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1 Introduction

A basket option is an exotic option whose payoff depends on the value of

a portfolio of assets. Basket options are in general difficult to price and

hedge due to the lack of analytic characterization of the distribution of the

sum of correlated random variables. Monte Carlo simulation is simple and

accurate but is very time-consuming to price basket options. The other pric-

ing methods are the numerical PDE, lower and upper bounds, and analytic

approximations, see Lord (2006) for details.

Most work in the literature assume that underlying asset prices follow

geometric Brownian motions. The basket value is then the sum of correlated

lognormal variables. The main idea of the analytic approximation method is

to find a simple random variable to approximate the basket value and then

to use it to get a closed-form pricing formula. The approximate random vari-

able is required to match some moments of the basket value. Levy (1992)

uses a lognormal variable, Posner and Milevsky (1998) a shifted lognormal

variable, and Milevsky and Posner (1998) a reciprocal gamma variable. The

main drawback of these approximations is that the error can only be esti-

mated by numerical analysis.

Curran (1994) introduces the idea of conditioning variable and condi-

tional moment matching. The option price is decomposed into two parts:

one can be calculated exactly and the other approximately by conditional

moment matching method. The conditioning approach can also be used to

find the bounds of the basket option. Rogers and Shi (1995) derive the lower

and upper bounds, Nielsen and Sandmann (2003) improve the upper bound.

Dhaene et al. (2002a, 2002b) introduce the concept of comonotonicity and

discuss the comonotonic lower and upper bounds, Vyncke et al. (2004) pro-

pose a two moment matching approximation with a convex combination of

the comonotonic lower and upper bounds for Asian options, Vanmaele et

al. (2004) suggest a similar approximation for basket options. See Deelstra

et al. (2004) and Lord (2006) for further extensions and applications.

All work mentioned above assume the diffusion asset price model. Efforts

have been made to extend to more general asset price models. Albrecher

and Predota (2002, 2004) discuss variance-gamma and NIG Lévy processes,

Flamouris and Giamouridis (2007) Bernoulli jump diffusion model, and Hob-

son et al. (2005) and Chen et al. (2008) model free pricing.

In this paper we assume the underlying asset prices follow some jump-

diffusion processes. The innovative feature of the model is that, apart from

correlated Brownian motions, there are two types of Poisson jumps: a sys-
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tematic jump that affects all asset prices and idiosyncratic jumps that only

affect specific asset prices. Such a model can characterize well the market-

wide phenomenon and individual events. In correlation modelling this is a

type of Marchall-Olkin exponential copulas. Since the basket value is no

longer the sum of lognormal variables it is not clear what conditioning ran-

dom variables one should use to approximate the basket value. The main

contribution of the paper is that we derive a new approximation to the bas-

ket call option price. The approximation is the weighted sum of the lower

bound and the conditional second moment adjustments and is guaranteed to

lie in between the lower bound and the upper bound. The numerical tests

show that the approximation is very tight in comparison with the Monte

Carlo results.

The paper is organized as follows. Section 2 formulates the jump-

diffusion asset price model and reviews some results on approximation and

bounds in diffusion asset price models. Section 3 discusses conditioning ran-

dom variables and derives a new approximation formula for basket options

and shows it is bounded. Section 4 elaborates the numerical implementation

and does some numerical tests. Appendix contains the details of a constant

which is needed in approximation.

2 Model Formulation

Assume (Ω, P,F ,Ft) is a filtered risk-neutral probability space and Ft is
the augmented natural filtration generated by correlated Brownian motions

W1, . . . ,Wn with correlation matrix (ρij) and independent Poisson processes

N0, . . . , Nn with intensities λ0 . . . , λn. Assume Brownian motions and Pois-

son processes are independent to each other. Assume the portfolio is com-

posed of n assets and the asset prices S1, . . . , Sn satisfy the stochastic dif-

ferential equations

dSi(t)

Si(t)
= ridt+ σidWi(t) + h

0
i d[N0(t)− λ0t] + h

1
i d[Ni(t)− λit], (1)

for i = 1, . . . , n, where ri = r − δi and r is the risk-free interest rate and δi
are the continuous dividend yields of assets i, σi are volatilities of assets i,

and h0i , h
1
i are percentage jump sizes of assets i at time of jumps of Pois-

son processes N0 and Ni, respectively. All coefficients are assumed to be

constant. Solutions to equations (1) are given by

Si(t) = Si(0)e
(ri− 12σ

2
i−h

0
i λ0−h

1
i λi)t+σiWi(t)+C

0
i N0(t)+C

1
i Ni(t),
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where C0i = ln(1 + h
0
i ) and C

1
i = ln(1 + h

1
i ).

