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Abstract 

 

Subpial demyelination in cerebral cortical grey matter is associated with clinical progression 

in multiple sclerosis and is suggested to result from diffusion of pro-inflammatory cytokines 

from areas of meningeal inflammation into the cortex.  

 

In order to test this hypothesis we have developed an animal model of subpial demyelination 

driven by meningeal inflammation, involving delivery of cytokines into the subarachnoid 

space (SAS). Dark Agouti rats were immunised with a subclinical dose (10µg) of 

recombinant mouse myelin oligodendrocyte glycoprotein followed 21-24 days later by 

injection of TNF (1.25-5µg) and IFN-γ (75-300ng) into the SAS of the sagittal sulcus. The 

presence of the cytokines in the SAS resulted in acute demyelination and inflammation 

followed by resolution of pathology. This supports the hypothesis that cytotoxic/pro-

inflammatory molecules diffuse from areas of meningeal inflammation into the underlying 

cortex resulting in microglial activation and subpial demyelination. Increasing the doses of 

TNF and IFN-γ resulted in increased extent, but not duration, of pathology due to the acute 

presence of the cytokines. We conclude that a chronic inflammatory milieu in the 

CSF/meningeal compartment is required to achieve chronic microglial activation and subpial 

demyelination and neuronal loss. 

 

In order to achieve the chronic presence of the cytokines in the SAS a high titre VSV-G-

pseudotyped lentiviral vector carrying the enhanced green fluorescent protein (eGFP) gene 

under control of the CMV promoter was tested. It induced extensive and long-term, up to 12 

weeks, eGFP expression in the sagittal sulcus in the absence of long-term microglial 

activation in naïve animals. Expression was localised to astrocytes, leptomeningeal cells and 

a small number of pyramidal neurons. The vector did not induce non-specific demyelination 
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and inflammation in animals immunised with a subclinical dose of rmMOG. In order to 

achieve more localised expression, the vector was injected with collagen hydrogel. The 

hydrogel delayed eGFP expression but increased its spread along the anteroposterior axis. 

The distribution and duration of expression appeared optimal for achieving the chronic 

presence of TNF and IFN-γ in the CSF/meningeal compartment required to develop this 

novel model, if expression at the injection site could be increased using the hydrogel, which 

requires optimisation. We propose that the chronic presence of the cytokines will result in 

chronic meningeal inflammation and cortical grey matter pathology, allowing evaluation of 

the role of cytotoxic/pro-inflammatory molecules. 

 

The identity of several of the cytotoxic/pro-inflammatory molecules suggested to diffuse from 

areas of meningeal inflammation were also identified in post-mortem MS meninges using 

PCR arrays. Expression of CXCL13, IL5RA, IFNG and CXCL9 were increased, and that of 

CXCL1 decreased, in MS patients, consistent with an inflammatory milieu in the 

CSF/meningeal compartment and suggesting that these molecules may represent novel 

therapeutic targets for modulating meningeal inflammation and cortical pathology. 
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1.1 Multiple sclerosis 

1.1.1 Introducing multiple sclerosis 

Multiple sclerosis (MS) is the most common neurological condition that affects young adults, 

with approximately 2.3 million people affected worldwide (Multiple Sclerosis International 

Federation, 2013). It is characterised by foci of demyelination (lesions), astrocyte 

proliferation (gliosis), inflammation and neuronal/axonal loss in the central nervous system 

(CNS). It is thought to be an immune-mediated disease that results in the loss of the 

insulating myelin sheath that surrounds axons that is required for fast saltatory axonal 

conduction. This in turn results in a wide variety of cognitive, motor and sensory symptoms 

depending on the site of the pathology. 

1.1.2 MS epidemiology and aetiology 

The mean age of onset is approximately 30 years, with 70% of patients showing symptoms 

between the ages of 20 and 40 years and with onset being rare under the age of 10 years 

and above the age of 60 years  (O'Connor, 2002). The sex ratio of MS is dependent on 

incidence, latitude, and year but is approximately 2:1 female:male (Voskuhl and Gold, 2012), 

the reason for which is not clear despite extensive research (Compston and Coles, 2002). 

However, this ratio is in keeping with immune-mediated diseases as a whole; approximately 

78% of patients are women (Fairweather et al., 2008). Meta-analysis has confirmed studies 

that showed positive associations between latitude and prevalence, for areas of European 

descent and worldwide, with the disease being rare in tropical areas (Simpson et al., 2011). 

However, systematic review of incidence studies published between 1966 and 2007 showed 

that this positive association was decreased after 1980, associated with increased incidence 

at lower latitudes (Alonso and Hernán, 2008), while another meta-analysis of studies 

published between 1980 and 1998 showed that the association between latitude and 

incidence was not significant when incidence was adjusted for age (Zivadinov et al., 2003). 



Chapter 1 - General introduction 23 

These studies, however, are all limited by a lack of incidence studies in Africa, Asia and 

Central and South America. 

 

Susceptibility appears to have both genetic and environmental components. The genetic 

component is demonstrated by twin concordance, values of which are approximately 25% 

and approximately 3% for monozygotic and dizygotic twins respectively in high prevalence 

areas such as Canada, Denmark and Great Britain (Ebers et al., 1986, Hansen et al., 2005, 

Mumford et al., 1994). Multiple variants in the human leukocyte antigen (HLA) regions, which 

encode proteins involved in antigen presentation, have been found to contribute to 

susceptibility (Jersild et al., 1972, Gourraud et al., 2012). The strongest susceptibility locus is 

the HLA DRB1*15:01 haplotype, which is carried by 28-33% of Northern Caucasian MS 

patients compared with 9-15% of healthy controls, corresponding to a mean odds ratio of 

3.08 (Sawcer et al., 2011). A large genome-wide association study involving 9,772 cases 

identified genes implicated by proximity to single nucleotide polymorphisms showing 

evidence of association with MS, which were found to be enriched with genes related to 

lymphocyte function, in particular those involved in T helper (Th) cell differentiation. It also 

identified a receptor for the pro-inflammatory cytokine tumour necrosis factor (TNF), TNFR1, 

which is discussed in detail in 1.3.3.4 (Sawcer et al., 2011). A recent study determined that 

there are 110 non-HLA risk genes, which, together with HLA effects, explain 28% of the 

sibling recurrence risk (Beecham et al., 2013). However, a study that compared the 

genomes, epigenomes and transcriptomes of discordant monozygotic twins found no 

differences in HLA regions, single nucleotide polymorphisms shown to contribute to MS 

susceptibility, copy number variations or gene expression in cluster of differentiation (CD) 4+ 

T cells that explained discordance (Baranzini et al., 2010), indicating the contribution of the 

environmental component.  

 

Migration studies, however, have shown that the timing of exposure to the environmental 

component may determine subsequent susceptibility. For example, migration from high to 
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low prevalence areas before the age of 15 years decreases susceptibility, whereas migration 

after the age of 15 years does not (Kurtzke et al., 1970), hence studies investigating the 

environmental component are difficult to perform and interpret.  

 

One of the proposed explanations for the positive association between latitude and 

prevalence is the decreased exposure to sunlight at higher latitude. Decreased ultraviolet B 

exposure has been associated with prevalence (Orton et al., 2011, Ramagopalan et al., 

2011), thought to result from vitamin D deficiency. Prevalence increased with decreasing 25-

hydroxyvitamin D concentrations in serum (Munger et al., 2006), which are associated with 

higher Expanded Disability Status Scale (EDSS) scores and lower brain parenchymal 

fraction (Weinstock-Guttman et al., 2011). Sequence analysis has localized a vitamin D 

response element to the promoter region of HLA-DRB1 (Ramagopalan et al., 2009), 

supporting a connection between the main genetic and environmental components of 

susceptibility. 

 

Epstein-Barr virus (EBV) is one of the infectious agents thought to be involved in MS 

aetiology. EBV infects approximately 95% of people worldwide but usually remains 

asymptomatic. Meta-analysis of 13 case control studies showed that 99.5% of MS cases 

were EBV seropositive compared to 94% of control cases (Ascherio and Munger, 2007). 

Cellular and humoral responses to the EBV-encoded nuclear antigen 1 were increased in 

clinically isolated syndrome (CIS) cases, and were correlated with the number of T2 lesions 

on magnetic resonance imaging (MRI) scans at baseline and with the number of new T2 

lesions on MRI and EDSS after a mean of 7 years follow-up (Lünemann et al., 2010). The 

same study showed that increased specific immunoglobulin (Ig) G responses predicted 

conversion of CIS to MS (Lünemann et al., 2010), suggesting a role for infectious aetiology. 
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1.1.3 Clinical features of MS 

1.1.3.1 Symptoms 

The characteristic symptoms of MS are Lhermitte’s symptom (electrical sensation running 

down the limbs or spine when the head is bent forward) and Uhtoff’s phenomenon 

(worsening of symptoms when the body gets overheated as a result of exercise, fever or hot 

bath or weather). The remaining symptoms also result from demyelination and depend on 

the site of the pathology. They include impaired speech and swallowing, vertigo, paroxysmal 

symptoms, ataxia, tremor, cognitive impairment, motor symptoms, unilateral loss of vision, 

bladder and erectile dysfunction, spasticity and weakness (Compston and Coles, 2008). 

Other symptoms include fatigue and pain. Affective symptoms are relatively common, 

although it is unclear whether they are a consequence of pathology or psychological reaction 

(Minden, 2000). 

1.1.3.2 Diagnosis 

Diagnosis requires the demonstration of dissemination of lesions in space and time and the 

exclusion of alternative diagnoses and can be made based on clinical presentation alone. 

However, MRI scans can replace some clinical criteria as described by the 2010 revisions to 

the McDonald Criteria (Polman et al., 2011). When a patient presents with at least 2 

episodes but objective clinical evidence of only 1 lesion, dissemination of lesions in space 

can be demonstrated with at least 1 T2 lesion on MRI in at least 2 of 4 areas considered to 

be characteristic for MS (infratentorial, juxtacortical, periventricular, spinal cord). 

Alternatively, when a patient presents with only 1 episode but objective clinical evidence of 

at least 2 lesions, dissemination in time can be demonstrated with a new T2 and/or 

gadolinium-enhancing (inflammatory activity) lesion on follow-up MRI when compared to 

baseline or simultaneous asymptomatic gadolinium-enhancing and non-enhancing lesions at 

any time. Positive cerebrospinal fluid (CSF) findings (increased IgG index or isoelectric 

focusing evidence of oligoclonal bands) may be used to support diagnoses (Polman et al., 
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2011). Meta-analysis of 71 studies showed that oligoclonal bands were present in 87.7% of 

12,253 MS and 68.6% of 2,685 CIS patients and predicted conversion of CIS to MS (Dobson 

et al., 2013) and may hence be used to supplement clinical criteria and MRI scans. 

1.1.3.3 Clinical course 

In 80% of patients, MS initially presents as one acute episode of neurological dysfunction 

(CIS), followed by a period of recovery (remission) and subsequent further episode 

(relapse), termed relapsing-remitting MS (RRMS). The frequency of relapses is on average 

approximately 1.5 per year (Compston and Coles, 2008), but is highly variable from patient 

to patient. More relapses in the first 2 years and a shorter interval between the first 2 

relapses have been shown to be associated with shorter intervals between disease onset 

and disease milestones (Scalfari et al., 2010). After approximately 10 years the recovery 

from relapses becomes incomplete resulting in an accumulation of chronic symptoms. This 

occurs in approximately 65% of RRMS patients and is termed secondary progressive MS 

(SPMS; Compston and Coles, 2008). Approximately 11% of patients will present with an 

accumulation of symptoms from onset (Reynolds et al., 2011). This is termed primary 

progressive MS (PPMS).  

 

Disease milestone data from 431 cases in the UK MS Tissue Bank population-based cohort 

established a median age of onset of 31.5 years, age at progression to SPMS of 44 years, 

age at which patients required the use of a wheelchair of 50 years and age of death of 62 

years (Reynolds et al., 2011). The median disease duration is 23-30.5 years (Scalfari et al., 

2010, Reynolds et al., 2011), resulting in a decrease in life expectancy of 5-10 years 

(Brønnum-Hansen et al., 2004). MS is cited as the cause of death in 60% of MS patients 

(Reynolds et al., 2011), with the resulting increased frequency of infections and suicides 

contributing to the remainder (Compston and Coles, 2008). 
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clinical threshold 

clinical threshold 

neurological deficit 

inflammation 

axonal loss 

secondary progressive relapsing-remitting 

It has been shown that relapses are associated with acute inflammation and accompanying 

demyelination involving cytotoxic T cells and activated macrophages/microglia (Kuhlmann et 

al., 2002), whereas progression is associated with an accumulation of axonal and neuronal 

loss and a relative lack of inflammation (Figure 1.1; Compston and Coles, 2008, Reynolds et 

al., 2011).  

 

 

 

 

 

 

 

Figure 1.1. Representation of the relationship between neurological deficit, inflammation and 
axonal loss in RRMS and SPMS. Adapted from Compston and Coles, 2008. 
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1.2 MS pathology 

1.2.1 White matter lesions 

1.2.1.1 Destruction of myelin 

The pathological hallmark of MS is the presence of foci of inflammation, consisting of 

perivascular cuffs of T lymphocytes and monocytes/macrophages. These are associated 

with changes in blood-brain barrier (BBB) permeability and oligodendrocyte loss and 

demyelination (Reynolds et al., 2011) and are termed lesions, which can be observed on 

macroscopic observation in major white matter (WM) tracts. Although  lesions may occur 

anywhere in the CNS parenchyma, the WM lesions (WMLs) considered to be characteristic 

of MS for diagnostic purposes as stated in the 2010 revisions to the McDonald Criteria and 

described in 1.1.3.2, are infratentorial, juxtacortical, periventricular and spinal cord lesions 

(Polman et al., 2011). Astrocytes respond to active inflammation and demyelination with 

hypertrophy and proliferation, which persist in chronic lesions resulting in gliosis and the 

formation of a glial scar in the majority of WMLs (Brosnan and Raine, 2013). Multiple small 

WMLs may merge to form large confluent plaques (Popescu and Lucchinetti, 2012) and 

slowly expanding demyelination surrounding WMLs has also been identified in both clinical 

MRI and neuropathological studies. These WMLs exhibit a rim of activated microglia at their 

border, some of which contain early myelin degradation products (Lassmann, 2008) and 

may be observed surrounding old, gliotic WMLs lacking perivascular cuffs in autopsy 

samples from SPMS patients (Prineas et al., 2001).  

 

Remyelination of axons by oligodendrocyte lineage cells was first identified using electron 

microscopy in 1965 (Périer and Grégoire, 1965) by sharply demarcated areas of uniformly 

thin myelin sheaths. It starts early during lesion formation (Prineas et al., 1993a, Lucchinetti 

et al., 1999, Goldschmidt et al., 2009) and is variable, but may be extensive (Patrikios et al., 

2006, Patani et al., 2007). For example, a study using autopsy samples showed 
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remyelination of 60-96% of the total lesion area in 20% of all 51 patients, including SPMS 

and PPMS as well as RRMS patients, whereas remyelination of 0-25% was observed in 

67% of all patients (Patrikios et al., 2006). However, remyelinated areas may be more 

susceptible to repeated demyelination than normal appearing WM (Prineas et al., 1993b).   

1.2.1.2 WML classification 

WMLs may be classified into stages in order to determine the sequence of events in 

pathogenesis. Several systems have been proposed, including those based on lesion 

distribution and location, inflammation extent and pattern, presence of myelin/myelin 

degradation products in macrophages, extent of remyelination, pattern of oligodendrocyte 

loss and presence of complement deposition, and which system is used depends to some 

extent on the area of research.  

 

WMLs are usually classified as active, chronic active or chronic inactive based on the extent 

and pattern of inflammation. Active lesions are defined as those with macrophage infiltration 

throughout the lesion; macrophages contain myelin degradation products positive for all 

myelin proteins including the minor components, such as myelin oligodendrocyte 

glycoprotein (MOG) and CNPase (2',3'-cyclic-nucleotide 3'-phosphodiesterase). Chronic 

active lesions are defined as those with infiltration at the lesion edge but little at the centre; 

myelin degradation products are positive for major myelin proteins, such as myelin basic 

protein (MBP) and proteolipid protein (PLP), only. Finally, chronic inactive lesions are 

defined as those with little infiltration throughout; macrophages contain empty vacuoles or 

myelin degradation products positive for periodic acid-Schiff (PAS; Bö et al., 1994, Brück et 

al., 1994, Trapp et al., 1998, van der Valk and De Groot, 2000). Two remyelinating WML 

stages have also been proposed. Early remyelinating lesions are defined as those with 

macrophage infiltration and some axons surrounded by thin myelin sheaths; macrophages 

contain empty vacuoles or myelin degradation products positive for PAS. Late remyelinating 

lesions or shadow plaques are defined as those with few macrophages and myelinated 
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axons; myelin sheaths are thinner and axon density is lower than in surrounding WM and 

gliosis is present (Brück et al., 1994). 

 

A study using mainly biopsy samples taken shortly after disease onset found heterogeneity 

in active lesions between cases, resulting in their further classification based on the 

proposed mechanism of demyelination. Type I lesions were defined as those with lesional 

oligodendrocyte loss without complement activation, Type II as those Type I lesions with 

complement activation, Type III as those with lesional and perilesional oligodendrocyte 

apoptosis without complement activation and with an intact BBB and Type IV as those with 

lesional and perilesional oligodendrocyte loss but not apoptosis (Lucchinetti et al., 2000). All 

active lesions in one case were of the same type. However, a later study using autopsy 

samples from cases with established MS found homogeneity in active lesions between 

cases, hence it was proposed that the initial heterogeneity found in the early stages of 

pathogenesis may disappear as different mechanisms converge into one general 

mechanism (Breij et al., 2008). 

1.2.1.3 WML pathogenesis  

The proposed mechanism of demyelination in the WM involves the inflammation-induced 

destruction of the myelin sheath that surrounds axons (Lassmann et al., 2001). Briefly, 

myelin-reactive T (Th CD4+ and T cytotoxic (Tc) CD8+) cells are activated in the periphery, 

expand and traffic to the CNS (Hafler and Weiner, 1987), which they enter across an 

activated BBB expressing adhesion molecules (Minagar and Alexander, 2003) or across the 

blood-CSF barrier that constitutively expresses adhesion molecules (Ransohoff et al., 2003). 

These T cells become reactivated on encountering their specific myelin epitope presented by 

microglia and perivascular macrophages, the antigen presenting cells (APCs) of the CNS, 

proliferate and form perivascular cuffs in the WM and accumulate in the meninges 

(Compston and Coles, 2008). They release pro-inflammatory cytokines including TNF and 

interferon-γ (IFN-γ), which results in the upregulation of adhesion molecules on the BBB, 
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facilitating further entry of T and B cells, plasma cells and macrophages to the CNS (Hellings 

et al., 2002), as well as direct cytotoxicity to oligodendrocytes (Buntinx et al., 2004). 

Although the phagocytosis of myelin by macrophages results in demyelination, additional 

immune effector mechanisms have been proposed. The sustained presence of auto-

antibodies against the myelin antigens MBP and MOG in CSF and sera from MS patients 

has been detected (Reindl et al., 1999) and antibody deposition is thought to be a major 

mechanism of demyelination. Ig deposition in active, demyelinating lesions was found in 

approximately 50% of MS patients (Lucchinetti et al., 2000) and myelin-oligodendrocyte 

complexes may be damaged by complement activation as well as antibody-dependent 

cytotoxicity (Lassmann et al., 2001). 

  

The partially demyelinated axons that result from this inflammation-induced demyelination 

have a decreased capacitance and are not able to transmit fast action potential trains. 

Depolarisation, though able to traverse lesions, does so at a decreased velocity. These 

axons may also discharge spontaneously and are more sensitive to mechanical stimuli, 

resulting in distortion of sensations and symptoms including Lhermitte’s symptom and 

Uhtoff’s phenomenon (Compston and Coles, 2008). 

 

Although most lesions are characterised by a relative sparing of axons, it has been shown 

that axonal damage and loss within lesions in both the brain and spinal cord does occur 

(Trapp et al., 1998, Lovas et al., 2000) and that it is associated with both demyelination and 

inflammation in all lesion types and at all disease stages (Lassmann et al., 2001, Frischer et 

al., 2009). Acute axonal damage, determined by the presence of amyloid precursor protein 

in axon end bulbs and spheroids indicating impaired axonal transport, is observed in active 

WMLs regardless of disease duration but is most apparent 1 year after disease onset and 

decreases more than 10 years after disease onset (Kuhlmann et al., 2002). However, other 

studies have shown a 58-61% reduction in axonal density in spinal cord lesions in 

progressive MS patients with long disease duration (Bjartmar et al., 2000, 
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Lovas et al., 2000). Axonal damage and loss appear to be highly variable and correlated with 

infiltration of activated macrophages/microglia and B and T (mainly CD8+) cells (Trapp et al., 

1998, Frischer et al., 2009, Kuhlmann et al., 2002), which  release, for example, nitric oxide 

(NO; Hill et al., 2004) that results in decreased ATP (adenosine triphosphate) production in 

demyelinated axons and induce calcium-mediated axonal degeneration (Dutta et al., 2006). 

The level of N-acetylaspartate in the brain can be used as a neuronal and axonal marker in 

vivo. It is age-dependently decreased in RRMS patients compared to healthy controls 

(Gonen et al., 2000) and, as well as being correlated with WML volume, is also correlated 

with EDSS score in RRMS but not progressive MS patients (De Stefano et al., 1998). Hence, 

although axonal damage and loss are present in WMLs in progressive MS patients with long 

disease duration and correlate with disability, indicating a role for axonal pathology in 

progression, they are not able to account for the accumulation of chronic symptoms that are 

not attributable to WMLs (Reynolds et al., 2011). 

1.2.2 Grey matter lesions 

1.2.2.1 Grey matter lesion prevalence historically underestimated 

Established cortical grey matter (GM) lesions (GMLs) are characterised by microglial 

activation, oligodendrocyte loss and demyelination in GM characteristically associated with 

only mild peripheral immune cell infiltration. Studies using autopsy samples have shown that 

the density of CD4+ and CD8+ T cells is lower in GMLs than WMLs (Bø et al., 2003a) and is 

not different to that in normal appearing GM (NAGM), which was also the case for the 

density of macrophages/microglia (Peterson et al., 2001). However, a study using biopsy 

samples from early MS patients showed that T cells and microglia are present in 82% and 

100% of GMLs respectively, while macrophages containing myelin were present in GMLs 

from 66% of patients (Lucchinetti et al., 2011). A subsequent study using autopsy samples 

from SPMS patients showed that activated microglia and perivascular cuffs, consisting of 

CD8+ T cells, CD20+ B cells and Ig+ plasmablasts/plasma cells, are present in a subset of 
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cases (Magliozzi et al., 2013), suggesting a role for immune cell infiltration in established in 

addition to early GMLs. Additionally, the integrity of the BBB appears to be preserved in 

GMLs, indicated by a lack of plasma protein leakage and basement membrane and tight 

junction changes (van Horssen et al., 2007). However, another study showed a thinning, and 

in some places a loss, of the glia limitans as a result of astrocyte loss in GMLs (Magliozzi et 

al., 2010) and gliosis does not appear to be a feature of GMLs (van Horssen et al., 2007). 

Neuronal and synapse loss has been detected in GMLs (Wegner et al., 2006), as have 

transected axons and dendrites displaying spheroids, which were in contact with activated 

microglia and associated with the level of inflammation in the lesion (Peterson et al., 2001). 

This study also showed the presence of neuronal apoptosis, mainly that of pyramidal 

neurons, in cortical layers 3 and 5. Neuronal loss of pyramidal neurons in cortical layers 3 

and 5 was confirmed in a subset of cases in a subsequent study (Magliozzi et al., 2010). 

 

MS has always been regarded as predominantly a WM disease due to the macroscopic 

observation of lesions in major WM tracts. Although GMLs have been observed in 

neuropathological studies since 1892 (Taylor, 1892; reviewed in Kutzelnigg and Lassmann, 

2005), their pathological importance has been underestimated, perhaps because 

conventional histochemical stains, such as Luxol Fast Blue that detects myelin lipids, miss 

the superficial GMLs (Geurts et al., 2012), which are also not visible on MRI scans using 

conventional sequences (Kidd et al., 1999). However, studies have since shown that GML 

burden may be greater than that of WMLs. 

 

MBP immunohistochemistry using autopsy samples from chronic MS patients demonstrated 

a mean demyelinated area in the cerebral cortex of 25% compared to 5% in subcortical and 

periventricular WM (Bø et al., 2003b). Subsequent studies have shown similar mean 

demyelinated areas; PLP immunohistochemistry demonstrated areas of 28.8% in motor 

cortex, cingulate gyrus, cerebellum, thalamus and spinal cord GM compared to 15.6% in 

corresponding WM (Gilmore et al., 2009). Additionally, GM rather than WM fraction volume 
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relative to total intracranial volume has been correlated with EDSS and regression modelling 

has shown that GM fraction volume is able to explain more of the variability in clinical 

symptoms over 20 years following presentation with CIS than WM fraction volume (Fisniku 

et al., 2008).  

1.2.2.2 GML classification 

Initial studies identified 7 different GML types based on their location relative to the venous 

supply of the cerebral cortex (Kidd et al., 1999), but further studies proposed a simpler 

classification based on their location within the layers of the cortex (Figure 1.2; Peterson et 

al., 2001, Bø et al., 2003b). Type I lesions (leukocortical) involve deep GM layers as well as 

the WM at the GM/WM border but not superficial GM or WM, Type II (intracortical) are 

confined to GM, do not involve superficial GM or WM and are usually small and centred on a 

blood vessel, Type III extend from the pial surface into GM layer III or IV and Type IV extend 

the width of the cortex without entering WM. Type III and IV lesions are known as subpial 

lesions and may involve multiple gyri. Subpial lesions account for up to 50-70% of all GMLs 

followed by Type 1 lesions, which account for 25-34% (Peterson et al., 2001, Bø et al., 

2003a, Magliozzi et al., 2007). 

 

Figure 1.2. Current GML classification based on location within the layers of the cortex. Type I 
lesions (A) involve both WM and GM (CTX), Type II lesions (B) involve only the GM and are usually small 
and centred on a blood vessel and subpial lesions (Type III and Type IV; C) extend from the pial surface 
into the GM. Adapted from Peterson et al., 2001. 
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1.2.2.3 GMLs occur throughout the CNS in progressive MS 

The development of sensitive immunohistochemical stains using antibodies to myelin has 

led to increased understanding of the prevalence and spatiotemporal patterns of GMLs. 

Periventricular WMLs were found to be characteristic of acute MS and RRMS, whereas 

GMLs and more diffuse WM inflammation were characteristic of PPMS and SPMS 

(Kutzelnigg et al., 2005). One study using post-mortem samples from mainly SPMS cases 

found that 28.8% of GM was demyelinated compared to 15.6% of WM, with demyelination in 

GM being greater than that in WM in cingulate gyrus, motor cortex, thalamus, cerebellum 

and spinal cord (Gilmore et al., 2009). This study showed particularly prominent GM 

demyelination in cingulate gyrus and spinal cord. The hippocampus is another area affected 

by GM demyelination in progressive MS, with one study showing 30.4% GM demyelination 

(Papadopoulos et al., 2009) and another showing decreased expression of neuronal 

proteins required for learning and memory (Dutta et al., 2011), which may explain the 

memory impairments seen in MS. In the cerebellum in progressive MS, a mean of 38.7% 

and a maximum of 92% GM demyelination have been observed (Kutzelnigg et al., 2007). 

1.2.2.4 GMLs detected using MRI 

More sensitive MRI techniques, such as double inversion recovery, have led to a five-fold 

increase in the detection of GMLs compared to conventional T2-weighted sequences 

(Geurts et al., 2005). However, approximately 80% of GMLs detected using 

immunohistochemical stains were missed, in particular subpial GMLs (Seewann et al., 

2012). Ultra-high field MRI using a field strength of 9.4T, which is not yet widely available, 

was able to detect 77% of GMLs detected using immunohistochemical stains using post-

mortem brains (Schmierer et al., 2010), and the authors suggested that this finding may be 

translated to high field MRI using field strengths of 3T or 5T. 
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Nonetheless, recent studies using double inversion recovery have demonstrated a high 

frequency of GMLs, as well as their presence early in the disease course, including in 

patients presenting with CIS (Calabrese et al., 2007). Although it is not yet clear how early in 

the course of MS GMLs appear, several studies suggest that it may be prior to WMLs. Two 

of these were case studies documenting patients presenting with GMLs (Coebergh et al., 

2010, Popescu et al., 2011), while one study described 4 MS patients presenting with 

symptoms characteristic of MS but having normal appearing WM on MRI, in whom GMLs 

were observed months or years prior to WMLs (Calabrese and Gallo, 2009).  

1.2.2.5 Clinical relevance of GMLs 

Studies using autopsy samples have also shown that GML area, determined using PLP 

immunohistochemistry, is correlated with age at death (Gilmore et al., 2009). It is now widely 

accepted that GM pathology is involved in clinical progression (Calabrese et al., 2010a) and 

studies, mainly using clinical MRI, have attempted to correlate GM pathology with motor and 

cognitive disability. 

 

Recent studies suggest that GMLs are associated with motor disability. The number of 

GMLs correlated with EDSS score in CIS, RRMS and SPMS patients (Calabrese et al., 

2007) and a prospective, longitudinal study showed that GML number and volume increases 

over 3 years were higher in patients with worsening of clinical symptoms over the 3 years 

(Calabrese et al., 2010b). Additionally, the baseline GML volume correlated with EDSS 

score increases in RRMS and SPMS, leading the authors to suggest that baseline GML 

volume may be an independent predictor of worsening of clinical symptoms. These 

correlations were also found in PPMS after 2 years follow-up (Calabrese et al., 2009c). 

Conversely, patients with benign MS (EDSS score ≤3 and disease duration ≥15 years) had a 

lower number of GMLs than early RRMS patients (EDSS score ≤3 and disease duration ≤5 

years) at both baseline and after 1 year follow-up, which did not increase over time 

(Calabrese et al., 2009b). A recent study has confirmed the stronger association of GM 
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rather than WM atrophy with clinical progression, defined as an increase in EDSS score of 

≥1 compared to baseline, over 5 and 10 years follow-up (Jacobsen et al., 2014). 

 

As well as being associated with motor disability, GMLs have also been associated with 

cognitive disability. For example, the number and volume of GMLs was higher in RRMS 

patients defined as cognitively impaired using the Rao Brief Repeatable Battery of 

Neuropsychological Tests than in those defined as cognitively unimpaired, whereas no 

difference in the number and volume of WMLs was found (Calabrese et al., 2009a). 

 

The extent of GM pathology is variable and depends on the area examined. The cingulate 

gyrus, frontal and temporal lobes and hippocampus appear to be more severely affected 

than the motor cortex and occipital lobe (Kutzelnigg et al., 2005, Gilmore et al., 2009, 

Papadopoulos et al., 2009), which may explain the greater prevalence of cognitive disability 

resulting from GM pathology than motor disability (Reynolds et al., 2011). One study showed 

that cognitive disability had been noted in the medical records for all cases with extensive 

subpial demyelination identified using PLP immunohistochemistry (Bö et al., 2007).  

1.2.2.6 GML pathogenesis 

Although the exact mechanism of demyelination in the GM remains unclear, several 

mechanisms have been proposed. These must take into account the mild peripheral immune 

cell infiltration observed in GMLs compared to WMLs, which are characterised by microglial 

activation and in which perivascular infiltrates are characteristically rare (Peterson et al., 

2001, Magliozzi et al., 2010) as discussed in 1.2.2.1 and the density of B and T cells is the 

same as that in NAGM (Bø et al., 2003a), as well as the high prevalence of subpial lesions. 

Additionally, although BBB integrity is compromised in WMLs (Kirk et al., 2003), it appears to 

be preserved in GMLs (van Horssen et al., 2007), suggesting that the mechanism of GML 

development may differ from that of WMLs.  
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One theory is that demyelination and degeneration of axons in the WM result in the same 

pathology, and the formation of lesions, in the GM by anterograde or retrograde 

degeneration (Klaver et al., 2013). For example, a study combining whole brain post-mortem 

MRI with autopsy sample immunohistochemistry found correlation between 

neurodegeneration in connected cortical areas, WM tracts and thalamus. Neuronal or axonal 

loss in one area appeared to result in anterograde or retrograde degeneration in connected 

areas (Kolasinski et al., 2012), which is suggested to result in microglial activation and 

subsequent oligodendrocyte damage (Lassmann, 2012). 

 

However, one of the leading theories regarding GML pathogenesis is that they result from 

meningeal inflammation and associated release of pro-inflammatory cytokines. Several 

studies using autopsy samples have shown that diffuse inflammatory infiltrates are present 

in the meninges of PPMS and SPMS cases (Guseo and Jellinger, 1975, Howell et al., 2011, 

Choi et al., 2012, Kutzelnigg et al., 2005) as well as in a study using cortical biopsy samples 

from early MS patients (Lucchinetti et al., 2011), particularly in those with extensive subpial 

GM demyelination. Additionally, recent studies have shown that as well as these diffuse 

inflammatory infiltrates, ectopic lymphoid follicle-like structures are also present in the 

meninges, particularly those of the sulci, in a significant proportion of SPMS cases (41.4%, 

54% and 40% in Magliozzi et al., 2007, Magliozzi et al., 2010 and Howell et al., 2011 

respectively), and were associated with subpial lesions. These cases have been defined as 

F+ SPMS. These lymphoid-like structures consist of aggregates of CD20+ B cells, together 

with CD35+ follicular dendritic cells, Ki67+ proliferating CD20+ B cells, IgA, -G or -M+ 

plasmablasts/plasma cells and CD3+ T cells. Their presence in the deep sulci has led to the 

hypothesis that the decreased flow of CSF in the sulci results in a protected environment 

that allows the homing and retention of immune cells, which in turn results in an 

inflammatory milieu in the CSF (Reynolds et al., 2011). Lymphoid-like structures have also 

been found in the target organs of several other autoimmune and chronic inflammatory 

conditions, such as atherosclerosis (Houtkamp et al., 2001), autoimmune thyroiditis 
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(Armengol et al., 2001), myasthenia gravis (Roxanis et al., 2002), rheumatoid arthritis 

(Magalhães et al., 2002) and Sjögren’s syndrome (Salomonsson et al., 2003), where they 

are associated with disease progression. The development of lymphoid-like structures, or 

tertiary lymphoid organs, is thought to depend mainly on CXCL13 (chemokine (C-X-C motif) 

ligand 13), CCL21 (chemokine (C-C motif) ligand 21) and the cytokine lymphotoxin-α1β2 

(Aloisi and Pujol-Borrell, 2006).    

 

The presence of lymphoid-like structures in the cerebral meninges of F+ SPMS cases has 

been correlated with increased GM atrophy as well as increased subpial demyelination, in 

the absence of any significant change in the number of WMLs (Magliozzi et al., 2010). Their 

presence is associated with gradients of neuronal loss and microglial activation in cortical 

layers, with the greatest loss or activation in cortical layer I, as well as with a gradient of 

astrocyte loss that resulted in a thinning, or loss, of the glia limitans (Magliozzi et al., 2010). 

These gradients were observed not only in GMLs but also in NAGM. Finally, their presence 

is associated with a younger age at onset, age at wheelchair dependence and age at death 

(Magliozzi et al., 2007). A later study using a large, representative sample of 123 SPMS 

cases showed that diffuse inflammatory infiltrates in the meninges are similarly associated 

with GM demyelination and a younger age at onset, time to disease progression, time to 

wheelchair dependence and age at death (Howell et al., 2011). The authors suggest that the 

presence of lymphoid-like structures represents a more substantial inflammation at one end 

of a continuum of diffuse meningeal inflammation that may result in a shorter, more 

aggressive disease (Howell et al., 2011). These findings support the hypothesis that 

meningeal inflammation results in increased concentrations of pro-inflammatory cytokines in 

the CSF, which diffuse from the pial surface into the cortex resulting in GM pathology, 

directly or indirectly through the activation of microglia, and a more severe clinical course 

(Peterson et al., 2001, Reynolds et al., 2011). This hypothesis remains controversial, 

however, as another study failed to show a correlation between the extent of subpial 

demyelination and the extent of meningeal inflammation and also failed to show the 
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presence of lymphoid-like structures. Additionally, meningeal inflammation was no different 

in meninges overlying subpial GMLs than in meninges overlying NAGM in autopsy samples 

from progressive MS cases (Kooi et al., 2009). 

 

However, it has recently been shown in this laboratory that the number of cells expressing 

the pro-inflammatory cytokines TNF and IFN-γ and the gene expression of these cytokines 

are increased in the meninges of F+ SPMS patients. TNF was expressed by cells in the 

meninges with monocyte/macrophage morphology as well as some microglia in superficial 

GM, whereas IFN-γ was expressed by a proportion of cells in meninges, mainly CD3+ T 

cells (Gardner et al., 2013). TNF gene expression was significantly increased in meninges of 

both F+ and F- SPMS cases compared with non-neurological controls (NNCs), with greater 

upregulation in F+ SPMS, and IFN-γ gene expression was also increased in F+ SPMS cases 

compared with NNCs, but not in F- SPMS (Gardner et al., 2013). Additionally, the levels of 

these cytokines in post-mortem CSF of F+ SPMS cases are increased. TNF concentration 

was increased in CSF from F+ SPMS cases compared with both F- SPMS cases and NNCs 

whereas this increase did not reach significance for IFN-γ (Gardner et al., 2013). These 

findings were in agreement with previous studies that showed the presence of monocytes 

expressing TNF (Magliozzi et al., 2010) and CD8+ T cells expressing IFN-γ (Serafini et al., 

2007) in inflamed meninges, and studies that showed increased levels of TNF and IFN-γ in 

CSF, particularly in that obtained from RRMS patients at relapse (Obradović et al., 2012 and 

Romme Christensen et al., 2012 respectively).  

 

It has also been proposed that lymphoid-like structures may be sites of EBV infection in MS 

(Serafini et al., 2007), consistent with serological studies such as that described in 1.1.2 that 

suggest that EBV is involved in MS aetiology (Ascherio and Munger, 2007). EBV infects 

naïve B cells, causing them to express viral proteins and become activated. They then 

become proliferating blasts and undergo germinal centre reactions to differentiate into 

resting memory B cells, which undergo the transition into long-lived memory B cells
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(Thorley-Lawson and Gross, 2004). CD8+ T cells may target these B cells resulting in 

damage to the underlying GM (Serafini et al., 2007). A study using autopsy samples showed 

the presence of perivascular cuffs, which appeared to be sites of EBV infection, in subpial 

GMLs from a subset of F+ SPMS cases (Magliozzi et al., 2013). However, this hypothesis 

remains controversial, as several studies showed no or rare EBV infection in MS brain 

(Torkildsen et al., 2010, Willis et al., 2009 respectively). 

 

In summary, there is increasing evidence from clinical MRI and neuropathological studies to 

support a major role for cortical GM pathology in driving progression in MS (Reynolds et al., 

2011). Models will be required to study the relationship between GM pathology and 

progression in greater detail. 
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1.3 Lessons learned from in vivo and in vitro models 

1.3.1 Limitations of human tissue studies 

The studies using human tissue described above have increased understanding of the 

pathogenesis of MS and have allowed clinicopathological correlations to be made, leading to 

the identification of new drug targets. The main benefit of studies using human tissue is that 

the results obtained are directly relevant to humans. Brain banks operating prospective 

donor schemes, such as the UK MS Tissue Bank, supply well-characterised brain, spinal 

cord and CSF samples from population-based cohorts invaluable for research.  

 

The main limitation of studies using human MS tissue is that the majority is obtained at 

autopsy and hence each case represents only a single time point after variable disease 

duration, therefore it is not possible to study the development of pathology over time. 

Researchers also have only limited access to early and immunologically active MS tissue 

and hence it is difficult to study the earliest stages in the development of pathology. 

Additionally, due to the variable nature of the clinical course and pathology of MS between 

patients, clinicopathological correlations require the study of well-characterised tissue from a 

large number of cases with detailed medical records, the availability of which is limited. As 

the majority of human MS tissue is obtained at autopsy, several factors may compromise the 

tissue and molecular preservation of the samples. Both pre-mortem factors, including 

prolonged agonal state, hypoxia, acidosis, fever and seizures, and post-mortem factors, 

including long post-mortem delay between death and sample processing, temperature of the 

cadaver, fixative and sample processing are of concern  (Ferrer et al., 2008). Finally, the 

alteration of experimental conditions is limited in studies using MS tissue compared to those 

using in vivo or in vitro models.  
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The main in vivo models that are used are those induced by toxic agents such as the copper 

chelator cuprizone, those induced by Theiler’s murine encephalomyelitis virus and the most 

widely studied, experimental autoimmune encephalomyelitis (EAE) (Batoulis et al., 2011).   

1.3.2 EAE models of MS 

EAE involves the immunisation of susceptible animals with a myelin protein, or peptide 

thereof, together with an adjuvant, or alternatively antigen-specific T cells, resulting in an 

autoimmune disease with antigen specificity for the endogenous myelin protein, and a 

demyelinating inflammatory disease similar to MS. Studies using EAE models have led to 

the view of MS as a T cell-mediated autoimmune disease and have also allowed the 

development of effective anti-inflammatory and immunomodulatory treatments, although 

several effective treatments in EAE have failed in clinical trials (Lassmann and van Horssen, 

2011).  

 

The exact pathology and clinical course of the disease depends on the species, strain, sex, 

age and season of the animal, the identity, concentration and species origin of the myelin 

protein, the physical structure of the myelin protein/adjuvant emulsion and epigenetic factors 

(Schreiner et al., 2009). The Dark Agouti (DA) rat, Lewis rat and C57BL/6 mouse are the 

most common animals used, while MOG and MBP are two of the most common myelin 

proteins used in the induction of EAE. These antigens are emulsified in adjuvant, such as 

complete or incomplete Freund’s adjuvant (CFA and IFA respectively), and pertussis toxin 

may be required. Animals present with ascending paralysis, as current EAE models typically 

target the spinal cord (Sriram and Steiner, 2005), which initially affects the tail, followed by 

hind limbs and then fore limbs, leading to quadriplegia and subsequent death depending on 

disease severity. The clinical course may be relapsing-remitting, chronic or monophasic 

(Batoulis et al., 2011). Additionally, the antigen specificity of CD4+ T cells has been shown 

to affect the location of lesions following their adoptive transfer, with those specific for MOG 
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resulting in a high number of lesions in the periventricular and cerebellar WM compared to 

those specific for MBP resulting in pathology mainly in the spinal cord (Berger et al., 1997).  

1.3.2.1 Spontaneous models of EAE 

Spontaneous EAE models have been developed that allow studies to be performed without 

the requirement for adjuvants or adoptive transfer. For example, opticospinal 

encephalomyelitis mice are double transgenic animals on a C57BL/6 background that have 

transgenic B cells that bind native MOG and produce antibodies to it as well as transgenic T 

cells specific for amino acids 35-55 of MOG. Approximately half of these animals developed 

opticospinal encephalomyelitis, a variant of MS, with lesions in the optic nerve and spinal 

cord (Krishnamoorthy et al., 2006). 

1.3.2.2 T cell and antibody-mediated demyelination in EAE 

Studies that transferred T cells to naïve animals have shown that T cells are responsible for 

the induction of EAE (Paterson, 1960, Ben-Nun et al., 1981), inducing acute monophasic 

disease in most species and strains, characterised by high levels of inflammation and little or 

no demyelination. The transfer of encephalitogenic T cells may, however, in some animals 

induce relapsing-remitting or chronic disease again characterised by high levels of 

inflammation but associated with some demyelination (Mokhtarian et al., 1984). Chronic 

disease characterised by extensive demyelination may be induced by immunisation with 

whole spinal cord tissue in CFA (Snyder et al., 1975). Antibodies against components of 

myelin also appear to be involved in the pathogenesis of this chronic demyelinating disease. 

For example, the injection of a monoclonal antibody against MOG at disease onset in rats 

that had received encephalitogenic T cells resulted in extensive demyelination associated 

with increased duration and severity of clinical symptoms (Linington et al., 1988). The titres 

of anti-MOG antibody in serum have also been found to correlate with demyelination 

(Linington and Lassmann, 1987). 
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1.3.2.3 MOG-EAE in the Dark Agouti rat 

The clinical course and pathology of MS may be modelled in female DA rats by 

immunisation with a recombinant protein corresponding to the N-terminal amino acids 1-125 

of rat MOG. Immunisation induced mainly a chronic relapsing disease, resulting in both a B 

and T cell response and lesions in the optic nerves and spinal cord. Spinal cord 

demyelination was accompanied by inflammatory infiltrates around blood vessels as well as 

in the meninges, with spread into the underlying parenchyma (Storch et al., 1998b). The 

immunisation of DA rats with recombinant mouse (rm) MOG results in similar inflammatory 

lesions and is accompanied by increased axonal loss associated with a more severe clinical 

course in rats at the chronic stage of relapsing-remitting EAE (Reynolds et al., 2002, 

Papadopoulos et al., 2006). 

1.3.2.4 GMLs in EAE 

Pathology in the majority of EAE models is focused on spinal cord WM, with lesions in the 

cerebellum and optic nerves occasionally being observed. In addition to spinal cord lesions, 

all three types of GML have been identified in the cortex of marmosets with MOG-induced 

EAE (Pomeroy et al., 2005). However, the ethical and husbandry considerations and lack of 

molecular tools make this model impractical. GMLs have also been identified in MOG-

induced EAE in the Lewis rat (Storch et al., 2006) and PLP-induced EAE in the SJL mouse 

(Rasmussen et al., 2007), but their frequency, localisation, size and type is random and 

hence these models lack the necessary consistency. 

1.3.2.5 Limitations of EAE models 

Although studies using EAE models have increased understanding of the inflammatory 

aspects of MS, they have been poor in predicting the success of treatment for MS 

(Ransohoff, 2012). Their value is limited as a result of being induced by immunisation with 

strong adjuvants with the myelin protein or peptide. Additionally, EAE models only 

approximate some features of the clinical course and pathology of MS. For example, it is not 
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possible to study progression or make clinicopathological correlations, as animals with EAE 

do not display accumulation of chronic symptoms. It is also not possible to study relapses 

when using C57BL/6 mice, which are most commonly used because of the availability of 

transgenic models on this background, or remyelination, as lesions appear randomly with 

regard to localization and time. Pathology in the majority of EAE models is also focused on 

spinal cord WM, whereas MS affects the brain with prominent involvement of cerebral and 

cerebellar cortical GM. Finally, there is a lack of data regarding the roles of particular 

immune cells in EAE, including CD8+ T cells and B cells, which are discussed below and 

which appear to be involved in the pathogenesis of MS.   

1.3.3 Role of immune cells in MS and EAE 

As discussed in 1.2.1.3, MS is suggested to be initiated by activation and entry to the CNS of 

T cells, with a subsequent involvement of B cells. Additionally, EAE can be induced by the 

adoptive transfer of activated myelin-specific CD4+ T cells from mice with EAE to naïve mice 

(Stromnes and Goverman, 2006), hence understanding of the roles of these immune cells in 

mediating inflammation in the CNS in MS and EAE is necessary.  

1.3.3.1 T cells  

T cells respond to infection by clonal expansion of cells with receptors specific for molecular 

components of the infectious agent that are presented by APCs. Many different T cells have 

been identified and can be grouped into various subsets, including helper, follicular helper, 

regulatory, natural killer (NK), gamma delta and cytotoxic T cells (Fletcher et al., 2010), 

based on the cell surface markers they express and the effector molecules they produce. 

