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Abstract

Motivated by a desire to find a useful 2d Lorentz-invariafdmaulation of theAdSs x S° su-
perstring world-sheet theory in terms of physical degréé®edom we construct the “Pohimeyer-
reduced” version of the corresponding sigma model. TherReyér reduction procedure involves
several steps. Starting with a coset space string sigmalrmotfe conformal gauge and writing
the classical equations in terms of currents one can fix thielual conformal diffeomorphism
symmetry and kappa-symmetry and introduce a new set ofblagsigrelated locally to currents
but non-locally to the original string coordinate fields)tkat the Virasoro constraints are auto-
matically satisfied. The resulting equations can be obtiafram a Lagrangian of a non-abelian
Toda type: a gauged WZW model with an integrable potentiaptax also to a set of 2d fermionic
fields. A gauge-fixed form of the Pohlmeyer-reduced theorylmfound by integrating out the
2d gauge field of the gauged WZW model. The small-fluctuatiecsum near the trivial vac-
uum contains 8 bosonic and 8 fermionic degrees of freedomeagtial mass. We conjecture that
the reduced model has world-sheet supersymmetry and é&violiet-finite. We show that in the
special case of thddS; x S? superstring model the reduced theory is indeed supersyricmiet
is equivalent to the N=2 supersymmetric extension of the-&ordon model.
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1 Introduction

String theory inAdSs x S° is represented by a Green-Schwarz-type [1] action on a soper
% [2]. It is classically integrable [3] and has an involveditmiic spectrum (see, e.g.,
[4, 5]) To quantize it one may attempt to eliminate first uygibal degrees of freedom by choosing a
kind of light-cone gauge, i.e. an analog:of = p*r, I' = 0. One natural option is to expand near
the null geodesic parallel to the boundary in the Poincatehpdhe resulting gauge-fixed action is
then quartic in fermions [6]. An alternative is to use thel gelodesic wrapping® [7]; the resulting
action [8/ 9/ 10] has a rather complicated structure withymain-linear interaction terms.

An apparent disadvantage of the light-cone gauge choi¢hatishe gauge-fixed action lacks man-
ifest 2d Lorentz invariance (beyond the quadratic levelhia tields). This makes it hard to apply
familiar methods of integrable quantum field theories; irtipalar, the S-matrix for the elementary
excitations has apparently less restricted form[11, 12ftin a Lorentz-invariant case (cf. [13]).

An alternative approach which we shall explore here is toasepthe conformal gauge condition
and to perform a non-local transformation of variablesr{frcoodinates to currents) that solves the
Virasoro constraints at the classical level while preseythe integrable structure. This generalizes
the Pohlmeyer “reduction” (or better “reformulation”) atihg the classicab? sigma model to the
sine-Gordon model [14] (see also [15] 16} 17,18, 19]). Ateelavork in this direction appeared in
[20,(21]. One is then left with the right number of physicdtéhsverse”) degrees of freedom. In a
certain sense, this reduction approach may be viewed asvariaat analog” of a light-cone gauge
fixing.

The resulting “reduced” model should have closely relatddaic spectrum to the original one,
and one may then raise the question if the classical comelgmze between the two models may
extend to the quantum level. This is not what happens in tee oftheS? sigma model and the
sine-Gordon model (one reason is that in the reduction pgeeone uses conformal symmetry of
the SO(3)/S0O(2) model which does not survive beyond the classical level)®imay conjecture
that the relation may still hold in the very special case effthil AdSs x S° superstring model which
should be conformal at the quantum level.

Below we shall first discuss the Pohlmeyer-type reductiantlie bosonic part of the classical
AdSs x S® sigma model and then consider the full supercoset supggdtieory. As we shall see,
the application of this procedure to the bosonic part of MlaS; x S° string action leads to ad
relativistically invariant“reduced” theory represented by a sigma model with a patkteim which
has an equivalent integrable structure. It generalizesitieGordon[[14] and the complex sine-
Gordon [14] 22] models to the case of the 4+4 dimensiona¢tamgace.

We shall explain how to obtain a local Lorentz-invarianti@etfor this reduced theory in terms
of “physical” (gauge-fixed) degrees of freed@rwe shall follow the approach of [2B, 24] (see also
[25]), in which the reduced theory is interpreted as a gdugpel version of a gauged WZW theory

1This was not done explicitly in the past for ti$ models withn > 3. The existence of a local Lagrangian is an
important issue. At the level of equations for the curremthe Lax pair equations there is a large freedom [15] in how
one can choose a local field representation — many clagsegllivalent models have same-looking Lax equations and
yet very different local field representations (and thugjinealent quantum structure). When one addresses the a$sue
existence of a local action the choice of the fundamentaldibecomes relevant.
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with a potential representing an integrable deformdiioa, as a special case of a non-abelian Toda
theory [27].

The reduced model for the fulld S5 x S® superstring (found after an appropriate kappa-symmetry
gauge fixing) turns out to be a 2d Lorentz-covariant fermiageéneralisation of a non-abelian Toda
theory for& = SU(S;;(XQ’;[)]@) SU(;”X(?U(Q) with 4 + 4 dimensional bosonic target space. Its simple
structure (and the matching of the numbers of the bosonictlaadermionic degrees of freedom)
suggests that it may possess 2d supersymmetry. Indeedsittenee of the supersymmetry can be
seen directly in the special case of tHdS, x S? superstring theory for which the reduced model
happens to be the same as Mhe- 2 supersymmetric sine-Gordon theory.

Though the relation of the reduced model to the original con&l superstring model involves a
non-local transformation, we may still expect that it sltbdéfine a UV finite 2d theory. Its confor-
mal invariance is then only “spontaneously” broken by aespalentering the potential term and its
fermionic counterpart) that appears after fixing the residanformal diffeomorphism freedom in the
conformal gauge (the same happens in the plane-wave l@gtg-gauge casg![7]). If this is indeed the
case, the reduced model may serve as a starting point forstadding the corresponding quantum
AdSs x S% superstring theory. Its small-fluctuation spectrum near a natural vacuum staéains
8 bosonic and 8 fermionic dynamical degrees of freedom oflemuassu, and the corresponding
relativistic (and 2d supersymmetric) S-matrix should henes SU(2)]* global symmetrﬁ

Let us now describe the contents of the paper. We shall staédtion2 with a review of the
Pohimeyer reduction in the case of the bosonic string maooielB8, x S? and R, x S* with sine-
Gordon and complex sine-Gordon models as the corresponglituged theories.

To systematically construct the Lagrangians of reducedetsofibr higher-dimensional bosonic
SO(n,m)/SO(n—1,m) examples we shall first explain the relation between thetganusof motion
of geometrical (“right”) F//G coset model written in terms of currents and tHeH (“left-right”)
gauged WZW model (gWZW) with an integrable potential. As aparation, we shall review the
classical equations of the/G symmetric-space sigma model (se@.1) and the equations of the
G/H gWZW model with a potential, i.e. of a special case of the abalian Toda theory (se@.2).
The potential is determined by a choice of an elen¥ént= 7 = T in the abelian subspace in the
complement of the algebtgof G in the algebrd of F', andH is such that its algebtais a centralizer
of T"in g.

In sectld we shall show how to relate the equations of motion of iié& coset model to those of
the G/H gWZW model by (i) imposing the so called reduction gauge snefuations of thé'/G

2Viewed as a CFT deformation it is relevant in compact (e5§) case and irrelevant in non-compact (e4S,,)
case.

SWhile the transformation used to arrive at the reduced misdebn-local one may hope that in an integrable finite
field theory the solitonic spectrum should be determinedragaly by the semiclassical approximationl[28] and it may
then be the same in a pair of theories with classically edgitantegrable structures. The Poisson structures of the
original and reduced models are different|[20, 21], but as steown inl[21] in the light cone formalism, they are actually
compatible (the sum of the two Poisson brackets is againssBoibracket, i.e. it satisfies the Jacobi identity).

4Having obtained the reduced model via the classical praeeaind using it as a starting point for quantization one
would still need to understand how to compute the “obseesthif the original theory in terms of the quantum reduced
theory (at the classical level one can do this by solving ithealr Lax system). In particular, one would need to compute
the global charges of thBSU (2, 2|4) symmetry group as these are relevant for comparison witgdbege theory side.

3



model written in terms of the current components, and by(aking use of the residual 2d conformal
diffeomorphism symmetry to eliminate an additional degrééeedom (setting components of the
stress tensor to be constant and thus satisfying the coafgamige constraints of the string theory on
R, x F'/G). This will allow us to solve part of the gauge-fixed equasiofi motion explicitly in terms
of a new fieldg taking values inG and theh-valued gauge fieldl, (sectl4.2). The resulting system
will turn out to be invariant under the both left and riglitgauge symmetries. After imposing a special
gauge condition under which the gauge symmetry reducesatmfitheGG/H gWZW model these
equations of motion become equivalent to the ones folloviiagy the gWZW action with a special
integrable potential described in s€8f2d That the reduced equations of motion of thgG coset
model can be related to those of the gWwZW model with an intdgrpotential was first suggested
(and checked on several examples) in [24, 25]. Here we skali@ why this correspondence should
work in general and specify the necessary conditions on thepg and the algebras involved. We
shall also note that the potential term is equal to the oailghty G coset Lagrangian in the reduction
gauge.

In sect/4.3 we shall mention the equivalence of the Lax representafionthe /G coset and
the G/H gWZW models and in secé.4 we shall consider the reduced equations for ftfe =
SO(n +1)/SO(n) coset model in thel, = 0 [24] H-gauge. These equations, are, however, non-
Lagrangean on physical subspEce.

As we shall discuss in sed, to get the Lagrangean equations for the independemhtdegrees
of freedom of the reduced counterpart of tkie model (that generalizes the sine-Gordon and the
complex sine-Gordon cases) one should start with the gWwZildraampose thel/-gauge on the
group elemeny € G and integrate out the gauge field componehts The resulting reduced action
is that of a sigma model with a curved target space metric rfbudntisymmetric tensor coupling)
combined with a relevant integrable potential term giveivensally by a cosine of one of the-1
angles. We describe few explicit examples of reduced mddeksrings onR, x S* andR; x S®in

sect5.2 The generalisation tddsS,, x S™ models is then straightforward (s€bt3).

InAsect. we shall turn to theddSs x S° superstring starting with the equations of motion for
thel = % supercoset model (with the bosonic prt= AdSs x S5 = Ssgg;)) X ‘2554)))

We choose conformal gauge and write them in terms of the caegs of the left-invariant current
of PSU(2,2|4). We use the formulation based d¢f) grading property[[57,13] of the superalgebra
psu(2,2|4). Fixing a particular kappa-symmetry gauge we perform thelagnof the Pohimeyer
reduction discussed earlier for the similar bosonic coggtamportant ingredient is a generalization
to thepsu(2,2|4) superalgebra case of the Lie algebra decomposition ofiginged in [18] in the
bosonic coset case.

Introducing the new set of fermionic variables directlyated to the odd components of the super-
coset current we show in selft4 that the reduced system of equations follows from a 2d Larent
invariant Lagrangiari (6.49). Its bosonic part is thafiof SU(SZPXQSQI)J@) X SU(%”X(‘;U@ gWZW model
with an integrable potential determined by a special dlagmatrle T In the even part of the
psu(2,2|4) superalgebra. In addition, the Lagrangian contains a @tiadermionic part with a stan-

dard first-derivative kinetic term. The fermions interagtitiimally” with the H gauge field4.. and

5The original observation of [24] that the gWwZW model with ategrable potential provides a Lagrangean formula-
tion of the reduced equations of motion of tA¢G coset model applied on the extended configuration spacévingo
the “auxiliary” A fields. Similar construction was discussed in a string cdrite]26].
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are also coupled (by a “Yukawa-type” term) to the bosonidfiele G. We mention that as in the
bosonic case, the sum of thedependent potential and “Yukawa” interaction terms in ibguced
Lagrangian is equal to the original superstring Lagrangidtien in terms of currents.

The vacua of the theory are described by consjaaking values in/; in the AL = 0 gauge the
small-fluctuation spectrum near the trivial vacuum cossiét8 bosonic and 8 fermionic dynamical
modes of the same mags We comment on the interpretation of the paramgtand mention that
the corresponding scattering matrix should have a glébal [SU(2)]* symmetry.

The structure of the reduced action suggests the preserac2dbupersymmetry. Its existence is
indeed confirmed in sedfl on the example of a similatdS, x S? superstring model based on the
psu(1,1]|2) superalgebra. The corresponding reduced Lagrangian iglfmibe the same as that of
theN = 2 supersymmetric extension of the sine-Gordon model.

There are also several Appendices containing some tedlu@tzls and definitions.

2 Examples of reduced models: strings ik, x S? and R; x S°

Let us begin with a review of the prototypical example: rethrcof the S? sigma model to the sine-
Gordon modell[14]. Starting with the action of the sigma mautethe sphere written in terms of the
embedding coordinates = - [ d*c L where 0. = Jy & )

4o

L=0,X"0_X™ -~ ANX"X™-1), m=1,23, (2.1)
we get for the classical equations of motion
040_- X"+ AX" =0, A=0,X"0_X™, XmX™m=1. (2.2)
Then the stress tensor satisfies
T,_ =0, 9.T__=0, 0.-T,.=0, Ty =0 X"0,X™, (2.3)

sothatT, . = f(o,), T__ = h(o_). Since the theory is classically conformally invariant
apply conformal transformations to pilit... into the special constant form

0, Xm0, X™ = 1?, O_XMO_X™=p?, = const . (2.4)

This effectively fixes one of the two fields 6f leaving us with a one-dimensional “reduced” theory.
Indeed, one can introduce a new field variabhga the following non-local transformatiakl,, — ¢

p?cos2p =0, X"O_X™. (2.5)

Then the equations fokK™ (2.2) and the condition$ (2.4) are solved provideds subject to the
sine-Gordon (SG) equatiah 0_p + %2 sin 2¢ = 0. The latter follows from
L=0,p0_¢+ 5 cos 20, (2.6)

which is thus the Lagrangian of the “reduced” theory. Thasgilzal solutions and integrable structure
(Lax pair, etc.) of the original sigma model and its reducednterpart are then directly related.
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This reduction from sigma model a$¥ to the SG theory has also an equivalent interpretation as
a classical equivalence between the bosonic string theoRy ix S? in a special gauge and the SG
theory. Indeed, starting with the Polyakov string actiontaming the time direction term0,t0_t
in addition to theS? term [2.1) and choosing theonformal gaugecombined witht = p7 (to fix
the residual conformal reparametrisation symmetry) wewgndith the same conditions (2.4), now
interpreted as the conformal gauge (Virasoro) constraiiitisen the classical string equations on
R, x S? become equivalent to the SG equation for the one remainiagsverse” degree of freedom
parametrized by (the gauge conditions eliminate 1+1 out of 1+2 string degcédreedom).

One interesting outcome of the above reduction is that wthieeconditions[(2]4) obviously vio-
late the 2d Lorentz invariance of the original theoryH 7 “spontaneously breaks” the 2d Lorentz
invariance in the string-theory version of the reductidhg resulting SG theory is still Lorentz in-
variant. Note also that th80O(3) global symmetry of the original modeél(2.1) becomes trivtiethe
reduced modely defined in[(2.5) isSO(3) invariant. Given a SG solution fas and thus a specific
value of the Lagrange multiplier functioh = 12 cos 2¢p = 9. X™9_X™ in (2.2) one can reconstruct
the corresponding solution fo¥,,, by solving the linear equatian, 0_ X™ + AX™ = 08 Fora given
solution for X,,, one can then find the correspondif@(3) conserved charges. Thus the classical
solitonic spectra of the two models should be in direct @poedence (seé [30, 131,/32] for some
specific examples).

This classical equivalence relation obviously breaks dowguantum theory where there are UV
divergences and mass generation in$feigma model so that the classical conformal invariance is
broken (invalidating, in particular, the argument leadiod2.4)). Still, one may hope that an analog
of this reduction may extend to the quantum level in the césetioeory like AdSs x S5 superstring
which remains conformally invariant upon quantisation.

