Therefore, expression and function of components of the 

non-neuronal cholinergic system in monocyte-macrophage cells was investigated.  

RNA was isolated from monocytes, monocyte-derived macrophages (MDM), lung 

and alveolar macrophages from non-smokers, smokers and COPD patients and 

expression of the high-affinity choline transporter, choline acetyltransferase, vesicular 

acetylcholine transporter and muscarinic receptors (M1-M5) ascertained using real-

time PCR. M2 and M3 receptor expression was confirmed using 

immunocytochemistry. Release of IL-8, IL-6 and LTB4 were measured by ELISA or 

EIA.  

All monocyte-macrophage cells expressed mRNA for components of the non-

neuronal cholinergic system. Lung macrophages expressed significantly more M1 

mRNA compared with monocytes, and both lung macrophages and alveolar 

macrophages expressed the highest levels of M3 mRNA. Expression of M2 and M3 

protein was confirmed in MDM and lung macrophages. Carbachol-stimulated release 

of LTB4 from lung macrophages (buffer: 222.3±75.1 vs. carbachol: 1118±622.4 pg/ml, 

n=15, p<0.05) but not IL-6 or IL-8. LTB4 release was attenuated by the M3 antagonist, 

4-DAMP (EC50: 5.2±2.2 nM, n=9). 

Stimulation of macrophage M3 receptors promotes release of LTB4 suggesting anti-

muscarinic agents may be anti-inflammatory.  
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Background 

Macrophages are the predominant inflammatory cell found in the lung. Their role is 

primarily to remove any inhaled particles and pathogens and maintain sterility of the 

respiratory tract. However, in lung diseases such as chronic obstructive pulmonary 

disease (COPD), macrophage numbers increase by more than ten-fold and are 

highly activated producing increased levels of inflammatory mediators [1]. At present, 

pharmacotherapy for COPD is largely symptomatic with no treatments capable of 

decreasing the underlying inflammatory response and improving lung function [2]. 

Long acting muscarinic antagonists such as tiotropium bromide have been shown to 

have efficacy in patients with COPD [3] although whether this drug could also act to 

control the inflammatory components of the disease or act upon the small airways 

where COPD is manifest is unclear. Recently, tiotropium bromide has been shown to 

suppress chemotactic activity released by macrophages following stimulation with 

acetylcholine (ACh) [4]. This suggests that macrophage mediated inflammation may, 

in part, be regulated by components of the non-neuronal cholinergic system. 

 Classically, ACh is synthesised in nerve terminals and is released to regulate 

many activities including regulation of airway contraction and dilation of vessels [5,6]. 

More recently, essential components of the non-neuronal cholinergic system, 

including the high-affinity choline transporter (CHT1), ACh, choline acetyltransferase 

(ChAT), and muscarinic and nicotinic ACh-receptors are expressed by a number of 

non-neuronal cells including peripheral blood mononuclear cells (PBMC) and 

lymphocytes [7,8]. Many of these cells, not only release ACh upon stimulation but 

also can be activated by ACh [9-11]. Bovine alveolar macrophages release neutrophil, 

monocyte and eosinophil chemotactic factors after stimulation with ACh [12] and it 

has been suggested that human alveolar macrophages release leukotriene (LT)B4 in 
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response to ACh stimulation [4]. Cells obtained from induced sputum have been also 

been shown to express muscarinic M2 and M3 receptors and that following 

stimulation with ACh increased the release of LTB4 in cells from COPD patients but 

not cells from non-smokers or smokers [13]. Taken together, these data suggest that 

non-neuronal ACh might be involved in the pathophysiology of COPD by stimulating 

the release of inflammatory mediators from macrophages. 

     This study examined the expression of components of the non-neuronal 

cholinergic system including CHT1, ChAT and vesicular acetylcholine transporter 

(VAChT) in cells of the monocyte-macrophage lineage together with expression of 

muscarinic receptors (M1-5). The putative roles of these receptors on macrophages 

were then evaluated using functional assays.    
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Methods  

Subject Selection 

Subjects were recruited from clinics at the Royal Brompton Hospital NHS Trust, from 

staff of the Royal Brompton Hospital and National Heart & Lung Institute, or 

volunteers known to the clinical research group of the Asthma Laboratory, National 

Heart & Lung Institute.  Alveolar macrophages from BAL fluid of non-smokers, 

smokers and patients with COPD were obtained from consenting patients at 

Heatherwood Hospital, Ascot, Wexham Park Hospital, Slough. Smokers had a 

smoking history of at least 10 pack years and COPD patients were stable and fulfilled 

the American Thoracic Society criteria [14]. All studies were approved by the Ethics 

Committee of Royal Brompton and Harefield NHS Trust and National Heart and Lung 

Institute Ethics Committee, the East Berkshire Local Research Ethics Committee or 

St Mary’s NHS Trust Ethics Committee. All subjects gave informed written consent.  