Almost all the research in the literature on basket options pricing as-

sumes that asset prices Si follow geometric Brownian motions (correspond-

ing to h0i = h
1
i = 0 for all i), which cannot explain asset prices jumps for

unexpected sudden market events. The asset price dynamics (1) incorpo-

rates both systematic events and idiosyncratic events. More precisely, if an

unexpected market event N0 occurs at time t then all underlying asset prices

Si(t) have jumps of percentage sizes h
0
i for i = 1, . . . , n, on the other hand,

if an unexpected event Ni occurs at time t, then only asset price Si(t) has

a jump of percentage size h1i but all other asset prices are not affected. In

between jumps asset prices are driven by diffusion processes.

The basket value at time t is given by

A(t) =
n∑

i=1

wiSi(t)

where wi are positive constant weights. The basket call option price at time

0 is given by

C0 = e
−rTE[A(T )−K)+]

where K is exercise price, T maturity time, and E risk-neutral expectation

operator. In this paper the exercise time T is fixed. To simplify the notation

we will omit T from now on, for example, we write Wi instead of Wi(T ).

The basket value at time T can be written as

A =
n∑

i=1

aie
σiWi+C

0
i N0+C

1
i Ni (2)

where ai = wiSi(0)e
(ri− 12σ

2
i−h

0
i λ0−h

1
i λi)T , Wi are normal variables with mean

0 and variance T , and Ni are Poisson variables with parameters λiT , i =

1, . . . , n.

Almost all work in the literature on Asian or basket options pricing

assume the underlying asset prices follow lognormal processes, which corre-

sponds to h0i = h
1
i = 0 for all i in our model setup. Since the approach for

Asian options can be easily adapted to basket options, and vice versa, we do

not differentiate these two types of options, even though some techniques are

originally developed for Asian options. We now review some well-known ap-

proaches in approximation and error bound estimation for the pure diffusion

case.

Levy (1992) approximates the basket value A with a lognormal variable

which has the same first two moments as those of A and derives the approxi-

mate closed-form pricing formula for C0. Posner and Milevsky (1998) extend
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that approach to a shifted lognormal variable which matches the first four

moments of A. The results are very good when maturity T and volatilities

σi are relatively small. The performance deteriorates as T or σi increases.

The drawback of these moment-matched lognormal approximations is that

the approximation error can only be estimated by numerical analysis.

Curran (1994) introduces the idea of conditioning random variables. As-

sume Λ is a random variable which has strong correlation with A and satisfies

that A ≥ K whenever Λ ≥ dΛ for some constant dΛ. The basket option price
can be decomposed as

E[(A−K)+] = E[(A−K)1[Λ≥dΛ]] +E[(A−K)
+1[Λ<dΛ]].

Curran (1994) chooses Λ a normal variable (geometric average) and finds

the closed-form expression for the the first part and uses the lognormal

variable and the conditional moment matching technique (at the point of

strick price K) to find the approximate value of the second part. Deelstra

et al. (2004) extend the conditional moment matching approach further by

finding a lognormal variable Ã such that

E[Ã|Λ = λ] = E[A|Λ = λ] and Var(Ã|Λ = λ) = Var(A|Λ = λ)

for all λ < dΛ.

Rogers and Shi (1995) use the conditioning variable Λ and Jensen’s in-

equality to derive the lower bound of E[(A−K)+] as

E
[
(E[A|Λ]−K)+

]
.

Nielsen and Sandmann (2003), see also Rogers and Shi (1995), derive the

upper bound of E[(A−K)+] as

E
[
(E[A|Λ]−K)+

]
+
1

2
E
[
var(A|Λ)1[Λ<dΛ]

] 1
2 E[1[Λ<dΛ]]

1
2 .

These bounds can be computed analytically.

Lord (2006) shows the conditional moment matching approximation of

Deelstra et al. (2004) lies in between the lower and upper bounds and intro-

duces the class of partially exact and bounded approximations.