Most of the data regarding the role of T cells in the pathogenesis of MS and EAE concern 

helper and cytotoxic T cells. 
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CD4+ Th cells 

Th cells are a subtype of T cells characterised by the expression of CD4. They are activated 

by recognition of antigen presented by major histocompatibility complex (MHC) class II on 

APCs through the T cell receptor (TCR) and expand and differentiate into one of three 

subtypes, Th1, Th2 and Th17 (Kaiko et al., 2008), depending on the predominant cytokine 

microenvironment (Dittel, 2008). Th1 cells secrete IFN-γ, interleukin (IL) 2, lymphotoxin-α 

and TNF and are involved in the response to intracellular infection (Dittel, 2008, Zhu et al., 

2010), resulting in the activation of macrophages/microglia and upregulation of adhesion 

molecules on the BBB as discussed in 1.2.1.1. Th2 cells secrete IL4, IL5, IL10 and IL13, 

resulting in the activation of B cells and the upregulation of antibody production (Kaiko et al., 

2008). A third subtype of Th cells has recently been identified. Th17 cells secrete IL17, 

IL17F, IL6, IL22 and TNF and are involved in the response to extracellular infection through 

the activation of neutrophils as well as tissue inflammation (Langrish et al., 2005, Kaiko et 

al., 2008).  

 

MS has historically been regarded as a Th cell-mediated disease due to its association with 

MHC class II alleles as described in 1.1.2, with Th1 cells being the main pathogenic cells. 

This view was based on the finding that the adoptive transfer of Th1 cells to SJL/J mice 

caused severe EAE, whereas that of Th2 cells did not, for example (Khoruts et al., 1995).  

 

However, findings from human tissue studies are controversial. Although the presence of 

CD4+ T cells in MS lesions from biopsy samples has been reported (Fritzsching et al., 

2011), this is not a consistent finding. For example, another study using biopsy samples from 

early MS patients showed that CD4+ T cells are not the dominant subset in lesions. This 

study also investigated the TCR repertoire in lesions but failed to show clonal expansion in 

the CD4+ T cell population (Skulina et al., 2004). The administration of recombinant IFN-γ 

however, a Th1 effector cytokine, to RRMS patients induced exacerbations, which were 
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associated with increased numbers of peripheral macrophages expressing MHC class II 

(Panitch et al., 1987).  

 

Th17 cells have also recently been implicated. PLP-specific T cells cultured with IL23, which 

is required for differentiation into Th17 cells, induced EAE following their transfer to SJL 

mice, whereas cells cultured with IL12, which is required for differentiation into Th1 cells, did 

not (Langrish et al., 2005). However, a subsequent study showed that myelin-specific Th1 

cells without Th17 cell contamination induced EAE following their transfer to C57BL/6 mice, 

whereas Th17 cells without IFN-γ-positive cells did not. This study also found that only Th1 

cells were able to enter the CNS initially, but that once demyelinated lesions had developed, 

Th17 cells appeared in the CNS (O'Connor et al., 2008). The relative roles of Th1 and Th17 

cells in the pathogenesis of EAE and MS have not yet been resolved. 

 

Additionally, studies have investigated the role of natural and induced regulatory CD4+ T 

cells. These cells downregulate the activity of B, T, NK and dendritic cells by the secretion of 

the anti-inflammatory cytokines IL10, IL35 and transforming growth factor-β (TGF-β), the 

induction of apoptosis and the inhibition of dendritic cell maturation (Buc, 2013). Studies 

using EAE models support a role for regulatory T cells in reducing the incidence and severity 

of clinical and pathological EAE (Kohm et al., 2002, Reddy et al., 2004). However, the 

inhibitory effect of regulatory T cells on antigen-specific T cell proliferation is reduced in 

these cells from MS patients (Haas et al., 2005), as is their migration across primary human 

brain endothelium (Schneider-Hohendorf et al., 2010). 

 

CD8+ Tc cells  

Tc cells are characterised by the expression of CD8. They are activated by recognition of 

antigen presented by MHC class I on APCs through the TCR, and since most nucleated 

cells express MHC class I, they can function as APCs (Mars et al., 2011). Tc cells are 

cytotoxic through the release of either lytic enzymes, including granzymes and perforin, or 
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Fas ligand, which induces apoptosis by binding its receptor Fas. Additionally, Tc cells 

secrete cytokines, including TNF and IFN-γ, which contribute to the response to intracellular 

infection by increasing the recruitment and activation of macrophages/microglia (Harty and 

Bevan, 1999).  

 

As well as being associated with MHC class II alleles, studies have shown the presence of a 

risk locus for MS in the class I allele independent of those in class II alleles (Rubio et al., 

2007). Tc cells are more common than Th cells in acute and chronic lesions (Hauser et al., 

1986) and their oligoclonal expansion in blood (Skulina et al., 2004), CSF (Jacobsen et al., 

2002) and active lesions (Babbe et al., 2000) has been demonstrated, which is not the case 

for Th cells, suggesting a role for Tc cells in the pathogenesis of MS. 

 

A CD161highCD8+ T cell subset has recently been described, which expresses natural killer 

receptor protein 1a/CD161. The expression of this protein was increased in peripheral blood 

from MS patients and CD161highCD8+ T cells producing IFN-γ were detected in perivascular 

cuffs in WMLs as well as in diffuse inflammatory infiltrates and lymphoid-like structures in the 

meninges in autopsy samples from SPMS cases (Annibali et al., 2011). This T cell subset 

has been shown to produce pro-inflammatory IL17 as well as IFN-γ, but not anti-

inflammatory IL10, and is also depleted following autologous haematopoietic stem cell 

transplantation (Abrahamsson et al., 2013), which results in improvements in cognitive and 

motor disability (Burt et al., 2009). These findings further support a role for Tc cells. 

 

A similar role in EAE has been suggested based on the finding that the adoptive transfer of 

MBP-specific Tc cells to C3H mice caused EAE, characterised by atypical symptoms rather 

than ascending paralysis, and by lesions in the brain rather than spinal cord, which was 

dependent on IFN-γ (Huseby et al., 2001). However, a regulatory role has also been 

suggested. Th cells have been found to be more common than Tc cells in the CNS of 
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C57BL/6 mice immunised with MOG and the percentage of Tc cells was inversely correlated 

with clinical score (Weiss et al., 2007). 

1.3.3.2 B cells 

B cells are activated in response to infection in a T cell dependent or independent manner. 

Activation results in differentiation into plasma cells, and the production of antigen-specific 

antibodies, or memory B cells and a more specific and stronger antibody response on 

subsequent exposure to the same antigen. B cells, which express MHC class II, can also 

function as APCs and activate Th cells (Rodríguez-Pinto, 2005) as well as secreting 

cytokines, including IFN-γ (Harris et al., 2005), lymphotoxin and TNF (Bar-Or et al., 2010). 

 

Oligoclonal bands and high levels of the B cell chemokine CXCL13, indicative of abnormal B 

cell activity, are present in the CSF in early MS and have been shown to predict conversion 

from CIS to MS (Brettschneider et al., 2010). Additionally, these markers of B cell presence 

and activation are correlated with disease activity and progression. For example, mature B 

cell and plasma blast numbers in CSF and levels of CXCL13 in CSF and serum were 

correlated with MRI activity (Kuenz et al., 2008, Festa et al., 2009). Further evidence for a 

role for B cells in disease progression came from studies that showed the presence of 

lymphoid-like structures, consisting mainly of B cells, in the meninges of a significant 

proportion of SPMS cases that were associated with a younger age at onset, age at 

wheelchair dependence and age at death (Magliozzi et al., 2007) as discussed in 1.2.2.6. 

Taken together, these studies using MS tissue and CSF/serum suggest an important role for 

B cells in the pathogenesis of MS. 

 

Studies in EAE have yielded conflicting results, with one study showing that B cell-deficient 

mice were susceptible to MOG peptide-induced EAE and developed chronic disease 

characterised by demyelinating inflammatory lesions in optic nerves, spinal cord and brain 

(Hjelmström et al., 1998). However, another study showed that B cell-deficient mice were 



Chapter 1 - General introduction 51 

resistant to recombinant MOG-induced EAE, although not to encephalitogenic MOG peptide-

induced EAE (Lyons et al., 1999). 

 

As for Tc cells, a regulatory role for B cells has been suggested. These cells secrete the 

anti-inflammatory cytokine IL10 (Kala et al., 2010). Antibody-mediated depletion of B cells 

prior to the induction of EAE has been found to result in more severe clinical and 

pathological EAE due to the depletion of regulatory B cells, whereas depletion at the peak of 

EAE resulted in less severe EAE due to the depletion of antibody producing and antigen 

presenting B cells (Matsushita et al., 2008). A better understanding of the roles of B cells, in 

particular regulatory B cells, in EAE and MS is required. 

 

Despite this, the targeting of B cells has been shown to be a promising treatment strategy. A 

phase II trial of rituximab, a monoclonal antibody against CD20, showed that B cell depletion 

resulted in decreased numbers of new and total inflammatory lesions and fewer relapses in 

the two year follow-up in RRMS patients receiving rituximab compared to placebo (Hauser et 

al., 2008). 

1.3.3.3 Microglia 

Microglia are the resident macrophages of the CNS and have a wide variety of effector 

functions. Their main role is as components of the innate immune system in the CNS, where 

they function as the first line of defence against infection and injury (Ransohoff, 2009). In the 

healthy, mature CNS ‘resting’ microglia have a ramified morphology characterised by a small 

cell soma and the presence of numerous fine, branched processes that are covered with 

fine, shorter protrusions (Ransohoff, 2009). In vivo two-photon imaging of mouse cortex has 

shown that ‘resting’ microglia are highly active, continuously surveying their 

microenvironment with their processes and protrusions, without movement of their soma, 

and making contact with astrocytes, neurons and vasculature (Nimmerjahn et al., 2005). 

These functions are enabled by the constitutive and inducible expression of a wide variety of 
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surface receptors, including pattern recognition receptors, which identify pathogen-

associated molecular patterns, as well as receptors for both pro- and anti-inflammatory 

cytokines (Aloisi, 2001). Activated microglia have an amoeboid morphology characterised by 

a larger cell soma and shorter, thicker processes and express MHC class II, allowing them to 

function as APCs, as well as secreting cytokines including the pro-inflammatory TNF and 

anti-inflammatory IL10 (Aloisi, 2001).  

 

Studies using biopsy samples from early MS patients have shown that early active WMLs 

are characterized by the infiltration of a combination of haematogenous microglia and 

monocytes, whereas late active WMLs are characterized by a monomorphic population of 

phagocytic macrophages (Brück et al., 1995). The number of cells of the mononuclear 

phagocyte system in early and late active WMLs is the same, suggesting that the phagocytic 

macrophages in late active WMLs arose from the microglia and monocytes in early active 

WMLs. It has been estimated that between one half and one third of phagocytic 

macrophages arise from microglia (Brück et al., 1995, Trebst et al., 2001). Early GMLs, 

however, are characterized by the infiltration of phagocytic macrophages as well as 

microglia (Lucchinetti et al., 2011, Popescu et al., 2011), whereas the majority of phagocytic 

cells in GMLs from chronic progressive MS patients have the morphology of activated 

microglia (Peterson et al., 2001, Bø et al., 2003a, Bø et al., 2003b, Kutzelnigg et al., 2007).  

 

As described in 1.2.1.2, active lesions in MS and EAE are defined as those with infiltration of 

activated macrophages/microglia containing myelin/myelin degradation products and 

expressing the phagocytosis marker CD68, associated with antibody deposition on myelin 

sheaths, throughout the lesion (Lucchinetti et al., 2000, Storch et al., 1998b). Phagocytosis 

of myelin, opsonised by antibody or complement, is mediated by Fc and complement 

receptors, the expression of which is increased in activated macrophages/microglia (Mosley 

and Cuzner, 1996). Additionally, these macrophages/microglia express MHC class II (Bö et 

al., 1994, Nikodemova et al., 2007), resulting in the differentiation of naïve T cells into Th1 
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cells (Aloisi et al., 1999b). They have also been shown to express inducible NO synthase 

(NOS) in chronic active WMLs in MS and EAE (Hill et al., 2004, Tran et al., 1997), and the 

NO radicals produced are cytotoxic to oligodendrocytes in vitro (Merrill et al., 1993) and 

result in conduction block of both myelinated and demyelinated axons in vivo (Redford et al., 

1997). Finally, activated macrophages/microglia secrete TNF, the autocrine signalling of 

which results in increased messenger ribonucleic acid (mRNA) expression levels of the 

enzyme glutaminase and subsequent increased release of glutamate by microglia in vitro. 

This in turn results in neuritic beading, focal swellings of axons and dendrites and neuronal 

death (Takeuchi et al., 2006). 

 

Studies in EAE support a role for microglia in MS pathogenesis. The prophylactic and 

therapeutic treatment of rats with chronic relapsing-remitting EAE with the anti-inflammatory 

tetracycline, minocycline, resulted in decreased disease severity and progression, 

associated with inhibition of microglial activation in the spinal cord (Popovic et al., 2002). 

This effect has been shown to be mediated in part by decreased IFN-γ-induced expression 

of MHC class II on microglia (Nikodemova et al., 2007). Although several mechanisms of 

action for minocycline have been proposed (Plane et al., 2010), and hence its effect in EAE 

may not be mediated solely by the inhibition of microglial activation, the finding of Popovic et 

al. (2002) was confirmed in a subsequent study using mice and the macrophage/microglia 

activation inhibitor MMIF (macrophage migration inhibitory factor). However, only a modest 

effect on disease progression was observed with prophylactic treatment compared to a 

substantial effect with therapeutic treatment. This effect was associated with a shift in the 

expression of the transcription factors T-bet and GATA-3 from T-bet, which controls the 

transcription of Th1 cell markers, to GATA-3, which controls the transcription of Th2 markers 

(Bhasin et al., 2007). The selective paralysis of microglia by ganciclovir treatment of 

transgenic mice expressing herpes simplex virus thymidine kinase under the control of the 

CD11b promoter in macrophages/microglia, followed by bone marrow transfer to restore 

peripheral macrophages, resulted in delayed onset and decreased severity of disease 
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associated with decreased inflammation. Ganciclovir treatment of brain slice cultures from 

these mice showed that this effect was likely mediated by abolished release of nitrite and 

TNF in response to IFN-γ (Heppner et al., 2005). 

 

However, a protective as well as a damaging role for microglia in MS pathogenesis has been 

suggested. Microglia can release the anti-inflammatory cytokines IL10 and TGF-β in vitro, 

which inhibit further microglial activation by decreasing their release of pro-inflammatory 

cytokines, chemokines and nitrogen and oxygen radicals (Aloisi, 2001, Qian et al., 2006) and 

their expression of MHC class II molecules (O'Keefe et al., 1999). Additionally, a phenotype 

of microglia that supports remyelination has been described. Genome-wide gene expression 

analysis of microglia during demyelination and remyelination in the mouse cuprizone model 

was used to show that microglia are involved in the phagocytosis of myelin/myelin 

degradation products and apoptotic cells during demyelination but that they express 

cytokines and chemokines that allow them to activate and recruit oligodendrocyte precursor 

cells (OPCs) to the lesion during remyelination (Olah et al., 2012). This explains the finding 

that the inhibition of microglial activation decreases remyelination, using minocycline in a rat 

ethidium bromide model (Li et al., 2005). Finally, activated microglia have also been shown 

to express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor 

(Batchelor et al., 1999) and hence may also have a neuroprotective role.   

1.3.3.4 Cytokines 

Cytokines are soluble proteins released by immune cells that mediate their interactions and 

regulate their immune functions. Gene expression studies using brain tissue, peripheral 

blood mononuclear cells and whole blood from MS patients have shown that the expression 

of cytokines is dysregulated in MS (Sospedra and Martin, 2005). They have also been 

implicated in the pathogenesis of EAE, with the pro-inflammatory cytokines TNF and IFN-γ 

having received particular attention. It has recently been shown in this laboratory that the 

number of cells expressing TNF and IFN-γ and the gene expression of these cytokines in the 
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meninges, as well as their levels in post-mortem CSF, are increased in F+ SPMS cases 

(Gardner et al., 2013). 

 

TNF 

TNF is synthesised as a monomeric transmembrane (tmTNF) precursor protein with a 

molecular weight of 26kDa, the cytoplasmic tail of which may be cleaved by TNF-α 

converting enzyme to release a soluble (sTNF) cytokine. Both tmTNF and sTNF must form 

homotrimers to function (Caminero et al., 2011). TNF is mainly produced by activated 

macrophages, but also by B and T cells and several other immune cells (Caminero et al., 

2011), and in the CNS it may be produced by some neurons (Villarroya et al., 1997). Its 

effects are mediated by two TNF receptors, TNFR1 and TNFR2. Although sTNF and tmTNF 

can bind to both TNFR1 and TNFR2, sTNF binds preferentially to TNFR1 whereas tmTNF 

binds preferentially to TNFR2 (Grell et al., 1998, Grell et al., 1995 respectively). TNFR1 is 

coupled to one of three distinct signalling pathways by binding of the adaptor protein TRADD 

(TNFR-associated via death domain) to the death domain in its cytoplasmic region. The 

main pathway results in the formation of complex I and subsequent transcription of pro-

inflammatory genes by activation of the transcription factor family nuclear factor-kappa B 1 

(NF-κB) (Tracey et al., 2008). A distinct pathway results in the formation of complex II, the 

composition of which determines outcome. Complex IIa results in apoptosis mediated by 

caspases 8 and 3, whereas complex IIb results in necroptosis, which requires the activity of 

RIPK1 and RIPK3 (receptor-interacting protein kinase) IFN-γ (Vanlangenakker et al., 2012). 

TNFR2 lacks a death domain in its cytoplasmic region, and its binding results in the 

activation of inflammatory and cell survival signalling pathways (Yang et al., 2002). 

 

Studies using autopsy samples from RRMS and SPMS cases have demonstrated the 

presence of TNF in astrocytes and microglia in chronic active lesions (Hofman et al., 1989), 

while a more recent study using autopsy samples from F+ SPMS cases demonstrated its 

presence in activated microglia in active subpial GMLs as well as in macrophages in the 
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inflamed meninges (Magliozzi et al., 2010).  Studies using CSF from chronic progressive MS 

patients showed high levels of TNF in a majority of cases, which were correlated with 

disease severity and progression over 24 months of follow-up (Sharief and Hentges, 1991). 

The incubation of murine brain slices with CSF from progressive MS patients in vitro resulted 

in increased spontaneous excitatory postsynaptic currents and neuronal swelling, which 

were shown to be dependent on TNF signalling (Rossi et al., 2013). Additionally, TNF 

messenger RNA expression levels were increased in peripheral blood mononuclear cells 

from RRMS patients prior to a relapse (Rieckmann et al., 1995). 

 

Studies in EAE support a damaging role of TNF in MS pathogenesis. Treatment of mice with 

antibodies to TNF or TNFR1-IgG fusion proteins prevented the development of clinical and 

pathological EAE (Ruddle et al., 1990, Selmaj et al., 1991, Körner et al., 1997a), and the 

absence of TNF in TNF-deficient mice delayed the onset of disease (Körner et al., 1997b, 

Kassiotis et al., 1999). Disease severity and progression, however, were comparable to that 

in wild type mice, suggesting a role in development rather than progression of disease. 

Conversely, the overexpression of TNF in the CNS of transgenic mice resulted in 

spontaneous, chronic inflammatory demyelination that could be prevented by treatment with 

antibodies to TNF (Probert et al., 1995). The absence of sTNF alone in transgenic mice, on 

the other hand, delayed the onset of disease and prevented progression while tmTNF was 

able to maintain autotolerance and resistance to infection (Alexopoulou et al., 2006). 

Additionally, TNFR2 knockout mice developed more severe clinical and pathological EAE 

than wild type mice, whereas TNFR1 knockout mice were resistant to the development of 

disease (Suvannavejh et al., 2000). These studies suggest that the selective inhibition of 

sTNF and its TNFR1 signalling pathway may be a useful therapeutic strategy. Support for 

this came from two recent studies that used both a selective sTNF and a non-selective TNF 

inhibitor and found that inhibition of sTNF and TNFR1 alone resulted in protection from EAE 

and increased remyelination and neuroprotection (Brambilla et al., 2011, Taoufik et al., 

2011). A further study showed that prophylactic and therapeutic treatment with a selective 
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TNFR1 antagonist resulted in less severe clinical disease in mice with MOG-induced EAE, 

and that the prophylactic treatment resulted in neuroprotection (Williams et al., 2014). 

 

Finally, returning to MS, the gene for TNFR1 has been found to contain two independent 

susceptibility alleles in a meta-analysis of genome-wide association studies, further 

supporting a role for sTNF and TNFR1 signalling (De Jager et al., 2009). 

The importance of distinguishing between the damaging and protective roles of TNF when 

considering therapeutic strategies was realised following a clinical trial with lenercept, a 

fusion protein of the extracellular domain of TNFR1 and a heavy chain fragment of IgG1. 

This multicentre, double-blind, placebo-controlled and randomised phase II trial was stopped 

due to a dose-dependent increase in the number and severity of exacerbations in RRMS 

patients (The Lenercept Multiple Sclerosis Study Group, 1999). Unexpected results such as 

these have discouraged the use of therapeutic strategies targeting TNF, but have led to 

increased research into the functions of TNF and TNFRs. 

 

IFN-γ 

IFN-γ is produced mainly by Th1 cells and results in the proliferation and differentiation of 

naïve T cells into Th1 cells (Imitola et al., 2005) as well as the activation of 

macrophages/microglia by increasing the expression of MHC class II (Vass and Lassmann, 

1990) and TNF (Welser-Alves and Milner, 2013) as well as TNFR1 (Veroni et al., 2010). 

 

Studies using autopsy samples have demonstrated the presence of IFN-γ in 

macrophages/microglia at the margins of chronic active lesions, associated with apoptotic 

oligodendrocytes (Vartanian et al., 1995). The administration of recombinant IFN-γ to RRMS 

patients appeared to induce exacerbations, which were associated with increased numbers 

of peripheral macrophages expressing MHC class II (Panitch et al., 1987), and IFN-γ 

production in a whole blood mitogen assay preceded exacerbations (Beck et al., 1988). 
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As for TNF, studies in EAE appear to support a damaging role of IFN-γ in MS pathogenesis. 

IFN-γ messenger RNA expression levels in the CNS increased during relapse and 

decreased during remission (Issazadeh et al., 1995) while the overexpression of IFN-γ in 

oligodendrocytes of transgenic mice resulted in spontaneous demyelination associated with 

activation of microglia and infiltration of mainly CD8+ T cells accompanied by clinical disease 

(Horwitz et al., 1997). However, IFN-γ knockout mice were susceptible to EAE and 

developed massive inflammatory infiltrates in the CNS (Ferber et al., 1996). It has been 

suggested (Imitola et al., 2005) that this unexpected result may be due to the role of IFN-γ in 

inhibiting T cell proliferation (Konieczny et al., 1998, Badovinac et al., 2000). 

 

In vitro studies have shown that individual treatment of oligodendrocytes with TNF or IFN-γ 

induced dose-dependent apoptosis. Combined treatment with these cytokines indicated 

synergistic actions, resulting in accelerated oligodendroglial apoptosis (Buntinx et al., 2004). 

Individual treatment of OPCs with TNF induced metabolic changes, driven by mitochondrial 

defects, resulting in the inhibition of differentiation to mature oligodendrocytes (Bonora et al., 

2014). Combined treatment of microglia has indicated similar synergistic actions. Individual 

treatment did not induce NOS expression or NO production, in contrast to combined 

treatment, which activated NF-κB resulting in NOS transcription (Mir et al., 2008). Studies 

have investigated the molecular basis of the synergistic actions of TNF and IFN-γ. One of 

these studies proposed the model shown in Figure 1.3 based on the actions of TNF and IFN-

γ on the expression of MHC class 1 in oligodendrocytes, with IFN-γ inducing the expression 

of TNFR1 and interferon regulatory factor 1 (IRF1) suggested to be the main common 

transcription factor (Agresti et al., 1998).  
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Figure 1.3. Model proposed for the molecular basis of synergistic actions of TNF and IFN-γ. 
Phosphorylation of the JAK1 and JAK2 kinases following IFN-γ treatment results in phosphorylation of 
STAT1, homodimers of which bind to GAS sequences in the TNFR1 and IRF1 promoter regions. IRF1 then 
acts as intermediate transcription factor, resulting in the expression of MHC class I together with the 
transcription factor NF-κB, activated following binding of TNF to TNFR1 (Agresti et al., 1998). 
 

1.3.4 Targeted EAE 

In order to target demyelination and inflammation to specific anatomical locations within the 

rodent CNS, EAE models have now been developed that involve the immunisation of 

animals with a subclinical dose of recombinant MOG to prime anti-MOG specific T and B 

cells followed by the injection of pro-inflammatory cytokines at the desired location to attract 

the primed auto-reactive T cells and antibodies and induce demyelination (Kerschensteiner 

et al., 2004). The immunisation of female Lewis rats with a subclinical dose of recombinant 

rat (rr) MOG followed 18-22 days post immunisation (dpi) by the injection of TNF and IFN-γ 
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into the dorsal funiculus resulted in large demyelinating inflammatory lesions with axonal 

damage localised mainly to the WM (Kerschensteiner et al., 2004). These animals 

developed motor symptoms that were maximal at 3-8 days post injection and correlated with 

demyelination. The same laboratory subsequently developed a model that shows cortical 

pathology by injecting the cytokines into the motor cortex. This resulted in all three types of 

GML in the injected cortex, associated with activated microglia, infiltration of T cells and 

axonal damage, but not in the contralateral cortex (Merkler et al., 2006). However, the value 

of this model to study MS is limited by the lack of chronic pathology and by the physical 

injury and BBB damage induced by the direct injection of cytokines. Demyelination was 

maximal at 3 days after injection and remyelination was complete at 14 days after injection 

(Merkler et al., 2006). 

 

In order to test the hypothesis that TNF and IFN-γ produced in the meninges can diffuse 

from the pial surface into the cortex, resulting in subpial lesions, and avoid the damage 

caused by injection into the motor cortex, this laboratory has recently developed a model 

that shows cortical pathology driven by meningeal inflammation (Gardner et al., 2013). The 

immunisation of female DA rats with a subclinical dose of rmMOG followed 18-22 dpi by the 

injection of TNF and IFN-γ into the subarachnoid space (SAS) of the sagittal sulcus resulted 

in subpial lesions similar to those described in SPMS. Microglia with activated morphology 

(large, rounded cell bodies with short, thick processes) were found associated with the 

myelin sheaths, particularly at the edge of the lesion, and a gradient of microglial activation 

was observed, again similar to that described in SPMS. Lesions were associated with B cell, 

CD4+ and CD8+ T cell and macrophage accumulation in the meninges. No demyelination 

occurred in rats immunised with IFA and injected with cytokines or in rats immunised with 

rmMOG and injected with phosphate buffered saline (PBS). This model has been shown to 

be highly reproducible but, as in the motor cortex model, there is a lack of chronic pathology 

due to the acute nature of the cytokine delivery.  Demyelination was maximal at 7 days after 

injection and remyelination was complete at 14 days after injection (Gardner et al., 2013).  
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1.4 Hypothesis 

Both human tissue and in vivo model studies performed in this laboratory have suggested 

that cytotoxic and/or pro-inflammatory molecules diffusing from the CSF in the chronically 

inflamed meninges into the underlying cortical GM may result in subpial GMLs in MS 

(Gardner et al., 2013). 

 

In this project we test the hypothesis that meningeal inflammation resulting from the 

presence of increased levels of TNF and IFN-γ in the SAS of animals immunised with a 

subclinical dose of rmMOG will result in subpial demyelination and microglial activation, and 

that lentiviral (LV) vectors will be a promising delivery system to achieve the chronic 

presence of TNF and IFN-γ in the SAS for future studies. In addition, we test the idea that 

cytotoxic and/or pro-inflammatory molecules other than TNF and IFN-γ are present in the 

chronically inflamed meninges in MS. 

 

  



Chapter 1 - General introduction 62 

1.5 Aims 

We aimed to develop a system that would enable the chronic delivery of TNF and IFN-γ into 

the SAS of animals immunised with a subclinical dose of rmMOG using LV vectors and to 

determine the identity of the cytotoxic and/or pro-inflammatory molecules present in the 

meninges in MS.  

 

To fulfil these aims, the following studies were performed: 

 Expression and purification of rmMOG followed by the identification of a suitable 

subclinical dose in the DA rat. 

 Determination of the effect of the dose of TNF and IFN-γ on the duration and extent 

of pathology in the model of cortical pathology driven by meningeal inflammation. 

 Evaluation of LV vectors as a delivery system to achieve the chronic presence of 

TNF and IFN-γ in the SAS of the DA rat. 

 Identification of the cytotoxic and/or pro-inflammatory molecules expressed in the 

meninges in post-mortem MS brain. 

  



Chapter 2 - MOG-EAE in the DA rat 63 

Chapter 2 

 

 

 

 

 

 

 

MOG-EAE in the DA rat 

 

 

 

 

 

 

 

 



Chapter 2 - MOG-EAE in the DA rat 64 

2.1 Introduction 

2.1.1 Myelin oligodendrocyte glycoprotein 

2.1.1.1 Structure and function 

The formation of myelin depends on the expression of myelin-specific proteins, including 

CNPase, MBP and PLP. MOG is a minor myelin-specific protein, accounting for 

approximately 0.05% of proteins (Amiguet et al., 1992). It is expressed at the external 

surface of the myelin sheath and the plasma membrane of oligodendrocytes with low 

expression in the lamellae of compact myelin and at the border between myelin and axon 

(Brunner et al., 1989, Scolding et al., 1989). It may be used as a marker of oligodendrocyte 

maturation, during which it is expressed in the later stages, and its temporal expression 

parallels subsequent myelination (Pham-Dinh et al., 1993, Johns and Bernard, 1999). 

 

Rat, mouse, bovine and human MOG have been cloned, leading to the identification of 

mature MOG as a 218 amino acid member of the Ig superfamily (Gardinier et al., 1992, 

Pham-Dinh et al., 1993, Hilton et al., 1995) that is highly conserved between species (Johns 

and Bernard, 1999). Western blotting of MOG from several species, including human, 

revealed two major bands at 28kDa and 55kDa, with the band at 55kDa thought to be a 

dimer of the band at 28kDa (Slavin et al., 1997). The model for the structure of MOG 

proposed by Kroepfl et al., 1996 is shown in Figure 2.1.1.  

 

Although the function(s) of MOG in myelin has proved difficult to identify, three possible 

functions have been proposed (Johns and Bernard, 1999). The structure of MOG indicates 

that it may function as an adhesion molecule or cellular receptor and it has been suggested 

that it mediates contact between adjacent myelinated axons during the later stages of 

myelination (Burger et al., 1993, Bernard et al., 1997). Additionally, a role for MOG as a 

regulator of microtubule stability has been proposed after it was shown that the treatment of 
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oligodendrocytes with anti-MOG antibody in vitro resulted in microtubule depolymerisation 

(Dyer and Matthieu, 1994), thought to be due to the degradation of MBP (Johns et al., 1995). 

Finally, it has been shown that purified native MOG, as well as the recombinant N-terminal 

extracellular Ig-like domain, bind the C1q component of complement in a dose-dependent 

and saturating manner, resulting in complement activation (Johns and Bernard, 1997), 

suggesting a role for MOG in mediating interactions between myelin and immune cells 

(Johns and Bernard, 1999). 

 

 

 

 

 

 

 

 

 

Figure 2.1.1. Model proposed for the structure of native MOG. Kroepfl et al., 1996 proposed that it 
contains two transmembrane regions, with the second of these thought to be associated with the 
membrane without spanning it, resulting in the C-terminal domain being intracellular. The 1.8Å crystal 
structure of the N-terminal extracellular domain, shown in green, confirmed that it assumes a classical Ig 
fold (Clements et al., 2003), which is expressed and purified for use in EAE models of MS. 
 

However, it is the hypothesised role for MOG as an auto-antigen in MS, rather than its 

physiological function(s), that has received particular attention.  

2.1.2 MOG as an auto-antigen in MS 

In contrast to the high affinity antibodies for self-antigens that have been identified in other 

neurological conditions, including the acetylcholine receptor in myasthenia gravis (Vincent, 

2002) and aquaporin 4 in neuromyelitis optica (Lennon et al., 2005), such a self-antigen has 

proven difficult to identify in MS. In this context, the T cell response to the enzyme 

transaldolase expressed in oligodendrocytes (Banki et al., 1994), the small heat shock 
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protein αB-crystallin expressed in oligodendrocytes and astrocytes (van Noort et al., 1995) 

and the myelin-specific proteins MBP (Warren and Catz, 1993), PLP (Greer and Pender, 

2008) and MOG have been investigated. MOG expression is specific to the CNS, consistent 

with the observation of MS lesions only in the CNS, and its expression at the external 

surface of the myelin sheath renders it accessible for recognition by components of the 

immune system. These properties of MOG led to the hypothesis that it is an auto-antigen in 

MS.  

 

Peripheral T cells obtained from MS patients have been shown to proliferate following 

treatment with myelin antigens in vitro, this response being greatest following treatment with 

MOG (Kerlero de Rosbo et al., 1993). MOG auto-antibodies have been identified in IgG 

purified from lesion autopsy samples from SPMS cases, where their levels were higher than 

those in CSF and serum, indicating the significance of local accumulation/production 

(O'Connor et al., 2005). They have also been identified bound to disintegrating myelin in 

lesions of active MS cases (Genain et al., 1999).   

 

MOG auto-antibodies have been detected in serum and CSF obtained from MS patients and 

shown to persist during the disease course. However, they are not detected in all samples 

(they are detected in 38% and 33% of serum and CSF samples respectively) and are also 

detected in samples obtained from other inflammatory neurological disease patients (53% in 

both serum and CSF samples), although they have been shown to be transient in samples 

from these patients (Reindl et al., 1999). The binding of MOG auto-antibodies purified from 

serum from MS patients was investigated using the native MOG Ig-like domain expressed on 

the cell surface of transfected cells in vitro, and was observed in only 1 of 17 MS patients 

(Haase et al., 2001), indicating that MOG auto-antibodies may only mediate demyelination in 

a limited subset of MS patients. Given this, the hypothesis that MOG is the sole auto-antigen 

in MS remains controversial and it has been suggested that there are several auto-antigens 

(Nylander and Hafler, 2012). Additionally, although the initial auto-reactivity may be specific 
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for a particular epitope of a particular antigen, epitope spreading may result in subsequent 

auto-reactivity specific for further epitopes of the particular antigen or further antigens (Tuohy 

et al., 1999). 

2.1.2.1 Mechanisms of antibody-mediated demyelination 

Several mechanisms of antibody-mediated demyelination have been proposed. The ability of 

monoclonal antibodies specific for MOG to induce demyelination in EAE induced by the 

transfer of MBP-specific T cells has been shown to depend on the ability of the antibody to 

fix complement (Piddlesden et al., 1993). The co-localisation of immunoglobulins with the 

complement C9neo antigen on degenerating myelin sheaths and in myelin degradation 

products has also been observed at the edge of active WMLs (Storch et al., 1998a), 

suggesting a role for antibody-mediated complement activation and subsequent formation of 

the complement membrane attack complex. However, studies in EAE have demonstrated no 

effect of decomplementation on demyelination (Piddlesden et al., 1991), suggesting that 

mechanisms other than complement activation are involved, although this is a controversial 

finding (Mead et al., 2002). Myelin phagocytosis by macrophages in vitro has been shown to 

depend on its opsonisation, which was greatest following treatment with a monoclonal 

antibody specific for MOG (Van der Goes et al., 1999). Phagocytosis induces the production 

of cytotoxic TNF and NO by the macrophages, further contributing to antibody-dependent 

cell-mediated cytotoxicity (van der Laan et al., 1996). 

2.1.3 MOG-EAE 

EAE is the most widely studied in vivo model of MS. It involves immunisation with a myelin 

antigen, typically together with an adjuvant, or adoptive transfer of myelin antigen-reactive T 

cells, resulting in a disease that is immunologically and pathologically similar to MS (Batoulis 

et al., 2011). It is purely autoimmune, with antigen specificity for the endogenous myelin 

antigen, in contrast to the alternative in vivo models induced by a toxic agent or virus. The 

exact pathology and clinical course of the disease depends on the species, strain, sex and 
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age of the animal, the identity, concentration and species origin of the myelin protein, the 

physical structure of the myelin protein/adjuvant emulsion and epigenetic factors (Teuscher 

et al., 2004, Schreiner et al., 2009, Spach et al., 2009). 

 

Unlike the majority of myelin antigens used for immunisation, MOG induces a demyelinating 

auto-antibody response as well as an encephalitogenic CD4+ T cell response in susceptible 

species (Gold et al., 2006) and hence more closely reproduces the complex pathology and 

clinical course associated with MS than other myelin antigens. MOG auto-antibodies result in 

more severe clinical EAE and induce extensive demyelination in T cell-mediated encephalitis 

in mouse, rat and primate EAE models as well as in MOG-induced  EAE, the auto-antibody 

response acting synergistically with the T cell  response (Schluesener et al., 1987, Linington 

et al., 1988, Genain et al., 1995, Storch et al., 1998b). It has recently been shown that EAE 

induced by the Ig-like domain of MOG, amino acids 1-125, is more severe than that induced 

by the MHC class II-associating domain of MOG, amino acids 35-55. This was associated 

with increased numbers of CD4+ T cells producing IFN-γ in the CNS (Mony et al., 2014). 

 

The most commonly used murine MOG-EAE model is that induced in C57BL/6 mice by 

MOG amino acids 35-55 peptide, resulting in chronic progressive EAE. However, the extent 

of complement activation as well as that of the demyelinating auto-antibody response varies 

widely between strains, which is particularly important when considering C57BL/6 mice. This 

strain is most commonly used because of the availability of transgenic models on this 

background, but gene(s) associated with the H-2b MHC haplotype in this strain prevent a 

demyelinating auto-antibody response to conformational-dependent epitopes of the MOG Ig-

like domain, hence tissue damage is not mediated by auto-antibodies. Instead, clinical 

disease, demyelination and inflammation are mediated by T cells, with a role for TNF-

dependent mechanisms (Akassoglou et al., 1999, Bourquin et al., 2003). 
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In contrast to murine MOG-EAE models, demyelination in marmoset and rat appears to be 

dependent on auto-antibodies and complement only (Adelmann et al., 1995, Genain et al., 

1995, Stefferl et al., 1999a). The levels of MOG auto-antibodies in serum from guinea pigs 

with chronic relapsing EAE are correlated with demyelination and inflammation following 

administration of the serum to naïve rats (Linington and Lassmann, 1987) and inhibition of 

complement activation prevents the more severe clinical EAE and the more extensive 

demyelination observed following treatment with MOG auto-antibodies in MBP-induced  EAE 

(Linington et al., 1989). The rat strains used include Lewis and Brown Norway as well as DA 

rats while the MOG antigens used include rat amino acids 35-55, 1-125 and 1-118 epitopes 

of the Ig-like domain (Mannie et al., 2009). The immunisation of Lewis rats with MOG 

antigen results in meningeal and perivascular inflammation, but no significant demyelination, 

macrophage recruitment or clinical EAE is observed, suggested to be due to a lack of 

antigen-specific T cell response (Adelmann et al., 1995, Weissert et al., 1998). In contrast, 

severe clinical EAE is observed in the more susceptible DA rats (Weissert et al., 1998). 

2.1.3.1 MOG-EAE in DA rat 

The clinical course and pathology of MS may be modelled in DA rats by immunisation with a 

recombinant MOG peptide, which is usually the complete N-terminal extracellular Ig-like 

domain, emulsified in IFA. The onset of clinical EAE is approximately 14 dpi (Papadopoulos 

et al., 2010), although the clinical and pathological characteristics of the resulting disease 

depend on the protocol used. The dose of MOG required is approximately 50µg per animal, 

which induces chronic progressive EAE in some animals, whereas a dose of 200µg induces 

relapsing-remitting EAE in approximately 50% of animals (Papadopoulos et al., 2006, 

Reynolds, personal communication, 2014). Differences in the monomer:dimer ratio of 

individual batches of recombinant MOG have been shown to affect the incidence, clinical 

course and severity of EAE, with high monomer:dimer ratios thought to be more 

encephalitogenic (unpublished observations from this laboratory). Additionally, the clinical 

and pathological characteristics depend on whether precipitated or soluble MOG is used. 
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The immunisation of female DA rats with 50µg of precipitated MOG emulsified in CFA 

resulted in a greater demyelination score of brain and spinal cord combined and a high 

incidence of neuromyelitis optica (80%), whereas immunisation with soluble MOG instead 

resulted in a high incidence of acute disseminated leucoencephalomyelitis (100%; Storch et 

al., 1998b). Finally, effects of gender have also been observed. A significant proportion of 

female DA rats immunised with 75µg of MOG developed neuromyelitis optica, whereas the 

optic nerves were not affected in equivalent male rats. The inflammatory index of spinal cord 

and demyelination score were also greater in female rats (Storch et al., 1998b).  

 

The most common distribution pattern of lesions following the immunisation of female DA 

rats with a soluble recombinant protein corresponding to the N-terminal amino acids 1-125 of 

rat MOG emulsified in IFA is both the spinal cord and optic system in 44% of lesions, 

followed by only the spinal cord in a further 38% of lesions, inducing mainly a chronic 

relapsing disease. Active lesions are characterised by the presence of Ig and complement 

C9neo antigen on degenerating myelin sheaths and meningeal and perivascular 

inflammation consisting of activated macrophages and T cells (Storch et al., 1998b), hence 

reproducing the pathology of the pattern II WMLs observed in MS (Lucchinetti et al., 2000). 

The immunisation of female DA rats with rmMOG results in similar inflammatory 

demyelinating lesions and is accompanied by axonal loss. This is observed as early as 5 

days from disease onset, is correlated with the density of activated macrophages/microglia 

and is associated with a more severe clinical course in rats at the chronic stage of relapsing-

remitting EAE (Reynolds et al., 2002, Papadopoulos et al., 2006). Again, this reproduces the 

proposed association between axonal loss and clinical progression in MS (Compston and 

Coles, 2008, Reynolds et al., 2011), rendering MOG-EAE in the female DA rat a useful 

model. 
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2.1.3.2 Targeted MOG-EAE  

However, pathology in the majority of EAE models is focused on spinal cord WM and cortical 

GM pathology is rarely observed. In order to target pathology to specific anatomical locations 

within the rat CNS, EAE models have now been developed that involve immunisation with a 

subclinical dose of recombinant MOG to prime anti-MOG specific T and B cells followed by 

the injection of pro-inflammatory cytokines at the desired location to attract the primed auto-

reactive T cells and antibodies and induce demyelination (Kerschensteiner et al., 2004, 

Merkler et al., 2006, Gardner et al., 2013). The subclinical dose of recombinant MOG used 

does not result in clinical symptoms, but does result in a peripheral anti-MOG antibody 

response that is the same as that in animals with clinical symptoms. Additionally, little 

inflammation and no demyelination are observed in the CNS of animals immunised with this 

dose.  

2.1.4 Aims 

We aimed to identify a suitable subclinical dose of rmMOG for subsequent use in the 

development of the chronic model of cortical pathology driven by meningeal inflammation. 

This dose should result in a peripheral anti-MOG antibody response in the absence of 

immune cell infiltration into the CNS, demyelination and clinical symptoms. 

 

To fulfil these aims, the following were performed: 

 Expression and purification of rmMOG. 

 Induction of EAE in female DA rats and clinical scoring. 

 Assessment of EAE pathology using immunostaining. 

 Determination of peripheral anti-MOG antibody levels using enzyme-linked 

immunosorbent assays (ELISAs). 

 Identification of a suitable subclinical dose of rmMOG. 
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2.2 Methods 

The methods described in this Chapter were performed with equal contribution by Miss 

Eleanor Browne (Neuroinflammation and Multiple Sclerosis, Division of Brain Sciences, 

Imperial College London), who also required a subclinical dose of rmMOG for her studies. 

Expression and purification of rmMOG were performed together and although one group of 

animals was used, Miss Browne and the author each performed half of the immunostaining 

and ELISAs. 

2.2.1 Expression and purification of rmMOG 

2.2.1.1 Expression vector 

E. coli glycerol stocks transformed with complementary DNA coding for the N-terminal amino 

acids 1-118 of mouse MOG were donated by Dr McMahon, National University of Ireland, 

Galway. The MOG sequence was cloned into the multiple cloning site of the pRSET A vector 

(Invitrogen, Paisley, UK) that also contains an N-terminal polyhistidine tag for purification 

with a nickel-chelating resin (Figure 2.2.1).   

 

 

 

 

 

 

 

 

 

Figure 2.2.1. Vector map of pRSET A. Note the T7 promoter (PT7), N-terminal polyhistidine tag (6xHis) 
and MOG sequence flanked by EcoRI and HindIII restriction sites in the multiple cloning site. 
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2.2.1.2 Expression of rmMOG protein 

E. coli glycerol stocks were streaked onto Lysogeny broth (LB) agar (Sigma-Aldrich, Poole, 

Dorset, UK) plates containing ampicillin (100µg/ml, Sigma-Aldrich) and chloramphenicol 

(35µg/ml, Sigma-Aldrich) and incubated overnight at 37°C. Six single colonies were selected 

for culture in LB (Sigma-Aldrich) containing antibiotics at the same concentrations and 

incubated overnight at 37°C in a shaking incubator. 

 

DNA was prepared from the six cultures using a QIAprep Spin Miniprep Kit (Qiagen, 

Crawley, Sussex, UK) according to manufacturer’s instructions. The concentration of eluted 

DNA was determined using a NanoDrop spectrophotometer (NanoDrop, Wilmington, 

Delaware, USA).  T7 primer (3.2pmol; Life Technologies, Paisley, Renfrewshire, UK) was 

added to 500-600ng DNA and sequencing was performed by the MRC Genomics 

Laboratory. Additionally, restriction digestion was performed for 60 minutes in a water bath 

at 37°C using HindIII in NEBuffer 2 (New England Biolabs, Ipswich, Massachusetts, USA), 

followed by the addition of EcoRI and sodium chloride (1M) for a further 60 minutes prior to 

inactivation for 20 minutes at 65°C. Loading buffer (Qiagen) was added to cut and uncut 

DNA. Samples were run in Tris-borate-ethylenediaminetetraacetic acid (EDTA; all Sigma-

Aldrich; 0.5x) buffer on a 1% agarose (Sigma-Aldrich) gel with ethidium bromide (Sigma-

Aldrich) for approximately 60 minutes at 109V until the bands of the ladder (Hyperladder 1; 

Bioline, London, UK) were well separated. Bands were visualised under ultraviolet 

illumination (BioDoc-It Imaging System; UVP, Cambridge, Cambridgeshire, UK). 

 

Following confirmation that the E. coli cultures were transformed with complementary DNA 

coding for the MOG sequence and polyhistidine tag, a single culture was grown in Super 

Optimal Broth (SOB) medium (Invitrogen) containing antibiotics at the same concentrations 

as in LB overnight at 37°C in a rotary incubator. Growth of the culture was monitored by 

determining the absorbance of the culture at 600nm. Expression of MOG from the PT7 
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promoter was induced at the mid-logarithmic phase of growth at which the absorbance was 

approximately 0.3, by the addition of isopropyl β-D-1-thiogalactopyranoside (IPTG; 1mM; 

Sigma-Aldrich). Growth was allowed to continue for approximately 4 hours until the 

absorbance was 0.8-1.2, at which point medium was placed on ice.  

 

Cells were harvested by centrifugation at 1,380g for 10 minutes at 4°C. Pellets were stored 

overnight at -20°C. Cells were lysed with pH8 lysis buffer (10mM Tris-HCl, 50mM PO4, 8M 

urea, 100mM NaCl; all Sigma-Aldrich) followed by further disruption of membranes and 

removal of cell debris by repeated sonication and centrifugation (16,100g, 25 minutes, 4°C), 

keeping the supernatant after each round.  