The above reduction has a straightforward generalisatidche case whe? is replaced bys?
[14,22]. The reduced model corresponding to the string?prx S? is the complex sine-Gordon
(CSG) model

~ 2
L =0,00_p+tan® p 0,00_0 + %COS 2p. (2.7)

The variablesp and# are expressed in terms of ti%)(4) invariant combinations of derivatives of
the original variables(,, (m = 1,2, 3, 4)

1
prcos2p =0, X"MO_X™ , ©sin? p 0.0 = :Fiemnklxmmxna_xkaixl . (2.8)
Again, the integrable structures and the soliton solutmiitie two models are closely related (see
3L, 32])@ The CSG model can be interpreted as a special case of a nbarabada theoryl[2[7] — a
massive integrable perturbation of a gauged (coset) WZV\/etlr(Mregggg model) [52]|§

6To find periodic solutions o x S* one would need to start with a periodic solution of SG model @iso impose
periodicity onX,, in solving the linear system.

Let us mention that an alternative reduced theory fordheigma model formulated in terms of currents that also
solve the Virasoro conditions for a string & x S was discussed by Faddeev and Reshetikhiri [53, 54]. HowtesFR
model is not manisfestly 2d Lorentz invariant and thus appkeebe less useful than the corresponding Pohimeyer-esduc
theory, i.e. the CSG. The precise relation between the twibatsas worth further study.

8The corresponding quantum S-matrix was discussed in [55].
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Reduced equations of motion for sigma models on higher sgts&r (n = 4,5, ...) involve field
variables related t6'O(n + 1) invariants built out ofX,, and its higher derivative8. X,,,, 92 X,,,,
9% Xom, ... (with indices contracted using,, ande,,, ., .,); they were found in[[17] (see also |16,
19]). The resulting equations were not, however, derivabia a local Lagrangian.

It was later shown in[24] that they can be obtained as a pdatigauge-fixed version of the clas-
sical equations of thg% gauged WZW model with an integrable potential term. This/juted

a Lagrangean formulation of these equations oretttendedield space including the 2d gauge field
A of the gWZW model.

This construction gives a strong indication that there &hexist an alternative version of the
classical reduced equations of motion whicmanifestlyLagrangean, i.e. that can be derived from
an action containing only physical “reduced” set of fieldsvas found in the previous cases of the
SG and CSG models.

The reason for this expectation is that the classical eguogtivritten in the Lax-pair form admit
different “gauge-equivalent [15] versions related byrAocal) field redefinitiond. This was already
noticed in [19] in theS® case where the field variables corresponding to the CSG matel related
by a non-local transformation to the variables of the redunedel of [17].

Below we shall present an explicit form of the reduced Lagiam models for the string oR; x S*
and R, x S°; the AdS, versions can be found by an analytic continuation. One is #ide to write
down the reduced Lagrangian for the bosonic part ofAtig; x S° theory. The basic idea is to follow
[24] and start with thes% gWZW model with a relevant integrable perturbation termihatead
of fixing the gauge fieldl. = 0 as in [24] fix the gauge on the group element and integratehaut t
gauge fieldd; asin [36] 37|, 38, 40] (see also [25, 29]). In the case o%@?} (or equivalently%(f;))
model that procedure immediately explains the appearaite damiliar D = 2 target space metric
in the CSG actiori (2]7) as was originally observed in [39].

The construction of the reduced models based on the confagauge and fixing the remaining
conformal transformations by= p7 condition was applied above to a string Bpnx S™. The same
can be done for the bosonic string model4S,, x S* in conformal gauge and with fixing the residual
conformal symmetry choosing th#! anglea equal tour. Denoting the embedding coordinates of
AdS, asY, (withY*Y, = Y2 —-Y% +Y?+...+Y? = —1) the AdS, Lagrangian is then the analog
of (2.1)

L=0.Y°0_Y,— A(Y°Y,+ 1), (2.9)

with the equations of motion and conformal gauge conssdiaing
0.0_Y,+AY, =0, A=-0,Y°0Y,, Y =-1, (2.10)
0. Y,0,Y*=—p?, 0.Y,0.Y®=—p*. (2.11)

By concentrating on the plane formed by the normalized vs¢ipY * ando_Y* (orthogonal taY™®)
one can see that their scalar product can be set equal to

0,Y*0_Y, = —pi? cosh 2¢ , (2.12)

9 This is a classical gauge equivalence when gauge transfiomsat the level of Lax equations lead to equivalent
integrable systems. The resulting non-local relation ef¢hrel of field theory models does not, in general, extenti¢o t
quantum level, cf.[[34, 35].



whereg is a new variable (cf..(215)). Then in th&lS, case we ged, 0_¢ + “72 sinh 2¢ = 0 which
follows from the reduced Lagrangian (df_(2.6))

- 2
L=0,00_6— % cosh 26 . (2.13)

Let us now explain how the above special examples can be @exgel to the case of the bosonic
string onAdS,, x S™. Denoting the embedding coordinates4is,, asY, and the coordinates ¢
as X,, the conformal gauge condition means the vanishing of tte¢ sttess tensor,

T (Y)+ T (X)=0, T__(Y)+T__(X)=0. (2.14)

Since in the conformal gauge the equations of motionYfoand X,,, factorize, the corresponding
stress tensors are separately traceless and conserved.inBtead of using = ur or a = ur
conditions { is now part ofAdS,, anda — part ofS™) we can fix the residual conformal transformation
freedom “implicitly” by following [14] and demanding as iZ@) thatT.. (X) = u? = const. Then
(2.12) implies that

Tiw(X) =42, Tea(Y)=—p’. (2.15)

We thus get two decoupledds, andS™ sigma models with the constrainks (2.15), to which we can
separately apply the Pohlmeyer’s reduction proceduret dlirainates 1+1 out of. + n degrees of
freedom, leaving us with an action for only the— 1) + (n — 1) physical degrees of freedom.

Later in section 6 we shall discuss a generalisation of gsiction procedure to the presence of
the superstring fermions when thglS,, andS™ parts are no longer decoupled.

3 Coset sigma model and the corresponding gauged WZW model
with an integrable potential

Let us give a short review of a coset sigma model (of whi¢hmodel is a special case) and the
associated gauged WZW model. This will set up the notatiorséationid where we are going to
construct an explicit change of variables which relatesR)hé coset sigma model to certai#/ H
gauged WZW model with a potential, giving an explicit reatisn of the relationship originally
proposed in[24].

3.1 F/G coset sigma model

Let G be a subgroup of a Lie group andM = F/G be a coset space. Let us assume that the Lie
algebraf of F' is equipped with a positive-definite invariant bilinearrfof , ); explicitly, let 7' be a
matrix group anda, b) = Tr(ab). In addition let?'/G be a symmetric space which is the case when

f=pdg, 9,9/ Cg, [g,p] Cp, p,p] C g, (3.1)

wherep denotes the orthogonal complement of the alggloaG in §.
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The action of the sigma model dr/G is given by

S = —% /d% n® Tr(P,P,) , P.=(f0uf)p, (3.2)

where(...), denotes the orthogonal projectionytoi.e.
J=fYf=A+P, A=J,€9, P=J,€p. (3.3)

The action is invariant under th& gauge transformatiofi — f¢ for an arbitraryG valued function
g. Indeed, under this transformatioh = f~'df — ¢~ '(f~'df)g + g~'dg so thatP transforms
into g~' Pg ensuring the invariance of the Lagrangian. The curreand therefore the action is also
invariant under the globdl’ symmetryf — f,f for any constanf, € F'. Furthermore, the classical
coset sigma model action is invariant under the 2d confotraakformations.

The equations of motion take the form
D,P'=0,  Di=0+[Aw |, Ai=(f"0uf)s. (3.4)
Using the light-cone coordinates , o~ they can also be written as
D.P.=0, D_P,=0. (3.5)

Indeed, the zero curvature condition for the curr@mtrojected tg implies

(04 —0-Jy + [y, J]), = 0P — 0-Pp + [Ay,P] + [Py, A] = 0, (3.6)

i.e. D, P_— D_P, = 0. This together with[(314), i.eD, P_ + D_P, = 0, then leads td (315
The nonvanishing components of the stress-tensor are

Tiy=—3T(P.P), T = Te(P.P.). (3.7)

Equations of motion imply the conservation lawT,, =0, 0,T__ = 0. Then making an appro-
priate conformal transformations one can always set 4sf) (R, = u°.

The Lax representation for the coset sigma model is fourd ftee zero curvature conditiofw +
w A w = 0 for the Lax connection

w=do" (A, +(P,)+do  (A_+(7'P), (3.8)

04 + Ay + 0Py, 0+ A_+(7'P] =0, (3.9)

wherel is a spectral parameter. The equations of mofion (3.5)oliom (3.9) as the coefficients of
order/—! and/ terms. The coefficient of the ordaf term is theg-component of the zero curvature
condition for the connectiod = A + P.

ONote that the global righF-symmetry is not seen at the level of equations of motiontamiin terms of currents
because all the currents are explicitly invariant.



Let us recall also two representations of the Lagrangiah®fV G sigma model. One is to intro-
duce an explicit parametrisation of the codét= F'/G as embedded intd. If z* are coordinates on
M, letdz'J; be a pullback of/ to M. Then the Lagrangian ifi(3.2) takes the form

L= —%n“bﬁaxiabxj Gij(x) ) Gij (x) = Tr(Ji*(x)J;(x)) ’ (3.10)

whereG;; is the metric on the coset space. Note that by choosing apkatiparametrisation of the
coset we have fixed th& gauge symmetry. An alternative form bfis found by introducing a gauge
field A, € g which serves to implement the projection of fheurrent onp

L= —%n“"Tr[f (B + AL f(O+ AT, (3.11)

or, equivalently,
L= gy Te[(f'0uf — Ad) (F 10 — Ay)]. (3.12)

Substituting the equation of motion faér
A=A=(fdf)g (3.13)

into (3.11) one returns back to the original Lagrangiam i@)3

3.2 G/H gauged WZW model with an integrable potential

As was suggested in [24] (see alsol[25]), a sigma model on axgjrit spacd’/G can be reduced to
a “symmetric space sine-Gordon” model with a Lagrangeamdation in terms of th% left-right
symmetrically gauged WZW model with a gauge-invariantgnadle potentidE

The potential is determined by a choice of two elem@&nts/’_ in the maximal abelian subspage
in the complemeni of the Lie algebrg of G in the algebrg of F'. The algebrd of the subgroupg?
of G should be the centralizer @f. in g: [h, 7] = 0. Then the action is

d2
S.(g,A) = Sewzw (g, A) — T / 2—7(: Te(Tyg T g), (3.14)

where S,wzw is the action of the left-right symmetrically gauged WZW rebf@1] (we omit an
overall levelk factor)

d20' 1 —1 d3o- -1 -1 -1
Sewzw = — gTr(g 099 0_g) + ﬁTr(g dggdgg~ dg)

2
- / é—;Tr(fh 999 —A g l9,g—g A gA_ + A A). (3.15)

UThis is a special case of a non-abelian Toda thelory [27]. Almslian Toda models are of the two basic types —
“homogeneous sine-Gordon” and “symmetric space sine-@0rf25]. For the first type the gWZW part of the Toda
model corresponds tﬁf(cl:T (r is arank ofGG). The models of the second type are reduced theories assbtiasigma
models on compact symmetric spaces. They are quantunramiecput their S-matrix is not known, except for special
cases of SG and CSG models. A review can be found in [43].
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Hereg € G andA. € 4 (all the fields are assumed to be matrices in a given repras@mdf F' or of
its Lie algebr&f).

Note that using Polyakov—Wiegmann identity the actionHBcihn be written also in the following
form

Sewzw = Swaw (b gh') — Swzw(h 'R, (3.16)
A =h'0uh, A —=HTON . (3.17)

To define the action witly belonging to the algebra af it is assumed thay € G is trivially
(diagonally) embedded int6'. The action is then invariant under the vector gauge tramsftions
with parameters taking values i:

g — hgh™t, Ay — h(Ag 4+ 0,)h7 heH, (3.18)

whereA, € h andh™ T h = T, (since[a, h] = 0).
The equations of motion following froma (3.115) are

d_(97'0:9 + g7 Arg) — 0, A
+[A, g7 0 g+ g Agl + 1lgT T, T ] = 0, (3.19)
A =(g'0:9+9 "Arg)y,  A_=(—0_gg ' +gA_g")y. (3.20)

Note thaty='7_g € p sothalT,, ¢ 'T_g] € m, whereg = m @ b. In particular, they-component of
the first equation implies that, is flat,

0+A_ - 8_/1_,_ —|‘ [A+, A_] — 0 . (321)

Let us comment on the classical integrability of the aboveleh@3.14). It is well known that the
equations of motion of the standard WZW model can be writtethe Lax form. The same also
applies to gauged WZW model with the above potential. Moeeigely, usingA,, 7..] = 0 one can
show that equation (3.119) can be written in the Lax form,it.éollows from [£., £_] = 0 where ¢
is a spectral parameter)

L. =0, +g '0,g+g  Ag+tul,, L =0_+A_+0 1 ug T g, (3.22)
or, equivalently, from the zero curvature equation forftvalued Lax connection
w=dot (g7 0pg+ g " Apg + luTy) +do (A + 0 ug ' Tg) . (3.23)

While the remaining equations (3120) (constraints) do ntdofv from this condition, they may be
considered as consequenced of (8.19) in the sense thatagsadation to[(3.19) one can find a gauge
transformation such that the transformed solution sasi$8620).

This is possible because ef. (3.19) hdarger gauge symmetrghan the original gWZW model
(3.I8): it is invariant under th& x H gauge symmetry

g—hTtgh, Ay = hT'ALh+hT0h, AL —RT'A R+ RTOCR, (3.24)
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whereh andh are two arbitrary/-valued functions. The symmetry 6f(3115) is the diagonabsaup
(with b = h) of the extended “on-shell” gauge symmeifry (3.24). It tusnsthat using this extended
symmetry one can fulfil the constrainfs (3.20). Further itletand the proof are relegated to the
AppendiXAl We shall also use this observation in secldrelow.

Let us note also that given an automorphisof the algebrad preserving the trace one can fix the
H x H gauge symmetry of the equations of motion in a more genenalsedhat[(3.2D) is replaced
by

T(Ay) = (97'0rg+ 9 " Arg)y, A =(=0_g97 +gr(A)g V). (3.25)

The corresponding equatioris (3.19),(3.25) then follownfrihe Lagrangian(3.14),(3.115) with the
replacement
A = T(A) (3.26)

in the A_g~'0,¢g and theg='A,gA_ terms. The corresponding gauge symmetry is then-
h~tg7(h) where7 is a lift of 7 from b to H (see [25/29]). In this case the left-right symmetri-
cally gauged WZW model is thus replaced by a more general m®trically gauged WZW model
[40,33].

It was observed in [24] that since the field strengthlgianishes(3.21) on the equations of motion,
one can choose a gauge wittére
Ay =A_=0. (3.27)

Then the classical equations (3.19),(3.20) reduce to

d_(97'0vg) — [Ty, g7 ' T-g] =0, (3.28)
(97'049)y =0, (0-g997 ")y =0. (3.29)

These equations happen to be equivalent to the equationstafmof the reduced’/G model found
in [16,/18,19].
Various special cases, structure of vacua and solitonitisol of the equations (3.28).(3129) were

29

discussed in [43, 29] and refs. there.

The set of equation§ (3.28),(3129) do not directly folloanfra local Lagrangian. As was implied
in [24], to get a local Lagrangian formulation of these eurat one is to go back to the actidn (3.15)
on a bigger configuration space involving bgthnd A, with the gauge invariancé (3]18).

At the same time, one would like also to have a reduced actiooiving only the independent
degrees of freedom, i.e. generalizing the actions of thedZ8) and the CSG_(2.7) models.

Below in sectiorid we shall explain why and under which conditions the relatietween the
equations of the reduced theory corresponding to A& coset model and the equations of the
G /H gWZW model proposed in [24] actually works. Then in seclbme shall suggest how to use
this correspondence to find a local Lagrangian for the playsiember of degrees of freedom of the
reduced model.

12This gauge is thus possible only on-shell; to gauge awayt the level of the gWZW Lagragian one would need
some additional local gauge invariance.
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The main observation will be that there exists an equivaigptesentation for the classical equa-
tions following from [3.14) (or gauge-equivalent, in these of [15], representation of the Lax equa-
tions corresponding td (3.22)) in which they admit an expliagrangean formulation without any
residual gauge invariance, thus generalizing the SG and €&@ples. Instead of the “on-shell”
gaugeA, = 0 used in[[24] one can impose an “of-shel’-gauge on the group elemeptaand then
solve for the gauge fieldl,. “Integrating out” A, then leads to a sigma model for the independent
dim(G/H) number of parameters pnin the same way as in the examples of conformal sigma models
associated to gwZW models [36,/ 38, @].