 

Preparation of monocytes 

Monocytes were isolated from peripheral blood, centrifuged on discontinuous Percoll 

gradients, and purified either by adherence to tissue culture plastic [15] or by 

negative immunoselection using a MACS monocyte isolation kit (Miltenyi Biotec; 

Bisley, UK) and magnetic depletion columns according to the manufacturer’s 

instructions. Cells were cultured in complete media (RPMI-1640 media supplemented 

with 10% (v/v) foetal calf serum (FCS), 100 U/ml penicillin, 100 g/ml streptomycin 

and 2mM L-glutamine) in a 6-well plate and were then resuspended in lysis buffer 

and stored at -70C. 
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Preparation of Monocyte-Derived Macrophages 

After separation of PBMC, cells were resuspended at 2 x 106 cells/ml in complete 

media.  The cells were seeded onto 48 well plates, or chamber slides and incubated 

for 2 h at 37C in a humidified incubator with 5% (v/v) CO2.  After incubation the 

supernatant was removed and replaced with complete media supplemented with 

2ng/ml GM-CSF.  The cells were differentiated in culture for 12 d towards a 

macrophage phenotype.  

 

Preparation of Lung-Derived Macrophages  

Lung-derived macrophages were isolated from lung tissue as previously described 

[16]. Briefly, lung tissue from patients undergoing surgical resection for carcinoma 

was lavaged by injection of RPMI-1640 containing 100 U/ml penicillin, 100 g/ml 

streptomycin, 2.5μg/ml amphotericin and 2mM L-glutamine. The cells were washed 

and resuspended in 2ml of PBS and separated by centrifugation (25 min; 18°C; 1100 

x g) using Percoll density gradient [65%/35%/25% (v/v)]. Macrophage-enriched 

fraction was collected at the 25% and 35% Percoll interface. The cells were washed 

in HBSS and resuspended in RPMI-1640 medium supplemented with 10% (v/v) 

foetal calf serum, 100 U/ml penicillin, 100 g/ml streptomycin, 2.5μg/ml amphotericin 

and 2mM L-glutamine resuspended at 1 x 106 cells/ml and seeded into 24 well plates 

at 5 x 105 cells/well, 48 well plates at 3.2 x 105 cells/well or chamber slides at 4 x 105 

cells/well.  After 2 h of incubation in at 37C in a humidified incubator with 5% (v/v) 

CO2, the non-adherent cells were removed and fresh medium was added. The 

adherent purified macrophages were incubated overnight and the medium was 
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changed the next day before beginning the experiment. Macrophage purity was 

confirmed by anti-CD68 staining as described previously [17]. 

Preparation of Alveolar Macrophages  

Bronchoscopy and processing were performed according to the guidelines of the 

European Respiratory Society (ERS) task force [18] and alveolar macrophages 

isolated as described previously [19].  

 

Preparation of Sputum Cells 

Sputum was induced by inhalation of hypertonic saline and processed with 0.05% 

(w/v) dithiothreitol [20].  After centrifugation, the cell pellet was resuspended with 

HBSS and cytospins prepared. 

 

Real-time PCR 

Total RNA was extracted from cells using an RNeasy RNA extraction kits (Qiagen, 

Crawley, UK) and isolated RNA was quantified using the Ribogreen quantification 

Assay (Molecular Probes; Leiden, Netherlands). RNA was reverse transcribed using 

an Taqman reverse transcriptase (RT) mastermix (Taqman RT buffer, MgCl2 5.5mM, 

dNTPs 500µM, random hexamers 2.5µM, RNase Inhibitor 0.4U/µl and RT enzyme 

1.25U/µl) (Applied Biosystems; Foster City, U.S.A.) according to the manufacturer’s 

instructions.  Reverse transcription products were amplified by PCR.  cDNA (5µl) was 

added to 20µl of a solution containing Universal master mix, water, sense and 

antisense primers and 6-carboxy-tetramethyl-rhodamine (FAM) labelled probe.  

