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Abstract

Motivated by a desire to find a useful 2d Lorentz-invariant reformulation of theAdS5×S5 su-
perstring world-sheet theory in terms of physical degrees of freedom we construct the “Pohlmeyer-
reduced” version of the corresponding sigma model. The Pohlmeyer reduction procedure involves
several steps. Starting with a coset space string sigma model in the conformal gauge and writing
the classical equations in terms of currents one can fix the residual conformal diffeomorphism
symmetry and kappa-symmetry and introduce a new set of variables (related locally to currents
but non-locally to the original string coordinate fields) sothat the Virasoro constraints are auto-
matically satisfied. The resulting equations can be obtained from a Lagrangian of a non-abelian
Toda type: a gauged WZW model with an integrable potential coupled also to a set of 2d fermionic
fields. A gauge-fixed form of the Pohlmeyer-reduced theory can be found by integrating out the
2d gauge field of the gauged WZW model. The small-fluctuation spectrum near the trivial vac-
uum contains 8 bosonic and 8 fermionic degrees of freedom with equal mass. We conjecture that
the reduced model has world-sheet supersymmetry and is ultraviolet-finite. We show that in the
special case of theAdS2 × S2 superstring model the reduced theory is indeed supersymmetric: it
is equivalent to the N=2 supersymmetric extension of the sine-Gordon model.
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1 Introduction

String theory inAdS5 × S5 is represented by a Green-Schwarz-type [1] action on a supercoset
PSU(2,2|4)

SO(1,4)×SO(5)
[2]. It is classically integrable [3] and has an involved solitonic spectrum (see, e.g.,

[4, 5]). To quantize it one may attempt to eliminate first unphysical degrees of freedom by choosing a
kind of light-cone gauge, i.e. an analog ofx+ = p+τ, Γ+θ = 0. One natural option is to expand near
the null geodesic parallel to the boundary in the Poincare patch; the resulting gauge-fixed action is
then quartic in fermions [6]. An alternative is to use the null geodesic wrappingS5 [7]; the resulting
action [8, 9, 10] has a rather complicated structure with many non-linear interaction terms.

An apparent disadvantage of the light-cone gauge choices isthat the gauge-fixed action lacks man-
ifest 2d Lorentz invariance (beyond the quadratic level in the fields). This makes it hard to apply
familiar methods of integrable quantum field theories; in particular, the S-matrix for the elementary
excitations has apparently less restricted form [11, 12] than in a Lorentz-invariant case (cf. [13]).

An alternative approach which we shall explore here is to impose the conformal gauge condition
and to perform a non-local transformation of variables (from coodinates to currents) that solves the
Virasoro constraints at the classical level while preserving the integrable structure. This generalizes
the Pohlmeyer “reduction” (or better “reformulation”) relating the classicalS2 sigma model to the
sine-Gordon model [14] (see also [15, 16, 17, 18, 19]). A related work in this direction appeared in
[20, 21]. One is then left with the right number of physical (“transverse”) degrees of freedom. In a
certain sense, this reduction approach may be viewed as a “covariant analog” of a light-cone gauge
fixing.

The resulting “reduced” model should have closely related solitonic spectrum to the original one,
and one may then raise the question if the classical correspondence between the two models may
extend to the quantum level. This is not what happens in the case of theS2 sigma model and the
sine-Gordon model (one reason is that in the reduction procedure one uses conformal symmetry of
theSO(3)/SO(2) model which does not survive beyond the classical level) butwe may conjecture
that the relation may still hold in the very special case of the full AdS5 ×S5 superstring model which
should be conformal at the quantum level.

Below we shall first discuss the Pohlmeyer-type reduction for the bosonic part of the classical
AdS5 × S5 sigma model and then consider the full supercoset superstring theory. As we shall see,
the application of this procedure to the bosonic part of theAdS5 × S5 string action leads to a2d
relativistically invariant“reduced” theory represented by a sigma model with a potential term which
has an equivalent integrable structure. It generalizes thesine-Gordon [14] and the complex sine-
Gordon [14, 22] models to the case of the 4+4 dimensional target space.

We shall explain how to obtain a local Lorentz-invariant action for this reduced theory in terms
of “physical” (gauge-fixed) degrees of freedom.1 We shall follow the approach of [23, 24] (see also
[25]), in which the reduced theory is interpreted as a gauge-fixed version of a gauged WZW theory

1This was not done explicitly in the past for theSn models withn > 3. The existence of a local Lagrangian is an
important issue. At the level of equations for the currents or the Lax pair equations there is a large freedom [15] in how
one can choose a local field representation – many classically equivalent models have same-looking Lax equations and
yet very different local field representations (and thus inequivalent quantum structure). When one addresses the issueof
existence of a local action the choice of the fundamental fields becomes relevant.
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with a potential representing an integrable deformation,2 i.e. as a special case of a non-abelian Toda
theory [27].

The reduced model for the fullAdS5 ×S5 superstring (found after an appropriate kappa-symmetry
gauge fixing) turns out to be a 2d Lorentz-covariant fermionic generalisation of a non-abelian Toda
theory for G

H
= Sp(2,2)

SU(2)×SU(2)
× Sp(4)

SU(2)×SU(2)
with 4 + 4 dimensional bosonic target space. Its simple

structure (and the matching of the numbers of the bosonic andthe fermionic degrees of freedom)
suggests that it may possess 2d supersymmetry. Indeed, the existence of the supersymmetry can be
seen directly in the special case of theAdS2 × S2 superstring theory for which the reduced model
happens to be the same as theN = 2 supersymmetric sine-Gordon theory.

Though the relation of the reduced model to the original conformal superstring model involves a
non-local transformation, we may still expect that it should define a UV finite 2d theory. Its confor-
mal invariance is then only “spontaneously” broken by a scaleµ (entering the potential term and its
fermionic counterpart) that appears after fixing the residual conformal diffeomorphism freedom in the
conformal gauge (the same happens in the plane-wave light-cone gauge case [7]). If this is indeed the
case, the reduced model may serve as a starting point for understanding the corresponding quantum
AdS5 × S5 superstring theory.3 Its small-fluctuation spectrum near a natural vacuum state contains
8 bosonic and 8 fermionic dynamical degrees of freedom of equal massµ, and the corresponding
relativistic (and 2d supersymmetric) S-matrix should havethe[SU(2)]4 global symmetry.4

Let us now describe the contents of the paper. We shall start in section2 with a review of the
Pohlmeyer reduction in the case of the bosonic string modelson Rt × S2 andRt × S3 with sine-
Gordon and complex sine-Gordon models as the correspondingreduced theories.

To systematically construct the Lagrangians of reduced models for higher-dimensional bosonic
SO(n,m)/SO(n−1, m) examples we shall first explain the relation between the equations of motion
of geometrical (“right”)F/G coset model written in terms of currents and theG/H (“left-right”)
gauged WZW model (gWZW) with an integrable potential. As a preparation, we shall review the
classical equations of theF/G symmetric-space sigma model (sect.3.1) and the equations of the
G/H gWZW model with a potential, i.e. of a special case of the non-abelian Toda theory (sect.3.2).
The potential is determined by a choice of an elementT+ = T− = T in the abelian subspace in the
complement of the algebrag ofG in the algebraf of F , andH is such that its algebrah is a centralizer
of T in g.

In sect.4 we shall show how to relate the equations of motion of theF/G coset model to those of
theG/H gWZW model by (i) imposing the so called reduction gauge in the equations of theF/G

2Viewed as a CFT deformation it is relevant in compact (e.g.Sn) case and irrelevant in non-compact (e.g.AdSn)
case.

3While the transformation used to arrive at the reduced modelis non-local one may hope that in an integrable finite
field theory the solitonic spectrum should be determined essentially by the semiclassical approximation [28] and it may
then be the same in a pair of theories with classically equivalent integrable structures. The Poisson structures of the
original and reduced models are different [20, 21], but as was shown in [21] in the light cone formalism, they are actually
compatible (the sum of the two Poisson brackets is again a Poisson bracket, i.e. it satisfies the Jacobi identity).

4Having obtained the reduced model via the classical procedure and using it as a starting point for quantization one
would still need to understand how to compute the “observables” of the original theory in terms of the quantum reduced
theory (at the classical level one can do this by solving the linear Lax system). In particular, one would need to compute
the global charges of thePSU(2, 2|4) symmetry group as these are relevant for comparison with thegauge theory side.
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model written in terms of the current components, and by (ii)making use of the residual 2d conformal
diffeomorphism symmetry to eliminate an additional degreeof freedom (setting components of the
stress tensor to be constant and thus satisfying the conformal gauge constraints of the string theory on
Rt×F/G). This will allow us to solve part of the gauge-fixed equations of motion explicitly in terms
of a new fieldg taking values inG and theh-valued gauge fieldA± (sect.4.2). The resulting system
will turn out to be invariant under the both left and rightH gauge symmetries. After imposing a special
gauge condition under which the gauge symmetry reduces to that of theG/H gWZW model these
equations of motion become equivalent to the ones followingfrom the gWZW action with a special
integrable potential described in sect.3.2. That the reduced equations of motion of theF/G coset
model can be related to those of the gWZW model with an integrable potential was first suggested
(and checked on several examples) in [24, 25]. Here we shall explain why this correspondence should
work in general and specify the necessary conditions on the groups and the algebras involved. We
shall also note that the potential term is equal to the original F/G coset Lagrangian in the reduction
gauge.

In sect.4.3 we shall mention the equivalence of the Lax representationsfor theF/G coset and
theG/H gWZW models and in sect.4.4 we shall consider the reduced equations for theSn =
SO(n + 1)/SO(n) coset model in theA± = 0 [24] H-gauge. These equations, are, however, non-
Lagrangean on physical subspace.5

As we shall discuss in sect.5, to get the Lagrangean equations for the independentn–1 degrees
of freedom of the reduced counterpart of theSn model (that generalizes the sine-Gordon and the
complex sine-Gordon cases) one should start with the gWZW action, impose theH-gauge on the
group elementg ∈ G and integrate out the gauge field componentsA±. The resulting reduced action
is that of a sigma model with a curved target space metric (butno antisymmetric tensor coupling)
combined with a relevant integrable potential term given universally by a cosine of one of then–1
angles. We describe few explicit examples of reduced modelsfor strings onRt × S4 andRt × S5 in
sect.5.2. The generalisation toAdSn × Sn models is then straightforward (sect.5.3).

In sect.6 we shall turn to theAdS5 × S5 superstring starting with the equations of motion for
the

bF
G

= PSU(2,2|4)
Sp(2,2)×Sp(4)

supercoset model (with the bosonic partF
G

= AdS5 × S5 = SU(2,2)
Sp(2,2)

× SU(4)
Sp(4)

).
We choose conformal gauge and write them in terms of the components of the left-invariant current
of PSU(2, 2|4). We use the formulation based onZ4 grading property [57, 3] of the superalgebra
psu(2, 2|4). Fixing a particular kappa-symmetry gauge we perform the analog of the Pohlmeyer
reduction discussed earlier for the similar bosonic cosets. An important ingredient is a generalization
to thepsu(2, 2|4) superalgebra case of the Lie algebra decomposition originally used in [18] in the
bosonic coset case.

Introducing the new set of fermionic variables directly related to the odd components of the super-
coset current we show in sect.6.4 that the reduced system of equations follows from a 2d Lorentz-
invariant Lagrangian (6.49). Its bosonic part is that ofG

H
= Sp(2,2)

SU(2)×SU(2)
× Sp(4)

SU(2)×SU(2)
gWZW model

with an integrable potential determined by a special diagonal matrixT = T± in the even part of the
psu(2, 2|4) superalgebra. In addition, the Lagrangian contains a quadratic fermionic part with a stan-
dard first-derivative kinetic term. The fermions interact “minimally” with theH gauge fieldA± and

5The original observation of [24] that the gWZW model with an integrable potential provides a Lagrangean formula-
tion of the reduced equations of motion of theF/G coset model applied on the extended configuration space involving
the “auxiliary” A± fields. Similar construction was discussed in a string context in [26].
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are also coupled (by a “Yukawa-type” term) to the bosonic field g ∈ G. We mention that as in the
bosonic case, the sum of theµ-dependent potential and “Yukawa” interaction terms in thereduced
Lagrangian is equal to the original superstring Lagrangianwritten in terms of currents.

The vacua of the theory are described by constantg taking values inH; in theA± = 0 gauge the
small-fluctuation spectrum near the trivial vacuum consists of 8 bosonic and 8 fermionic dynamical
modes of the same massµ. We comment on the interpretation of the parameterµ and mention that
the corresponding scattering matrix should have a globalH = [SU(2)]4 symmetry.

The structure of the reduced action suggests the presence ofa 2d supersymmetry. Its existence is
indeed confirmed in sect.7 on the example of a similarAdS2 × S2 superstring model based on the
psu(1, 1|2) superalgebra. The corresponding reduced Lagrangian is found to be the same as that of
theN = 2 supersymmetric extension of the sine-Gordon model.

There are also several Appendices containing some technical details and definitions.

2 Examples of reduced models: strings inRt × S2 andRt × S3

Let us begin with a review of the prototypical example: reduction of theS2 sigma model to the sine-
Gordon model [14]. Starting with the action of the sigma model on the sphere written in terms of the
embedding coordinatesS = 1

4πα′

∫
d2σ L where (∂± = ∂0 ± ∂1)

L = ∂+X
m∂−X

m − Λ(XmXm − 1) , m = 1, 2, 3 , (2.1)

we get for the classical equations of motion

∂+∂−X
m + ΛXm = 0 , Λ = ∂+X

m∂−X
m , XmXm = 1 . (2.2)

Then the stress tensor satisfies

T+− = 0 , ∂+T−− = 0 , ∂−T++ = 0 , T±± = ∂±X
m∂±X

m, (2.3)

so thatT++ = f(σ+), T−− = h(σ−). Since the theory is classically conformally invariant onecan
apply conformal transformations to putT±± into the special constant form

∂+X
m∂+X

m = µ2 , ∂−X
m∂−X

m = µ2 , µ = const . (2.4)

This effectively fixes one of the two fields ofS2 leaving us with a one-dimensional “reduced” theory.
Indeed, one can introduce a new field variableϕ via the following non-local transformationXm → ϕ

µ2 cos 2ϕ = ∂+X
m∂−X

m . (2.5)

Then the equations forXm (2.2) and the conditions (2.4) are solved providedϕ is subject to the
sine-Gordon (SG) equation∂+∂−ϕ+ µ2

2
sin 2ϕ = 0. The latter follows from

L̃ = ∂+ϕ∂−ϕ+
µ2

2
cos 2ϕ , (2.6)

which is thus the Lagrangian of the “reduced” theory. The classical solutions and integrable structure
(Lax pair, etc.) of the original sigma model and its reduced counterpart are then directly related.
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This reduction from sigma model onS2 to the SG theory has also an equivalent interpretation as
a classical equivalence between the bosonic string theory in Rt × S2 in a special gauge and the SG
theory. Indeed, starting with the Polyakov string action containing the time direction term−∂+t∂−t
in addition to theS2 term (2.1) and choosing theconformal gaugecombined witht = µτ (to fix
the residual conformal reparametrisation symmetry) we endup with the same conditions (2.4), now
interpreted as the conformal gauge (Virasoro) constraints. Then the classical string equations on
Rt × S2 become equivalent to the SG equation for the one remaining “transverse” degree of freedom
parametrized byϕ (the gauge conditions eliminate 1+1 out of 1+2 string degrees of freedom).

One interesting outcome of the above reduction is that whilethe conditions (2.4) obviously vio-
late the 2d Lorentz invariance of the original theory (t = µτ “spontaneously breaks” the 2d Lorentz
invariance in the string-theory version of the reduction),the resulting SG theory is still Lorentz in-
variant. Note also that theSO(3) global symmetry of the original model (2.1) becomes trivialin the
reduced model:ϕ defined in (2.5) isSO(3) invariant. Given a SG solution forϕ and thus a specific
value of the Lagrange multiplier functionΛ = µ2 cos 2ϕ = ∂+X

m∂−X
m in (2.2) one can reconstruct

the corresponding solution forXm by solving the linear equation∂+∂−X
m+ΛXm = 0.6 For a given

solution forXm one can then find the correspondingSO(3) conserved charges. Thus the classical
solitonic spectra of the two models should be in direct correspondence (see [30, 31, 32] for some
specific examples).

This classical equivalence relation obviously breaks downin quantum theory where there are UV
divergences and mass generation in theS2 sigma model so that the classical conformal invariance is
broken (invalidating, in particular, the argument leadingto (2.4)). Still, one may hope that an analog
of this reduction may extend to the quantum level in the case of a theory likeAdS5 × S5 superstring
which remains conformally invariant upon quantisation.

The above reduction has a straightforward generalisation to the case whenS2 is replaced byS3

[14, 22]. The reduced model corresponding to the string onRt × S3 is the complex sine-Gordon
(CSG) model

L̃ = ∂+ϕ∂−ϕ+ tan2 ϕ ∂+θ∂−θ +
µ2

2
cos 2ϕ . (2.7)

The variablesϕ andθ are expressed in terms of theSO(4) invariant combinations of derivatives of
the original variablesXm (m = 1, 2, 3, 4)

µ2 cos 2ϕ = ∂+X
m∂−X

m , µ3 sin2 ϕ ∂±θ = ∓1

2
ǫmnklX

m∂+X
n∂−X

k∂2
±X

l . (2.8)

Again, the integrable structures and the soliton solutionsof the two models are closely related (see
[31, 32]).7 The CSG model can be interpreted as a special case of a non-abelian Toda theory [27] – a
massive integrable perturbation of a gauged (coset) WZW model (hereSO(3)

SO(2)
model) [52].8

6To find periodic solutions onR × S1 one would need to start with a periodic solution of SG model and also impose
periodicity onXm in solving the linear system.

7Let us mention that an alternative reduced theory for theS3 sigma model formulated in terms of currents that also
solve the Virasoro conditions for a string onRt×S3 was discussed by Faddeev and Reshetikhin [53, 54]. However,the FR
model is not manisfestly 2d Lorentz invariant and thus appears to be less useful than the corresponding Pohlmeyer-reduced
theory, i.e. the CSG. The precise relation between the two models is worth further study.