2.2.1.3 Purification and concentration of rmMOG protein 

Talon metal affinity resin (Clontech, Saint-Germain-en-Laye, France) was washed with a 

volume of lysis buffer, centrifuged and the supernatant discarded five times. It was added to 

the supernatant containing protein and allowed to bind the protein by agitation for 60 

minutes on a rotary shaker. The resin-protein complex was washed by centrifugation at 700g 

for 5 minutes, removal of the supernatant, addition of lysis buffer (5ml), agitation for a further 

15 minutes on a rotary shaker and centrifugation at 700g for 5 minutes. The resin-protein 

complex was added to a gravity flow column and washed on the column with lysis buffer 

followed by pH7 wash buffer (50mM NaPO4, 300mM NaCl, 8M urea). Elution of protein was 

induced by adding pH5.3 elution buffer (50mM NaPO4, 300mM NaCl, 8M urea, 20mM MES 

(2-(N-morpholino)ethanesulfonic acid; Sigma-Aldrich)) and monitored by determining 

absorbance at 280nm. The eluted protein was diluted with a volume of pH7.4 arginine (1M; 

Sigma-Aldrich) in PBS (Sigma-Aldrich), added to dialysis tubing (SnakeSkin 3.5K MWCO; 

Pierce, Rockford, Illinois, USA) and dialysed against 3 volumes of pH7.4 dialysis buffer (1M 

arginine, 2mM reduced glutathione, 0.2mM oxidised glutathione (both Sigma-Aldrich) in 

PBS) at 4˚C overnight. The dialysate was concentrated by centrifugation at 4000g at 4˚C 

using Amicon Ultra-15 centrifugal filter units (Millipore, Watford, Hertfordshire, UK), until a 
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suitable final concentration was achieved, determined using a NanoDrop spectrophotometer 

at 280nm. 

2.2.1.4 SDS-PAGE and western blot 

Samples of rmMOG (10µg) were diluted in NuPAGE LDS sample buffer (Life Technologies) 

with NuPAGE Reducing Agent (Life Technologies) for denaturing gel electrophoresis of 

reduced samples and heated for 10 minutes at 70°C. Samples were loaded onto a NuPAGE 

Novex 4-12% Bis-Tris Gel (Life Technologies) with protein molecular weight markers 

(SeeBlue Plus2 Pre-Stained Standard; Life Technologies) and control samples comprising a 

sample of rmMOG produced previously in this laboratory and bovine serum albumin (BSA; 

2mg/ml) in PBS. NuPAGE Antioxidant (Life Technologies) was added to NuPAGE MES SDS 

Running Buffer (Life Technologies) in the Upper Buffer Chamber of the XCell SureLock Mini-

Cell (Life Technologies) and the gel was run for approximately 45 minutes at 200V.  

 

Protein bands were detected by immersion of the gel in Coomassie Brilliant Blue (Sigma-

Aldrich) followed by destaining in ethanol (10% (v/v); Sigma-Aldrich) and acetic acid (7.5% 

(v/v); BDH Chemicals from VWR International Ltd, Lutterworth, Leicestershire, UK) until a 

clear background was achieved. The monomer:dimer ratio of rmMOG was determined by 

light intensity measurement using the line profile tool in Image-Pro Plus 7.0 (Media 

Cybernetics, Rockville, Maryland, USA). The mean of 3 measurements was used. A high 

monomer:dimer ratio is thought to be more encephalitogenic (unpublished observations from 

this laboratory). 

 

RmMOG was detected using western blot. SDS-PAGE was performed as described above, 

followed by equilibration of the gel in NuPAGE Transfer Buffer (Life Technologies) with 

antioxidant. Protein bands were transferred to a 0.2µm nitrocellulose membrane (Life 

Technologies), which had been soaked in transfer buffer with antioxidant and methanol 
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(Sigma-Aldrich) and placed under the gel between filter paper, using semi-dry transfer for 60 

minutes at 2V.  

 

The membrane was washed in pH7.4 Tris-buffered saline with 0.1% (v/v) Tween 20 (Sigma-

Aldrich; TBST) followed by blocking of non-specific binding sites with 5% w/v dried milk 

powder (Marvel; Premier Foods, St Albans, Hertfordshire, UK) in TBST for 60 minutes with 

agitation. It was then washed in TBST for 10 minutes followed by incubation with goat anti-

mouse MOG primary antibody (R&D Systems, Abingdon, Oxfordshire, UK) at 1:10,000 in 2% 

w/v dried milk powder in TBST for 60 minutes with agitation. The membrane was again 

washed in TBST, for 5 minutes 3 times, and subsequently incubated with donkey anti-goat 

horseradish peroxidase conjugated secondary antibody (R&D Systems) at 1:10,000 in 2% 

w/v dried milk powder in TBST for 60 minutes with agitation. Following washing of the 

membrane in TBST for 30 minutes, bands were detected using electrochemiluminescence 

(ECL) Western Blotting Detection Reagent (Amersham; GE Healthcare Life Sciences, Little 

Chalfont, Buckinghamshire) and Hyperfilm ECL (Amersham) according to manufacturer’s 

instructions. 

2.2.2 Induction of EAE 

2.2.2.1 Animals 

Female DA rats (Charles River, Germany) aged 8 to 12 weeks and weighing approximately 

160g were housed in groups of 4 or 5 in individually ventilated cages with two levels for 

environmental complexity (Tecniplast, London, UK) in the Central Biomedical Services 

(CBS) at the Hammersmith Hospital campus of Imperial College London. They were housed 

under standard conditions at a temperature of 21-23°C using a 12h light-dark cycle (lights on 

at 07:00). Identification was by rings marked on the bases of their tails. They were 

maintained on standard chow pellets and water ad libitum. They were allowed to acclimatise 

to CBS for a minimum of 7 days prior to any regulated procedures being carried out, 
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following which they were housed in the same room under the same conditions. Animals 

with clinical EAE were provided with wet mash. Animal work was carried out in compliance 

with Home Office regulations (project licence 70/7213). 

2.2.2.2 Immunisation 

Animals were placed under general anaesthesia (isoflurane 2%; Abbott Laboratories, 

Maidenhead, Berkshire, UK and oxygen 2I/min), the base of the tail was shaved and 

povidone-iodine antiseptic solution (Videne; Ecolab, Leeds, Yorkshire, UK) was applied. 

Animals received an intradermal injection into the dorsal aspect of the base of the tail of 2, 5, 

10 or 50µg of rmMOG (the batch expressed and purified here, batch pXVII; n = 4 per group) 

diluted in PBS emulsified in an equal volume of IFA (Difco Laboratories, Detroit, Michigan, 

USA). Control animals received an injection of PBS emulsified in an equal volume of IFA (n 

= 3). The total injection volume was 100µl.  

2.2.2.3 Clinical scoring 

Following immunisation animals were weighed and scored daily. Clinical scores were based 

on the level of neurological deficit and were modified from Storch et al., 1998b as in Table 

2.2.1, with greater scores representing greater neurological deficit. Animals were removed 

from the experiment if they reached the humane endpoints of a loss of 25% of their body 

mass (from the day prior to the development of deficit) for 48 hours or complete weakness of 

both hind limbs for more than 5 days without weight gain, in compliance with Home Office 

regulations. 

2.2.3 Assessment of EAE pathology 

2.2.3.1 Tissue harvesting and treatment 

Animals received an intraperitoneal (i.p.) injection of an overdose of 200mg/ml pentobarbital 

sodium (Euthatal; Merial Animal Health, Harlow, Essex, UK) at the peak of neurological 

deficit or at 28 or 29 dpi. Respiratory arrest was confirmed, a thoracotomy was performed 
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Clinical score Deficit 

0 No deficit 

0.25 Loss of tone of tip of tail 

0.5 Loss of tone of half of tail 

1 Complete weakness of tail 

2 Partial weakness of one limb 

2.5 Complete weakness of one limb 

3 Partial weakness of both hind limbs 

3.5 Complete weakness of both hind limbs or weakness in limbs on one side 

4 Weakness of all limbs or complete weakness in limbs on one side 

5 Complete weakness of all limbs/moribund/dead 

Table 2.2.1. Animals were scored daily based on the level of neurological deficit.  
 

and animals were perfused through the left ventricle with approximately 50ml of PBS (until 

the blood from an incision made in the right atrium flowed clear) followed by approximately 

100ml of 4% (w/v) paraformaldehyde (PFA; Sigma-Aldrich) in PBS using a 19 gauge needle 

(BD Biosciences, Oxford, Oxfordshire, UK). The blood from the right atrium was collected 

and treated as described in 2.2.3.5. The brain and spinal cord were harvested and post-fixed 

in 4% PFA for 4 hours at 4°C followed by cryoprotection in 30% (w/v) sucrose (Sigma-

Aldrich) in PBS for 48 hours or until equilibrium was reached at 4°C. 

 

The spinal cord was cut into 8 sections (approximately 8mm in length) corresponding to two 

cervical (C2 and C6), four thoracic (T2, T5, T9 and T12) and two lumbar (L2 and L5) 

segments. Tissue was briefly rinsed in PBS, placed in a mould filled with optimal cutting 

temperature compound (Tissue-Tek; Sakura, Alphen aan den Rijn, The Netherlands) and 

frozen in isopentane (Sigma-Aldrich) on dry ice. 10µm sections in the coronal plane were cut 

using a cryostat (Leica, Wetzlar, Hesse, Germany) and stored at -20°C.  

2.2.3.2 Immunofluorescence 

In order to identify areas of demyelination and the presence of activated 

macrophages/microglia in the spinal cord, double immunofluorescence (IF) for MOG and 
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ionized calcium binding adaptor molecule 1 (Iba1) respectively was performed. Sections 

were immersed in -20°C methanol (Sigma-Aldrich) for 6 minutes for retrieval of the MOG 

antigen followed by 3 washes with 0.1% (v/v) Triton X-100 (Sigma-Aldrich) in PBS (PBST). 

Sections were blocked with 5% (v/v) normal horse serum (NHS; Sigma-Aldrich) in PBST for 

60 minutes and incubated with primary antibodies (Table 2.2.2) diluted in 1% (v/v) NHS in 

PBST overnight at 4°C. Sections were incubated with horse anti-mouse biotinylated 

secondary antibody (Vector Laboratories, Peterborough, Cambridgeshire, UK) at 1:500 in 

the same diluent for 60 minutes followed by incubation with goat anti-rabbit Alexa Fluor 546 

conjugated secondary antibody (Alexa Fluor Dyes; Life Technologies) and Alexa Fluor 488 

conjugated streptavidin (Alexa Fluor Dyes) at 1:1000 for 60 minutes in the dark. Following 

incubation with 4', 6-diamidino-2-phenylindole (DAPI, 4µg/ml; Sigma-Aldrich) for 5 minutes to 

identify cell nuclei, sections were mounted in Vectashield mounting medium (Vector 

Laboratories). PBST washes were performed between incubations, which were performed at 

room temperature unless otherwise stated. 

 

In order to identify B cells, IF for CD79a was performed using the same protocol as that for 

MOG but replacing methanol retrieval with heat mediated pH6 citrate buffer (0.1M citric acid, 

0.1M sodium citrate (both Sigma-Aldrich)) retrieval using a vegetable steamer. 

 

Antigen Cell specificity Species Dilution Source 

CD3 T cell Mouse 1 in 750 BD Pharmingen from BD Biosciences 

CD79a B cell Mouse 1 in 500 Pierce Antibodies from Thermo 

Scientific, Cramlington, 

Northumberland, UK 

Iba1 Activated 

macrophages/ 

microglia 

Rabbit 1 in 1000 Wako, Neuss, North Rhine-Westphalia, 

Germany 

MOG Myelin and 

oligodendrocytes 

Mouse 1 in 20 Reynolds’ group, Imperial College 

London 

Table 2.2.2. Primary antibodies used for IF and immunohistochemistry.
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2.2.3.3 Immunohistochemistry 

In order to identify the presence of T cells, immunohistochemistry (IHC) for CD3 was 

performed. Heat mediated modified pH6.1 citrate buffer (Dako UK Ltd, Ely, Cambridgeshire, 

UK) retrieval using a vegetable steamer was followed by immersion in 0.3% (v/v) hydrogen 

peroxide (Sigma-Aldrich) in PBST for 10 minutes to destroy endogenous peroxidase activity. 

Sections were blocked with 5% (v/v) NHS in PBST for 60 minutes and incubated with anti-

CD3 primary antibody (Table 2.2.2) diluted in 1% (v/v) NHS in PBST overnight at 4°C. 

Sections were incubated with horse anti-mouse biotinylated secondary antibody at 1:1000 in 

1% (v/v) NHS in PBST for 60 minutes followed by avidin-biotin-peroxidase complex (ABC, 

Vectastain Elite ABC Kit; Vector Laboratories) for 60 minutes. PBST washes were performed 

between incubations, which were performed at room temperature unless otherwise stated. 

Sections were developed with 3, 3’-diaminobenzidine (DAB, DAB Peroxidase Substrate Kit; 

Vector Laboratories) and counterstained with haematoxylin (Haemalum Mayer; TCS 

Biosciences, Botolph Claydon, Buckinghamshire) for 2 minutes followed by destaining in 

warm running tap water for 5 minutes. Sections were dehydrated using ethanol gradients 

and cleared using xylene (VWR International Ltd) followed by mounting in DPX (BDH 

Chemicals from VWR International Ltd). 

2.2.3.4 Imaging and analysis 

IF and IHC sections were imaged using a Nikon Eclipse 80i or 50i microscope (Nikon, 

Kingston upon Thames, Surrey, UK) respectively with a QImaging QICAM digital camera 

(QImaging, Newcastle under Lyme, Staffordshire, UK) and Image-Pro Plus software (Media 

Cybernetics, Marlow, Buckinghamshire, UK). This software was able to tile multiple high 

magnification images to yield high resolution images of complete sections. 

 

Image-Pro Plus 7.0 was used to quantify areas of demyelination (Figure 2.2.2 A) while 

immune cells were quantified manually using the 20x objective lens. While looking down the 
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eyepiece, cells were counted in complete sections by moving across them row by row. 

Quantification was performed by two blinded observers to eliminate bias and ensure 

accurate, reproducible immune cell counts. ImageJ (NIH, Bethesda, Maryland, USA) was 

used to quantify areas of Iba1 immunoreactivity (IR; B). Quantification was performed on 3 

consecutive sections per animal and a mean calculated. 

2.2.3.5 ELISA for peripheral anti-MOG antibodies 

Blood was collected at 14 and 21 dpi. Animals were incubated in a hot box at 28°C for 10 

minutes before being placed in a restraint tube with tails in warm water at 40°C for 2 

minutes. Blood (maximum of 250µl) was collected from a lateral tail vein using a 23 gauge 

butterfly cannula (Venofix; Medisave, Weymouth, Dorset, UK). EDTA was added at a final 

concentration of 2.3mg/ml to prevent coagulation. Blood was also collected at termination. 

Blood was centrifuged at 800g for 10 minutes and the serum collected and stored at -20°C.  

 

An ELISA was performed to determine the levels of anti-MOG antibodies. Briefly, 96-well 

microplates (BD Biosciences) were coated with 50µl per well of 10µg/ml rmMOG (mixed 

batch pXIV) in PBS overnight at 4°C followed by 5 washes with PBST. Plates were blocked 

with 200µl per well of 2% (w/v) BSA in PBS for 60 minutes and incubated with 100µl per well 

of serum, diluted as stated in Table 2.2.3 in 1% (w/v) BSA in PBS, in triplicate for 2 hours. 

Plates were incubated with 100µl per well of goat anti-rat IgG-specific alkaline phosphatase-

linked secondary antibodies, diluted as stated in Table 2.2.3 in the same diluent, for 1 hour. 

Plates were developed using 200µl per well of p-Nitrophenyl phosphate in Tris buffer 

(SIGMAFAST p-Nitrophenyl phosphate tablets; Sigma-Aldrich) at room temperature in the 

dark. Optical density was measured at 405nm after 30 minutes using a VersaMax ELISA 

Microplate Reader (Molecular Devices, Wokingham, Berkshire, UK) and SoftMax Pro 

software (Molecular Devices). PBST washes were performed between incubations, which 

were performed at a temperature of 37°C and with shaking unless otherwise stated. 
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Secondary antibody Serum dilution Antibody dilution Source 

Total IgG 1:4000 1 in 5000 Southern Biotech 

IgG1 1:1000 1 in 4000 AbD Serotec 

IgG2a 1:1000 1 in 4000 AbD Serotec 

Table 2.2.3. Secondary antibodies used for ELISA. 
 

2.2.4 Statistical analysis 

All data are presented as the mean ± the standard error of the mean (SEM). GraphPad 

Prism 5 (GraphPad Software, La Jolla, California, USA) was used to construct graphs and 

perform statistical analysis. Groups were compared using Kruskal-Wallis one-way analysis 

of variance (ANOVA) with Dunn’s multiple comparisons post-hoc test. A p value of <0.05 

was considered to be statistically significant. 
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2.3 Results 

2.3.1 Expression and purification of rmMOG 

DNA gel electrophoresis was performed to confirm that the colony of transformed E. coli 

selected for expression of the recombinant protein corresponding to the N-terminal amino 

acids 1-118 of mouse MOG contained the rmMOG insert in the vector (Figure 2.3.1 A). 

Although the size of the vector containing the rmMOG insert is approximately 3.2kb, it was 

observed in the uncut lane at approximately 2.2kb. This was due to the supercoiled 

conformation of the vector, which resulted in its faster electrophoretic mobility than the cut 

conformation. The cut vector without the rmMOG insert was observed in the EcoR1 + HindIII 

lane at approximately 2.9kb, while the rmMOG insert was observed at approximately 360bp, 

as expected. DNA sequencing was also performed, which confirmed that the colony selected 

contained the rmMOG sequence as well as the polyhistidine tag required for subsequent 

purification with a nickel-chelating resin.  

 

SDS-PAGE followed by western blotting confirmed that the experimental batch of rmMOG 

produced in the current study, batch pXVII, was MOG. Bands corresponding to dimer and 

trimer as well as monomer were observed at approximately 40, 60 and 20kDa respectively 

(Figure 2.3.1 B). Identical bands were observed for a control batch of rmMOG produced 

previously, batch pXV. SDS-PAGE followed by Coomassie staining allowed the 

monomer:dimer ratio to be determined by light intensity measurement. The Coomassie 

stained gel was used for this purpose rather than the western blot to avoid the introduction of 

confounding variables. For example, the efficiency of protein transfer from the gel to the 

membrane depends on the characteristics of the protein, and hence the protein on the 

membrane may not represent the total protein. Additionally, the antibody used for western 

blotting may not bind monomer and dimer with equal affinity. The monomer:dimer ratio of 

batch pXVII was 8.7:1 compared to 12.0:1 for batch pXV. Bands were also observed on the 
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western blot, as well as on the Coomassie stained gel, at approximately 14kDa. These 

bands were observed for both batch pXVII and batch pXV.  

 

The total volume of batch pXVII rmMOG obtained was 61.5ml, the concentration of which, 

determined using a NanoDrop spectrophotometer at 280nm, was 2.46mg/ml (Figure 2.3.1 

C). The peak observed at 230nm in the spectrum corresponds to urea, which was present at 

8M concentration in the buffers used throughout purification and in the elution buffer in which 

rmMOG is dissolved. 

2.3.2 Induction of EAE 

2.3.2.1 Clinical disease in animals immunised with 50µg rmMOG only 

Female DA rats were immunised with 2, 5, 10 or 50µg of rmMOG emulsified in an equal 

volume of IFA (n = 8 for 50µg, n = 4 for 2, 5 and 10µg of rmMOG). Control animals received 

an injection of PBS also emulsified in an equal volume of IFA (n = 3). Immunisation with 

50µg of rmMOG induced relapsing-remitting disease with 100% incidence, with a mean day 

of disease onset of 16 dpi (Figure 2.3.2 A). Half of these animals (n = 4) were culled at the 

peak of neurological deficit (mean 22 dpi) and half (n = 4) were culled at 28 dpi at the same 

time as animals immunised with 2, 5 or 10µg of rmMOG and IFA only, although one of these 

animals was culled at 22 dpi due to humane endpoints being reached, with remission 

followed by a further relapse (B). Ascending paralysis was observed in diseased animals, 

with initial weakness of the tail followed by weakness of the hind limbs and, in some cases, 

all limbs. The maximum clinical score was 4, corresponding to weakness of all limbs, 

typically with complete weakness of both hind limbs. Two diseased animals developed 

atypical symptoms characterised by disturbances in balance and coordination, including 

involuntary rotation, and were culled due to humane endpoints being reached. In the 

remaining diseased animals peak neurological deficit was followed by remission or complete 

recovery. Immunisation with IFA only and 2, 5 or 10µg of rmMOG did not induce disease (A). 
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2.3.2.2 Spinal cord demyelination in diseased animals only 

In order to identify areas of demyelination and the presence of activated 

macrophages/microglia in the spinal cord, double IF for MOG and Iba1 respectively was 

performed, showing demyelination and inflammation in the spinal cord of animals immunised 

with 50µg of rmMOG culled at the peak of neurological deficit. 

 

Demyelination was present in the spinal cord WM of 75% of animals culled at the peak of 

neurological deficit. It was most extensive in the lower thoracic and lumbar sections and was 

observed in the cuneate and gracile fasciculi of the dorsal funiculus as well as in the lateral 

funiculus. Here, it was observed in the anterior and posterior spinocerebellar tracts, 

particularly at the exit of the ventral roots, extending into the anterior and lateral 

spinothalamic tracts, as well as in the lateral corticospinal tract (Figure 2.3.3 Ai, Aiii). 

Demyelination was not present in the spinal cord GM. Areas of demyelination were 

associated with the presence of a high number of activated macrophages/microglia, which 

had an amoeboid morphology characterised by a large cell soma and mostly absent or short, 

thick processes (Figure 2.3.3 Aii, Aiv). Spinal cord demyelination was not observed in 

asymptomatic animals immunised with IFA or 2 or 5µg of rmMOG, or in diseased animals 

immunised with 50µg of rmMOG not culled at the peak of neurological deficit but at 28 dpi 

(Bi, Ci, Figure 2.3.4 A). Macrophages/microglia in these animals had a ramified morphology 

characterised by a small cell soma and numerous fine, branched processes and did not 

contain myelin/myelin degradation products (Figure 2.3.3 Bii, Cii). The density of activated 

macrophages/microglia in these asymptomatic animals was not significantly different to that 

in animals immunised with IFA (Figure 2.3.4 B). Despite the absence of demyelination in the 

diseased animals culled at 28 dpi, activation of macrophages/microglia was observed 

throughout the spinal cord and, as in animals culled at the peak of neurological deficit, was 

more severe in the lumbar cord. 
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2.3.2.3 T and B cell infiltration in spinal cords of diseased animals only 

The presence of T and B cells in the spinal cord was identified using IHC for CD3 (Figure 

2.3.5 Ai) and IF for CD79a (Bi) respectively. Although these cells were observed in the 

meninges as well as in the parenchyma, only those in the parenchyma were quantified due 

to variation in meningeal preservation between sections. However, T cell infiltration in the 

meninges appeared to be greater in diseased than asymptomatic animals and those 

immunised with IFA only, in which very few T cells were observed. Very few B cells were 

present in the meninges of both diseased and asymptomatic animals, as well as those 

immunised with IFA only.   

 

Infiltration of T cells was observed in diseased animals immunised with 50µg of rmMOG, 

both those culled at the peak of neurological deficit and those culled at 28 dpi (Figure 2.3.5 

Aii). T cells were distributed throughout the parenchyma but appeared concentrated in areas 

in which demyelination had been observed, particularly in the dorsal funiculus and 

spinocerebellar, spinothalamic and lateral corticospinal tracts in the lateral funiculus. This 

increase in T cell infiltration was observed throughout the spinal cord and was not greater in 

the lower thoracic and lumbar sections (Aiii), in contrast to demyelination. The number of T 

cells in asymptomatic animals immunised with 2 or 5µg of rmMOG was low and not 

significantly different to that in animals immunised with IFA only. Although only very few B 

cells, distributed throughout the parenchyma, were present, their number was significantly 

increased in animals culled at the peak of neurological deficit (Bii). Infiltration of B cells was 

observed throughout the spinal cord and, like the infiltration of T cells, did not vary between 

spinal cord sections (Biii). Asymptomatic animals had the same number of B cells as animals 

immunised with IFA only. 
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2.3.2.4 Asymptomatic animals had a peripheral anti-MOG antibody response 

In order to determine whether the peripheral immune system recognises and responds to 

subclinical doses of rmMOG, the levels of anti-MOG antibodies (total IgG, IgG1 and IgG2a) 

in serum obtained from blood collected at 14 and 21 dpi and at termination at 28 dpi were 

measured using ELISAs.  

 

The levels of total IgG, IgG1 and IgG2a anti-MOG antibodies were significantly increased in 

animals immunised with 50µg of rmMOG compared to naïve animals and those immunised 

with IFA only, whereas they were not significantly different to those in asymptomatic animals 

immunised with 2 or 5µg of rmMOG at termination (Figure 2.3.6 A). The level of anti-MOG 

IgG1 antibody in asymptomatic animals, although not significantly different, was much lower 

than that in animals immunised with 50µg of rmMOG (Aii). The levels of total IgG and both 

subtypes in asymptomatic animals did not change with time from 14 dpi to termination at 28 

dpi (B). 
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2.4 Discussion 

2.4.1 Expression and purification of rmMOG 

A soluble recombinant protein corresponding to the N-terminal amino acids 1-118 of mouse 

MOG was successfully expressed and purified from transformed E. coli glycerol stocks. 

western blotting of the separated protein confirmed that the identity of the protein was MOG. 

Coomassie staining of the separated protein showed bands at approximately 20, 40 and 

60kDa. All of these bands consisted of MOG protein, confirming its purity, and corresponded 

to monomer, dimer and trimer respectively (Reynolds et al., 2002). The monomer:dimer ratio 

was 8.7:1. High monomer:dimer ratios are thought to be more encephalitogenic 

(unpublished observations from this laboratory), hence immunisation with this batch of 

rmMOG was expected to result in a high incidence and severity of EAE. A band underneath 

that of the monomer, at approximately 14kDa, was observed following both Coomassie 

staining and western blotting. Although the identity of this MOG peptide is not known, its 

presence does suggest that some degradation had occurred. This band was, however, also 

observed for a control batch of rmMOG produced previously and used successfully in MOG-

EAE models, hence it was concluded that the rmMOG produced here was also suitable for 

use in the MOG-EAE model study that follows. 

2.4.2 MOG-EAE in the DA rat 

The rmMOG produced here was used in subsequent studies in the development of a chronic 

model of cortical pathology driven by meningeal inflammation. This required a subclinical 

dose of rmMOG (Kerschensteiner et al., 2004, Merkler et al., 2006, Gardner et al., 2013), 

which was determined by evaluating the severity of clinical and pathological EAE induced by 

immunisation of DA rats with a range of doses of the protein. MOG-EAE in the DA rat is 

characterised by the synergistic actions of auto-antibody and encephalitogenic T cell 

responses accompanied by macrophage infiltration (Storch et al., 1998b, Weissert et al., 



Chapter 2 - MOG-EAE in the DA rat 96 

1998), and either a relapsing-remitting or progressive clinical course (Papadopoulos et al., 

2006), reproducing the immunopathology and clinical course of MS (Storch et al., 1998a, 

Lucchinetti et al., 2000, Compston and Coles, 2008). 

2.4.2.1 EAE induced by immunisation with 50µg rmMOG 

Immunisation with 50µg of rmMOG emulsified in IFA induced relapsing-remitting disease 

with 100% incidence. Complete weakness of both hind limbs was observed in the majority of 

animals at first relapse, followed by remission, defined as a clinical score reduction of 2 

maintained for 2 days (Weissert et al., 1998). This is in contrast to studies in which 

immunisation with 200µg of rmMOG induced relapsing-remitting disease whereas 

immunisation with 50µg of rmMOG favoured the development of progressive disease 

(Papadopoulos et al., 2006). It is possible that the animals culled at the peak of neurological 

deficit may have developed progressive disease if they had been left longer. It is likely that 

this difference in clinical course is due to the different batch of rmMOG used. For example, 

differences in the monomer:dimer ratio of batches of rmMOG have been shown to affect the 

incidence, clinical course and severity of EAE (unpublished observations from this 

laboratory). Although monomer:dimer ratios are not usually documented in the literature, that 

of the batch used here was high in comparison to batches produced previously in this 

laboratory. This was despite the same protocol, using dialysis buffer containing 1M arginine 

that is thought to produce mainly monomer (unpublished observations from this laboratory), 

being used. However, another study using the same immunisation protocol as that used in 

the current study, described a variable clinical course, with animals developing chronic, 

relapsing-remitting or acute disease, or no disease (Zeis et al., 2008). 

 

Clinical disease was associated with demyelination in spinal cord WM of the majority of 

animals culled at the peak of neurological deficit. The animal in which pathology in the spinal 

cord was not observed had developed atypical symptoms, characterised by disturbances in 

balance and coordination. This suggested a change in the site of pathology from spinal cord 
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to cerebellum and brainstem (Muller et al., 2000), hence it was not surprising that 

demyelination in the spinal cord was not observed in this animal. Demyelination was most 

extensive in the lower thoracic and lumbar cord, consistent with ascending paralysis in a 

distal to rostral direction (Miller et al., 2010). Its presence in the dorsal and lateral funiculi 

has been observed previously in MOG-induced EAE in the DA rat (Steinbrecher et al., 2005) 

and is consistent with the neurological deficit these animals developed given the WM tracts 

affected. For example, damage to the corticospinal tract has been shown to be correlated 

with clinical score, grid walk score and open field locomotion score in a targeted EAE model 

(Kerschensteiner et al., 2004), hence this site of pathology in the current study is consistent 

with the paresis of these animals. Demyelination was not present in spinal cord GM, which is 

the case for the majority of rodent EAE models (Storch et al., 1998b). Pathology in the spinal 

cord was also not observed in diseased animals immunised with 50µg of rmMOG not culled 

at the peak of neurological deficit but at 28 dpi. It is possible that remyelination had occurred 

in these animals between the peak of neurological deficit at approximately 16-18 dpi and 

termination at 28 dpi, when animals had weakness of the tail only. Remyelination has been 

observed in rats with relapsing-remitting MOG-induced EAE 10 days after the onset of 

clinical disease (Papadopoulos et al., 2006), which would be consistent with the timescale 

here. Alternatively, although the spinal cord was harvested as completely as possible and 

lumbar sections were obtained, sacral sections were not. Given that immune cell infiltration 

of the CNS begins in the lower spinal cord (Miller et al., 2010), it is possible that 

demyelination would have been observed in sacral sections. 

 

Areas of demyelination in the spinal cord were associated with the presence of a high 

number of activated macrophages/microglia. T cell infiltration was also observed throughout 

the spinal cord in the parenchyma as well as in the perivascular and meningeal 

compartments. As well as reproducing the pathology of WMLs in MS (Lucchinetti et al., 

2000), this immunopathology is similar to that observed in previous studies investigating 

MOG-EAE in the DA rat (Storch et al., 1998b, Papadopoulos et al., 2006,
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Schreiner et al., 2009), which showed inflammatory infiltrates consisting of macrophages 

and T cells around vessels and in the meninges, with spread into the parenchyma adjacent 

to the pia mater. 

2.4.3 Subclinical MOG-EAE in the DA rat 

This study has allowed the identification of a suitable subclinical dose of rmMOG batch 

pXVII, for subsequent use in the development of the chronic model of cortical pathology 

driven by meningeal inflammation. As specified in the study that first developed a targeted 

EAE model, this dose should not result in clinical symptoms, but should result in a peripheral 

anti-MOG antibody response that is the same as that in animals with clinical symptoms. 

Additionally, little inflammation and no demyelination should be observed in the CNS. The 

dose will depend on the strain used and its susceptibility to MOG-induced EAE 

(Kerschensteiner et al., 2004, Merkler et al., 2006, Gardner et al., 2013). Although cortical 

GMLs have been observed with low incidence in studies of MOG-induced EAE in the DA rat, 

high doses of rmMOG of 65-75µg were used, resulting in severe clinical EAE (Steinbrecher 

et al., 2005, Prins et al., 2013), in contrast to the subclinical dose identified in the current 

study. The absence of cortical pathology following immunisation with this subclinical dose of 

rmMOG would suggest that any cortical pathology observed following the subsequent 

injection of pro-inflammatory cytokines was the result of this injection rather than the 

immunisation only, and that any other cortical changes were the result of this cortical 

pathology rather than spinal cord pathology. For example, changes in the expression of 

genes for glutamate receptors and mitochondrial proteins in normal appearing cerebral 

cortex of female DA rats immunised with 50µg of rmMOG, in which inflammatory 

demyelination was observed only in the spinal cord, have been shown. These were 

suggested to be the result of retrograde degeneration following axonal damage induced in 

spinal cord lesions (Zeis et al., 2008). Therefore, animals with clinical disease may not be 

used in the development of the chronic model. 
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2.4.3.1 Clinical EAE not induced by immunisation with 5µg rmMOG 

Animals immunised with 5µg (as well as 2µg) of rmMOG were asymptomatic and had no 

spinal cord demyelination or macrophage/microglia activation, suggesting that this dose was 

too low to induce an anti-myelin immune response in the CNS and that it may represent a 

suitable subclinical dose.  

 

Previous studies in DA rats have also used 5µg as a subclinical dose (Gardner et al., 2013), 

although studies in Lewis rats have used 25-50µg (Kerschensteiner et al., 2004, Merkler et 

al., 2006). The susceptibility of rats to MOG-induced EAE is strain-dependent (Storch et al., 

1998b), with Lewis rats known to be relatively resistant and DA rats susceptible (Weissert et 

al., 1998, Stefferl et al., 1999b). This difference is thought to be due in part to the MHC 

haplotype RT1av1 present in DA rats, which appears to render this strain susceptible, in 

contrast to the haplotype RT11 present in Lewis rats (Weissert et al., 1998). 

 

However, there is also a role for genetic factors other than the MHC haplotype. ACI, Lewis 

and PVG rats, all with the same RTav1 MHC haplotype as DA rats, are relatively resistant. 

Lower incidence in these animals is associated with less demyelination and inflammation in 

the spinal cord than in DA rats following the same immunisation method, which is suggested 

to be due to differences in the efficiency of B and T cell responses following immunisation 

with MOG conferred by non-MHC genes (Lorentzen et al., 1997, Weissert et al., 1998). For 

example, the expression of the receptors for IL2, IL7 and IL18 is increased in lymph node T 

cells from naïve DA compared to PVG rats, resulting in increased differentiation to Th1 and 

Th17 cells following immunisation with MOG and consequent increased expression of the 

Th1 and Th17 cytokines IFN-γ, IL17 and IL22 (Thessen Hedreul et al., 2009). Th1 and Th17 

cells have been shown to induce EAE following adoptive transfer (Jäger et al., 2009), and 

these T cells appear to be resistant to apoptosis in DA rats (Lukic et al., 2001). Additionally, 
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macrophages isolated from DA rats produced more TNF following stimulation in vitro than 

those isolated from PVG rats (Gillett et al., 2010). 

 

The high efficiency of B and T cell responses in the DA rat compared to that in resistant 

strains described above are consistent with the observations that 50µg of rmMOG induces 

EAE in the DA but not Lewis rat and that a low dose of rmMOG is required for it to be 

subclinical in the DA rat. 

2.4.3.2 Increased lymphocyte infiltration not observed following immunisation with 

5µg rmMOG 

The presence of T cell infiltration has been observed following the adoptive transfer of 

myelin-specific T cells in the absence of clinical disease and demyelination, which was 

shown to be due to the low level of activation of the T cells (Kawakami et al., 2004). 

However, as well as being asymptomatic and having no spinal cord demyelination or 

macrophage/microglia activation, little or no spinal cord B or T cell infiltration was observed 

in animals immunised with 5µg (and 2µg) of rmMOG, with the numbers of these cells not 

significantly different to those in animals immunised with IFA only. This is consistent with the 

hypothesis that this dose was too low to induce significant myelin-reactive T cell infiltration in 

the CNS. 

 

As described in 1.2.1.3, myelin-reactive T cells are activated in the periphery, expand and 

traffic to the CNS (Hafler and Weiner, 1987), which they enter prior to the onset of clinical 

symptoms (Brown and Sawchenko, 2007). A recent study has shown that this infiltration 

occurs in two stages. The first stage is dependent on the expression of the chemokine (C-C 

motif) receptor 6 (CCR6) on T cells, which allows them to enter the CNS across the blood-

CSF barrier (meninges and choroid plexus) that expresses the CCR6 ligand chemokine (C-C 

motif) ligand 20 (CCL20). In the CSF/meningeal compartment they become reactivated on 

encountering their specific myelin epitope presented by APCs and infiltrate the spinal cord 
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parenchyma (Bartholomäus et al., 2009, Kivisäkk et al., 2009). The second stage is 

dependent on the first stage and on the production of pro-inflammatory cytokines including 

TNF, IFN-γ and IL17 by the T cells rather than their expression of CCR6 (Brown and 

Sawchenko, 2007, Reboldi et al., 2009). The pro-inflammatory cytokines result in disruption 

of the BBB, mediated by alteration of components of adherens and tight junctions, and 

activation, mediated by increased expression of cell adhesion molecules (Alvarez et al., 

2011), facilitating further entry of T cells. 

 

Given that animals immunised with 5µg of rmMOG had no significant spinal cord T cell 

infiltration, it appears that this dose of rmMOG is too low to induce sufficient activation of T 

cells to allow both stages of infiltration to occur. However, low doses of antigen have also 

been shown to favour the anti-inflammatory Th2 response and high doses the pathogenic 

Th1 response (Hosken et al., 1995, Grakoui et al., 1999), hence it is possible that 5µg of 

rmMOG constitutes a low dose and favours the Th2 response. In the study of Grakoui et al. 

(1999), the change from Th2 response to Th1 response occurred over the same ten-fold 

range as that observed in the current study for the change from subclinical to clinical dose. 

Further studies could investigate the phenotype of spinal cord T cell infiltrates in 

asymptomatic and diseased animals. 

2.4.3.3 Antibody response induced by immunisation with 5µg rmMOG  

It was necessary to determine whether this dose of rmMOG was too low to induce a 

peripheral anti-MOG antibody response as well as significant spinal cord T cell infiltration. 

 

The levels of total IgG, IgG1 and IgG2a anti-MOG antibodies in serum as measured using 

ELISAs were not significantly different in asymptomatic animals immunised with 5µg of 

rmMOG than in diseased animals immunised with 50µg of rmMOG, and did not change with 

time from 14 dpi to 28 dpi. This is in agreement with a study using Lewis rats that showed 

that the level of total IgG did not change with time (Kerschensteiner et al., 2004) but in 
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contrast to a study using DA rats that showed that it was maximal at 21 dpi (Gardner et al., 

2013). This finding indicates that the maximal peripheral anti-MOG antibody response will 

have been reached by 21 dpi, when the injection of pro-inflammatory cytokines in the model 

of cortical pathology driven by meningeal inflammation will be performed. Although the level 

of IgG1 in animals immunised with 5µg of rmMOG was not significantly different to that in 

animals immunised with 50µg of rmMOG, it was much lower. However, a previous study 

showed that it was not significantly increased in animals immunised with 5µg of rmMOG until 

32 dpi (Gardner et al., 2013), which may explain why it was low in the current study using 

blood collected at termination at 28 dpi. 

 

The induction of IgG2a, IgG2b and IgG3 antibodies is characteristic of a Th1 response, 

whereas that of IgG1 antibodies is characteristic of a Th2 response (Germann et al., 1995). 

The treatment of Lewis rats with anti-MOG IgG2a antibodies following the adoptive transfer 

of MBP-specific T cells has been shown to result in extensive demyelination and severe or 

lethal disease, in contrast to the moderate effects of treatment with anti-MOG IgG1 

antibodies. The pathogenicity of the antibodies was shown to be dependent on their ability to 

fix complement (Piddlesden et al., 1993). 

 

Hence the peripheral immune system is able to induce the adaptive immune response to 

MOG protein, necessary for the development of targeted EAE models (Kerschensteiner et 

al., 2004, Merkler et al., 2006), in animals immunised with 5µg of rmMOG. Additionally, 

although the level of IgG1 induced by the anti-inflammatory Th2 response was low, that of 

IgG2a induced by the pathogenic Th1 response was the same as that in animals immunised 

with 50µg of rmMOG. This indicated that the low dose did not result in a change from 

pathogenic to anti-inflammatory response, in contrast to what has been found in studies 

using, for example, ovalbumin as antigen (Hashiguchi et al., 2000).  
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The intravenous injection of anti-MOG antibodies has been shown to result in more severe 

clinical and pathological EAE induced by the transfer of MBP-specific T cells (Lassmann et 

al., 1988, Linington et al., 1988). However, despite the pathogenic peripheral anti-MOG 

IgG2a antibody response in animals immunised with 5µg of rmMOG in the current study, 

they did not develop clinical or pathological EAE. This is consistent with the finding that high 

levels of anti-MOG antibodies alone are not sufficient to induce disease, with disruption of 

the BBB, mediated by encephalitogenic T cells, required (Litzenburger et al., 1998). We 

suggest that the number of MOG-specific T cells reactivated in the CSF/meningeal 

compartment is insufficient to cause disruption and activation of the BBB in animals 

immunised with 5µg of rmMOG, preventing the second stage of immune cell infiltration. In 

animals immunised with 50µg of rmMOG, the number of T cells, or their secretion of pro-

inflammatory cytokines, is sufficient to cause disruption and activation of the BBB and 

subsequent infiltration of myelin-specific lymphocytes, macrophages and anti-MOG 

antibodies in the CNS. The synergistic action of cellular and humoral mechanisms then 

results in clinical and pathological EAE. Hence, we propose that a detailed investigation of 

the role of T cells in the CSF/meningeal compartment of animals immunised with 5 and 50µg 

of rmMOG will be required to determine why the former dose is subclinical despite the 

peripheral anti-MOG antibody response. 

2.4.4 Conclusions 

Batch pXVII of rmMOG was successfully expressed and purified and 5µg was identified as a 

suitable subclinical dose as it did not induce spinal cord demyelination or significant 

lymphocyte infiltration and clinical disease despite inducing a peripheral anti-MOG antibody 

response. This batch and dose of rmMOG was suitable for use in the development of the 

chronic model of cortical pathology driven by meningeal inflammation.    
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3.1 Introduction 

3.1.1 Cortical GM pathology in MS 

Immunohistochemical studies using autopsy samples have shown that cortical GML burden 

may be greater than that of WMLs, with a mean demyelinated area of 25.0-28.8% compared 

to 5.0-15.6% (Bø et al., 2003b, Gilmore et al., 2009). It is now widely accepted that cortical 

GM pathology is involved in clinical progression (Calabrese et al., 2010a) and studies, 

mainly using clinical MRI, have correlated it with both cognitive (Calabrese et al., 2009a) and 

motor (Calabrese et al., 2007) disability as well as with the cognitive and motor decline 

observed during the progressive stages of MS (Calabrese et al., 2009c, Calabrese et al., 

2010b, Jacobsen et al., 2014). Studies support a major role for cortical GM pathology in 

driving this progression, and associated worsening of cognitive and motor symptoms, in MS 

(Reynolds et al., 2011). 

 

Cortical GM pathology is characterised by demyelination, and the current classification of 

GMLs is based on their location within the layers of the cortex as described in 1.2.2.2 

(Peterson et al., 2001, Bø et al., 2003b). Subpial lesions extend from the pial surface into 

GM layers without entering WM and may involve multiple gyri. They account for up to 50-

70% of all GMLs (Peterson et al., 2001, Bø et al., 2003a, Magliozzi et al., 2007), although 

93% of subpial lesions detected using immunohistochemical stains are not detected even 

using double inversion recovery MRI (Seewann et al., 2012). 

 

Studies have shown that there is no significant correlation between the extent of cortical GM 

and WM demyelination, suggesting that cortical GMLs develop independently from WMLs 

(Bø et al., 2003b, Kutzelnigg et al., 2005, Vercellino et al., 2005, Bö et al., 2007). However, 

there is a significant correlation between the extent of cortical GM demyelination in the 

cerebellum and that in the forebrain (Kutzelnigg et al., 2005, Kutzelnigg et al., 2007, Gilmore 
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et al., 2009). The authors suggest that this indicates a common mechanism of demyelination 

mediated by soluble factors produced in the CSF/meningeal compartment diffusing into the 

underlying cortical GM. The CSF has long been implicated in MS. Oligoclonal bands are 

present in the CSF of 87.7% of MS patients (Dobson et al., 2013) and the finding of at least 

two oligoclonal bands may be used to support diagnoses (Polman et al., 2011). This 

hypothesis is also supported by the high prevalence of subpial GMLs as well as the lack of 

significant peripheral immune cell infiltration previously observed in cortical GMLs. 

3.1.2 Inflammation associated with cortical GMLs 

Inflammation in cortical GMLs is characterised by extensive microglial activation with 

characteristically only mild peripheral immune cell infiltration in perivascular cuffs, in contrast 

to WMLs (Peterson et al., 2001, Kutzelnigg et al., 2005, Magliozzi et al., 2010). MHC class 

II-positive and CD68-positive macrophages/microglia with activated morphology are 

distributed throughout cortical GMLs as well as in NAGM (Peterson et al., 2001, Bø et al., 

2003a, Magliozzi et al., 2007, Magliozzi et al., 2010). Recent studies have, however, also 

shown the presence of T cell infiltrates as well as perivascular cuffs in subpial cortical GMLs 

(Lucchinetti et al., 2011, Magliozzi et al., 2013). 

3.1.2.1 Meningeal inflammation 

Diffuse inflammatory infiltrates 

Further support for the hypothesis that demyelination is mediated by soluble factors 

produced in the CSF/meningeal compartment diffusing into the underlying cortical GM 

comes from studies investigating meningeal inflammation. Diffuse inflammatory infiltrates, 

consisting of B and T cells and macrophages, are frequently observed in the cerebral 

leptomeninges in studies using autopsy samples from PPMS and SPMS cases (Guseo and 

Jellinger, 1975, Kutzelnigg et al., 2005, Kooi et al., 2009, Howell et al., 2011, Choi et al., 

2012) and are particularly frequent in cases with extensive subpial cortical GM 
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demyelination. There is a significant positive correlation between the total length of 

meningeal infiltration and the extent of cortical GM demyelination in the forebrain as well as 

the density of CD68-positive microglia in the underlying cortical GM (Howell et al., 2011). 

Similar correlations between meningeal T cell infiltration and microglial expression of MHC 

class II, CD68, inducible NOS and allograft inflammatory factor 1 in cortical GM have been 

observed (Dal Bianco et al., 2008), leading the authors to suggest that microglial activation 

may be partly driven by meningeal inflammation. 

 

Lymphoid-like structures 

As well as these diffuse inflammatory infiltrates, ectopic lymphoid follicle-like structures have 

also been observed in the meninges, particularly those of the sulci, in approximately 40% of 

SPMS cases in studies using autopsy samples (Serafini et al., 2004, Magliozzi et al., 2007, 

Magliozzi et al., 2010, Howell et al., 2011). They consist of aggregates of CD20+ B cells, 

some of which are Ki67+ indicating proliferation, together with CD35+ follicular dendritic 

cells, IgA, -G or -M+ plasmablasts/plasma cells and CD3+ T cells. The cases in which these 

structures are found have been defined as F+ SPMS. It has been suggested that the 

decreased flow of CSF in the sulci results in a protected environment that allows the homing 

and retention of immune cells and development of lymphoid-like structures, which in turn 

results in an inflammatory milieu in the CSF (Reynolds et al., 2011). The number of cells 

expressing the pro-inflammatory cytokines TNF and IFN-γ and the gene expression of these 

cytokines are increased in the inflamed meninges of F+ SPMS patients. TNF is expressed 

by cells with monocyte/macrophage morphology in meninges as well as some microglia in 

superficial GM, whereas IFN-γ is expressed by a proportion of cells, mainly CD8+ T cells, in 

meninges (Serafini et al., 2007, Magliozzi et al., 2010, Gardner et al., 2013). The levels of 

these cytokines in post-mortem CSF of F+ SPMS cases are also increased, although this 

increase did not reach significance for IFN-γ (Gardner et al., 2013). 
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The cases in which lymphoid-like structures are found have more severe cortical GM 

pathology and clinical course than those in which they are not. The extent of subpial cortical 

GM demyelination is also greater in F+ SPMS cases. Gradients of microglial activation and 

neuronal loss in cortical GM layers, with the greatest activation or loss in cortical layer I 

closest to the pia mater, have also been observed, as well as a gradient of astrocyte loss 

that resulted in a thinning, or loss, of the glia limitans (Magliozzi et al., 2010). Finally, the 

presence of lymphoid-like structures has been associated with a younger age at onset, age 

at wheelchair dependence and age at death (Magliozzi et al., 2007). Diffuse inflammatory 

infiltrates in the meninges have similarly been associated with a younger age at onset, time 

to disease progression, time to wheelchair dependence and age at death (Howell et al., 

2011). 