The only work we are aware of on the jump-diffusion asset price model

is the one by Flamouris and Giamouridis (2007). The basket contains two

assets and each asset price may jump once. With this simplified setup the

authors approximate basket value with a lognormal variable under each of

the four cases (one may or may not jump and there is a combination of four
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cases) and approximate the basket option value by the weighted sum of the

four approximating values.

For general jump-diffusion asset price models there are many open ques-

tions to be answered. For example, how should one choose the conditioning

variable? Is the approximation guaranteed to lie in between the lower and

upper bounds? How accurate and fast is the computation? etc. We will

address these questions in the rest of the paper.

3 Bounds and Approximation of Basket Options

To use the conditioning variable approach to approximate the basket option

price for a jump-diffusion asset price model, we need first to decide what

conditioning variables to use. For a diffusion asset price model it is without

exception in the literature to choose a normal variable as the conditioning

variable, but it is not clear what one should choose for a jump-diffusion asset

price model. From (2) we have

A ≥
n∑

i=1

ai(1 + σiWi + C
0
i N0 + C

1
i Ni)

≥ c+m0N0 +m2N + σW

where c =
∑n
i=1 ai, m0 =

∑n
i=1 aiC

0
i , m2 = min1≤i≤n(aiC

1
i ), and σ

2 =
∑n
i=1

∑n
j=1 aiajρijσiσjT are constant, and N0 and N =

∑n
i=1Ni are Poisson

variables with parameters λ0T and λT =
∑n
i=1 λiT , respectively, and W =

1
σ

∑n
i=1 aiσiWi is a standard normal variable. Note that N0, N and W are

independent to each other.

If we choose X = (N0, N,W ) and define φ(X) = m0N0+m2N+σW and

dX = K−c then we have A ≥ K whenever φ(X) ≥ dX . Therefore X can be
a conditioning variable. The motivation for this choice is that we want to

extract as much as possible the information of normal variables and Poisson

variables. The reason we choose two Poisson variables N0 and N instead

of combining them together is that N0 is a common shock which has much

greater impact on basket value A than any individual shock Ni. This gives

much better approximation with minimal increase of computation load.

The method of finding the lower and upper bounds of basket option price

in Rogers and Shi (1995) and Nielsen and Sandmann (2003) works for the

general jump-diffusion asset price model (1) by conditioning on {φ(X) ≥
dX}. This leads to

LB ≤ E[(A−K)+] ≤ UB
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where

LB = E
[
(E[A|X]−K)+

]

UB = LB +
1

2
E
[
var(A|X)1[φ(X)<dX ]

] 1
2 E[1[φ(X)<dX ]]

1
2 .

We have done some numerical tests for the lower and upper bounds of

the jump-diffusion asset price process, see the next section. The results show

that the lower bound is in general very tight whereas the upper bound is

not sharp and can have large deviations to the exact value. Curran (1994)

uses the lower bound to approximate the basket option price.

Denote by AX = E[A|X] the conditional expectation of A given X. The
error between the lower bound and the exact basket option value is given

by

E[(A−K)+]− LB

= E[(A−K)+1[φ(X)<dX ]]−E[(A
X −K)+1[φ(X)<dX ]].

This shows the error is caused by replacing A1[φ(X)<dX ] with A
X1[φ(X)<dX ].

A simple calculation shows that

E[A1[φ(X)<dX ]] = E[AX1[φ(X)<dX ]] (3)

Var(A1[φ(X)<dX ]) = Var(AX1[φ(X)<dX ]) +E[Var(A|X)1[φ(X)<dX ]]. (4)

Therefore, the lower bound matches the first moment, but not the second

moment. If we can find a random variable which matches the first two

moments of A1[φ(X)<dX ] then we may reduce the error and improve the

accuracy. We now look for such a random variable and find the properties it

must hold. Let ε be a random variable independent of A and X and satisfy

the following two equations

E[A1[φ(X)<dX ]] = E[(AX + ε)1[φ(X)<dX ]] (5)

Var(A1[φ(X)<dX ]) = Var((AX + ε)1[φ(X)<dX ]) (6)

From (3), (5) and the independence of ε and X we get

E[ε] = 0. (7)

(7) and the independence of ε and X imply

Var((AX + ε)1[φ(X)<dX ])