8The corresponding quantum S-matrix was discussed in [55].
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Reduced equations of motion for sigma models on higher spheresSn (n = 4, 5, ...) involve field
variables related toSO(n + 1) invariants built out ofXm and its higher derivatives∂±Xm, ∂

2
±Xm,

∂3
±Xm, ... (with indices contracted usingδmk andǫm1...mn+1

); they were found in [17] (see also [16,
19]). The resulting equations were not, however, derivablefrom a local Lagrangian.

It was later shown in [24] that they can be obtained as a particular gauge-fixed version of the clas-
sical equations of theSO(n)

SO(n−1)
gauged WZW model with an integrable potential term. This provided

a Lagrangean formulation of these equations on theextendedfield space including the 2d gauge field
A± of the gWZW model.

This construction gives a strong indication that there should exist an alternative version of the
classical reduced equations of motion which ismanifestlyLagrangean, i.e. that can be derived from
an action containing only physical “reduced” set of fields aswas found in the previous cases of the
SG and CSG models.

The reason for this expectation is that the classical equations written in the Lax-pair form admit
different “gauge-equivalent” [15] versions related by (non-local) field redefinitions.9 This was already
noticed in [19] in theS3 case where the field variables corresponding to the CSG modelwere related
by a non-local transformation to the variables of the reduced model of [17].

Below we shall present an explicit form of the reduced Lagrangian models for the string onRt×S4

andRt × S5; theAdSn versions can be found by an analytic continuation. One is then able to write
down the reduced Lagrangian for the bosonic part of theAdS5×S5 theory. The basic idea is to follow
[24] and start with the SO(n)

SO(n−1)
gWZW model with a relevant integrable perturbation term butinstead

of fixing the gauge fieldA± = 0 as in [24] fix the gauge on the group element and integrate out the
gauge fieldA± as in [36, 37, 38, 40] (see also [25, 29]). In the case of theSO(3)

SO(2)
(or equivalentlySU(2)

U(1)
)

model that procedure immediately explains the appearance of the familiarD = 2 target space metric
in the CSG action (2.7) as was originally observed in [39].

The construction of the reduced models based on the conformal gauge and fixing the remaining
conformal transformations byt = µτ condition was applied above to a string onRt × Sn. The same
can be done for the bosonic string model onAdSn×S1 in conformal gauge and with fixing the residual
conformal symmetry choosing theS1 angleα equal toµτ . Denoting the embedding coordinates of
AdSn asYs (with Y sYs = −Y 2

0 −Y 2
−1 +Y 2

1 + ...+Y 2
n = −1) theAdSn Lagrangian is then the analog

of (2.1)
L = ∂+Y

s∂−Ys − Λ̃(Y sYs + 1) , (2.9)

with the equations of motion and conformal gauge constraints being

∂+∂−Ys + Λ̃Ys = 0, Λ̃ = −∂+Y
s∂−Ys , Y sYs = −1 , (2.10)

∂+Ys∂+Y
s = −µ2 , ∂−Ys∂−Y

s = −µ2 . (2.11)

By concentrating on the plane formed by the normalized vectors∂+Y
s and∂−Y s (orthogonal toY s)

one can see that their scalar product can be set equal to

∂+Y
s∂−Ys = −µ2 cosh 2φ , (2.12)

9 This is a classical gauge equivalence when gauge transformations at the level of Lax equations lead to equivalent
integrable systems. The resulting non-local relation at the level of field theory models does not, in general, extend to the
quantum level, cf. [34, 35].
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whereφ is a new variable (cf. (2.5)). Then in theAdS2 case we get∂+∂−φ + µ2

2
sinh 2φ = 0 which

follows from the reduced Lagrangian (cf. (2.6))

L̃ = ∂+φ∂−φ− µ2

2
cosh 2φ . (2.13)

Let us now explain how the above special examples can be generalized to the case of the bosonic
string onAdSn × Sn. Denoting the embedding coordinates ofAdSn asYs and the coordinates ofSn

asXm the conformal gauge condition means the vanishing of the total stress tensor,

T++(Y ) + T++(X) = 0 , T−−(Y ) + T−−(X) = 0 . (2.14)

Since in the conformal gauge the equations of motion forYs andXm factorize, the corresponding
stress tensors are separately traceless and conserved. Then instead of usingt = µτ or α = µτ
conditions (t is now part ofAdSn andα – part ofSn) we can fix the residual conformal transformation
freedom “implicitly” by following [14] and demanding as in (2.4) thatT±±(X) = µ2 = const. Then
(2.14) implies that

T±±(X) = µ2 , T±±(Y ) = −µ2 . (2.15)

We thus get two decoupledAdSn andSn sigma models with the constraints (2.15), to which we can
separately apply the Pohlmeyer’s reduction procedure. That eliminates 1+1 out ofn + n degrees of
freedom, leaving us with an action for only the(n− 1) + (n− 1) physical degrees of freedom.

Later in section 6 we shall discuss a generalisation of this reduction procedure to the presence of
the superstring fermions when theAdSn andSn parts are no longer decoupled.

3 Coset sigma model and the corresponding gauged WZW model
with an integrable potential

Let us give a short review of a coset sigma model (of whichSn model is a special case) and the
associated gauged WZW model. This will set up the notation for section4 where we are going to
construct an explicit change of variables which relates theF/G coset sigma model to certainG/H
gauged WZW model with a potential, giving an explicit realisation of the relationship originally
proposed in [24].

3.1 F/G coset sigma model

Let G be a subgroup of a Lie groupF andM = F/G be a coset space. Let us assume that the Lie
algebraf of F is equipped with a positive-definite invariant bilinear form 〈 , 〉; explicitly, letF be a
matrix group and〈a, b〉 = Tr(ab). In addition letF/G be a symmetric space which is the case when

f = p ⊕ g , [g, g] ⊂ g , [g, p] ⊂ p , [p, p] ⊂ g , (3.1)

wherep denotes the orthogonal complement of the algebrag of G in f.
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The action of the sigma model onF/G is given by

S = −1

2

∫
d2σ ηab Tr(PaPb) , Pa = (f−1∂af)p , (3.2)

where(...)p denotes the orthogonal projection top, i.e.

J = f−1df = A + P , A = Jg ∈ g , P = Jp ∈ p . (3.3)

The action is invariant under theG gauge transformationf → fg for an arbitraryG valued function
g. Indeed, under this transformationJ = f−1df → g−1(f−1df)g + g−1dg so thatP transforms
into g−1Pg ensuring the invariance of the Lagrangian. The currentJ and therefore the action is also
invariant under the globalF symmetryf → f0f for any constantf0 ∈ F . Furthermore, the classical
coset sigma model action is invariant under the 2d conformaltransformations.

The equations of motion take the form

DaP
a = 0 , Da = ∂a + [Aa, ] , Aa = (f−1∂af)g . (3.4)

Using the light-cone coordinatesσ+, σ− they can also be written as

D+P− = 0 , D−P+ = 0 . (3.5)

Indeed, the zero curvature condition for the currentJ projected top implies

(∂+J− − ∂−J+ + [J+, J−])p = ∂+P− − ∂−P+ + [A+, P−] + [P+,A−] = 0 , (3.6)

i.e.D+P− −D−P+ = 0. This together with (3.4), i.e.D+P− +D−P+ = 0, then leads to (3.5).10

The nonvanishing components of the stress-tensor are

T++ = −1

2
Tr(P+P+) , T−− = −1

2
Tr(P−P−) . (3.7)

Equations of motion imply the conservation law∂−T++ = 0 , ∂+T−− = 0 . Then making an appro-
priate conformal transformations one can always set as in (2.4) T±± = µ2.

The Lax representation for the coset sigma model is found from the zero curvature conditiondω +
ω ∧ ω = 0 for the Lax connection

ω = dσ+(A+ + ℓP+) + dσ−(A− + ℓ−1P−) , (3.8)

i.e.
[∂+ + A+ + ℓP+, ∂− + A− + ℓ−1P−] = 0 , (3.9)

whereℓ is a spectral parameter. The equations of motion (3.5) follow from (3.9) as the coefficients of
orderℓ−1 andℓ terms. The coefficient of the orderλ0 term is theg-component of the zero curvature
condition for the connectionJ = A + P .

10Note that the global rightF -symmetry is not seen at the level of equations of motion written in terms of currents
because all the currents are explicitly invariant.
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Let us recall also two representations of the Lagrangian of theF/G sigma model. One is to intro-
duce an explicit parametrisation of the cosetM = F/G as embedded intoF . If xi are coordinates on
M , let dxiJ∗

i be a pullback ofJ toM . Then the Lagrangian in (3.2) takes the form

L = −1

2
ηab∂ax

i∂bx
j Gij(x) , Gij(x) = Tr(J∗

i (x)J
∗
j (x)) , (3.10)

whereGij is the metric on the coset space. Note that by choosing a particular parametrisation of the
coset we have fixed theG gauge symmetry. An alternative form ofL is found by introducing a gauge
field Aa ∈ g which serves to implement the projection of thef-current onp

L = −1

2
ηabTr[f(∂a + Aa)f

−1 f(∂b + Ab)f
−1] , (3.11)

or, equivalently,

L = −1

2
ηabTr[(f−1∂af − Aa) (f−1∂bf − Ab)] . (3.12)

Substituting the equation of motion forA

A = A = (f−1df)g (3.13)

into (3.11) one returns back to the original Lagrangian in (3.2).

3.2 G/H gauged WZW model with an integrable potential

As was suggested in [24] (see also [25]), a sigma model on a symmetric spaceF/G can be reduced to
a “symmetric space sine-Gordon” model with a Lagrangean formulation in terms of theG

H
left-right

symmetrically gauged WZW model with a gauge-invariant integrable potential.11

The potential is determined by a choice of two elementsT+, T− in the maximal abelian subspacea

in the complementp of the Lie algebrag of G in the algebraf of F . The algebrah of the subgroupH
of G should be the centralizer ofT± in g: [h, T±] = 0. Then the action is

Sµ(g, A) = SgWZW(g, A) − µ2

∫
d2σ

2π
Tr(T+g

−1T−g) , (3.14)

whereSgWZW is the action of the left-right symmetrically gauged WZW model [41] (we omit an
overall levelk factor)

SgWZW = −
∫
d2σ

4π
Tr(g−1∂+gg

−1∂−g) +

∫
d3σ

12π
Tr(g−1dgg−1dgg−1dg)

−
∫
d2σ

2π
Tr

(
A+ ∂−gg

−1 − A− g
−1∂+g − g−1A+gA− + A+A−

)
. (3.15)

11This is a special case of a non-abelian Toda theory [27]. Non-abelian Toda models are of the two basic types –
“homogeneous sine-Gordon” and “symmetric space sine-Gordon” [25]. For the first type the gWZW part of the Toda
model corresponds to G

[U(1)]r (r is a rank ofG). The models of the second type are reduced theories associated to sigma
models on compact symmetric spaces. They are quantum-integrable but their S-matrix is not known, except for special
cases of SG and CSG models. A review can be found in [43].
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Hereg ∈ G andA± ∈ h (all the fields are assumed to be matrices in a given representation ofF or of
its Lie algebraf).

Note that using Polyakov–Wiegmann identity the action (3.15) can be written also in the following
form

SgWZW = SWZW(h−1gh′) − SWZW(h−1h′) , (3.16)

A+ = h−1∂+h , A− = h′−1∂−h
′ . (3.17)

To define the action withT± belonging to the algebra ofF it is assumed thatg ∈ G is trivially
(diagonally) embedded intoF . The action is then invariant under the vector gauge transformations
with parameters taking values inH:

g → hgh−1 , Aa → h(Aa + ∂a)h
−1 , h ∈ H , (3.18)

whereAa ∈ h andh−1T±h = T± (since[a, h] = 0).
The equations of motion following from (3.15) are

∂−(g−1∂+g + g−1A+g) − ∂+A−

+ [A−, g
−1∂+g + g−1A+g] + µ2[g−1T−g, T+] = 0 , (3.19)

A+ = (g−1∂+g + g−1A+g)h , A− = (−∂−gg−1 + gA−g
−1)h . (3.20)

Note thatg−1T−g ∈ p so that[T+, g
−1T−g] ∈ m, whereg = m⊕ h. In particular, theh-component of

the first equation implies thatAa is flat,

∂+A− − ∂−A+ + [A+, A−] = 0 . (3.21)

Let us comment on the classical integrability of the above model (3.14). It is well known that the
equations of motion of the standard WZW model can be written in the Lax form. The same also
applies to gauged WZW model with the above potential. More precisely, using[Aa, T±] = 0 one can
show that equation (3.19) can be written in the Lax form, i.e.it follows from [L+,L−] = 0 where (ℓ
is a spectral parameter)

L+ = ∂+ + g−1∂+g + g−1A+g + ℓµT+ , L− = ∂− + A− + ℓ−1µg−1T−g , (3.22)

or, equivalently, from the zero curvature equation for thef-valued Lax connection

ω = dσ+(g−1∂+g + g−1A+g + ℓµT+) + dσ−(A− + ℓ−1µg−1T−g) . (3.23)

While the remaining equations (3.20) (constraints) do not follow from this condition, they may be
considered as consequences of (3.19) in the sense that givena solution to (3.19) one can find a gauge
transformation such that the transformed solution satisfies (3.20).

This is possible because eq. (3.19) has alarger gauge symmetrythan the original gWZW model
(3.15): it is invariant under theH ×H gauge symmetry

g → h−1gh̄ , A+ → h−1A+h + h−1∂+h , A− → h̄−1A−h̄+ h̄−1∂−h̄ , (3.24)
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whereh andh̄ are two arbitraryH-valued functions. The symmetry of (3.15) is the diagonal subgroup
(with h = h̄) of the extended “on-shell” gauge symmetry (3.24). It turnsout that using this extended
symmetry one can fulfil the constraints (3.20). Further details and the proof are relegated to the
AppendixA. We shall also use this observation in section4 below.

Let us note also that given an automorphismτ of the algebraH preserving the trace one can fix the
H ×H gauge symmetry of the equations of motion in a more general way so that (3.20) is replaced
by

τ(A+) = (g−1∂+g + g−1A+g)h , A− = (−∂−gg−1 + gτ(A−)g−1)h . (3.25)

The corresponding equations (3.19),(3.25) then follow from the Lagrangian (3.14),(3.15) with the
replacement

A− → τ(A−) (3.26)

in the A−g
−1∂+g and theg−1A+gA− terms. The corresponding gauge symmetry is theng →

h−1 g τ̂(h) where τ̂ is a lift of τ from h to H (see [25, 29]). In this case the left-right symmetri-
cally gauged WZW model is thus replaced by a more general asymmetrically gauged WZW model
[40, 33].

It was observed in [24] that since the field strength ofAa vanishes (3.21) on the equations of motion,
one can choose a gauge where12

A+ = A− = 0 . (3.27)

Then the classical equations (3.19),(3.20) reduce to

∂−(g−1∂+g) − µ2[T+, g
−1T−g] = 0 , (3.28)

(g−1∂+g)h = 0 , (∂−gg
−1)h = 0 . (3.29)

These equations happen to be equivalent to the equations of motion of the reducedF/G model found
in [16, 18, 19].

Various special cases, structure of vacua and solitonic solutions of the equations (3.28),(3.29) were
discussed in [43, 29] and refs. there.

The set of equations (3.28),(3.29) do not directly follow from a local Lagrangian. As was implied
in [24], to get a local Lagrangian formulation of these equations one is to go back to the action (3.15)
on a bigger configuration space involving bothg andAa with the gauge invariance (3.18).

At the same time, one would like also to have a reduced action involving only the independent
degrees of freedom, i.e. generalizing the actions of the SG (2.6) and the CSG (2.7) models.

Below in section4 we shall explain why and under which conditions the relationbetween the
equations of the reduced theory corresponding to theF/G coset model and the equations of the
G/H gWZW model proposed in [24] actually works. Then in section5 we shall suggest how to use
this correspondence to find a local Lagrangian for the physical number of degrees of freedom of the
reduced model.

12This gauge is thus possible only on-shell; to gauge awayAa at the level of the gWZW Lagragian one would need
some additional local gauge invariance.
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The main observation will be that there exists an equivalentrepresentation for the classical equa-
tions following from (3.14) (or gauge-equivalent, in the sense of [15], representation of the Lax equa-
tions corresponding to (3.22)) in which they admit an explicit Lagrangean formulation without any
residual gauge invariance, thus generalizing the SG and CSGexamples. Instead of the “on-shell”
gaugeAa = 0 used in [24] one can impose an “of-shell”H-gauge on the group elementg and then
solve for the gauge fieldAa. “Integrating out”Aa then leads to a sigma model for the independent
dim(G/H) number of parameters ing in the same way as in the examples of conformal sigma models
associated to gWZW models [36, 38, 40].13

4 Reduced theory forF/G coset sigma model:
equations of motion

The strategy to relate the equations of motion of theF/G coset model to those of theG/H gWZW
model will be to impose the so called reduction gauge in the equations of theF/Gmodel (3.5) written
in terms of the independent current components and then to make use of the 2d conformal symmetry
to eliminate one additional degree of freedom. This will allow us to solve all gauge-fixed equations
of motion but the Maurer-Cartan equation explicitly in terms of a new fieldg taking values inG and
theh-valued gauge fieldA±. The remaining system of equations (i.e. the components of the Maurer–
Cartan equation in this parametrization) will turn out to beinvariant under both the left and the right
H gauge symmetries. We will then prove that one can impose the special gauge conditions under
which the gauge symmetry reduces to that of theH-gauge invariance of theG/H gWZW model and
the equations become equivalent to the ones (3.19),(3.20) following from the gWZW action with an
integrable potential (3.14) described in section3.2.

4.1 Equation of motion in terms of currents and the reductiongauge

The relation between the reducedF/G model and theG/H gWZW model will apply under certain
special conditions on the structure of the Lie algebras of the groups involved. These conditions that
we will specify below will be satisfied, in particular, in thecase of theSn = SO(n+1)/SO(n) model
(and itsAdSn counterpart) which is our main interest here.