4 Reduced theory for F/G coset sigma model:
equations of motion

The strategy to relate the equations of motion of #f&' coset model to those of th&/H gWzW
model will be to impose the so called reduction gauge in the#qns of the?’/G model [3.5) written
in terms of the independent current components and then ke e of the 2d conformal symmetry
to eliminate one additional degree of freedom. This wilballus to solve all gauge-fixed equations
of motion but the Maurer-Cartan equation explicitly in terof a new fieldy taking values inz and
theh-valued gauge fieldl.. The remaining system of equations (i.e. the componentsedffaurer—
Cartan equation in this parametrization) will turn out toitneariant under both the left and the right
H gauge symmetries. We will then prove that one can imposepbeia gauge conditions under
which the gauge symmetry reduces to that of thgauge invariance of th@/ H gWZW model and
the equations become equivalent to the ohes [3.19)](3c86ing from the gWZW action with an
integrable potential (3.14) described in secfR

4.1 Equation of motion in terms of currents and the reductiongauge

The relation between the reducédG model and thez/ H gWZW model will apply under certain
special conditions on the structure of the Lie algebras efgitoups involved. These conditions that
we will specify below will be satisfied, in particular, in tease of the&s” = SO(n+1)/SO(n) model
(and itsAdS,, counterpart) which is our main interest here.

Let a be a maximal Abelian subspace of the orthogonal complemehthe algebrg of G in the
algebraf of F. Leth be its centralizer irg. Following [18] we shall assume the following conditions
on the structure of these algebras (which represent a $pasi of[(3.11))

f=pdg, p=adn, g=ma®h, [a,a] =0, [h,a] =0, (4.1)
[m,m| C b, [m,h] C m, [m,a] Cn, [a,n] C m. 4.2)

Starting with a left-invariant current = f~df with f € I’ we shall use the following notation for
its h, m andp components

Aa - (f_lﬁaf>h7 Ba = (f_laaf)ma Pa = (f_lazf>p ) (43)

BIntegrating out the gauge field at the quantum level indutss a dilaton [36]; there are also quanturh~ 1/k
corrections to the sigma model background fields[[45, 46, Bii¢se will be ignored at the classical level we are restict
to here.
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ie. A, € gin (33) is equal ta4, + B,. The equations of motion of the/G sigma model[(3]5)
written in terms of thecurrent componentsl,, B,, P, viewed asindependent fieldshen take the
form

D.P_ =0, D_P, =0, (4.4)
a+(A_ ‘|‘ B_) - 0_(A+ "’ B+) + [A+ "’ B+,A_ ‘|‘ B_] — [P_, P+] 5 (45)

whereD, = 0. + [AL + By, |.

The choice of theeduction gauggl8] is based on the “polar decomposition” theorem whickesta
that for anyk € p there existg, € G such thay, 'kg, € a. Using theG gauge freedom of the coset
model equations of motion one can therefore assume thatfahe components of,, e.g., P, is
a-valued. ThenD_P, = 0 implies

O_P. =0, [B_,P.]=0. (4.6)

Here we made use of the conditipn, a] C nin (4.2). Under a certain regularity condition which
we shall assume (in the case whers one-dimensional, e.g., fdfr/G = SO(n + 1)/SO(n), it is
enough to require that, # 0) the equationB_, P, | = 0 implies that

B_.=0. (4.7)

To summarise, by imposing the gauge in whieh € a and eliminatingB_ by solving[B_, Py] =0
(i.e. settingB_ to zero) one can bring the system of théG model equations of motiofn (4.4),(4.5)
to the following form:

8_P+:0, 8+P_+[A+,P_]+[B+,P_]:O, (48)
8_B+ —|— [A_, B+] — [P+, P_] 3 (49)
8_A+ - 0+A_ —|— [A_, A+] — O, (410)

where [4.9) and (4.10) are andh projections of[(4.5) (we are using the conditions (4 T2)y.

In this reduction gauge the originél gauge symmetry is reduced # gauge symmetry under
which the current componemt, transforms as a gauge potential whike and P, transform co-
variantly, i.e. as(...) — h7!(...)h. In particular, P, is invariant because it takes valuesdrand
[a, h] = 0.

Let us note that[(4.10) implies that we can impose the on-dheJauge wherel,. = 0. In this
gauge the equations of motidn (4.8).(4.9) take the form:

a_P+:0, 8+P_ - [P_,B+]7 3_B+: [P+,P_]. (411)

4.2 Fixing conformal symmetry, field redefinition
and relation to G/H gauged WZW model

The first equatiord_ P, = 0 in (4.8) implies thatP, = P, (o). One can then fix one component
of the matrix functionP, using the residual conformal symmetry under whighdo™ = P do"".
Since in the reduction gauge. belongs to the abelian subspacef p, then ifdim a = 1 (which is
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the case, e.g., for theO(n + 1)/SO(n) coset of our interest) one can always assumefthat ;7"
whereT', € ais a constant matrix ifi which is a basic element @f (we may also normalize it so
thatTr(7,. 7, ) = —2). This is equivalent to requiring that the correspondingnponent of the stress
tensor in[(3.77) is constant, i.&. , = p.

Furthermore, we can use the remaining conformal symmsetry- o'~ (o~) to fix theT__ com-
ponent in[(3.l7) also to be constant as in the original Pohémgwargumenti Thus assuming that the
maximal Abelian subspaaeof p = § © g is 1-dimensional and using the conformal symmetry we
arrive at

Pi= uTy, S Te(P_P) = 2, (4.12)
Tiye = p?, i, T = const . (4.13)

The first condition in[(4.12) fixes one independent degreeed#dom contained i®, in the case
whendima = 1 and the second condition reduces by one the number of indepedegrees of
freedom inP_. The normalization condition off_ can be solved by

P =g Ty, T_ = const , (4.14)

whereg € G is anew field variablgthus non-locally related to original variabfec F in (4.3)) and
T_ is a constant matrix which is a fixed elemenuofThe existence of suahfollows again from the
polar decomposition theorem, and the requiremefit of = x? implies thatTr(7_7_) = —2. In the

case oidim a = 1 which we are considering here it follows that

T.=T =T. (4.15)

For generality and to indicate the Lorentz index structidpw we shall often keep the separate
notation for7’, and7..

The equation for”_ in (4.8) written in terms of; in (4.14) then becomes
O (97'Tg) + [Ay,97'Tg] =0, A=A+ B, . (4.16)
Considering4, € g as an unknown, the general solution of this equation can litewas
Ay =g'0,9+9'ALg, (4.17)

whereA’, is an arbitraryh-valued function. Indeed, the first term [n_(4.17) is obviguwes particular
solution of [4.16) (sinc&_ = const) while the second term is a general solution of the homogesneo
equation A, ¢g~'T_g] = 0 (given thaf A’ , 7] = 0 since[h, a] = 0). Thus

Ar=(g'0rg+g ALy, By =(97"'049+9 " ALg)m - (4.18)

In terms of the new variables A’,, A_ the first two equations of motion i (4.4) ¢r (4.8) are solved
and the remaining equation (4.5) (6r (49),(4.10) whichiter andh components) then takes the
form

(g7 '0rg+9 ' ALg) — 0L A +[A_, g 0 g+ 9 ' ALyl = p? [Ty, g7 ' T g]. (4.19)

14The conservation equatiégh T__ = 0 can be seen directly from the second equatiohin {4.11).
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As discussed in sectidB.2, this equation is equivalent to the equations of motion ef ghvZW
theory [3.19)[(3.20) in the sense that by an appropriatgg#&ansformation one can always make
the following constraints satisfied:

A =(g7'0,9+g " ALg)y, A_=(g0_g ' +gA_g ). (4.20)
After renamingA’, asA, these are exactly the equation of motion (3.19) and the min E20fH

We have thus shown that the original system of equationsedf fld: sigma model(418)[(419).(4.1L0)
is equivalent to the one described by the equation [4.19}fendonstraintd (4.20) with thE gauge
symmetry [3.24) withh, = h. These are the same equations of motion (3.19), the comst&.20)
and the gauge symmetry as corresponding to the action (8149 G / H gauged WZW model(3.15)
with the potentiak p*>Tr (T g7 _g).

That the reduced equations of motion of th&= coset model can be related to those of the gWwzW
model with an integrable potential was first suggested irj {aAd checked on several examples
includingSO(n+1)/SO(n), SU(n+1)/U(n), andSU(n)/SO(n) cosets). Here we explained why
this correspondence should work in general and specifiedgbessary conditions on the groups and
the algebras involved.

4.3 Gauge equivalence of Lax representations for thé'/G coset andG/H
gauged WZW models

Imposing the reduction gauge in terms of the Lax connecttande achieved in a directly analogous
way. Letw be anf-valued Lax connection defined in (B.8). The gauge equicaléransformation
W' = flwf + fdf with f € F gives a new system determined by a gauge-equivalent Lax con-
nectionw’. Decomposingy = w, + w, one observes that in the special casefof g € G the
componentu, transforms as;, = g 'wyg. Using the same polar decomposition argument as dis-
cussed above one concludes that it is always possible to f@evalued functiong such that (cf.
@.1)) (wn)+ = (A+ + By + P4 )a = 0.

Decomposing.’ accordingtof =p dm @ b

W =dot (A + By +(P,)+do (A_+B_+('P),

(4.21)
AL €bh, Biem, P, eca, P eyp,

one finds as above that the compatibility condition impligs.d4.6), i.e0_P,. = 0and[P,,B_] =
0; the latter gives agai_ = 0. This allows us to relate the Lax connection to that with= 0, i.e.

W' =dot(Ay + By +(P,) +do (A_ +('P), (4.22)

whose flatness condition implies the last two equations i8) {4

SMore generally one, can conside asymmetrical gauge bydatiag the appopriatg-automorphismr. See the
respective discussion in sectiB@

16 Note that this reduction is local @_ = 0 is an algebraic consequence of the compatibility condjiien B_ is an
auxiliary field.
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As for the equation$_P, = 0 andd,P_ + [A, + B,,P_] = 0in (4.8), assuming they are
satisfied, one can again use the conformal transformatiosest’, = 7', andTr(P_P_) = —2u2.
As a result, the Lax connection takes the following form:

wred = dot (Ay + By + luTy) +do~ (A_ +(7'P). (4.23)

Finally, using again the parametrisatiéh = g '7_g andA; + B, = ¢ 'd,9 + g 'A' g, one
arrives at
w=dot (g7 0, g+ 9 Al g+ (uTy) + do™ (A + 0" ug™'Tg), (4.24)

whose compatibility condition implies (4.119). It was shommnthe previous subsection that by an
appropriate gauge transformation one can also satisfyrtkghell relations[(4.20). We thus find the
relation to the Lax representation of theg H gWZW model (cf. [3.2D)[(3.23)).

4.4 Reduced equations of” = SO(n + 1)/5S0(n) coset model
in the AL = 0 gauge

Let us now turn to the special case of our interest: sigma hwitlea sphere as a target space. Using
the standardn + 1) x (n+ 1) matrix representation faf' = SO(n + 1) and its diagonally embedded
G = SO(n) subgroup we can choo§é = 7' to have only one non-zero upp2x 2 block so that

H = SO(n — 1) is also diagonally embedded infd = SO(n) (the conditions[(4]1),(4l2) are then
satisfied). In this case we get f&y,. in (4.12),(4.14)

0 1 ... 0 0 ki ... k,
1 0 ... 0 ki 0 ... 0

P+ :MT+ :M o« o o o« o o o o . o o . ’ P_ :M ...1 o« o . o« o . o« o o (4.25)
0 0 ... 0 —k, O ... 0

Hereg in (4.12) is parametrized by and—3Tr(P, P,) = p?. Also, —1Tr(P_P_) = 1i* is satisfied
provided

> kik=1. (4.26)
s=1

The subalgebrag = so(n) andh = so(n — 1) are canonically (diagonally) embedded irjto=
so(n + 1). In addition toB_ = 0 from (4.6),(4.7) we have foB, = (A, )., (seel(4.16))

0O 0 0 ... 0
0 0 by ... b,

B.=| 0 =b, 0 ... 0 |. (4.27)
0 —b, 0 ... 0

In this case the equation. P_ + [A., P_] = [P_, B,] in (4.8) can be solved algebraically fér,

giving (4.27) with
a+kl + [A+, k]l

V1= kky,
17
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Fixing the H = SO(n — 1) on-shell gauge as
A =A_=0, (4.29)

the third equation in[(4]18) then gives the following redusgdtem of equations for the remaining
n — 1 unknown functions,, ..., k,, (k; is determined from (4.26))_[19]

o_ O:ki =Pk,  1=2,....n. (4.30)

V=20 ki

This is the same reduced system that follows both fromSthén + 1)/5S0(n) coset model [16, 18]
and theSO(n)/SO(n — 1) gWZW model in thed, = 0 gaugel[24].
The pointg = 1 is an obvious vacuum for ed. (3]19) in tHe. = 0 gauge, i.e. a trivial solution of

(3.28),[3.29) withl', = T_. According to [(4.14).(4.25) it corresponds to
ey =..=k,=0. (4.31)

The massive fluctuations near this vacuum in the gdugel(ar@9jescribed by thH = SO(n — 1)
invariant equatior (4.30), i.e.
0,0k + 1’k + O(k) =0 . (4.32)

It is convenient to rewrite the equatidn (4.30) in terms &f tiew variable$y, u,,) defined so that
(4.28) is satisfied

ki = cos2p, k; = u; sin2¢p, wuy =1, l=2,...,n, (4.33)

getting [19]
1 e

0,0_p — 5 tan 20 0 w0_uy + 5 sin 20=0,

(4.34)

8+8_Ul + (3+um3_um) u; +

2 1

, (cos2¢ Dy pd_uy + ——— 0_pdiuy) =0.
sin 2¢p coSs 2¢p

Besides the obviouSO(n — 1) symmetry these equations are invariant under the follovangal
transformation

T
=ty P — =yt (4.35)

In the case ofF /G = SO(4)/SO(3), i.e. CSG as a reduced model, this formal transformation
relates the two 2d dual reduced models with T-dual targetespeetrics in the corresponding reduced
Lagrangians [23, 39, 2@

Let us briefly describe the modifications of the above cowsitva in the case of theldsS, =
SO(2,n—1)/SO(1,n—1) coset model. The vector-space signature is@dg—1,1,...,1) and the
subgroups = SO(1,n—1) is diagonaly embedded. In the standard representatipa-ofo(2, n—1)

Yn this case ofSO(3)/S0(2) gWZW model this duality is also related with the vectgr h~'gh) or the axial
(g — hgh) gaugingl[45] 44].
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the elemenfl’, = T can be choosen to have the same form akin{4.25) while thetwon(#.26)
takes the fornmk,ky — > _, k. k., = 1. Equation[(4.30) is then replaced by

5 .4 ki
VI+Y o kmkm

Finally, introducing instead of (4.83) the parametrizatio

= 1%k, 1=2,...,n. (4.36)

k1 = cosh2¢, k; = u; sinh 2¢ , wuy =1, l=2,...,n, (4.37)

one arrives at the systern (4134) foru, with the obvious replacement @bs ¢, sin ¢, tan ¢ with
cosh ¢, sinh ¢, tanh ¢. The two systems of equations are thus related by the replEde> = i¢,

as one would expect from the standard analytic continuaignment. Remarkably, the variables
satisfy the same normalization condition in tffeand theAdS,, cases and both systems are invariant
under the samé = SO(n — 1) symmetry. Note also that in thédS,, case the linearized equations
(4.32) have exactly the same form leading to the same mafdsiteations near the vacuugn= 1.