 

However, another study using autopsy samples from progressive MS cases failed to show a 

correlation between the extent of meningeal inflammation and subpial demyelination and 

also failed to show the presence of lymphoid-like structures (Kooi et al., 2009). It is 

suggested that this failure was due to limited sampling of the whole brain and poor 

preservation of meninges as a result of suboptimal retrieval, processing and handling 

protocols (Aloisi et al., 2010). 

 

It is suggested that meningeal inflammation, consisting of diffuse inflammatory infiltrates 

and/or lymphoid-like structures, results in increased concentrations of pro-inflammatory 

cytokines in the CSF. These diffuse from the pial surface into the cortex resulting in GM 

pathology, directly or indirectly through the activation of microglia, and a more severe clinical 

course (Peterson et al., 2001, Reynolds et al., 2011). However, there is currently no animal 

model of chronic cortical GM pathology driven by meningeal inflammation with which to test 

this hypothesis. 
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3.1.3 Targeted EAE models 

Pathology in the majority of current EAE models is focused on spinal cord WM (Sriram and 

Steiner, 2005), whereas MS affects the brain with prominent involvement of cerebral and 

cerebellar cortical GM as described in 3.1.1. In order to target pathology to specific 

anatomical locations within the rodent CNS, targeted EAE models have recently been 

developed. These involve the immunisation of animals with a subclinical dose of 

recombinant MOG to prime the immune system followed by the injection of pro-inflammatory 

cytokines at the desired location to attract the primed auto-reactive T cells and antibodies 

and induce demyelination (Kerschensteiner et al., 2004, Merkler et al., 2006, Sasaki et al., 

2010). The immunisation of female Lewis rats with 50µg of rrMOG emulsified in IFA, which 

was a subclinical dose in this strain, followed 18-22 dpi by the injection of 250ng of rrTNF 

and 150U of rrIFN-γ into the motor cortex, for example, resulted in all types of GML in the 

injected cortex. These were associated with activated microglia, infiltration of T cells and 

axonal damage. No cortical GM pathology was observed in the contralateral cortex (Merkler 

et al., 2006). However, the value of this model is limited by the physical injury and BBB 

damage induced by the direct injection of cytokines into the motor cortex. 

3.1.3.1 Model of cortical GM pathology driven by meningeal inflammation 

This laboratory has recently developed a targeted EAE model to test the hypothesis that 

TNF and IFN-γ produced in the meninges can diffuse into the underlying cortical GM and 

result in subpial lesions, and that avoids the damage induced by direct injection (Gardner et 

al., 2013). The injection of cytokines was into the SAS, the space filled with CSF between 

the pia and arachnoid mater. It is continuous around the brain but varies in thickness and 

may be absent where the pia and arachnoid mater are in direct contact and where blood 

vessels and nerves leave the brain (Adeeb et al., 2013). It is separated from the cortical GM 

by the single, interrupted layer of cells of the pia mater, a narrow (6nm) space containing 

collagen fibres, and the basal lamina and astrocyte end-feet that comprise the glia limitans 
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(Lopes and Mair, 1974). The cells of the pia mater are joined by gap junctions rather than 

tight junctions and form a permeable barrier (Alcolado et al., 1988). There are layers (5-12) 

(Lopes and Mair, 1974) of astrocytic elements, also joined by gap junctions, which comprise 

the glia limitans, resulting in a less permeable barrier (Johanson et al., 2005). 

 

The immunisation of female DA rats with a subclinical dose of 5µg of rmMOG emulsified in 

IFA followed 20-23 dpi by the injection of 1.25µg of rrTNF and 75ng of rrIFN-γ into the SAS 

of the sagittal sulcus resulted in subpial lesions similar to those described in SPMS 

(Peterson et al., 2001, Bø et al., 2003a, Kutzelnigg et al., 2005). Microglia with activated 

morphology were associated with myelin sheaths, particularly at the edge of the lesion, and 

a gradient of microglial activation was observed, again similar to that described in SPMS 

(Magliozzi et al., 2010). Lesions were associated with B cell, CD4+ and CD8+ T cell and 

macrophage accumulation in the meninges. No demyelination was observed in control 

animals immunised with IFA and injected with cytokines or in animals immunised with 

rmMOG and injected with PBS. This model appears to be highly reproducible but, as in the 

motor cortex model (Merkler et al., 2006), its value is limited by the lack of chronic pathology 

due to the acute nature of the cytokine delivery.  Demyelination was maximal at 7 days after 

injection and remyelination was complete at 14 days after injection (Gardner et al., 2013). 

3.1.4 Aims 

We aimed to further develop the acute model of cortical pathology driven by meningeal 

inflammation (Gardner et al., 2013), involving the immunisation of DA rats with a subclinical 

dose of rmMOG followed by the injection of TNF and IFN-γ into the SAS of the sagittal 

sulcus. We aimed to determine the effect of the dose of TNF and IFN-γ on the duration and 

extent of pathology. 
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To fulfil this aim, the following were performed: 

 Reproduction of the acute model using the same doses of TNF and IFN-γ used by 

Gardner et al. (2013) and determination of the extent of subpial demyelination and 

inflammation (activated macrophages/microglia and Tc, Th and B cells) at 1 week 

and 2 weeks after injection. 

 Repeat using two- and four-fold higher doses of TNF and IFN-γ. 
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3.2 Methods 

3.2.1 Induction of subclinical EAE 

3.2.1.1 Animals 

Female DA rats (Charles River, Germany) aged 8 to 12 weeks and weighing approximately 

160g were housed as described in 2.2.2.1. Animal work was carried out in compliance with 

Home Office regulations (project licence 70/7213). 

3.2.1.2 Immunisation 

Animals received an intradermal injection into the dorsal aspect of the base of the tail of 

10µg of rmMOG (a batch expressed and purified previously in this laboratory, batch pXIIIa; n 

= 36) diluted in PBS emulsified in an equal volume of IFA as described in 2.2.2.2. The total 

injection volume was 100µl. This dose and batch of rmMOG were used as they were shown 

to result in reproducible subpial demyelination in pilot studies performed in this laboratory of 

the acute model of cortical pathology driven by meningeal inflammation (unpublished 

observations). 

3.2.1.3 Clinical scoring 

Following immunisation animals were weighed and scored daily as described in 2.2.2.3. 

Animals were removed from the experiment if they reached the humane endpoints of a loss 

of 25% of their body mass (from the day prior to the development of deficit) for 48 hours or 

complete weakness of both hind limbs for more than 48 hours without weight gain, in 

compliance with Home Office regulations. These animals received an i.p. injection of an 

overdose of 200mg/ml Euthatal. 
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3.2.2 Injection of TNF and IFN-γ 

The immunisation of animals was followed 19-22 dpi by the injection of TNF and IFN-γ into 

the SAS of the sagittal sulcus. The coordinates from Bregma were obtained from a rat brain 

atlas (Paxinos and Watson, 1998) and were 0.9mm caudal to Bregma to target the motor 

cortex, at midline and to a depth of 2.3mm from the dura mater as shown in Figure 3.2.1 A. 

A previous study using this model made the injection at a depth of 2.5mm from the dura 

mater (Gardner et al., 2013). However, this was found to result in frequent injection into the 

underlying corpus callosum rather than the SAS in pilot studies performed in this laboratory, 

hence the depth was reduced in the current study.   

3.2.2.1 Cytokines 

The doses of TNF (R&D Systems) (reconstituted and diluted in 0.1% (w/v) BSA in PBS) and 

IFN-γ (Peprotech, Rocky Hill, New Jersey, USA) (reconstituted in pH8 sodium phosphate 

(10mM; Sigma-Aldrich) and diluted in 0.1% (w/v) BSA in PBS) are shown in Table 3.2.1. The 

low dose was that used previously in this laboratory in the development of the acute model 

of cortical pathology driven by meningeal inflammation (Gardner et al., 2013).The 

intermediate and high doses were two- and four-fold higher than this low dose respectively, 

and were used in order to determine whether higher doses increase the duration, as well as 

extent, of subpial demyelination and inflammation. Control animals received an injection of 

PBS only. Monastral blue (copper(II) phthalocyanine-tetrasulfonic acid tetrasodium salt; 

Sigma-Aldrich) was added at 1:1000 as a tracer as in Kerschensteiner et al., 2004, Merkler 

et al., 2006 and Rodriguez et al., 2014. The time points investigated are shown in Table 

3.2.1. 
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Immunisation TNF / µg IFN-γ / ng Time point / 

weeks 

Number of 

animals 

10µg rmMOG 1.25 75 1 4 

10µg rmMOG 2.5 150 1 4 

10µg rmMOG 5 300 1 4 

10µg rmMOG 1.25 75 2 3 

10µg rmMOG 2.5 150 2 4 

10µg rmMOG 5 300 2 3 

Table 3.2.1. Groups for TNF and IFN-γ dose response study. 
 

3.2.2.2 Stereotactic injection 

Animals were placed under general anaesthesia as described in 2.2.2.2 and the top of the 

head was shaved and Videne applied. Animals were mounted on a stereotactic frame 

(Stoelting, Rathmines, Dublin, Ireland) and received subcutaneous (s.c.) injections of 0.9% 

saline (Sigma-Aldrich) and 0.01mg/kg buprenorphine analgesic (Vetergesic; Alstoe Animal 

Health, Sheriff Hutton, North Yorkshire, UK), a dose that has been shown to have no effect 

on the immune response (Carrigan et al., 2004). The surface of the skull was exposed, the 

lateral and anterior coordinates from Bregma were determined and a small hole was drilled 

using a miniature power drill (RS Components, Corby, Northamptonshire, UK). Animals 

received a 1µl injection using a very fine glass capillary (Harvard Apparatus, Edenbridge, 

Kent, UK) mounted on the 26 gauge Hamilton needle of a 10µl Hamilton syringe (Figure 

3.2.1 B; Hamilton, Bonaduz, Graubünden, Switzerland) and a syringe pump (KD Scientific, 

Holliston, Massachusetts, USA) set to 0.2µl/min. The needle was left in place for 5 minutes 

to allow diffusion away from the injection site. Following retraction of the needle, the incision 

was closed using simple interrupted silk sutures (Mersilk (Ethicon; Covidien, Dublin, 

Ireland)), which were removed 7-10 days after surgery. Recovery from surgery was without 

incident and overt clinical signs in the majority of cases. The experiment was terminated at 1 

and 2 weeks after injection. 
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3.2.3 Determination of pathology 

3.2.3.1 Tissue harvesting and treatment 

Animals received an i.p. injection of an overdose of 200mg/ml Euthatal at the termination of 

the experiment and were perfused as described in 2.2.3.1. The brain was harvested and 

post-fixed in 4% PFA for 4 hours at 4°C followed by cryoprotection in 30% (w/v) sucrose in 

PBS for 48 hours or until equilibrium was reached at 4°C. 

 

Tissue was briefly rinsed in PBS, placed in a mould filled with optimal cutting temperature 

compound and frozen in isopentane on dry ice. 10µm sections in the coronal plane were cut 

using a cryostat and stored at -20°C. Monastral blue was used to identify the injection site.  

3.2.3.2 Immunofluorescence 

Extensive prior optimisation was required for IF protocols. Various methods of tissue post 

fixation and antigen retrieval were evaluated, including the use of pH6 citrate buffer, 

methanol and 4% PFA as well as Triton X-100 in antibody diluents. Sections were blocked 

with a high concentration of normal serum for 60 minutes and incubated with various 

concentrations of primary antibodies overnight. Amplification using biotinylated secondary 

antibodies was also evaluated. The protocols described below were found to be most 

suitable, resulting in clear, specific and strong IF. 

 

In order to identify areas of demyelination and the presence of activated 

macrophages/microglia, double IF for MOG and Iba1 (see Table 3.2.2 for details of primary 

antibodies) respectively was performed as described in 2.2.3.2. 

 

Similarly, in order to identify the presence of Th and Tc cells, double IF for CD4 and CD8 

respectively was performed. Sections were blocked with 5% (v/v) normal goat serum (NGS; 
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Sigma-Aldrich) in PBST for 60 minutes and incubated with anti-CD4 primary antibody diluted 

in 1% (v/v) NGS in PBST overnight at 4°C. Sections were incubated with goat anti-mouse 

IgG2a biotinylated secondary antibody (Southern Biotech, Birmingham, Alabama, USA) at 

1:500 in the same diluent for 60 minutes followed by incubation with Alexa Fluor 488 

conjugated streptavidin at 1:1000 for 60 minutes in the dark. Sections were incubated with 

anti-CD8 primary antibody overnight at 4°C followed by incubation with goat anti-mouse 

IgG1 Alexa Fluor 546 conjugated secondary antibody (Alexa Fluor Dyes) at 1:1000 for 60 

minutes in the dark. 

 

Finally, IF for CD79a (Table 3.2.2) was performed to identify the presence of B cells. The 

protocol used was the same as that for MOG and Iba1 but omitting methanol. This was 

replaced with heat mediated pH6 citrate buffer (0.1M citric acid, 0.1M sodium citrate (both 

Sigma-Aldrich)) retrieval using a vegetable steamer. 

 

Antigen Cell specificity Species Dilution Source 

CD41 CD4+ Th cell Mouse 1 in 500 AbD Serotec, Kidlington, Oxfordshire, 

UK 

CD8 CD8+ Tc cell Mouse 1 in 500 AbD Serotec 

CD79a1 B cell Mouse 1 in 500 Pierce Antibodies 

Iba1 Activated 

macrophages/ 

microglia 

Rabbit 1 in 

1000 

Wako 

MOG1 Myelin and 

oligodendrocytes 

Mouse 1 in 20 Reynolds’ group 

Table 3.2.2. Primary antibodies used for IF. 
1
Antigens requiring a biotinylated secondary antibody.  
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3.2.3.3 Imaging and analysis 

Sections were imaged using a Nikon Eclipse 80i microscope with a QImaging QICAM digital 

camera and Image-Pro Plus software. This software was able to tile multiple high 

magnification images to yield high resolution images of complete sections.  

 

Image-Pro Plus 7.0 was used to quantify areas of demyelination (Figure 3.2.2 A) while 

immune cells in the meninges were quantified manually using the 20x objective lens. While 

looking down the eyepiece, cells in the meninges were counted by moving along a length of 

meninges extending from 2mm to the left of the sagittal sulcus to 2mm to the right of it. 

Quantification was performed blinded to eliminate bias. Only cells with nuclei, identified 

using DAPI, were quantified, and only in the meninges, as this was where immune cell 

infiltration was mainly confined. Numbers of cells were normalised to the length of meninges 

analysed. ImageJ was used to quantify areas of Iba1 IR (B). Briefly, all Iba1 images for a 

single study were taken at the same exposure as far as was possible. The same threshold 

was then applied to these images in ImageJ to select the Iba1 IR. Quantification was 

performed on 3 consecutive sections per animal and a mean calculated. 

3.2.4 Statistical analysis 

All data are presented as the mean ± the SEM. GraphPad Prism 5 was used to construct 

graphs and perform statistical analysis. Groups were compared using Kruskal-Wallis one-

way ANOVA with Dunn’s multiple comparisons post-hoc test unless otherwise stated. A p 

value of <0.05 was considered to be statistically significant. 
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3.3 Results 

3.3.1 Induction of subclinical EAE 

3.3.1.1 Incidence of clinical EAE 

Female DA rats were immunised with 10µg of rmMOG. Despite this dose and batch having 

been shown to be subclinical as well as result in reproducible subpial demyelination in pilot 

studies performed in this laboratory, a significant proportion of animals developed clinical 

EAE. Only asymptomatic animals or those with a clinical score less than 2, corresponding to 

partial weakness of one limb, at the time of injection were used. Of the 36 animals 

immunised with rmMOG, 10 animals (28%) were culled prior to the injection of TNF and IFN-

γ due to the humane endpoint of a clinical score of 3.5, corresponding to complete weakness 

of both hind limbs preceded by ascending paralysis from the tail, for more than 48 hours 

being reached. A further 3 animals displayed atypical symptoms, characterised by 

disturbances in balance and coordination, or complete weakness of both hind limbs at the 

time of injection although they had not reached humane endpoints, and were not used. The 

mean day of disease onset in these 13 animals (36%) was 16 dpi. 

3.3.2 Injection of TNF and IFN-γ 

3.3.2.1 Identification of the injection site 

Monastral blue, added to the cytokine solution to enable the identification of the injection 

site, was confined to the meninges of the sagittal sulcus in 64% of animals (Figure 3.3.1 A). 

However, it was observed in the cingulate cortex (B) or corpus callosum (C) as well as in the 

sulcus in 27% of animals and was not observed at all in the remaining 9% of animals. In the 

case of accurate injections, it was present throughout the sagittal sulcus over approximately 

2mm, with a peak at the injection site that decreased progressively with increasing distance 

along the anteroposterior axis, as well as on the superior surface of the cortex. 
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3.3.2.2 Subpial demyelination 

In order to identify areas of demyelination, IF for MOG was performed on sections cut at the 

injection site, where the monastral blue was most dense. Extensive subpial demyelination, 

similar to the Type III GMLs observed in MS cortex, was present 1 week after injection of low 

(Figure 3.3.2 B), intermediate (C) and high (D) doses of TNF and IFN-γ, but was absent in 

control animals injected with PBS only (A). Demyelination was observed in both 

hemispheres and affected the cingulate cortex but particularly the primary and secondary 

motor cortices and primary somatosensory cortex. Cortical GM layers were defined using the 

DAPI stain; layer I was defined as the layer with a low density of nuclei between the 

meninges and layers II-III, with a high density of nuclei. Demyelination extended through 

cortical GM layers I-III. Demyelination in the corpus callosum was observed in one animal 

injected with 5µg TNF + 300ng IFN-γ, in which monastral blue had also been observed in the 

corpus callosum. 

 

A similar pattern of demyelination was present 2 weeks after injection of intermediate (Figure 

3.3.3 B) and high (C) doses of TNF and IFN-γ, although it appeared to be less extensive 

than that at 1 week after injection. Very little demyelination was observed after injection of 

the low dose of TNF and IFN-γ (A). Demyelination in the corpus callosum was observed in 

one animal injected with 5µg TNF + 300ng IFN-γ, in which monastral blue had again also 

been observed in the corpus callosum (C). 
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Areas of demyelination were quantified as described in 3.2.3.3 and the effect of both the 

dose of TNF and IFN-γ (Figure 3.3.4 A) and time point (B) variables were determined using 

two-way ANOVA with Tukey’s multiple comparisons post-hoc test. The total area of subpial 

demyelination increased with increasing dose of TNF and IFN-γ at 1 week after injection (A). 

The area of demyelination was significantly greater in animals injected with the high dose 

than in those injected with the low dose (factor of 2.93) and was also greater in these 

animals than in those injected with the intermediate dose (factor of 1.12), although this was 

not statistically significant. Similarly, the area of demyelination was greater in animals 

injected with the intermediate dose than in those injected with the low dose (factor of 2.62), 

although again this was not statistically significant. This TNF and IFN-γ dose-dependent 

increase in area of demyelination was not observed at 2 weeks after injection (A). 

 

The variation in the area of demyelination with increasing time after injection is more clearly 

demonstrated in Figure 3.3.4 B. Consistent with observation, the area of demyelination was 

significantly greater at 1 week after injection than at 2 weeks after injection in animals 

injected with the intermediate (factor of 3.74) and high (factor of 5.00) doses of TNF and 

IFN-γ, although there was no significant difference in the area of demyelination at 1 week 

and 2 weeks after injection in animals injected with the low dose. 

 

IF for MOG was performed on sections cut 500µm anterior to (Figure 3.3.5 A) and 500µm 

posterior to (C) the injection site as well as those cut at the injection site (B) in order to 

determine the anterior to posterior extent and pattern of demyelination. Subpial 

demyelination extended at least 500µm either side of the injection site and the pattern of 

demyelination appeared to be consistent across the 1mm sampled. Areas of demyelination 

were quantified and the total area of subpial demyelination did not change across the 1mm 

at 1 week after injection in animals injected with all doses of TNF and IFN-γ (Figure 3.3.6 A). 

This was also true at 2 weeks after injection in animals injected with the intermediate and 

high doses of TNF and IFN-γ, although there appeared to be some variation in animals 
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injected with the low dose, in which a significantly greater area of demyelination at 500µm 

posterior to the injection site than at 500µm anterior to the injection site (factor of 2.43) or at 

the injection site (factor of 2.34) was shown (B). 

3.3.2.3 Microglial activation 

In order to identify activated macrophages/microglia associated with areas of demyelination, 

double IF for Iba1 and MOG respectively was performed on sections cut at the injection site. 

A high density of activated macrophages/microglia was present at 1 week after injection of 

PBS only (Figure 3.3.7 Ai) as well as low (Bi), intermediate (Ci) and high (Di) doses of TNF 

and IFN-γ. Microglial activation was observed particularly adjacent to the sagittal sulcus in 

the absence of demyelination after injection of PBS only (Aii, Aiii) and in demyelinated areas 

in superficial layers of cingulate and motor cortices (Bii, Biii, Cii, Ciii, Dii, Diii), although it was 

not confined to these areas but also extended into surrounding myelinated areas. Iba1+ cells 

were also present in the meninges and were particularly evident in meninges overlying areas 

of subpial demyelination (as shown in A, for example) and in those lining the sagittal sulcus 

(several of these cells shown in B). These cells generally had an amoeboid morphology 

characterised by a large cell soma but the retention of short, thick processes that allowed 

them to be identified as activated microglia rather than amoeboid macrophages. A similar 

pattern of microglial activation was present at 2 weeks after injection of the 3 doses of TNF 

and IFN-γ. 

 

Iba1 immunoreactivity was quantified as described in 3.2.3.3 and the effect of both the dose 

of TNF and IFN-γ (Figure 3.3.8 A) and time point (B) was determined. The total Iba1 

immunoreactivity in areas of subpial demyelination increased with increasing dose of TNF 

and IFN-γ at 1 week after injection (A). Iba1 immunoreactivity was significantly greater in 

animals injected with the intermediate dose than in those injected with the low dose (factor of 

1.63). However, there was no further increase after injection of the high dose. There was no 

effect of the dose of TNF and IFN-γ on Iba1 immunoreactivity at 2 weeks after injection (A).  
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The variation in microglial activation with increasing time after injection is shown more clearly 

in Figure 3.3.8 B. It was significantly greater at 1 week after injection than at 2 weeks after 

injection in animals injected with the intermediate (factor of 1.69) and high (factor of 2.03) 

doses of TNF and IFN-γ, although there was no significant difference in Iba1 

immunoreactivity at 1 week and 2 weeks after injection in animals injected with the low dose.  

Although there appeared to be a positive correlation between the total area of subpial 

demyelination and the total Iba1 immunoreactivity in these areas, it was not significant (C). 

3.3.2.4 Immune cell infiltration 

In order to identify the presence of CD4+ and CD8+ T cells and B cells, double IF for CD4 

and CD8 and IF for CD79a respectively were performed on sections cut at the injection site. 

These immune cells were observed in the meninges lining the sagittal sulcus and those on 

the superior surface of the cortex as well as in the sagittal sulcus 1 week after injection of 

TNF and IFN-γ (Figure 3.3.9 A). They were diffusely distributed and aggregates were not 

observed. Immune cell infiltration appeared to be mainly confined to the meninges and the 

sagittal sulcus, with very little present in the cortex and corpus callosum. Very few immune 

cells were also observed after injection of PBS only. A similar pattern of immune cell 

infiltration was present two weeks after injection of the 3 doses of TNF and IFN-γ. 

 

Immune cells were quantified manually using the 20x objective lens and the effect of both 

the dose of TNF and IFN-γ (Bi, Ci, Di) and time after injection (Bii, Cii, Dii) were determined. 

As for the total area of subpial demyelination and the total Iba1 immunoreactivity in these 

areas, the total number of immune cells in the meninges increased with the dose of TNF and 

IFN-γ at 1 week, but not 2 weeks, after injection.  

 

CD4+ T cells 

The number of CD4+ T cells was significantly greater in animals injected with the high dose 

than in those injected with the intermediate (factor of 1.92) and low (factor of 3.62) doses 
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and those injected with PBS only (factor of 23.8) at 1 week after injection (Figure 3.3.9 Bi). 

The number of CD4+ T cells was greater in animals injected with the intermediate dose than 

in those injected with the low dose (factor of 1.89) and those injected with PBS only (factor of 

12.4), and in animals injected with the low dose than in those injected with PBS only (factor 

of 6.56), although these dose-dependent effects were not statistically significant. There were 

no statistically significant differences at 2 weeks after injection. The effect of time point on 

the number of CD4+ T cells is demonstrated in Bii. The only statistically significant difference 

was observed in animals injected with the high dose of TNF and IFN-γ, in which the number 

of CD4+ T cells was significantly greater at 1 week after injection than at 2 weeks after 

injection (factor of 1.82). 

 

CD8+ T cells 

The number of CD8+ T cells was significantly greater in animals injected with the 

intermediate dose than in those injected with the low dose (factor of 1.80) and those injected 

with PBS only (factor of 3.03) at 1 week after injection (Figure 3.3.9 Ci). It was also 

significantly greater in these animals than in those injected with the high dose (factor of 

1.56). At 2 weeks after injection, the number of CD8+ T cells was significantly greater in 

animals injected with the low dose than in those injected with the high dose (factor of 1.82). 

The effect of time point is shown in Cii. The number of CD8+ T cells was significantly greater 

at 1 week after injection than at 2 weeks after injection in animals injected with the 

intermediate dose of TNF and IFN-γ (factor of 1.66). 

 

CD79a+ B cells 

As for the number of CD4+ T cells, the number of CD79a+ B cells was significantly greater in 

animals injected with the high dose than in those injected with the intermediate (factor of 

1.56) and low (factor of 2.32) doses and those injected with PBS only (factor of 4.29) at 1 

week after injection (Figure 3.3.9 Di). Again, although the number of B cells was greater in 

animals injected with the intermediate dose than in those injected with the low dose (factor of 
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1.48) and those injected with PBS only (factor of 2.74), and in animals injected with the low 

dose than in those injected with PBS only (factor of 1.85), these dose-dependent effects 

were not statistically significant. There were no statistically significant differences at 2 weeks 

after injection. The number of B cells was significantly greater at 1 week after injection than 

at 2 weeks after injection in animals injected with the high dose of TNF and IFN-γ (factor of 

3.70), although there was no significant difference in the number of B cells at 1 week and 2 

weeks after injection in animals injected with the low and intermediate doses (Dii). 

 

Immune cell proportions 

CD8+ T cells were more abundant than CD4+ T cells and B cells in the meninges (Figure 

3.3.10). The number of CD8+ T cells was significantly greater than the number of CD4+ T 

cells at 1 week after injection in animals injected with PBS only (factor of 14.5) and in those 

injected with the low (factor of 3.73) and intermediate (factor of 3.55) doses of TNF and IFN-

γ (A) as well as at 2 weeks after injection in animals injected with the low (factor of 2.46) and 

intermediate (factor of 2.43) doses (B). The number of CD8+ T cells also appeared to be 

greater than the number of B cells at both 1 week and 2 weeks after injection, although this 

was only statistically significant in animals injected with the intermediate dose of TNF and 

IFN-γ (factors of 2.01 and 1.98 at 1 and 2 weeks after injection respectively). There were no 

significant differences in the number of these immune cells at either 1 week or 2 weeks after 

injection of the high dose. 



Chapter 3 - Model of subpial demyelination driven by meningeal inflammation in the DA rat 135 

  



Chapter 3 - Model of subpial demyelination driven by meningeal inflammation in the DA rat 136 

  



Chapter 3 - Model of subpial demyelination driven by meningeal inflammation in the DA rat 137 

3.4 Discussion 

3.4.1 Stereotactic injection into the SAS of the sagittal sulcus 

The targeted EAE model used in the current study was developed to test the hypothesis that 

an inflammatory milieu in the CSF/meningeal compartment can result in subpial cortical 

GMLs (Peterson et al., 2001, Reynolds et al., 2011), hence it was important to achieve a 

high frequency of accurate injections into the SAS of the sagittal sulcus, the space filled with 

CSF between the pia and arachnoid mater. The resulting cortical GM pathology would then 

be a result of the inflammatory milieu in the CSF/meningeal compartment after injection of 

TNF and IFN-γ, and associated release and diffusion of pro-inflammatory cytokines from the 

pial surface. It was also important to achieve accurate injections into the SAS to avoid the 

physical injury and BBB damage induced by direct injection into the motor cortex in another 

targeted EAE model (Merkler et al., 2006). Studies have shown that cortical stab wounds in 

otherwise naïve rats result in extensive physical injury, characterised by demyelination with a 

corresponding increase in the number of oligodendrocytes (Xie et al., 1995). They also result 

in an increase in the number of macrophages and microglia, some of which were replicating 

and which reached a maximum at 1 week after wounding, as well as astrocytes (Fujita et al., 

1998), although these studies used blades to induce the stab wounds rather than the glass 

capillaries used in the current study. It has also been shown that focal cortical damage in the 

form of a cryolesion results in exacerbation of pathological EAE, with an increase in the 

number of T cells and activated microglia in the brain (Phillips et al., 1995, Sun et al., 2000). 

It also results in BBB damage, which is in contrast to the preservation of BBB integrity in 

GMLs (van Horssen et al., 2007). Hence any cortical GM pathology observed after injection 

into the cortex would not be consistent with that in GMLs in MS, and may be due to the 

injection itself rather than the injection of TNF and IFN-γ. However, achieving accurate 

injections was technically challenging due to the narrow width of the sagittal sulcus and its 

base, the diameter of which was approximately 200µm, with the cortical GM adjacent and 
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corpus callosum WM below. The intersection of the coronal and sagittal sutures at Bregma 

was also highly variable between animals, hence the lateral as well as the anterior 

coordinate of injection was difficult to determine. Despite this, accurate injections, 

determined using monastral blue, were achieved in the majority of animals in the current 

study. 

 

Tracers such as monastral blue and Indian ink are widely added to injection solutions to 

enable the identification of the injection site as well as CSF drainage pathways following 

stereotactic injection, and can persist for several months (Zhang et al., 1992, Kida et al., 

1993, Kerschensteiner et al., 2004, Merkler et al., 2006, Gardner et al., 2013, Rodriguez et 

al., 2014). Monastral blue was confined to the meninges of the sagittal sulcus in 64% of 

animals in this study, validating the accuracy of injection. In these animals, monastral blue 

spread along the anteroposterior axis but did not spread into the cortex.  In some animals, it 

was also observed on the superior surface of the cortex. This pattern is consistent with CSF 

drainage pathways, several of which have been described. Approximately half of the CSF 

drains from the SAS through arachnoid villi and granulations in the walls of the sagittal 

sinuses into venous blood (Boulton et al., 1998, Weller et al., 2010), whereas approximately 

half drains in an anterior direction along channels in the SAS adjacent to the olfactory nerves 

through the cribriform plate, to connect with the nasal mucosa lymphatics and cervical lymph 

nodes (Figure 3.4.1; Zhang et al., 1992, Kida et al., 1993, Boulton et al., 1998, Johnston et 

al., 2004). The rate of CSF flow over the cortex has not been determined, although the rate 

of CSF bulk flow per whole brain is approximately 2µl per minute, resulting in a turnover rate 

of approximately 10 times per day (Pardridge, 2011, Chiu et al., 2012). However, we suggest 

that the rate of CSF flow in the deep sulcus is lower than that of CSF bulk flow, resulting in a 

protected environment (Reynolds et al., 2011) that allows the retention of monastral blue in 

the CSF/meningeal compartment. In the case of accurate injections, we conclude that 

injection into the SAS of the sagittal sulcus is a good route to target the CSF/meningeal 

compartment. 
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Figure 3.4.1. CSF drainage pathways. CSF drains along the SAS to either the spleen or cervical lymph 
nodes. Drainage to the spleen is mediated by arachnoid villi that allow entry to the venous sinuses while 
drainage to the cervical lymph nodes is mediated by the cribriform plate that connects the SAS and the 
nasal lymphatics in the rat. Adapted from Aloisi et al., 2000. 
 

3.4.2 Subpial demyelination after injection of TNF and IFN-γ 

In this study, the injection of TNF and IFN-γ into the SAS of the sagittal sulcus of female DA 

rats immunised with a subclinical dose of rmMOG successfully induced subpial 

demyelination, consistent with a previous study using this model (Gardner et al., 2013) and 

confirming that an inflammatory milieu in the CSF/meningeal compartment can indeed result 

in subpial cortical GMLs. A previous study suggested that the injection of TNF and IFN-γ into 

the motor cortex induced subpial demyelination as a result of the drainage of the cytokines 

into the CSF/meningeal compartment (Merkler et al., 2006), whereas the current study and 

that of Gardner et al., 2013 suggest that the cytokines may diffuse directly into the cortex 

from the SAS if produced by the infiltrating immune cells in the meninges. This is consistent 

with the hypothesis proposed on the basis of studies using autopsy samples from MS cases 
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that soluble factors, suggested to include TNF and IFN-γ (Sharief and Hentges, 1991, Spuler 

et al., 1996, Serafini et al., 2007, Magliozzi et al., 2010, Romme Christensen et al., 2012, 

Gardner et al., 2013), produced in the CSF/meningeal compartment diffuse into the 

underlying cortical GM. 

 

Neither leukocortical nor intracortical demyelination was observed, suggesting that the 

pathogenesis of subpial demyelination is distinct. This is supported by the distance from the 

meninges and the association between intracortical demyelination and blood vessels 

(Peterson et al., 2001, Bø et al., 2003a). Additionally, it suggests that the injected TNF and 

IFN-γ do not gain access to the cortex via perivascular pathways in sufficient quantity to 

cause pathology, supported by the relative lack of monastral blue observed in the cortex. 

Demyelination of the corpus callosum WM underlying the sagittal sulcus injection site was 

also absent, except in animals in which monastral blue was present at this location. This 

suggests that the subpial demyelination can develop independently from WM demyelination, 

as previously proposed (Bø et al., 2003b, Kutzelnigg et al., 2005, Vercellino et al., 2005, Bö 

et al., 2007). 

 

The cortical GMLs observed were similar to the Type III GMLs observed in MS cortex, 

extending from the pial surface into GM layer III and associated with mild peripheral immune 

cell infiltration (Peterson et al., 2001, Bø et al., 2003b). The finding that activated 

macrophages/microglia, CD4+ and CD8+ T cells and B cells were present in the meninges is 

consistent with the diffuse inflammatory infiltrates present in the meninges in approximately 

40% of SPMS cases (Serafini et al., 2004, Magliozzi et al., 2007, Magliozzi et al., 2010, 

Howell et al., 2011). Additionally, the observation that the immune cell infiltration in the 

meninges in the current study was particularly evident in meninges overlying areas of 

subpial cortical GM demyelination is in keeping with the correlation between meningeal 

inflammation and underlying subpial cortical GM demyelination and microglial activation in 

F+ SPMS cases (Magliozzi et al., 2007, Magliozzi et al., 2010, Howell et al., 2011). The 
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same extent of microglial activation and immune cell infiltration in the meninges was not 

observed in control animals immunised with rmMOG and injected with PBS only, in which 

subpial demyelination was absent. Although it was not feasible to include control animals 

immunised with IFA and injected with TNF and IFN-γ in this study, a previous study has 

shown that the same extent of microglial activation and immune cell infiltration was also not 

observed in these animals, again in the absence of significant subpial demyelination 

(Gardner et al., 2013). These findings indicate a significant role for the reactivation of myelin-

reactive T cells in the CSF/meningeal compartment as well as TNF and IFN-γ in activating 

meningeal blood vessels resulting in macrophage infiltration (Bartholomäus et al., 2009, 

Kivisäkk et al., 2009). 

 

The increasing area of subpial demyelination with the increasing levels of TNF and IFN-γ at 

1 week after injection further indicates a significant role for these cytokines in mediating this 

pathology. These demyelinating, inflammatory effects of TNF and IFN-γ have been 

previously demonstrated. For example, the overexpression of TNF in the CNS of transgenic 

mice resulted in spontaneous, chronic inflammatory demyelination associated with CD4+ 

and CD8+ T cell infiltration in the meninges and microgliosis (Probert et al., 1995). Individual 

treatment of oligodendrocytes with TNF or IFN-γ has been shown to induce dose-dependent 

apoptosis, with combined treatment resulting in accelerated apoptosis (Buntinx et al., 2004). 

Combined treatment of microglia induced microglial activation, resulting in NOS expression 

and NO production (Mir et al., 2008). The treatment of microglia with IFN-γ has also been 

shown to increase the synthesis and secretion of TNF, which, in an autocrine manner, may 

induce further microglial activation (Aloisi, 2001, Takeuchi et al., 2006). In vivo, the injection 

of TNF and IFN-γ into the spinal cord resulted in mononuclear cell infiltrates (Simmons and 

Willenborg, 1990). Taken together, these studies and the current study suggest that TNF 

and IFN-γ diffuse into the cortex from the SAS, resulting in subpial demyelination, directly or 

indirectly through the activation of microglia. 
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3.4.3 Mechanism of subpial demyelination 

3.4.3.1 Humoral immune system 

As stated, no significant subpial demyelination is observed in control animals immunised 

with IFA and injected with TNF and IFN-γ (Gardner et al., 2013), indicating that the presence 

of these cytokines in the SAS alone is not sufficient to induce subpial demyelination but that 

an existing cellular/humoral anti-myelin immune response is also required.  

 

This suggests that demyelination may be antibody-mediated, which in turn has been shown 

to depend on the fixation of complement by anti-MOG antibodies (Piddlesden et al., 1993) 

and its deposition on myelin sheaths (Storch et al., 1998a). Ig and complement deposition on 

myelin sheaths, although transient, has been observed in targeted EAE models (Merkler et 

al., 2006, Gardner et al., 2013). However, a study using autopsy samples from MS patients 

showed a relative lack of deposition in purely cortical GMLs (Brink et al., 2005), although 

active GMLs have not been studied. 

 

It also suggests a role for B cells in the pathogenesis of subpial demyelination, although they 

were not the most abundant immune cell in the meninges in the current study. Although the 

B cell infiltration was confined to the meninges consistent with that in MS cases (Frischer et 

al., 2009), lymphoid-like structures consisting of aggregates of B cells, some of which are 

proliferating, together with follicular dendritic cells, plasmablasts/plasma cells and T cells, 

were not observed. Lymphoid-like structures have been observed in the meninges of mice 

with MOG-induced EAE, but only in those with progressive relapsing EAE with a high level of 

inflammation in the CNS, suggesting that a chronic inflammatory milieu is required 

(Magliozzi et al., 2004). Additionally, it appears that the development of lymphoid-like 

structures depends on the B cell chemokine CXCL13, B cell activating factor (BAFF) and the 

cytokine lymphotoxin-α1β2 (Magliozzi et al., 2004, Columba-Cabezas et al., 2006). Hence the 

absence of lymphoid-like structures in the current study may be due to the acute, rather than 
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chronic, inflammatory milieu resulting from the injection of TNF and IFN-γ, and/or insufficient 

production of CXCL13, BAFF and lymphotoxin-α1β2. Chapter 4 aims to evaluate LV vectors 

as a delivery system to achieve a chronic inflammatory milieu in the CSF/meningeal 

compartment and studies involving the injection of the molecules involved in the 

development of lymphoid-like structures into the SAS are ongoing.  

 

Studies in EAE have yielded conflicting results regarding the role of B cells. One study 

showed that B cell-deficient mice were susceptible to MOG peptide-induced EAE 

(Hjelmström et al., 1998) whereas another study showed that these mice were resistant to 

recombinant MOG-induced EAE, but not to encephalitogenic MOG peptide-induced EAE 

(Lyons et al., 1999). However, later studies have shown that the MOG amino acids 35-55 

peptide used in these studies is recognised by T cells (Delarasse et al., 2013), and is partly 

occluded within the dimer interface of recombinant MOG (Clements et al., 2003), hence 

these findings may indicate a significant role for T cells rather than B cells in this model. B 

cells, as well as differentiating into anti-MOG antibody-producing plasma cells, also function 

as APCs and activate Th cells (Rodríguez-Pinto, 2005) and secrete cytokines, including IFN-

γ (Harris et al., 2005), lymphotoxin and TNF (Bar-Or et al., 2010). A recent study has shown 

that B cells are required for reactivation of myelin-reactive T cells, their cytokine secretion 

and their subsequent recruitment of further immune cells (Pierson et al., 2014), independent 

of their production of anti-MOG antibodies (Jagessar et al., 2012, Molnarfi et al., 2013), and 

we suggest that the B cells observed in the meninges in the current study contribute to the 

inflammatory milieu in the CSF/meningeal compartment by reactivating T cells and secreting 

cytokines. 

3.4.3.2 Cellular immune system 

T cells 

The finding of increasing total number of CD4+ and CD8+ T cells in the meninges with the 

increasing levels of TNF and IFN-γ at 1 week after injection indicates a role for these 
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cytokines in stimulating T cell infiltration. Consistent with this proposed role, the treatment of 

cultured endothelial cells, which comprise the BBB, with TNF or IFN-γ has been shown to 

result in decreased integrity of the barrier they form and increased expression of intercellular 

adhesion molecule 1 and vascular adhesion molecule 1 (Fabry et al., 1992, Wong and 

Dorovini-Zis, 1995, Dobbie et al., 1999). Additionally, TNF and IFN-γ induce the expression 

of chemokines including CCL2, CCL5, CXCL10 and IL8 in astrocytes (Oh et al., 1999), 

facilitating further entry of T and B cells, plasma cells and macrophages to the CNS (Hellings 

et al., 2002). Myelin-reactive T cells then become reactivated on encountering their specific 

myelin epitope presented by APCs in the CSF/meningeal compartment (Bartholomäus et al., 

2009, Kivisäkk et al., 2009). These studies suggest that the injection of TNF and IFN-γ 

stimulated activation of the BBB and subsequent immune cell infiltration. 

 

CD4+ and CD8+ T cells in the meninges have previously been observed in this model 

(Gardner et al., 2013), and are also observed in EAE models (Brown and Sawchenko, 2007, 

Bartholomäus et al., 2009) as well as in MS cases, particularly in lymphoid-like structures 

(Serafini et al., 2007, Frischer et al., 2009, Howell et al., 2011). A recent study has shown 

that T cells in the meninges of marmosets with MOG-induced EAE are associated with early 

subpial demyelination, suggesting a role for the local infiltration of these cells in the 

meninges in the pathogenesis of subpial demyelination in this model (Kramann et al., 2014). 

The presence of these cells in the meninges suggests that their entry to the CNS is via 

meningeal blood vessels. Their presence in the meninges on the superior surface of the 

cortex as well as in those lining the sagittal sulcus is consistent with CSF drainage 

pathways, with TNF and IFN-γ proposed to drain from the sagittal sulcus to the superior 

surface (Zhang et al., 1992, Kida et al., 1993) where they facilitate entry of T and B cells as 

described. Very few T cells were present in areas of subpial demyelination, consistent with a 

previous study (Gardner et al., 2013) and with cortical GMLs in MS cases, in which 

characteristically only mild peripheral immune cell infiltration is observed (Peterson et al., 

2001, Kutzelnigg et al., 2005, Magliozzi et al., 2010), suggesting that these cells do not have 



Chapter 3 - Model of subpial demyelination driven by meningeal inflammation in the DA rat 145 

a direct cytotoxic role in the pathogenesis of cortical GMLs. This is in contrast to the 

perivascular T cell infiltrates observed in the spinal cord WMLs of EAE (Storch et al., 1998b), 

in which they are suggested to have an indirect role by secreting cytokines (Lovett-Racke et 

al., 2011), again indicating that the pathogenesis of GMLs and WMLs is distinct. 

 

Th1 CD4+ cells secrete IFN-γ, IL2, lymphotoxin-α and TNF (Dittel, 2008, Zhu et al., 2010) 

and Tc CD8+ cells similarly secrete cytokines, including TNF and IFN-γ (Harty and Bevan, 

1999), further contributing to the inflammatory milieu in the CSF/meningeal compartment. 

CD3+ T cells in the meninges of F+ SPMS cases have been shown to express IFN-γ 

(Gardner et al., 2013). Although MS and EAE have historically been regarded as CD4+ T 

cell-mediated due to association with MHC class II alleles, with Th1 cells being the main 

pathogenic cells, the recent studies described in 1.3.3.1 have suggested a role for CD8+ T 

cells. In the current study, CD8+ T cells were the most abundant immune cell in the 

meninges. A previous study using this model did not compare the number of CD4+ and 

CD8+ T cells in the meninges, although it appears that CD4+ T cells were more abundant 

(Gardner et al., 2013). Tc cells are more common than Th cells in cortical GMLs in 

progressive MS cases (Bø et al., 2003a, Frischer et al., 2009) and their oligoclonal 

expansion in blood (Skulina et al., 2004), CSF (Jacobsen et al., 2002) and active lesions 

(Babbe et al., 2000) has been demonstrated, which is not the case for Th cells. Tc cells from 

MS patients show greater rolling and arrest in meningeal blood vessels than Th cells when 

injected in mice, indicating selective entry of these cells to the CNS (Battistini et al., 2003), 

consistent with CD8+ T cells being the most abundant immune cell in the meninges in the 

current study. We suggest that these cells contribute to the inflammatory milieu in the 

CSF/meningeal compartment by promoting BBB permeability and secreting chemokines 

(Mars et al., 2011), resulting in subsequent recruitment of further immune cells. Their 

secretion of cytokines may also increase the recruitment and activation of microglia (Harty 

and Bevan, 1999). 
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Macrophages/microglia 

The injection of TNF and IFN-γ also induced the infiltration or local proliferation of activated 

microglia, particularly at the leading edge of the subpial cortical GMLs but also in the 

meninges, with a high density of cells with an amoeboid morphology being observed. This 

finding is consistent with the extensive microglial activation induced by the injection of these 

cytokines into the motor cortex as well as the SAS in previous studies, in which they were 

closely associated with myelin sheaths (Merkler et al., 2006, Gardner et al., 2013), and 

suggests a role for microglia in the pathogenesis of subpial demyelination. Additionally, the 

trend for a positive correlation between the extent of subpial demyelination and microglial 

activation in these areas was similar to that observed previously (Merkler et al., 2006, 

Gardner et al., 2013). This finding is also consistent with the distribution of MHC class II-

positive and CD68-positive macrophages/microglia with amoeboid morphology throughout 

cortical GMLs and NAGM in MS cases (Peterson et al., 2001, Bø et al., 2003a, Magliozzi et 

al., 2007, Magliozzi et al., 2010). Meningeal inflammation has been correlated with microglial 

activation as well as subpial cortical GM demyelination in the underlying cortical GM 

(Magliozzi et al., 2007, Magliozzi et al., 2010, Howell et al., 2011), again confirming the role 

of the inflammatory milieu in the CSF/meningeal compartment in cortical GM pathology. 