Let a be a maximal Abelian subspace of the orthogonal complementp of the algebrag of G in the
algebraf of F . Let h be its centralizer ing. Following [18] we shall assume the following conditions
on the structure of these algebras (which represent a special case of (3.1))

f = p ⊕ g , p = a ⊕ n , g = m ⊕ h , [a, a] = 0 , [h, a] = 0 , (4.1)

[m,m] ⊂ h , [m, h] ⊂ m , [m, a] ⊂ n , [a, n] ⊂ m . (4.2)

Starting with a left-invariant currentJ = f−1df with f ∈ F we shall use the following notation for
its h, m andp components

Aa = (f−1∂af)h , Ba = (f−1∂af)m , Pa = (f−1∂af)p , (4.3)

13Integrating out the gauge field at the quantum level induces also a dilaton [36]; there are also quantumα′ ∼ 1/k
corrections to the sigma model background fields [45, 46, 47]. These will be ignored at the classical level we are restricted
to here.
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i.e. Aa ∈ g in (3.3) is equal toAa + Ba. The equations of motion of theF/G sigma model (3.5)
written in terms of thecurrent componentsAa, Ba, Pa viewed asindependent fieldsthen take the
form

D+P− = 0 , D−P+ = 0 , (4.4)

∂+(A− +B−) − ∂−(A+ +B+) + [A+ +B+, A− +B−] = [P−, P+] , (4.5)

whereD± = ∂± + [A± +B±, ].
The choice of thereduction gauge[18] is based on the “polar decomposition” theorem which states

that for anyk ∈ p there existsg0 ∈ G such thatg−1
0 kg0 ∈ a. Using theG gauge freedom of the coset

model equations of motion one can therefore assume that one of the components ofPa, e.g.,P+ is
a-valued. ThenD−P+ = 0 implies

∂−P+ = 0 , [B−, P+] = 0 . (4.6)

Here we made use of the condition[m, a] ⊂ n in (4.2). Under a certain regularity condition which
we shall assume (in the case whena is one-dimensional, e.g., forF/G = SO(n + 1)/SO(n), it is
enough to require thatP+ 6= 0) the equation[B−, P+] = 0 implies that

B− = 0 . (4.7)

To summarise, by imposing the gauge in whichP+ ∈ a and eliminatingB− by solving[B−, P+] = 0
(i.e. settingB− to zero) one can bring the system of theF/G model equations of motion (4.4),(4.5)
to the following form:

∂−P+ = 0 , ∂+P− + [A+, P−] + [B+, P−] = 0 , (4.8)

∂−B+ + [A−, B+] = [P+, P−] , (4.9)

∂−A+ − ∂+A− + [A−, A+] = 0 , (4.10)

where (4.9) and (4.10) arem andh projections of (4.5) (we are using the conditions (4.1),(4.2)).
In this reduction gauge the originalG gauge symmetry is reduced toH gauge symmetry under

which the current componentA± transforms as a gauge potential whileB± andP± transform co-
variantly, i.e. as(...) → h−1(...)h. In particular,P+ is invariant because it takes values ina and
[a, h] = 0.

Let us note that (4.10) implies that we can impose the on-shell H gauge whereA± = 0. In this
gauge the equations of motion (4.8),(4.9) take the form:

∂−P+ = 0 , ∂+P− = [P−, B+] , ∂−B+ = [P+, P−] . (4.11)

4.2 Fixing conformal symmetry, field redefinition
and relation to G/H gauged WZW model

The first equation∂−P+ = 0 in (4.8) implies thatP+ = P+(σ+). One can then fix one component
of the matrix functionP+ using the residual conformal symmetry under whichP+dσ

+ = P ′
+dσ

′+.
Since in the reduction gaugeP+ belongs to the abelian subspacea of p, then ifdim a = 1 (which is
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the case, e.g., for theSO(n+ 1)/SO(n) coset of our interest) one can always assume thatP+ = µT+

whereT+ ∈ a is a constant matrix inf which is a basic element ofa (we may also normalize it so
thatTr(T+T+) = −2). This is equivalent to requiring that the corresponding component of the stress
tensor in (3.7) is constant, i.e.T++ = µ2.

Furthermore, we can use the remaining conformal symmetryσ− → σ′−(σ−) to fix theT−− com-
ponent in (3.7) also to be constant as in the original Pohlmeyer’s argument.14 Thus assuming that the
maximal Abelian subspacea of p = f ⊖ g is 1-dimensional and using the conformal symmetry we
arrive at

P+ = µ T+ , −1

2
Tr(P−P−) = µ2, (4.12)

T±± = µ2 , µ, T+ = const . (4.13)

The first condition in (4.12) fixes one independent degree of freedom contained inP+ in the case
whendim a = 1 and the second condition reduces by one the number of independent degrees of
freedom inP−. The normalization condition onP− can be solved by

P− = µ g−1T−g , T− = const , (4.14)

whereg ∈ G is anew field variable(thus non-locally related to original variablef ∈ F in (4.3)) and
T− is a constant matrix which is a fixed element ofa. The existence of suchg follows again from the
polar decomposition theorem, and the requirement ofT−− = µ2 implies thatTr(T−T−) = −2. In the
case ofdim a = 1 which we are considering here it follows that

T+ = T− ≡ T . (4.15)

For generality and to indicate the Lorentz index structure,below we shall often keep the separate
notation forT+ andT−.

The equation forP− in (4.8) written in terms ofg in (4.14) then becomes

∂+(g−1T−g) + [A+, g
−1T−g] = 0 , A+ = A+ +B+ . (4.16)

ConsideringA+ ∈ g as an unknown, the general solution of this equation can be written as

A+ = g−1∂+g + g−1A′
+g , (4.17)

whereA′
+ is an arbitraryh-valued function. Indeed, the first term in (4.17) is obviously a particular

solution of (4.16) (sinceT− = const) while the second term is a general solution of the homogeneous
equation[A+, g

−1T−g] = 0 (given that[A′
+, T−] = 0 since[h, a] = 0). Thus

A+ = (g−1∂+g + g−1A′
+g)h , B+ = (g−1∂+g + g−1A′

+g)m . (4.18)

In terms of the new variablesg, A′
+, A− the first two equations of motion in (4.4) or (4.8) are solved

and the remaining equation (4.5) (or (4.9),(4.10) which areits m andh components) then takes the
form

∂−(g−1∂+g + g−1A′
+g) − ∂+A− + [A−, g

−1∂+g + g−1A′
+g] = µ2[T+, g

−1T−g] . (4.19)

14The conservation equation∂+T−− = 0 can be seen directly from the second equation in (4.11).

15



As discussed in section3.2, this equation is equivalent to the equations of motion of the gWZW
theory (3.19),(3.20) in the sense that by an appropriate gauge transformation one can always make
the following constraints satisfied:

A′
+ = (g−1∂+g + g−1A′

+g)h , A− = (g∂−g
−1 + gA−g

−1)h . (4.20)

After renamingA′
+ asA+ these are exactly the equation of motion (3.19) and the constraints (3.20).15

We have thus shown that the original system of equations of theF/G sigma model (4.8), (4.9),(4.10)
is equivalent to the one described by the equation (4.19) andthe constraints (4.20) with theH gauge
symmetry (3.24) withh = h̄. These are the same equations of motion (3.19), the constraints (3.20)
and the gauge symmetry as corresponding to the action (3.14)of theG/H gauged WZW model (3.15)
with the potential∼ µ2Tr(T+g

−1T−g).
That the reduced equations of motion of theF/G coset model can be related to those of the gWZW

model with an integrable potential was first suggested in [24] (and checked on several examples
includingSO(n+ 1)/SO(n), SU(n+1)/U(n), andSU(n)/SO(n) cosets). Here we explained why
this correspondence should work in general and specified thenecessary conditions on the groups and
the algebras involved.

4.3 Gauge equivalence of Lax representations for theF/G coset andG/H
gauged WZW models

Imposing the reduction gauge in terms of the Lax connectionscan be achieved in a directly analogous
way. Letω be anf-valued Lax connection defined in (3.8). The gauge equivalence transformation
ω′ = f−1ωf + f−1df with f ∈ F gives a new system determined by a gauge-equivalent Lax con-
nectionω′. Decomposingω = ωp + ωg one observes that in the special case off = g ∈ G the
componentωp transforms asω′

p = g−1ωpg. Using the same polar decomposition argument as dis-
cussed above one concludes that it is always possible to find aG-valued functiong such that (cf.
(4.1)) (ωn)+ = (A+ +B+ + ℓP+)n = 0.

Decomposingω′ according tof = p ⊕ m ⊕ h

ω′ = dσ+(A+ +B+ + ℓP+) + dσ−(A− +B− + ℓ−1P−) ,

A± ∈ h , B± ∈ m, P+ ∈ a , P− ∈ p ,
(4.21)

one finds as above that the compatibility condition implies eqs. (4.6), i.e.∂−P+ = 0 and[P+, B−] =
0; the latter gives againB− = 0. This allows us to relate the Lax connection to that withB− = 0, i.e.

ω′′ = dσ+(A+ +B+ + ℓP+) + dσ−(A− + ℓ−1P−) , (4.22)

whose flatness condition implies the last two equations in (4.8).16

15More generally one, can conside asymmetrical gauge by introducing the appopriateh-automorphismτ . See the
respective discussion in section3.2.

16 Note that this reduction is local asB− = 0 is an algebraic consequence of the compatibility condition, i.e. B− is an
auxiliary field.
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As for the equations∂−P+ = 0 and∂+P− + [A+ + B+, P−] = 0 in (4.8), assuming they are
satisfied, one can again use the conformal transformations to setP+ = µT+ andTr(P−P−) = −2µ2.
As a result, the Lax connection takes the following form:

ωred = dσ+(A+ +B+ + ℓµT+) + dσ−(A− + ℓ−1P−) . (4.23)

Finally, using again the parametrisationP− = µg−1T−g andA+ + B+ = g−1∂+g + g−1A′
+g, one

arrives at
ω = dσ+(g−1∂+g + g−1A′

+g + ℓµT+) + dσ−(A′
− + ℓ−1µg−1T−g) , (4.24)

whose compatibility condition implies (4.19). It was shownin the previous subsection that by an
appropriate gauge transformation one can also satisfy the on-shell relations (4.20). We thus find the
relation to the Lax representation of theG/H gWZW model (cf. (3.20),(3.23)).

4.4 Reduced equations ofSn = SO(n+ 1)/SO(n) coset model
in the A± = 0 gauge

Let us now turn to the special case of our interest: sigma model with a sphere as a target space. Using
the standard(n+1)× (n+1) matrix representation forF = SO(n+1) and its diagonally embedded
G = SO(n) subgroup we can chooseT+ = T− to have only one non-zero upper2 × 2 block so that
H = SO(n − 1) is also diagonally embedded intoG = SO(n) (the conditions (4.1),(4.2) are then
satisfied). In this case we get forP± in (4.12),(4.14)

P+ = µT+ = µ




0 1 . . . 0
−1 0 . . . 0
. . . . . . . . . . . .
0 0 . . . 0


 , P− = µ




0 k1 . . . kn
−k1 0 . . . 0
. . . . . . . . . . . .
−kn 0 . . . 0


 . (4.25)

Hereg in (4.14) is parametrized bykl and−1
2
Tr(P+P+) = µ2. Also,−1

2
Tr(P−P−) = µ2 is satisfied

provided
n∑

s=1

ksks = 1 . (4.26)

The subalgebrasg = so(n) andh = so(n − 1) are canonically (diagonally) embedded intof =
so(n+ 1). In addition toB− = 0 from (4.6),(4.7) we have forB+ = (A+)m (see (4.16))

B+ =




0 0 0 . . . 0
0 0 b2 . . . bn
0 −b2 0 . . . 0
. . . . . . . . . . . . . . .
0 −bn 0 . . . 0



. (4.27)

In this case the equation∂+P− + [A+, P−] = [P−, B+] in (4.8) can be solved algebraically forB+

giving (4.27) with

bl =
∂+kl + [A+, k]l√
1 −

∑n
m=2 kmkm

, l = 2, . . . , n . (4.28)
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Fixing theH = SO(n− 1) on-shell gauge as

A+ = A− = 0 , (4.29)

the third equation in (4.8) then gives the following reducedsystem of equations for the remaining
n− 1 unknown functionsk2, ..., kn (k1 is determined from (4.26)) [19]

∂−
∂+kl√

1 − ∑n
m=2 kmkm

= −µ2kl , l = 2, . . . , n . (4.30)

This is the same reduced system that follows both from theSO(n + 1)/SO(n) coset model [16, 18]
and theSO(n)/SO(n− 1) gWZW model in theA± = 0 gauge [24].

The pointg = 1 is an obvious vacuum for eq. (3.19) in theA± = 0 gauge, i.e. a trivial solution of
(3.28),(3.29) withT+ = T−. According to (4.14),(4.25) it corresponds to

k2 = ... = kn = 0 . (4.31)

The massive fluctuations near this vacuum in the gauge (4.29)are described by theH = SO(n− 1)
invariant equation (4.30), i.e.

∂+∂−kl + µ2kl +O(k2
l ) = 0 . (4.32)

It is convenient to rewrite the equation (4.30) in terms of the new variables(ϕ, um) defined so that
(4.26) is satisfied

k1 = cos 2ϕ , kl = ul sin 2ϕ , ulul = 1 , l = 2, . . . , n , (4.33)

getting [19]

∂+∂−ϕ− 1

2
tan 2ϕ ∂+ul∂−ul +

µ2

2
sin 2ϕ = 0 ,

∂+∂−ul + (∂+um∂−um) ul +
2

sin 2ϕ
(cos 2ϕ ∂+ϕ∂−ul +

1

cos 2ϕ
∂−ϕ∂+ul) = 0 .

(4.34)

Besides the obviousSO(n − 1) symmetry these equations are invariant under the followingformal
transformation

ϕ → ϕ+
π

2
, µ2 → −µ2 . (4.35)

In the case ofF/G = SO(4)/SO(3), i.e. CSG as a reduced model, this formal transformation
relates the two 2d dual reduced models with T-dual target space metrics in the corresponding reduced
Lagrangians [23, 39, 29].17

Let us briefly describe the modifications of the above construction in the case of theAdSn =
SO(2, n−1)/SO(1, n−1) coset model. The vector-space signature is diag(−1,−1, 1, . . . , 1) and the
subgroupG = SO(1, n−1) is diagonaly embedded. In the standard representation off = so(2, n−1)

17In this case ofSO(3)/SO(2) gWZW model this duality is also related with the vector (g → h−1gh) or the axial
(g → hgh) gauging [45, 44].
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the elementT+ = T− can be choosen to have the same form as in (4.25) while the condition (4.26)
takes the formk1k1 −

∑n
m=2 kmkm = 1. Equation (4.30) is then replaced by

∂−
∂+kl√

1 +
∑n

m=2 kmkm
= −µ2kl , l = 2, . . . , n . (4.36)

Finally, introducing instead of (4.33) the parametrization

k1 = cosh 2φ , kl = ul sinh 2φ , ulul = 1 , l = 2, . . . , n , (4.37)

one arrives at the system (4.34) forφ, ul with the obvious replacement ofcosϕ, sinϕ, tanϕ with
coshφ, sinhφ, tanhφ. The two systems of equations are thus related by the replacementϕ = iφ,
as one would expect from the standard analytic continuationargument. Remarkably, the variablesul
satisfy the same normalization condition in theSn and theAdSn cases and both systems are invariant
under the sameH = SO(n− 1) symmetry. Note also that in theAdSn case the linearized equations
(4.32) have exactly the same form leading to the same massivefluctuations near the vacuumg = 1.

Instead of using the parametrization ofP− in terms ofkl in (4.25) we may start with a particular
choice ofg ∈ G which then determinesP− according to (4.14). Parametrisingg ∈ G = SO(n)
by the generalized Euler angles and expressingP− in terms of them one arrives at a certain multi-
field generalisation of the sine-Gordon equation which is just another form of (4.34) (ϕ introduced
in (4.33) corresponds then to the first Euler angle). In theSO(3)/SO(2) case this gives the standard
sine-Gordon equation

g =

(
cos 2ϕ sin 2ϕ
− sin 2ϕ cos 2ϕ

)
, k1 = cos 2ϕ , k2 = sin 2ϕ , (4.38)

∂+∂−ϕ+
µ2

2
sin 2ϕ = 0 . (4.39)

In theSO(4)/SO(3) case we can parametrizeg ∈ SO(3) as

g = g2g1g2 , g1 = exp (2ϕR1) , g2 = exp (χR2) , (4.40)

R1 =




0 1 0
−1 0 0
0 0 0


 , R2 =




0 0 0
0 0 1
0 −1 0


 . (4.41)

The corresponding components of the unit vectorks in (4.25),(4.33) are

k1 = cos 2ϕ , k2 = sin 2ϕ cosχ , k3 = sin 2ϕ sinχ . (4.42)

The equations of motion (4.34) take the form

∂+∂−ϕ− 1

2
tan 2ϕ ∂+χ∂−χ +

µ2

2
sin 2ϕ = 0 ,

∂+∂−χ +
2

sin 2ϕ

(
cos 2ϕ ∂+ϕ ∂−χ+

1

cos 2ϕ
∂−ϕ ∂+χ

)
= 0 .

(4.43)
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These equations can be brought to the standard complex sine-Gordon form by a (nonlocal) change of
variables (which may be interpreted as a gauge change in (3.19),(3.20)). Indeed, replacingχ by θ via

∂+θ =
cos2 ϕ

cos 2ϕ
∂+χ , ∂−θ = cos2 ϕ ∂−χ , (4.44)

we get [19]:

∂+∂−ϕ− sinϕ

cos3 ϕ
∂+θ∂−θ +

µ2

2
sin 2ϕ = 0 ,

∂+∂−θ +
2

sin 2ϕ
(∂+ϕ∂−θ + ∂−ϕ∂+θ) = 0 ,

(4.45)

which follow from the local CSG Lagrangian (2.7). If we replace eq. (4.44) by the transformation

∂+θ̃ = − sin2 ϕ

cos 2ϕ
∂+χ , ∂−θ̃ = sin2 ϕ ∂−χ , (4.46)

we get instead of (4.45) the equations that follow from the analog of (2.7) with T-dual target space
metric: ds2 = dϕ2 + cot2 ϕ dθ̃2. Both the corresponding “dual” Lagrangian and its equations of
motion are related, respectively, to (2.7) and (4.45) by thetransformation (4.35). The fieldsθ in
(4.44) and̃θ in (4.46) are related of course by the 2d duality transformation.