Instead of using the parametrization Bf in terms ofk; in (4.25) we may start with a particular
choice ofg € G which then determine®_ according to[(4.14). Parametrisinge G = SO(n)
by the generalized Euler angles and expresstngn terms of them one arrives at a certain multi-
field generalisation of the sine-Gordon equation which & another form of_(4.34)A introduced
in (4.33) corresponds then to the first Euler angle). In§tE3)/SO(2) case this gives the standard
sine-Gordon equation

o cos2¢  sin2p B e
9= < —sin2p cos2p ) ' ki =cos2p, kg =sin2p, (4.38)
12
0,0_¢ + 5} sin2p =0. (4.39)

Inthe SO(4)/SO(3) case we can parametrige= SO(3) as

9=020192, g1 =exp(2pR), go=exp(xi), (4.40)
0 1 0 0O 0 0

Ri=|-100], R=[0 0 1]. (4.41)
0O 00 0O -1 0

The corresponding components of the unit veéton (4.23),(4.33) are
ky = cos2p, ko = sin2¢p cos x, ks = sin2¢p sin x . (4.42)

The equations of motiof (4.84) take the form
1 u?
0+0_p — —tan2p 04 xO_x + —sin2p =0,
2 2
9 1 (4.43)
0,0_x+——(cos2¢0ypd_x+——0_pd.x) =0.
sin 2¢p cos 2¢
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These equations can be brought to the standard complexGsiragsn form by a (nonlocal) change of
variables (which may be interpreted as a gauge chan@e ®)(@20)). Indeed, replacingby 6 via

2
0,0 = cos ¢8+X> 0_0 =cos’pd_x , (4.44)
cos 2¢

we get [19]:

‘ 2
smggp 0+00_6 + P sin 20 =0,
s® 2

0+0-¢ = co

° (4.45)
0+a_9 + - (84_@8_9 + 0_g00+9) = 0,
sin 2¢

which follow from the local CSG Lagrangian (2.7). If we repdeeq. [(4.44) by the transformation

Oy X d_0 = sin® wI_x, (4.46)

we get instead 0f (4.45) the equations that follow from thalem of (2.7) with T-dual target space
metric: ds?> = dyp? + cot? ¢ df?. Both the corresponding “dual” Lagrangian and its equatioh
motion are related, respectively, {o_(2.7) ahd (4.45) bytthasformation[(4.35). The fieldsin
(4.42) and) in (4.48) are related of course by the 2d duality transfoimmat

In general, the equations (4]130) found in the = 0 gauge do not follow from a local Lagrangian
for the field%,, (apart from then = 2, i.e. the SG case). In particular, this applies to the system
(4.43): one needs a nontrivial field redefinition (4.44) (e¥his consistent only on the equations of
motion fory) to get a Lagrangean systeim (4.45).

Such a non-local field redefinition may be interpreted asesponding to a change of ti#egauge.

A way to get a Lagrangean system of the reduced equationgiisttee / gauge not o (as was
done in [24] and above in this section) but gni.e. to solve the equations fot,. in terms of the
gauge-fixed;. We shall discuss this procedure in the next section.

5 Lagrangian of reduced theory: 5" = SO(n + 1)/50(n) model

As we have seen in secti@hthe reduced equations of motion of tR¢GG coset model are in general
gauge-equivalent to the equations of motion of theéf gwZW model with a specific integrable
potential. To get a Lagrangean formulation of the reducedr corresponding to the/G model
(or, equivalently, to the bosonic string d x F'/G in the conformal gauge) we may then start with
the associated’/ H gWZW model, fix anH-gauge ory € G and solve for the auxiliary gauge field
AL. This will produce a classically-equivalent integrablsteyn. Here we shall concentrate on the
example of the5™ sigma model.
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5.1 General structure of the reduced Lagrangian

In the case of'/G = S",i.e. G/H = SO(n)/SO(n — 1) we will end up with an integrable theory
represented by am{1)- dimensional sigma model with a potelﬁal

L = G(x) 0y 2™0_a" — p?U(x) . (5.1)

The special cases are the= 2 (2.8) andn = 3 (2.1) examples discussed above. Heteare the
n — 1 (= dim G — dim H) independent components gfeft over after thel/ gauge fixing ory.

In contrast to the metric of the usual geometric (or “righttysetSO(n)/SO(n — 1) = S*~!
the metricG,,,; in (5.1) found from the symmetrically gaugét/ H = % gWZW model will
generically have singularities and no non-abelian it

Following [42] we may call these geometries resulting froomformal sg(()ﬁ)n gWZW models
as “conformal cosets” or “conformal spheres”, with the tiom>""!. Instead ofR,.;, = ¢ G
for a standard sphere their mettit,, satisfiesR,., + 2V,,V,® = 0 where® is the corresponding
dilaton resulting from integrating out,. The explicit expressions fa¥,,,, were worked out for a few
low-dimensional cases:? [36], X3 [37,[38,40] and:* [44].

The potential (“tachyon”) term in_(5.1) originates dirgdilom thex? term in (3.14). Itis a relevant
(and integrable) perturbation of the gWZW model and thus afghe “reduced” geometry, so that it

should satisfy (see also [48])

1
VGe 22

Below we shall comment on details of the derivation of therioe&t,,,,. and write down explicitly the
reduced Lagrangian (5.1) for the new non-trivial cases ef4, 5, i.e. for the string oz, x S* and
R, x S%, which generalize the = 3 CSG model[(2.]7).

On(VGe 22 G\ U — MU = 0. (5.2)

The H gauge fixing ory and elimination of4, from the sg(()ﬁ)n gWZW Lagrangian[{3.14) can be
done by generalizing the discussion of the- 4 case in[[38]. The first step is the parametrisation of
g in terms of the generalized Euler angles. Let us define thardrpeter subgroups corresponding to

the SO(n + 1) generators?,,, 1, (m=0,1,...,n—1)
gm(8) = &', (Rn)] = (Rmiim)] = 50ms1s = Omibpss - (5.3)
ThenTy = T in (3.14) is equivalent to the generatB corresponding tqg,
T =Ry

and the generators of the subgratdp= SO(n — 1) which commutes witl{" containR,,, 1 ,,, with
m = 2,...,n— 1. Ageneric element off = SO(n) can be parametrized as

9= Gn-1(0n_1)...92(02)g1(01)h,

18The absence of the antisymmetii;,,,, coupling has to do with the symmetric gauging of the maximagdnal
subgroup.

1%While the gaugel.. = 0 preserves the explicKO(n — 1) invariance of the equations of motion, fixing the gauge on
g and integrating outl,, breaks all non-abelian symmetries (the corresponding stnies are then “hidden”).
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whereh belongs tol . A convenientd gauge choice is then [38]

9= Gn-1(0n-1)-.-92(02)g1(2¢) g2(02) - gr—1(On-1) , (5.4)

so thaty = i6,, andd, (p = 2,...,n — 1) aren — 1 coordinates on the coset space !, with ¢
playing a distinguished role.

With this choice of the parametrisation it turns out thatgbeentiall in (3.14),[5.1) has a universal
form for anydimensionn: it is simply proportional ta:os 2¢ as in the SGL(216) or CSG (2.7) cases.
Indeed, sincéT, gx] = 0 for k£ > 2, one finds

Tr(Tyg T g) = Tr(Tyg; ' T-g1) = 2cos 2 . (5.5)
The metric and the dilaton resulting from integrating owt thgauge fieldA4, satisf@
ds® = Gupdr™ds® = dp?® + g,y (0, 0)doPdo? VG e = (sin2¢)" 2, (5.6)

so that the equation (5.2) is indeed solve@by
Uz—%cos&p, M? = —4(n—1). (5.7)

Let us now make few remarks.

As was already mentioned, the reduced model (5.1) has nsyamtietric tensor coupling term.
The antisymmetic tensor contribution could originate @itthom the WZ term in the WZW action in
(3.15) or in the process of solving for the gauge figld It turns out that both contributions vanish if
the gauge conditio (5.4) is used. Details of the proof arergin the AppendiBl

The obvious “vacuum” configurations, i.e. extrema of theeptitl U aref, = const andy =
In, n=0,1,2,... The metricg,, (¢, #) in (5.8) may, however, be singular near such points, i.e the
may not be reachable in a given coordinate system and maagedkanalysis may be required.

One should keep in mind that the gWZW actidn (3.14) is the mgeneral and universal definition
of the theory, while special gauges and parametrizatiorysitage their drawbacks and may not apply
globally. For example, the elimination of the gauge fiefdsfrom (3.19) or the gWZW action (3.15)
requires solving the constraints in (3.20), i.4, = (¢7'A, g+ g '0,9)y andA_ = (gA_g~' +
g0_g~)y. The corresponding operatét — Ad,), is singular near some points(e.g.,g = 1)
implying that in their vicinity one should use a differentugge or do not directly solve fod.. .

For example, one may consider an asymmetrically gauged Wdei(see[(3.26)) correspond-
ing to a more general on-shell gau@e (3.25); in this case booeld use[(5.4) with the left-hand-side

20The dilaton field should be taken into account provided theleh@s defined on a curved 2d background and one
is interested in the Weyl invariance conditions (i.e. thé&ndgon of the conformal stress tensor) of the theory on the
“restricted”GG/ H part of configuration space obtained by eliminatingthgauge field[36, 45, 47]. In the present context
where we started with the string theory in the conformal gailgit would require a re-introduction of the 2d metric in
the reduced model; then the dilaton would couple to the matrthe standard way and would enter in the definition of
the stress tensor of the “restricted” sigma modell(5.1héf¢ is indeed a path integral transformation that leads fhe
original (super)coset model to the reduced model, therettterican be considered as a usual world-sheet theory a@uple
to a 2d metric (that will in general depend on moduli in theecashigher genus surfaces, etc.). The presence of the
potential term that “spontaneously” breaks the conformairmetry (which was fixed by making constant) is unrelated
to the dilaton coupling issue.

2 fix the overall normalisation constant in the WZW actiortfsata’k = 1.
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factorg,_1(0,,-1)...92(62) replaced byr(g,—1(6,,—1)-...g2(62)) whereT is the lift of the automorphism
in (3.25). However, in the case whérns simple (e.g., for th&'O(5)/S0O(4) coset) such an automor-
phism can always be representedréd) = h-'Ah, for someh, € H; therefore it can not be used
to remove the degeneracy of the operator in4hel _ part of the actioff

Finally, let us note that both the gauge fixing and the elitiirgaof A can be implemented at
the level of the Lax connection, leading to the Lax formuwatof the reduced model in terms of the
generalized Euler angles, i.e. ensuring the integratfithe reduced model (5.1).

Let us now turn to specific examples.

5.2 Examples of reduced Lagrangians forlS” models

Let us first show how to get the Lagrangian {2.7) of the CSG rhdidectly from the ggg; gWZW
model [3.1#). The equation fot, following from (3.15) reads:

A= (97019 +9 "Asg)y. (5.8)

In the ggg; gWZW case we have fromi(8.4) = g2(0)g1(2¢)g2(6) so that

(97'0:9)p = (14 cos20)Ry0,0,  O_gg~" = (1 — cos 2p) Ryd_0,
1 P 5.9
4, = Lreos2o (5.9

= 046
1 —cos2¢ *

One finds also

1
—§Tr(g_18+gg_18_g) = 2(1 + cos2p)0,00_6 + 40, pI_¢,

(1 + cos2¢p)?

Tr(A10-997") = =2 1 —cos2¢

9,606 . (5.10)

Using (5.5) one finally obtains the Lagrangian

~ 2
L = 0,00_¢ + cot? v 0,00_6 + % cos2p. (5.11)

This Lagrangian is dual to that in (2.7), i.e. the two areteglaby 2d duality) — 0. As was already
mentioned above, the CSG Lagrangianl(2.7) is directly abthif we start with the asymmetrically
(“axially”) gauged WZW model with-(A_) = ~A_H Alternatively, the two dual models are related
by the formal transformatiof (4.B5).

The explicit form of thex"~! metric [5.6) withn = 2, 3, 4 as found directly from the actioh (3114)
with (5.4) is thus
ds?_, = dy* ds?_; = dp® + cot® p db* (5.12)

22The nonsingular metrics known to arise in the SG and CSG @asedue to the fact that = 0 in the CS case and
h = U(1) in the CSG case. As we will see below, the nonsingular matrihé CSG case is obtained by utilizing the
automorphismr(A) = —A. This automorphism does not, however, apply to the case ohzabeliart).

Zn this case the parametrizatidn (5.4) takes the form7(g2)g192 = g2(—0)g1(2¢)g2(8).
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2

do
ds?_, = d* + cot® ¢ (dfy + tan 05 cot 0y df3)* 4 tan® ¢ — 239 : (5.13)
S1n” U9

After a change of variables: (= cos 0, cosfs, y = sin f3) we get the metric oix? [38]

cot? o dz? + tan? p dy?
2 _ y2 '
Thus in the case of = 4 (i.e. for the string onk; x S*) we find from [5.1#)[(5J7) that the reduced
theory is described by the following Lagrangian (€f.12.7))

(ds2)n:4 = dy* +

(5.14)

l—=x

cot?p 0px O_x +tan?p o,y O_y 2

L=0,00_¢+ e + 5 cos 2p . (5.15)
An equivalent form of the metric of3 (5.14) was found in[40]
db? 1+0 dv? 1-0 du?
ds®)p—y = — 5.16
(ds”)n=s 4(1 — b?) 4(1—b)v(v—u—2)+4(1+b)u(v—u—2)’ (-16)
as one can see by setting= cos2p, u = —2y?, v = 222 The metric-dilaton background for

¥4 (i.e. n = 5) case was obtained in similar coordinatésu, v, w) in [44]. Settingb = cos 2y,
w = cosa, v = cos (3 we get

du?

d2n— :d2 t 2
(ds”)nzs = dip” + tan” (cos B — u)(u — cos )

do? dp?

4(u — cos ) * 4(cos 8 — u) (®.17)

+ cot? ¢ (cos 3 — cos @)

Together with theos 2¢ potential [5.7) this metric thus defines the reduced modehf®string on
Rt X 55.

5.3 Reduced model for a bosonic string iMlAdS,, x S™

One can similarly find the reduced Lagrangians forkhé& = AdS, = SO(2,n—1)/SO(1,n —1)
coset sigma models related to the above ones by an analytimoation. These reduced models
describe strings inldsS, x S! spaces in the conformal gauge with the residual confornmahsgtry
fixed, e.g., by choosing th&' anglea equal tour (cf. (2.15)).

As was already discussed at the end of se@idhe reduced model for strings ohiS,, x S™ can
then be obtained by simply combining the reduced modeldfimgs onAdS,, x S* and onR x s

For example, in the case of a string.ihlS, x S? we then find the sum of the sine-Gordon and
sinh-Gordon Lagrangians (cf_(2.6),(2.13))

2

L =08,00_0+0,¢0_¢+ %(COS 2¢ — cosh 2¢) . (5.18)

24Note that this isiotthe same as the reduced theory for the coset sigma modelith= AdS,, x S™ = [SO(2,n—
1)/S0(1,n — 1)] x [SO(n + 1)/SO(n)]: in the latter case we would set, followirg [14], the computseof thetotal
stress tensor to be equal to a constant, while friagin AdS,, x S™ the total stress tensor should vanish. The reduced
theory for coset sigma modél/G = AdS,, x S™ case is of course formally equivalent to the reduced themrg &tring
on AdS,, x S™ x S1.
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For a string inAdS; x S we get (cf. [2.7))

~ 2
L = 0,00_p +tan?p 0,00_0 + 0, ¢0_¢ + tanh® ¢ 0, xO_x + %(COS 2¢ — cosh2¢) . (5.19)

Similar bosonic actions are then found for a stringlifiS, x S* and inAdS; x S°: one is to “double”

(5.15) and its analog correspondingffo (5 A%).

Note that while theros 2¢ potential is a relevant perturbation of the coset CFT in thapgactS”
case, thecosh 2¢ is an irrelevant perturbation of the corresponding cosél ©Rhe AdS,, case (the
sign of the mass term in_(8.7) is opposite). We expect thahénsuperstringldSs x S° case the
fermionic contributions will make the whole theory UV finitee. the coefficient in the potential will
not run with scale and thus it can be considered like it is @ty marginal perurbation (the value
of u is arbitrary). This is what happens in thelS, x S? where the reduced theory is equivalent to
the (2,2) supersymmetric sine-gordon theory.