Primers and probes were designed by Applied Biosystems.  An ABI Prism 

7500Sequence Detection System was used for thermal cycling, which consisted of 

an initial activation step of 50°C for 2 min and 95°C for 10 min, followed by 45 cycles 
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of 95°C for 15 s and 60°C for 1 min. Each analysis included a standard curve (1.25-

20 ng) consisting of cDNA synthesised from a panel of 5 control human RNAs 

(human RNA control panel, Becton Dickinson). Samples were analysed in duplicate 

and levels of expression for each specific gene calculated by extrapolating from the 

standard curve.  For each test gene, endogenous control (HPRT) levels were also 

analysed on the same plate, calculated using extrapolation of standard curve values.  

 

Immunocytochemisty of M2 and M3 receptors 

Slides were immersed for 10 min with 4% (wt/vol) paraformaldehyde in PBS (pH 7.4). 

After washing with PBS, the slides were incubated with either rabbit anti-human M2 

polyclonal antibody (diluted 1:500)  or rabbit anti-human M3 polyclonal antibody 

(diluted 1:200)  (Life Span Biosciences; Seattle, US) or rabbit IgG antibody control 

(Dako; Ely, UK) in PBS containing 10% (v/v) normal human serum (NHS) for 1 h at 

room temperature. After washing with PBS, the slides were incubated with Alexa 

Flour 488-conjugated goat anti-rabbit IgG antibody (Molecular Probes; Leiden, 

Netherlands) (diluted 1:1000) in PBS (pH 7.4) containing 10% (v/v) NHS for 1 h at 

room temperature.  The slides were washed with PBS and then incubated with 

diaminidino phenylindole (DAPI) at 5μM in HBSS for 3 min. After washing the slides 

were mounted with 50% (v/v) PBS: 50% (v/v) glycerol.  The slides were examined 

using a Leica TCS 4D confocal microscope (Leica Microsystems; Milton Keynes, UK) 

equipped with argon, krypton, and ultraviolet lasers. 

 

FACS analysis of M2 and M3 receptors 

Lung macrophages (106 cells/ml) were permeabilised by the addition of ice cold 

methanol. Cells were then incubated in the absence or presence of either anti-rabbit 



                                                                                                   

  - 8 - 

IgG, anti-M2 receptor or anti-M3 receptor antibodies for 1h at 4°C. The cells were 

washed with PBS and then resuspended in PBS containing 1% (vol/vol) BSA. All 

tubes were then incubated with the secondary antibody (goat anti-rabbit IgG) 

conjugated with PECy5.5 for 30 min. Cells were washed with PBS and resuspended 

in FACS fix solution and samples analysed using a BD FACS Canto II flow cytometer 

and analysed using FACS Diva software (BD Biosciences, Oxford, UK). Data are 

expressed as the percentage of macrophages expressing the receptor of interest and 

as the ratio of the median fluorescence intensity (MFI) relative to the isotype control.  

Measurement of IL-8 and IL-6 using ELISA 

IL-8 and IL-6 were measured in the supernatants from MDM and tissue-derived 

macrophage incubated with ACh or carbachol using enzyme-linked immunosorbent 

assay (ELISA) (R&D Systems, Abingdon, UK).  Lower limit of detection of this assay 

was 16pg/ml for both assays. 

Measurement of LTB4  

Release of LTB4 into cell culture media was measured using a commercially 

available kit from GE Healthcare (Buckinghamshire, UK) according to the 

manufacturer’s instructions. 

Measurement of ACh release 

Release of ACh into the cell culture media was measured using a commercially 

available kit from Invitrogen Ltd., (Paisley, Scotland, UK), according to the 

manufacturer’s instructions. Lower limit of detection of this assay is 1.5µM. 

Cell viability assays 

Cell viability was determined colourimetrically by measuring the reduction of 3-[4,5-

dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide, MTT, to formazan by 
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mitochrondial dehydrogenases, as described previously [21]. None of the cell 

treatments altered cell viability. 

Statistical Analysis 

GraphPad Prism (GraphPad Software Inc., San Diego, California) was used to 

perform all statistical tests.  When the data were analysed non-parametric distribution 

was assumed therefore the Wilcoxon matched paired test or Kruskal-Wallis test was 

used initially with Dunns’ post test for ANOVA analysis. Results were considered 

significant when p<0.05. 
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Results 

Expression of components of the ACh synthesis pathway 

In order to examine whether cells of the monocyte-macrophage have the capacity to 

synthesise ACh, the expression of components of the ACh synthesis pathway, CHT1, 

ChAT and VAChT were examined by real-time PCR. All three components were 

expressed by monocytes, MDM, lung macrophages and alveolar macrophages 

(Table 1). There was no difference in the level of expression of any of the 

components of the ACh synthesis pathway in any of the cells examined with the 

exception of significantly reduced expression of ChAT in lung macrophages (Table 1). 