In general, the equations (4.30) found in theA± = 0 gauge do not follow from a local Lagrangian
for the fieldkm (apart from then = 2, i.e. the SG case). In particular, this applies to the system
(4.43): one needs a nontrivial field redefinition (4.44) (which is consistent only on the equations of
motion forϕ) to get a Lagrangean system (4.45).

Such a non-local field redefinition may be interpreted as corresponding to a change of theH gauge.
A way to get a Lagrangean system of the reduced equations is tofix theH gauge not onA± (as was
done in [24] and above in this section) but ong, i.e. to solve the equations forA± in terms of the
gauge-fixedg. We shall discuss this procedure in the next section.

5 Lagrangian of reduced theory:Sn = SO(n + 1)/SO(n) model

As we have seen in section4, the reduced equations of motion of theF/G coset model are in general
gauge-equivalent to the equations of motion of theG/H gWZW model with a specific integrable
potential. To get a Lagrangean formulation of the reduced theory corresponding to theF/G model
(or, equivalently, to the bosonic string onRt × F/G in the conformal gauge) we may then start with
the associatedG/H gWZW model, fix anH-gauge ong ∈ G and solve for the auxiliary gauge field
A±. This will produce a classically-equivalent integrable system. Here we shall concentrate on the
example of theSn sigma model.
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5.1 General structure of the reduced Lagrangian

In the case ofF/G = Sn, i.e. G/H = SO(n)/SO(n− 1) we will end up with an integrable theory
represented by an (n–1)- dimensional sigma model with a potential18

L = Gmk(x) ∂+x
m∂−x

k − µ2U(x) . (5.1)

The special cases are then = 2 (2.6) andn = 3 (2.7) examples discussed above. Herexm are the
n− 1 (= dimG− dimH) independent components ofg left over after theH gauge fixing ong.

In contrast to the metric of the usual geometric (or “right”)cosetSO(n)/SO(n − 1) = Sn−1

the metricGmk in (5.1) found from the symmetrically gaugedG/H = SO(n)
SO(n−1)

gWZW model will

generically have singularities and no non-abelian isometries.19

Following [42] we may call these geometries resulting from conformal SO(n)
SO(n−1)

gWZW models
as “conformal cosets” or “conformal spheres”, with the notation Σn−1. Instead ofRmk = c Gmk

for a standard sphere their metricGmk satisfiesRmk + 2∇m∇kΦ = 0 whereΦ is the corresponding
dilaton resulting from integrating outAa. The explicit expressions forGmk were worked out for a few
low-dimensional cases:Σ2 [36], Σ3 [37, 38, 40] andΣ4 [44].

The potential (“tachyon”) term in (5.1) originates directly from theµ2 term in (3.14). It is a relevant
(and integrable) perturbation of the gWZW model and thus also of the “reduced” geometry, so that it
should satisfy (see also [48])

1√
Ge−2Φ

∂m(
√
Ge−2ΦGmk∂k)U −M2U = 0 . (5.2)

Below we shall comment on details of the derivation of the metric Gmk and write down explicitly the
reduced Lagrangian (5.1) for the new non-trivial cases ofn = 4, 5, i.e. for the string onRt × S4 and
Rt × S5, which generalize then = 3 CSG model (2.7).

TheH gauge fixing ong and elimination ofAa from the SO(n)
SO(n−1)

gWZW Lagrangian (3.14) can be
done by generalizing the discussion of then = 4 case in [38]. The first step is the parametrisation of
g in terms of the generalized Euler angles. Let us define the 1-parameter subgroups corresponding to
theSO(n+ 1) generatorsRm+1,m (m = 0, 1, ..., n− 1)

gm(θ) = eθRm , (Rm)ji = (Rm+1,m)ji ≡ δjmδm+1,i − δmiδ
j
m+1 . (5.3)

ThenT± = T in (3.14) is equivalent to the generatorR0 corresponding tog0

T = R0

and the generators of the subgroupH = SO(n − 1) which commutes withT containRm+1,m with
m = 2, ..., n− 1. A generic element ofG = SO(n) can be parametrized as
g = gn−1(θn−1)...g2(θ2)g1(θ1)h,

18The absence of the antisymmetricBmn coupling has to do with the symmetric gauging of the maximal diagonal
subgroup.

19While the gaugeA± = 0 preserves the explicitSO(n− 1) invariance of the equations of motion, fixing the gauge on
g and integrating outAa breaks all non-abelian symmetries (the corresponding symmetries are then “hidden”).
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whereh belongs toH. A convenientH gauge choice is then [38]

g = gn−1(θn−1)...g2(θ2)g1(2ϕ)g2(θ2)...gn−1(θn−1) , (5.4)

so thatϕ ≡ 1
2
θ1, andθp (p = 2, ..., n− 1) aren − 1 coordinates on the coset spaceΣn−1, with ϕ

playing a distinguished role.
With this choice of the parametrisation it turns out that thepotentialU in (3.14),(5.1) has a universal

form for anydimensionn: it is simply proportional tocos 2ϕ as in the SG (2.6) or CSG (2.7) cases.
Indeed, since[T±, gk] = 0 for k> 2, one finds

Tr(T+g
−1T−g) = Tr(T+g

−1
1 T−g1) = 2 cos 2ϕ . (5.5)

The metric and the dilaton resulting from integrating out theH gauge fieldAa satisfy20

ds2 = Gmkdx
mdxk = dϕ2 + gpq(ϕ, θ)dθ

pdθq ,
√
G e−2Φ = (sin 2ϕ)n−2 , (5.6)

so that the equation (5.2) is indeed solved by21

U = −1

2
cos 2ϕ , M2 = −4(n− 1) . (5.7)

Let us now make few remarks.
As was already mentioned, the reduced model (5.1) has no antisymmetric tensor coupling term.

The antisymmetic tensor contribution could originate either from the WZ term in the WZW action in
(3.15) or in the process of solving for the gauge fieldAa. It turns out that both contributions vanish if
the gauge condition (5.4) is used. Details of the proof are given in the AppendixB.

The obvious “vacuum” configurations, i.e. extrema of the potentialU areθp = const andϕ =
π
2
n, n = 0, 1, 2, .... The metricgpq(ϕ, θ) in (5.6) may, however, be singular near such points, i.e. they

may not be reachable in a given coordinate system and more detailed analysis may be required.
One should keep in mind that the gWZW action (3.14) is the mostgeneral and universal definition

of the theory, while special gauges and parametrizations may have their drawbacks and may not apply
globally. For example, the elimination of the gauge fieldsA± from (3.19) or the gWZW action (3.15)
requires solving the constraints in (3.20), i.e.A+ = (g−1A+g + g−1∂+g)h andA− = (gA−g

−1 +
g∂−g

−1)h. The corresponding operator(1 − Adg)h is singular near some pointsg (e.g., g = 1)
implying that in their vicinity one should use a different gauge or do not directly solve forA±.

For example, one may consider an asymmetrically gauged WZW model (see (3.26)) correspond-
ing to a more general on-shell gauge (3.25); in this case one should use (5.4) with the left-hand-side

20The dilaton field should be taken into account provided the model is defined on a curved 2d background and one
is interested in the Weyl invariance conditions (i.e. the definition of the conformal stress tensor) of the theory on the
“restricted”G/H part of configuration space obtained by eliminating theH gauge field [36, 45, 47]. In the present context
where we started with the string theory in the conformal gauge that would require a re-introduction of the 2d metric in
the reduced model; then the dilaton would couple to the metric in the standard way and would enter in the definition of
the stress tensor of the “restricted” sigma model (5.1). If there is indeed a path integral transformation that leads from the
original (super)coset model to the reduced model, then the latter can be considered as a usual world-sheet theory coupled
to a 2d metric (that will in general depend on moduli in the case of higher genus surfaces, etc.). The presence of the
potential term that “spontaneously” breaks the conformal symmetry (which was fixed by makingµ constant) is unrelated
to the dilaton coupling issue.

21We fix the overall normalisation constant in the WZW action sothatα′k = 1.
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factorgn−1(θn−1)...g2(θ2) replaced bŷτ (gn−1(θn−1)...g2(θ2)) whereτ̂ is the lift of the automorphism
in (3.25). However, in the case whenh is simple (e.g., for theSO(5)/SO(4) coset) such an automor-
phism can always be represented asτ(A) = h−1

τ Ahτ for somehτ ∈ H; therefore it can not be used
to remove the degeneracy of the operator in theA+A− part of the action.22

Finally, let us note that both the gauge fixing and the eliminating of A± can be implemented at
the level of the Lax connection, leading to the Lax formulation of the reduced model in terms of the
generalized Euler angles, i.e. ensuring the integrabilityof the reduced model (5.1).

Let us now turn to specific examples.

5.2 Examples of reduced Lagrangians forSn models

Let us first show how to get the Lagrangian (2.7) of the CSG model directly from theSO(3)
SO(2)

gWZW
model (3.14). The equation forA+ following from (3.15) reads:

A+ = (g−1∂+g + g−1A+g)h . (5.8)

In the SO(3)
SO(2)

gWZW case we have from (5.4)g = g2(θ)g1(2ϕ)g2(θ) so that

(g−1∂+g)h = (1 + cos 2ϕ)R2∂+θ , ∂−gg
−1 = (1 − cos 2ϕ)R2∂−θ ,

A+ =
1 + cos 2ϕ

1 − cos 2ϕ
R2∂+θ .

(5.9)

One finds also

−1

2
Tr(g−1∂+gg

−1∂−g) = 2(1 + cos 2ϕ)∂+θ∂−θ + 4∂+ϕ∂−ϕ ,

Tr(A+∂−gg
−1) = −2

(1 + cos 2ϕ)2

1 − cos 2ϕ
∂+θ∂−θ . (5.10)

Using (5.5) one finally obtains the Lagrangian

L̃ = ∂+ϕ∂−ϕ+ cot2 ϕ ∂+θ∂−θ +
µ2

2
cos 2ϕ . (5.11)

This Lagrangian is dual to that in (2.7), i.e. the two are related by 2d dualityθ → θ̃. As was already
mentioned above, the CSG Lagrangian (2.7) is directly obtained if we start with the asymmetrically
(“axially”) gauged WZW model withτ(A−) = −A−.23 Alternatively, the two dual models are related
by the formal transformation (4.35).

The explicit form of theΣn−1 metric (5.6) withn = 2, 3, 4 as found directly from the action (3.14)
with (5.4) is thus

ds2
n=2 = dϕ2 , ds2

n=3 = dϕ2 + cot2 ϕ dθ2 , (5.12)

22The nonsingular metrics known to arise in the SG and CSG casesare due to the fact thath = 0 in the CS case and
h = U(1) in the CSG case. As we will see below, the nonsingular metric in the CSG case is obtained by utilizing the
automorphismτ(A) = −A. This automorphism does not, however, apply to the case of a non-abelianh.

23In this case the parametrization (5.4) takes the formg = τ̂(g2)g1g2 = g2(−θ)g1(2ϕ)g2(θ).
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ds2
n=4 = dϕ2 + cot2 ϕ (dθ2 + tan θ3 cot θ2 dθ3)

2 + tan2 ϕ
dθ2

3

sin2 θ2
. (5.13)

After a change of variables (x = cos θ2 cos θ3, y = sin θ3) we get the metric onΣ3 [38]

(ds2)n=4 = dϕ2 +
cot2 ϕ dx2 + tan2 ϕ dy2

1 − x2 − y2
. (5.14)

Thus in the case ofn = 4 (i.e. for the string onRt × S4) we find from (5.14),(5.7) that the reduced
theory is described by the following Lagrangian (cf. (2.7))

L̃ = ∂+ϕ∂−ϕ+
cot2 ϕ ∂+x ∂−x+ tan2 ϕ ∂+y ∂−y

1 − x2 − y2
+
µ2

2
cos 2ϕ . (5.15)

An equivalent form of the metric ofΣ3 (5.14) was found in [40]

(ds2)n=4 =
db2

4(1 − b2)
− 1 + b

4(1 − b)

dv2

v(v − u− 2)
+

1 − b

4(1 + b)

du2

u(v − u− 2)
, (5.16)

as one can see by settingb = cos 2ϕ, u = −2y2, v = 2x2. The metric-dilaton background for
Σ4 (i.e. n = 5) case was obtained in similar coordinates(b, u, v, w) in [44]. Settingb = cos 2ϕ,
w = cosα, v = cosβ we get

(ds2)n=5 = dϕ2 + tan2 ϕ
du2

(cosβ − u)(u− cosα)

+ cot2 ϕ (cos β − cosα)

[
dα2

4(u− cosα)
+

dβ2

4(cosβ − u)

]
. (5.17)

Together with thecos 2ϕ potential (5.7) this metric thus defines the reduced model for the string on
Rt × S5.

5.3 Reduced model for a bosonic string inAdSn × Sn

One can similarly find the reduced Lagrangians for theF/G = AdSn = SO(2, n− 1)/SO(1, n− 1)
coset sigma models related to the above ones by an analytic continuation. These reduced models
describe strings inAdSn × S1 spaces in the conformal gauge with the residual conformal symmetry
fixed, e.g., by choosing theS1 angleα equal toµτ (cf. (2.15)).

As was already discussed at the end of section2, the reduced model for strings onAdSn × Sn can
then be obtained by simply combining the reduced models for strings onAdSn×S1 and onR×Sn.24

For example, in the case of a string inAdS2 × S2 we then find the sum of the sine-Gordon and
sinh-Gordon Lagrangians (cf. (2.6),(2.13))

L̃ = ∂+ϕ∂−ϕ+ ∂+φ∂−φ+
µ2

2
(cos 2ϕ− cosh 2φ) . (5.18)

24Note that this isnot the same as the reduced theory for the coset sigma model withF/G = AdSn×Sn = [SO(2, n−
1)/SO(1, n − 1)] × [SO(n + 1)/SO(n)]: in the latter case we would set, following [14], the components of thetotal
stress tensor to be equal to a constant, while for astring in AdSn × Sn the total stress tensor should vanish. The reduced
theory for coset sigma modelF/G = AdSn × Sn case is of course formally equivalent to the reduced theory for a string
onAdSn × Sn × S1.
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For a string inAdS3 × S3 we get (cf. (2.7))

L̃ = ∂+ϕ∂−ϕ+ tan2 ϕ ∂+θ∂−θ + ∂+φ∂−φ+ tanh2 φ ∂+χ∂−χ +
µ2

2
(cos 2ϕ− cosh 2φ) . (5.19)

Similar bosonic actions are then found for a string inAdS4×S4 and inAdS5×S5: one is to “double”
(5.15) and its analog corresponding to (5.17).25

Note that while thecos 2ϕ potential is a relevant perturbation of the coset CFT in the compactSn

case, thecosh 2φ is an irrelevant perturbation of the corresponding coset CFT in theAdSn case (the
sign of the mass term in (5.7) is opposite). We expect that in the superstringAdS5 × S5 case the
fermionic contributions will make the whole theory UV finite, i.e. the coefficient in the potential will
not run with scale and thus it can be considered like it is an exactly marginal perurbation (the value
of µ is arbitrary). This is what happens in theAdS2 × S2 where the reduced theory is equivalent to
the (2,2) supersymmetric sine-gordon theory.

Expanding (5.18) nearϕ = φ = 0 we get two massive fluctuation modes. Doing similar expansion
near the trivial vacuum in the case of (5.19) it may seem that only two modes (ϕ andφ) get massesµ,
but, in fact,all 2+2 bosonic modes become massive. Indeed, as is clear from the form of kinetic terms
in (5.19), the expansion near the point where all angles are zero is singular. This is like expanding
nearr = 0, ϕ = 0 on the discds2 = dr2 + r2dϕ2; instead, one is first to do a transformation
to “cartesian” coordinates and then expand. Sinceϕ andφ play the role of the “radial” directions
in the 2+2 dimensional space26 their µ

2

2
(cos 2ϕ − cosh 2φ) potential gives mass to all 4 “cartesian”

fluctuations. In the CSG case this is the transformation thatputs the Lagrangian (2.7) into the familiar
form L̃ = 1

2
∂+ψ∂−ψ∗+∂−ψ∂+ψ∗

1−ψψ∗
− µ2ψψ∗ whereψ = sinϕ eiθ.

The analogous conclusion should be true also in the generalAdSn × Sn case withn > 3 though
there a direct demonstration of this in the gauge whereA± are solved for is complicated by the
degeneracy of the metricgpq in (5.6). As we have already seen in (4.32),(4.30), in theSn case all the
(n−1) fluctuation modes near the trivial vacuum get massµ if we start with the classical equations of
the reduced theory in theA+ = A− = 0 gauge. Since the mass spectrum should be gauge-invariant,
the same should be true also in other gauges/parametrizations.

Thus in theAdS5 ×S5 case we should get 4+4 massive bosonic modes. Similar conclusion will be
reached for the fermionic fields discussed in the next section (see (6.54)): all 8 dynamical fermionic
modes will also have massµ. The “free” spectrum will thus be the same as in the “plane-wave” limit
of [7].

6 Pohlmeyer reduction of theAdS5 × S5 superstring model

TheAdS5×S5 superstring can be described in terms of the Green-Schwarz version of the PSU(2,2|4)
SO(1,4)×SO(5)

(or, equivalently, PSU(2,2|4)
Sp(2,2)×Sp(4)

) coset sigma model [2]. In the conformal gauge its bosonic part is the

25A “mnemonic” rule to get, e.g., theAdSn counterparts ofSn Lagrangians in (2.7),(5.15) is to changeϕ → iφ and to
change the overall sign of the Lagrangian.

26Recall also that they are related to the Lagrange multipliers for the embedding coordinates discussed in section2 so
we are then expanding near a point where the two Lagrange multipliers have constant “vacuum” values.
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direct sum of theAdS5 andS5 sigma models. Below we shall apply the idea of the Pohlmeyer reduc-
tion to the whole action including the fermions. The important new element will be theκ-symmetry
gauge fixing, reducing the number of the fermionic degrees offreedom to the same 8 (or 16 real
Grassmann components) as of the bosonic ones after the solution of the conformal gauge constraint.