Expanding[(5.18) neay = ¢ = 0 we get two massive fluctuation modes. Doing similar expansio
near the trivial vacuum in the case bf (5.19) it may seem thbttwo modes ¢ and¢) get masses,
but, in fact,all 2+2 bosonic modes become massive. Indeed, as is clear feoforth of kinetic terms
in (6.19), the expansion near the point where all angles erre iz singular. This is like expanding
nearr = 0, ¢ = 0 on the discds? = dr? + r?dy?; instead, one is first to do a transformation
to “cartesian” coordinates and then expand. Sipcand ¢ play the role of the “radial” directions
in the 2+2 dimensional spﬁetheir “72(008 2¢ — cosh 2¢) potential gives mass to all 4 “cartesian”
fluctuations. In the CSG case this is the transformationgthtst the Lagrangiai (2.7) into the familiar
form L = 1 &x02-v" SO — 2o wherey) = sin g e,

The analogous conclusion should be true also in the gerels] x S™ case withn > 3 though
there a direct demonstration of this in the gauge whéreare solved for is complicated by the
degeneracy of the metrig,, in (5.6). As we have already seen in (4.32).(4.30), in§hease all the
(n— 1) fluctuation modes near the trivial vacuum get magfsve start with the classical equations of
the reduced theory inthé, = A_ = 0 gauge. Since the mass spectrum should be gauge-invariant,
the same should be true also in other gauges/parametnigatio

Thus in theAdSs x S° case we should get 4+4 massive bosonic modes. Similar aolwill be
reached for the fermionic fields discussed in the next se¢tee[(6.54)): all 8 dynamical fermionic
modes will also have mags The “free” spectrum will thus be the same as in the “plangeiéimit
of [[7].

6 Pohlmeyer reduction of theAdS; x S° superstring model

The AdSs x S° superstring can be described in terms of the Green-Schwesion of the L5022

SO(1,4)x SO(5)
(or, equwalently,%) coset sigma model [2]. In the conformal gauge its bosonitipdahe

25A “mnemonic” rule to get, e.g., thdds,, counterparts of™ Lagrangians in(2]7L(5.15) is to change— i¢ and to
change the overall sign of the Lagrangian.

26Recall also that they are related to the Lagrange multipfierthe embedding coordinates discussed in se@ism
we are then expanding near a point where the two Lagrangéptiers have constant “vacuum” values.
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direct sum of theddSs andS® sigma models. Below we shall apply the idea of the Pohimesdua-
tion to the whole action including the fermions. The impattaew element will be the-symmetry
gauge fixing, reducing the number of the fermionic degreeeafdom to the same 8 (or 16 real
Grassmann components) as of the bosonic ones after theosadfithe conformal gauge constraint.

We shall derive the corresponding reduced Lagrangian thaérmlizes the bosonic Lagrangian
discussed in sectiddabove. We shall find that it is invariant under the 2d Lorelymmetr

Later in sectiofilwe will also consider a simpletdS, x S? model which is described by a similar
action for theg s 20102 f[{(i;‘é)Q coset. In this case the reduced Lagrangian happens to béaimvander
theN = 2 (i.e. ( 2)) 2 supersymmetry, and is the same a$\the 2 supersymmetric sine-Gordon

Lagrangian.

6.1 Equations of motion in terms of currents in conformal gawe

Let us start with some relevant definitions and notation. Oieesuperalgebrasi(2m|2m; C) can be
identified with the quotient ofl(2m|2m; C) by the central subalgebra of elements proportional to the
unit matrix (which belongs tel(2m|2m; C) since its supertrace vanishes). We are interested in Its rea
form psu(m, m|2m) which is defined by the conditioh/* = — M, where* is an appropriate antilin-
ear anti-automorphism. This superalgebra correspondethié supergrou;ﬁ = PSU(m,m|2m).

We shall consider the superalgeﬁra psu(m,m|2m) with m = 2 or m = 1 which admits a7,
grading [57@

~

f= ?069f169f269f3, [ﬁ,%] C/](\i-i-jmodél : (6.1)

In this matrix realisation one also haglfm} C E+m+2mod4, where{A, B} = AB + BA. [ For
details see Appendil
The left-invariant currenf =19, f, f € F can then be decomposed as

Ja:f_lﬁaf:Aa‘i‘Qla—'—Pa—'—Qza, .AE/](\(), Q1 E/f\l, PE%, QQ E/f\g. (62)

Here A corresponds to the algebra of the subgréugefining theﬁ/G coset (i.e.G = Sp(2,2) x
Sp(4) isomorphic taSO(1,4) x SO(5) inthe AdSs x S° case),P is the bosonic “coset” component,
andQ@q, ), are the fermionic (odd) currents.

Using thisZ, split the Lagrangian density of th&dSs x S° GS superstring|2] can be written as
follows [57,/58] 3| 5@

1
Lag = 3 STr(y"bPan + €abQ1aQ2b) ) (6.3)

wherey® = /—gg®. Written in terms of currents this coset action has bosonimg symmetry
with fy-valued gauge parameter. In addition to the reparametisatt is also invariant under the

2T This is similar to what happened in the expansion neaisthgeodesic to quadratic order (i.e. plane-wave limit) in
the light-cone gaugé[7], but here the action contains #draction terms, i.e. is no longer truncated at the quadiatel.

28|t appears that all the steps of the reduction proceduresésd below are formally valid for any valueref

Note that for A, B representing elements @fsu(m, m|2m) their symmetrized commutataf A, B} belongs to
u(m, m|2m) but not necessarily tpsu(m, m|2m).

30Here the overall sign is consistent with having physicahsifpr the bosoniddS; andS® Lagrangians.
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local fermionick-symmetry[[2| 60, 61]

“ 1 i i a
OxJa = Ou€ + [Jas €], (0:7)™ = ESTT (W (kg ), Q%)) + [k, Q5)]))
€ =€ + € = {P(+)a, Z]C(ll(_)} + {P(_)a, Zl{?g(+)} y

(6.4)

wherél k1—y andky () take values in the degréeand degre8 subspaces af(m, m|2m) respectively
(itis assumed thatl = ko) = 0). W =diag(1,...,1,—1,...,—1) is the parity automorphism
(see Appendii), and the(+) components are defined as:

Vi) =500 Fe)Wo. (6.5)

N | =

A detailed discussion of the-invariance can be found in the Appenfk

In what follows we shall assume tleenformal gaugeonditiony® = n?. Then (using the stan-
dard light-cone worldsheet coordinaigs, o) the only nonvanishing components of the metric are
vt~ =~~T =1whilee™™ = —¢~" = 1. For any vectoi/, one then has

Vv(—l-)—ﬁ- =V, ‘/(—l-)— =0, Vv(—)—i— =0, ‘/(—)— =V_. (66)

In the conformal gauge the Lagrangian{6.3)

1
Lgs = STr[Py P + B (Q14Q2- — Q1-Q24)] (6.7)
leads to the following equations of motian [3]

O+ P+ [Ay, P+ [Q24,@2-] =0
O-Pp +[A_, Py]+[Q1-,Q14] =0, (6.8)
[Py, Q1] =0, [P, Qa24] = 0.

Formulated in terms of the current components= A, + Py + Q1+ + Q2+, they should be supple-
mented by the Maurer-Cartan equation

8_J+—8+J_+[J_,J+] :0 (69)
In addition, one needs to take into account the conformaljg#&uirasoro) constraints
STr(P,P,) =0, STr(P_P.) =0. (6.10)

Our aim below is to perform the Pohimeyer-type reductiorhefabove systen (6.8)—(6110). The
bosonic part of the model is identical to that of m;ea sigma model where the bosonic grokipC F

hasfo & f2 as its Lie algebra an@ has Lie algebrao In thepsu(2 2|4) case of our mteresﬁ) & f2
is isomorphic tosu(2, 2) @ su(4) or so(2,4) ® so(6) while %o is isomorphic tosp(2,2) @ sp(4) o
so(1,4)®so(5) (in thepsu(1,1|2) casefo B f. = su(1,1)®su(2) andfo = sp(1, 1) B sp(2)). Because

3INote that the definition of in (6.4) involves the symmetrized commutator so that théegtmn fromu(m, m|2m)
to psu(m, m|2m) is assumed.

27



of the direct sum structure of the algebras one is allowedstothe reduction gauge separately for
each sector, just like in the purely bosonic case.

Performing the reduction, requires, besides partiallyngdiheG-gauge symmetry, to fix also the
rk-symmetry gauge. As we shall discuss below, this can be asthim two steps. First, we shall
impose the partiak-symmetry gauge conditiBh

Q- =0, Q2+ =0, (6.11)

and then apply the same procedure as in the case of the Pahineduction in the bosoniédsS,, x S™
case. The resulting reduced system will be still invariarder a residuak-symmetry which can be
fixed by an additional gauge condition. That will finally make number of the fermionic degrees
of freedom the same as the number of the physical bosoniedegf freedom (as in the familiar
examples of the light-cone gauge-fixed superstring in thiesflace or in the pp-wave space).

It will turn out that the resulting system of reduced equadiof motion (that originate in particular
from the Maurer-Cartan equations and thus are first ordeerivatives) will follow from a local
Lagrangian containing onlfirst derivatives of the fermionic fields. The bosonic part of teduced
Lagrangian will coincide with the gauged WZW Lagrangianhilie same potential as in the bosonic
model discussed in sectifh

The possibility to make the gauge choice (6.11) can be neaditified as in the flat-space case by
using an explicit coordinate parametrization of the cusgene. by solving first the Maurer-Cartan
equations[(6]9). Here we would like to use a different loggating all equations for the currents on
an equal footing. Then one way of demonstrating that theirequ-symmetry gauge choices are
allowed will rely on using the consequences of the reduagimge in the bosonic part of the model.
For that technical reason below we shall discuss the remtuatid the:-symmetry gauges in parallel.

6.2 Reduction gauge and-symmetry gauge

As a first step we shall define a decomposiﬁpﬁ: a @ n wherea is the subspace of elements of the
form a,T" + a,T? such thafl* andT? are represented by matrices with nonvanishing upper lefft an
lower right blocks only (i.eT" is in su(2,2) andT? is in su(4) parts ofpsu(2,2|4)). More precisely,
we shall choose

Tl = %diag(t, 0, 1= %diag(o,t) , (6.12)
where
psu(2,2|4) case: t = diag(1,1,—1,-1), psu(1,1|2) case: t = diag(1l,—1). (6.13)

Let us also introduce the matrix

T=T'+T7, (6.14)

which will play an important role in what follows. It inducéise decomposition
f=flef, def, x'ef, (6.15)
Pligh=¢l, Plx*=o0,  Pl=—[1[T,]]. (6.16)

32This choice was suggested by R. Roiban, see alSo [21].
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This decomposition can also be written with the help of thaqator toﬁl EB% given by
PJ_XJ_ = XJ_7 PJ_C” = 07 PJ_ = _{T7 {T7 : }} : (617)

Let us note that any € fll can be written ag = [T, )] (andx € f+ can be written ag = {7, v}).
In particular,[T", {T',¢}] = {T, [T, ]} = 0 for any¢ € f. Moreover,STr(¢/x*) = 0 for any( el
andy' € §+, i.e. this is an orthogonal decomposition.

The decompositioﬁ = 9' @?i generalizes the bosonic decomposition|(4.1) to the supelred
case. In particular, in the bosonic sector one can easilyertrekfollowing identification&?

a=Tfs, n=fh, b=TF, m=F, (6.18)
while the commutation relations (4.2) follow from tlg-grading and the following properti@:
% = PR (% i Kt L (AN 1 Kt (6.19)
The first two properties are obvious, while checking thedastrequires using the following identities
{A,[B,CT} ={[A, B],C} + [A{B,C}],  {A,{B,C}} =[[A B],C]+{B,{4,C}}. (6.20)

Let us now turn to the gauge symmetry. Because the gaugerafge'ma direct sum of the subalge-
bras represented by upper-left and lower-right nonvangshiock matrices the gauge transformations
are independent. It follows that by applying the polar degosition theorem in each sector indepen-
dently one can patrtially fix thg gauge symmetry in order to pét. into the form

Py =p T+ pT? (6.21)

wherep;, p, are some real functions. Indeed, the components of the gmrgeeter taking values in
the upper-left and lower-right diagonal blocks are indejg so that we can apply the same logic as
in the bosonic case in sectidnl to each block separately. The Virasoro constréihit(P, P,) = 0

in (6.10) then impliep? — p2 = 0, so that, e.gp; = p» = p, and thus

P, =p. T, T=T"+17. (6.22)

Applying the polar decomposition theorem® and using the second Virasoro constrain{in (6.10)
one finds that”_ can be represented as follows

P_=p_g'Ty, (6.23)

wherep_ is a real function ang is aG-valued function (recall that is the Lie subgroup correspond-
ing to the Lie subalgebrgy C f, i.e. Sp(2,2) x Sp(4) inthe PSU(2,2|4) case). In what follows we
shall assume that the functiops andp_ do not have zeroes.

33_et us note that one can not define analogous decompositiennrs of7;. for the SO(n)/SO(n — 1) coset in the
standard representation used in Sedflms 7', in this representation do not induce the decompositionttef. explicit

form (4.25)).

34These can be considered as defining an additigaajrading on? with ?L and/ﬂ‘ being, respectively, the degrée
and degreé subspaces.
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Now we are ready to argue that using theymmetry [[6.4) one can choose the galge (6.11), i.e.

Q- = Q. = 0, provided the fermionic equations of motion as well as thed6ro constraints
are satisfied. This basically follows from the fact that ie fleuge wheré’, = p,T' the equation
[P,,Q:_] = 0 implies thatQ,_ takes values i like the parametet; = i{P,,k;_} so that this

gauge invariance can be used to Qut to zero; an analogous argument can then be give@far A
complication is that the-transformation[(6J4) does not in general preserve botkhahérmal gauge
and the reduction gauge and that makes the precise arguroeaimaolved. A detailed proof of the
possibility to fix (6.11) taking all this into account is given AppendiXDl

In the gaug&),_ = Q,, = 0 the equations of motion (6.8) become

8+P_+[A+,P_]:O, 3_P+—|—[A_,P+]:0, (624)

while the Maurer-Cartan equatidn (6.9) splits into

Op A — O AL +[AL AT+ [P+, L+ (@14, Q-] =0
0-Qry + A, Quy] — [P, Q2] =0, (6.25)
0+Qa— + [.A+, Q2 | =[P, @Q1+] =0

In the reduction gauge whefe = p, T'andP_ = p_g~'Tg the second equatiagh P, +[A_, P,| =

0 in (6.24) and the fact thatl _ is block-diagonal imply that the same is true for the upeérilock
projectiond_ P} +[AL, Pi] = 0. The latter implie$_Tr, (P, P, ) = 0 and thus als®_Tr, (P, P, ) =
0, whereTr; andTr, are, respectively, the traces in the upper-left and theroigat diagonal blocks
(in this notationrSTr = Tr; — Try). SinceTr;7? # 0 this leads t@_p, = 0. As in the bosonic case,
using an appropriate conformal transformatioh — o' (c%) one can then set, equal to some
real constant.. Following the bosonic construction one then observesthigatirst equation in(6.24)
leads to0, Tr(P_P_) = 0. The conformal symmetry~ — o'~ (0~) allows one to sep_ = pu.
Thus finally we get

P,.=uT, P.= ug'Ty, [ = const , (6.26)

which is the direct counterpart of the reduction gauge inkhsonic case (cf.[(4.12).(4]14)). Note
that in terms of the notation used in the bosonic case hereawe h

T,=T_ =T . (6.27)

Let us recall that the variablgbelongs toG, i.e to the subgroup whose Lie algebraiA(jsThere is a
natural arbitrariness in the choice @gince P_ is invariant under — hg if h is taking values in the
subgroup of elements commuting with This description thus has an additional gauge symmetry
which we shall use later.

By analogy with the bosonic case in addition to the decomi@fﬂs?z = a @& n we make use of
the decompositiof, = m @ h whereb is the centralizer of in f, (recall thata is the subspace of
elements of the form, 7" + a2T2). In the present case it is useful to identify= fo andm = A”

|n the case of our interest, i.p= psu(2,2|4), the algebra is [su(2) @ su(2)] ® [su(2) @ su(2)], i.e. is isomorphic
to so(4) @ so(4).
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so that the required decomposition of the entire superadgsbnduced by a single eleménhitas was
observed in[(6.18). Accordingly, we split

A= (A + (A, Ao =A-+ (A )m, A-=(A)peb. (6.28)

The second equation if_(6]24) then implie$_ )., = 0 while the first one can be solved fot, as
follows
AL =g'0,9+9'Ag, (6.29)

whereA, is a new field taking values i.

In this way we have constructed a new parametrisation ofyeem in the reduction gauge: all
the bosonic currents are now expressed in terms otHvalued fieldg, h-valued fieldA., and in
addition we have the fermionic currertls., , Q»_. The equationg(6.25) then take the form:

(971019 +9 " Arg) — 04 A +[A_, g7 019+ g " Ayl (6.30)
= - uz[g_ngvT] + [Ql—i—v QQ—] 3
0_Qiy + [A_, Q4] =p[T, Q2]
01Qoe +[97'049+ 9 ' Avg, Qo] =plg™ ' Tg, Q4] .