Low levels of ACh were released and could be measured from lung macrophages 

(6±2µM, n=4), however these levels were near the limit of detection of the assay. 

 

Muscarinic Receptor Expression Analysed by Real-Time PCR  

Having ascertained that cells of the monocyte-macrophage lineage express mRNA 

for proteins to drive synthesis of ACh, we next determined whether these cells could 

respond to this mediator. To this end, we examined the level of mRNA expression of 

M1-5 muscarinic receptors in cells of the monocyte-macrophage lineage. Expression 

of the muscarinic receptors M1-5 was detected on all cell types (Fig 1). The 

expression of M1 receptor mRNA in lung-derived macrophages was significantly 

greater than that on monocytes and MDM (monocytes: 0.14 (0.06, 1.6)%, n=24, 

MDM: 0.16 (0.03, 0.8)%, n=52, lung-derived macrophages: 1.22 (0.5, 4.8)%, n=27, 

AM: 0.65 (0.2, 3.5)%, n=16) (Fig 1a).  Expression of M3 receptor mRNA in lung-

derived macrophages and alveolar macrophages was significantly greater than that 

in monocytes and MDM (monocytes: 2.1 (0.9, 4.7)%, n=15, MDM: 0.06 (0, 0.3)%, 
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n=46, lung-derived macrophages: 51.4 (17, 179.4)%, n=22, alveolar macrophages: 

42.1, (32, 90)%, n=13) (Fig 1c).  

 

M2 and M3 receptor expression estimated by Immunohistochemistory 

In order to confirm the expression data obtained using Taqman analysis regarding 

the expression of muscarinic receptors in cells of the monocyte/macrophage lineage, 

we performed immunocytochemistry. Due to the poor quality and availability of 

antibodies against human muscarinic receptors, this study was limited to expression 

of M2 and M3 receptors. M2 and M3 receptor expression was evaluated on MDM and 

lung-derived macrophages (Fig 2) with the M2 receptor predominant on the cell 

membrane. Expression of the M3 receptor on MDM appeared to be both membrane-

associated and cytosolic (Fig 2). In lung-derived macrophages expression of M2 and 

M3 receptors was also detected on the cell membrane (Fig 2a). The 

immunocytochemistry was validated using FACS (Fig 2b), where M2 expression was 

observed on 50.8±17.3% of lung macrophages with an MFI of 5.4±1.2, n=5 and M3 

expression was observed on 66.5±17.3% of lung macrophages with an MFI of 

6.9±1.3, n=5. Expression was also determined in cells obtained from BAL and 

sputum samples from non-smokers, smokers and patients with COPD. Cells 

obtained from BAL from all three groups expressed similar levels of both M2 and M3 

receptor (Fig. 3), with expression associated with the macrophages.  Similarly, 

macrophages obtained from induced sputum expressed similar levels of the M2 

receptor (Fig 4) with less expression of the M3 receptor (Fig 4).   

 

Function of muscarinic receptors on MDM and lung-derived macrophages  



                                                                                                   

  - 12 - 

Having determined the expression of muscarinic M2 and M3 receptors on the surface 

of cells of the macrophage lineage the function of these receptors was then 

investigated. Neither MDM, nor lung macrophages stimulated with the stable 

analogue of ACh, carbachol (100µM), for up to 24h released measurable level of 

either IL-8 or IL-6 (data not shown). Similarly, MDM exposed to 100µM carbachol did 

not lead to the release of LTB4 (Fig 5a) (Buffer: 278.9±84.9 vs. carbachol: 230.4 ± 

84.8 pg/ml, n=6). In contrast, carbachol stimulated LTB4 release from lung-derived 

macrophages (Fig. 5b) (Buffer: 222.3±75.0 vs. carbachol: 1118 ± 622.4 pg/ml, n=15). 