 

IFN-γ is the best known inducer/potentiator of the antigen presenting and pro-inflammatory 

functions of macrophages/microglia (Colton et al., 1994, Aloisi et al., 2000, Aloisi, 2001), with 

IFN-γ receptors constitutively expressed on ‘resting’ microglia and their activation following 

intrathecal injection of IFN-γ resulting in MHC class II expression (Vass and Lassmann, 

1990). This in turn results in the differentiation of naïve T cells into Th1 cells (Aloisi et al., 

1999b), although the lack of T cell infiltration in the cortex indicates that the antigen 

presenting function of microglia may not be significant. TNF also induces microglial 

activation, with TNFR1 and TNFR2 expressed (Dopp et al., 1997). Activation results in 

expression of the pro-inflammatory cytokines IL1β and IL6 and inducible NOS, formation of 

oxygen radicals as well as prolonged survival of cultured microglia. Additionally, TNFR1 
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mediates an autocrine positive feedback loop resulting in TNF-induced TNF expression by 

microglia (Kuno et al., 2005).  

 

Several mechanisms by which microglial activation results in demyelination have been 

proposed. The NO radicals produced are cytotoxic to oligodendrocytes in vitro (Merrill et al., 

1993) and the glutamate produced as a result of increased glutaminase expression 

(Takeuchi et al., 2006) results in excitotoxic oligodendrocyte death. The application of 

glutamate receptor agonists to the optic nerve in vivo results in apoptotic oligodendrocyte 

death and demyelination (Matute, 1998). IFN-γ and TNF also both stimulate increased 

phagocytosis of myelin (Smith et al., 1998), which may be opsonised by anti-myelin 

antibodies or complement protein fragment C3bi (Gitik et al., 2010) and which is mediated by 

Fc and complement receptors, the expression of which is increased in activated microglia 

(Mosley and Cuzner, 1996). Although the phenotype of the Iba1+ activated microglia 

observed in the current study is not known, a previous study using this model showed the 

presence of Iba1+ activated microglia that were also CD68+, indicative of phagocytosis 

(Gardner et al., 2013). The TNF and IFN-γ produced by activated microglia also induce 

oligodendrocyte death directly, with that induced by TNF being mediated by TNFR1 and the 

death molecule apoptosis-inducing factor rather than caspases (Buntinx et al., 2004, 

Jurewicz et al., 2005, Horiuchi et al., 2006). 

 

However, a previous study using this model showed that the extent of microglial activation at 

1-3 days after injection of TNF and IFN-γ was the same in animals immunised with rmMOG 

and those immunised with IFA only, and only became more extensive in the animals 

immunised with rmMOG at 7 days after injection when demyelination was maximal (Gardner 

et al., 2013). This suggests that acute microglial activation is not sufficient to induce 

demyelination and that an existing cellular/humoral anti-MOG immune response is also 

required. Given that immune cell infiltration in the meninges preceded maximal 

demyelination as well as microglial activation (Gardner et al., 2013), it is possible that the 
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TNF and IFN-γ secreted by myelin-reactive T cells, once reactivated, is required to activate 

microglia. 

3.4.4 Acute versus chronic presence of TNF and IFN-γ 

Although it resulted in increased extent of pathology, increasing the doses of TNF and IFN-γ 

injected into the SAS in the current study did not result in increased duration of pathology. 

The acute nature of pathology, with subpial demyelination, microglial activation and T and B 

cell infiltration in the meninges being significantly greater at 1 week after injection than at 2 

weeks after injection of the higher doses of TNF and IFN-γ, was consistent with that 

observed previously in targeted EAE models (Merkler et al., 2006, Gardner et al., 2013). 

This is perhaps not surprising, as the small volume of cytokines will have been rapidly 

catabolised by proteases, diluted or drained in the CSF, resulting in a loss of the pro-

inflammatory signalling that results in microglial activation and immune cell infiltration. 

3.4.4.1 Acute inflammation 

We suggest that the secretion of TNF and IFN-γ by myelin-reactive T cells and activated 

microglia induced by the injection of TNF and IFN-γ decreases with time, deactivating the 

BBB and decreasing the entry of additional T cells to the CNS. Additionally, there may also 

be a role for microglia in the resolution of inflammation. They have been shown to secrete 

the anti-inflammatory cytokines IL10 and TGF-β in vitro, which inhibit further microglial 

activation by decreasing their secretion of pro-inflammatory cytokines, chemokines and 

nitrogen and oxygen radicals (Aloisi, 2001, Qian et al., 2006) as well as their expression of 

MHC class II molecules (O'Keefe et al., 1999). IL10 is thought to be important in the 

recovery from EAE of DA rats, whereas TGF-β may be important in the resistance to EAE of 

Albino Oxford rats (Blaževski et al., 2013). Finally, it is likely that both FoxP3+ regulatory T 

cells and Type 1 regulatory T cells are involved in the resolution of inflammation. The 

adoptive transfer of the former has been shown to improve, and the depletion worsen, EAE 

(Kleinewietfeld and Hafler, 2014) and their suppressive capacity is impaired in RRMS 
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patients (Viglietta et al., 2004), which is also true for IL10-secreting Type 1 regulatory T cells 

(Astier et al., 2006). Further study will be required to determine the role of anti-inflammatory 

cytokines and regulatory T cells in the resolution of inflammation in this model. We suggest 

that chronic meningeal inflammation will be required to achieve chronic microglial activation, 

and conclude that meningeal inflammation does not become self-sustaining after the 

injection of higher doses of TNF and IFN-γ. 

3.4.4.2 Acute demyelination 

The decreased extent of subpial demyelination at 2 weeks after injection than at 1 week after 

injection indicates that remyelination has taken place. New oligodendrocytes forming myelin 

sheaths have been identified in subpial GMLs in MS cases, regardless of disease duration or 

age at death (Chang et al., 2012). Increased g-ratios (ratio of axon diameter to total fibre 

diameter on electron micrographs) indicative of remyelination have also been observed, at a 

similar time point, in GMLs following the injection of TNF and IFN-γ into the motor cortex 

(Merkler et al., 2006). A study using a model of chronic demyelination showed that the 

induction of acute inflammation by the injection of saline/charcoal or by meningitis, resulting 

in macrophage and lymphocyte infiltration respectively, stimulates remyelination by 

transplanted OPCs (Foote and Blakemore, 2005). Studies have shown that macrophages 

contribute to remyelination both by the phagocytosis of myelin debris, which has been shown 

to inhibit OPC differentiation (Robinson and Miller, 1999), and by the secretion of growth 

factors, including insulin-like growth factor 1, which stimulate the differentiation and 

proliferation of OPCs and oligodendrocytes (Kotter et al., 2005). Additionally, TNF signalling 

mediated by TNFR2 has been shown to be required for the proliferation of immature 

oligodendrocytes in a mouse cuprizone model (Arnett et al., 2001), whereas an inhibitory 

role for IFN-γ has been shown (Lin et al., 2006). These studies suggest that the acute 

inflammation, consisting of microglial activation and immune cell infiltration, induced by the 

injection of TNF and IFN-γ in the current study may stimulate remyelination, resulting in the 

acute demyelination observed. Further study of the dynamics and mechanism of 
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remyelination in this model could include the quantification of established OPC and 

oligodendrocyte phenotypic markers as well as the growth factors that stimulate 

remyelination. 

 

Finally, data have suggested that the clinical presentation and course of MS are dependent 

on age (Confavreux and Vukusic, 2006). Remyelination efficiency is decreased in models 

induced by toxic agents (Gilson and Blakemore, 1993, Shields et al., 1999, Shen et al., 

2008), associated with decreased recruitment and differentiation of OPCs, in older animals 

(Sim et al., 2002), while the susceptibility of axons to injury is increased in a targeted EAE 

model (Hampton et al., 2012). In the current study, animals aged 8 to 12 weeks were 

followed for 2 weeks, whereas the mean age of death and disease duration of the SPMS 

cases used in Chapter 5 were 51.1 and 25.5 years respectively, suggesting that chronic 

cortical GM pathology may be achieved in older animals. However, we conclude that the 

injection of higher doses of TNF and IFN-γ is not sufficient to induce chronic subpial 

demyelination in the animals used. 

 

The acute nature of the pathology observed in this model represents a major limitation given 

the chronic nature of the human disease. A previous study using this model also failed to 

show neuronal loss (Gardner et al., 2013), in contrast to the substantial neuronal loss in MS 

GMLs (Wegner et al., 2006, Magliozzi et al., 2010). This suggests that neuronal loss in MS 

GMLs occurs over many years due to chronic pathology. Chapter 4 aims to evaluate a 

delivery system to achieve a chronic inflammatory milieu in the CSF/meningeal compartment 

using this model. It is not known whether this will result in chronic subpial demyelination. 

3.4.5 Conclusions 

We have shown that the injection of TNF and IFN-γ into the SAS of the sagittal sulcus of 

female DA rats immunised with a subclinical dose of rmMOG induced acute subpial 

demyelination. The microglial activation in these areas and immune cell infiltration in the 
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meninges are similar to that in subpial GMLs, confirming the value of this model of subpial 

demyelination driven by meningeal inflammation, and supports the hypothesis that an 

inflammatory milieu in the CSF/meningeal compartment results in subpial demyelination. We 

have also shown that increasing the doses of TNF and IFN-γ does not increase the duration 

of pathology, hence an alternative strategy to achieve their chronic presence in the 

CSF/meningeal compartment will be required to further develop this model.  
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4.1 Introduction 

4.1.1 Chronic pathology in MS 

4.1.1.1 Chronic demyelination 

Remyelination in early WMLs in MS can be extensive, with 80.7% showing remyelination 

(Goldschmidt et al., 2009) by newly formed myelin sheaths surrounding preserved axons, 

and is correlated with the density of oligodendrocytes (Lucchinetti et al., 1999). 

Remyelination in chronic WMLs can also be extensive (Patrikios et al., 2006, Patani et al., 

2007), although its extent is more variable, with 13.2% being completely remyelinated and 

60.4% showing no remyelination (Goldschmidt et al., 2009). Remyelination in cortical GMLs 

is more extensive than that in chronic WMLs, with 18% showing extensive remyelination and 

54% showing remyelination at the edges of the lesions (Albert et al., 2007), including in 

subpial cortical GMLs (Chang et al., 2012). Despite this cortical GM remyelination, it is now 

widely accepted that there is a role for accumulating cortical GM pathology in clinical 

progression (Kutzelnigg et al., 2005, Calabrese et al., 2010a), with GML area correlated with 

age at death (Gilmore et al., 2009). These studies indicate that remyelination fails at a 

certain stage, suggested to be due to a decrease in the number of OPCs and their 

differentiation (Kuhlmann et al., 2008). The densities of OPCs and oligodendrocytes are 

unchanged in  demyelinated cortex in biopsy samples from early MS cases, whereas they 

are decreased in demyelinated cortex in autopsy samples from progressive MS cases 

(Rodriguez et al., 2014). 

4.1.1.2 Chronic cortical GM pathology in SPMS 

Cortical GM demyelination is characteristic of PPMS and SPMS (Kutzelnigg et al., 2005) and 

can affect 28.8% of the GM (Gilmore et al., 2009), with subpial GMLs, which may involve 

multiple gyri, accounting for up to 50-70% of all GMLs (Peterson et al., 2001, Bø et al., 

2003a, Magliozzi et al., 2007). This extensive subpial demyelination and the associated 
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inflammatory infiltrates in the meninges, which resemble tertiary lymphoid organs in a 

significant proportion of SPMS cases (defined as F+ SPMS; 41.4%, 54% and 40% in 

Magliozzi et al., 2007, Magliozzi et al., 2010 and Howell et al., 2011 respectively), suggests 

that subpial cortical GM pathology is chronic rather than acute. The associated neuronal loss 

in outer cortical GM layers (Wegner et al., 2006, Magliozzi et al., 2010) also suggests that it 

occurs over many years due to chronic pathology, consistent with the accumulation of 

chronic cognitive, motor and sensory symptoms. Neuronal loss of approximately 50% has 

been shown in cortical GMLs, associated with the presence of apoptotic neurons, most of 

which are pyramidal neurons in cortical GM layers III and V (Magliozzi et al., 2010). Synapse 

loss has also been demonstrated (Wegner et al., 2006, Dutta et al., 2011). Additionally, 

neuronal loss of approximately 30% has been shown in hippocampal GMLs. These sites of 

neuronal loss are consistent with the cognitive and motor symptoms seen in MS, with the 

pathology in hippocampal GM suggested to contribute to memory impairment 

(Papadopoulos et al., 2009). 

4.1.2 Lack of chronic demyelination in targeted EAE models of MS 

As described in 1.3.4, targeted EAE models have been developed that allow pathology to be 

targeted to specific anatomical locations within the rodent CNS. These models involve the 

immunisation of animals with a subclinical dose of recombinant MOG to prime the immune 

system followed by the injection of pro-inflammatory cytokines at the desired location to 

attract the primed auto-reactive T cells and antibodies and induce demyelination 

(Kerschensteiner et al., 2004, Merkler et al., 2006, Sasaki et al., 2010). However, the value 

of these models is limited by the lack of chronic cortical GM pathology due to the acute 

nature of the cytokine delivery and resulting acute cytotoxic/inflammatory episode. 

Leukocortical, intracortical and subpial demyelination is maximal at 3 days after injection of 

TNF and IFN-γ into the motor cortex, with remyelination complete at 14 days after injection 

(Merkler et al., 2006). Similarly, subpial demyelination is maximal at 7 days after injection of 

these cytokines into the SAS of the sagittal sulcus, with remyelination again complete at 14 
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days after injection (Gardner et al., 2013). This study also failed to show neuronal loss in the 

outer cortical layers.  

 

In Chapter 3, we reproduced this acute model, developed to test the hypothesis that TNF 

and IFN-γ produced in the meninges can diffuse into the underlying cortical GM and result in 

subpial demyelination, using the same as well as two- and four-fold higher doses of these 

cytokines to determine the effect of the dose on the duration as well as the extent of 

pathology. However, as described in 3.4.4, the total area of subpial demyelination and the 

microglial activation in these areas were significantly greater at 1 week after injection than at 

2 weeks after injection in animals injected with the higher doses of TNF and IFN-γ. This also 

appeared to be the case for the number of CD4+ and CD8+ T cells and B cells in the 

meninges, indicating that, consistent with previous targeted EAE models, the pathology 

induced is acute rather than chronic even after injection of a four-fold higher dose of TNF 

and IFN-γ. Hence the pathogenesis in this acute model may not be the same as that in 

chronic MS. It is currently not known whether a chronic inflammatory milieu in the 

CSF/meningeal compartment in the rodent will result in chronic subpial demyelination. 

 

A recent study attempted to induce chronic demyelination using the targeted EAE model 

developed by Merkler et al., 2006, and investigated the hypothesis that repeated 

demyelination leads to the failure of remyelination (Rodriguez et al., 2014). Up to 4 

consecutive subpial cortical GMLs were induced at 21 day intervals at the same location, 

with extensive subpial demyelination being observed at 3 days, with almost complete 

remyelination at 21 days, after the first, second and fourth injections. This was associated 

with a decreased density of oligodendrocytes, which subsequently increased to those 

observed in control animals at 21 days after injection. The density of OPCs was unchanged 

at 3 days after the first injection but was increased at 21 days, whereas it was already 

increased at 3 days and was unchanged at 21 days after the second and fourth injections. 

These findings indicate that the differentiation of OPCs to mature oligodendrocytes was not 
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impaired, in contrast to their findings in MS. The infiltration of macrophages/microglia in this 

model was also transient, indicating that cortical remyelination is not impaired even after 

repeated inflammatory demyelination at the same location (Rodriguez et al., 2014). Efficient 

remyelination, without depletion of OPCs, has similarly been observed after 3 episodes of 

brainstem WM demyelination in a rat ethidium bromide model (Penderis et al., 2003). The 

authors suggest that 4 episodes of demyelination may not be sufficient for remyelination to 

fail in the rodent CNS, in which remyelination is known to be a robust process (Münzel and 

Williams, 2013), and that repeated cortical demyelination may not lead to the failure of 

remyelination in MS. 

 

Given that neither the injection of higher doses of TNF and IFN-γ in the current study nor the 

repeated injection of these cytokines in a previous study (Rodriguez et al., 2014) resulted in 

chronic subpial demyelination in targeted EAE models, we aimed to develop a system that 

would enable their chronic delivery using lentiviral vectors. 

4.1.3 Lentiviral vectors 

4.1.3.1 Introducing lentiviral vectors 

Lentiviral (LV) vectors are currently the most widely used for the delivery of genes of interest 

due to their greater efficacy as well as safety compared to both other viral vectors and non-

viral vectors (Seidlits et al., 2013). LV vectors result in long-term stable integration of the 

gene of interest into the chromosomes of non-dividing as well as dividing cells. The LV 

consists of a homodimer of 7-12 kb single stranded RNA molecules packaged in lipid 

(Cockrell and Kafri, 2007) containing 9 open reading frames that encode at least 15 proteins 

(Tiscornia et al., 2006), including core proteins (gag gene), replication enzymes (pol gene) 

and surface glycoprotein gp160 (env gene) as well as regulatory and accessory proteins. 

Receptor-mediated entry to host cells is facilitated by the surface subunit of gp160 (gp120) 

binding to human CD4, which induces a conformational change of the transmembrane 
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subunit of gp160 (gp41), facilitating LV and host cell membrane fusion. Following capsid 

protein uncoating, the LV reverse transcriptase and integrase enzymes mediate integration 

of the LV genome into the chromatin of the host cells (Cockrell and Kafri, 2007, Sakuma et 

al., 2012). The LV tropism may be altered by replacing gp160 with, for example, the 

glycoprotein of the vesicular stomatitis virus (VSV-G). This, as well as being more stable 

than gp160, allowing concentration by ultracentrifugation of the pseudotyped LV, also 

interacts with the ubiquitous membrane component phosphatidylserine, mediating entry to 

various tissue and cell types of various species in vitro and in vivo (Akkina et al., 1996). 

Studies have shown that LV proteins do not induce adaptive or innate immune responses 

(Abordo-Adesida et al., 2005). 

 

Replication-deficient LV vectors are produced by removing all dispensable genes from the 

human immunodeficiency virus type 1 (HIV-1) genome and separating the cis- and trans-

acting elements. Third generation LV vectors consist of four plasmids, with one containing 

the transgene and the remaining three containing the trans-acting elements required for 

packaging, namely Gag-Pol, Rev (regulatory protein) and VSV-G. These four plasmids are 

transfected into 293T human embryonic kidney (HEK) cells and LV accumulates in the 

supernatant, from which a high titre LV preparation may be obtained by ultracentrifugation 

(Figure 4.1.1; Tiscornia et al., 2006, Kutner et al., 2009). 

4.1.3.2 LV vectors in the CNS 

To date, there are no reports of LV vector injection into the SAS, although spinal intrathecal 

injection of LV vector in neonatal mice has been shown to result in transduction of pial and 

leptomeningeal cells 4 weeks after injection (Fedorova et al., 2006). Additionally, the spinal 

intrathecal injection of naked DNA in rats resulted in the detection of transgene products in 

the CSF 4 months after injection (Hughes et al., 2009). A similar if not increased 

transduction efficiency when using an LV vector rather than naked DNA would be expected. 

The intracerebroventricular injection of choroid plexus-specific LV vector in mice, for 
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Figure 4.1.1. Production of LV vectors and stable transgene integration into host cell chromatin. 
Transfection of 293T HEK packaging cells with transfer vector containing the transgene and packaging 
plasmids containing core protein, replication enzyme and VSV-G genes results in production of LV vectors 
and their release into the supernatant, from which it is harvested. Following receptor-mediated entry to 
target cells, the single stranded RNA is reverse transcribed and the resulting double stranded DNA is stably 
integrated into host cell chromatin (Amsbio, 2013). 
 

example, also resulted in transduction 4 months after injection (Regev et al., 2010). A study 

in which LV vector was injected into the neural scar formed following a T8 lesion of the 

dorsal column in rats showed that astrocytes, neurons, microglia, OPCs and macrophages 

are transduced, as well as meningeal cells in vitro (Hendriks et al., 2007). 

 

One study used an adenoviral vector rather than an LV vector, which does not result in 

integration of the gene of interest into the chromatin of the host cells, to achieve the chronic 

expression of high levels of TNF in the substantia nigra of mice in which nigrostriatal 

neurodegeneration had been induced by the injection of 6-hydroxydopamine into the 

striatum. This resulted in gliosis and inflammatory infiltrates composed of 

monocytes/macrophages as well as neuronal loss at up to 100 days after injection, although 

the chronic expression of low levels of TNF resulted in decreased neurodegeneration 

(Chertoff et al., 2011). 

4.1.3.3 Hydrogels 

LV vectors may be delivered from hydrogels, which allow localised and sustained expression 

of transgenes at or near the injection site. They are formed by the cross-linking of hydrophilic 
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polymers, which may be natural, such as collagen or fibrin, or synthetic, such as 

polyethylene glycol. LV vectors are released from hydrogels by diffusion, the rate of which 

depends on the porosity, hydrophilicity or hydrophobicity and kinetics and mechanism of 

degradation of the hydrogels and the interaction between the hydrogel polymer and LV 

vector. Subject to the application, LV vectors are either retained in hydrogels to allow 

transduction of infiltrating cells, or released, over days to weeks, to allow increasing 

transduction of nearby cells with time (Seidlits et al., 2013). The injection of LV vectors has 

been shown to rapidly but transiently induce an innate immune response, characterised by 

IL6, IFN-α and IFN-β, resulting in decreased transduction (Brown et al., 2007, 

Vandendriessche et al., 2007), as well as an adaptive immune response. It has been 

suggested that LV vector delivery from hydrogels shields them from the immune system 

(Mok et al., 2007). 

 

Fibrin hydrogels have been used to achieve the sustained release of incorporated adenoviral 

vector containing the β-galactosidase gene in vitro (Breen et al., 2006) and 

hyaluronan/methyl cellulose hydrogels for the local release of incorporated erythropoietin to 

induce endogenous neural stem and progenitor cells in vivo in the subventricular zone in a 

mouse model of stroke (Wang et al., 2012). Collagen hydrogels, which will be investigated in 

the current study, have been used to deliver LV vector immobilised to hydroxyapatite 

nanoparticles, which have been shown to increase the activity of LV vectors. Following s.c. 

implantation, the activity of the LV vector was better maintained with than without the 

hydrogel, with localised and sustained expression of luciferase for at least 4 weeks after 

implantation (Shin and Shea, 2010). 

4.1.4 Aims 

We aimed to evaluate LV vectors as a delivery system to achieve the chronic presence of 

TNF and IFN-γ in the SAS of the DA rat that would enable the further development of the 

acute model of cortical pathology driven by meningeal inflammation (Gardner et al., 2013). 
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These studies involved the injection of a high titre LV vector, pseudotyped with VSV-G and 

containing the gene for enhanced green fluorescent protein (eGFP) under the transcriptional 

control of the cytomegalovirus (CMV) promoter, into the SAS of the sagittal sulcus. 

 

To fulfil this aim, the following were performed: 

 Evaluation of the transduction efficiency using the eGFP fluorescence and 

determination of the time course and the anterior to posterior distribution of eGFP 

expression, as well as the identification of the cell types in which eGFP is expressed, 

1, 4 and 12 weeks after injection into naïve rats. 

 Repeat in animals immunised with a subclinical dose of rmMOG, which was 

identified in Chapter 2, to determine whether the LV vector results in non-specific 

demyelination and inflammation in this model at 1 week after injection. 

 Repeat 1, 2 and 4 weeks after injection of the LV vector together with a collagen 

hydrogel, to achieve localised and sustained transduction. 
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4.2 Methods 

4.2.1 Induction of subclinical EAE 

4.2.1.1 Animals 

Female DA rats (Charles River, Germany) aged 8 to 12 weeks and weighing approximately 

160g were housed as described in 2.2.2.1. Animal work was carried out in compliance with 

Home Office regulations (project licence 70/7213). 

4.2.1.2 Immunisation 

Animals received an intradermal injection into the dorsal aspect of the base of the tail of 5µg 

of rmMOG (the batch expressed and purified in the current study, batch pXVII) diluted in 

PBS emulsified in an equal volume of IFA as described in 2.2.2.2. This dose of rmMOG 

batch pXVII was identified as a suitable subclinical dose in Chapter 2. Control animals 

received an injection of PBS emulsified in an equal volume of IFA. The total injection volume 

was 100µl. 

4.2.1.3 Clinical scoring 

Following immunisation, animals were weighed and scored daily as described in 2.2.2.3. 

Animals were removed from the experiment if they reached the humane endpoints of a loss 

of 25% of their body mass (from the day prior to the development of deficit) for 48 hours or 

complete weakness of both hind limbs for more than 48 hours without weight gain, in 

compliance with Home Office regulations. These animals received an i.p. injection of an 

overdose of 200mg/ml Euthatal. 

4.2.2 Injection of LV vector 

The immunisation of animals was followed 19-22 dpi by the injection of LV vector into the 

SAS of the sagittal sulcus. The coordinates from Bregma were obtained from a rat brain 
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atlas (Paxinos and Watson, 1998) and were 0.9mm caudal to Bregma to target the motor 

cortex, at midline and to a depth of 2.3mm from the dura mater as shown in Figure 3.2.1 A. 

 

Production of the LV vector was carried out by Dr Stuart M. Ellison and Professor Nicholas 

D. Mazarakis (Gene Therapy, Division of Brain Sciences, Imperial College London). Briefly, 

293T HEK cells (ATCC CRL-11268) were grown in Dulbecco’s modified Eagle’s medium 

supplemented with penicillin/streptomycin, 4mM L-glutamine and 10% (v/v) fetal calf serum 

(all Sigma-Aldrich). HIV-1-based LV vectors were produced using a modified transient 

calcium phosphate transfection protocol (Ellison et al., 2013). Twelve 150mm tissue culture 

dishes were seeded with 1.2 x 107 293T HEK cells per dish and incubated overnight (37°C, 

5% CO2). Cells were transfected with 45µg of transfer vector plasmid expressing eGFP 

(pRRLsincppt-CMV-eGFP-WPRE), 45µg of plasmid expressing HIV-1 Gag-Pol (pRSV-Rev), 

9µg of plasmid expressing HIV-1 Rev (pMD2-LgpRRE) and 15.3µg of the VSV-G envelope 

plasmid (all Addgene, Cambridge, Massachusetts, USA). Sixteen hours post transfection, 

media was replaced with fresh media supplemented with 10mM sodium butyrate (Sigma-

Aldrich). Thirty-six hours post induction, media containing LV vector was harvested and 

filtered through a 45µm filter. LV vector was purified and concentrated by ultracentrifugation 

overnight at 6000g (F500 rotor, Beckman Coulter, High Wycombe, Buckinghamshire, UK). 

The pellet was resuspended in PBS, repelleted by ultracentrifugation for 90 minutes at 

68,500g (SW-32 Ti rotor) and resuspended over several hours in TSSM dilution buffer 

(20mM Tromethamine, 100mM sodium chloride, 10mg/ml sucrose and 10mg/ml mannitol; all 

Sigma-Aldrich). LV vector preparations were stored at -80°C.  

 

Functional titres were determined by flow cytometry as described previously (Ellison et al., 

2013). Briefly, 12-well tissue culture plates were seeded with 5 x 105 293T HEK cells per 

well. At 16-24 hours post seeding, cells in a single well were quantified using a 

haemocytometer. Cells in the remaining wells were transduced with a serial dilution of the 

LV vector with 8mM polybrene (Sigma-Aldrich) for 6 hours. Seventy-two hours post 
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transduction, the percentage of eGFP+ cells was determined by flow cytometry and the titre 

calculated (number of cells on day of transduction x fraction of eGFP+ cells x dilution factor).  

4.2.2.1 Stereotactic injection 

Animals received a 1µl injection as described in 3.2.2.2. Recovery from surgery was without 

incident and overt clinical signs in all cases. The experiment was terminated at 1, 2, 4 or 12 

weeks after injection as detailed below. 

4.2.2.2 Injection of LV vector in naïve animals 

Naïve animals received an injection of the LV vector preparation VSVg.cmv_eGFP. This 

vector was pseudotyped with VSV-G and carried the eGFP gene driven by the CMV 

promoter. Its titre was 9.75 x 109 transducing units (TU) /ml, resulting in 9.75 x 106 TU in the 

1µl injection volume. The pH7.3 dilution buffer TSSM was used as the vehicle control. The 

time points investigated are shown in Table 4.2.1. 

4.2.2.3 Injection of LV vector in rmMOG-immunised animals 

In order to determine whether the injection of LV vector results in non-specific demyelination 

and inflammation in this model, that is, not induced by the injection of pro-inflammatory 

cytokines, the immunisation of animals with 5µg of rmMOG batch pXVII as described in 

4.2.1.2 was followed 22 dpi by the injection of VSVg.cmv_eGFP. This LV vector preparation 

had a titre of 2.63 x 1010 TU/ml, resulting in 2.63 x 107 TU in the 1µl injection volume. Control 

animals had been immunised with PBS emulsified in an equal volume of IFA as shown in 

Table 4.2.2. Monastral blue was added at 1:1000 as a tracer. 

4.2.2.4 Injection of LV vector and collagen hydrogel 

This collagen hydrogel experiment was performed in collaboration with Dr Ben Newland and 

Professor Abhay Pandit (Network of Excellence for Functional Biomaterials, National 

University of Ireland, Galway, Ireland). Naïve animals received an injection of LV vector with 
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a collagen hydrogel in order to identify whether the inclusion of the collagen hydrogel 

resulted in changes in the distribution and time course of eGFP expression. 

 

Collagen hydrogel was prepared in situ prior to each surgery as previously described (Hoban 

et al., 2013). All components were kept on ice throughout to prevent premature gelation. 

Briefly, 50µl of bovine collagen type I prepared from Achilles tendon (3mg/ml; Ben Newland) 

was neutralised with sodium hydroxide (1M; Sigma-Aldrich) and added to 5µl of PBS (10x). 

The cross-linker consisted of 0.4mg of poly(ethylene glycol) ether tetrasuccinimidyl glutarate 

(4S-StarPEG) dissolved in 5µl of PBS (10x) and was added to the collagen solution. For the 

injection solution, 2.4µl of collagen hydrogel solution was carefully mixed with 1.6µl of 

VSVg.cmv_eGFP (approximately 1:1 volume:volume ratio). The glass capillary used for 

injection in this experiment had an internal diameter of approximately 100µm at its tip rather 

than approximately 30µm due to the high viscosity of the collagen hydrogel. This LV vector 

preparation had a titre of 5.18 x 1010 TU/ml, resulting in 2.07 x 107 TU in the 1µl injection 

volume. Control animals received an injection of VSVg.cmv_eGFP diluted 2:5 in PBS (10x). 

The time points investigated are shown in Table 4.2.3. 

 

Prior to using the collagen hydrogel in vivo, the relative concentrations of collagen and 4S-

StarPEG had been optimised to result in gelation at 37°C in approximately 15 minutes, 

which would be the approximate length of time required until retraction of the needle 

following injection. The expected in vivo gelation time was determined by placing 4µl of the 

collagen hydrogel onto the hydrophobic surface polytetrafluoroethylene (Teflon tape; 

DuPont, Wilmington, Delaware, USA) and incubating at 37°C until gelation had occurred. 

Monastral blue was not used in this experiment as its 8 tertiary amine groups (compared to 

the 4 of 4S-StarPEG) were found to cause cross-linking of the collagen resulting in instant 

gelation. 
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Immunisation Injection Time point / weeks Number of animals 

Naïve TSSM 1 4 

Naïve VSVg.cmv_eGFP 1 4 

Naïve VSVg.cmv_eGFP 4 4 

Naïve VSVg.cmv_eGFP 12 4 

Table 4.2.1. Groups for VSVg.cmv_eGFP time course study. 

 

Immunisation Injection Time point / weeks Number of animals 

PBS in IFA VSVg.cmv_eGFP 1 4 

5µg rmMOG in IFA VSVg.cmv_eGFP 1 4 

Table 4.2.2. Groups for rmMOG and VSVg.cmv_eGFP study. 

      

Immunisation VSVg.cmv_eGFP with 

collagen hydrogel or 

PBS 

Time point / weeks Number of animals 

Naïve PBS 1 4 

Naïve collagen hydrogel 1 4 

Naïve PBS 2 4 

Naïve collagen hydrogel 2 4 

Naïve PBS 4 4 

Naïve collagen hydrogel 4 4 

Table 4.2.3. Groups for VSVg.cmv_eGFP and collagen hydrogel study. 

 

4.2.3 Determination of the effects of injection in the brain 

4.2.3.1 Tissue harvesting and treatment 

Animals received an i.p. injection of an overdose of 200mg/ml Euthatal at the termination of 

the experiment and were perfused as described in 2.2.3.1. The brain was harvested and 

post-fixed in 4% PFA for 4 hours at 4°C followed by cryoprotection in 30% (w/v) sucrose in 

PBS for 48 hours or until equilibrium was reached at 4°C. 

 

Tissue was briefly rinsed in PBS, placed in a mould filled with optimal cutting temperature 

compound and frozen in isopentane on dry ice. 10µm sections in the coronal plane were cut 
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using a cryostat and stored at -20°C. Monastral blue was used to identify the injection site, 

where applicable. 

4.2.3.2 Immunofluorescence 

The antigens shown in Table 4.2.4 were detected using the same IF protocol as that for 

MOG and Iba1 described in 2.2.3.2 but omitting methanol retrieval for antigens other than 

MOG. For CD79a, this was replaced with heat mediated pH6 citrate buffer retrieval using a 

vegetable steamer. Some antigens required a biotinylated secondary antibody prior to a 

fluorophore-conjugated secondary antibody as indicated in the Table and as was described 

for MOG in 2.2.3.2. 

 

Antigen Cell specificity Species Dilution Source 

CD31 T cell Mouse 1 in 500 BD Pharmingen 

CD79a1 B cell Mouse 1 in 500 Pierce Antibodies 

Collagen 11 Meninges Rabbit 1 in 500 Abcam, Cambridge, Cambridgeshire, 

UK 

ED1 Phagocytic 

macrophages/ 

microglia 

Mouse 1 in 50 Reynolds’ group 

GFAP1 Astrocytes Rabbit 1 in 

1000 

Dako 

Iba1 Activated 

macrophages/ 

microglia 

Rabbit 1 in 

1000 

Wako 

Laminin Meninges Rabbit 1 in 

5000 

Sigma-Aldrich 

MOG1 Myelin and 

oligodendrocytes 

Mouse 1 in 20 Reynolds’ group 

Table 4.2.4. Primary antibodies used for IF. 
1
Antigens requiring a biotinylated secondary antibody. 
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4.2.3.3 Imaging and analysis 

Sections were imaged using a Nikon Eclipse 80i microscope with a QImaging QICAM digital 

camera and Image-Pro Plus software. This software was able to tile multiple high 

magnification images to yield high resolution images of complete sections.  

 

ImageJ was used to quantify areas of eGFP fluorescence (Figure 4.2.1) and Iba1 IR. Briefly, 

all eGFP and Iba1 images for a single study were taken at the same exposure as far as was 

possible. The same threshold was then applied to these images in ImageJ to select the 

eGFP fluorescence or Iba1 IR. The area of eGFP fluorescence was normalised to the area 

of the section whereas the area of Iba1 IR was normalised to the area analysed, which 

extended from the corpus callosum to the superior surface of the cortex and from 1mm to 

the left of the sagittal sulcus to 1mm to the right of it. Quantification was performed on 3 

consecutive sections per animal and a mean calculated. 

4.2.4 Statistical analysis 

All data are presented as the mean ± the SEM. GraphPad Prism 5 was used to construct 

graphs and perform statistical analysis. Two and three groups were compared using Mann-

Whitney U test and Kruskal-Wallis one-way ANOVA with Dunn’s multiple comparisons post-

hoc test respectively as stated. A p value of <0.05 was considered to be statistically 

significant. 

  



Chapter 4 - Evaluation of LV vectors in the DA rat 168 

  



Chapter 4 - Evaluation of LV vectors in the DA rat 169 

4.3 Results 

4.3.1 Injection of LV vector in naïve animals 

4.3.1.1 eGFP expression was maintained for 12 weeks 

Following the injection of VSVg.cmv_eGFP into the SAS of the sagittal sulcus of naïve 

female DA rats, sections were cut from approximately 2mm anterior, to approximately 2mm 

posterior, to the injection site and DAPI staining was performed on selected sections. eGFP 

expression was present in 3 of 4 animals at 1 (Figure 4.3.1) and 12 weeks after injection 

(Figure 4.3.2) and in 1 of 4 animals at 4 weeks after injection. No GFP primary antibody was 

required to detect eGFP expression. It was observed anterior (Figure 4.3.1 A, Figure 4.3.2 

Ai) and posterior to the injection site (Figure 4.3.1 C, Figure 4.3.2 Aiii, Bi, Bii) in these 

animals and was present in the sagittal sulcus (Figure 4.3.1 Di, Diii) and walls of the 

meningeal blood vessels at the base of the sulcus (Div) as well as on the superior surface of 

the cortex (particularly evident in C) and in the remains of the inferior sagittal fissure (A). 

This is an example of an animal in which the injection was accurate. However, it appears 

that the injections were inaccurate in the animals shown in Figure 4.3.2. It is likely that the 

injection in the animal shown in A was too deep, resulting in extensive eGFP expression in 

the medial septal nucleus and nucleus of the horizontal/vertical limb of the diagonal band 

(Ai), dorsal fornix (Aii) and corpus callosum (Aii and Aiii), whereas it may not have been at 

midline in the animal shown in B, resulting in eGFP expression in the cingulate cortex (Bi). 

No eGFP expression was observed in animals 1 week after injection of the vehicle control, 

TSSM. 

 

Areas of eGFP fluorescence were quantified as described in 4.2.3.3 and plotted against 

distance from the injection site (Figure 4.3.3 Ai), which was taken to be at the peak area of 

eGFP fluorescence. These curves showed that eGFP is expressed in a gradient around the 

injection site over approximately 4mm, with a peak area of eGFP fluorescence at the 
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injection site that decreased progressively with increasing distance from the injection site 

along the anteroposterior axis. The total eGFP fluorescence was determined by calculating 

the area under these curves (Aii). Although Kruskal-Wallis one-way ANOVA could not be 

performed as eGFP was only expressed in one animal at 4 weeks after injection, a Mann-

Whitney U test showed that there was no significant difference in total eGFP fluorescence at 

1 and 12 weeks after injection of VSVg.cmv_eGFP. Similarly, there was no significant 

difference in the length along the anteroposterior axis over which eGFP expression was 

observed at 1 and 12 weeks after injection (B). 

 

In order to determine the cell types in which eGFP was expressed, confocal imaging and IF 

were performed on sections cut at the injection site (Figure 4.3.4). Confocal imaging showed 

that eGFP expression was present in cells with the morphology of astrocytes (Ai) and double 

IF showed that it was colocalised with glial fibrillary acidic protein (GFAP), an intermediate 

filament protein expressed by astrocytes (Aii). eGFP expression was present in astrocyte 

cell bodies as well as end-feet and processes. Several layers of astrocytic elements, 

together with the basal lamina, comprise the glia limitans (Lopes and Mair, 1974). In this 

animal, colocalisation of eGFP with laminin, a major protein of the basal lamina (Sixt et al., 

2001), was also observed (Biii). Additionally, eGFP expression was present outside the glia 

limitans in meningeal tissue (Bi) in cells with the morphology of the mesothelial cells and 

layers of flattened fibroblasts that comprise the pia mater (Bii, also evident in Figure 4.3.1). 

Double IF to show colocalisation with E-cadherin, a cell adhesion molecule expressed in 

mesothelial cells of the pia and arachnoid mater, was unsuccessful due to the non-specific 

IF observed using the E-cadherin antibody, consistent with previous findings (Lewis-Tuffin et 

al., 2010). Confocal imaging showed that eGFP expression was present in a small number 

of cells with the morphology of pyramidal neurons (C). However, despite extensive attempts 

at optimisation, double IF to show colocalisation with GluR2/3, subunits of the AMPA 

glutamate receptor expressed in pyramidal cells in cortical layers II/III, V and VI (Kondo et 

al., 1997), could not be achieved. 
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4.3.1.2 Microglial activation 

In order to identify the presence of activated macrophages/microglia following injection of 

VSVg.cmv_eGFP, IF for Iba1 was performed on sections cut at the injection site. A high 

density of activated macrophages/microglia was present at 1 week after injection (Figure 

4.3.5 Ai). Microglial activation was particularly evident adjacent to the sagittal sulcus towards 

the superior surface of the cortex and was not associated with the eGFP expression. Iba1+ 

cells generally had an amoeboid morphology characterised by a large cell soma but the 

retention of short, thick processes (Aii). No colocalisation of eGFP with Iba1 was observed. 

Activated macrophages/microglia were also present at 2 weeks after injection (B). It is likely 

that the injection in the animal shown was too deep, resulting in extensive eGFP expression 

in the corpus callosum. In this animal, microglial activation was particularly evident at the 

base of the sagittal sulcus. Microglial activation was less evident at 1 week after injection of 

TSSM (C). 

 

Iba1 immunoreactivity was quantified as described in 4.2.3.3.  Although there were trends for 

increased Iba1 immunoreactivity at 1 week after injection of VSVg.cmv_eGFP compared to 

TSSM control and decreased Iba1 immunoreactivity at 4 weeks compared to 1 week after 

injection of VSVg.cmv_eGFP, these were not statistically significant (D).  

4.3.2 Injection of LV vector in rmMOG-immunised animals 

The experiment described in 4.3.1 was repeated in rats immunised with the 5µg subclinical 

dose of rmMOG identified in Chapter 2, with immunisation followed 22 dpi by the injection of 

VSVg.cmv_eGFP with monastral blue into the SAS of the sagittal sulcus. The aim of this 

experiment was to determine whether the injection of VSVg.cmv_eGFP results in non-

specific, that is, not caused by the injection of TNF and IFN-γ, demyelination and 

inflammation. 
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4.3.2.1 eGFP expression was unchanged in rmMOG-immunised animals 

Monastral blue, which was visible by eye during sectioning, enabled identification of the 

injection site as well as determination of the injection accuracy (Figure 4.3.6 A). eGFP 

expression in these sections cut at the injection site, on which DAPI staining had been 

performed, was again visualised (B). Monastral blue was observed in the sagittal sulcus and 

appeared to be localised in cells with monocyte/macrophage morphology. Although eGFP 

expression was again localised in cells with the morphology of astrocytes, particularly 

evident in their end-feet (Bii), rather than macrophages, a similar pattern in the sulcus was 

observed. This finding indicates that monastral blue was effective as a tracer, with no 

apparent interaction with VSVg.cmv_eGFP and no effect on its expression of eGFP. 

 

In this experiment, eGFP expression was present in 4 of 4 IFA-immunised and 4 of 4 

rmMOG-immunised animals. This indicates that the experimental modifications made 

following the experiment described in 4.3.1 were effective. These included measures to 

prevent both blocking of the glass capillary mounted on the Hamilton needle and warming of 

the LV vector preparation in surgery. Additionally, injections were described as accurate in 

all animals. This is likely to be due to new Hamilton syringes, with fixed rather than 

removable needles, being used. These needles were completely straight, in contrast to the 

removable needles for which this was not the case, and which additionally did not always 

screw onto the Hamilton needle completely parallel to it, introducing errors in the lateral 

injection coordinate. 

 

The total eGFP fluorescence was again determined (Figure 4.3.7 A). A Mann-Whitney U test 

showed that there was no significant difference at 1 week after injection of VSVg.cmv_eGFP 

in animals immunised with IFA only and in those immunised with 5µg of rmMOG. Similarly, 

there was no significant difference in the length along the anteroposterior axis over which 

eGFP expression was observed in these two groups (B). 
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4.3.2.2 Absence of demyelination in rmMOG-immunised animals 

In order to determine whether the injection of VSVg.cmv_eGFP in animals immunised with 

5µg of rmMOG resulted in demyelination, IF for MOG was performed on sections cut at the 

injection site. Normal myelination was observed in animals immunised with IFA only (Figure 

4.3.8 Bi), with uninterrupted MOG IF from the superior surface of the cortex to the base of 

the sulcus that extends from the pial surface into underlying cortical GM (Bii, Biii), similar to 

that observed in naïve control animals 1 week after injection of TSSM (A). Normal 

myelination was also observed in animals immunised with 5µg of rmMOG (Ci). However, 

one small area of potential demyelination was observed in 1 of 4 animals. This was 

characterised by a partial loss of MOG IF adjacent to the sagittal sulcus, in which eGFP 

expression was present (Cii, Ciii), and measured 0.0235mm2. Also note the extensive eGFP 

expression present in perivascular spaces in the animal shown in Bi, which will be discussed 

in 4.4.1.2. 

4.3.2.3 Microglial activation was unchanged in rmMOG-immunised animals 

IF for Iba1 was again performed on sections cut at the injection site in order to identify the 

presence of activated macrophages/microglia. Iba1+ cells were present in both animals 

immunised with IFA only (Figure 4.3.9 Ai) and in those immunised with 5µg of rmMOG (Aii). 

Microglial activation was particularly evident adjacent to the sagittal sulcus and at its base 

(pictured) although it did not appear to be associated with the expression of eGFP and no 

colocalisation of eGFP with Iba1 was observed. 
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Similarly, qualitatively similar densities of ED1+ cells were present in animals immunised 

with IFA only (Bi) and in those immunised with 5µg of rmMOG (Bii). ED1 has been shown to 

be expressed on the membranes of cytoplasmic granules and its expression to be correlated 

with phagocytic activity (Damoiseaux et al., 1994). ED1+ phagocytic cells were also 

particularly evident at the base of the sagittal sulcus but as for Iba1, no colocalisation of 

eGFP with ED1 was observed. 

 

Iba1 immunoreactivity was quantified and showed a trend for increased Iba1 

immunoreactivity 1 week after injection of VSVg.cmv_eGFP in animals immunised with 5µg 

of rmMOG compared to those immunised with IFA only, although this was not statistically 

significant (C). 

 

Finally, IF for CD3 and CD79a was performed on sections cut at the injection site in order to 

determine the presence of T and B cells respectively. Again, qualitatively similar, low 

densities of CD3+ T cells and CD79a+ B cells were present at the base of the sagittal sulcus 

in animals immunised with IFA only (Figure 4.3.10 Ai, Bi) and in those immunised with 5µg 

of rmMOG (Aii, Bii). No colocalisation of eGFP with CD3 or CD79a was observed. 

4.3.3 Injection of LV vector and collagen hydrogel 

Finally, in order to achieve localised, sustained expression of eGFP at the injection site, 

collagen hydrogel was injected as part of the LV vector preparation into the SAS of the 

sagittal sulcus of naïve rats as described in 4.2.2.4. Although this experiment was technically 

challenging due to the small volumes involved and the variability of the collagen type 1 

hydrogel, VSVg.cmv_eGFP with collagen hydrogel was successfully injected into the SAS.  
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4.3.3.1 Increased spread of eGFP expression with collagen hydrogel 

eGFP expression was present in DAPI-stained sections cut at the injection site after injection 

of VSVg.cmv_eGFP with both PBS (Figure 4.3.11 A) and collagen hydrogel (B). The pattern 

of eGFP expression was similar to that observed previously and was present mainly in the 

sagittal sulcus (pictured), in cells with the morphology of astrocytes. 

 

eGFP expression was present in 4 of 4, 2 of 4 and 3 of 4 animals at 1, 2 and 4 weeks 

respectively after injection of VSVg.cmv_eGFP with PBS. However, it was only present in 3 

of 4 animals at 2 weeks after injection with collagen hydrogel and was not present in these 

animals at 1 and 4 weeks after injection. As a result, total eGFP fluorescence and length 

along the anteroposterior axis over which eGFP expression was observed could only be 

compared between the two groups at 2 weeks after injection. Curves of area of eGFP 

fluorescence against distance from the injection site at 2 weeks after injection showed that 

eGFP was expressed in a gradient around the injection site (Figure 4.3.12 Ai). The peak 

area of eGFP fluorescence appeared greater in the PBS group, although the anterior to 

posterior spread was greater in the collagen hydrogel group. Quantification of total eGFP 

fluorescence from these curves showed that it was not significantly different in the two 

groups (Aii), although quantification of length along the anteroposterior axis over which 

eGFP expression was observed confirmed that it was significantly greater (factor of 1.89) 

following injection with collagen hydrogel than with PBS (Bi). 