These equations are invariant under the followiig< H gauge symmetryH is the group whose
algebra igy):

(6.31)

g—hTlgh, A, —h"Ah+h7'0.h, A —h'A_h+h'OCh, (6.32)
Qiy — h'Qush, Q2— — h™'Qah. (6.33)

Let us note that this symmetry is large enough to choose thgayd, = A_ = 0. This can be shown
by a simplified version of the argument given in Apperiixin particular, there is also a choice of a
partial gauge in whiclkd, andA_ are components of a flat connection, if¢._ = 0.

The equationg (6.30),(6.81) admit a Lax representatiorreber, they can be derived from a local
Lagrangian provided one uses the following parametrisaifdhe fermionic currents in terms of the
new fermionic variables;, ¢ via Q1+ = ¢7'(0+q1 + [A+,q1])g, Qa— = 0_q2 + [A_, ¢], and
imposes the appropriate gauge conditiondn This gauge condition is analogous to the constraints
(3.20) in the purely bosonic case. However, the resultingrhmgean system is not completely sat-
isfactory, in particular, it contains second (instead afalgirst) derivatives of the fermions and thus
will not be discussed below.

6.3 Gauge-fixing residuals-symmetry

Besides the gauge symmetfy (6.32).(6.33), the equatiaB§)(f.31) are also invariant under the
residuals-symmetry which can be used to eliminate some parts of timeiéeic currents. To identify
this symmetry let us first introduce the new fermionic vaeald), ., Q;_ — ¥y, Us:

Uy = Qy, Uy =gQa-g " . (6.34)
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The equations of motiof (6.80),(6]31) then take the form

O_(97'0rg+9 ALg) — 04 A +[A_,g 019+ g Ayg] (6.35)
= — 129" Tg,T) — g7 Wag, V1],
D_Wy = p[T, g " Wag], D Wy = p[T, g¥g7"], Dy =0s+[As, ]. (6.36)
Projecting the fermionic equatioriE(El%)?fo@ % gives
D_(V)* =0, Dy (Uy)t=0. (6.37)

Let us choose the gauge where (cf. the remark made below))6.33
A, =A_ =0. (6.38)

Then the solution of(6.37) has the forfilr; )~ = v (o) and (Vo) = 1he(07).
Let us now describe the residual fermionic symmetry of theatiqns [6.36).(6.36). Under the
infinitesimal transformation

VU, — VU +¢;, Uy — Wy +e9, g—g+gh, (6.39)

with ; € ?1, g9 € ?3, andh € ?0 these equations are invariant provided

0-04h + (97019, h] — p?[lg™ Tg, h], T]
+ [g_l\I/2g7€1] + [9_15297 \Ill] + [[9_1\11297 h]7 \Ill] = 07 (640)

D_ey=p[T,g ' eag + [g7"Wag,h]],  Diea=p[T,ge1g”" + glh, U1]g~]. (6.41)

Projecting the fermionic equations phone finds thab_s;- = 0 andd, e+ = 0, implyingei=c+ (o)
andey = £5(07). Let us consider then the projection of the fermionic eqllmion’ﬂ' EB/ﬂl together
with the bosonic equatiof (6.40) as a system of equatiora%,@ﬁ, hwith e1-(oF) andey (07) treated
as given functions (note that their derivatives do not etitese equations). This system of partial
differential equations is not overdetermined and is lineaderivatives so that it has a solution for
anyei (o) andey (07), thus giving a symmetry transformation of the equatién396(6.36). The
symmetry parameters- ande; can, in fact, be identified as parameters of the residtsimmetry
in (6.4) aép

et = 0.{uT, ik}, ey = 0_{uT ighsg "}, (6.42)
while the additional terms are needed to maintain the gaoigéittons we have chosen. Finally, using
©.37), i.e.0_¥{ = 0 andd, ¥y = 0 one concludes thak;, U5 can be put to zero by the residual
r-transformations. In what follows we shall thus assume theyg where

U =0y =0. (6.43)

The remaining fermionic degrees of freedom can be parareetas follows

1 1
v, =—ul v,=—ul (6.44)
N N
36Note that in the gaugé(6.111) the residuadymmetry is determined by, k. satisfyingd_k,_ = 0 andd kqy +
l9710+9,k2+] = 0.
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taking values inh! and hﬂ respectively (sed (6.16),(6117)). As we shall see belowatiditional
factoru‘% in (6.44) will simplify the structure of the 2d Lorentz invant Lagrangian description of
the resulting system (cf[ {6.26)). The gauge transformatiaf the new fermionic variables read as
follows

U, —h ' _h, U, —h W, h. (6.45)
The equations of motiofn (6.85),(6136) written in the galé3) are
O (97'0,g+97"Avg) =0, A +[A_ g7 01 g +g Ayl (6.46)
= - /~L2[g_1TgvT] - M[g_I\IILgv \IIR] )
[T,D_W,] = —ulg~ ¥, g), [T,D40,] = —pu(g¥,g~ ") (6.47)

These equations and the gauge symmetries|(d.32),(6.4Bedefreducedsystem of equations of
motion for the superstring 0AdS; x S® (or on AdS, x S?).

The new dynamical field variablgs ¥, , U, and A, , A_ are components of the currents, i.e. they
are non-locally related to the origindllSs; x S° sigma model fields (coordinates on the supercoset).
Note also that the bosonic equations are second-order thigifeermionic equations are first-order in
derivatives, as it should be for a standard 2d boson-ferisystem.

Finally, let us mention that one can see explicitly that thduced systeni (6.46) and (6.47) is
integrable. The corresponding Lax pair encoding the eqnaff6.46) and (6.47) is

Lo=0_+A + 0" /ug™ "W, g+ 2ug™' Ty,

6.48
Ly=0,+g'0,9+9g "Arg+0/pV, + CuT. ( )

To show that the compatibility condition€_, £.] = 0 imply the equations of motion[(6.46) and
(6.47) one needs to ude (6116),(6.44), i.e. fiiafl’, ¥, || = -V, ..

6.4 Reduced Lagrangian: 2d Lorentz symmetry, massive spacim
and possible 2d supersymmetry

Remarkably, it turns out that the equations of motion (647 [6.46) follow from the following
local Lagrangian:

Liot = Lgwzw + p° STr(g7'T'gT)
+AST (W, [T, Dy, ] + U, [T,D_U,]) + uSTr (¢, g¥,) , (6.49)
whereL,wzw represents th&'/ H gWwzZW model [3.15) withi

G Sp(2,2) Sp(4)
H ™~ SUR) xSU@) "~ SU@2) x SU@)

3"Here Lywzw is given by [3.IB) withTr replaced by the-STr. The minus sign is needed to compensate for the
definition of the supertrace which includes t#& sector with a minus sign (the use of supertrace in the firstawsonic
terms means of course just the sum of the reduced modelsdotdl; and theS® parts). The corresponding reduced
actionSy; = [ ‘f—: L, is real (as can be seen by applying the conjugatidefined in Appendix C to the expression
under the trace).
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Note L,,; is explicitly H gauge-invariant undef_(6.32),(6145) with= LB The dimension of the
bosonic target space here is the same as the dimension Gf/ tHecoset, i.e. 4+4=8. The fermionic
fields contain 8+8 independent real Grassmann componesgsr{ding 8 dynamical degrees of free-
dom).

The variations ovey and V', , ¥, indeed lead to[(6.46).(6.47). Thus in order to show that the
reduced model (6.46)),(6.47) is described by (6.49) onedeionstrate that the constraint equations
that arise from varying this action with respect4q represent an admissible gauge condition for the
equations of motiofl] These constraints read as

~ ~ _ _ 1
Ay = (A4, Ay =g l0ig+9 Ay - 3 [T, 9,],¥,], (6.50)

Ao=(Al)y, A =gd gl +gA g -1, 0,],0,]. (6.51)

N | =

In the AppendixE] we show that they can be satisfied by an appropriate on-shefjegtransforma-
tion. Note that once these constraints are satisfied thenali@§y x H “on-shell” gauge symmetry
(6.32),[6.45) of the equations of motion having independeand i parameters reduces to tiig
gauge symmetry with = A which is the “off-shell” gauge symmetry of the Lagrangim

Let us now discuss several properties of this reduced action

The Lagrangian(6.49) is formulated in terms of the leftaiiant /' current variables (cf. {6.26),
(6.44)) that are “blind” to the originat’ = PSU(2, 2|4) symmetry. Note that since the original coset
F/G = PSU(2,2[4)/[Sp(2,2) x Sp(4)] has the purelyposonicfactor G, the reduced actiofi (6.49)
has only thebosonicglobal and gauge symmetries, i.e. it has no target-spacasupmetry (but
may have 2d supersymmetry, see below).

It is interesting to notice that the Lagrangian (6.49) candveritten as

~

1
Liot = Lgwzw + Ladd Lygqa = STr |PLP_ + 3 (Q14Q2— — Q1-Q24) | - (6.52)

HereEgWZW is theG/H bosonic gWZW Lagrangian supplemented with the “free” femit¢ terms
STy (U, [T, D9, ]+ ¥, [T,D_V,]) while L,q, stands for the sum of the remainipgdependent
terms in [6.4D). Here we restored the original notationstier current components, i.e. used that
P, = uT, P_ = ng='Tg (seel(6.26)), thah,, = Q,_ = 0 due to thex-symmetry gauge condi-
tion (611), and tha®),, = ¥, Q> = ¢~ ' ¥, g in (634). Remarkablyl .., = p? STr(¢'TgT) +
puSTr (g-'W, g ,) is thus nothing but the original superstring Lagrangladl(@ewritten in terms

of the new variableg, ¥, U, . At the same time, the equations following fr@QWZW encode the
Maurer-Cartan equations (6]25) for thecurrents. It is then clear that once the conformal gauge
(Virasoro) constraints are imposeld,; describes, at least at the level of the corresponding empsati

38As was already mentioned above, our reduction procedunesity applies and leads to the Lagrangian (.49) if one
starts with anysu(m, m|2m); in particular, then = 1 case corresponds td.S, x S? superstring model.

39Note that in theddS, x S? case the subalgebhas empty and so this step is trivial.

40 More generally, similarly to the purely bosonic case, one cansider an asymmetric gauge determined by an
automorphismy of h preserving the supertrace. In this case the residual gaagsformations arg — h~1g7(h),
U, — 7(h~1) ¥, 7(h) with transformations of the remaining variables unchangée Lagrangian of the asymmetrically
gauged model is given by (649) with_ in A_ g='d,g — g 1A, gA_ terms in [3.Ib) replaced with(A_).
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of motion and up to the various gauge transformations anddittie values of the conserved quanti-
ties in terms ofu, the same field configurations as the original superstriggnaimodel Lagrangian
(€.3),[6.7). An interesting question is whether one canlémgnt a similar argument ‘off-shell” or
even at the quantum level in terms of path-integral tramsétion<*d

Despite the fact that the 2d Lorentz invariance may appebe toroken by various gauge choices
made above and that, and ¥, originated from the 2d vector components of the fermionicents
(cf. (6.34),(6.4%)) it is remarkable that it is still pod&itbo assign the fermions thgO(1, 1) Lorentz
transformation rules of the components of the left and rRhtMajorana-Weyl spinors. Then the
Lagrangian[(6.49) becomes invariant under the standard2ehtz symmetry

ot - Aot, o = Alo, U, — A2, U, — AV (6.53)

with ¢ and A, having the usual scalar and vector transformation laws.o€ing a parametrisation
for the matrix variable¥, and ¥, which satisfy the “parallel” constraint in(6.44).(6/#6pne can
put the fermion kinetic terms il (6.49) into the familiarfor), 0, ¢, + ¥,0_1, + ....

As in the case of the bosonic reduced theory the classicdboual invariance of the original
superstring sigma model in the conformal gauge is brokermby:tdependent interaction terms in
(6.49): the residual conformal diffeomorphism symmetngswaed (cf.[(6.26)) to perform the reduc-
tion procedure. This breaking is “spontaneous” being dubégresence of the “background field”
T =T, =T_. Thisis similar to what happened in the light-cone gaugdégiane-wave model|[7]
where the mass terms (proportional to the light-cone moumenite. appearing from thex™ terms)
were spontaneously breaking the classical conformaliawee of the original sigma model action.

Again as in the bosonic case discussed in se@jdhe form of the reduced Lagrangian expressed
in terms of only “physical” bosonic and fermionic fields mag found by imposing arlf gauge
fixing condition ong and then integrating out thH gauge field componentd... This leads to a
sigma-model with 4+4 dimensional bosonic part|5.1) supgleted by the fermionic terms, with the
following general structure (cf[_(8.1))

L= G(2)0y20_x — p*U(2) + 9, Ditb, + 1, Dty + F(2)0, 0, 0 tby, + 2uH (2)ih, ), . (6.54)

Here z stands for 8 real bosonic fields in_(b.1) (i.e. for the indejmm variables in gauge-fixed

g which parametrizeé7/H) and, , v, — for 8+8 independent real Grassmann fields which are the
components of the matriceB,, ¥,,. The quartic fermionic term originates from tie, terms in
(6.49) upon integrating outly (D4 in (6.54) are the standarc-dependent covariant derivatives).
As discussed below, the structure [of (6.49) looks very sinmi that of the supersymmetric gWzwW

41A natural idea is to start with the original superstring sigmodel path integral in the conformal gauge (i.e. with
the delta-function insertions 7., )§(7-_)), fix the xk-symmetry gauge and change variables from coset coorditate
PSU(2,2/4) currents. ThefgWZW term in the path integral action may then appear due to tliagh of variables. This
procedure can work only if the original path integral repres a 2d conformal theory: in the reduction procedure wd use
the residual conformal symmetry.

42The “parallel” subspace is formed by anti-diagonal magsgth fermionic2 x 2 blocks.
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model modified by the bosonic potential and the fermionick&wa” terms, and so the presence of
the quartic fermionic terms i (6.54) may be interpretedeiecting the curvature of the target space.

Let us now discuss the vacuum structure and the corresppmdass spectrum of the reduced
model [6.49). Sincél’, H] = 0 the obvious vacuum solution of the equations of motion (5(8617)
for (6.49) corresponds t@being any constant elemehf of H, i.e.

gvac = h(] = ConSt ) (A+)Vac = (A_)Vac = 0 Y (\:[IL>vac = (WR>vac = 0 Y (6'55)

i.e. the space of vacua is equivalentfo= [SU(2)]*. By a globalH transformation we can always
sethy = 1, i.e. the mass spectrum should not dependh@nExpanding the equations of motion
(6.46),[6.47) neay = 1, i.e. ¢ = 1 + v + ..., and projecting to the algebra &f and its complement

in g we find a massive equation fore m = f (i.e. v = [[T,v], T, see[(6.16)) as well a&, _ = 0P
That all bosonic coset directions get maswas mentioned already in section 5.3 and follows also
directly from the equations of motionin tbe, = A_ = 0 on-shell gauge in the parametrization used
in (4.30),(4.32). The linearized bosonic and fermionicattpns are thus

0.0_v+p*v = 0, (6.56)
[T,0-0,]+p¥, =0, [T,0,0,]4p¥,=0 — 0,0-V, , +4°V, =0, (6.57)

where we used that’, [T, ¥, ]| = -V, , (seel(6.16).(6.44)). The 8+8 independent real Grassmann
components of the fermionic matrix fields thus represent 8sma 2d Majorana fermions having the
same masg as the bosonic modes. The corresponding fermionic Lagaarigithen

¢La+1/}L + 1/)38—1/)3 - 2:[“/)L¢R + .. )

where the mass term originates from the last “Yukawa” terf&id9),(6.54f4

The small-fluctuation spectrum we get is thus formally theesas in the plane-wave limitl[7].
In contrast to the case of the origindliS; x S° superstring expanded near tHe geodesic in the
light-cone gauge where one scatters “magnons” which ardl fionztuations of the superstring co-
ordinates and the remaining symmetry #35U(2|2)]? [11, [10], here we scatter the fluctuations of
the current components which are invariants of the origsog@ergroup”SU(2,2/4). The manifest
global symmetry of the S-matrix corresponding[to (6.49)ie vacuum((6.55) appears to be just the
bosonicH = [SU(2)]* one

Indeed, while the Lagrangiah (6154) obtained by integcatint theH gauge fields does not have
manifest non-abelian global symmetry, it is natural to expieat the tree-level S-matrix for scattering

4equivalently, expanding the actidn (6149) to quadratieoid fluctuations thel . A_ term will cancel while the term
linearin Ay, A_ will project v to the coset path of the algebra.