= E[(AX + ε)21[φ(X)<dX ]]− (E[(A
X + ε)1[φ(X)<dX ]])

2

= E[(AX)21[φ(X)<dX ]] +E[ε
21[φ(X)<dX ]]− (E[A

X1[φ(X)<dX ]])
2

= Var(AX1[φ(X)<dX ]) +E[ε
2]E[1[φ(X)<dX ]]. (8)
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From (4), (6), and (8) we get

E[ε2] =
E[Var(A|X)1[φ(X)<dX ]]

E[1[φ(X)<dX ]]
≡ ε20. (9)

We can now present the main result of the paper.

Theorem 1 Let

AC0 = E[(A−K)
+1[φ(X)≥dX ]] +

3∑

i=1

piE[(A
X + αi −K)

+1[φ(X)<dX ]] (10)

where p1 = 1/6, p2 = 2/3, p3 = 1/6, and α1 = −
√
3ε0, α2 = 0, α3 =

√
3ε0.

Then

LB ≤ AC0 ≤ UB.

Proof. Let ε be a discrete random variable taking values αi with probabilities

pi for i = 1, 2, 3. Then E[ε] = 0 and E[ε
2] = ε20, i.e., ε satisfies (7) and (9).

We can now show that the new approximation is bounded by the lower and

upper bounds. We first derive the upper bound.

E[(AX + ε−K)+1[φ(X)<dX ]]

≤ E[(AX −K)+1[φ(X)<dX ] + ε
+1[φ(X)<dX ]]

= E[(AX −K)+1[φ(X)<dX ]] +
1

2
E[|ε|]E[1[φ(X)<dX ]]

≤ E[(AX −K)+1[φ(X)<dX ]] +
1

2
E[ε2]

1
2E[1[φ(X)<dX ]]

= E[(AX −K)+1[φ(X)<dX ]] +
1

2
E[Var(A|X)1[φ(X)<dX ]]

1
2E[1[φ(X)<dX ]]

1
2 .

Since ε is symmetric around 0, i.e., F (x) + F (−x) = 1 where F is the
distribution function of ε, we can also estimate the lower bound.

E[(AX + ε−K)+1[φ(X)<dX ]]

=

∫ ∞

−∞
E[(AX + η −K)+1[φ(X)<dX ]]dF (η)

=

∫ ∞

0
E[[(AX + η −K)+ + (AX − η −K)+]1[φ(X)<dX ]]dF (η)

≥ 2

∫ ∞

0
E[(AX −K)+1[φ(X)<dX ]]dF (η)

= E[(AX −K)+1[φ(X)<dX ]]

Therefore,

LB ≤ E[(AX + ε−K)+1[φ(X)<dX ]] +E[(A−K)
+1[φ(X)≥dX ]] ≤ UB.
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We have proved the result. �
We choose e−rTAC0 to approximate the basket option value at time 0.

It is clear from the proof that Theorem 1 holds for any random variable ε

as long as it is symmetric and satisfies (7) and (9). A normal distribution

seems a natural choice, but then one has to deal with a numerical integration.

We choose ε a discrete random variable taking values −
√
3ε0, 0,

√
3ε0 with

probabilities 1/6, 2/3, 1/6, respectively, which matches the first five moments

of a normal variable. We can expect the behaviour of ε is similar to that of a

normal variable with the added advantage that we do not need to compute

the numerical integration. This choice of ε also shows that the lower bound

plays a dominant role in the approximation with a weight 2/3, the other

two parts with a weight 1/6 each may be explained as the adjustment to the

lower bound for the second moment.

Since the basket call option price tends to 0 as strike price K →∞, we
would expect the approximate price e−rTAC0 tends to 0 too. This is indeed

the case as shown in the next result.

Theorem 2 The value AC0 defined in (10) tends to 0 as strike price K

tends to infinity.

Proof. The proof is similar to Theorem 4 in Lord (2006). We can write AC0

as

AC0 = E[(A−K)
+1[φ(X)≥dX ]] +E

[
(AX + ε−K)+1[φ(X)<dX ]

]
(11)

where ε is a discrete random variable defined in Theorem 1. Since the call

price tends to 0 as K →∞ it is obvious that the first term of (11) tends to
0 as K → ∞. We now estimate the second term of (11). Let Ā = AX + ε,
then

0 ≤ E
[
(Ā−K)+1[φ(X)<dX ]

]
≤ E

[
(Ā−K)+

]

=

∫ ∞

K

P (Ā > x)dx ≤
∫ ∞

K

P (|Ā| ≥ x)dx

≤
∫ ∞

K

E[Ā2]

x2
dx =

E[Ā2]

K
.