 

Although eGFP expression was not present following injection of VSVg.cmv_eGFP with 

collagen hydrogel at 1 and 4 weeks after injection, it was present at these time points 

following injection with PBS, allowing the time course and anterior to posterior spread of 

eGFP fluorescence to be investigated as in the first experiment in this Chapter. This showed 

a significantly greater (factor of 15.2) total area of eGFP fluorescence at 4 weeks after 

injection than at 2 weeks after injection (Aiii) with no significant difference in its spread (Bii). 
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4.3.3.2 Collagen hydrogel could not be detected 

In order to determine whether the collagen hydrogel could be detected, which would enable 

its distribution and time course of degradation to be investigated, IF for collagen type 1 was 

performed on sections cut at the injection site. A similar extent and pattern of collagen type 1 

expression was observed after injection of VSVg.cmv_eGFP with PBS (Figure 4.3.13 A) and 

collagen hydrogel (B). This suggests that the collagen type 1 detected was endogenous. 

Collagen fibres are present in the narrow space that, together with the glia limitans and pia 

mater, separates the SAS from the cortical GM (Lopes and Mair, 1974). This is consistent 

with the presence of collagen type 1 expression in what appear to be the meninges in the 

sagittal sulcus (Aii, Bii). No colocalisation of eGFP with collagen type 1 was observed. 

4.3.3.3 Microglial activation was unchanged with collagen hydrogel 

Finally, IF for Iba1 was performed on sections cut at the injection site and showed the 

presence of activated macrophages/microglia after injection of VSVg.cmv_eGFP with both 

PBS (Figure 4.3.14 A) and collagen hydrogel (B), which was particularly evident adjacent to 

the sagittal sulcus. Again, colocalisation of eGFP with Iba1 was not observed and microglial 

activation did not appear to be associated with eGFP expression. For example, eGFP 

expression was present towards the superior surface of the cortex in the animal shown in B, 

whereas microglial activation was mainly observed towards the base of the sagittal sulcus. 

 

As for eGFP fluorescence, comparisons between the Iba1 immunoreactivity in the PBS and 

collagen hydrogel groups could only be performed at 2 weeks after injection. Quantification 

showed a trend for greater Iba1 immunoreactivity 2 weeks after injection of 

VSVg.cmv_eGFP with PBS than after its injection with collagen hydrogel, although this was 

not significant (Ci). There was no significant difference in Iba1 immunoreactivity at 1, 2 and 4 

weeks after injection of VSVg.cmv_eGFP with PBS (Cii).  
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4.4 Discussion 

4.4.1 LV vector-mediated eGFP expression 

LV vectors have been shown to transduce most cell types present in the CNS in vivo, 

including astrocytes, neurons and oligodendrocytes (Jakobsson and Lundberg, 2006). LV 

vectors based on HIV-1 such as that used in the current study are the most widely used for 

gene transfer to the CNS and are typically pseudotyped with VSV-G, resulting in long-term 

stable expression of the gene of interest. Initial studies suggested that LV vectors 

pseudotyped with this glycoprotein preferentially transduced neurons, with one study 

showing that 88.7% of transduced cells following injection into the striatum were neurons 

(Blömer et al., 1997). However, later studies suggested that this preference was a result of 

the ubiquitous internal promoter rather than the VSV-G, which had low activity in glial cells 

(Jakobsson et al., 2003). It is thought that LV vectors pseudotyped with VSV-G are able to 

enter all cell types present in the CNS with similar efficiency, but that the resulting 

transduction depends on the internal promoter activity in these cell types (Jakobsson and 

Lundberg, 2006). 

4.4.1.1 Long-term eGFP expression 

The results of the current study, using an LV vector based on HIV-1 pseudotyped with VSV-

G and containing the gene for eGFP under the transcriptional control of the ubiquitous 

internal CMV promoter, are consistent with these previous findings. Long-term, up to 12 

weeks, eGFP expression was observed, the total fluorescence and anterior to posterior 

spread of which was not significantly different at this long-term time point than at 1 week 

after injection, suggesting constant, stable expression. Although there are no reports of LV 

vector injection into the SAS to date, the intracerebroventricular injection of choroid plexus-

specific LV vector in mice has been shown to result in transduction 4 months after injection 

(Regev et al., 2010), consistent with the stable expression observed here. This finding 
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suggests that the LV vector would also mediate long-term stable expression of TNF and IFN-

γ in the model of cortical pathology driven by meningeal inflammation, which we suggest will 

result in a long-term cytotoxic/inflammatory episode. 

 

Although eGFP expression was present in 3 of 4 animals at 1 and 12 weeks after injection of 

VSVg.cmv_eGFP in naïve animals, it was present in only 1 of 4 animals at 4 weeks after 

injection. Studies have shown downregulation of the CMV promoter following transduction of 

human embryonic stem cells with LV vector after 50 days in culture (Norrman et al., 2010), 

shown to be mediated by DNA methylation and histone deacetylation (Grassi et al., 2003). 

This downregulation of the CMV promoter may explain the relative absence of eGFP 

expression in animals at 4 weeks after injection. However, given the presence of eGFP 

expression in animals at 12 weeks after injection, it is unlikely that this was the case. It has 

also been shown that LV vectors pseudotyped with VSV-G can be cytotoxic at high 

concentrations (Sakuma et al., 2012), which would result in the death of transduced cells. 

Given that animals received the same number of transducing viral particles, it is again 

unlikely that this was the case, although future experiments could investigate the expression 

of markers of cell death. However, given the variable nature of in vivo studies, it is not 

possible to rule out either CMV promoter downregulation or VSV-G pseudotype cytotoxicity 

in the current study. We suggest that the relative absence of eGFP expression in animals at 

4 weeks after injection may be due to experimental complications, including blocking of the 

glass capillary mounted on the Hamilton needle. This became apparent on retraction of the 

needle, when blood clots could be observed at the bottom of the glass capillary, with or 

without the appearance of liquid around the nail polish seal. Experimental modifications were 

made to prevent blocking of the glass capillary prior to subsequent experiments in this 

Chapter. These included the expulsion of a drop of the LV vector preparation prior to 

lowering of the needle to prevent blood from entering it, and strengthening of the nail polish 

seal. 
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4.4.1.2 eGFP expression in relevant cell types 

The cell types in which eGFP expression was observed in the current study are also 

consistent with previous findings. It was present in the astrocyte end-feet of the glia limitans 

and appeared to be present in cells with the morphology of the mesothelial cells and 

fibroblasts of the pia mater as well as in cells with the morphology of pyramidal neurons, 

although colocalisation of eGFP with established phenotypic markers of these cells could not 

be achieved. Transduction of astrocytes and neurons has been shown in vivo 2 weeks after 

intraspinal injection (Hendriks et al., 2007) while transduction of pial and leptomeningeal 

cells has been shown in vivo 4 weeks after spinal intrathecal injection (Fedorova et al., 2006) 

of LV vector pseudotyped with VSV-G and containing the transgene under the transcriptional 

control of the CMV promoter. The former study also showed transduction of meningeal cells 

in vitro as well as macrophages/microglia in vivo.  This latter finding is in contrast to the 

current study, in which colocalisation of eGFP with Iba1 or ED1 was not observed, although 

another study did show only weak activity of the CMV promoter in mononuclear cells (Liu et 

al., 2006). However, the cellular localisation of eGFP expression in the current study is 

different to that of TNF and IFN-γ in MS, in which they are expressed in 

monocytes/macrophages and T cells in inflamed meninges (Serafini et al., 2007, Magliozzi 

et al., 2010, Gardner et al., 2013) and some microglia in superficial GM in F+ SPMS cases 

(Gardner et al., 2013). Despite this, we suggest that its long-term presence in the sagittal 

sulcus and in the walls of the meningeal blood vessels at the base of the sulcus would be 

optimal for achieving a chronic inflammatory milieu in the CSF/meningeal compartment. The 

injection of a viral vector based on herpes simplex virus type 1 or an adenoviral vector 

containing the IFNG gene into the cisterna magna resulted in expression in choroidal, 

ependymal and leptomeningeal cells and increased levels of IFN-γ in the CSF (Furlan et al., 

2001, Millward et al., 2007), which have also been found in MS (Romme Christensen et al., 

2012, Gardner et al., 2013). Although there are no reports of the injection of viral vectors 

containing the TNF gene into the SAS to date, this study suggests that the injection of an LV 
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vector containing the genes for TNF and IFN-γ would result in increased levels of these 

cytokines in the CSF, as required in the model of subpial demyelination. 

 

The eGFP expression in astrocytes, cells of the meninges in the sagittal sulcus and walls of 

the blood vessels in the meninges suggests that VSVg.cmv_eGFP transduced the cells that 

the LV vector preparation contacted following injection into the SAS of the sagittal sulcus. 

The SAS is separated from the cortical GM by the mesothelial cells and layers of flattened 

fibroblasts that comprise the pia mater, a narrow space containing collagen fibres and the 

basal lamina and layers of astrocytic elements that comprise the glia limitans (Lopes and 

Mair, 1974). The finding of eGFP expression on the superior surface of the cortex is 

consistent with CSF drainage pathways, with the LV vector preparation proposed to diffuse 

from the sagittal sulcus to the superior surface (Zhang et al., 1992, Kida et al., 1993). The 

eGFP expression adjacent to the sagittal sulcus in the cingulate cortex, as well as in the 

corpus callosum, is likely to be the result of diffusion of the LV vector preparation from the 

CSF to the brain interstitial fluid across the barrier formed by the pia mater and glia limitans, 

the cells of which are joined by gap junctions rather than tight junctions rendering this barrier 

permeable (Alcolado et al., 1988, Johanson et al., 2005). The pia mater also allows the 

formation of perivascular spaces, which function as the lymphatic system of the brain. Blood 

vessels enter and exit the parenchyma across the pia mater, which adheres to the vessels 

resulting in a space between it and the vessels. Tracer studies have suggested that 

perivascular spaces may mediate exchange between the vessels and the CSF (Rennels et 

al., 1985). A recent study using in vivo two-photon imaging showed that subarachnoid CSF 

rapidly enters the parenchyma and contacts the basal lamina of brain capillaries along 

perivascular spaces and exchanges with the brain interstitial fluid, which is also removed 

from the parenchyma along these spaces (Iliff et al., 2012). We suggest that the eGFP 

expression in perivascular spaces and brain parenchyma is likely to be the result of entry of 

the LV vector preparation along these perivascular spaces, which has been observed 

previously following the injection of a viral vector based on herpes simplex virus type 1 into 
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the cisterna magna (Furlan et al., 2001). These data show that the injection of LV vector into 

the SAS of the sagittal sulcus is a successful strategy to achieve widespread gene 

expression at the surface of the cerebral cortex. 

4.4.1.3 Absence of long-term microglial activation 

In order for this to be a useful strategy, it is important that LV vector-mediated transduction 

does not induce inflammatory changes in cortical GM. The finding that Iba1 immunoreactivity 

was not significantly different after injection of VSVg.cmv_eGFP and the vehicle control 

suggests that the LV vector did not induce inflammatory changes. The trend for increased 

Iba1 immunoreactivity at 1 week compared to 4 weeks after injection, together with the 

observation that microglial activation was most apparent adjacent to the sagittal sulcus 

towards the superior surface of the cortex and was not associated with eGFP expression, 

suggests that the microglial activation was a result of an initial, acute innate immune 

response to the midline injection. 

 

This is consistent with a previous study that showed the presence of ED1+ cells along the 

needle tract at 30 days after intrastriatal injection of saline as well as LV vector pseudotyped 

with VSV-G and containing the gene for eGFP under the transcriptional control of the CMV 

promoter (Abordo-Adesida et al., 2005). The authors suggest that these phagocytic cells 

remain from the immune response to the injection. This study also showed that LV proteins 

do not induce cellular or innate immune responses, with the immune system recognising 

only the transgene product and not the capsid or virion. Consequently, transduced cells are 

only recognised if an immune response is raised against the transgene, which is not the 

case for eGFP. 

4.4.2 Absence of non-specific demyelination and inflammation 

Results from the experiment involving the injection of VSVg.cmv_eGFP into animals 

immunised with rmMOG or IFA only indicate that the transduction efficiency of the LV vector 
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preparation, evaluated using total eGFP fluorescence and its spread, was unchanged by a 

peripheral anti-MOG antibody response. This is comparable to a previous study that showed 

unchanged transduction following intrastriatal injection of LV vector containing the gene for 

eGFP in animals immunised with LV vector, regardless of the transgene this LV vector 

contained, or saline only (Abordo-Adesida et al., 2005). 

 

This experiment has also allowed us to conclude that the injection of the LV vector did not 

result in non-specific demyelination and inflammation in animals immunised with rmMOG, 

that is, not induced by the injection of TNF and IFN-γ, and suggests that LV vectors are 

suitable for the delivery of genes of interest in this model. 

 

A previous study investigated transduction by an LV vector, pseudotyped with VSV-G and 

containing the lacZ reporter gene under the transcriptional control of the phosphoglycerate 

kinase (PGK) promoter, following injection into the dorsal funiculus of naïve rats (Zhao et al., 

2003). Injection was associated with tissue damage at 5 days after injection, which was 

variable but could be extensive. It was characterised by a focal area of necrosis and primary 

demyelination at the injection site, associated with an inflammatory infiltrate consisting of 

activated macrophages/microglia but few CD8+ T cells and no CD4+ T cells. Although a 

small area of potential demyelination was present adjacent to the needle tract at 1 week 

after injection in the current study, macrophage infiltration in the parenchyma was not 

observed, suggesting a different pathogenetic mechanism. This previous study also showed 

tissue damage 5 days after injection of PBS alone, although it was less extensive than after 

injection of the LV vector. The authors suggest that tissue damage was largely the result of 

toxicity associated with high concentrations of the LV vector, with a further contribution of the 

injection itself, which would result in the activation of microglia and subsequent 

demyelination by the mechanisms described in 3.4.3.2. Hence, it is not possible to determine 

whether the small area of potential demyelination observed here is the result of toxicity, the 

injection itself or the peripheral anti-MOG antibody response. If it was the result of toxicity or 
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the injection itself, demyelination would also have been expected in animals immunised with 

IFA only. However, if it was the result of the peripheral anti-MOG antibody response, 

demyelination would have been expected in more than 1 of the 4 animals immunised with 

rmMOG. 

4.4.3 Effect of collagen hydrogel 

In the final experiment of this Chapter, naïve animals received an injection of 

VSVg.cmv_eGFP with a collagen hydrogel in order to prevent extensive diffusion of the LV 

vector so that a higher concentration of TNF and IFN-γ may be achieved in a more localised 

area in future experiments. LV vectors may be delivered from hydrogels to provide sustained 

release, over days to weeks, and increased concentrations of the LV vectors locally, 

increasing their cellular internalisation and consequently the expression of the transgenes 

they contain (Seidlits et al., 2013). This sustained release may also result in persistent 

expression and increasing expression with time. For example, the delivery of adenovirus 

from silk-elastin-like protein polymer hydrogels resulted in increased duration of expression 

compared to a bolus injection of adenovirus (Cresce et al., 2008).  Hence increased duration 

and extent of eGFP expression at the injection site was expected after injection of 

VSVg.cmv_eGFP with collagen hydrogel in the current study. 

4.4.3.1 Delayed eGFP expression 

eGFP expression was only present at 2 weeks after injection of VSVg.cmv_eGFP with 

collagen hydrogel and was not present at 1 and 4 weeks after injection. This was in contrast 

to the eGFP expression present at all time points after injection of VSVg.cmv_eGFP with 

PBS. This suggests that the collagen hydrogel delayed expression, which is consistent with 

a previous study. Although a small amount of LV vector was released from a collagen 

hydrogel at 1 day in vitro, maximal transgene expression was observed at 2 weeks after s.c. 

implantation in vivo, with decreased and absent expression at 4 and 6 weeks respectively 

(Shin and Shea, 2010). This is comparable with the eGFP expression observed at 2 weeks, 
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with absent expression at 1 and 4 weeks, observed in the current study. The authors 

suggest that the LV vector is initially retained in the collagen hydrogel, with its degradation 

rate by collagenases and its pore size limiting the infiltration of local cells, as LV vectors 

have been shown not to bind directly to collagen (Shin et al., 2010). We suggest that 

degradation rate and pore size hence also limit the release of VSVg.cmv_eGFP, resulting in 

delayed eGFP expression. The authors of the previous study also propose that the 

decreased transgene expression at later time points was the result of clearance of 

transduced cells by the immune system or a turnover of the transduced cells. However, 

given that the Iba1 immunoreactivity was not significantly different in the collagen hydrogel 

and PBS groups at 2 weeks after injection, and that eGFP expression was present at 4 

weeks after injection in the PBS group and was actually greater than that at 2 weeks after 

injection, it is unlikely that the absence of eGFP expression at 4 weeks after injection in the 

collagen hydrogel group is the result of these mechanisms. Additionally, a study using a 

collagen hydrogel to deliver an adenoviral vector containing the gene for human platelet-

derived growth factor subunit B to a dermal wound showed a lack of an anti-collagen IgG 

response (Gu et al., 2004), indicating that the collagen hydrogel induces neither an adaptive 

nor innate immune response. 

4.4.3.2 Increased spread of eGFP expression 

In contrast to the increased eGFP expression at the injection site and decreased spread of 

eGFP expression expected from the previous studies using hydrogels to deliver viral vectors 

described above, there was no significant difference in the peak area of eGFP fluorescence, 

but an increased anterior to posterior spread in the collagen hydrogel group. We suggest 

that although the properties of the collagen hydrogel may limit the release of 

VSVg.cmv_eGFP at early time points, resulting in delayed eGFP expression, the collagen 

hydrogel is not optimised for sustained release in this model but rather allows rapid release 

and subsequent spread at later time points. Although we aimed to investigate the distribution 

and time course of degradation of the collagen hydrogel in the current study, only what 
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appeared to be endogenous collagen type 1 in the meninges could be identified. This may 

be the result of degradation of the collagen hydrogel and its subsequent drainage in the 

CSF, or a collagen type 1 IF protocol that lacked the sensitivity required to detect the 

injected collagen. 

 

Given that the rationale for using the collagen hydrogel in the current study was to prevent 

extensive spread of the LV vector, it is clear that the collagen hydrogel used here is not 

suitable for the delivery of LV vectors in this model. However, the increased retention and 

stability of LV vectors delivered from collagen hydrogels promoted efficient, localised 

transgene expression (Shin and Shea, 2010) and hence further experiments would be 

worthwhile. We propose that these could use a collagen hydrogel with a higher collagen 

content, which has been shown to slow release (Premaraj et al., 2006). Although the relative 

concentrations of collagen and the cross-linker 4S-StarPEG had been optimised to result in 

gelation at 37°C in approximately 15 minutes in the current study, the extent of cross-linking 

also determines the degradation rate (Shin and Shea, 2010), and hence an increase in the 

relative concentration of the cross-linker may slow degradation and subsequent release. 

Finally, the immobilisation of LV vector to hydroxyapatite nanoparticles has been shown to 

further increase the retention and stability of LV vectors delivered from collagen hydrogels 

(Shin and Shea, 2010), indicating that the use of additional nanoparticles may also be 

considered.     

4.4.4 Conclusions 

We conclude that the extensive and long-term eGFP expression and its localisation in the 

sagittal sulcus, in the absence of long-term microglial activation, observed here would be 

optimal for achieving the chronic bathing in pro-inflammatory cytokines of the surface of the 

brain required to develop the model of cortical pathology driven by meningeal inflammation. 

Additionally, we suggest that LV vectors are suitable for the delivery of genes of interest in 

this model given the absence of non-specific demyelination following injection in animals 
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immunised with rmMOG. Future experiments will involve the production of a bicistronic LV 

vector containing the genes for TNF and IFN-γ. This technology has been used previously 

in, for example, a macaque model of Parkinson’s disease. A tricistronic LV vector containing 

the genes required for dopamine synthesis resulted in restoration of dopamine levels and 

motor function for 12 months following intrastriatal injection (Jarraya et al., 2009). These 

future experiments may also involve the use of a collagen hydrogel, following optimisation, to 

prevent extensive diffusion of the LV vector so that a higher concentration of TNF and IFN-γ 

may be achieved at the injection site. 
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5.1 Introduction 

5.1.1 GMLs in MS 

Cortical GMLs have been observed in neuropathological studies since 1892 (Taylor, 1892; 

reviewed in Kutzelnigg and Lassmann, 2005), but it is only in the last decade that the extent 

of cortical GM pathology in progressive MS has been made clear (Peterson et al., 2001, Bø 

et al., 2003b, Kutzelnigg et al., 2005). Findings obtained from these studies, combined with 

those obtained from longitudinal clinical MRI studies (Calabrese et al., 2012), support a 

major role for cortical GM pathology in driving progression, and associated worsening of 

motor and cognitive symptoms, in MS (Reynolds et al., 2011). 

 

Cortical GM pathology is characterised by demyelination, which may be leukocortical, 

intracortical or subpial (Peterson et al., 2001, Bø et al., 2003b) as described in 1.2.2.2. 

Subpial lesions are the most common type and may involve multiple gyri, accounting for up 

to 50-70% of all GMLs, followed by leukocortical lesions, which account for 25-34% 

(Peterson et al., 2001, Bø et al., 2003a, Magliozzi et al., 2007).  

5.1.2 Inflammation associated with subpial GMLs 

Inflammation in subpial GMLs is characterised by extensive microglial activation with 

characteristically only mild peripheral immune cell infiltration in perivascular cuffs, in contrast 

to WMLs (Peterson et al., 2001, Kutzelnigg et al., 2005, Magliozzi et al., 2010). However, a 

study using biopsy samples from early MS patients found T cell infiltrates in the majority of 

subpial GMLs (Lucchinetti et al., 2011) and a subsequent study using autopsy samples from 

SPMS patients found perivascular cuffs in 42% of subpial GMLs (Magliozzi et al., 2013), 

suggesting that immune cell infiltration does have a role in GMLs. The lack of significant 

peripheral immune cell infiltration previously observed and the high prevalence of subpial 
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GMLs suggest a role for the CSF and immune cell infiltration in the overlying meninges in 

pathology of the underlying subpial cortical GM (Gardner et al., 2013).  

5.1.2.1 Meningeal inflammation 

Diffuse inflammatory infiltrates have frequently been observed in the cerebral leptomeninges 

in studies using autopsy samples from PPMS and SPMS cases (Guseo and Jellinger, 1975, 

Kutzelnigg et al., 2005, Kooi et al., 2009, Howell et al., 2011, Choi et al., 2012) and were 

particularly frequent in cases with extensive subpial cortical GM demyelination, although one 

study showed no spatial correlation between the infiltrates and demyelination (Kooi et al., 

2009). They have also been observed in a study using cortical biopsy samples from early 

MS patients (Lucchinetti et al., 2011), indicating that meningeal inflammation is not restricted 

to progressive stages.  

 

As well as these diffuse inflammatory infiltrates, ectopic lymphoid follicle-like structures have 

also been observed in the meninges, particularly those of the sulci, in a significant proportion 

of SPMS cases in studies using autopsy samples (41.4%, 54% and 40% in Magliozzi et al., 

2007, Magliozzi et al., 2010 and Howell et al., 2011 respectively). They consist of 

aggregates of CD20+ B cells together with CD35+ follicular dendritic cells, Ki67+ 

proliferating CD20+ B cells, IgA, -G or -M+ plasmablasts/plasma cells and CD3+ T cells. The 

cases in which they are found have been defined as F+ SPMS and those in which they are 

not found as

 

The presence of these lymphoid-like structures has been associated with subpial GM 

demyelination and gradients of microglial activation and neuronal loss in cortical GM layers, 

with the greatest activation or loss in cortical layer I closest to the pia mater. A similar 

gradient of astrocyte loss that resulted in a thinning, or loss, of the glia limitans has also 

been described (Magliozzi et al., 2010). Additionally, their presence has been associated 

with a younger age at onset, age at wheelchair dependence and age at death



Chapter 5 - Expression of inflammatory cytokines and receptors in meninges in F+ SPMS 204 

(Magliozzi et al., 2007). Diffuse inflammatory infiltrates in the meninges have similarly been 

associated with subpial GM demyelination and a younger age at onset, time to disease 

progression, time to wheelchair dependence and age at death (Howell et al., 2011). 

 

The occurrence of diffuse inflammatory infiltrates and lymphoid-like structures in the SAS of 

the cerebral leptomeninges, particularly those of the deep sulci, has led to the hypothesis 

that the decreased flow of CSF in the sulci results in a protected environment that allows the 

homing and retention, and subsequent lymphoid organisation, of immune cells, which in turn 

results in an inflammatory milieu in the CSF (Reynolds et al., 2011). 

5.1.2.2 Inflammatory milieu 

It has been suggested that inflammatory infiltrates and lymphoid-like structures may be sites 

of immune cell activation and expansion in chronic disease (Serafini et al., 2004, Serafini et 

al., 2007, Magliozzi et al., 2007, Magliozzi et al., 2010) and become sources of pro-

inflammatory cytokines, auto-antibodies and self-reactive T cells (Aloisi and Pujol-Borrell, 

2006, Serafini et al., 2007, Carragher et al., 2008). Studies have shown the presence of B 

cell subsets found exclusively in lymphoid organs in CSF from MS patients (Corcione et al., 

2004) and the presence of related B cell clones in lesions as well as meninges and CSF 

(Owens et al., 2003, Lovato et al., 2011). Additionally, myelin-reactive T cell activation in the 

SAS is thought to be a key event in the initiation of EAE, as proliferating T cells have been 

detected initially in the SAS and subsequently in the spinal cord parenchyma, and before 

clinical symptoms (Kivisäkk et al., 2009). These findings indicate a role for the activation and 

expansion of B and T cells, in the meninges, in the pathogenesis of MS.   

 

The immune cells in the meninges are separated from the underlying subpial cortical GM by 

only a single, interrupted layer of cells of the pia mater, and the basal lamina and astrocyte 

end-feet, components of the glia limitans (Lopes and Mair, 1974). Given the structure of the 

pia mater and the thinning or loss of the glia limitans observed in F+ SPMS cases
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(Magliozzi et al., 2010), the pia mater and the glia limitans do not appear to represent a 

significant barrier to the diffusion of pro-inflammatory cytokines, auto-antibodies, lytic 

enzymes, nitrogen and oxygen radicals and metalloproteinases (MMPs) released by the 

immune cells (Brown and Sawchenko, 2007, Ransohoff, 2009). 

 

Support for the inflammatory milieu in the CSF/meningeal compartment comes from studies 

such as that of Gardner et al. (2013), which showed that the number of cells expressing the 

pro-inflammatory cytokines TNF and IFN-γ and the gene expression of these cytokines are 

increased in the meninges of F+ SPMS cases. The same study showed increased levels of 

these cytokines in post-mortem CSF from these cases (Gardner et al., 2013). These findings 

were in agreement with previous studies that showed the presence of TNF- and IFN-γ-

expressing cells in inflamed meninges (Magliozzi et al., 2010, Serafini et al., 2007) and 

increased levels of TNF and IFN-γ in CSF (Obradović et al., 2012, Romme Christensen et 

al., 2012). TNF has also been detected on the other side of the barrier formed by the pia 

mater and glia limitans in active subpial GMLs in F+ SPMS cases (Magliozzi et al., 2010). 

The levels of other inflammatory mediators, including MMP9 and osteopontin, are also 

increased in CSF from MS patients (Romme Christensen et al., 2013), but it is the lymphoid 

chemokine CXCL13 that has received particular attention. Its levels in CSF have been 

shown to predict conversion from CIS to MS (Brettschneider et al., 2010) and have been 

correlated with MRI activity in RRMS patients (Kuenz et al., 2008) and with axonal damage 

in SPMS patients (Romme Christensen et al., 2013). 

5.1.3 Aims 

Both the human tissue studies described above and the in vivo model studies described in 

1.3.4 and in Chapter 3 have suggested that cytotoxic and/or pro-inflammatory molecules 

diffusing from the chronically inflamed CSF/meningeal compartment into the underlying 

cortical GM may result in subpial GMLs in MS (Gardner et al., 2013). However, to date, a 
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complete study has not been performed and we aimed to determine the identity of these 

molecules.  

 

To fulfil these aims, the following were performed: 

 Selection of post-mortem F+ SPMS and F- SPMS cases and NNCs. 

 Characterisation of cases and identification of potential lymphoid-like structures 

using haematoxylin and eosin (H&E) staining and CD20 and MOG IHC. 

 Dissection of meninges and RT2 Profiler PCR Array real-time PCR followed by 

validation PrimeTime qPCR Assays. 

 Further investigation into the role of CXCL9.  
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5.2 Methods 

The methods described in 5.2.1 to 5.2.2.3 were performed with equal contribution by Miss 

Eleanor Browne, who also required RNA from F+ and F- SPMS cases and NNCs for her 

PhD studies. Case selection was performed together whereas Miss Browne and the author 

each performed half of the block screening, meningeal dissection and RNA extraction. 

Subsequent experiments using RNA were performed solely by the author. 

5.2.1 Characterisation of cases for meningeal PCR 

5.2.1.1 Case selection 

Tissue blocks were obtained from the UK Multiple Sclerosis Tissue Bank (Imperial College 

London, London, UK). The Tissue Bank operates a prospective donor scheme, collecting 

tissues with fully informed consent, approved by the National Research Ethics Committee 

(reference 08/MRE09/31). 

 

Cases had previously been characterised (Howell et al., 2011) as F+ SPMS (median age at 

death 45.5 years, range 40-59 years) or F- SPMS (median age at death 58.5 years, range 

45-62 years). NNCs (median age at death 67 years, range 35-77 years) were also included 

(n=10 per group). Individual case details, including the age at which a patient received 

disease modifying treatment and its duration (if known) are presented in Table 5.2.1. 

5.2.1.2 Block selection 

Tissue blocks, measuring 2cm x 2cm x 1cm, were taken from whole coronal slices taken at 

the time of dissection of fresh tissue, frozen in isopentane on dry ice and stored at -80°C. 

Approximately 10 cortical blocks were selected per case from a range of brain areas based 

on the presence of well demarcated sulci (Figure 5.2.1 A). 10µm sections were cut using a 

cryostat and stored at -20°C. 



Chapter 5 - Expression of inflammatory cytokines and receptors in meninges in F+ SPMS 208 

Case Sex Age of 

death 

Disease 

duration 

Cause of death Immunotherapy PMD 

NNC       

C14 M 64 NA Cardiac failure  NA 18 

C25 M 35 NA Carcinoma of the tongue NA 22 

C28 F 60 NA Ovarian cancer NA 13 

C45 M 77 NA Cardiopulmonary 

degeneration, prostate 

cancer, old age, 

Alzheimer’s disease 

NA 22 

C48 M 68 NA Metastatic colon cancer NA 10 

C51 M 68 NA Ischaemic heart disease NA 24 

C54 M 66 NA Pancreatic cancer NA 16 

PDC8 F 71 NA Myocardial infarction   NA 17 

PDC22 M 75 NA Squamous cell carcinoma 

of the lung 

NA 12 

PDC36 F 57 NA Metastatic carcinoma of the 

breast 

NA 22 

F-SPMS       

MS296 M 59 40 MS  NA 22 

MS301 F 62 19 Septicaemia, recurrent 

urinary tract infection, 

hypokalaemia, MS 

NA 16 

MS304 M 52 23 Pulmonary embolism, 

metastatic carcinoma colon 

primary, MS 

NA 13 

MS311 F 45 16 Pneumonia NA 22 

MS318 F 59 34 MS NA 13 

MS326 M 62 32 MS, prostate cancer NA 24 

MS335 M 62 37 Recurrent aspiration 

pneumonia, MS, renal 

failure 

NA 22 

MS347 M 49 28 Metastatic pancreatic 

carcinoma 

NA 13 

MS364 F 56 34 Bronchopneumonia, MS NA 14 

MS376 F 48 20 MS NA 19 
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F+ SPMS 

MS289 M 45 18 MS NA 9 

MS317 F 48 29 Aspiration pneumonia due 

to MS 

NA 21 

MS330 F 59 39 Pneumonia, MS NA 21 

MS352 M 43 18 Bronchopneumonia, MS Campath-1H 

age 33 

26 

MS356 F 45 16 MS NA 10 

MS371 M 40 16 Bronchopneumonia Avonex age 33, 

35 months 

27 

MS377 F 50 23 Aspiration pneumonia NA 22 

MS402 M 46 20 MS, bronchopneumonia NA 12 

MS407 F 44 19 Septicaemia, pneumonia Rebif age 42 22 

MS426 F 48 29 MS NA 21 

Table 5.2.1. Details of cases used for meningeal analyses. Age of death and disease duration in years; 
PMD, post-mortem delay in hours; M, male; F, female. 
 

5.2.1.3 Block screening 

Each block was examined for the presence of meningeal infiltrates. H&E staining was initially 

performed. Sections were immersed in haematoxylin for 2 minutes followed by destaining in 

warm running tap water for 5 minutes. Sections were immersed in eosin 1% (Raymond A 

Lamb Ltd from Thermo Scientific) for 2 minutes followed again by destaining. Sections were 

dehydrated using ethanol gradients and cleared using xylene followed by mounting in DPX. 

 

Blocks were assigned an index of inflammation based on the maximum density of meningeal 

infiltrates observed (Howell et al., 2011; Figure 5.2.1 B). Sections with no meningeal 

infiltrates, sections with at least one moderate meningeal infiltrate and sections with 

substantial meningeal infiltrates were assigned indices of 0, + and ++ respectively.  

Substantial meningeal infiltrates were defined as dense clusters of small, round lymphocytic 

cells resembling potential lymphoid-like structures. 
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5.2.1.4 Identification of B cells in meningeal infiltrates and demyelination 

In order to identify B cells, the main component of lymphoid-like structures, IHC for CD20 

was performed on sections from blocks assigned an index of inflammation of ++. Sections 

were immersed in 0.3% (v/v) hydrogen peroxide in methanol for 10 minutes to 

simultaneously fix the tissue and destroy its endogenous peroxidase activity. Sections were 

blocked with 5% (v/v) NHS in PBST for 60 minutes and incubated with anti-CD20 primary 

antibody (ScyTek Laboratories Inc, Logan, Utah, USA) overnight at 4°C. Sections were 

incubated with horse anti-mouse biotinylated secondary antibody at 1:500 in 3% (v/v) NHS in 

PBST for 60 minutes followed by ABC for 60 minutes. Sections were developed with DAB 

and counterstained with haematoxylin as described in 5.2.1.3. PBST washes were 

performed between incubations, which were performed at room temperature unless 

otherwise stated. 

 

In order to identify areas of demyelination, IHC for MOG was performed on sections in which 

dense aggregates of CD20+ B cells had been identified in the meninges, using the same 

protocol as that for CD20, but using MOG primary antibody at 1:20. 

5.2.1.5 Correlations 

GraphPad Prism 5 was used to construct graphs and perform statistical analysis to 

determine associations between the presence of lymphoid-like structures in F+ SPMS cases 

and clinical variables. These included age of onset, age at progression to SPMS, age at 

which the patient required the use of a wheelchair and age of death as well as the number of 

years between these disease milestones. A Mantel-Cox test was performed to determine 

whether Kaplan-Meier survival curves of these clinical variables were significantly different 

for F+ SPMS cases compared to F- SPMS cases. A Mann-Whitney U test was also 

performed on the corresponding column data, which is presented as mean ± SEM. A p value 

of <0.05 was considered to be statistically significant. 
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5.2.2 Meningeal PCR 

5.2.2.1 Meningeal dissection 

Meninges were dissected from tissue blocks in a cryostat at -20°C. A sterile scalpel was 

used to dissect 100-250mg of meninges, avoiding GM, from varying numbers of blocks per 

case, which were placed in RNase-free microfuge tubes (Ambion from Life Technologies) on 

dry ice and stored at -80°C. All equipment was cleaned with RNaseZap (Ambion) and 

ethanol prior to use. 

5.2.2.2 RNA extraction 

RNA was extracted from dissected meninges using an RNeasy Lipid Tissue Mini Kit 

(Qiagen) according to manufacturer’s instructions. Samples were removed from storage, 

placed on dry ice and homogenised with QIAzol Lysis Reagent (Qiagen; 1ml per 100mg 

sample) for 30 seconds using a rotor stator homogeniser (IKA, Staufen, Baden-

Württemberg, Germany), followed by incubation for 5 minutes at room temperature to allow 

dissociation. Cell debris was removed by centrifugation (12,000g, 5 minutes, 4°C) and a 

volume of chloroform (Sigma-Aldrich) equal to 20% of the volume of supernatant recovered 

was added. Samples were shaken vigorously for 15 seconds followed by incubation for 3 

minutes at room temperature. The upper aqueous layer containing RNA was removed 

following centrifugation (12,000g, 15 minutes, 4°C). A volume of ethanol equal to the volume 

recovered was added and the sample vortexed prior to being transferred to an RNeasy Mini 

spin column. Centrifugation (≥8,000g, 15 seconds, room temperature) was repeated, 

discarding the flow-through, until the whole sample had been transferred to the column. The 

membrane was washed by the addition of a buffer supplied by the manufacturer followed by 

centrifugation (≥8,000g, 15 seconds, room temperature). Contaminating genomic 

deoxyribonucleic acid (gDNA) was removed using the RNase-Free DNase Set (Qiagen). 

Briefly, DNase I incubation mix was added to the membrane and incubated for 15 minutes at 

room temperature followed by washing of the membrane as described above. RNA was 
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eluted from the membrane by the incubation of RNase-free water (Sigma-Aldrich) on the 

membrane for 1 minute followed by centrifugation (≥8,000g, 1 minute). In order to increase 

the concentration of RNA, the above step was repeated using the flow-through. Eluted RNA 

was stored at -80°C. 

5.2.2.3 Concentration and integrity of RNA 

The concentration of eluted RNA was determined by measuring the absorbance at 260nm 

using a spectrophotometer (ND-1000; NanoDrop). 

 

The integrity of eluted RNA was determined using an RNA 6000 Nano Kit (Agilent 

Technologies, Santa Clara, California, USA) with a 2100 Bioanalyser (Agilent) according to 

manufacturer’s instructions. The 2100 Expert Software algorithm uses a trained, artificial 

neural network to calculate an RNA integrity number (RIN) based on the integration of 

informative features extracted from the electropherogram. These features may include the 

total RNA ratio (area of ribosomal bands:area of electropherogram), the height of the peak 

corresponding to 18S ribosomal RNA, the fast area ratio (area of fast region:area of 

electropherogram) and the height of the lower marker (Imbeaud et al., 2005).  

5.2.2.4 Reverse transcription 

Complementary DNA (cDNA) was reverse transcribed from the eluted RNA using an RT2 

First Strand Kit (SABiosciences from Qiagen) according to manufacturer’s instructions. One 

µg of RNA was reverse transcribed for each sample. Briefly, gDNA elimination mix was 

incubated for 5 minutes at 42°C and immediately placed on ice. Reverse-transcription (RT) 

mix was added to the gDNA elimination mix and incubated at 42°C for 15 minutes and then 

at 95°C for 5 minutes to stop the reaction. RNase-free water was added and the cDNA was 

stored at -20°C. 
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5.2.2.5 RT2 Profiler PCR Array real-time PCR 

PCR components mix was prepared by the addition of RT2 SYBR Green Mastermix 

(SABiosciences) and RNase-free water to cDNA according to manufacturer’s instructions. 

The PCR components mix was added to the Human Inflammatory Cytokines and Receptors 

RT2 Profiler PCR Array (Format A; SABiosciences; 25µl per well). This 96-well array 

includes SYBR Green-optimised primer assays for the genes and RT controls shown in 

Table 5.2.2. The array was sealed, centrifuged (1000g, 1 minute, room temperature) and 

placed in the real-time cycler (Stratagene Mx3000P; Agilent). The cycling conditions used 

are described in Table 5.2.3. One array was run per case. 

5.2.2.6 Real-time PCR data analysis 

At the end of the run, the threshold cycle (CT) for each well was calculated using the cycler 

software (MxPro; Agilent). The baseline was defined by using the automated baseline option 

and the threshold was defined manually by using the log view of the amplification plots, 

ensuring that it was above the baseline but within the lower one-third to one-half of the linear 

phase of the amplification plot and that it was constant across all arrays. 

 

Selection of housekeeping genes (HKGs) 

The optimal HKG(s) of the five included in the PCR array; ACTB (β-actin), B2M (β2 

microglobulin), GAPDH (glyceraldehyde 3-phosphate dehydrogenase), HPRT1 

(hypoxanthine phosphoribosyltransferase 1) and RPLP0 (ribosomal protein, large, P0); was 

determined using BestKeeper. This is a Microsoft Excel-based tool that uses repeated 

pairwise correlation analysis (Pfaffl et al., 2004). Highly correlated HKGs are then combined 

by taking the geometric mean (validated by Vandesompele et al., 2002) to give the 

BestKeeper. Further pairwise correlation analysis is performed between each HKG and the 

BestKeeper to give an estimate of the ‘power’ of the HKG. 
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Well Gene Description 

A01 AIMP1 Aminoacyl tRNA synthetase complex-interacting multifunctional 

protein 1 

A02 BMP2 Bone morphogenetic protein 2 

A03 C5 Complement component 5 

A04 CCL1 Chemokine (C-C motif) ligand 1 

A05 CCL11 Chemokine (C-C motif) ligand 11 

A06 CCL13 Chemokine (C-C motif) ligand 13 

A07 CCL15 Chemokine (C-C motif) ligand 15 

A08 CCL16 Chemokine (C-C motif) ligand 16 

A09 CCL17 Chemokine (C-C motif) ligand 17 

A10 CCL2 Chemokine (C-C motif) ligand 2 

A11 CCL20 Chemokine (C-C motif) ligand 20 

A12 CCL22 Chemokine (C-C motif) ligand 22 

B01 CCL23 Chemokine (C-C motif) ligand 23 

B02 CCL24 Chemokine (C-C motif) ligand 24 

B03 CCL26 Chemokine (C-C motif) ligand 26 

B04 CCL3 Chemokine (C-C motif) ligand 3 

B05 CCL4 Chemokine (C-C motif) ligand 4 

B06 CCL5 Chemokine (C-C motif) ligand 5 

B07 CCL7 Chemokine (C-C motif) ligand 7 

B08 CCL8 Chemokine (C-C motif) ligand 8 

B09 CCR1 Chemokine (C-C motif) receptor 1 

B10 CCR2 Chemokine (C-C motif) receptor 2 

B11 CCR3 Chemokine (C-C motif) receptor 3 

B12 CCR4 Chemokine (C-C motif) receptor 4 

C01 CCR5 Chemokine (C-C motif) receptor 5 

C02 CCR6 Chemokine (C-C motif) receptor 6 

C03 CCR8 Chemokine (C-C motif) receptor 8 

C04 CD40LG CD40 ligand 

C05 CSF1 Colony stimulating factor 1 (macrophage) 

C06 CSF2 Colony stimulating factor 2 (granulocyte-macrophage) 

C07 CSF3 Colony stimulating factor 3 (granulocyte) 

C08 CX3CL1 Chemokine (C-X3-C motif) ligand 1 

C09 CX3CR1 Chemokine (C-X3-C motif) receptor 1 
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C10 CXCL1 Chemokine (C-X-C motif) ligand 1 (melanoma growth stimulating 

activity, alpha) 

C11 CXCL10 Chemokine (C-X-C motif) ligand 10 

C12 CXCL11 Chemokine (C-X-C motif) ligand 11 

D01 CXCL12 Chemokine (C-X-C motif) ligand 12 

D02 CXCL13 Chemokine (C-X-C motif) ligand 13 

D03 CXCL2 Chemokine (C-X-C motif) ligand 2 

D04 CXCL3 Chemokine (C-X-C motif) ligand 3 

D05 CXCL5 Chemokine (C-X-C motif) ligand 5 

D06 CXCL6 Chemokine (C-X-C motif) ligand 6 (granulocyte chemotactic protein 

2) 

D07 CXCL9 Chemokine (C-X-C motif) ligand 9 

D08 CXCR1 Chemokine (C-X-C motif) receptor 1 

D09 CXCR2 Chemokine (C-X-C motif) receptor 2 

D10 FASLG Fas ligand (TNF superfamily, member 6) 

D11 IFNA2 Interferon, alpha 2 

D12 IFNG Interferon, gamma 

E01 IL10RA Interleukin 10 receptor, alpha 

E02 IL10RB Interleukin 10 receptor, beta 

E03 IL13 Interleukin 13 

E04 IL15 Interleukin 15 

E05 IL16 Interleukin 16 

E06 IL17A Interleukin 17A 

E07 IL17C Interleukin 17C 

E08 IL17F Interleukin 17F 

E09 IL1A Interleukin 1, alpha 

E10 IL1B Interleukin 1, beta 

E11 IL1R1 Interleukin 1 receptor, type I 

E12 IL1RN Interleukin 1 receptor antagonist 

F01 IL21 Interleukin 21 

F02 IL27 Interleukin 27 

F03 IL3 Interleukin 3 (colony-stimulating factor, multiple) 

F04 IL33 Interleukin 33 

F05 IL5 Interleukin 5 (colony-stimulating factor, eosinophil) 

F06 IL5RA Interleukin 5 receptor, alpha 

F07 IL7 Interleukin 7 
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F08 IL8 Interleukin 8 

F09 IL9 Interleukin 9 

F10 IL9R Interleukin 9 receptor 

F11 LTA Lymphotoxin alpha (TNF superfamily, member 1) 

F12 LTB Lymphotoxin beta (TNF superfamily, member 3) 

G01 MIF Macrophage migration inhibitory factor (glycosylation-inhibiting 

factor) 

G02 NAMPT Nicotinamide phosphoribosyltransferase 

G03 OSM Oncostatin M 

G04 SPP1 Secreted phosphoprotein 1 

G05 TNF Tumour necrosis factor 

G06 TNFRSF11B Tumour necrosis factor receptor superfamily, member 11b 

G07 TNFSF10 Tumour necrosis factor (ligand) superfamily, member 10 

G08 TNFSF11 Tumour necrosis factor (ligand) superfamily, member 11 

G09 TNFSF13 Tumour necrosis factor (ligand) superfamily, member 13 

G10 TNFSF13B Tumour necrosis factor (ligand) superfamily, member 13b 

G11 TNFSF4 Tumour necrosis factor (ligand) superfamily, member 4 

G12 VEGFA Vascular endothelial growth factor A 

H01 ACTB Actin, beta 

H02 B2M Beta-2-microglobulin 

H03 GAPDH Glyceraldehyde-3-phosphate dehydrogenase 

H04 HPRT1 Hypoxanthine phosphoribosyltransferase 1 

H05 RPLP0 Ribosomal protein, large, P0 

H06 HGDC Human Genomic DNA Contamination 

H07 RTC Reverse Transcription Control 

H08 RTC Reverse Transcription Control 

H09 RTC Reverse Transcription Control 

H10 PPC Positive PCR Control 

H11 PPC Positive PCR Control 

H12 PPC Positive PCR Control 

Table 5.2.2. RT
2 
Profiler PCR Array Human Inflammatory Cytokines and Receptors gene table. 

Cycles Duration Temperature / °C 

1 10 minutes 95 

40 15 seconds 95 

 1 minute 60 

Table 5.2.3. Cycling conditions for RT
2 
Profiler PCR Array using Stratagene Mx3000P. 



Chapter 5 - Expression of inflammatory cytokines and receptors in meninges in F+ SPMS 218 

The results of the BestKeeper analysis are shown in Table 5.2.4. Primary estimates of HKG 

stability were obtained based on standard deviation and coefficient of variance. These 

values were low for all HKGs, indicating that the stability of these genes was high between 

cases. Similarly, the Pearson’s correlation coefficient was high, and associated with low p 

values, for all HKGs, indicating that the expression of each of these genes correlated well 

with the expression of the other genes and with that of the BestKeeper.  