4This and other points discussed in this section can beriltest on theddS, x S? example discussed in the next
section (see, e.g[.(7116) below where one is to expandmneap = 0).

41f we start with the closed string picture with the sigma miadigfined on a cylinde? x S we need to take the
u — oo limit (which “decompactifies” the spatial world sheet ditiea) to define the scattering matrix. An interesting
question then is how to generalize tiedativisic (cf. [11]) S-matrix for the CSG model [55] to the full reducexddel for
AdS5 x S° .
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of the massive excitations near the vaculum (6.55) can baagtt directly from the classical equa-
tions of motion [(6.46).(6.47). The latter admit larger dvels I x H gauge symmetry allowing us
to choose thel, = A_ = 0 gauge in which the global/-symmetry of the remaining non-linear
equations and thus of the resulting (gauge-independentatix becomes manifest. The sarfie
symmetry is expected also to be present in the full quantumaEBix

Let us now comment on the meaning of the paramet&hich plays a crucial role in our reduction
procedure and sets the mass S@le.entered first through the conditiofs = y7', P_ = pug~'Tyg
(4.12),[6.26) on the: components of the coset-space part of the current that sioéveonformal
gauge constraints. In the vacudm (6.55) we thus have (&2)£6.13))

(P+)vac = (P_)vac = /"LT7 T: %dlag(:l?l?_17_171717_17_1) ° (6'58)

Thus . determines the scale whilé — the structure of the background values of the coset curent
The corresponding charges (defined assuming the world sheeylinder) thus have both th&lSs
andS® non-zero components. Though are invariants of?SU (2, 2|4) their non-zero vacuum values
appear to translate, in particular, into the non-zero \mbfeéhe quadratic Casimirs fofO(2,4) and
SO(6) group. This suggests again a close relation to the BMN fifnit.

In general, to relate the reduced or “current” formulatidritee theory to the originalddsSs x
S5 superstring mode[(6.3) (and thus to gauge theory withinAH8/CFT duality) one would need
to supplement the quantum theory based[on {6.49) by a lisblb$érvables” which are intrinsic
to the AdSs x S° string in its original coordinate-space formulation. Thé&t should include, in
particular, the components of tHeSU (2, 2|4) charges. They cannot be computed directly without
supplementing the reduced action with a linear problemHerassociated Lax pair, but according to
the above remarks about the vacuum values of currents_ iB)(@:& are guaranteed to have at least
some components of th&dS; and S® charges to be non-zero in the vaculm (6.55) of the reduced
theory.

Finally, let us discuss possible 2d supersymmetry of thmmactorresponding td (6.49). As was
already mentioned above, the number (8) of independenniimdegrees of freedom in the reduced
Lagrangian[(6.54) matches that of the fermionic ones (88)¢tly as in a 2d supersymmetric model.
Moreover, we saw that the spectrum of small fluctuations tteawvacuum staté (6.56),(6157) is also
supersymmetric.

The structure of(6.49) is essentially that of a supersymmgWzZW model [63] 64],

Lsgwzw = Lewzw + ¥, Dy, +¢,D_4, (6.59)

modified by theu-dependent interaction terms. If we first get= 0, i.e. ignore the potential and
Yukawa interaction terms i _(6.49), then we should expedintg the same (1,1) supersymmetry as

46The S-matrix should also have higher hidden symmetriesuprably related to those of the S-matrix in [11]; we
thank R.Roiban for a discussion of this point.

4’'We thank S. Frolov for asking this question and useful disicurs.

“8In a certain sense, our reduction procedure may then beieted as an “invariant version” of the expansion near
the BMN vacuum.
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found in the component description of supersymmetric gWZddeh 63/ 64], i.e.

69 ~ €, 09 +ength,, 0y~ e (97 Dig) s 00, ~en(9D_g "), 0AL=0. (6.60)

Heree, ande,, are parameters of the (1,0) and (0,1) supersymmetries.

For this to work the fermions should transform under thggauge transformation as elements of
the coset part of, i.e. m = A'O‘, considered as a representation of the gauge alg‘;abfa%. It
appears, however, that for the casepsf.(2, 2|4) the fermions¥ ,, ¥, take values irﬂ'v2 which is,

in general, a different representation of the gauge algigbMore preciselyﬂ' andﬂ considered as
representations df are inequivalent representations related by an apprepigomorphism of the
gauge algebra In the absence qi-dependent terms in (6.49) one can of course modify the gauge
transformation law of the fermions by replacing, e.4., with its image under that automorphism
7(A_) in the kinetic term forl’ .. This does not, however, directly apply for# 0; for example, the
gauge invariance of the fermionic interaction teu$ilr(¢—'¥, g0, ) in (6.49) determines the gauge
transformation law of the fermions in terms of that of thediegl

We leave the question whether the fUIl (6.49) in the (2, 2|4) case does have a 2d supersymmetry,
l.e. if it can be identified with a supersymmetric extensibthe corresponding bosonic non-abelian
Toda theory, for a future investigati@l.Our conjecture is that the answer is yes and the supersym-
metry should be the extended (2,2) Ghe.

As we shall show in the next section in a similar but simpleecaf theddS; x S? superstring model
wherepsu(2,2]4) is replaced by thesu(1, 1|2) superalgebra (with trivid so that the complication
of extending the supersymmetry from the “free”to# 0 level is absent) the corresponding reduced
Lagragian[(6.49) is indeed invariant under the (2,2) sypensetry.

An interesting question related to the existence of (2,pgssymmetry is about finiteness property
of the quantum theory defined by (6149). A (supersymmethNZ8§V model corresponds to a (su-
per)conformal theory, but including potential terms magémeral introduce UV divergences. These
divergences should cancel out if this model has (2,2) sypergetry. We conjecture that this is in-
deed the case; then this reduced model has a chance to béfosefuquantum description of the
AdSs x S® superstring.

490ne can see th% and%‘ are inequivalent by, e.g., observing that for a subalggbr@presented by the upper-left

block matrices there are no invariant vectorﬁ‘i_g but all the elements froﬁﬂ represented by lower-right block matrices
are invariant. The automorphismsimply interchangesu(2) factor in the upper left block with theu(2) factor in the
lower-right block in the matrix representationfpf

S0supersymmetric extensions of generic non-abelian Todaitswere not previously discussed in the literature gapar
from the complex sine-Gordon case [49] 50, 51]). For somereetes on supersymmetric extensions of sigma models
with potentials and, in particular, of abelian Toda models 5] 66].

5IThe conditions for existence of the (2,2) supersymmetriz@y(,1) supersymmetr@/ H gWZW model (i.e. in our
1 = 0 case) were discussed in_[64] (see alsd [67, 68]).
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7 Example: reduced model for superstring inAdS; x S?
asN = 2 super sine-Gordon model

Let us now specialise the construction of the previous sedb the simplest case 0fdS; x S?
superstring model [69, 57] whefe= psu(1,1|2). As we shall see below, here the reduced La-
grangian[(6.49),(6.54) is equivalent to that of tie= 2 supersymmetric sine-Gordon theory. This
demonstrates the existence of the (2,2) world-sheet sypenstry in the reduced version of this GS
superstring model. Assuming one may consider the redueamhtlas a legitimate starting point for
the quantisation, this also implies the UV finiteness of thkS, x S? superstring and its quantum
integrability.

7.1 Explicit parametrisation of psu(1, 1|2)

The bosonic subspacfé)sand% in (6.1) here are represented by block-diagonal matricéiseoform

f:<€<g), YAY = —A Bt —_B. (7.1)

with A, B being traceles8 x 2 matrices and given by [C.16), i.e.A € su(1,1) andB € su(2).
The subspacg is formed by matrices satisfying also

~ KALK = Ay, _KBLK = By, (7.2)

with K = ¥ in (C.18). Itis usefull to parametrise these matrices as

_ (0 ¢ _( 0 i
W= (08) w2 0

whereg, ¢ are real. The elements of the subspAa(me determined by the additional conditions

KAYK = AL KB.K = B}, (7.4)

- b e (g T
A2 = < —ic —ib ) ' Br = ( —r —iq ) ’ (7.5)

whereb, ¢, ¢, r are real. For the fermionic subspef@ethe reality condition together with/® = ;M
(see Appendix C) imply

M:(}O, )5) KY'K =iX, iYYT=X. (7.6)

SinceX = K givesYt = —Y'K ,?1 can be parametrized as

le(i;x igﬁ) XI:(_QB —235> (7.7)
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Forf; we haveKY'K = —iX andiXY' = X givingY' = Y*K and

(A v B A p
Y}’_<ip ia)’ Xg_(—iV —U)' (7.8)

The fixed elemen’ = 7" + 7% in (6.124),[6.2Y) can be chosen in the form:

1 0 0 O
1 0 — 0 O
=310 0 i o (7.9)
0 0 0 —
The subspac% andﬂl defined in[(6.16) are then representedlbyl(7.7) (7.8) with
a=0=0, A=0c=0. (7.10)

The fieldg € G introduced in[(6.23) takes values in the direct product af tme-dimensional
subgroups obU (1, 1) x SU(2) isomorphic toSO(1, 1) andSO(2); it can be parametrized as

cosh¢ sinh ¢ 0 0
B Ay O | sinh¢ cosh¢ 0 0
g = exp < 0 By ) n 0 0 cosp ising |’ (7.11)
0 0 1singp  cos

7.2 Reduced Lagrangian

Let us write down the explicit form of the reduced Lagrang{@ml9) using the parametrisation in-
troduced above. Here the subgrolpis trivial so thatA, = A_ = 0. The “kinetic’ WZW term is
simply

1 _ _
5STr(g7'04997'0_g) = 04¢0-¢ + 04 00_p . (7.12)
The potential term in(6.49) is

2

p?STr(g ' TgT) = —’%(cosh 2¢ — cos2¢p) . (7.13)

The fermionic terms in(6.49) are

LSTH(W,[T,0_W ) = THO V[T, X1]) = ~Tx(0_X,[T% Vi) = B0 + 70_7.

1

(7.14)
LST(W, [T,0.0,]) = Te(@,Y3[T?, Xy)) = ~Tr(@, Xs[1%, Ys]) = v0yw + pdyp.,

pSTr(gV g7, ) = uTr(g1 X195 'Ys) — Tr(g2Yigy ' Xs) (7.15)
= — 2u[cosh pcos p (Bv + vp) + sinh g sing (Bp —yv)], '

where we have used the explicit form of the diagonal blaEks= 7% = £ diag(1, —1) = £ in (Z.9).
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Thus the final expression of the corresponding reduced bagaa [6.49) in terms of the two
bosonice, ¢ and the four fermionid, +, v, p field variables is given by (cfL.(5.1

2

Liot = 0490_p + 04 00— + %(cos 2¢ — cosh 2¢)

+ BO0_B +~0_y +vi v+ pOip
—2pfcosh ¢ cos (Bv + vp) + sinh ¢ sing (Bp —yv)] . (7.16)

7.3 Equivalence toN = 2 supersymmetric sine-Gordon model

The bosonic part of theldS, x S? reduced Lagrangian in (5.18),(7116) happens to be exaudly t
same as the bosonic part of tNe= 2 supersymmetric sine-Gordon Lagrangianl [56]. Furthermore
the number of the fermionic fields in_(7]16) is the same asél\th= 2 SG theory. This suggests that
the AdS, x S? reduced mode[(7.16) may have a hidder- 2 world-sheet supersymmetry.

Indeed, [(7.16) is equivalent to thé = 2 SG theory. A generiN = 2 (i.e. (2,2)) superfield
Lagrangian is
L= /d419 P + [/ 49 W (®) + h.c],
O =&+ 011, + ot + 0D,

where ® is a chiralN = 2 superfield,® = ¢ + i¢ is a complex scalar and, , ), are complex
fermions. In components

(7.17)

L= 0,0_0" — [W(@) + 070400, + Ur0_t, + W (®), b, + W(® )07 . (7.18)

The sine-Gordon choice is

2
W (®) = pucos ® W(®)[2 = %(cosh 2 — s 20) . (7.19)

Splitting v, , ¥ ,, into the real and imaginary parts

?/)L:V+ZP> ¢R:—5+Wa (720)
we indeed find the agreement between (7.18) and](7.16).

Let us note that it is possible to write down tNe= 2 supersymmetry transformations of the fields
in (Z.186) in terms of the original matrix parametrisatioredsn [6.49). Let us consider separately
the (2,0) and (0,2) supersymmetries. To describe the (Ea@fformation let us introduce a matrix
fermionic parameter, taking values irf; in (6.1) and satisfying in additiofT’, ¢, | = 0. This ensures
thate, contains two independent fermionic parametersi(do in the parametrisation (4.7)). The
(2,0) supersymmetry transformation of the matrix fieldsa@f) then reads as

0, g=9g[T,[V,,¢.]], o0, ¥, = (9710, g,¢,], Oc, V) = plT,ge, g7 (7.21)

LY "L

52As expected, the Lagrangian is real (the fermionic fieldsead).
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In checking the invariance of the action we have to use (lediteZ, grading and definition of,)
that[T, [T, V,]] = =¥, , [[T,[¥,,¢]],¥,] = 0, etc. The (0,2) transformation with parameter
looks similarly.

The (2,0) supersymmetry transformation law (7.21) can beddly generalized to the algebraically
analogous models described by (6.p8)videdf;- contains a nontrivial element commuting with the
entire gauge algebia Indeed, suppose belongs tcﬂL and is satisfying in additiofz, 2| = 0 for any
he€b :% (in other wordsg¢, should belong to the centraliser ipfn §;-). Then the supersymmetry
transformation reads

0, 9=9[T, [V, 6]l 6,9, =[(g7'Dsg)l e,], 6, ¥, = plT, ge,g7'], (7.22)
56LA+ =0, 56LA— = :u[(g_lq]Lg)J_7 EL] )

where the superscrigt or L denotes the projection tfﬂ or?l respectively. Note that fon #

0 the field A_ starts transforming under the supersymm@rﬁince the action is invariant under

the exchange- < —, L < R, andg < ¢! one finds also the “right” counterpart of the “left”

supersymmetry(7.22) with — ¢, wheree,, is taking values if; and is annihilated b.

In the case opsu(1,1|2) the subalgebrg is empty ande, is an arbitrary element of the two-
dimensional spac% (and similarlye,, € %) so that[(7.2R) defines a consistent (2,0) (and also (0,2))
supersymmetry transformation. However, in the casesaf2,2|4), none of the elements ﬁQ
commute with the entirg so that [7.22) does not directly apply (cf. the discussiothatend of
section[[6.4)). The existence of 2d supersymmetry of (6@€)e AdS; x S° case thus remains an
interesting open question.

Let us finally mention that the complex sine-Gordon modeflf2lso admits aiN = 2 supersym-
metric version([49, 50]. The same applies to its “double’lGiA) which has 2+2 dimensional target
space which is a direct sum of the two Kahler spaces. We éxpaicthe correspondiny = 2 model
should be equivalent to the reduced model for the supegstinAdS; x S? [70] with (5.19) as its
bosonic part.
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Appendix A: Proof of gauge equivalence in section 312

Here we provide some details of the argument in se@i@nLet us introduce the following combi-
nations R R
Ay =g l0rg+9 'Arg, A_=g0_g ' +gA g (A1)

Under the gauge transformatiofs (3.24) transform as follows:
A, b "Ah+ b0k, A RBT'Ah+RT'OLN. (A.2)

It follows from the commutation relationy, m] C m and[h,h] C b that theirh projections also
transform in the same way. Then the constraints (3.20) takéorm

Ap=(Ay)y,  Ao=(AL),. (A3)
They are not invariant under the transformatidnsiA.2) sse= h. Using [3.2#) one can then set

(A )y = A = (97049 + 97 Arg)y. (A.4)

This condition can be satisfied by applying the transforama{B.24) withs = 1. Under this trans-
formation A, is unchanged whil¢A. ), = (97109 + g ' A, g), transforms as afl connection, so

it is possible to find: so that transformed value ()fhr)h is equal toA, .
Next, once(ﬁ p = Ay, eq. [3.19) implies thatl, A_ are components of a flat 2d connection,

i.e. satisfy[(3.21[p1 This, together with the equation gncontained in[(3.19) and the remaining part
of gauge invariancé (3.24) allows one to show that the secalaton in [3.20) can also be satisfied.