In order to investigate the mechanism of carbachol-stimulated LTB4 release from lung 

macrophages, cells were pre-treated with the muscarinic receptor antagonists 4-

DAMP or AF-DX116 prior to stimulation with carbachol.  The release of LTB4 from 

carbachol-stimulated lung macrophages was inhibited in a concentration-dependent 

manner by 4-DAMP (Fig. 6a). Maximal inhibition (58.9±6.6%, n=9) occurred at 30nM 

with an EC50 value of 5.2±2.2 nM. The effect of pre-treating these cells with AF-

DX116 and gallamine were less effective with maximal inhibition of 42±15.1%, and 

36.4±15.6%, n=5 respectively.  
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Discussion  

This study demonstrated that mRNA for components of the ACh synthesis pathway 

were expressed by both monocytes and macrophages. Human mononuclear cells 

have been reported to contain ACh  [22] and ChAT is expressed by rat monocytes 

[23] and human alveolar macrophages [24], however we have now demonstrated 

expression of CHT1 and VAChT in cells of the monocyte-macrophage lineage 

suggesting that these cells are capable of ACh synthesis and release of ACh from 

lung macrophages could be measured, but were very low and near to the limit of 

detection of the assay. Nevertheless, ACh may reach sufficient concentrations to act 

locally and thus contribute to the inflammatory response. This is further substantiated 

by expression of muscarinic receptor mRNA in cells of the monocyte-macrophage 

lineage.  

 The present study demonstrated expression of mRNA for muscarinic M1-M5 

receptors in human monocytes in contrast to a previous report [25]. This may reflect 

increased sensitivity of real-time PCR methodology. However, the present study 

showed increased expression of M1, and M3 mRNA in lung derived macrophages 

compared with monocytes. This may suggest that as monocytes differentiate towards 

a macrophage phenotype there is a concomitant change in expression of muscarinic 

receptors. However, lung tissue macrophages were obtained from the tissue of 

patients undergoing surgery for lung cancer. Although, the tissue was 

macroscopically normal, it is not known whether the tumour promoting environment 

may alter the expression of muscarinic receptors locally. Nevertheless, these data 

are consistent with reports of M3 receptor expression in alveolar macrophages 

[12,13] and were further substantiated with immunocytochemistry.  Using this 

technique, it was observed that despite little difference between MDM and lung 
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macrophages with respect to M2 mRNA expression, there appeared to be increased 

protein expression in the MDM. Similarly, despite lung derived macrophages 

expressing significantly greater quantities of M3 mRNA compared with MDM, protein 

expression by immunocytochemistry appeared reduced. This suggests that mRNA 

levels of muscarinic receptors may not reflect protein expression in these cell types. 

To address this further, we used FACS analysis of lung macrophage expression of 

M2 and M3 receptors and demonstrated expression of both receptors. Of note in 

induced sputum samples, muscarinic receptor M2 and M3 expression appeared to be 

restricted to the macrophage population. However, in contrast to a previous study 

[13] we did not see an increase in macrophage M3 receptor expression in cells from 

COPD patients and this was corroborated in BAL macrophages.  

 Despite a lack of alteration of either M2 or M3 expression in macrophages from 

COPD patients, there is no doubt that these receptors are expressed by 

macrophages and MDM. These data led to a subsequent investigation into the role of 

these receptors on the macrophage surface. Stimulation of macrophages with 

carbachol did not stimulate the release of either IL-8 or IL-6 confirming a previous 

study whereby stimulation with ACh did not release IL-8 or monocyte chemotactic 

protein (MCP)-1 (CCL2) from alveolar macrophages [4]. Bovine alveolar 

macrophages produce LTB4 following stimulation with ACh [12] and we demonstrated 

a similar effect of carbachol on lung derived macrophages. This appeared to be 

mediated via the M3 receptor since this effect could be abrogated by 4-DAMP but not 

AF-DX116 or gallamine. It is possible that ACh may mediate inhibitory effects via 

nicotinic receptor activation, however Birrell et al., 2008 [26] demonstrated that 

nicotine is not inhibitory in human lung macrophages.  However, approximately 40% 

residual LTB4 release was not affected by blockade of the M3 receptor indicating that 
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LTB4 release from lung macrophages stimulated with carbachol may invoke other 

pathways. For example, activation of the ERK pathway has been shown to be 

involved in LTB4 release from ACh activated sputum cells from patients with COPD is 

isolated monocytes from healthy volunteers [13]. It is unlikely that this could be 

attributed to a feedback of LTB4 stimulation on the macrophage as we have shown 

previously that this does not occur in lung macrophages [27]. The release of LTB4 by 

carbachol stimulation was not observed in MDM despite expression of both M2 and 

M3 receptors on the surface of these cells. This may reflect uncoupling of these 

receptors from subsequent downstream signalling events. However, we have 

recently demonstrated that lung derived macrophages exhibit a greater capacity to 

synthesise and release LTB4 when compared to MDM and therefore may not be the 

best cell type to use for study of these responses [27]. 