 

Studies have shown that the conventional use of a single HKG for normalisation may lead to 

large errors (Vandesompele et al., 2002) and that multiple HKGs should be used. Given the 

BestKeeper analysis results, the five HKGs were used in combination for normalisation. 

 

HKG ACTB B2M GAPDH HPRT1 RPLP0 BestKeeper 

n 30 30 30 30 30 30 

GM (CT) 20.04 19.27 21.37 25.93 19.93 21.19 

AM (CT)  20.06 19.28 21.39 25.95 19.95 21.20 

Min (CT) 18.79 18.29 19.93 24.92 18.62 20.16 

Max (CT) 22.19 21.10 23.21 28.28 22.90 23.41 

SD (± CT) 0.62 0.53 0.62 0.63 0.63 0.53 

CV (% CT) 3.11 2.76 2.92 2.41 3.15 2.52 

R 0.916 0.857 0.883 0.882 0.864  

p 0.001 0.001 0.001 0.001 0.001  

Table 5.2.4. BestKeeper determination of stable HKGs. n, number of samples; GM, geometric mean; AM, 
arithmetic mean; SD, standard deviation; CV, coefficient of variance; R, Pearson’s correlation coefficient 
between HKG and BestKeeper. 
 

SABiosciences software analysis 

Initially, PCR data were analysed using an integrated web-based software package provided 

by SABiosciences, which automatically performs fold change calculations based on the 

ΔΔCT method (Livak and Schmittgen, 2001) from uploaded raw CT data. It also allows two 

groups to be compared using a t-test and the human gDNA contamination, RT and positive 

PCR control wells to be interpreted. It excludes wells for which the CT is above 35. 
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REST software analysis 

Subsequently, PCR data were analysed using REST 2009 (relative expression software tool; 

Pfaffl et al., 2002), which allows two groups to be compared using a randomisation test. This 

test does not make distributional assumptions about the data, such as their normality; it only 

assumes that the treatment was randomly allocated. It randomly and repeatedly reallocates 

CT values, of genes of interest and HKGs jointly, to the two groups and determines the 

apparent fold change based on the ΔΔCT method each time. The p value is determined by 

the proportion of the apparent fold changes that are as great as those observed. 

Amplification efficiencies of 100% were assumed, as the manufacturer quotes a mean 

amplification efficiency of 99%, and 2000 randomisations were performed. 

 

Manual analysis 

Finally, PCR data were analysed manually using Microsoft Excel (Microsoft Corporation, 

Redmond, Washington, USA) and the ΔΔCT method described in the equations below. GOI 

refers to gene of interest, GEOMEAN to geometric mean, HKG to housekeeping gene and 

FC to fold change. 

ΔCT = CT GOI – GEOMEAN(CT HKG)  

 ΔΔCT = ΔCT – MEAN(ΔCT NNC)   

 

All fold change data are presented as mean ± the SEM. GraphPad Prism 5 was used to 

construct graphs and perform statistical analysis. Three groups were compared using 

Kruskal-Wallis one-way ANOVA with Dunn’s multiple comparisons test. A p value of <0.05 

was considered to be statistically significant. 

2
-ΔΔCT

 

MEAN(2
-ΔΔCT 

NNC
) 

FC =  
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5.2.2.7 Validation quantitative PCR 

In order to confirm selected results of the PCR array, PrimeTime qPCR Assays (Integrated 

DNA Technologies, Leuven, Belgium) were used to detect TNF, IFNG and CXCL9 in cDNA 

samples reverse transcribed in 5.2.2.4. GAPDH and XPNPEP1 were used as HKGs. The 

latter has recently been identified as a novel stable HKG in post-mortem human CNS tissue, 

with no known neurodegenerative or neuroinflammatory associations (Durrenberger et al., 

2012). Master mix (18µl) consisting of Brilliant II QPCR Low ROX Master Mix (10µl; Agilent), 

RNase-free water (6µl) and PrimeTime qPCR Assay probe and primers (2µl; details in Table 

5.2.5) was added to each well of a 96-well microplate (Applied Biosystems from Life 

Technologies). cDNA (2µl per well) was added in triplicate. Pooled NNC cDNA with GAPDH 

assays was used as interplate calibrator and RNase-free water as blank. The plate was 

sealed, centrifuged (1000g, 1 minute, room temperature) and placed in the cycler. The 

cycling conditions used are described in Table 5.2.6. 

 

Prior to running cDNA samples, ‘no RT’ reactions were performed using pooled F+ SPMS, 

pooled F- SPMS and pooled NNC RNA samples, which were run as described for all assays 

to confirm the absence of contaminating gDNA. 

 

At the end of the run, the CT for each well was calculated using the cycler software as 

described in 5.2.2.6. 

 

PCR amplification efficiency and validation of ΔΔCT method 

The PCR amplification efficiency is the rate at which a PCR amplicon is generated. If the 

amount of a particular PCR amplicon doubles with each cycle, the efficiency is 100% or 2. 

For the ΔΔCT method to be valid, the efficiency of the GOI amplification and those of the 

HKGs must be approximately equal. Hence a validation experiment was performed as 

described above using cDNA amounts spanning approximately 5 logs for each of the five
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Gene Assay 

name 

Probe sequence 5’-3’ Primer 1 

sequence 5’-3’ 

Primer 2 

sequence 5’-3’ 

TNF Hs.PT.

56a.41

006330 

56-

FAM/AGAAGATGA/ZEN/TCT

GACTGCCTGGGC/3IABkFQ 

TCAGCTTGAG

GGTTTGCTAC 

TGCACTTTGGA

GTGATCGG 

IFNG Hs.PT.

56a.37

81960 

56-

FAM/TCGGTAACT/ZEN/GAC

TTGAATGTCCAACGC/3IABk

FQ 

CGACAGTTCA

GCCATCACTT 

GCAACAAAAAG

AAACGAGATGA

C 

CXCL9 Hs.PT.

56a.27

316119 

56-

FAM/TCTTGCTGG/ZEN/TTCT

GATTGGAGTGCA/3IABkFQ 

AACAGCGACC

CTTTCTCAC 

AATACAGGAGT

GACTTGGAACT 

GAPDH Hs.PT.

53a.26

759668 

5HEX/CGACCAAAT/ZEN/CC

GTTGACTCCGACC/3IABkFQ 

GCAACAATAT

CCACTTTACC

AGAG 

CACATCGCTCA

GACACCAT 

XPNPEP1 Hs.PT.

53a.24

812694 

5HEX/TGCTCTTCT/ZEN/GTG

ATGATGGCTGTGC/3IABkFQ 

CAGTTGCTGT

CCATTTGCTT

G 

TTGTCTCTGGA

TTCGATGGC 

Table 5.2.5 Details of PrimeTime qPCR Assays and Primers used for validation quantitative PCR. 

 

Cycles Duration Temperature / °C 

1 10 minutes 95 

45 15 seconds 95 

 1 minute 60 

Table 5.2.6. Cycling conditions for validation quantitative PCR using Stratagene Mx3000P. 
 

assays. Pooled cDNA samples from all cases were used throughout. The efficiency, E, was 

calculated using the gradient of the standard curve generated by plotting CT against log of 

input cDNA amount (Figure 5.2.2 A-E) and the following equation. 

E = (10-1/gradient -1) 

With the exception of TNF, for which amplification could only be observed at high input 

cDNA amounts (A), the amplification efficiencies of the other GOIs and the HKGs were 

good, approximately 100% (B-E). Additionally, ΔCT as defined in 5.2.2.6 was also plotted 

against log of input cDNA amount and the gradient calculated, the absolute value of which 
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was <0.1 in a validation experiment that passed (F; Applied Biosystems, 2008). Again, with 

the exception of TNF, the gradient was less than 0.1 for the other GOIs and hence these 

validation experiments passed. The amplification efficiencies of IFNG and CXCL9 and those 

of GAPDH and XPNPEP1 were approximately equal and the ΔΔCT method could be used for 

analysis in addition to the REST software, as described in 5.2.2.6. 

 

Correlations 

GraphPad Prism 5 was used to construct graphs and perform linear regression analysis to 

determine correlations between fold changes of IFNG and CXCL9 and the clinical variables 

described in 5.2.1.5. Significant correlation was said to be present if the linear regression 

slope was significantly non-zero with a p value of <0.05. 

 

PCR specificity 

In order to confirm the specificity of each of the five assays, agarose gel electrophoresis was 

performed. Briefly, 4µl of loading buffer was added to each 20µl PCR reaction remaining 

after PCR of pooled cDNA samples from all cases. Samples were run in Tris-acetate-EDTA 

(all Sigma-Aldrich; 1x) buffer on a 3% agarose gel with ethidium bromide for approximately 

60 minutes at 90V until the bands of the ladder (10 bp DNA Ladder; Life Technologies) were 

well separated. Bands were visualised under ultraviolet illumination. 

 

A single band was expected for each assay if specific. The sizes of the expected PCR 

amplicons were determined by finding forward and reverse primer sequences in the gene 

sequences obtained from NCBI databases and are shown in Table 5.2.7.
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Gene Expected PCR amplicon size / bp 

TNF 49 

IFNG 38 

CXCL9 44 

GAPDH 38 

XPNPEP1 39 

Table 5.2.7. Sizes of expected PCR amplicons for each assay. 
 

5.2.3 CSF CXCL9 ELISA 

5.2.3.1 Case selection 

Aliquots of CSF, frozen in isopentane on dry ice at the time of dissection of fresh tissue and 

stored at -80°C, were obtained from the UK Multiple Sclerosis Tissue Bank. Cases were 

selected based on the availability of clear or slightly pink, rather than bloody, CSF aliquots 

and subsequently on post-mortem delay (PMD). Cases had previously been characterised 

(Howell et al., 2011) as F+ SPMS (median age at death 44.5 years, range 34-59 years) or F- 

SPMS (median age at death 71 years, range 52-83 years). NNCs (median age at death 83.5 

years, range 32-95 years) were also included (n=8 per group). Individual case details, 

including the age at which a patient received disease modifying treatment and its duration (if 

known) are presented in Table 5.2.8. Centrifugation (100g, 10 minutes, 4°C) was performed 

and the supernatant used in the CXCL9 ELISA. 

5.2.3.2 CXCL9 ELISA 

An ELISA was performed to determine the concentrations of CXCL9 in F+ and F- SPMS and 

NNC CSF using a Quantikine Human CXCL9/MIG kit (R&D Systems) according to 

manufacturer’s instructions. Briefly, plates (coated with a mouse monoclonal antibody 

against CXCL9) were incubated with 100µl per well of CXCL9 Standards (recombinant 

human CXCL9; high standard 2000pg/ml, low standard 31.25pg/ml, zero standard Calibrator 

Diluent RD5P (2.5X)) or CSF samples in triplicate with 100µl per well of Assay Diluent 

RD1W for two hours. Plates were incubated with 200µl per well of Human CXCL9 Conjugate
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Case Sex Age of 

death 

Disease 

duration 

Cause of death Immunotherapy PMD 

NNC       

C5 F 95 NA Bronchopneumonia  NA 10 

C7 F 85 NA Cancer of the oesophagus NA 9 

C8 F 93 NA Bronchopneumonia, 

cerebrovascular accident 

NA 9 

C15 M 82 NA Not reported NA 21 

C30 M 75 NA Cerebrovascular accident, 

aspiration pneumonia 

NA 17 

C50 M 32 NA Haemangiopericytoma 

cancer metastasised to 

bones 

NA 6 

C54 M 66 NA Pancreatic cancer NA 16 

PDC32 F 91 NA Not reported NA 19 

F-SPMS       

MS71 F 78 42 Metastatic carcinoma of 

bronchus  

NA 5 

MS74 F 64 36 Gastrointestinal bleed/ 

obstruction, aspiration 

pneumonia 

NA 7 

MS139 F 62 22 Bronchopneumonia, MS NA 9 

MS155 F 80 37 Small bowel obstruction, 

pleurisy, heart problems, 

MS 

NA 13 

MS158 F 78 18 Bronchopneumonia, MS NA 5 

MS288 F 83 27 Bronchopneumonia, 

immobility, MS 

NA 12 

MS304 M 52 23 Pulmonary embolism, 

metastatic carcinoma colon 

primary, MS 

NA 13 

MS361 F 60 34 Advanced sigmoid colon 

cancer, MS 

NA 10 

F+ SPMS       

MS46 M 40 23 Dehydration, MS NA 18 

MS79 F 49 21 Bronchopneumonia, MS NA 7 
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MS154 F 34 12 Pneumonia NA 12 

MS160 F 44 16 Aspiration pneumonia, MS NA 18 

MS176 M 37 27 Intestinal obstruction, 

chronic MS 

NA 12 

MS286 M 45 16 MS Methotrexate age 

35, 24 months 

7 

MS402 M 46 20 MS, bronchopneumonia NA 12 

MS426 F 48 29 MS NA 21 

Table 5.2.8. Details of cases used for CSF CXCL9 ELISA. Age of death and disease duration in years; 
PMD, post-mortem delay in hours; M, male; F, female. 
 

(polyclonal antibody against CXCL9 conjugated to horseradish peroxidase) for 2 hours 

followed by 200µl per well of Substrate Solution (tetramethylbenzidine with hydrogen 

peroxide) for 30 minutes in the dark and subsequent addition of 50µl per well of Stop 

Solution (2N sulphuric acid). Optical density was measured at 450nm and at 540nm using a 

VersaMax ELISA Microplate Reader and SoftMax Pro software. Washes with Wash Buffer 

were performed between incubations, which were performed at room temperature. 

5.2.3.3 ELISA data analysis 

The optical density at 540nm was subtracted from that at 450nm to correct for optical 

imperfections in the plate. These data were analysed using a web-based software package 

(elisaanalysis.com; Elisakit.com Pty Ltd, Scoresby, Victoria, Australia), which automatically 

calculates the mean of triplicates, subtracts the mean zero standard and performs four 

parameter logistic regression to fit a standard curve and subsequently calculate 

concentrations of CXCL9 in CSF samples. The background is defined as 3 standard 

deviations greater than the mean zero standard. Concentrations of CXCL9 are presented as 

mean ± the SEM. GraphPad Prism 5 was used to construct graphs and perform statistical 

analysis. Three groups were compared using Kruskal-Wallis with Dunn’s multiple 

comparisons test. 
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5.2.4 CXCL9 immunofluorescence 

In order to identify the presence of CXCL9, IF was performed on sections from selected 

blocks with substantial meningeal infiltrates resembling potential lymphoid-like structures. 

Human spleen sections (UK Multiple Sclerosis Tissue Bank) were used as a positive control.  

 

Sections were immersed in -20°C acetone (Sigma-Aldrich) for 6 minutes for fixation of the 

tissue. Sections were blocked with 5% (v/v) NGS in PBS for 60 minutes and incubated with 

anti-CXCL9 primary antibody (Table 5.2.9) diluted in 1% (v/v) NGS in PBS overnight at 4°C. 

Sections were incubated with goat anti-rabbit biotinylated secondary antibody (Vector 

Laboratories) at 1:500 in the same diluent for 60 minutes followed by incubation with Alexa 

Fluor 546 conjugated streptavidin (Alexa Fluor Dyes) at 1:1000 for 60 minutes in the dark. 

Following incubation with DAPI for 5 minutes to identify cell nuclei, sections were incubated 

with Sudan Black B (0.5%; Molekula, Shaftesbury, Dorset, UK) for 10 minutes and mounted 

in Vectashield mounting medium. PBS washes were performed between incubations, which 

were performed at room temperature unless otherwise stated. 

 

In order to identify the presence of T cells for which CXCL9 is a chemokine (Müller et al., 

2010), IF for CD4 and CD8 (Table 5.2.9) was performed using the same protocol as that for 

CXCL9 but replacing acetone with 4% PFA for 20 minutes and using appropriate sera and 

secondary antibodies. 

 

Antigen Cell specificity Species Dilution Source 

CD20 B cell Mouse 1 in 2 ScyTek Laboratories Inc 

CD41 CD4+ T cell Mouse 1 in 500 BD Pharmingen 

CD81 CD8+ T cell Mouse 1 in 1000 BD Pharmingen 

CXCL91  Rabbit 1 in 100 Santa Cruz Biotechnology, Dallas, 

Texas, USA 

Table 5.2.9. Primary antibodies used for IF. 
1
Antigens requiring a biotinylated secondary antibody. 



Chapter 5 - Expression of inflammatory cytokines and receptors in meninges in F+ SPMS 228 

5.3 Results 

5.3.1 Characterisation of cases for meningeal PCR 

5.3.1.1 Block screening 

Meningeal preservation varied between blocks but was generally good in the deep sulci, and 

as blocks had been selected based on the presence of deep sulci, it was concluded that 

sufficient meninges of good preservation could be dissected for use with RT2 Profiler PCR 

Arrays and PrimeTime qPCR Assays. Blocks from F+ and F- SPMS cases and NNCs were 

assigned an index of inflammation based on the maximum density of meningeal infiltrates 

observed following H&E staining of 10µm sections (as described in Howell et al., 2011). 

Representative images of each index are shown in Figure 5.2.1. No meningeal inflammation 

was observed in meninges overlying the gyri (Figure 5.3.1 Ai) or in meninges lining the sulci 

(Aii) in NNCs. Mild meningeal inflammation was observed at higher frequency in F+ than F- 

SPMS cases (Bi and Bii) and severe meningeal inflammation was observed only in F+ 

SPMS cases, particularly in meninges lining the sulci (Ci and Cii). 

5.3.1.2 Identification of B cells in meningeal infiltrates and demyelination 

In order to identify B cells, IHC for CD20 was performed on sections from blocks assigned 

an index of inflammation of ++ and sections from selected blocks from NNCs and F- SPMS 

cases. No B cells were observed in meninges in NNCs (Figure 5.3.2 A). Lymphoid-like 

structures identified following H&E staining (Bi) in blocks from the case with the most 

substantial meningeal infiltrates, MS402, contained large, dense aggregates of B cells (Bii 

and Biii). Lymphoid-like structures from cases with less substantial meningeal infiltrates also 

contained dense aggregates of B cells (Ci and Cii). 
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In order to identify areas of demyelination, IHC for MOG was performed on sections in which 

lymphoid-like structures containing dense aggregates of CD20+ B cells had been identified 

and sections from selected blocks from NNCs and F- SPMS cases. No demyelination was 

observed in NNCs (Figure 5.3.3 A) and F- SPMS cases (B). Extensive subpial demyelination 

was present adjacent to lymphoid-like structures identified using the haematoxylin 

counterstain, which contained dense aggregates of B cells in the adjacent section, in F+ 

SPMS cases (C). Demyelination could affect all cortical GM layers as well as some of the 

underlying WM, and could extend along the entire length of the sulcus. 

5.3.1.3 Association of follicle status with clinical course 

Kaplan-Meier survival analysis was performed to determine the association between the 

presence of lymphoid-like structures in F+ SPMS cases with clinical variables. The presence 

of lymphoid-like structures was significantly associated with a younger age at progression to 

SPMS (Figure 5.3.4 Bi; mean 32 years for F+ SPMS, 40 for F- SPMS), age at which the 

patient required the use of a wheelchair (Ci; mean 34 years for F+ SPMS, 44 for F- SPMS) 

and age at death (Di; mean 47 years for F+ SPMS, 55 for F- SPMS). There appeared to be 

trends toward younger age of onset (Ai) and shorter disease duration (Ei) as well as fewer 

numbers of years between all other disease milestones (data not shown) in F+ SPMS cases, 

although no significant associations were observed. This accelerated disease course and 

earlier death were also demonstrated by the corresponding Kaplan-Meier survival curves 

(Aii, Bii, Cii, Dii and Eii). 
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5.3.2 Meningeal PCR 

5.3.2.1 Concentration and integrity of RNA 

A total mass of 100-250mg of meninges per case was dissected from tissue blocks and RNA 

was extracted. The concentration of eluted RNA was determined by measuring the 

absorbance at 260nm using a spectrophotometer and ranged from approximately 100ng/µl 

for NNCs to approximately 400ng/µl for SPMS cases (Figure 5.3.5 A). All spectra displayed 

a single peak at 260nm corresponding to nucleic acid. Additionally, they had ratios of 

absorbance at 260nm to that at 280nm of 2.0 or above, indicative of RNA without protein 

contamination (Wilfinger et al., 1997), where ratios of 1.8 or above are considered 

acceptable (Fleige and Pfaffl, 2006). Most samples also had ratios of absorbance at 260nm 

to that at 230nm also of approximately 2.0 or above, indicative of RNA without 

phenol/guanidine contamination from the QIAzol Lysis Reagent used during RNA extraction 

(Krebs et al., 2009). 

 

The integrity of eluted RNA was determined using an RNA 6000 Nano Kit with a 2100 

Bioanalyser to obtain an RIN from the electrophoretic measurements recorded and 

automated algorithm (Schroeder et al., 2006; Figure 5.3.5 B). The integrity varied between 

cases but was generally good, approximately 5 or above (mean 5.2 ± 0.17). 

Electropherograms displayed two peaks corresponding to 18S and 28S ribosomal RNA, 

although peaks corresponding to degradation products were also observed, which appeared 

earlier. Linear regression analysis showed that there was no correlation between RIN and 

PMD (Ci) or age at death (Cii). Additionally, no significant effect of gender (Ciii) or group 

(Civ) on RIN was observed. 

 

It was concluded that sufficient eluted RNA of acceptable integrity and purity was obtained 

for use with RT2 Profiler PCR Arrays and PrimeTime qPCR Assays. Complementary DNA 

was reverse transcribed from 1µg of RNA per case. 
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5.3.2.2 Case exclusion 

The neuropathology report for PDC36 became available only after the RT2 Profiler PCR 

Arrays and PrimeTime qPCR Assays had been performed. A neuropathological diagnosis of 

‘multiple deposits of metastatic carcinoma consistent with primary breast cancer’ was made. 

Exclusion criteria for meningeal PCR included metastatic carcinoma, as concentrations of 

both pro- and anti-inflammatory cytokines and angiogenic factors have been shown to be 

dysregulated, for example in serum from glioblastoma patients (Albulescu et al., 2013). 

Hence data obtained using RNA from PDC36 were excluded from the analysis and are not 

included in the results presented below. 

5.3.2.3 RT2 Profiler PCR Array 

One Human Inflammatory Cytokines and Receptors array was run per case. At the end of 

the run, the CT for each well was calculated using the cycler software. The threshold was 

defined manually and was constant at 1000 fluorescence units for all arrays (Figure 5.3.6).  

 

SABiosciences software analysis 

Initially, PCR data were analysed using an integrated web-based software package provided 

by SABiosciences, which automatically performed fold change calculations based on the 

ΔΔCT method from uploaded raw CT data. It also allowed comparison of two groups using t-

tests and interpretation of human gDNA contamination, RT and positive PCR control wells. 

 

All human gDNA contamination control wells had CT values greater than or equal to 35, 

indicating the absence of gDNA contamination in cDNA from all cases. The ΔCT 

(GEOMEAN(CT RT CONTROL) – GEOMEAN(CT POSITIVE PCR CONTROL)) was less than or equal to 5 

for all cases, indicating efficient RT reactions. Finally, the mean positive PCR control well CT 

was 20±2 for all cases and no two arrays differed in this value by more than 2, indicating 

good array reproducibility. 
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Both F+ and F- SPMS groups were compared to the NNC group and the F+ SPMS group 

was also compared to the F- SPMS group using t-tests. The statistically significant fold 

changes are summarised in Table 5.3.1 and are expressed as fold regulations. Fold change 

values greater than one indicate upregulation, in which case fold regulation is equal to fold 

change (red in the Table). Fold change values less than one indicate downregulation, in 

which case fold regulation is equal to the negative inverse of fold change (green in the 

Table). Seven genes were upregulated and 4 downregulated in the F+ SPMS group 

compared to the NNC group, 1 gene was downregulated in the F- SPMS group compared to 

the NNC group and 4 genes were upregulated and 1 downregulated in the F+ SPMS group 

compared to the F- SPMS group. 

 

REST software analysis 

Subsequently, PCR data were analysed using REST 2009, which allowed two groups to be 

compared using a randomisation test. Amplification efficiencies of 100% were assumed, as 

the manufacturer quotes a mean amplification efficiency of 99%, and 2000 randomisations 

were performed. 

 

As for the analysis using the SABiosciences software package, both F+ and F- SPMS 

groups were compared to the NNC group and the F+ SPMS group was also compared to the 

F- SPMS group. The statistically significant fold changes are summarised in Table 5.3.2 and 

Figure 5.3.7 and are again expressed as fold regulations. Eight genes were upregulated and 

2 downregulated in the F+ SPMS group compared to the NNC group and 4 genes were 

upregulated and 1 downregulated in the F+ SPMS group compared to the F- SPMS group. 

No significant fold changes were obtained when the F- SPMS group was compared to the 

NNC group. 
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Gene 

F+ SPMS v NNC F- SPMS v NNC F+ SPMS v F- SPMS 

Fold 

regulation 

p value Fold 

regulation 

p value Fold 

regulation 

p value 

CCR2 2.4750 0.011672     

CCR3 2.2664 0.034785     

CCR4  3.3862 0.024342     

CCR5 1.9160 0.013963     

CXCL13 6.3967 0.060859   5.4369 0.031729 

CXCL9 7.7596 0.036981   8.8139 0.035405 

IFNG 2.4941 0.029480   2.6478 0.026260 

IL10RA     1.5155 0.037191 

IL5RA 5.2230 0.000317     

CCL15 -2.6464 0.044652   -2.4086 0.027460 

CXCL1 -2.6549 0.012672 -1.7129 0.046490   

CXCL2 -2.0121 0.048616     

CXCL3 -1.9174 0.042616     

Table 5.3.1. Results of analysis using the SABiosciences software package. The statistically significant fold 
regulations and associated p values of F+ SPMS v NNC, F- SPMS v NNC and F+ SPMS v F- SPMS 
comparisons calculated using t-tests are shown. Fold regulations in red indicate upregulation and those in 
green downregulation. 

 

 

Gene 

F+ SPMS v NNC F+ SPMS v F- SPMS 

Fold regulation p value Fold regulation p value 

CCR3 2.416 0.032   

CCR4  4.643 0.002 2.255 0.032 

CCR5 1.933 0.028   

CXCL13 6.438 0.026 5.803 0.016 

CXCL9 7.828 0.011 8.895 0.003 

IL5RA 4.896 0.000 2.242 0.043 

LTA 2.310 0.050   

LTB 2.012 0.043   

CCL15 -3.257 0.047 -2.959 0.025 

CXCL1 -2.632 0.011   

Table 5.3.2. Results of analysis using REST. The statistically significant fold regulations and associated p 
values of F+ SPMS v NNC and F+ SPMS v F- SPMS comparisons calculated using randomisation tests 
are shown. Fold regulations in red indicate upregulation and those in green downregulation. 
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Manual analysis 

Finally, PCR data were analysed manually using Microsoft Excel and the ΔΔCT method. 

Mean CT values and fold changes are shown in Table 5.3.3. GraphPad Prism was used to 

construct graphs and perform statistical analysis of fold changes that had been found to be 

statistically significant by analysis using the SABiosciences software package or REST. 

Three groups were compared using Kruskal-Wallis with Dunn’s multiple comparisons test. 

The statistically significant fold changes are summarised in Figure 5.3.8. Fold change values 

indicating upregulation are shown in A and those indicating downregulation are shown in B. 

Three genes were upregulated (CXCL13, fold change 5.26; CXCL9, fold change 6.03; 

IL5RA, fold change 5.63) and 1 downregulated (CXCL1, fold change 0.33) in the F+ SPMS 

group compared to the NNC group and 1 gene was upregulated (CXCL9, fold change 5.74) 

in the F+ SPMS group compared to the F- SPMS group. TNF and IFNG, which are used in 

the model of cortical pathology driven by meningeal inflammation (Gardner et al., 2013), 

were not regulated in either SPMS group compared to the NNC group (C). 
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Gene Mean CT 

NNC 

Mean CT  

F- SPMS 

Mean CT  

F+ SPMS 

Mean FC  

F- SPMS 

Mean FC  

F+ SPMS 

AIMP1 24.41 24.64 24.48 0.917 0.989 

BMP2 30.51 30.68 30.85 0.871 0.745 

C5 27.70 27.60 28.08 1.045 0.789 

CCL1 34.42 34.05 34.15 3.177 1.132 

CCL11 34.97 34.93 34.90 1.576 2.045 

CCL13 33.42 33.23 32.98 1.001 1.702 

CCL15 31.53 31.70 32.96 0.694 0.265 

CCL16 34.47 34.32 34.70 0.918 0.548 

CCL17 34.24 33.65 33.19 1.368 2.666 

CCL2 26.30 26.58 26.19 0.864 0.935 

CCL20 28.44 28.68 27.91 1.087 1.140 

CCL22 33.89 34.65 33.50 0.231 2.285 

CCL23 32.23 32.17 32.08 1.057 0.952 

CCL24 34.88 34.69 34.72 1.137 1.096 

CCL26 29.86 29.51 30.10 1.143 0.730 

CCL3 28.13 28.38 27.61 1.033 0.787 

CCL4 25.66 25.90 24.95 1.024 1.532 

CCL5 25.47 25.33 24.65 1.169 1.666 

CCL7 34.74 34.36 33.98 1.805 3.578 

CCL8 34.97 34.89 35.00 2.185 1.514 

CCR1 28.46 28.34 28.52 1.358 0.893 

CCR2 29.77 28.69 28.44 2.981 2.656 

CCR3 33.59 32.85 32.37 2.238 2.529 

CCR4 32.16 30.85 30.12 1.616 2.913 

CCR5 28.27 27.87 27.25 1.639 1.999 

CCR6 32.04 32.16 31.56 0.740 1.169 

CCR8 34.60 34.41 34.55 1.106 0.758 

CD40LG 31.61 31.78 31.21 0.870 1.276 

CSF1 25.47 25.67 26.19 0.789 0.521 

CSF2 30.27 30.18 30.39 1.269 0.964 

CSF3 26.02 27.00 27.52 0.319 0.264 

CX3CL1 27.56 28.11 28.22 0.858 0.636 

CX3CR1 31.41 31.72 31.30 0.862 1.177 

CXCL1 23.54 24.31 24.93 0.486 0.333 
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CXCL10 28.61 28.76 26.62 1.194 0.936 

CXCL11 28.45 28.55 27.23 2.174 1.007 

CXCL12 25.10 25.23 25.03 1.054 1.103 

CXCL13 33.88 33.56 31.11 0.723 5.263 

CXCL2 22.48 23.36 23.46 0.489 0.446 

CXCL3 26.09 27.03 27.00 0.504 0.438 

CXCL5 30.59 30.28 30.57 1.372 0.967 

CXCL6 27.73 27.92 27.60 1.031 1.177 

CXCL9 30.62 30.83 27.68 1.049 6.026 

CXCR1 27.52 27.00 27.71 6.055 0.718 

CXCR2 28.54 28.09 28.71 4.915 0.786 

FASLG 31.40 31.46 31.11 0.945 1.326 

IFNA2 32.13 33.30 33.05 0.390 0.483 

IFNG 29.67 29.95 28.53 1.074 3.051 

IL10RA 25.74 25.74 25.13 0.959 1.411 

IL10RB 26.14 25.84 26.22 1.293 0.948 

IL13 33.12 33.05 33.23 1.131 0.919 

IL15 27.35 27.44 27.09 0.957 1.302 

IL16 28.90 28.23 28.49 1.452 1.360 

IL17A 34.94 35.00 32.02 0.170 1.262 

IL17C 34.28 34.41 34.34 0.984 0.897 

IL17F 34.67 34.45 34.34 1.126 1.485 

IL1A 31.59 31.91 31.99 0.646 0.631 

IL1B 28.05 27.94 28.11 1.014 0.663 

IL1R1 24.05 23.99 24.46 0.985 0.743 

IL1RN 27.56 26.48 27.12 2.525 1.499 

IL21 34.73 34.53 32.75 0.833 9.321 

IL27 33.89 33.96 33.78 1.094 0.927 

IL3 35.00 34.74 34.87 3.857 2.342 

IL33 26.38 26.98 26.50 0.685 0.969 

IL5 29.58 30.27 29.96 0.676 0.689 

IL5RA 33.84 32.60 31.44 3.463 5.627 

IL7 29.70 30.44 30.20 0.834 0.916 

IL8 23.37 23.10 24.01 0.905 0.534 

IL9 33.79 34.19 33.48 0.360 0.949 

IL9R 35.00 35.00 34.96 0.559 1.809 
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LTA 34.64 34.19 33.94 1.323 1.534 

LTB 30.13 29.58 29.10 2.020 1.685 

MIF 21.99 21.99 21.88 1.031 1.081 

NAMPT 22.25 21.79 22.28 1.765 0.917 

OSM 28.92 28.50 28.95 2.337 1.028 

SPP1 22.26 22.36 21.64 1.221 1.915 

TNF 30.98 31.05 30.60 1.158 1.728 

TNFRSF11B 24.55 24.40 24.53 0.985 0.801 

TNFSF10 25.21 24.91 25.35 1.160 0.801 

TNFSF11 33.85 33.74 34.12 1.144 0.756 

TNFSF13 31.89 31.44 32.04 1.214 0.811 

TNFSF13B 28.35 27.84 28.21 3.252 0.989 

TNFSF4 29.41 28.98 29.26 1.522 1.043 

VEGFA 24.25 24.38 24.51 0.811 0.882 

Table 5.3.3. CT values and fold changes obtained following manual analysis using the ΔΔCT method of all 
genes for which primer assays were included in the RT

2 
Profiler PCR Array. Genes were described in Table 

5.2.2. Mean CT values of n=9-10 per group and mean fold changes (FC) of the F- and F+ SPMS groups 
compared to the NNC group are shown. Fold changes in red and green indicate statistically significant 
upregulation and downregulation respectively.  
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5.3.2.4 Validation quantitative PCR 

In order to confirm results obtained previously in this laboratory and establish further 

confidence in using TNF and IFN-γ in the model of cortical pathology driven by meningeal 

inflammation, as well as to confirm the CXCL9 result of the PCR arrays, PrimeTime qPCR 

Assays were used to detect TNF, IFNG and CXCL9 in cDNA samples. At the end of the run, 

the CT for each well was calculated using the cycler software. The threshold was defined 

manually and was constant at 500 fluorescence units.  

 

Prior to running cDNA samples, ‘no RT’ reactions were performed using pooled F+ SPMS, 

pooled F- SPMS and pooled NNC RNA samples, which were run for all assays. No 

amplification was observed, indicating the absence of gDNA contamination in cDNA. Pooled 

NNC cDNA with GAPDH assays was used as interplate calibrator. The standard deviation of 

the interplate calibrator CT values across all 96-well microplates used was less than 0.1 

cycles (0.0882), indicating good reproducibility. Finally, RNase-free water was used as a 

blank and no amplification was observed. 

 

PCR specificity 

In order to confirm the specificity of each of the five assays, agarose gel electrophoresis was 

performed (Figure 5.3.9). A single band was obtained for each assay and the sizes of the 

obtained PCR amplicons were equal to those expected, indicating that they were specific. 

 

  



Chapter 5 - Expression of inflammatory cytokines and receptors in meninges in F+ SPMS 247 

  



Chapter 5 - Expression of inflammatory cytokines and receptors in meninges in F+ SPMS 248 

PCR data analysis 

Initially, PCR data were analysed using REST 2009. The amplification efficiencies calculated 

in 5.2.2.7 were used and 2000 randomisations were performed. 

 

F+ and F- SPMS groups were compared to the NNC group and the F+ SPMS group was 

also compared to the F- SPMS group. The statistically significant fold changes are 

summarised in Table 5.3.4. Both IFNG and CXCL9 were upregulated in the F+ SPMS group 

compared to both the F- SPMS group and the NNC group. No significant fold changes were 

obtained when the F- SPMS group was compared to the NNC group, nor when TNF was 

compared between groups. 

 

Data were also analysed manually using the ΔΔCT method. Fold changes of TNF (Figure 

5.3.10 A; included for completeness although the validation experiment did not pass), IFNG 

(B) and CXCL9 (C) were calculated for each F+ and F- SPMS case and NNC. IFNG was 

upregulated in the F+ SPMS group compared to the F- SPMS (fold change 4.73) and NNC 

groups (fold change 5.70) and CXCL9 was also upregulated in the F+ SPMS group 

compared to both the F- SPMS (fold change 7.43) and NNC groups (D; fold change 8.80). 

 

 

Gene 

F+ SPMS v NNC F+ SPMS v F- SPMS 

Fold change p value Fold change p value 

IFNG 4.323 0.005 3.983 0.007 

CXCL9  9.297 0.008 10.673 0.003 

Table 5.3.4. Results of analysis using REST. The statistically significant fold changes and associated p 
values of F+ SPMS v NNC and F+ SPMS v F- SPMS comparisons calculated using randomisation tests 
are shown. 
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Clinical correlations 

Linear regression analysis was performed to determine correlations between fold changes of 

IFNG and CXCL9 and the clinical variables described in 5.3.1.3. Although there appeared to 

be trends toward younger ages at disease milestones and fewer numbers of years between 

milestones with increasing fold changes of IFNG and CXCL9 (Figure 5.3.11 A), no significant 

correlations were obtained. 

 

Given that CXCL9 belongs to a subfamily of chemokines that is highly inducible by IFN-γ 

(Sallusto et al., 1998), the expected significant positive correlation between the fold change 

of IFNG and that of CXCL9 was shown across all SPMS cases (Bi). This correlation was 

only present in F+ SPMS cases (Biii) and not in F- SPMS cases (Bii). 

5.3.3 CSF CXCL9 ELISA 

An ELISA was performed to determine the concentrations of CXCL9 in F+ and F- SPMS and 

NNC CSF. Data were analysed using a web-based software package, which performs four 

parameter logistic regression to fit a standard curve (Figure 5.3.12 A) and subsequently 

calculate concentrations of CXCL9 in CSF samples (B). CXCL9 could only be detected in 6 

samples; 2 NNCs, 3 F- SPMS cases and 1 F+ SPMS case. The optical density of the 

remaining 18 samples was below the defined background, or the calculated concentration of 

CXCL9 was below that of the low standard of 31.25pg/ml. No significant differences between 

groups were observed. 

5.3.4 CXCL9 immunofluorescence 

In order to identify the presence of CXCL9, IF was performed on sections from selected 

blocks with substantial meningeal infiltrates resembling potential lymphoid-like structures. 

Human spleen sections were used as control. 
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CXCL9 appeared to be present in a substantial proportion of cells around B cell-rich zones in 

spleen sections, but no IF was observed in negative control sections (Figure 5.3.13 A, Bi and 

Bii).  It also appeared to be present in very few cells in the meninges of a block with a 

potential lymphoid-like structure from MS402, the case with the most substantial meningeal 

infiltrates (Ci). However, the IF in this case was also present not associated with DAPI and in 

a punctate pattern (Cii and Ciii), suggesting that it may not be specific for CXCL9.  

 

Attempts to further optimise the CXCL9 IF protocol were not successful. Various methods of 

tissue fixation and antigen retrieval by membrane permeabilisation were evaluated, including 

the use of acetone, methanol and 4% PFA as well as Triton X-100 in antibody diluents. 

Sections were blocked with a high concentration of normal serum for 60 minutes and 

incubated with various concentrations of primary antibody overnight. Amplification using a 

biotinylated secondary antibody was evaluated as well as the use of Sudan Black B, which 

has been shown to reduce autofluorescence resulting from lipofuscin granules present in 

adult human brain (Romijn et al., 1999, Schnell et al., 1999). The protocol described in 5.2.4 

appeared most suitable. 

 

As CXCL9 belongs to a subfamily of chemokines that induce chemotaxis by binding to the 

CXCR3 receptor expressed by activated CD4+ and CD8+ T cells, memory T cells, NK cells, 

microglia and dendritic cells (Müller et al., 2007, Müller et al., 2010), IF for CD4 and CD8 

was performed on sections from selected blocks with potential lymphoid-like structures and 

sections from selected blocks from NNCs and F- SPMS cases. As described in 5.3.1.2, very 

few B cells were observed in meninges in NNCs (Figure 5.3.14 Ai). Very few CD4+ (Aii) and 

CD8+ (Aiii) T cells were also observed.  A qualitative assessment showed that more B cells 

(Bi) and CD4+ (Bii) and CD8+ (Biii) T cells were present in meninges of F- SPMS cases. 

Lymphoid-like structures in blocks from the case with the most substantial meningeal 

infiltrates, MS402, contained, in addition to B cells as described in 5.3.1.2 (Figure 5.3.15 Ai 

and Aii), large, dense aggregates of CD4+ (Bi and Bii) and CD8+ (Ci and Cii) T cells. 
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5.4 Discussion 

We found that CXCL13, IL5RA and IFNG mRNA levels are significantly increased in the 

meninges of F+ SPMS cases compared to NNCs, whereas CXCL1 mRNA levels are 

significantly decreased. Amplification could only be observed at high input cDNA amounts 

for TNF, hence it was not possible to compare TNF mRNA levels between groups. CXCL9 

mRNA levels are significantly increased in the meninges of F+ SPMS cases compared to 

both F- SPMS cases and NNCs, although we could not detect CXCL9 protein in the 

meninges or post-mortem CSF, nor could we demonstrate significant correlations between 

CXCL9 mRNA levels and clinical variables. 

5.4.1 Characterisation of cases 

Cases had previously been characterised as F+ SPMS, if at least one aggregate of CD20+ B 

cells with CD35+ follicular dendritic cells, proliferating Ki67+ CD20+ B cells and IgA, -G or -

M+ plasmablasts/plasma cells was identified, or F- SPMS (Howell et al., 2011). We found 

that blocks from F+ SPMS cases had severe meningeal inflammation, which was not 

observed in F- SPMS cases and NNCs. Each case was assigned a majority index based on 

the index of inflammation of the majority of blocks. Although this was 0 for 2 F+ SPMS 

cases, it was at least 1 for the remainder. All but 1 F- SPMS case were assigned a majority 

index of 0, as were all NNCs. Potential lymphoid-like structures could be identified in 

meninges lining the sulci in 5 blocks from 2 F+ SPMS cases, which contained large, dense 

aggregates of B cells, the main components of lymphoid-like structures, and were 

associated with extensive subpial demyelination. We suggest that we did not identify 

potential lymphoid-like structures in all F+ SPMS cases because of their variable incidence 

and small size combined with screening of a limited number of blocks. Approximately 10 

blocks were screened per case in the current study, whereas up to 30 blocks were screened 

per case in previous studies (Howell et al., 2011). One study identified lymphoid-like 

structures in 48 out of 96 blocks from F+ SPMS cases (Magliozzi et al., 2007), which were 
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present in all brain areas sampled but particularly in the deep sulci. They could consist of 

only 50-75 B cells per section (Howell et al., 2011). Although blocks were selected from a 

range of brain areas based on the presence of well demarcated sulci in the current study, 

these studies suggest that more extensive sampling, particularly of the deep sulci, may be 

required to identify potential lymphoid-like structures in F+ SPMS cases.  

 

These findings are consistent with previous studies using autopsy samples from progressive 

MS cases that observed diffuse inflammatory infiltrates as well as lymphoid-like structures in 

the cerebral leptomeninges associated with increased cortical GM pathology (Guseo and 

Jellinger, 1975, Kutzelnigg et al., 2005, Magliozzi et al., 2007, Kooi et al., 2009, Magliozzi et 

al., 2010, Howell et al., 2011, Choi et al., 2012). However, another study failed to show a 

correlation between the extent of meningeal inflammation and subpial demyelination and 

also failed to show the presence of lymphoid-like structures (Kooi et al., 2009). Limited 

sampling of the whole brain and poor preservation of meninges as a result of suboptimal 

retrieval, processing and handling protocols have been suggested as reasons for this failure 

(Aloisi et al., 2010). Meningeal inflammation was observed more frequently in meninges 

lining the sulci rather than in meninges overlying the gyri, again consistent with previous 

studies that observed lymphoid-like structures in deep sulci (Magliozzi et al., 2007, Magliozzi 

et al., 2010, Howell et al., 2011), where the decreased flow of CSF is suggested to result in a 

protected environment that allows the homing and retention of immune cells (Reynolds et al., 

2011). The association between meningeal inflammation and subpial demyelination 

observed in this and previous studies supports the hypothesis that meningeal inflammation 

results in increased concentrations of pro-inflammatory cytokines in the CSF, which diffuse 

from the pial surface into the cortex resulting in GM pathology (Peterson et al., 2001, 

Reynolds et al., 2011). 

 

The presence of lymphoid-like structures in F+ SPMS cases was significantly associated 

with younger ages at disease milestones. Trends toward fewer numbers of years between 
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disease milestones were also observed in F+ SPMS cases. These findings are consistent 

with previous studies that showed younger ages at onset, wheelchair use and death as well 

as a shorter disease duration and fewer numbers of years between onset and progression 

and progression and death (Magliozzi et al., 2007, Howell et al., 2011), further indicating the 

contribution of lymphoid-like structures to a shorter, more aggressive disease. 

5.4.2 Meningeal PCR and further investigations 

We performed qPCR in order to determine the steady state mRNA levels of cytokine 

pathway genes. Although it is widely accepted that the steady state mRNA level of a gene 

does not necessarily reflect its final steady state protein level (Greenbaum et al., 2003), it 

does directly reflect their degree of transcription and conclusions regarding the expression of 

the gene may be drawn from qPCR data. 

5.4.2.1 Concentration and integrity of RNA 

High concentrations of RNA, without protein and phenol/guanidine contamination, could be 

obtained following meningeal dissection and RNA extraction. The RINs (numbers from 1 to 

10) obtained were generally good. The mean RIN obtained was 5.2 ± 0.17, with 5 suggested 

to be the minimum required for PCR (Fleige and Pfaffl, 2006). However, peaks 

corresponding to degradation products were observed in the electropherograms obtained, 

resulting in a RIN of 2.7 for MS311, for example, and a mean RIN of 5.2 and not higher 

(range 2.7-6.8). RINs varied between cases and it was not possible to take this variation into 

account for the analysis. The mean RIN obtained in a previous study using RNA extracted 

from 193 post-mortem human brain tissue samples was 6.8 ± 1.0 (range 2.9-9.2; 

Durrenberger et al., 2010). We suggest that this difference is due to the region from which 

samples were taken. The meningeal samples used in the current study are likely to have 

been exposed to ribonucleases as a result of repeated handling combined with their 

presence on the surface of cortical blocks, resulting in RNA degradation, whereas the brain 
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parenchyma samples used in the previous study are likely to have been more protected from 

ribonucleases. 

 

It has been reported that post-mortem human brain tissue has lower RINs than post-mortem 

human cardiac and skeletal muscle tissue (Koppelkamm et al., 2011) and that RINs are 

mainly dependent on the number of times that the tissue has been allowed to warm to 

enable the tissue to be cut (Sherwood et al., 2011). Tissue obtained from the UK Multiple 

Sclerosis Tissue Bank is likely to have been allowed to warm (to approximately -10°C) on 

several occasions for sections to be cut for screening and requests, which could not be 

avoided, resulting in RINs lower than those expected. Consistent with a previous study, no 

effect of PMD, age at death or gender was observed in the current study (Sherwood et al., 

2011), although another study found significantly higher RINs in men than women as well as 

a significant negative correlation between age at death and RIN (Durrenberger et al., 2010). 

Studies investigating the effects of PMD have also yielded conflicting results. Significant 

negative correlations have been observed (Lipska et al., 2006), whereas other studies 

showed modest (Ervin et al., 2007) or no correlations (Weis et al., 2007, Durrenberger et al., 

2010). Although all cases used in the current study had a PMD of approximately 24 hours or 

less, it is not possible to discount effects of PMD on the RINs lower than those expected. 