We shall derive the corresponding reduced Lagrangian that generalizes the bosonic Lagrangian
discussed in section5 above. We shall find that it is invariant under the 2d Lorentz symmetry.27

Later in section7 we will also consider a simplerAdS2 ×S2 model which is described by a similar
action for the PSU(1,1|2)

SO(1,1)×SO(2)
coset. In this case the reduced Lagrangian happens to be invariant under

theN = 2 (i.e. (2,2)) 2d supersymmetry, and is the same as theN = 2 supersymmetric sine-Gordon
Lagrangian.

6.1 Equations of motion in terms of currents in conformal gauge

Let us start with some relevant definitions and notation. TheLie superalgebrapsl(2m|2m; C) can be
identified with the quotient ofsl(2m|2m; C) by the central subalgebra of elements proportional to the
unit matrix (which belongs tosl(2m|2m; C) since its supertrace vanishes). We are interested in its real
form psu(m,m|2m) which is defined by the conditionM∗ = −M , where∗ is an appropriate antilin-
ear anti-automorphism. This superalgebra corresponds to the Lie supergroup̂F = PSU(m,m|2m).

We shall consider the superalgebraf̂ = psu(m,m|2m) with m = 2 or m = 1 which admits aZ4

grading [57]28

f̂ = f̂0 ⊕ f̂1 ⊕ f̂2 ⊕ f̂3 , [̂fi, f̂j] ⊂ f̂i+jmod 4 . (6.1)

In this matrix realisation one also hasi{̂fl, f̂m} ⊂ f̂l+m+2mod 4, where{A,B} = AB + BA. 29 For
details see AppendixC.

The left-invariant currentf−1∂af, f ∈ F̂ can then be decomposed as

Ja = f−1∂af = Aa +Q1a + Pa +Q2a , A ∈ f̂0, Q1 ∈ f̂1, P ∈ f̂2, Q2 ∈ f̂3 . (6.2)

HereA corresponds to the algebra of the subgroupG defining theF̂ /G coset (i.e.G = Sp(2, 2) ×
Sp(4) isomorphic toSO(1, 4)×SO(5) in theAdS5 ×S5 case),P is the bosonic “coset” component,
andQ1, Q2 are the fermionic (odd) currents.

Using thisZ4 split the Lagrangian density of theAdS5 × S5 GS superstring [2] can be written as
follows [57, 58, 3, 59]30

LGS =
1

2
STr(γabPaPb + εabQ1aQ2b) , (6.3)

whereγab =
√−ggab. Written in terms of currents this coset action has bosonic gauge symmetry

with f̂0-valued gauge parameter. In addition to the reparametrisations it is also invariant under the

27 This is similar to what happened in the expansion near theS5 geodesic to quadratic order (i.e. plane-wave limit) in
the light-cone gauge [7], but here the action contains all interaction terms, i.e. is no longer truncated at the quadratic level.

28It appears that all the steps of the reduction procedure discussed below are formally valid for any value ofm.
29Note that forA, B representing elements ofpsu(m, m|2m) their symmetrized commutatori{A, B} belongs to

u(m, m|2m) but not necessarily topsu(m, m|2m).
30Here the overall sign is consistent with having physical signs for the bosonicAdS5 andS5 Lagrangians.
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local fermionicκ-symmetry [2, 60, 61]

δκJa = ∂aǫ+ [Ja, ǫ] , (δκγ)
ab =

1

m
STr

(
W ([ika1(−), Q

b
1(−)] + [ika2(+), Q

b
2(+)])

)
,

ǫ = ǫ1 + ǫ2 = {P(+)a, ik
a
1(−)} + {P(−)a, ik

a
2(+)} ,

(6.4)

where31 k1(−) andk2(+) take values in the degree1 and degree3 subspaces ofu(m,m|2m) respectively
(it is assumed thatk1(+) = k2(−) = 0). W = diag(1, . . . , 1,−1, . . . ,−1) is the parity automorphism
(see AppendixC), and the(±) components are defined as:

V a
(±) =

1

2
(γab ∓ εab)Vb . (6.5)

A detailed discussion of theκ-invariance can be found in the AppendixD.
In what follows we shall assume theconformal gaugeconditionγab = ηab. Then (using the stan-

dard light-cone worldsheet coordinatesσ+, σ−) the only nonvanishing components of the metric are
γ+− = γ−+ = 1 while ε+− = −ε−+ = 1. For any vectorVa one then has

V(+)+ = V+ , V(+)− = 0 , V(−)+ = 0 , V(−)− = V− . (6.6)

In the conformal gauge the Lagrangian (6.3)

LGS = STr[P+P− +
1

2
(Q1+Q2− −Q1−Q2+)] (6.7)

leads to the following equations of motion [3]

∂+P− + [A+, P−] + [Q2+, Q2−] = 0 ,

∂−P+ + [A−, P+] + [Q1−, Q1+] = 0 ,

[P+, Q1−] = 0 , [P−, Q2+] = 0 .

(6.8)

Formulated in terms of the current componentsJ± = A± +P± +Q1± +Q2±, they should be supple-
mented by the Maurer-Cartan equation

∂−J+ − ∂+J− + [J−, J+] = 0 . (6.9)

In addition, one needs to take into account the conformal gauge (Virasoro) constraints

STr(P+P+) = 0 , STr(P−P−) = 0 . (6.10)

Our aim below is to perform the Pohlmeyer-type reduction of the above system (6.8)–(6.10). The
bosonic part of the model is identical to that of theF/G sigma model where the bosonic groupF ⊂ F̂

haŝf0 ⊕ f̂2 as its Lie algebra andG has Lie algebrâf0. In thepsu(2, 2|4) case of our interest̂f0 ⊕ f̂2

is isomorphic tosu(2, 2) ⊕ su(4) or so(2, 4) ⊕ so(6) while f̂0 is isomorphic tosp(2, 2) ⊕ sp(4) or
so(1, 4)⊕so(5) (in thepsu(1, 1|2) casêf0⊕ f̂2 = su(1, 1)⊕su(2) and̂f0 = sp(1, 1)⊕sp(2)). Because

31Note that the definition ofǫ in (6.4) involves the symmetrized commutator so that the projection fromu(m, m|2m)
to psu(m, m|2m) is assumed.
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of the direct sum structure of the algebras one is allowed to use the reduction gauge separately for
each sector, just like in the purely bosonic case.

Performing the reduction, requires, besides partially fixing theG-gauge symmetry, to fix also the
κ-symmetry gauge. As we shall discuss below, this can be achieved in two steps. First, we shall
impose the partialκ-symmetry gauge condition32

Q1− = 0 , Q2+ = 0 , (6.11)

and then apply the same procedure as in the case of the Pohlmeyer reduction in the bosonicAdSn×Sn
case. The resulting reduced system will be still invariant under a residualκ-symmetry which can be
fixed by an additional gauge condition. That will finally makethe number of the fermionic degrees
of freedom the same as the number of the physical bosonic degrees of freedom (as in the familiar
examples of the light-cone gauge-fixed superstring in the flat space or in the pp-wave space).

It will turn out that the resulting system of reduced equations of motion (that originate in particular
from the Maurer-Cartan equations and thus are first order in derivatives) will follow from a local
Lagrangian containing onlyfirst derivatives of the fermionic fields. The bosonic part of the reduced
Lagrangian will coincide with the gauged WZW Lagrangian with the same potential as in the bosonic
model discussed in section5.

The possibility to make the gauge choice (6.11) can be readily justified as in the flat-space case by
using an explicit coordinate parametrization of the currents, i.e. by solving first the Maurer-Cartan
equations (6.9). Here we would like to use a different logic treating all equations for the currents on
an equal footing. Then one way of demonstrating that the required κ-symmetry gauge choices are
allowed will rely on using the consequences of the reductiongauge in the bosonic part of the model.
For that technical reason below we shall discuss the reduction and theκ-symmetry gauges in parallel.

6.2 Reduction gauge andκ-symmetry gauge

As a first step we shall define a decompositionf̂2 = a ⊕ n wherea is the subspace of elements of the
form a1T

1 + a2T
2 such thatT 1 andT 2 are represented by matrices with nonvanishing upper left and

lower right blocks only (i.e.T 1 is in su(2, 2) andT 2 is in su(4) parts ofpsu(2, 2|4)). More precisely,
we shall choose

T 1 =
i

2
diag(t, 0) , T 2 =

i

2
diag(0, t) , (6.12)

where

psu(2, 2|4) case: t = diag(1, 1,−1,−1) , psu(1, 1|2) case: t = diag(1,−1) . (6.13)

Let us also introduce the matrix
T = T 1 + T 2 , (6.14)

which will play an important role in what follows. It inducesthe decomposition

f̂ = f̂‖ ⊕ f̂⊥ , ζ‖ ∈ f̂‖ , χ⊥ ∈ f̂⊥ , (6.15)

P ‖ζ‖ = ζ‖ , P ‖χ⊥ = 0 , P ‖ = −[T , [T , · ]] . (6.16)

32This choice was suggested by R. Roiban, see also [21].
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This decomposition can also be written with the help of the projector tôf⊥1 ⊕ f̂⊥3 given by

P⊥χ⊥ = χ⊥ , P⊥ζ‖ = 0 , P⊥ = −{T , {T , · }} . (6.17)

Let us note that anyζ ∈ f̂‖ can be written asζ = [T , λ] (andχ ∈ f⊥ can be written asχ = {T , ν}).
In particular,[T , {T , ζ}] = {T , [T , ζ ]} = 0 for anyζ ∈ f̂. Moreover,STr(ζ‖χ⊥) = 0 for anyζ‖ ∈ f̂‖

andχ⊥ ∈ f̂⊥, i.e. this is an orthogonal decomposition.
The decomposition̂f = f̂‖ ⊕ f̂⊥ generalizes the bosonic decomposition (4.1) to the superalgebra

case. In particular, in the bosonic sector one can easily make the following identifications:33

a = f̂⊥2 , n = f̂
‖
2 , h = f̂⊥0 , m = f̂

‖
0 , (6.18)

while the commutation relations (4.2) follow from theZ4-grading and the following properties:34

[̂f⊥, f̂⊥] ⊂ f̂⊥ , [̂f‖, f̂⊥] ⊂ f̂‖ , [̂f‖, f̂‖] ⊂ f̂⊥ . (6.19)

The first two properties are obvious, while checking the lastone requires using the following identities

{A, [B,C]} = {[A,B], C} + [A, {B,C}] , {A, {B,C}} = [[A,B], C] + {B, {A,C}} . (6.20)

Let us now turn to the gauge symmetry. Because the gauge algebra f̂0 is a direct sum of the subalge-
bras represented by upper-left and lower-right nonvanishing block matrices the gauge transformations
are independent. It follows that by applying the polar decomposition theorem in each sector indepen-
dently one can partially fix thêf0 gauge symmetry in order to putP+ into the form

P+ = p1T
1 + p2T

2 , (6.21)

wherep1, p2 are some real functions. Indeed, the components of the gaugeparameter taking values in
the upper-left and lower-right diagonal blocks are independent so that we can apply the same logic as
in the bosonic case in section4.1 to each block separately. The Virasoro constraintSTr(P+P+) = 0
in (6.10) then impliesp2

1 − p2
2 = 0, so that, e.g.,p1 = p2 = p+ and thus

P+ = p+ T , T = T 1 + T 2 . (6.22)

Applying the polar decomposition theorem toP− and using the second Virasoro constraint in (6.10)
one finds thatP− can be represented as follows

P− = p− g
−1Tg , (6.23)

wherep− is a real function andg is aG-valued function (recall thatG is the Lie subgroup correspond-
ing to the Lie subalgebrâf0 ⊂ f̂, i.e. Sp(2, 2) × Sp(4) in thePSU(2, 2|4) case). In what follows we
shall assume that the functionsp+ andp− do not have zeroes.

33Let us note that one can not define analogous decomposition interms ofT± for theSO(n)/SO(n − 1) coset in the
standard representation used in Section4 asT± in this representation do not induce the decomposition (cf.the explicit
form (4.25)).

34These can be considered as defining an additionalZ2-grading on̂f with f̂⊥ and f̂‖ being, respectively, the degree0
and degree1 subspaces.
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Now we are ready to argue that using theκ-symmetry (6.4) one can choose the gauge (6.11), i.e.
Q1− = Q2+ = 0, provided the fermionic equations of motion as well as the Virasoro constraints
are satisfied. This basically follows from the fact that in the gauge whereP+ = p+T the equation
[P+, Q1−] = 0 implies thatQ1− takes values in̂f⊥1 like the parameterǫ1 = i{P+, k1−} so that this
gauge invariance can be used to putQ1− to zero; an analogous argument can then be given forQ2+. A
complication is that theκ-transformation (6.4) does not in general preserve both theconformal gauge
and the reduction gauge and that makes the precise argument more involved. A detailed proof of the
possibility to fix (6.11) taking all this into account is given in AppendixD.

In the gaugeQ1− = Q2+ = 0 the equations of motion (6.8) become

∂+P− + [A+, P−] = 0 , ∂−P+ + [A−, P+] = 0 , (6.24)

while the Maurer-Cartan equation (6.9) splits into

∂+A− − ∂−A+ + [A+,A−] + [P+, P−] + [Q1+, Q2−] = 0 ,

∂−Q1+ + [A−, Q1+] − [P+, Q2−] = 0 ,

∂+Q2− + [A+, Q2−] − [P−, Q1+] = 0 .

(6.25)

In the reduction gauge whereP+ = p+T andP− = p−g
−1Tg the second equation∂−P++[A−, P+] =

0 in (6.24) and the fact thatA− is block-diagonal imply that the same is true for the upper-left block
projection∂−P 1

++[A1
−, P

1
+] = 0. The latter implies∂−Tr1(P+P+) = 0 and thus also∂−Tr2(P+P+) =

0, whereTr1 andTr2 are, respectively, the traces in the upper-left and the lower-right diagonal blocks
(in this notationSTr = Tr1 − Tr2). SinceTr1T

2 6= 0 this leads to∂−p+ = 0. As in the bosonic case,
using an appropriate conformal transformationσ+ → σ′+(σ+) one can then setp+ equal to some
real constantµ. Following the bosonic construction one then observes thatthe first equation in (6.24)
leads to∂+Tr1(P−P−) = 0. The conformal symmetryσ− → σ′−(σ−) allows one to setp− = µ.
Thus finally we get

P+ = µ T , P− = µ g−1Tg , µ = const , (6.26)

which is the direct counterpart of the reduction gauge in thebosonic case (cf. (4.12),(4.14)). Note
that in terms of the notation used in the bosonic case here we have

T+ = T− = T . (6.27)

Let us recall that the variableg belongs toG, i.e to the subgroup whose Lie algebra isf̂0. There is a
natural arbitrariness in the choice ofg sinceP− is invariant underg → hg if h is taking values in the
subgroup of elements commuting withT . This description thus has an additional gauge symmetry
which we shall use later.

By analogy with the bosonic case in addition to the decomposition f̂2 = a ⊕ n we make use of
the decomposition̂f0 = m ⊕ h whereh is the centralizer ofa in f̂0 (recall thata is the subspace of
elements of the forma1T

1 + a2T
2).35 In the present case it is useful to identifyh = f̂⊥0 andm = f̂

‖
0

35In the case of our interest, i.e.f̂ = psu(2, 2|4), the algebrah is [su(2)⊕ su(2)]⊕ [su(2)⊕ su(2)], i.e. is isomorphic
to so(4) ⊕ so(4).
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so that the required decomposition of the entire superalgebra is induced by a single elementT as was
observed in (6.18). Accordingly, we split

A+ = (A+)h + (A+)m , A− = A− + (A−)m , A− ≡ (A−)h ∈ h . (6.28)

The second equation in (6.24) then implies(A−)m = 0 while the first one can be solved forA+ as
follows

A+ = g−1∂+g + g−1A+g , (6.29)

whereA+ is a new field taking values inh.

In this way we have constructed a new parametrisation of the system in the reduction gauge: all
the bosonic currents are now expressed in terms of theG-valued fieldg, h-valued fieldA±, and in
addition we have the fermionic currentsQ1+,Q2−. The equations (6.25) then take the form:

∂−(g−1∂+g + g−1A+g) − ∂+A− + [A−, g
−1∂+g + g−1A+g]

= − µ2[g−1Tg, T ] + [Q1+, Q2−] ,
(6.30)

∂−Q1+ + [A−, Q1+] =µ[T ,Q2−] ,

∂+Q2− + [g−1∂+g + g−1A+g,Q2−] =µ[g−1Tg,Q1+] .
(6.31)

These equations are invariant under the followingH × H gauge symmetry (H is the group whose
algebra ish):

g → h−1gh̄ , A+ → h−1A+h+ h−1∂+h , A− → h̄−1A−h̄+ h̄−1∂−h̄ , (6.32)

Q1+ → h̄−1Q1+h̄ , Q2− → h̄−1Q2−h̄ . (6.33)

Let us note that this symmetry is large enough to choose the gaugeA+ = A− = 0. This can be shown
by a simplified version of the argument given in AppendixE. In particular, there is also a choice of a
partial gauge in whichA+ andA− are components of a flat connection, i.e.F+− = 0.

The equations (6.30),(6.31) admit a Lax representation. Moreover, they can be derived from a local
Lagrangian provided one uses the following parametrisation of the fermionic currents in terms of the
new fermionic variablesq1, q2 via Q1+ = g−1(∂+q1 + [A+, q1])g , Q2− = ∂−q2 + [A−, q2], and
imposes the appropriate gauge condition onA±. This gauge condition is analogous to the constraints
(3.20) in the purely bosonic case. However, the resulting Lagrangean system is not completely sat-
isfactory, in particular, it contains second (instead of usual first) derivatives of the fermions and thus
will not be discussed below.