We only need to show that E[Ā2] is finite, which then implies E[Ā
2]

K tends

to 0 as K →∞. Since AX and ε are independent and E[ε] = 0 we have

E[Ā2] = E[(AX)2] +E[ε2].
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Furthermore, φ(X) ≥ dX implies A ≥ K, we have P (φ(X) ≥ dX) ≤ P (A ≥
K), or equivalently, P (φ(X) < dX) ≥ P (A < K) → 1 as K → ∞. There-
fore, P (φ(X) < dX) ≥ 1/2 for K sufficiently large. This gives

E[ε2] =
E[Var(A|X)1[φ(X)<dX ]]

E[1[φ(X)<dX ]]
≤ 2E[Var(A|X)] = 2E[A2]− 2E[(AX)2].

Obviously, we have E[Ā2] ≤ 2E[A2] < ∞ for K sufficiently large. We are
done. �

4 Implementation and Numerical Tests

We need first to find the conditional expectation of the basket value A given

the conditioning variable X = (N0, N,W ) = (n0, k, y).

E[A|X = (n0, k, y)]

=
n∑

i=1

aiE[e
C0i N0+C

1
i Ni+σiWi |X = (n0, k, y)]

=
n∑

i=1

aiE[e
C0i N0 |N0 = n0]E[e

C1i Ni |N = k]E[eσiWi |W = y].

Here we have used the independence of N0, N,W . For N =
∑n
i=1Ni define

N̄i = N−Ni, then N̄i is a Poisson variable with parameter λ̄iT := (λ−λi)T
and is independent of Ni. From

P (Ni = ki|N = k) =
P (Ni = ki)P (N̄i = k − ki)

P (N = k)

=
k!

ki!(k − ki)!
(
λi

λ
)ki(
λ̄i

λ
)k−ki

we get

E[eC
1
i Ni |N = k] =

k∑

ki=0

eC
1
i ki

k!

ki!(k − ki)!
(
λi

λ
)ki(
λ̄i

λ
)k−ki

=

(

eC
1
i
λi

λ
+
λ̄i

λ

)k
.

For W = 1
σ

∑n
i=1 aiσiWi, Deelstra et al. [2004] show that

E[eσiWi |W = y] = e
1
2
(σ2i T−R

2
i )+Riy
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where Ri =
1
σ

∑n
j=1 ajρijσiσjT . Therefore

E[A|X = (n0, k, y)] =
n∑

i=1

Ai(n0, k, y)

and

Ai(n0, k, y) = aie
1
2
(σ2i T−R

2
i )eC

0
i n0

(

eC
1
i
λi
λ
+
λ̄i
λ

)k
eRiy.

We can now easily find the exact part of the basket option value.

E[(A−K)1[φ(X)≥dX ]]

= E[E[A|X]1[φ(X)≥dX ]]−KP (φ(X) ≥ dX)

=
∞∑

n0=0

∞∑

k=0

P (N0 = n0)P (N = k)

∙

(
n∑

i=1

S̃i(n0, k)Φ(Ri − z(n0, k))−KΦ(−z(n0, k))

)

where S̃i(n0, k) = aie
1
2
σ2i T eC

0
i n0
(
eC
1
i
λi
λ +

λ̄i
λ

)k
and z(n0, k) =

dX−m0n0−m2k
σ .

It is slightly more involved in finding the approximating part of the

basket option value. Denote by α a constant with value −
√
3ε0 or 0 or√

3ε0. Then

E[(E[A|X] + α−K)+1[φ(X)<dX ]]

=

∞∑

n0=0

∞∑

k=0

P (N0 = n0)P (N = k)

∫ z(n0,k)

−∞

[
n∑

i=1

Ai(n0, k, y) + α−K

]+

dΦ(y).