5.4.2.2 RT2 Profiler PCR Array and validation qPCR 

Data analysis and regulated genes 

Human Inflammatory Cytokines and Receptors arrays were run to profile the expression of 

84 key genes involved in inflammation. The advantage of these PCR arrays was that they 

are a reliable method to profile the expression of a well-researched panel of cytokine 

pathway genes without making assumptions about which genes we may have expected to 

be regulated. PCR data analysis was performed using SABiosciences or REST 2009 

software or manually, the results of which depended on the method used. The advantage of 

the randomisation test used by the REST 2009 software was that it made no distributional 
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assumptions about the data, whereas the t-test used by the SABiosciences software 

assumed a normal distribution and the Kruskal-Wallis test used for manual analysis 

assumed a non-normal distribution. However, the t- and randomisation tests allowed only 

two groups to be compared simultaneously, resulting in increased probability of a Type 1 

error when three comparisons (F+ SPMS v NNC, F- SPMS v NNC and F+ SPMS v F- 

SPMS) were performed. The Kruskal-Wallis with Dunn’s multiple comparisons test, however, 

allowed all three groups to be compared simultaneously, resulting in a probability of a Type 1 

error of 0.05. It was concluded that this latter test was the most appropriate as well as the 

most stringent, and three genes were found to be upregulated (CXCL13, CXCL9 and IL5RA) 

and 1 downregulated (CXCL1) in the F+ SPMS group compared to the NNC group and 1 

gene upregulated (CXCL9) in the F+ SPMS group compared to the F- SPMS group. This 

number of regulated genes is perhaps lower than that expected given that the array profiled 

the expression of 84 genes. We suggest that this is the result of the relatively small group 

sizes in the current study (n=10 per group) and expect a higher number of regulated genes 

with larger group sizes. This may be necessary due to of a large degree of heterogeneity but 

is more likely due to the method used for meningeal dissection. Mainly meninges overlying 

the gyri were dissected, with some meninges lining the sulci, without taking into account the 

presence or absence of diffuse inflammatory infiltrates and potential lymphoid-like structures, 

so that sufficient meninges could be obtained. Future work could involve the use of laser 

capture microdissection to ensure that only areas of meningeal inflammation are dissected. 

This study is ongoing in this laboratory.  

 

The Kruskal-Wallis with Dunn’s multiple comparisons test was also used for manual analysis 

of validation qPCR data for IFNG and CXCL9. IFNG and CXCL9 were upregulated in the F+ 

SPMS group compared to both the F- SPMS group and NNC group.  
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CXCL13 

Studies using MS tissue and CSF/serum have suggested important roles for B cells in the 

pathogenesis of MS as discussed in 1.3.3.2. CXCL13 is a chemokine thought to be required 

for B cell recruitment to the CNS (Kowarik et al., 2012), although a study in CXCL13-

deficient mice with MOG-induced EAE showed the same B cell infiltration in the spinal cord 

of these animals as in wild type animals (Rainey-Barger et al., 2011). It is also thought to be 

required for the development of lymphoid organs, together with CCL21 and lymphotoxin-α1β2 

(Aloisi and Pujol-Borrell, 2006), by inducing clustering of lymphoid tissue inducer cells that 

subsequently recruit lymphoid organ components (van de Pavert et al., 2009). Transgenic 

mice expressing CXCL13 in pancreatic β cells develop lymphoid organs containing B and T 

cell areas, stromal cells and high endothelial venules (Luther et al., 2000). 

 

The levels of CXCL13 are significantly increased in the CSF of RRMS, PPMS and SPMS 

patients compared to controls and are correlated with the number of B cells in the CSF, the 

majority of which express the CXCL13 receptor CXCR5 (Sellebjerg et al., 2009, Sørensen et 

al., 2002), indicating the significance of CXCL13 and CXCR5 signalling in recruiting B cells 

to the CNS in MS. The increased levels of CXCL13 in the CSF of progressive MS patients, 

however, are not a consistent finding (Krumbholz et al., 2006). In RRMS cases, the levels of 

CXCL13 in the CSF were also correlated with the area of gadolinium-enhancing lesions on 

MRI and CSF markers of demyelination, axonal damage and IgG production (Sellebjerg et 

al., 2009). CXCL13 expression has been localised to microglia and infiltrating 

macrophages/dendritic cells in animal models of CNS infection (Bagaeva et al., 2006, 

Ramesh et al., 2009) as well as perivascular cuffs and infiltrating immune cells in active 

lesions in MS, but is not detected in chronic inactive lesions (Krumbholz et al., 2006). It has, 

however, been detected in lymphoid-like structures in F+ SPMS cases (Serafini et al., 2004). 

Here we have extended this finding and, using the RT2 Profiler PCR Arrays, shown that 

CXCL13 mRNA levels are significantly increased in the meninges of F+ SPMS cases 

compared to NNCs.  
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From the above, it is suggested that infiltrating macrophages/dendritic cells may be a source 

of CXCL13 production in active lesions whereas lymphoid-like structures may be the source 

in chronic disease with subsequent recruitment of B cells (Krumbholz et al., 2006), although 

to date no studies have investigated the association between lymphoid-like structure status 

and levels of CXCL13 in the CSF. CXCR5 is also expressed by T cells following stimulation 

(Sallusto et al., 1999). It is expressed on T follicular helper cells, which are localised to 

germinal centres and stimulate the differentiation of B cells into memory B cells and plasma 

cells (King et al., 2008), and on approximately 20% of central memory T cells, which exist in 

a resting state and require activation (Kim et al., 2001). This explains the finding that the 

increased levels of CXCL13 in the CSF of MS patients are correlated with the number of T 

cells as well as B cells in the CSF, although the function of these T cells remains unclear 

(Krumbholz et al., 2006). CXCL13 has also been shown to induce upregulation of 

lymphotoxin-α1β2 on B cells, stimulating the development of follicular dendritic cells present 

in lymphoid-like structures that secrete further CXCL13, hence establishing a positive 

feedback loop (Ansel et al., 2000). 

 

We suggest that the increased expression of CXCL13 observed in the meninges of F+ 

SPMS cases would result in the recruitment of T cells as well as B cells to the meninges by 

allowing them to respond to the CXCL13 secreted by follicular dendritic cells, in turn 

resulting in a more inflammatory milieu in the CSF. Further investigation into the role of 

CXCL13 is ongoing in this laboratory but this gene was not pursued further in the current 

study. 

 

IL5RA 

The IL5RA gene codes for the IL5 receptor, α subunit. IL5 was originally defined as ‘T cell-

replacing factor’ that was secreted from murine T cells and enhanced antibody production by 

inducing proliferation and differentiation of activated B cells (Takatsu et al., 1980). It also 

promotes the growth and differentiation of eosinophils (Yokota et al., 1987) and enhances 
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histamine release from basophils (Lopez et al., 1990). The IL5 receptor is expressed on 

murine B cell precursors as well as mature B1 cells, eosinophils and basophils (Geijsen et 

al., 2001). It consists of a unique α subunit that binds IL5 with low affinity and a β subunit 

that is common to all receptors in this family, which, when associated, form a high affinity 

receptor (Takaki et al., 1991). Although the role of the IL5 signalling pathway in the 

pathogenesis of asthma has been extensively investigated (Poon et al., 2012), there does 

not appear to be a clear role in the pathogenesis of MS. One study investigated potential 

associations between candidate genes in inflammatory pathways, including IL5RA, and risk 

of MS. They used novel statistics, namely multifactor dimensionality reduction, to identify 

epistasis and found a significant three locus interaction between IL4R (Q576R 

polymorphism), IL5RA(-80) and CD14(-260). This model was used to accurately predict 

disease status for approximately 76% of cases (Brassat et al., 2006). Although we have 

shown here, using the RT2 Profiler PCR Arrays, that IL5RA mRNA levels are significantly 

increased in the meninges of F+ SPMS cases compared to NNCs, given the overall lack of 

support for a role for IL5RA in the pathogenesis of MS, we decided not to pursue this gene 

any further. 

 

CXCL1 

CXCL1 is a cytokine that was originally isolated from human melanoma cells (Richmond and 

Thomas, 1988) also known as growth-related oncogene protein-α or melanoma growth 

stimulatory activity-α. Its effects are mediated by the receptor CXCR2, which is expressed 

on all granulocytes, mast cells and monocytes and some CD8+ T cells, NK cells and 

melanocytes, and include the modulation of angiogenesis, cell motility, inflammation, 

tumorigenesis and wound healing (Amiri and Richmond, 2003). CXCR2 expression has also 

been detected on resting and proliferating oligodendrocytes in active WMLs. Proliferating 

oligodendrocytes were associated with CXCL1-positive reactive astrocytes (Omari et al., 

2006), and oligodendrocytes show proliferative and migratory responses to CXCL1 in vitro 

(Tsai et al., 2002). CXCL1 and CXCR2 expression were increased in the spinal cord of mice 
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with virus-induced demyelination. Inhibition of CXCR2 in these mice resulted in delayed 

recovery associated with increased demyelination and oligodendrocyte apoptosis (Hosking 

et al., 2010). Double transgenic mice in which CXCL1 secretion by astrocytes could be 

induced by the administration of doxycycline showed less severe clinical and pathological 

MOG-induced EAE, associated with increased remyelination (Omari et al., 2009). These 

findings suggest a protective role for CXCL1 in preventing oligodendrocyte apoptosis and 

promoting remyelination. However, a role for CXCR2 signalling in initiating inflammatory 

demyelinating diseases has also been proposed. Inhibition or genetic deficiency of CXCR2 

prevented compromise of BBB integrity and subsequent immune cell infiltration and clinical 

disease in mice with PLP-induced EAE. This resistance to the development of disease was 

reversed by the transfer of wild type granulocytes (Carlson et al., 2008), suggesting that 

CXCR2 signalling is involved in granulocyte activation and/or migration and subsequent 

compromise of BBB integrity, resulting in entry of immune cells to the CNS and onset of 

disease. Here we have shown, using the RT2 Profiler PCR Arrays, that CXCL1 mRNA levels 

are significantly decreased in the meninges of F+ SPMS cases compared to NNCs.  

 

Given that CXCL1 has been implicated in the initiation of disease, we suggest that the 

CXCL1 expression detected in the current study using autopsy samples from progressive 

MS cases was not performing this role but rather its protective role, which is consistent with 

its decreased expression in the F+ SPMS cases with more severe clinical course. As 

discussed, this role appears to be dependent on the expression of CXCL1 by astrocytes. In 

this context, the CXCL1 expression detected in the current study may be in astrocyte end-

feet, which, together with the basal lamina, compose the glia limitans and which may have 

been removed during meningeal dissection. Whether this was the case could be established 

by performing additional qPCR using the same cDNA samples to detect, for example, 

aquaporin 4, which is expressed in astrocytes, particularly their end-feet (El-Khoury et al., 

2006). However, given that CXCL1 mRNA levels were not significantly decreased in the 
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meninges of F+ SPMS cases compared to F- SPMS cases, we decided not to pursue this 

gene any further. 

 

TNF 

The role for TNF in the pathogenesis of MS and EAE was discussed in detail in 1.3.3.4. 

Briefly, studies have suggested a damaging role for sTNF and its TNFR1 signalling pathway 

and a protective role for tmTNF and its TNFR2 signalling pathway. The TNFR1 signalling 

pathway results in the transcription of pro-inflammatory genes (Tracey et al., 2008) or 

apoptotic or necroptotic cell death (Vanlangenakker et al., 2012). Here, under the conditions 

used for the PrimeTime qPCR Assays, little TNF PCR amplicon was detected; amplification 

could only be observed at high input cDNA amounts when performing the validation 

experiment. Hence, it was not possible to compare TNF mRNA levels between groups.  

 

This is in contrast to previous qPCR data obtained in this laboratory, which showed that TNF 

mRNA levels are significantly increased in the meninges of both F+ SPMS and F- SPMS 

cases compared to NNCs, with a greater increase in F+ SPMS cases (Gardner et al., 2013). 

As well as the different method used for qPCR, we suggest that the difference in TNF 

expression observed between the current and previous studies is also due to the different 

method used for meningeal dissection. In the current study, mainly meninges overlying the 

gyri were dissected, with some meninges lining the sulci, whereas in the previous study, 

mainly meninges lining the sulci were dissected. Given that lymphoid-like structures are 

present in the meninges but particularly in those of the sulci (Magliozzi et al., 2007, Magliozzi 

et al., 2010, Howell et al., 2011), it is likely that the meninges dissected in the current study 

contained mainly diffuse inflammatory infiltrates, with fewer lymphoid-like structures than in 

the previous study. This will have resulted in a decreased number of the cells with 

monocyte/macrophage morphology that have been shown to express TNF in inflamed 

meninges (Gardner et al., 2013) and consequent decreased TNF expression, which was 

difficult to detect under the conditions used. 
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IFNG 

As for TNF, the role for IFN-γ in the pathogenesis of MS and EAE was also discussed in 

1.3.3.4. Until recently, MS was regarded as a Th1 cell-mediated disease (Khoruts et al., 

1995) with IFN-γ, the Th1 cell effector cytokine, thought to have a major role in the 

pathogenesis of disease, although it is now known that it has a broader role. It results in the 

proliferation and differentiation of naïve T cells into Th1 cells (Imitola et al., 2005) as well as 

the activation of macrophages/microglia (Vass and Lassmann, 1990, Veroni et al., 2010, 

Welser-Alves and Milner, 2013). Here we have shown, using PrimeTime qPCR Assays, that 

IFNG mRNA levels are significantly increased in the meninges of F+ SPMS cases compared 

to both F- SPMS cases and NNCs. 

 

This is consistent with previous qPCR data obtained in this laboratory, which showed that 

IFNG mRNA levels are significantly increased in the meninges of F+ SPMS cases compared 

to NNCs (Gardner et al., 2013). However, the fold change of 2.71 observed in the current 

study is much lower than the fold change of 30.1 observed in the previous study. We 

suggest that this difference may be due to the different method used for qPCR; the previous 

study used QuantiTect Primer Assays (Qiagen), which are not probe-based. However, it is 

more likely that the difference is again due to the different method used for meningeal 

dissection, as for TNF. The proposed hypothesis is that cytotoxic and/or pro-inflammatory 

molecules produced in the inflamed meninges, including TNF and IFN-γ produced by Th1 

cells as shown here, diffuse into the cortex from the CSF in the SAS resulting in subpial 

GMLs, which are associated with inflamed meninges again as shown here. This hypothesis 

is supported by the model recently developed in this laboratory and further developed in this 

thesis that shows cortical pathology driven by meningeal inflammation.  Acute increased 

levels of TNF and IFN-γ in the SAS of rats immunised with a subclinical dose of rmMOG 

resulted in subpial lesions (Gardner et al., 2013). The mechanism of demyelination was 

proposed to be either direct (Buntinx et al., 2004) or indirect by the production of other 
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cytotoxic and/or pro-inflammatory molecules in the meninges or the activation of microglia 

(Mir et al., 2008). 

5.4.2.3 CXCL9 

CXCL9 may be involved in CNS inflammation 

Since a role for IFN-γ in the pathogenesis of MS has been suggested as discussed in 

1.3.3.4, interest has arisen in the expression of chemokines inducible by IFN-γ. CXCL9 

belongs to a subfamily of chemokines, all members of which are highly inducible by IFN-γ 

and induce chemotaxis by binding to the G protein-coupled CXCR3 receptor expressed by 

activated CD4+, mainly Th1 (Sallusto et al., 1998), and CD8+ T cells, memory T cells, NK 

cells, microglia and dendritic cells (Müller et al., 2007, Müller et al., 2010). Expression of 

CXCR3, like that of its ligand, is also induced by IFN-γ (Nakajima et al., 2002).  

 

Previous studies have suggested a role for CXCL9 in the pathogenesis of MS and EAE. The 

levels of CXCL9 are significantly increased in the CSF of MS patients, particularly during 

relapses, compared to controls (620pg/ml compared to 464pg/ml; Sørensen et al., 1999). 

CXCL9 expression has been demonstrated in the spinal cord and cerebellum, as well as in 

the choroid plexus and meninges, of mice with MOG-induced EAE at the peak of 

neurological deficit, where it is mainly localised to infiltrating mononuclear cells including 

lesional and perilesional microglia (Carter et al., 2007). In addition, the receptor CXCR3 was 

found to be expressed by cells in approximately 99% of perivascular cuffs, and CD4+ and 

CD8+ T cells expressing CXCR3 were enriched in the CSF compared to peripheral blood in 

MS cases, indicating the functional significance of CXCR3 signalling in recruiting T cells to 

the CNS in MS (Sørensen et al., 1999). Additionally, CXCL9-deficient mice exhibit 

decreased CD8+ T cell and NK cell recruitment to the CNS following herpes simplex virus 2 

infection, suggesting a functional role for CXCL9 in CNS inflammation. Hence, CXCL9 may 

represent a novel therapeutic target to reduce inflammation in MS (Thapa et al., 2008). 

Finally, microarray analysis has shown that CXCL9 mRNA levels are significantly increased 
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in both GMLs and NAGM of F+ SPMS cases compared to F- SPMS cases and NNCs 

(unpublished data from this laboratory). Here we have shown, using the RT2 Profiler PCR 

Arrays and validating PrimeTime qPCR Assays, that CXCL9 mRNA levels are also 

significantly increased in the meninges of F+ SPMS cases compared to both F- SPMS cases 

and NNCs. 

 

CXCL9 mRNA levels are increased in the meninges of F+ SPMS cases 

We suggest that meningeal inflammation, consisting of both diffuse inflammatory infiltrates 

and lymphoid-like structures, and subsequent production of IFN-γ, is a source of increased 

CXCL9 in F+ SPMS cases resulting in increased concentrations in the CSF. Consistent with 

CXCL9 being highly inducible by IFN-γ, we showed a correlation between the fold change of 

IFNG and that of CXCL9 in F+ SPMS cases but not in F- SPMS cases, indicating the 

significance of CXCL9 in this subset of cases. However, we were not able to detect CXCL9 

protein in the meninges of F+ SPMS cases using IF, which may be due to the effect of PMD 

on protein degradation (Maarouf et al., 2012), the diffusible nature of chemokines or the 

proposed non-specific nature of the antibody used. The levels of CXCL9 in post-mortem 

CSF were also below the limit of detection of 31.25pg/ml in the majority of cases. It is likely 

that this too is due to the effect of PMD on protein degradation, although we attempted to 

minimise this effect by selecting cases based on PMD. Studies such as that described above 

that were able to detect CXCL9 in CSF at concentrations of approximately 500pg/ml used 

lumbar puncture samples, which can be processed immediately with minimal protein 

degradation. More sensitive methods will be required to detect CXCL9, and to demonstrate 

significant differences between groups, in the post-mortem CSF samples available from F+ 

SPMS and F- SPMS cases.  

 

Proposed results of increased CXCL9 mRNA levels 

It is hypothesised that the CXCL9 in the CSF/meningeal compartment results in the 

chemotaxis of activated CD4+ and CD8+ T cells, memory T cells, NK cells and dendritic 
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cells (Müller et al., 2007, Müller et al., 2010). Consistent with this hypothesis, we showed the 

presence of large, dense aggregates of CD4+ and CD8+ T cells in potential lymphoid-like 

structures.  Given that the Th1 cells on which CXCR3 is expressed secrete IFN-γ (Dittel, 

2008, Zhu et al., 2010), sustained Th1 cell recruitment may be achieved by the induction of 

CXCL9 expression in surrounding glial cells, although T cell infiltration in the brain 

parenchyma as well as in the meninges would have been expected were this the case. As 

CXCR3 has been shown to be expressed by microglia and to mediate chemotaxis in 

response to CXCL9 in vitro (Biber et al., 2002), we also propose that the increased CXCL9 

expression in the meninges results in increased numbers of activated 

macrophages/microglia. Finally, as T cells are involved in the activation and proliferation of B 

cells by expressing co-stimulatory molecules (King et al., 2008), CXCL9 may have a role in 

the development of lymphoid-like structures and the subsequent shorter, more aggressive 

disease (Howell et al., 2011). However, although there appeared to be trends toward 

younger ages at disease milestones and fewer numbers of years between milestones with 

increasing fold changes of IFNG and CXCL9, no significant correlations were obtained. 

Again, we suggest that this is the result of the relatively small group sizes in the current 

study and expect significant correlations with larger group sizes. 

5.4.3 Conclusions 

Our finding that severe inflammation and lymphoid-like structures were present in the 

meninges of F+ SPMS cases and were associated with subpial demyelination and younger 

ages at disease milestones supports the hypothesis that meningeal inflammation results in 

increased concentrations of cytotoxic/pro-inflammatory molecules in the CSF, which diffuse 

into the cortex resulting in cortical GM pathology and a more severe clinical course 

(Peterson et al., 2001, Reynolds et al., 2011). Our finding that levels of IFNG, CXCL13 and 

CXCL9 mRNA were increased in the meninges of F+ SPMS cases compared to NNCs is 

consistent with an inflammatory milieu in the CSF/meningeal compartment. We conclude 

that the inhibition of CXCL9 would prevent the chemotaxis of T cells to the meninges and the 
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proposed subsequent activation and proliferation of B cells, development of lymphoid-like 

structures and shorter, more aggressive disease, and represents a novel therapeutic target 

for SPMS. 
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6.1 Cortical GMLs in MS 

6.1.2 Subpial cortical GMLs and meningeal inflammation 

Our finding that severe inflammation and potential lymphoid-like structures containing large, 

dense aggregates of B cells were present in the meninges, particularly those lining the sulci, 

of blocks from F+ SPMS cases is consistent with previous studies using autopsy samples 

from progressive MS cases that observed diffuse inflammatory infiltrates as well as 

lymphoid-like structures in the meninges (Guseo and Jellinger, 1975, Kutzelnigg et al., 2005, 

Magliozzi et al., 2007, Kooi et al., 2009, Magliozzi et al., 2010, Howell et al., 2011, Choi et 

al., 2012). Potential lymphoid-like structures were associated with extensive subpial 

demyelination in the current study, again in keeping with these previous studies, in which 

meningeal inflammation was associated with cortical GM pathology. The presence of 

lymphoid-like structures in F+ SPMS cases was significantly associated with younger ages 

at disease milestones. Trends toward fewer numbers of years between disease milestones 

were also observed in these cases. These findings are consistent with previous studies that 

showed younger ages at onset, wheelchair use and death as well as a shorter disease 

duration and fewer numbers of years between onset and progression and progression and 

death (Magliozzi et al., 2007, Howell et al., 2011). Taken together, findings from this and 

previous studies support the hypothesis that meningeal inflammation results in increased 

concentrations of cytotoxic/pro-inflammatory molecules in the CSF, which diffuse from the 

pial surface into the underlying cortex resulting in cortical GM pathology and a more severe 

clinical course (Peterson et al., 2001, Reynolds et al., 2011). 

6.1.2.1 Cytotoxic/pro-inflammatory molecules 

A complete study of the identity of these cytotoxic/pro-inflammatory molecules has not been 

performed to date. In the current study, we showed increased levels of IFNG, as well as 

CXCL13 and IL5RA, mRNA and decreased levels of CXCL1 mRNA in the meninges of F+ 
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SPMS cases compared to NNCs. Increased numbers of cells expressing IFNG and 

increased gene expression of IFNG in the meninges of F+ SPMS cases have been shown 

previously (Gardner et al., 2013). However, in contrast to this previous study, which also 

showed increased gene expression of TNF in the meninges of F+ SPMS cases, the levels of 

TNF mRNA were not sufficient to allow comparison between groups. We suggest that this is 

due to the different method used for meningeal dissection, which may have resulted in 

mainly diffuse inflammatory infiltrates with fewer lymphoid-like structures in the meningeal 

tissue dissected. However, we suggest that the increased gene expression of IFNG and 

CXCL13, a chemokine that induces chemotaxis of B cells to the CNS (Kowarik et al., 2012), 

in the meninges of F+ SPMS cases is consistent with an inflammatory milieu in the 

CSF/meningeal compartment, with diffuse inflammatory infiltrates and lymphoid-like 

structures suggested to become sources of the cytotoxic/pro-inflammatory molecules that 

diffuse into the underlying cortex (Aloisi and Pujol-Borrell, 2006, Serafini et al., 2007, 

Carragher et al., 2008). 

 

We also showed increased levels of CXCL9 mRNA in the meninges of F+ SPMS cases 

compared to both F- SPMS cases and NNCs. CXCL9 belongs to a subfamily of chemokines 

that are inducible by IFN-γ. It induces chemotaxis by binding to CXCR3 expressed by 

activated CD4+ and CD8+ T cells, memory T cells, NK cells, microglia and dendritic cells 

(Sallusto et al., 1998, Müller et al., 2007, Müller et al., 2010). Consistent with the expression 

of CXCR3 on T cells, large, dense aggregates of CD4+ and CD8+ T cells were observed in 

potential lymphoid-like structures. CXCR3 is also expressed by microglia and mediates their 

chemotaxis in response to CXCL9 (Biber et al., 2002), with CXCL9 expression having been 

localised to microglia in lesions in mice with MOG-induced EAE at the peak of neurological 

deficit (Carter et al., 2007). Additionally, as T cells are involved in the activation and 

proliferation of B cells by expressing co-stimulatory molecules (King et al., 2008), CXCL9 

may have a role in the development of lymphoid-like structures, which consist of aggregates 

of B cells with other immune cells. Hence, we propose that the increased CXCL9 expression
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in the meninges of F+ SPMS cases results in increased chemotaxis of T cells to the 

meninges and proliferation of B cells in the meninges as well as increased chemotaxis of 

microglia in the underlying cortex following diffusion of CXCL9 from the pial surface. This 

suggests that the inhibition of CXCL9 would represent a novel therapeutic target for SPMS. 

Consistent with CXCL9 being inducible by IFN-γ, we showed a correlation between the fold 

change of IFNG and that of CXCL9 in F+ SPMS cases. Given that IFN-γ has been used in 

targeted EAE animal models (Kerschensteiner et al., 2004, Merkler et al., 2006, Gardner et 

al., 2013), we also suggest a role for CXCL9 in pathogenesis in these models. 

6.2 Animal model of cortical GM pathology 

Despite knowledge of the clinical relevance of cortical GMLs and meningeal inflammation, 

there is currently no animal model that reliably reproduces the chronic cortical GM pathology 

observed in MS cases. The development of such a model is important and would allow the 

investigation of GML pathogenesis and the role of meningeal inflammation, and subsequent 

identification of potential drug targets for the treatment of MS. It would also allow the 

investigation of the role of the cytotoxic/pro-inflammatory molecules identified in the current 

study, including CXCL9. 

6.2.1 Subpial cortical GMLs  

In this thesis, a recently developed acute model of cortical GM pathology driven by 

meningeal inflammation (Gardner et al., 2013) was successfully reproduced. The injection of 

TNF and IFN-γ into the SAS of the sagittal sulcus of asymptomatic animals with an existing 

cellular/humoral anti-MOG immune response resulted in extensive subpial demyelination. 

The cortical GMLs observed were similar to the Type III GMLs observed in MS cortex, 

extending from the pial surface into GM layer III and associated with mild peripheral immune 

cell infiltration (Peterson et al., 2001, Bø et al., 2003b). However, activated 

macrophages/microglia, CD4+ and CD8+ T cells and B cells were observed in the meninges 

and were particularly evident in those overlying areas of subpial demyelination, consistent
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with the hypothesis that an inflammatory milieu in the CSF/meningeal compartment can 

result in subpial cortical GMLs (Peterson et al., 2001, Reynolds et al., 2011). As well as 

reproducing features of cortical GM pathology in MS, this model also avoids the damage 

caused by injection into the motor cortex in another targeted EAE model that developed 

subpial demyelination, which was associated with peripheral immune cell infiltration (Merkler 

et al., 2006). 

6.2.1.1 Microglial activation 

The high density of activated macrophages/microglia with an amoeboid morphology 

observed in areas of subpial demyelination was consistent with both a previous study using 

this model and with studies of cortical GMLs in MS cases (Peterson et al., 2001, Bø et al., 

2003a, Magliozzi et al., 2007), in which they have been shown to be phagocytic and 

contacting myelin sheaths as well as present in a gradient from the pial surface into GM 

layers (Magliozzi et al., 2010, Gardner et al., 2013). This has been suggested to be due to 

the diffusion of pro-inflammatory cytokines from the CSF into the underlying GM layers, with 

the resulting microglial activation inducing subpial demyelination. There appeared to be a 

positive correlation between the area of subpial demyelination and the microglial activation in 

these areas in the current study, similar to that observed previously (Merkler et al., 2006, 

Gardner et al., 2013). Consistent with the diffusion of pro-inflammatory cytokines and the 

role of microglial activation, the number of cells with monocyte/macrophage morphology 

expressing TNF is increased in the meninges and the levels of TNF are increased in the 

CSF of F+ SPMS cases, with TNF also expressed by microglia in superficial GM (Gardner et 

al., 2013). 

6.2.1.2 Possible mechanisms of subpial cortical GM demyelination 

Both an existing cellular/humoral anti-myelin immune response in animals immunised with a 

subclinical dose of rmMOG and the injection of TNF and IFN-γ (Gardner et al., 2013) are 

required for the induction of significant meningeal immune cell infiltration, microglial
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activation and subpial demyelination. These findings indicate a significant role for the 

reactivation of myelin-reactive T cells in the CSF/meningeal compartment as well as TNF 

and IFN-γ in activating meningeal blood vessels, resulting in monocyte/macrophage 

infiltration (Bartholomäus et al., 2009, Kivisäkk et al., 2009). The increase in meningeal 

CD4+ and CD8+ T cells with increasing doses of TNF and IFN-γ is consistent with a role for 

these cytokines in activating the BBB, enabling subsequent immune cell infiltration. The 

increase in subpial demyelination with increasing doses of TNF and IFN-γ similarly supports 

a role for these cytokines, consistent with their demyelinating and inflammatory effects in 

vitro and in vivo (Simmons and Willenborg, 1990, Aloisi, 2001, Buntinx et al., 2004, Takeuchi 

et al., 2006, Mir et al., 2008) and validating their use in the current model.  

 

Given that an existing cellular/humoral anti-MOG immune response is required in this model, 

demyelination may be antibody-mediated. This is dependent on the fixation of complement 

by anti-MOG antibodies (Piddlesden et al., 1993) and its deposition on myelin sheaths 

(Storch et al., 1998a), which has been observed in targeted EAE models (Merkler et al., 

2006, Gardner et al., 2013). This finding also suggests a role for B cells in the pathogenesis 

of subpial demyelination, although they were not the most abundant immune cell in the 

meninges in the current study. Meningeal B cells may function as APCs and increase the 

activation of T cells (Rodríguez-Pinto, 2005) and may further contribute by secreting 

cytokines, including IFN-γ (Harris et al., 2005), lymphotoxin and TNF (Bar-Or et al., 2010). A 

recent study showed that B cells are required for reactivation of myelin-reactive T cells, their 

cytokine secretion and their subsequent recruitment of further immune cells (Pierson et al., 

2014), independent of their production of anti-MOG antibodies (Jagessar et al., 2012, 

Molnarfi et al., 2013). Alternatively, meningeal B cells may have a regulatory role and 

secrete the anti-inflammatory cytokine IL10 (Kala et al., 2010) and further experiments will 

be required to determine whether these cells produce anti-MOG antibodies or are regulatory. 
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The apparent positive correlation between subpial demyelination and microglial activation 

described here implicates microglia in the pathogenesis. Microglia may function as APCs 

and increase the activation of T cells (Aloisi et al., 1999a). They may also express the pro-

inflammatory cytokines IL1β and IL6 as well as inducible NOS and produce oxygen radicals 

(Kuno et al., 2005). However, a protective as well as a damaging role for microglia in MS 

pathogenesis has been suggested. Two phenotypes have been described to date, with M1 

macrophages having a pro-inflammatory phenotype and promoting a Th1 response and M2 

macrophages having a regulatory phenotype and promoting a Th2 response (Gordon and 

Martinez, 2010). Further experiments will be required to determine the phenotype of the 

macrophages/microglia in the current study. The flavonoid luteolin has been shown to induce 

phenotype switching of microglia from the M1 to the M2 phenotype (Dirscherl et al., 2010) 

and hence may be used to inhibit M1 microglia, which it is expected would decrease 

demyelination. 

6.2.2 Lack of chronic cortical GM pathology 

Although this model has successfully shown that cortical GM pathology may be driven by 

meningeal inflammation, its main limitation is the acute nature of the resulting pathology, 

which is in contrast to the chronic cortical GM pathology and accumulation of chronic 

cognitive, motor and sensory symptoms in SPMS cases. The area of subpial demyelination 

and the microglial activation in these areas were significantly greater at 1 week than 2 weeks 

after injection, which also appeared to be the case for the number of CD4+ and CD8+ T cells 

and B cells in the meninges. These findings suggest that remyelination had occurred, and 

that this was associated with a loss of the pro-inflammatory signalling that results in 

microglial activation and immune cell infiltration. Acute pathology was also observed 

previously in targeted EAE models, in which inflammation was resolved and remyelination 

complete by 2 weeks after injection (Merkler et al., 2006, Gardner et al., 2013). Although it 

resulted in increased extent of pathology, increasing the doses of TNF and IFN-γ injected 

into the SAS in the current study did not result in increased duration of pathology. This might
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have been expected, as the 1µl of cytokines will have been rapidly diluted or catabolised by 

proteases in the CSF. Additionally, although the rate of CSF flow in the SAS of the sagittal 

sulcus has not been determined, the rate of CSF bulk flow per whole brain is approximately 

2µl per minute, resulting in a turnover rate of approximately 10 times per day (Pardridge, 

2011, Chiu et al., 2012), hence the cytokines may have been drained from the injection site. 

It is likely that chronic pro-inflammatory signalling in the CSF/meningeal compartment is 

required to achieve chronic microglial activation and chronic subpial demyelination. 

Increased numbers of OPCs have been found in spinal cord GMLs in MOG-induced EAE, 

associated with the appearance of remyelinating oligodendrocytes (Reynolds et al., 2002), 

and increased g-ratios indicative of remyelination have been observed in cortical GMLs in a 

targeted EAE model at 2 weeks after injection of TNF and IFN-γ (Merkler et al., 2006). 

Studies have shown that macrophages contribute to remyelination by the phagocytosis of 

myelin debris, which inhibits OPC differentiation (Robinson and Miller, 1999). Foamy 

macrophages containing myelin/myelin degradation products express various anti-

inflammatory cytokines including IL10 and TGF-β, indicating a regulatory, anti-inflammatory 

role consistent with the remyelination and associated loss of pro-inflammatory signalling that 

we suggest are features of the current model.  

 

A previous study using this model also failed to show neuronal loss (Gardner et al., 2013), 

although transected neurites, apoptotic neurons and synapse loss are found in cortical 

GMLs (Peterson et al., 2001, Wegner et al., 2006). Neuronal loss is also present in the 

subpial GMLs observed in F+ SPMS cases, in which it has been suggested to contribute to a 

shorter, more aggressive disease (Magliozzi et al., 2007, Magliozzi et al., 2010). It is thought 

to be the result of chronic meningeal inflammation and microglial activation in subpial GMLs 

and Wallerian degeneration of chronically demyelinated axons (Frischer et al., 2009, 

Magliozzi et al., 2010). Hence the absence of neuronal loss in this model is the result of the 

requirement for chronic demyelination and inflammation. The gradient of neuronal loss from 

the pial surface into GM layers in subpial GMLs in F+ SPMS cases is again consistent with
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the diffusion of cytotoxic and/or pro-inflammatory molecules from the chronically inflamed 

CSF/meningeal compartment into underlying cortical GM layers resulting in chronic 

microglial activation and subpial demyelination (Magliozzi et al., 2010). 

6.2.2.1 Lack of lymphoid-like structures 

Although B cell infiltration was confined to the meninges in the current study, consistent with 

that in MS cases (Frischer et al., 2009), ectopic lymphoid-like structures consisting of 

aggregates of B cells, some of which are proliferating, together with follicular dendritic cells, 

plasmablasts/plasma cells and T cells, were not observed, with only isolated meningeal 

CD4+ and CD8+ T cells and B cells present. However, a chronic inflammatory milieu 

appears to be required for their development, as well as CXCL13, BAFF and lymphotoxin-

α1β2 (Magliozzi et al., 2004, Columba-Cabezas et al., 2006). Hence their absence in the 

current study is again likely to be due to the acute, rather than chronic, inflammatory milieu 

resulting from the injection of TNF and IFN-γ. However, given the contribution of lymphoid-

like structures to a shorter, more aggressive disease (Magliozzi et al., 2007, Howell et al., 

2011), it will be important to develop a model in which these structures are observed. 

6.2.3 Evaluating LV vectors 

This study then aimed to evaluate LV vectors as a delivery system to achieve a chronic 

inflammatory milieu in the CSF/meningeal compartment, which we suggest would result in 

chronic cortical GM myelin and neuronal pathology, and perhaps lymphoid-like structures, in 

the meninges. 

6.2.3.1 Suitability of LV vectors 

Long-term, stable expression of eGFP was observed following injection of an LV vector 

based on HIV-1 pseudotyped with VSV-G and containing the eGFP reporter gene under the 

transcriptional control of the ubiquitous internal CMV promoter into the SAS of the sagittal 

sulcus. Expression was observed in the sagittal sulcus and was localised to astrocyte cell 
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bodies, end-feet and processes and in what appeared to be leptomeningeal cells as well as 

a small number of pyramidal neurons, consistent with previous studies using similar LV 

vectors (Jakobsson and Lundberg, 2006, Fedorova et al., 2006, Hendriks et al., 2007). 

Expression was not localised to macrophages/microglia, in contrast to previous studies 

(Fedorova et al., 2006, Liu et al., 2006), or in B or T cells. Studies have shown the presence 

of cells with monocyte/macrophage morphology expressing TNF and T cells expressing IFN-

γ in inflamed meninges (Serafini et al., 2007, Magliozzi et al., 2010, Gardner et al., 2013) as 

well as some microglia expressing TNF in superficial GM in F+ SPMS cases (Gardner et al., 

2013), consistent with the increased IFNG mRNA levels in the meninges of F+ SPMS cases 

compared to NNCs shown in the current study. Hence, although the cellular localisation of 

eGFP expression here is different to that of TNF and IFN-γ in MS, we suggest that its long-

term presence in the sagittal sulcus and the nearby meninges over the superior surface of 

the cortex would be optimal for achieving a chronic inflammatory milieu in the 

CSF/meningeal compartment. For example, the injection of a viral vector based on herpes 

simplex virus type 1 or an adenoviral vector containing the IFNG gene into the cisterna 

magna resulted in expression in choroidal, ependymal and leptomeningeal cells and 

increased levels of IFN-γ in the CSF (Furlan et al., 2001, Millward et al., 2007). This is 

consistent with the increased levels of IFN-γ in the CSF of MS cases (Romme Christensen 

et al., 2012, Gardner et al., 2013). Although there are no reports of the injection of viral 

vectors containing the TNF gene into the SAS to date, the findings described here suggest 

that the LV vector would be suitable for the delivery of TNF and IFN-γ to the SAS.   

  

The absence of cellular or innate immune responses induced by LV proteins (Abordo-

Adesida et al., 2005) further supports the suitability of the LV vector for the development of 

the chronic model of cortical pathology driven by meningeal inflammation. In the current 

study, microglial activation was most apparent adjacent to the sagittal sulcus and was not 

significantly increased after injection of the LV vector compared to the vehicle control, 

suggesting that the microglial activation was a result of an initial, acute innate immune



Chapter 6 - General discussion 282 

response to the midline injection. It has been proposed that the immune system recognises 

only the transgene product and not the capsid or virion, hence this would not be a 

confounding variable in the chronic model and any inflammation would be the result of the 

expression of TNF and IFN-γ. 

 

Additionally, although LV vectors have been shown to induce tissue damage in the CNS, 

characterised by focal areas of necrosis and primary demyelination at the injection site 

associated with inflammatory infiltrates (Zhao et al., 2003), non-specific demyelination and 

inflammation were not induced in the current study, even in the presence of an existing 

cellular/humoral anti-myelin immune response. Again, any tissue damage would hence be 

the result of TNF and IFN-γ expression and not the LV vector. The transduction efficiency of 

the LV vector was also unchanged in the presence of an existing immune response, 

consistent with a previous study (Abordo-Adesida et al., 2005) and indicating that expression 

of TNF and IFN-γ would be achieved in animals immunised with a subclinical dose of 

rmMOG as required for the development of this model. 

6.2.3.2 Unsuitability of collagen hydrogel 

Given that eGFP was expressed over approximately 4mm along the anteroposterior axis, the 

suitability of delivering the LV vector from a collagen hydrogel to achieve more localised 

expression was evaluated. This was expected to prevent the extensive diffusion of the LV 

vector, which would result in a higher concentration of TNF and IFN-γ at the injection site in 

the chronic model. 

 

The collagen hydrogel delayed expression until 2 weeks after injection and limited its 

duration, with no expression at 4 weeks after injection. This finding is consistent with a 

previous study that showed maximal transgene expression at 2 weeks after s.c. 

implantation, with decreased and absent expression at 4 and 6 weeks respectively (Shin and 

Shea, 2010). It is likely that the collagen hydrogel initially retains the LV vector, with its
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degradation rate and pore size limiting release of the LV vector resulting in delayed 

expression. The authors of the previous study suggested that the limited duration of 

expression was the result of clearance of transduced cells by the immune system or a 

turnover of the transduced cells (Shin and Shea, 2010), although the expression present at 

later time points in control animals in the current study suggests that this is not the case 

here. Additionally, microglial activation was not induced by the collagen hydrogel and studies 

have shown that neither adaptive nor innate immune responses are induced (Gu et al., 

2004). 

 

The main limitation of the delivery of the LV vector from the collagen hydrogel is that it did 

not increase expression at the injection site but increased its spread along the 

anteroposterior axis, in contrast to the increased expression and decreased spread expected 

and indeed required in the chronic model. This suggests that the collagen hydrogel used 

here is not optimised for sustained release in this model but allows rapid release and 

subsequent spread at later time points. LV vector dilution and drainage from the injection site 

in the CSF may also explain the absence of expression at later time points. 

6.2.4 Further experiments 

We suggest that the distribution and duration of expression mediated by the LV vector would 

be optimal for the development of the chronic model if expression at the injection site could 

be increased. Given that collagen hydrogels increase the retention and stability of LV 

vectors, resulting in efficient and localised transgene expression (Shin and Shea, 2010), the 

use of the collagen hydrogel to deliver the LV vector remains a strategy to limit the spread of 

expression and hence increase expression at the injection site. However, extensive 

optimisation of the hydrogel will be required, which may include increasing the collagen 

content (Premaraj et al., 2006), increasing the relative cross-linker content or immobilising 

the LV vector to nanoparticles in the hydrogel (Shin and Shea, 2010) to slow degradation 

and subsequent release. 
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The production and in vitro and in vivo evaluation of a bicistronic LV vector containing the 

genes for TNF and IFN-γ, which will allow the simultaneous expression of the two 

transgenes by a single LV vector, is ongoing in this laboratory. Given that a tricistronic LV 

vector containing the genes required for dopamine synthesis has been shown to result in 

restoration of dopamine levels and motor function for 12 months following intrastriatal 

injection in a macaque model of Parkinson’s disease (Jarraya et al., 2009), we expect that  

chronic bathing in high concentrations of TNF and IFN-γ of the surface of the brain will be 

achieved using the bicistronic vector with optimised collagen hydrogel. In order to confirm 

this, terminal CSF samples will be taken via the cisterna magna and the levels of TNF and 

IFN-γ measured using ELISAs. We suggest that this will result in chronic meningeal 

inflammation, microglial activation and subpial demyelination as well as neuronal loss. This 

chronic pathology in the motor cortex, in which extensive subpial demyelination was 

observed in the current study, is expected to result in neurological deficits and hence animal 

behaviour will be evaluated using rotarod and open field activity performance. This model 

will also allow the evaluation of the role of the cytotoxic/pro-inflammatory molecules 

identified in the meninges of F+ SPMS cases in the current study, including CXCL9. 

6.3 Final conclusions 

In this thesis, we have further developed an acute model of cortical GM pathology driven by 

meningeal inflammation. We have shown that the injection of TNF and IFN-γ into the SAS of 

animals immunised with a subclinical dose of rmMOG induced acute subpial GMLs. These 

were similar to the Type III GMLs observed in MS cortex, characterised by immune cell 

infiltration in the meninges and microglial activation in GMLs. Taken together, our findings 

from the novel model and post-mortem human tissue studies support the hypothesis that 

meningeal inflammation results in increased concentrations of cytotoxic/pro-inflammatory 

molecules in the CSF, which diffuse from the pial surface into the underlying cortex resulting 

in microglial activation and subpial demyelination. Increased levels of IFNG and CXCL13 

mRNA in the meninges of F+ SPMS cases are also consistent with an inflammatory milieu in 
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the CSF/meningeal compartment, as is the increased level of CXCL9 mRNA, which we 

suggest results in increased chemotaxis of T cells to the meninges and from which we 

conclude that CXCL9 represents a novel therapeutic target for SPMS. Increasing the doses 

of TNF and IFN-γ used in the model did not result in chronic pathology, which we suggest 

was due to the acute nature of the cytokine delivery. From this we conclude that a chronic 

inflammatory milieu in the CSF/meningeal compartment is required to achieve chronic 

microglial activation and subpial demyelination, neuronal loss and perhaps lymphoid-like 

structures. Hence LV vectors were evaluated as a strategy to achieve chronic cytokine 

delivery. We suggest that the distribution in the sagittal sulcus and long-term duration of 

reporter gene expression, in the absence of microglial activation and non-specific 

demyelination and inflammation, shown here would be optimal for achieving the chronic 

presence of TNF and IFN-γ in the CSF/meningeal compartment, if expression at the injection 

site could be increased using a collagen hydrogel, which requires optimisation. We propose 

that this will result in chronic meningeal inflammation and cortical GM pathology, with 

subsequent development of neurological deficit. This will allow the evaluation of the role of 

cytotoxic/pro-inflammatory molecules such as CXCL9. Ultimately it is the aim to reproduce 

the pathology, clinical course and symptoms of MS that result from progressive GM damage 

and it is believed that this novel model will prove to be of great benefit for the identification of 

potential drug targets and the development of therapeutic strategies for the treatment of 

progressive MS. 
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Appendix 

 

5’ 

TTTAAGAAGGAGTATACATATGCGGGGTTCTCATCATCATCATCATCATGGTATGGCTAGCATGACTGG

TGGACAGCAAATGGGTCGGGATCTGTACGACGATGACGATAAGGATCGATGGGGATCCGAGCTCGAG

ATCTGCAGCTGGTACCATGGAATTCTAGGGCAGTTCAGAGTGATAGGACCAGGGTATCCCATCCGGG

CTTTAGTTGGGGATGAAGCAGAGCTGCCGTGCCGCATCTCTCCTGGGAAAAATGCCACGGGCATGGA

GGTGGGTTGGTACCGTTCTCCCTTCTCAAGAGTGGTTCACCTCTACCGAAATGGCAAGGACCAAGATG

CAGAGCAAGCACCTGAATACCGGGGACGCACAGAGCTTCTGAAAGAGACTATCAGTGAGGGAAAGGT

TACCCTTAGGATTCAGAACGTGAGATTCTCAGATGAAGGAGGCTACACCTGCTTCTTCAGAGACCACT

CTTACCAAGAAGAGGCAGCAATGGAGTTGAAAGTAGAATGAGAATTCGAAGCTTGATCCGGCTGCTAA

CAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGG

GCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGATCTGGCGTAATAGC

GAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGGACGCGCCC

TGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGC

GCCCTAGCGCCGCTCTTTCGCTTTCTCCCTCTTTCTCGCACGTCGCCGGCTTCCCCGTCAGCTCTAAA

TCGGGGGCTCCCTTTAAGGGTTT  

3’ 

Figure A1. Results of DNA sequencing of transformed E. coli colony. DNA sequencing confirmed that the 
colony of transformed E. coli selected for expression of the recombinant protein corresponding to the N-
terminal extracellular domain of mouse MOG contained the sequence insert in the vector (orange) flanked 
by EcoRI (green) and HindIII (red) recognition sequences (restriction sites indicated by arrowheads). The 
colony also contained the N-terminal polyhistidine sequence (blue) required for subsequent purification with 
a nickel-chelating resin.  

▼ 

▼ 
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