6.3 Gauge-fixing residualκ-symmetry

Besides the gauge symmetry (6.32),(6.33), the equations (6.30),(6.31) are also invariant under the
residualκ-symmetry which can be used to eliminate some parts of the fermionic currents. To identify
this symmetry let us first introduce the new fermionic variablesQ1+, Q2− → Ψ1,Ψ2:

Ψ1 = Q1+ , Ψ2 = gQ2−g
−1 . (6.34)
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The equations of motion (6.30),(6.31) then take the form

∂−(g−1∂+g + g−1A+g) − ∂+A− + [A−, g
−1∂+g + g−1A+g]

= − µ2[g−1Tg, T ] − [g−1Ψ2g,Ψ1] ,
(6.35)

D−Ψ1 = µ[T , g−1Ψ2g] , D+Ψ2 = µ[T , gΨ1g
−1] , D± = ∂± + [A±, ] . (6.36)

Projecting the fermionic equations (6.36) tof̂⊥1 ⊕ f̂⊥3 gives

D−(Ψ1)
⊥ = 0 , D+(Ψ2)

⊥ = 0 . (6.37)

Let us choose the gauge where (cf. the remark made below (6.33))

A+ = A− = 0 . (6.38)

Then the solution of (6.37) has the form(Ψ1)
⊥ = ψ1(σ

+) and(Ψ2)
⊥ = ψ2(σ

−).
Let us now describe the residual fermionic symmetry of the equations (6.35),(6.36). Under the

infinitesimal transformation

Ψ1 → Ψ1 + ε1 , Ψ2 → Ψ2 + ε2 , g → g + gh , (6.39)

with ε1 ∈ f̂1, ε2 ∈ f̂3, andh ∈ f̂0 these equations are invariant provided

∂−∂+h+ [g−1∂+g, h] − µ2[[g−1Tg, h], T ]

+ [g−1Ψ2g, ε1] + [g−1ε2g,Ψ1] + [[g−1Ψ2g, h],Ψ1] = 0 , (6.40)

D−ε1 = µ[T , g−1ε2g + [g−1Ψ2g, h]] , D+ε2 = µ[T , gε1g
−1 + g[h,Ψ1]g

−1] . (6.41)

Projecting the fermionic equations onf̂⊥ one finds that∂−ε⊥1 = 0 and∂+ε
⊥
2 = 0, implyingε⊥1 =ε⊥1 (σ+)

andε⊥2 = ε⊥2 (σ−). Let us consider then the projection of the fermionic equations on̂f
‖
1 ⊕ f̂

‖
3 together

with the bosonic equation (6.40) as a system of equations onε
‖
1, ε

‖
2, h with ε⊥1 (σ+) andε⊥2 (σ−) treated

as given functions (note that their derivatives do not enterthese equations). This system of partial
differential equations is not overdetermined and is linearin derivatives so that it has a solution for
anyε⊥1 (σ+) andε⊥2 (σ−), thus giving a symmetry transformation of the equations (6.35),(6.36). The
symmetry parametersε⊥1 andε⊥2 can, in fact, be identified as parameters of the residualκ-symmetry
in (6.4) as36

ε⊥1 = ∂+{µT , ik1−} , ε⊥2 = ∂−{µT , igk2+g
−1} , (6.42)

while the additional terms are needed to maintain the gauge conditions we have chosen. Finally, using
(6.37), i.e.∂−Ψ⊥

1 = 0 and∂+Ψ⊥
2 = 0 one concludes thatΨ⊥

1 ,Ψ
⊥
2 can be put to zero by the residual

κ-transformations. In what follows we shall thus assume the gauge where

Ψ⊥
1 = Ψ⊥

2 = 0 . (6.43)

The remaining fermionic degrees of freedom can be parametrized as follows

Ψ
R

=
1√
µ

Ψ
‖
1 , Ψ

L
=

1√
µ

Ψ
‖
2 , (6.44)

36Note that in the gauge (6.11) the residualκ symmetry is determined byk1, k2 satisfying∂−k1− = 0 and∂+k2+ +
[g−1∂+g, k2+] = 0.
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taking values inh‖
1 and h

‖
3 respectively (see (6.16),(6.17)). As we shall see below theadditional

factorµ− 1

2 in (6.44) will simplify the structure of the 2d Lorentz invariant Lagrangian description of
the resulting system (cf. (6.26)). The gauge transformations of the new fermionic variables read as
follows

Ψ
R
→ h̄−1Ψ

R
h̄ , Ψ

L
→ h−1Ψ

L
h . (6.45)

The equations of motion (6.35),(6.36) written in the gauge (6.43) are

∂−(g−1∂+g + g−1A+g) − ∂+A− + [A−, g
−1∂+g + g−1A+g]

= − µ2[g−1Tg, T ] − µ[g−1Ψ
L
g,Ψ

R
] ,

(6.46)

[T ,D−Ψ
R
] = −µ(g−1Ψ

L
g)‖ , [T ,D+Ψ

L
] = −µ(gΨ

R
g−1)‖ . (6.47)

These equations and the gauge symmetries (6.32),(6.45) define thereducedsystem of equations of
motion for the superstring onAdS5 × S5 (or onAdS2 × S2).

The new dynamical field variablesg,Ψ
L
,Ψ

R
andA+, A− are components of the currents, i.e. they

are non-locally related to the originalAdS5 × S5 sigma model fields (coordinates on the supercoset).
Note also that the bosonic equations are second-order whilethe fermionic equations are first-order in
derivatives, as it should be for a standard 2d boson-fermionsystem.

Finally, let us mention that one can see explicitly that the reduced system (6.46) and (6.47) is
integrable. The corresponding Lax pair encoding the equations (6.46) and (6.47) is

L− = ∂− + A− + ℓ−1√µg−1Ψ
L
g + ℓ−2µg−1Tg ,

L+ = ∂+ + g−1∂+g + g−1A+g + ℓ
√
µΨ

R
+ ℓ2µT .

(6.48)

To show that the compatibility conditions[L−,L+] = 0 imply the equations of motion (6.46) and
(6.47) one needs to use (6.16),(6.44), i.e. that[T , [T ,Ψ

L,R
]] = −Ψ

L,R
.

6.4 Reduced Lagrangian: 2d Lorentz symmetry, massive spectrum
and possible 2d supersymmetry

Remarkably, it turns out that the equations of motion (6.47)and (6.46) follow from the following
local Lagrangian:

Ltot = LgWZW + µ2 STr(g−1TgT )

+ 1
2
STr (Ψ

L
[T ,D+Ψ

L
] + Ψ

R
[T ,D−Ψ

R
]) + µ STr

(
g−1Ψ

L
gΨ

R

)
, (6.49)

whereLgWZW represents theG/H gWZW model (3.15) with37

G

H
=

Sp(2, 2)

SU(2) × SU(2)
× Sp(4)

SU(2) × SU(2)

37HereLgWZW is given by (3.15) withTr replaced by the−STr. The minus sign is needed to compensate for the
definition of the supertrace which includes theSm sector with a minus sign (the use of supertrace in the first twobosonic
terms means of course just the sum of the reduced models for the AdS5 and theS5 parts). The corresponding reduced
actionStot =

∫
d2σ
2π

Ltot is real (as can be seen by applying the conjugation∗ defined in Appendix C to the expression
under the trace).
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NoteLtot is explicitly H gauge-invariant under (6.32),(6.45) withh = h̄.38 The dimension of the
bosonic target space here is the same as the dimension of theG/H coset, i.e. 4+4=8. The fermionic
fields contain 8+8 independent real Grassmann components (describing 8 dynamical degrees of free-
dom).

The variations overg andΨ
L
,Ψ

R
indeed lead to (6.46),(6.47). Thus in order to show that the

reduced model (6.46),(6.47) is described by (6.49) one is todemonstrate that the constraint equations
that arise from varying this action with respect toA± represent an admissible gauge condition for the
equations of motion.39 These constraints read as

A+ = (Â+)h , Â+ ≡ g−1∂+g + g−1A+g −
1

2
[[T ,Ψ

R
],Ψ

R
] , (6.50)

A− = (Â−)h , Â− ≡ g∂−g
−1 + gA−g

−1 − 1

2
[[T ,Ψ

L
],Ψ

L
] . (6.51)

In the AppendixE we show that they can be satisfied by an appropriate on-shell gauge transforma-
tion. Note that once these constraints are satisfied the original H × H “on-shell” gauge symmetry
(6.32),(6.45) of the equations of motion having independent h and h̄ parameters reduces to theH
gauge symmetry withh = h̄ which is the “off-shell” gauge symmetry of the Lagrangian (6.49).40

Let us now discuss several properties of this reduced action.
The Lagrangian (6.49) is formulated in terms of the left-invariantF̂ current variables (cf. (6.26),

(6.44)) that are “blind” to the original̂F = PSU(2, 2|4) symmetry. Note that since the original coset
F̂ /G = PSU(2, 2|4)/[Sp(2, 2) × Sp(4)] has the purelybosonicfactorG, the reduced action (6.49)
has only thebosonicglobal and gauge symmetries, i.e. it has no target-space supersymmetry (but
may have 2d supersymmetry, see below).

It is interesting to notice that the Lagrangian (6.49) can berewritten as

Ltot = L̂gWZW + Ladd , Ladd = STr
[
P+P− +

1

2
(Q1+Q2− −Q1−Q2+)

]
. (6.52)

HereL̂gWZW is theG/H bosonic gWZW Lagrangian supplemented with the “free” fermionic terms
1
2
STr (Ψ

L
[T ,D+Ψ

L
] + Ψ

R
[T ,D−Ψ

R
]) while Ladd stands for the sum of the remainingµ dependent

terms in (6.49). Here we restored the original notations forthe current components, i.e. used that
P+ = µT, P− = µg−1Tg (see (6.26)), thatQ1+ = Q2− = 0 due to theκ-symmetry gauge condi-
tion (6.11), and thatQ1+ = Ψ

R
, Q2− = g−1Ψ

L
g in (6.34). Remarkably,Ladd = µ2 STr(g−1TgT ) +

µ STr (g−1Ψ
L
gΨ

R
) is thus nothing but the original superstring Lagrangian (6.7) rewritten in terms

of the new variablesg,Ψ
R
,Ψ

L
. At the same time, the equations following from̂LgWZW encode the

Maurer-Cartan equations (6.25) for thêF currents. It is then clear that once the conformal gauge
(Virasoro) constraints are imposed,Ltot describes, at least at the level of the corresponding equations

38As was already mentioned above, our reduction procedure formally applies and leads to the Lagrangian (6.49) if one
starts with anypsu(m, m|2m); in particular, them = 1 case corresponds toAdS2 × S2 superstring model.

39Note that in theAdS2 × S2 case the subalgebrah is empty and so this step is trivial.
40 More generally, similarly to the purely bosonic case, one can consider an asymmetric gauge determined by an

automorphismτ of h preserving the supertrace. In this case the residual gauge transformations areg → h−1gτ̂ (h),
Ψ

R
→ τ̂ (h−1)Ψ

R
τ̂(h) with transformations of the remaining variables unchanged. The Lagrangian of the asymmetrically

gauged model is given by (6.49) withA− in A− g−1∂+g − g−1A+gA− terms in (3.15) replaced withτ(A−).
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of motion and up to the various gauge transformations and fixing the values of the conserved quanti-
ties in terms ofµ, the same field configurations as the original superstring sigma-model Lagrangian
(6.3),(6.7). An interesting question is whether one can implement a similar argument ‘off-shell” or
even at the quantum level in terms of path-integral transformations.41

Despite the fact that the 2d Lorentz invariance may appear tobe broken by various gauge choices
made above and thatΨ

L
andΨ

R
originated from the 2d vector components of the fermionic currents

(cf. (6.34),(6.44)) it is remarkable that it is still possible to assign the fermions theSO(1, 1) Lorentz
transformation rules of the components of the left and right2d Majorana-Weyl spinors. Then the
Lagrangian (6.49) becomes invariant under the standard 2d Lorentz symmetry

σ+ → Λσ+ , σ− → Λ−1σ− , Ψ
L
→ Λ1/2Ψ

L
, Ψ

R
→ Λ−1/2Ψ

R
, (6.53)

with g andA± having the usual scalar and vector transformation laws. Choosing a parametrisation
for the matrix variablesΨ

L
andΨ

R
which satisfy the “parallel” constraint in (6.44),(6.16)42 one can

put the fermion kinetic terms in (6.49) into the familiar form ψ
L
∂+ψL

+ ψ
R
∂−ψR

+ ....

As in the case of the bosonic reduced theory the classical conformal invariance of the original
superstring sigma model in the conformal gauge is broken by theµ-dependent interaction terms in
(6.49): the residual conformal diffeomorphism symmetry was used (cf. (6.26)) to perform the reduc-
tion procedure. This breaking is “spontaneous” being due tothe presence of the “background field”
T = T+ = T−. This is similar to what happened in the light-cone gauge in the plane-wave model [7]
where the mass terms (proportional to the light-cone momentum, i.e. appearing from the∂x+ terms)
were spontaneously breaking the classical conformal invariance of the original sigma model action.

Again as in the bosonic case discussed in section5, the form of the reduced Lagrangian expressed
in terms of only “physical” bosonic and fermionic fields may be found by imposing anH gauge
fixing condition ong and then integrating out theH gauge field componentsA±. This leads to a
sigma-model with 4+4 dimensional bosonic part (5.1) supplemented by the fermionic terms, with the
following general structure (cf. (5.1))

L̃ = G(x)∂+x∂−x− µ2U(x) + ψ
L
D+ψL

+ ψ
R
D−ψR

+ F (x)ψ
L
ψ

L
ψ

R
ψ

R
+ 2µH(x)ψ

L
ψ

R
. (6.54)

Herex stands for 8 real bosonic fields in (5.1) (i.e. for the independent variables in gauge-fixed
g which parametrizeG/H) andψ

L
, ψ

R
– for 8+8 independent real Grassmann fields which are the

components of the matricesΨ
L
,Ψ

R
. The quartic fermionic term originates from theD± terms in

(6.49) upon integrating outA± (D± in (6.54) are the standardx-dependent covariant derivatives).
As discussed below, the structure of (6.49) looks very similar to that of the supersymmetric gWZW

41A natural idea is to start with the original superstring sigma model path integral in the conformal gauge (i.e. with
the delta-function insertionsδ(T++)δ(T−−)), fix theκ-symmetry gauge and change variables from coset coordinates to
PSU(2, 2|4) currents. ThêLgWZW term in the path integral action may then appear due to this change of variables. This
procedure can work only if the original path integral represents a 2d conformal theory: in the reduction procedure we used
the residual conformal symmetry.

42The “parallel” subspace is formed by anti-diagonal matrices with fermionic2 × 2 blocks.
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model modified by the bosonic potential and the fermionic “Yukawa” terms, and so the presence of
the quartic fermionic terms in (6.54) may be interpreted as reflecting the curvature of the target space.

Let us now discuss the vacuum structure and the corresponding mass spectrum of the reduced
model (6.49). Since[T,H ] = 0 the obvious vacuum solution of the equations of motion (6.46),(6.47)
for (6.49) corresponds tog being any constant elementh0 of H, i.e.

g
vac

= h0 = const , (A+)
vac

= (A−)
vac

= 0 , (Ψ
L
)
vac

= (Ψ
R
)
vac

= 0 , (6.55)

i.e. the space of vacua is equivalent toH = [SU(2)]4. By a globalH transformation we can always
seth0 = 1, i.e. the mass spectrum should not depend onh0. Expanding the equations of motion
(6.46),(6.47) nearg = 1, i.e. g = 1 + v + ..., and projecting to the algebra ofH and its complement
in g we find a massive equation forv ∈ m ≡ f

‖
0 (i.e. v = [[T, v], T ], see (6.16)) as well asF+− = 0.43

That all bosonic coset directions get massµ was mentioned already in section 5.3 and follows also
directly from the equations of motion in theA+ = A− = 0 on-shell gauge in the parametrization used
in (4.30),(4.32). The linearized bosonic and fermionic equations are thus

∂+∂−v + µ2v = 0 , (6.56)

[T , ∂−Ψ
R
] + µΨ

L
= 0 , [T , ∂+Ψ

L
] + µΨ

R
= 0 → ∂+∂−Ψ

L,R
+ µ2Ψ

L,R
= 0 , (6.57)

where we used that[T, [T,Ψ
L,R

]] = −Ψ
L,R

(see (6.16),(6.44)). The 8+8 independent real Grassmann
components of the fermionic matrix fields thus represent 8 massive 2d Majorana fermions having the
same massµ as the bosonic modes. The corresponding fermionic Lagrangian is then

ψ
L
∂+ψL

+ ψ
R
∂−ψR

− 2µψ
L
ψ

R
+ ... ,

where the mass term originates from the last “Yukawa” term in(6.49),(6.54).44

The small-fluctuation spectrum we get is thus formally the same as in the plane-wave limit [7].
In contrast to the case of the originalAdS5 × S5 superstring expanded near theS5 geodesic in the
light-cone gauge where one scatters “magnons” which are small fluctuations of the superstring co-
ordinates and the remaining symmetry is[PSU(2|2)]2 [11, 10], here we scatter the fluctuations of
the current components which are invariants of the originalsupergroupPSU(2, 2|4). The manifest
global symmetry of the S-matrix corresponding to (6.49) in the vacuum (6.55) appears to be just the
bosonicH = [SU(2)]4 one.45

Indeed, while the Lagrangian (6.54) obtained by integrating out theH gauge fields does not have
manifest non-abelian global symmetry, it is natural to expect that the tree-level S-matrix for scattering

43Equivalently, expanding the action (6.49) to quadratic order in fluctuations theA+A− term will cancel while the term
linear inA+, A− will project v to the coset partm of the algebrag.

44This and other points discussed in this section can be illustrated on theAdS2 × S2 example discussed in the next
section (see, e.g., (7.16) below where one is to expand nearϕ = φ = 0).