For fixed n0 and k we need to compute the integral

∫ z(n0,k)

−∞

[
n∑

i=1

Ai(n0, k, y) + α−K

]+

dΦ(y). (12)

To avoid the numerical integration we do the following: for fixed n0, k, α,

define a strictly convex function

f(y) =
n∑

i=1

Ai(n0, k, y) + α−K.

We want to find y∗ = y(n0, k, α) such that f(y
∗) = 0. Four cases may occur.

1. Ri = 0 for all i. Then f is a constant.
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2. Ri ≥ 0 for all i and Ri > 0 for at least one i. Then f is strictly
increasing and has at most one root.

3. Ri ≤ 0 for all i and Ri < 0 for at least one i. Then f is strictly
decreasing and has at most one root.

4. Ri > 0 for at least one i and Ri < 0 for at least another i. Then f is

U-shaped and has at most two roots.

We may use a numerical search algorithm such as the Newton method to

find the root of f and then compare it with z(n0, k) to get the closed-form

value of the integration. Lord (2006) has a similar discussion concerning the

number of roots of the function f .

To illustrate the point, we assume Ri > 0 for all i. Then f(y) is strictly

increasing and f(−∞) = α −K and f(∞) = ∞. If α ≥ K then f has no
root and f(y) > 0 for all y. The integral of (12) equals

n∑

i=1

S̃i(n0, k)Φ(z(n0, k)−Ri) + (α−K)Φ(z(n0, k)).

If α < K then f has a unique root y∗, which implies f(y) < 0 for y < y∗.

Therefore, if z(n0, k) ≤ y∗ then the integral of (12) is 0. If z(n0, k) > y∗

then the integral of (12) equals

∫ z(n0,k)

y∗

(
n∑

i=1

Ai(n0, k, y) + α−K

)

dΦ(y)

which can be computed explicitly. We can similarly discuss and solve all the

other cases and we leave the details to the reader.

The only term remains to be computed is ε0. To do so we need to find

E[Var(A|X)1[φ(X)<dX ]], which is tedious but straightforward. The result is
listed in the appendix.

Table 1 lists the results for a heterogeneous portfolio of two assets with

different jump intensities (λ0 = 2, λ1 = 1, λ2 = 0.5) and same proportional

jump sizes (h0 = h1 = h2 = −0.2) and volatilities (σ1 = σ2), and with
initial portfolio value A(0) = 100 and correlation coefficient of Brownian

motions ρ12 = 0.3. We have done the numerical tests for the combination

of the following data: maturity T = 1 and 3, volatility σi = 0.2, 0.5 and

0.8, moneyness is 0.9, 1 and 1.1. (The moneyness is defined by K/E[A(T )],

see Deelstra et al. (2004) and Lord (2006) for details.) The number of

simulation is 1 million for T = 1 and 3 million for T = 3. Table 1 contains

9 columns. The first column reports the option maturity, the second one
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the volatility, the third one the moneyness, the fourth one the Monte Carlo

value with standard deviation in parentheses, the fifth one the approximate

value suggested in this paper, the sixth one the lower bound, the seventh

one the upper bound, the eighth one the reciprocal gamma value (Milevsky

and Posner (1998)), and the ninth one the lognormal value (Levy (1992)).

The total computation time for each case (excluding simulation) takes only

a few seconds. Monte Carlo takes much longer to compute but provides the

benchmark values.

It is clear that the approximate values are very close to Monte Carlo

values under different scenarios. The last row lists the RMSEs (root mean

squared errors, defined by RMSE =
(
1
n

∑n
i=1(Pricei −MCi)

2
)1/2
) for ap-

proximate, lower and upper bound, reciprocal gamma, and lognormal values.

It is clear that the approximation method suggested by this paper has supe-

rior performance in comparison with the other methods. The approximate

values are always between the lower and upper bounds. It is interesting

to note that the lognormal approximation produces surprisingly good re-

sults although underlying asset prices follow jump-diffusion processes and

not just diffusion processes as in Levy (1992), but its values can fall outside

the region of the lower and upper bounds.

Table 2 lists the numerical results of the same data as in Table 1 except

the correlation coefficient of Brownian motions is changed to ρ12 = 0.7.

All methods have better performance (especially lower and upper bounds)

than ones recorded in Table 1, except the reciprocal gamma method which

becomes worse. The approximation method still has the least RMSE.