Indeed, let us show that one can find siiglthat the transformatiof (3.24) with= h, andh =1
preservesd, = (A+)h and transformsi_ andg so thatA_ = (A_), (note thatA_ is unchanged

55Note that contrary to the discussion befdre (8.21) now weat@ssume that both constrairits (3.20) are satisfied.
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under such transformation). It is enough to fiadn any admissible gauge that can be reached by the
gauge transformation with = 4 (both cond|t|ons{A+)h = A, and(A_), = A_ are invariant under
such gauge transformations). Without loss of generalitgarechoose this gaugetode = A_ =0

(this gauge can always be reached by a gauge transformaition w- h). In this gauge the equation
(3.19) and the constraitl . ), = A, take the form[(3.28) and the first equation[in (3.29) respelti
Equation[(3.28) can be written equivalently as

0y (90-g™") = [T, gTyg7'], (A.5)

implying 9, (g9-g~*), = 0. This means thatgd_g')y is a function ofs~ only and therefore can
be represented dg0_g~ '), = ho0_hy" for someH-valued functioni(o~). By performing the
gauge transformation with = 1 andh = h, one then arrives a(tﬁ_)h = (g0_g~")y = 0 while still
satisfyingA. =0 and(/ALr)fJ = 0.

Appendix B: Vanishing of the antisymmetric tensor coupling
in the reduced Lagrangian in sectiori 5.11

Here we provide details of the argument mentioned at the éséaion5.1 that the reduced La-
grangian[(5.1) does not contain a WZ-type term. Indeed,ca$ible antisymmetric tensor contribu-
tions that may result from integrating out the gauge fielchefdWZW model vanish.

Let us consider the following automorphism of the orthodonatrix group and its Lie algebra:

M= Mi(-1)"*7,  MN=MN. (B.1)

It is easy to check that

—_—

TeM = TeM,  det M =detM, M'=M-1, M =MT, (B.2)

If ¢ has the gauge-fixed form (5.4) thgn= ¢~ ': this is obviously correct for any, = e+ because
Ry, = — Ry, while g~! has the same form with ag}, replaced withy;, '

The integrand of the WZ term if(3.14),(3115) then satisfies
Tr(g~'dgg'dgg~'dg) = Tr((g~'dgg—'dgg—'dg))
= Tr(gdg~'gdg 'gdg™") = —Tr(g 'dgg~'dgg~"dg), (B.3)

and thus should vanish.

Another possible contribution may originate from the gatigkel dependent term in the gW2zZW
Lagrangian[(3.15)

La=Tr(Ay0_gg ' —A_g 0,9 —g 'AgA_+ ALAL), (B.4)
whereA.. should be replaced by the solutions of their equations ofanot
Ay =(97'049+9 'Arg)y,  A_=(90_g " +9A_g ")y. (B.5)
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This gives

Ly=Tr(AL0_gg7") = —Tr(A_ g '049). (B.6)
It follows from the explicit form of Eqs.[(BI5) that there sis$ a functionA (g, dg) such that
A+<g7 8—1—9) = A(Qa a—i-g) ) A—(ga a—g) = A(g_17 a_g—l) . (B7)
Moreover, assuming the analyticity gnone finds
A(ga a:I:g) = A(g_17 8:I:g_l) ) (BS)

providedg = ¢~!. In particular, this holds in the gaude (5.4)).

Since A, are linear ind.g the vanishing of the antisymmetric part of the metric is egla@nt to
La(g,019,0-g) = La(g,0-g,0,g). Assumingg = g~' one gets

Lu(g,0-g,0+9) = Tr(A(g,0-9)0+99") = Tr(A(g, 0_g~")01.997")
= Tr(A(g™,0-97")dyg " g) = —Tr(A_g~'0,9) = La(g,0;9,0-g). (B.9)

This shows that the antisymmetric tensor contribution tordduced Lagrangian indeed vanishes in
the gauge(5l4).

Appendix C: Matrix superalgebras: definitions and notations

Here we summarize some basic definitions and notation usszttiond and.

Let A be a Grassmann algebra. The algelfi@ (n, ; A) is that of(n+1) x (n+1) matrices ove
whose diagonal block entries are even elements while off-diagonal block entries are ol The
super-transpositiofi is defined as follows:

A X \" At Yt . s
(Y B) :<Xt e ) (MN)* = N M (C.1)

Note that in generalM*")s* £ M. More precisely,(M")s = W MW whereW is the parity
automorphism given by
W =diag(1,...,1,—1,...,—1). (C.2)

A real form of a complex matrix Lie (super)algebra can be dbed in terms of an antilinear anti-
automorphismk satisfying
(MN)* = M*N*, (M*)* =M, (aM)* =aM*, a€C. (C.3)

The real subspace of elements satisfyld§ = — M is then a real Lie superalgebra.

We are interested in the casemf= [, i.e. Mat(n|n,A). Suppose first that the corresponding
operation is defined on so that(a*)* = a and(ab)* = a*b* = (—1)1“/I!lp*a* where|a| denotes the
Grassmann parity af. Let us extend to arbitrary supermatrices according to

A X\ YIATY —intyt
— . T ! .i. y (C.4)
Y B — XY B
56This corresponds to considering even matrices. In genasatan also allow for both even and odd ones; this would
lead to additional sign factors in the equations below.
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wheret applied to the block denotes standard hermitian conjugaitie. transposition combined with
the x-conjugation of entries. It is useful to represent it as

0 A x\ At iyt
* _ y—1ast _ _
ME= A, E_(o 1)’ (Y B)_(—iXT BT)' (€-5)

It is easy to see thdtis involutive provided:? = 1 andX! = ¥. Note that(MN)" = NTMT and
(MT)T = M. Note also thafM1)st = W (M=!)"W whereW is the parity automorphism introduced
above. Let us also note that tkeconjugation induces the real form of the respective Lie grou
Namely, the conditiony* = ¢! selects the real subgroup of the complex group. It is obWous
compatible with the conjugation for the Lie algebra due torgpresentation = ¢ andM* = — M.

To defineZ, anti-automorphism let us first consider the following autophism

A xX\" KAK —K 'YK
y B) ~  \ K'XtK K 'BtK |- (C.6)

whereK is some matrix required to satisfy? = +1 and K* = + K. Itis useful to represent as
follows

M = —K'M* K, K= ( [0( [0( ) , (C.7)

so that we have the property
(MN)® = —N© M (C.8)

A Lie superalgebrg® admits aZ, automorphism if it can be decomposed into a direct sum of
eigenspaces d-anti-automorphism

fF=fefrefels, (C.9)
wheref" denotes the eigenspace with eigenvaluee.
M® ="M, ([M,N])®=i""[M,N], Meifs, Nejc. (C.10)
To see under which conditiofisis compatible with the reality condition we note that
~K'(EZT'ME)K = —(K'S'MZK)*
= —WET'K'MYKD)W = (—)"WEMTSW, (C.11)

where we used
Ko =4+K™*, Sh=yl=3%. (C.12)

and also assumed that
¥, K]=0, K'=+K!, »t=3. (C.13)

If in addition the eigenvectors with oda belong to the off-diagonal blocks (which is the case for
psl(2m|2m) superalgebra) one finds

(=)"WETMISW =i"S*M'S, (C.14)
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so that(M*)$t = imM* providedM® = ™ M. This proves tha¥, grading restricts to the real form
implying its decomposition[{611).
The explicit form of¥ and K in the case opsu(2, 2|4) i1

10 0 O 0 -1 0 O
01 0 O 1 0 0 0

= 00 -1 O ’ K= 0 0 0 -1 (C.15)
00 0 -1 0 0 1 O

In the case opsu(1,1|2) we tak&4

1 0 1 0
s=(10). x=(10). €19

which satisfy all the conditions above.

Appendix D: k-symmetry transformations and gauge fixing in sectionlé

To prove that the gauge conditidp, . = @,, = 0 (€.11) is reachable it is useful to introduce
the tangent frame field’, so that the 2d metric is expressed @8 = e%eln*” wheren? is the
tangent-space metric. We shall use the standard local fedreee in thet basisy™ =~ =1 and
ntt =n~~ = 0. The frame components of the currents are defined in theatamdy as/,, = ¢% J,.

In terms of this parametrization the Lagrangian densitytf@r superstring sigma-model can be

written as (cf. [6.B))
Los = STr[Py P + 5 (QueQae — Qu-Quy)] ¢ Ae. (D.1)

Recall that thet:- components of the currents are defined/as= f~'e49,f. P4 The WZ term can
be written also ag); A , and does not of course depend on the frame field. Usjrigstead ofy®
introduces a local 2d Lorentz invariance (with the corresiiog the new gauge degree of freedom
entering througley). The analog of the Virasoro constraints in this formulatare the equations
of motion obtained by varying the action with respect to ttaarfe field. Note the following useful
relations:
0
de

0

e Las = e, STr(P_P.)et Ne™, (D.2)

Lgs = e STr(P.P.) et Ne™,

wheree™ A e™ = dot A do?(det €)1,
The variation of the Lagrangian under thdransformation of the currents.J, = J.e + [/, €]
with e = €; + e = { Py, ik} + {P_,iko. } iS given by:

5;@]LGS =2 STr([P+, Q- Py ik} + [P, Qo J[{ P-, ik‘2+}) e Ne”
= QSTI"(P+P+[Q1_, il{il_] + P_P_ [Q2+, Zk‘g_,_]) 6+ Ne . (D3)

5"Here we follow the notation of [60, 61].

58 This choice is different from the one used[in[57].

*Note that here we use for the light-cone frame components contrary to the genligig-cone components in the
conformal gauge in the main text. They of course coincide# ohooses the adapted frame affdcoordinates.
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The last expression can be rewritten as
6 Las = Qi (STr(P+P+)STr(W[Q1_,ikl_])+ST1"(P_P_)ST1"(W[Q2+, ik:2+])) e"Ae”, (D.4)
m

wherem is the integer in the definition gfsu(m, m)|2m).

To show thus (e.g. for the first term) it is convenient to usegauge((6.21) wherB, = p Tt +
poT?. The matricesl™, T? € f, are defined in[(6.12),(6.13) forn. = 1,2 (and can be obviously
generalized to other). In this gaugeP, P, = —1(p?1; + p31,) wherel, and1, are matrices with
unit upper-left and lower-right blocks respectively sottbiae finds

. 1 .
STr (P Py [Qr—, ik -)) = %STr(PJFPJF)STr(W[Ql_,zkl_]) (D.5)
whereW is the parity automorphisni(G.2) and we used $iat([Q;_,k;_]) = 0 andp? — p3 =

—%STI'(P+P+)
The variations’ Lo can be compensated by the following variation of the frand fie

1 . o I ,
5H€li = —%eiSTI'(W[Ql_y Zkl—]) 5 51@6_’_ = —%G_STI'(W[QQ_H Z]C2+]) . (D6)
In particular, for the variation of the metri¢® = el efn®’ = ee’ + e €’ one finds

0ng™ = % (e el STe(W [iky—, Q1-]) + e € STr(Wikay, Qa.])] - (D.7)

This can be rewritten in terms of the tangent components as

5ngab = [STT(W[%I{(—y ‘11(—)]) + STT(W[ikS(er QSMN ) (D.8)

1
my=g
where we have used that (dE(B.S})__‘t) = /—getVy = (det e)~'e2 V. Taking into account the fact

thatd,./—g = 0 one indeed finds that this variation determines the vanaifo,*’ = /—gg given
in (6.4).

Let us now turn to the question afsymmetry gauge fixing in terms of the current components.
The k-variation of the frame components of the current is

0Jo = (04€2) T, + €2 (e + [Ja, €]) = (556)265]5 + €206+ [Ja, €] . (D.9)

The fermionic equations of motion written in terms of thenfimcomponents- of the currents take
exactly the same form as in the usual “light-cone” coordisdtf. last line in[(68))

[P-i-v Ql—] = 07 [P—>Q2+] =0. (DlO)

As we have seen above the same applies to the Virasoro cotseapressed in terms of the frame
components:
STr(P,Py) =0, STr(P_P_)=0. (D.11)
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Under the gauge transformation wifitvalued gauge parameter the compondntstransform as
P. — g5 'P.go. Using the Virasoro constraints and applying exactly theesargument as in the
discussion of the reduction gauge in terms of the origirggdticone components in section 6.2 one
can assume thd, = p, T andP_ = p_g~'Tg wherep.. are some real functions agds aG-valued
function.

In this gauge the-transformation of the componef;, _ becomes
5/@@1— = (6n6)263Q1a + 6‘18,16 + [./4_, 61] + [P—a 62] + [Ql—a h] 3 (D12)

whereh = h(J, €1, ) is the%-valued parameter of the compensating gauge transformagieded to
maintain the gauge conditiaR, = p, 7. In fact, in this gaugéP_, e;] = 0 because, = i{ P_, kay }
and[T,{T, M}] = 0 vanishes for any matri®/. The term with the<-symmetry transformation of
the frame field is given explicitly by

1
(0ne)2eqQra = fFQ14, fr= %STT(W[ik1—> Q1-]) - (D.13)
The transformatiori(D.12) then takes the form (cf.1(6.4))
Q- = e 01 + [A_, &) + Qi [T+ [Q1-, h]. (D.14)

Applying the decompositioﬁ = F eﬁ' to thes-symmetry transformation @, — in the reduction
gauge where”?, = p, T one observes that takes values i (cf. (6.4)) and at the same time the
equation[P,, Q,_] = 0 implies thatQ,_ is also%-valued. Becausé (D.114) is the symmetry of the
equation[P,, ;-] = 0 preserving the structure d?,, the variationd);_ also belongs tali. One
then concludes thap,_ can be put to zero by an appropriate choicn%oﬁ/aluedel. This in turn
implies that sucls; can be represented &P, , k;_}.

Note that once);_ is set to zero, any transformation with an arbitrary= i{ P_, k;, } ande; =
i{P,, k,_} satisfyinge® 0,6, + [A_, €;] = 0 preserves);_ = 0 becausef in (D.13) also vanishes
when@;_ = 0. This statement is invariant under tﬁ;egauge transformations and therefore holds
in any fo-gauge. Analogous considerations s, in the gauge wheré’_ = p_T show that one
can also se),, = 0. Finally, using a local Lorentz transformation and chogdine appropriate
coordinatesr™ one can bring:¢ to the standard form where the only nonvanishing comporemets
el = eZ = 1. We then arriving at the gauge choi€e (6.11) for the two camepés of the fermionic
currents.

Appendix E: Details of gauge fixing in section 6.4

In order to show that the reduced model of seddhis indeed described by (6)49) one is to demon-
strate that the constraint equations that arise from vgrirs action with respect td . represent an
admissible gauge condition for the equations of motiond{(8.36). To see this let us introduce the
following quantities (cf.[(A.LL))

Ay = g70.g+ g7 Arg = ST, W] 0], (E.1)
A =g g +gA_g'— g[[T, v v, . (E.2)
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Under the gauge transformation (6.32), (6.45) they transfas follows
A, 5B 'Ah+ R0k, AR T'Ah+hT'ON. (E.3)

Their b projections(ﬁi)pJ obviously have the same transformations properties. Thatian of the
action [6.49) with respect td, gives

Ap=(Ay)y,  Al=(A)y. (E.4)
The first equation in(6.35) can be written (upon using theotivo equations) as
8—;{4- - a—i-A— + [A—v A\—F] + :u2[g_1Tg7T] o g[T7 [D—\I]Iw \I]RH = 07 (ES)
or, equivalently, as

0 A = 0_Ay + A A+ p2lgTg ™ T) = S[T,[D-,, 0, ] = 0. (E.6)

Since([T’, u]), = 0 (note that{T", u] € ﬂ while h = %) and projecting this equation dnone finds
that A_ and(A. )y, are the two components of a flat connection. Repeating thevaegt used in the

bosonic case one then concludes that one can set (/L)h by an appropriate gauge transformation
with i = 1. In this gauged  and A are then components of a flat connection and can be put to zero
by a gauge transformation with= h.

In the gauged, = A_ = 0 the equation(EI6) implies:
0.(A)y =0, (E.7)

where we again made use of the fact that ), = 0 for anyu € To EB%._Then(ﬁ_)h is a function of
o~ only and therefore can be set to zero by a gauge transformatih » = 1 andh = h(c7). Asin

o~

the bosonic case such a gauge transformation does notlspaibhditionsd, = A_ = (A.), = 0.
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