45If we start with the closed string picture with the sigma model defined on a cylinderR × S1 we need to take the
µ → ∞ limit (which “decompactifies” the spatial world sheet direction) to define the scattering matrix. An interesting
question then is how to generalize therelativisic (cf. [11]) S-matrix for the CSG model [55] to the full reducedmodel for
AdS5 × S5 .
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of the massive excitations near the vacuum (6.55) can be extracted directly from the classical equa-
tions of motion (6.46),(6.47). The latter admit larger on-shell H × H gauge symmetry allowing us
to choose theA+ = A− = 0 gauge in which the globalH-symmetry of the remaining non-linear
equations and thus of the resulting (gauge-independent) S-matrix becomes manifest. The sameH
symmetry is expected also to be present in the full quantum S-matrix.46

Let us now comment on the meaning of the parameterµ which plays a crucial role in our reduction
procedure and sets the mass scale.47 µ entered first through the conditionsP+ = µT, P− = µg−1Tg
(4.12),(6.26) on the± components of the coset-space part of the current that solvethe conformal
gauge constraints. In the vacuum (6.55) we thus have (cf. (6.12),(6.13))

(P+)
vac

= (P−)
vac

= µ T , T =
i

2
diag(1, 1,−1,−1; 1, 1,−1,−1) . (6.58)

Thusµ determines the scale whileT – the structure of the background values of the coset currents.
The corresponding charges (defined assuming the world sheetis a cylinder) thus have both theAdS5

andS5 non-zero components. ThoughP± are invariants ofPSU(2, 2|4) their non-zero vacuum values
appear to translate, in particular, into the non-zero values of the quadratic Casimirs forSO(2, 4) and
SO(6) group. This suggests again a close relation to the BMN limit.48

In general, to relate the reduced or “current” formulation of the theory to the originalAdS5 ×
S5 superstring model (6.3) (and thus to gauge theory within theAdS/CFT duality) one would need
to supplement the quantum theory based on (6.49) by a list of “observables” which are intrinsic
to theAdS5 × S5 string in its original coordinate-space formulation. Thislist should include, in
particular, the components of thePSU(2, 2|4) charges. They cannot be computed directly without
supplementing the reduced action with a linear problem for the associated Lax pair, but according to
the above remarks about the vacuum values of currents in (6.58) we are guaranteed to have at least
some components of theAdS5 andS5 charges to be non-zero in the vacuum (6.55) of the reduced
theory.

Finally, let us discuss possible 2d supersymmetry of the action corresponding to (6.49). As was
already mentioned above, the number (8) of independent bosonic degrees of freedom in the reduced
Lagrangian (6.54) matches that of the fermionic ones (8+8),exactly as in a 2d supersymmetric model.
Moreover, we saw that the spectrum of small fluctuations nearthe vacuum state (6.56),(6.57) is also
supersymmetric.

The structure of (6.49) is essentially that of a supersymmetric gWZW model [63, 64],

LSgWZW = LgWZW + ψ
L
D+ψL

+ ψ
R
D−ψR

, (6.59)

modified by theµ-dependent interaction terms. If we first setµ = 0, i.e. ignore the potential and
Yukawa interaction terms in (6.49), then we should expect tofind the same (1,1) supersymmetry as

46The S-matrix should also have higher hidden symmetries presumably related to those of the S-matrix in [11]; we
thank R.Roiban for a discussion of this point.

47We thank S. Frolov for asking this question and useful discussions.
48In a certain sense, our reduction procedure may then be interpreted as an “invariant version” of the expansion near

the BMN vacuum.
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found in the component description of supersymmetric gWZW model [63, 64], i.e.

δg ∼ ǫ
L
ψ

R
g + ǫ

R
gψ

L
, δψ

R
∼ ǫ

L
(g−1D+g)G/H

, δψ
L
∼ ǫ

R
(gD−g

−1)
G/H

, δA± = 0 . (6.60)

Hereǫ
L

andǫ
R

are parameters of the (1,0) and (0,1) supersymmetries.
For this to work the fermions should transform under theH gauge transformation as elements of

the coset part ofg, i.e. m = f̂
‖
0, considered as a representation of the gauge algebrah = f̂⊥0 . It

appears, however, that for the case ofpsu(2, 2|4) the fermionsΨ
R
,Ψ

L
take values in̂f‖1,2 which is,

in general, a different representation of the gauge algebrah. More precisely,̂f‖1 and f̂
‖
0 considered as

representations ofh are inequivalent representations related by an appropriate automorphismτ of the
gauge algebrah.49 In the absence ofµ-dependent terms in (6.49) one can of course modify the gauge
transformation law of the fermions by replacing, e.g.,A− with its image under that automorphism
τ(A−) in the kinetic term forΨ

R
. This does not, however, directly apply forµ 6= 0; for example, the

gauge invariance of the fermionic interaction termµSTr(g−1Ψ
L
gΨ

R
) in (6.49) determines the gauge

transformation law of the fermions in terms of that of the field g.
We leave the question whether the full (6.49) in thepsu(2, 2|4) case does have a 2d supersymmetry,

i.e. if it can be identified with a supersymmetric extension of the corresponding bosonic non-abelian
Toda theory, for a future investigation.50 Our conjecture is that the answer is yes and the supersym-
metry should be the extended (2,2) one.51

As we shall show in the next section in a similar but simpler case of theAdS2×S2 superstring model
wherepsu(2, 2|4) is replaced by thepsu(1, 1|2) superalgebra (with trivialh so that the complication
of extending the supersymmetry from the “free” toµ 6= 0 level is absent) the corresponding reduced
Lagragian (6.49) is indeed invariant under the (2,2) supersymmetry.

An interesting question related to the existence of (2,2) supersymmetry is about finiteness property
of the quantum theory defined by (6.49). A (supersymmetric) gWZW model corresponds to a (su-
per)conformal theory, but including potential terms may ingeneral introduce UV divergences. These
divergences should cancel out if this model has (2,2) supersymmetry. We conjecture that this is in-
deed the case; then this reduced model has a chance to be useful for a quantum description of the
AdS5 × S5 superstring.

49One can see that̂f‖1 andf̂
‖
0 are inequivalent by, e.g., observing that for a subalgebrah1 represented by the upper-left

block matrices there are no invariant vectors inf̂
‖
1,2 but all the elements from̂f‖0 represented by lower-right block matrices

are invariant. The automorphismτ simply interchangessu(2) factor in the upper left block with thesu(2) factor in the
lower-right block in the matrix representation ofh.

50Supersymmetric extensions of generic non-abelian Toda theories were not previously discussed in the literature (apart
from the complex sine-Gordon case [49, 50, 51]). For some references on supersymmetric extensions of sigma models
with potentials and, in particular, of abelian Toda models see [65, 66].

51The conditions for existence of the (2,2) supersymmetry in the (1,1) supersymmetricG/H gWZW model (i.e. in our
µ = 0 case) were discussed in [64] (see also [67, 68]).

38



7 Example: reduced model for superstring inAdS2 × S2

asN = 2 super sine-Gordon model

Let us now specialise the construction of the previous section to the simplest case ofAdS2 × S2

superstring model [69, 57] wherêf = psu(1, 1|2). As we shall see below, here the reduced La-
grangian (6.49),(6.54) is equivalent to that of theN = 2 supersymmetric sine-Gordon theory. This
demonstrates the existence of the (2,2) world-sheet supersymmetry in the reduced version of this GS
superstring model. Assuming one may consider the reduced theory as a legitimate starting point for
the quantisation, this also implies the UV finiteness of theAdS2 × S2 superstring and its quantum
integrability.

7.1 Explicit parametrisation of psu(1, 1|2)

The bosonic subspacesf̂0 and̂f2 in (6.1) here are represented by block-diagonal matrices ofthe form

f =

(
A 0
0 B

)
, ΣA†Σ = −A , B† = −B , (7.1)

with A,B being traceless2 × 2 matrices andΣ given by (C.16), i.e.A ∈ su(1, 1) andB ∈ su(2).
The subspacêf0 is formed by matrices satisfying also

−KAt0K = A0 , −KBt
0K = B0 , (7.2)

with K = Σ in (C.16). It is usefull to parametrise these matrices as

A0 =

(
0 φ
φ 0

)
, B0 =

(
0 iϕ
iϕ 0

)
, (7.3)

whereφ, ϕ are real. The elements of the subspacef̂2 are determined by the additional conditions

KAt2K = At2 , KBt
2K = Bt

2 , (7.4)

A2 =

(
ib ic
−ic −ib

)
, B2 =

(
iq r
−r −iq

)
, (7.5)

whereb, c, q, r are real. For the fermionic subspacef̂1 the reality condition together withMΩ = iM
(see Appendix C) imply

M =

(
0 X
Y 0

)
, KY tK = iX , iΣY † = X . (7.6)

SinceΣ = K givesY + = −Y tK, f̂1 can be parametrized as

Y1 =

(
iα iβ
γ δ

)
, X1 =

(
α iγ
−β −iδ

)
. (7.7)
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For f̂3 we haveKY tK = −iX andiΣY † = X giving Y † = Y tK and

Y3 =

(
λ ν
iρ iσ

)
, X3 =

(
iλ ρ
−iν −σ

)
. (7.8)

The fixed elementT = T 1 + T 2 in (6.14),(6.27) can be chosen in the form:

T =
1

2




i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 −i


 . (7.9)

The subspaceŝf‖1 and̂f
‖
3 defined in (6.16) are then represented by (7.7) and (7.8) with

α = δ = 0 , λ = σ = 0 . (7.10)

The field g ∈ G introduced in (6.23) takes values in the direct product of two one-dimensional
subgroups ofSU(1, 1) × SU(2) isomorphic toSO(1, 1) andSO(2); it can be parametrized as

g = exp

(
A0 0
0 B0

)
=




coshφ sinh φ 0 0
sinhφ coshφ 0 0

0 0 cosϕ i sinϕ
0 0 i sinϕ cosϕ


 . (7.11)

7.2 Reduced Lagrangian

Let us write down the explicit form of the reduced Lagrangian(6.49) using the parametrisation in-
troduced above. Here the subgroupH is trivial so thatA+ = A− = 0. The “kinetic” WZW term is
simply

1

2
STr(g−1∂+gg

−1∂−g) = ∂+φ∂−φ+ ∂+ϕ∂−ϕ . (7.12)

The potential term in (6.49) is

µ2STr(g−1TgT ) = −µ
2

2
(cosh 2φ− cos 2ϕ) . (7.13)

The fermionic terms in (6.49) are

1

2
STr(Ψ

R
[T , ∂−ΨR]) = Tr(∂−Y1[T

1, X1]) = −Tr(∂−X1[T
2, Y1]) = β∂−β + γ∂−γ ,

1

2
STr(Ψ

L
[T , ∂+Ψ

L
]) = Tr(∂+Y3[T

2, X3]) = −Tr(∂+X3[T
2, Y3]) = ν∂+ν + ρ∂+ρ ,

(7.14)

µSTr(gΨ
R
g−1Ψ

L
) = µTr(g1X1g

−1
2 Y3) − Tr(g2Y1g

−1
1 X3)

= − 2µ[coshφ cosϕ (βν + γρ) + sinh φ sinϕ (βρ− γν)] ,
(7.15)

where we have used the explicit form of the diagonal blocksT 1 = T 2 = i
2
diag(1,−1) = i

2
Σ in (7.9).
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Thus the final expression of the corresponding reduced Lagrangian (6.49) in terms of the two
bosonicφ, ϕ and the four fermionicβ, γ, ν, ρ field variables is given by (cf. (5.18))52

Ltot = ∂+ϕ∂−ϕ+ ∂+φ∂−φ+
µ2

2
(cos 2ϕ− cosh 2φ)

+ β∂−β + γ∂−γ + ν∂+ν + ρ∂+ρ

− 2µ [cosh φ cosϕ (βν + γρ) + sinhφ sinϕ (βρ− γν)] . (7.16)

7.3 Equivalence toN = 2 supersymmetric sine-Gordon model

The bosonic part of theAdS2 × S2 reduced Lagrangian in (5.18),(7.16) happens to be exactly the
same as the bosonic part of theN = 2 supersymmetric sine-Gordon Lagrangian [56]. Furthermore,
the number of the fermionic fields in (7.16) is the same as in theN = 2 SG theory. This suggests that
theAdS2 × S2 reduced model (7.16) may have a hiddenN = 2 world-sheet supersymmetry.

Indeed, (7.16) is equivalent to theN = 2 SG theory. A genericN = 2 (i.e. (2,2)) superfield
Lagrangian is

L =

∫
d4ϑ Φ̂∗Φ̂ + [

∫
d2ϑ W (Φ̂) + h.c.] ,

Φ̂ = Φ + ϑ1ψL
+ ϑ2ψR

+ ϑ1ϑ2D ,

(7.17)

whereΦ̂ is a chiralN = 2 superfield,Φ = ϕ + iφ is a complex scalar andψ
L
, ψ

R
are complex

fermions. In components

L = ∂+Φ∂−Φ∗ − |W ′(Φ)|2 + ψ∗
L
∂+ψL

+ ψ∗
R
∂−ψR

+
[
W ′′(Φ)ψ

L
ψ

R
+W ∗′′(Φ∗)ψ∗

L
ψ∗

R

]
. (7.18)

The sine-Gordon choice is

W (Φ) = µ cos Φ , |W ′(Φ)|2 =
µ2

2
(cosh 2φ− cos 2ϕ) . (7.19)

Splittingψ
L
, ψ

R
into the real and imaginary parts

ψ
L

= ν + iρ , ψ
R

= −β + iγ , (7.20)

we indeed find the agreement between (7.18) and (7.16).

Let us note that it is possible to write down theN = 2 supersymmetry transformations of the fields
in (7.16) in terms of the original matrix parametrisation used in (6.49). Let us consider separately
the (2,0) and (0,2) supersymmetries. To describe the (2,0) transformation let us introduce a matrix
fermionic parameterǫ

L
taking values in̂f1 in (6.1) and satisfying in addition[T , ǫ

L
] = 0. This ensures

that ǫ
L

contains two independent fermionic parameters (α andδ in the parametrisation (7.7)). The
(2,0) supersymmetry transformation of the matrix fields in (6.49) then reads as

δǫ
L
g = g[T , [Ψ

L
, ǫ

L
]] , δǫ

L
Ψ

L
= [g−1∂+g, ǫL

] , δǫ
L
Ψ

R
= µ[T , gǫ

L
g−1] . (7.21)

52As expected, the Lagrangian is real (the fermionic fields arereal).
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In checking the invariance of the action we have to use (besides theZ4 grading and definition ofǫ
L
)

that [T , [T ,Ψ
L
]] = −Ψ

L
, [[T , [Ψ

L
, ǫ

L
]],Ψ

L
] = 0 , etc. The (0,2) transformation with parameterǫ

R

looks similarly.

The (2,0) supersymmetry transformation law (7.21) can be formally generalized to the algebraically
analogous models described by (6.49)provided̂f⊥1 contains a nontrivial element commuting with the
entire gauge algebrah. Indeed, supposeǫ

L
belongs tôf⊥1 and is satisfying in addition[ǫ, h] = 0 for any

h ∈ h = f̂⊥0 (in other words,ǫ
L

should belong to the centraliser ofh in f⊥1 ). Then the supersymmetry
transformation reads

δǫ
L
g = g[T , [Ψ

R
, ǫ

L
]] , δǫ

L
Ψ

R
= [(g−1D+g)

‖, ǫ
L
] , δǫ

L
Ψ

L
= µ[T , gǫ

L
g−1] ,

δǫ
L
A+ = 0 , δǫ

L
A− = µ[(g−1Ψ

L
g)⊥, ǫ

L
] ,

(7.22)

where the superscript‖ or ⊥ denotes the projection tôf‖ or f̂⊥ respectively. Note that forµ 6=
0 the fieldA− starts transforming under the supersymmetry.53 Since the action is invariant under
the exchange+ ⇆ −, L ⇆ R, andg ⇆ g−1 one finds also the “right” counterpart of the “left”
supersymmetry (7.22) withǫ

L
→ ǫ

R
whereǫ

R
is taking values in̂f⊥3 and is annihilated byh.

In the case ofpsu(1, 1|2) the subalgebrah is empty andǫ
L

is an arbitrary element of the two-
dimensional spacêf⊥1 (and similarlyǫ

R
∈ f̂⊥3 ) so that (7.22) defines a consistent (2,0) (and also (0,2))

supersymmetry transformation. However, in the case ofpsu(2, 2|4), none of the elements in̂f1,2
commute with the entireh so that (7.22) does not directly apply (cf. the discussion atthe end of
section (6.4)). The existence of 2d supersymmetry of (6.49)in theAdS5 × S5 case thus remains an
interesting open question.54

Let us finally mention that the complex sine-Gordon model (2.7) also admits anN = 2 supersym-
metric version [49, 50]. The same applies to its “double” in (5.19) which has 2+2 dimensional target
space which is a direct sum of the two Kähler spaces. We expect that the correspondingN = 2 model
should be equivalent to the reduced model for the superstring onAdS3 × S3 [70] with (5.19) as its
bosonic part.
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Appendix A: Proof of gauge equivalence in section 3.2

Here we provide some details of the argument in section3.2. Let us introduce the following combi-
nations

Â+ = g−1∂+g + g−1A+g , Â− = g∂−g
−1 + gA−g

−1 (A.1)

Under the gauge transformations (3.24)Â± transform as follows:

Â+ → h̄−1Â+h̄+ h̄−1∂+h̄ , Â− → h−1Â+h+ h−1∂−h . (A.2)

It follows from the commutation relations[h,m] ⊂ m and [h, h] ⊂ h that theirh projections also
transform in the same way. Then the constraints (3.20) take the form

A+ = (Â+)h , A− = (Â−)h . (A.3)

They are not invariant under the transformations (A.2) unlessh = h̄. Using (3.24) one can then set

(Â+)h = A+ = (g−1∂+g + g−1A+g)h . (A.4)

This condition can be satisfied by applying the transformation (3.24) withh = 1. Under this trans-
formationA+ is unchanged while(Â+)h = (g−1∂+g + g−1A+g)h transforms as anH connection, so
it is possible to find̄h so that transformed value of(Â+)h is equal toA+.

Next, once(Â+)h = A+, eq. (3.19) implies thatA+, A− are components of a flat 2d connection,
i.e. satisfy (3.21).55 This, together with the equation ong contained in (3.19) and the remaining part
of gauge invariance (3.24) allows one to show that the secondrelation in (3.20) can also be satisfied.