In summary, cells of the monocyte-macrophage lineage express components 

of the non-neuronal cholinergic system with the capacity to both synthesise and 

respond to ACh. The role of this system in regulating macrophage function is less 

clear but appears to regulate the release of LTB4, in part, via the muscarinic M3 

receptor. Therefore, antagonists of the M3 receptor might contribute to the control of 

inflammatory status such as the release of LTB4 from macrophages in addition to the 

inhibitory effect of smooth airway contraction and suggest an additional role for these 

drugs in COPD and other inflammatory lung diseases [28]. 
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Figure legends 

Figure 1.   Expression of Muscarinic Receptor mRNA from Monocytes, MDM, 

Lung Derived Macrophages and Alveolar Macrophages 

Expression of mRNA for muscarinic receptors M1 (panel a), M2 (panel b), M3 (panel c), 

M4 (panel d) and M5 (panel e) from monocytes (mono) n=15-24, MDM n=33-54, lung 

macrophages (LM) n=22-28 or alveolar macrophages (AM) n=13-16 were analysed 

using real-time PCR and compared to the HPRT control gene. Data are presented as 

each individual data point and the horizontal line represents median values and * 

represents p<0.05 and *** p<001 

 

Figure 2.  Expression of M2 and M3 muscarinic receptors on MDM and Lung 

Macrophages 

Panel a) MDM and lung macrophages were cultured on chamber slides and 

immunocytochemistry performed for either an isotype control (IgG) or M2 and M3 

muscarinic receptor expression. The figure is representative of at least three 

independent samples. Panel b) A representative FACS histogram showing 

expression of M2 and M3 receptors on lung macrophages. Iso = isotype control. 

  

Figure 3. Expression of M2 and M3 muscarinic receptors on cells from BAL.  

BAL cells from non-smokers, smokers and patients with COPD were prepared as 

cytospins and immunocytochemistry performed for either an isotype control (IgG) or 

M2 and M3 muscarinic receptor expression. The figure is representative of at least 

three independent samples from each subject group. 
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Figure 4. Expression of M2 and M3 muscarinic receptors on cells from induced 

sputum.  

Cells obtained from induced sputum from non-smokers, smokers and patients with 

COPD were prepared as cytospins and immunocytochemistry performed for either an 

isotype control (IgG) or M2 and M3 muscarinic receptor expression. The figure is 

representative of at least three independent samples from each subject group. 

 

Figure 5. Release of LTB4 from carbachol-stimulated MDM and lung 

macrophages. 

MDM (panel a) or lung macrophages (panel b) were incubated in the absence 

(buffer) or presence of carbachol (100µM) for 30 min. Media was harvested and LTB4 

released into the cell media measured by EIA. Data are presented as each individual 

data point where * indicates p<0.05. 

  

Figure 6. Effect of muscarinic receptor antagonists on the release of LTB4 from 

carbachol-stimulated lung macrophages. 

Lung macrophages were pre-treated for 30 min with either 4-DAMP (panel a) or AF-

DX116 (panel b) or gallamine (panel c), prior to stimulation with carbachol (100µM) 

for 30 min. Media was harvested and LTB4 measured by EIA. Data are normalised to 

carbachol stimulation (100%) and are presented as mean ± SEM, n=5-9. 
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Table 1. Expression of CHT1, ChAT and VAChT mRNA in human cells of the 

monocyte-macrophage lineage 

 CHT1 ChAT VAChT 

 Monocytes 1.6 ± 0.37 

n=24 

0.96 ± 0.25 

n=25 

22.9 ± 6.8 

n=14 

MDM 2.2 ± 1.1  

n=53 

0.78 ± 0.18 

n=47 

21 ± 5.7 

n=21 

Lung 

macrophages 

6.8 ± 4.0  

n=30 

0.32 ± 0.09*, ++ 

n=27 

35.1 ± 10.4 

n=10 

Alveolar 

macrophages 

1.7 ± 0.6 

n=15 

0.47 ± 0.11 

n=12 

19.6 ± 13 

n=7 

 

Data are presented as mean ± SEM of the ratio of CHT1, ChAT and VAChT gene 

expression compared with HPRT control gene, where * indicates p<0.05 for 

differences to monocytes and ++ p<0.01 for differences to MDM.  
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