Indeed, let us show that one can find suchh0 that the transformation (3.24) withh = h0 andh̄ = 1

preservesA+ = (Â+)h and transformsA− andg so thatA− = (Â−)h (note thatÂ− is unchanged

55Note that contrary to the discussion before (3.21) now we do not assume that both constraints (3.20) are satisfied.
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under such transformation). It is enough to findh0 in any admissible gauge that can be reached by the
gauge transformation withh = h̄ (both conditions(Â+)h = A+ and(Â−)h = A− are invariant under
such gauge transformations). Without loss of generality wecan choose this gauge to beA+ = A− = 0
(this gauge can always be reached by a gauge transformation with h = h̄). In this gauge the equation
(3.19) and the constraint(Â+)h = A+ take the form (3.28) and the first equation in (3.29) respectively.
Equation (3.28) can be written equivalently as

∂+(g∂−g
−1) = µ2[T−, gT+g

−1] , (A.5)

implying ∂+(g∂−g
−1)h = 0. This means that(g∂−g−1)h is a function ofσ− only and therefore can

be represented as(g∂−g−1)h = h0∂−h
−1
0 for someH-valued functionh0(σ

−). By performing the
gauge transformation with̄h = 1 andh = h0 one then arrives at(Â−)h = (g∂−g

−1)h = 0 while still
satisfyingA± = 0 and(Â+)h = 0.

Appendix B: Vanishing of the antisymmetric tensor coupling
in the reduced Lagrangian in section 5.1

Here we provide details of the argument mentioned at the end of section5.1 that the reduced La-
grangian (5.1) does not contain a WZ-type term. Indeed, all possible antisymmetric tensor contribu-
tions that may result from integrating out the gauge field of the gWZW model vanish.

Let us consider the following automorphism of the orthogonal matrix group and its Lie algebra:

M̃ i
j = M i

j(−1)i+j , M̃N = M̃Ñ . (B.1)

It is easy to check that

TrM̃ = TrM , det M̃ = detM , M̃−1 = M̃−1 , M̃T = M̃T . (B.2)

If g has the gauge-fixed form (5.4) theng̃ = g−1: this is obviously correct for anygk = eθkRk because
R̃k = −Rk while g−1 has the same form with allgk replaced withg−1

k .
The integrand of the WZ term in (3.14),(3.15) then satisfies

Tr(g−1dgg−1dgg−1dg) = Tr( ˜(g−1dgg−1dgg−1dg))

= Tr(gdg−1gdg−1gdg−1) = −Tr(g−1dgg−1dgg−1dg) , (B.3)

and thus should vanish.
Another possible contribution may originate from the gaugefield dependent term in the gWZW

Lagrangian (3.15)

LA = Tr
(
A+∂−gg

−1 −A− g
−1∂+g − g−1A+gA− + A+A−

)
, (B.4)

whereA± should be replaced by the solutions of their equations of motion

A+ = (g−1∂+g + g−1A+g)h , A− = (g∂−g
−1 + gA−g

−1)h . (B.5)
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This gives
LA = Tr

(
A+∂−gg

−1) = −Tr(A− g
−1∂+g) . (B.6)

It follows from the explicit form of Eqs. (B.5) that there exists a functionA(g, ∂g) such that

A+(g, ∂+g) = A(g, ∂+g) , A−(g, ∂−g) = A(g−1, ∂−g
−1) . (B.7)

Moreover, assuming the analyticity ing one finds

˜A(g, ∂±g) = A(g−1, ∂±g
−1) , (B.8)

providedg̃ = g−1. In particular, this holds in the gauge (5.4)).
SinceA± are linear in∂±g the vanishing of the antisymmetric part of the metric is equivalent to

LA(g, ∂+g, ∂−g) = LA(g, ∂−g, ∂+g). Assuming̃g = g−1 one gets

LA(g, ∂−g, ∂+g) = Tr(A(g, ∂−g)∂+gg
−1) = Tr( ˜A(g, ∂−g−1)∂+gg−1)

= Tr(A(g−1, ∂−g
−1)∂+g

−1g) = −Tr(A−g
−1∂+g) = LA(g, ∂+g, ∂−g) . (B.9)

This shows that the antisymmetric tensor contribution to the reduced Lagrangian indeed vanishes in
the gauge (5.4).

Appendix C: Matrix superalgebras: definitions and notations

Here we summarize some basic definitions and notation used insections6 and7.
Let Λ be a Grassmann algebra. The algebraMat(n, l; Λ) is that of(n+ l)× (n+ l) matrices overΛ

whose diagonal block entries are even elements ofΛ while off-diagonal block entries are odd.56 The
super-transpositionst is defined as follows:

(
A X
Y B

)st

=

(
At −Y t

X t Bt

)
, (MN)st = N stMst . (C.1)

Note that in general(Mst)st 6= M . More precisely,(Mst)st = WMW whereW is the parity
automorphism given by

W = diag(1, . . . , 1,−1, . . . ,−1) . (C.2)

A real form of a complex matrix Lie (super)algebra can be described in terms of an antilinear anti-
automorphism∗ satisfying

(MN)∗ = M∗N∗ , (M∗)∗ = M , (aM)∗ = āM∗ , a ∈ C . (C.3)

The real subspace of elements satisfyingM∗ = −M is then a real Lie superalgebra.
We are interested in the case ofn = l, i.e. Mat(n|n,Λ). Suppose first that the corresponding∗

operation is defined onΛ so that(a∗)∗ = a and(ab)∗ = a∗b∗ = (−1)|a||b|b∗a∗ where|a| denotes the
Grassmann parity ofa. Let us extend∗ to arbitrary supermatrices according to

(
A X
Y B

)∗

=

(
Σ−1A†Σ −iΣ−1Y †

−iX†Σ B†

)
, (C.4)

56This corresponds to considering even matrices. In general one can also allow for both even and odd ones; this would
lead to additional sign factors in the equations below.
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where† applied to the block denotes standard hermitian conjugation, i.e. transposition combined with
the∗-conjugation of entries. It is useful to represent it as

M∗ = Σ
−1M †

Σ , Σ =

(
Σ 0
0 1

)
,

(
A X
Y B

)†

=

(
A† −iY †

−iX† B†

)
. (C.5)

It is easy to see that∗ is involutive providedΣ2 = 1 andΣ† = Σ. Note that(MN)† = N †M † and
(M †)† = M . Note also that(M †)st = W (Mst)†W whereW is the parity automorphism introduced
above. Let us also note that the∗ conjugation induces the real form of the respective Lie group.
Namely, the conditiong∗ = g−1 selects the real subgroup of the complex group. It is obviously
compatible with the conjugation for the Lie algebra due to the representationg = eM andM∗ = −M .

To defineZ4 anti-automorphism let us first consider the following automorphism

(
A X
Y B

)Ω

= −
(
K−1AtK −K−1Y tK
K−1X tK K−1BtK

)
, (C.6)

whereK is some matrix required to satisfyK2 = ±1 andKt = ±K−1. It is useful to representΩ as
follows

MΩ = −K
−1Mst

K , K =

(
K 0
0 K

)
, (C.7)

so that we have the property
(MN)Ω = −NΩMΩ . (C.8)

A Lie superalgebrafC admits aZ4 automorphism if it can be decomposed into a direct sum of
eigenspaces ofΩ-anti-automorphism

fC = fC0 ⊕ fC1 ⊕ fC2 ⊕ fC3 , (C.9)

wherefCl denotes the eigenspace with eigenvalueil, i.e.

MΩ = imM , ([M,N ])Ω = im+n[M,N ] , M ∈ fCm, N ∈ fCn . (C.10)

To see under which conditionsΩ is compatible with the reality condition we note that

− K
−1(Σ−1M †

Σ)stK = −((K−1
Σ

−1MΣK)†)st

= −W (Σ−1
K

−1Mst
KΣ)†W = (−i)mWΣ

−1M †
ΣW , (C.11)

where we used
K
st = ±K

−1 , Σ
† = Σ

−1 = Σ , (C.12)

and also assumed that

[Σ, K] = 0 , K
† = ±K

−1 , Σ
st = Σ . (C.13)

If in addition the eigenvectors with oddm belong to the off-diagonal blocks (which is the case for
psl(2m|2m) superalgebra) one finds

(−i)mWΣ
−1M †

ΣW = imΣ
−1M †

Σ , (C.14)
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so that(M∗)Ω = imM∗ providedMΩ = imM . This proves thatZ4 grading restricts to the real form
implying its decomposition (6.1).

The explicit form ofΣ andK in the case ofpsu(2, 2|4) is57

Σ =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 , K =




0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


 . (C.15)

In the case ofpsu(1, 1|2) we take58

Σ =

(
1 0
0 −1

)
, K =

(
1 0
0 −1

)
, (C.16)

which satisfy all the conditions above.

Appendix D: κ-symmetry transformations and gauge fixing in section 6

To prove that the gauge conditionQ1− = Q2+ = 0 (6.11) is reachable it is useful to introduce
the tangent frame fieldeaα so that the 2d metric is expressed asgab = eaαe

b
βη

αβ whereηαβ is the
tangent-space metric. We shall use the standard local framewhere in the± basisη+− = η−+ = 1 and
η++ = η−− = 0. The frame components of the currents are defined in the standard way asJα = eaαJa.

In terms of this parametrization the Lagrangian density forthe superstring sigma-model can be
written as (cf. (6.3))

LGS = STr
[
P+P− +

1

2
(Q1+Q2− −Q1−Q2+)

]
e+ ∧ e− . (D.1)

Recall that the± components of the currents are defined asJ± = f−1ea±∂af . 59 The WZ term can
be written also asQ1 ∧Q2 and does not of course depend on the frame field. Usingeαa instead ofγab

introduces a local 2d Lorentz invariance (with the corresponding the new gauge degree of freedom
entering througheαa ). The analog of the Virasoro constraints in this formulation are the equations
of motion obtained by varying the action with respect to the frame field. Note the following useful
relations:

∂

∂ea
−

LGS = e+a STr(P+P+) e+ ∧ e− , ∂

∂ea
−

LGS = e−a STr(P−P−) e+ ∧ e− , (D.2)

wheree+ ∧ e− = dσ1 ∧ dσ2(det eaα)
−1.

The variation of the Lagrangian under theκ-transformation of the currentsδκJa = ∂aǫ + [Ja, ǫ]
with ǫ = ǫ1 + ǫ2 = {P+, ik1−} + {P−, ik2+} is given by:

δJκLGS = 2 STr
(
[P+, Q1−]{P+, ik1−} + [P−, Q2+]{P−, ik2+}

)
e+ ∧ e−

= 2STr
(
P+P+[Q1−, ik1−] + P−P−[Q2+, ik2+]

)
e+ ∧ e− . (D.3)

57Here we follow the notation of [60, 61].
58 This choice is different from the one used in [57].
59Note that here we use± for the light-cone frame components contrary to the genuinelight-cone components in the

conformal gauge in the main text. They of course coincide if one chooses the adapted frame andσ± coordinates.
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The last expression can be rewritten as

δJκLGS =
1

2m

(
STr(P+P+)STr(W [Q1−, ik1−])+STr(P−P−)STr(W [Q2+, ik2+])

)
e+∧e− , (D.4)

wherem is the integer in the definition ofpsu(m,m)|2m).
To show thus (e.g. for the first term) it is convenient to use the gauge (6.21) whereP+ = p1T

1 +
p2T

2. The matricesT 1, T 2 ∈ f̂2 are defined in (6.12),(6.13) form = 1, 2 (and can be obviously
generalized to otherm). In this gaugeP+P+ = −1

4
(p2

111 + p2
212) where11 and12 are matrices with

unit upper-left and lower-right blocks respectively so that one finds

STr (P+P+[Q1−, ik1−]) =
1

4m
STr(P+P+)STr(W [Q1−, ik1−]) (D.5)

whereW is the parity automorphism (C.2) and we used thatSTr([Q1−, ik1−]) = 0 andp2
1 − p2

2 =
− 2
m

STr(P+P+).
The variationδJκLGS can be compensated by the following variation of the frame field

δκe
a
− = − 1

2m
ea+STr(W [Q1−, ik1−]) , δκe

a
+ = − 1

2m
ea−STr(W [Q2+, ik2+]) . (D.6)

In particular, for the variation of the metricgab = eaαe
b
βη

αβ = ea+e
b
− + ea−e

b
+ one finds

δκg
ab =

1

m

[
ea+e

b
+STr(W [ik1−, Q1−]) + ea−e

b
−STr(W [ik2+, Q2+])

]
. (D.7)

This can be rewritten in terms of the tangent components as

δκg
ab =

1

m
√−g

[
STr(W [ikb1(−), Q

a
1(−)]) + STr(W [ikb2(+), Q

a
2(+)])

]
, (D.8)

where we have used that (cf. (6.5))V a
(±) =

√−gea∓V± = (det e)−1ea∓V±. Taking into account the fact
thatδκ

√−g = 0 one indeed finds that this variation determines the variation of γab =
√−ggab given

in (6.4).

Let us now turn to the question ofκ-symmetry gauge fixing in terms of the current components.
Theκ-variation of the frame components of the current is

δJα = (δκe
a
α)Ja + eaα(∂aǫ+ [Ja, ǫ]) = (δκe)

a
αe

β
aJβ + eaα∂aǫ+ [Jα, ǫ] . (D.9)

The fermionic equations of motion written in terms of the frame components± of the currents take
exactly the same form as in the usual “light-cone” coordinates (cf. last line in (6.8))

[P+, Q1−] = 0 , [P−, Q2+] = 0 . (D.10)

As we have seen above the same applies to the Virasoro constraints expressed in terms of the frame
components:

STr(P+P+) = 0 , STr(P−P−) = 0 . (D.11)
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Under the gauge transformation withG-valued gauge parameter the componentsP± transform as
P± → g−1

0 P±g0. Using the Virasoro constraints and applying exactly the same argument as in the
discussion of the reduction gauge in terms of the original light-cone components in section 6.2 one
can assume thatP+ = p+T andP− = p−g

−1Tg wherep± are some real functions andg is aG-valued
function.

In this gauge theκ-transformation of the componentQ1− becomes

δκQ1− = (δκe)
a
−e

α
aQ1α + ea−∂aǫ+ [A−, ǫ1] + [P−, ǫ2] + [Q1−, h] , (D.12)

whereh = h(J, ǫ1, ǫ2) is thêf0-valued parameter of the compensating gauge transformation needed to
maintain the gauge conditionP+ = p+T . In fact, in this gauge[P−, ǫ2] = 0 becauseǫ2 = i{P−, k2+}
and[T , {T ,M}] = 0 vanishes for any matrixM . The term with theκ-symmetry transformation of
the frame field is given explicitly by

(δκe)
a
−e

α
aQ1α = f+

−Q1+ , f+
− =

1

2m
STr(W [ik1−, Q1−]) . (D.13)

The transformation (D.12) then takes the form (cf. (6.4))

δQ1− = ea−∂aǫ1 + [A−, ǫ1] +Q1+f
+
− + [Q1−, h] . (D.14)

Applying the decomposition̂f = f̂⊥ ⊕ f̂‖ to theκ-symmetry transformation ofQ1− in the reduction
gauge whereP+ = p+T one observes thatǫ1 takes values in̂f⊥1 (cf. (6.4)) and at the same time the
equation[P+, Q1−] = 0 implies thatQ1− is alsôf⊥1 -valued. Because (D.14) is the symmetry of the
equation[P+, Q1−] = 0 preserving the structure ofP+, the variationδQ1− also belongs tôf⊥1 . One
then concludes thatQ1− can be put to zero by an appropriate choice off̂⊥1 -valuedǫ1. This in turn
implies that suchǫ1 can be represented asi{P+, k1−}.

Note that onceQ1− is set to zero, any transformation with an arbitraryǫ2 = i{P−, k1+} andǫ1 =
i{P+, k1−} satisfyingea−∂aǫ1 + [A−, ǫ1] = 0 preservesQ1− = 0 becausef+

− in (D.13) also vanishes
whenQ1− = 0. This statement is invariant under thef̂0-gauge transformations and therefore holds
in any f̂0-gauge. Analogous considerations forQ2+ in the gauge whereP− = p−T show that one
can also setQ2+ = 0. Finally, using a local Lorentz transformation and choosing the appropriate
coordinatesσ± one can bringeαa to the standard form where the only nonvanishing componentsare
e++ = e−− = 1. We then arriving at the gauge choice (6.11) for the two components of the fermionic
currents.

Appendix E: Details of gauge fixing in section 6.4

In order to show that the reduced model of section6.2 is indeed described by (6.49) one is to demon-
strate that the constraint equations that arise from varying this action with respect toA± represent an
admissible gauge condition for the equations of motion (6.35),(6.36). To see this let us introduce the
following quantities (cf. (A.1))

Â+ = g−1∂+g + g−1A+g −
µ

2
[[T ,Ψ

R
],Ψ

R
] , (E.1)

Â− = g∂−g
−1 + gA−g

−1 − µ

2
[[T ,Ψ

L
],Ψ

L
] . (E.2)
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Under the gauge transformation (6.32), (6.45) they transform as follows

Â+ → h̄−1Â+h̄+ h̄−1∂+h̄ , Â− → h−1Â+h+ h−1∂−h . (E.3)

Their h projections(Â±)h obviously have the same transformations properties. The variation of the
action (6.49) with respect toA± gives

A+ = (Â+)h , A− = (Â−)h . (E.4)

The first equation in (6.35) can be written (upon using the other two equations) as

∂−Â+ − ∂+A− + [A−, Â+] + µ2[g−1Tg, T ] − µ

2
[T , [D−Ψ

R
,Ψ

R
]] = 0 , (E.5)

or, equivalently, as

∂+Â− − ∂−A+ + [A+, Â−] + µ2[gTg−1, T ] − µ

2
[T , [D−Ψ

L
,Ψ

L
]] = 0 . (E.6)

Since([T , u])h = 0 (note that[T , u] ∈ f̂‖ while h = f̂⊥0 ) and projecting this equation onh one finds
thatA− and(Â+)h are the two components of a flat connection. Repeating the argument used in the
bosonic case one then concludes that one can setA+ = (Â+)h by an appropriate gauge transformation
with h = 1. In this gaugeA− andA+ are then components of a flat connection and can be put to zero
by a gauge transformation withh = h̄.

In the gaugeA+ = A− = 0 the equation (E.6) implies:

∂+(Â−)h = 0 , (E.7)

where we again made use of the fact that([T , u])h = 0 for anyu ∈ f̂0⊕ f̂2. Then(Â−)h is a function of
σ− only and therefore can be set to zero by a gauge transformation with h̄ = 1 andh = h(σ−). As in
the bosonic case such a gauge transformation does not spoil the conditionsA+ = A− = (Â+)h = 0.
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