Table 3 and 4 list the results for a homogeneous portfolio of four assets

with jump intensities λ0 = λi = 1, proportional jump sizes h0 = hi = −0.2,
and correlation coefficients of Brownian motions ρij = 0.3 (Table 3) and 0.7

(Table 4) for i, j = 1, 2, 3, 4. It is again clear that the approximation method

produces the values very close to those of Monte Carlo under different sce-

narios and has the best performance over all other methods.

Appendix: Computation of ε0

Since

ε0 =

(
E[Var(A|X)1[φ(X)<dX ]]

E[1[φ(X)<dX ]]

) 1
2

and

E[Var(A|X)1[φ(X)<dX ]] = E[(E[A
2|X]− (E[A|X])2)1[φ(X)<dX ]],

13



we only need to find each of these terms. Here are the results.

E[1[φ(X)<dX ]] =
∞∑

n0=0

∞∑

k=0

P (N0 = n0)P (N = k)Φ(z(n0, k))

and

E[(E[A|X])21[φ(X)<dX ]]

=
∞∑

n0=0

∞∑

k=0

P (N0 = n0)P (N = k)

∙

(
n∑

i=1

n∑

j=1

S̃i(n0, k)S̃j(n0, k)e
RiRjΦ(z(n0, k)−Ri −Rj)

)

and

E[E[A2|X]1[φ(X)<dX ]]

=
∞∑

n0=0

∞∑

k=0

P (N0 = n0)P (N = k)

∙

(
n∑

i=1

a2i e
2σ2i T e2C

0
i n0

(

e2C
1
i
λi
λ
+
λ̄i
λ

)k
Φ(z(n0, k)− 2Ri)

)

+
∞∑

n0=0

∞∑

ni=0

∞∑

k=0

P (N0 = n0)P (Ni = ni)P (N̄i = k)

∙

(
∑

i 6=j

aiaje
1
2
σ2ijT e(C

0
i +C

0
j )n0eC

1
i ni

(

eC
1
j
λj

λ̄i
+ 1−

λj

λ̄i

)k
Φ(z(n0, ni, k)−Ri −Rj)

)

where σ2ij = σ
2
i + σ

2
j + 2σiσjρij , z(n0, ni, k) =

dX−m0n0−m2ni−m2k
σ , and

z(n0, k) =
dX−m0n0−km2

σ .
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Time Vol M’s MC (stdev) AP LB UB RG LN

1 0.2 0.9 19.49 (0.01) 19.48 19.46 20.09 18.10 18.73

1 14.34 (0.01) 14.34 14.32 15.03 13.36 13.83

1.1 10.28 (0.01) 10.28 10.26 11.04 9.79 10.06

0.5 0.9 25.01 (0.02) 24.97 24.84 26.66 23.00 24.61

1 20.55 (0.02) 20.49 20.36 22.39 18.81 20.03

1.1 16.84 (0.02) 16.76 16.64 18.87 15.43 16.60

0.8 0.9 32.62 (0.02) 32.42 32.05 35.82 28.57 32.49

1 28.77 (0.03) 28.50 28.15 32.34 24.88 28.65

1.1 25.42 (0.03) 25.10 24.77 29.40 21.79 25.33

3 0.2 0.9 28.95 (0.04) 28.98 28.80 32.32 25.51 27.94

1 24.71 (0.04) 24.72 24.55 28.10 21.56 23.81

1.1 21.06 (0.04) 21.05 20.90 24.48 18.30 20.29

0.5 0.9 38.80 (0.03) 39.03 37.95 47.46 31.90 38.38

1 35.32 (0.02) 35.37 34.41 44.10 28.49 34.92

1.1 32.23 (0.02) 32.13 31.28 41.14 25.58 31.85

0.8 0.9 51.53 (0.07) 51.91 49.33 65.65 36.99 52.07

1 48.87 (0.05) 48.81 46.51 63.48 33.96 49.42

1.1 46.44 (0.07) 46.05 43.96 61.58 31.34 47.00

RMSE 0.18 1.06 7.30 7.02 0.53

Table 1: Basket option values and bounds with varying maturity T , volatility

σ, and moneyness. Data: number of assets n = 2, correlation of Brownian

motions ρ12 = 0.3, jump intensities λ0 = 2, λ1 = 1, λ2 = 0.5, jump sizes

h0 = h1 = h2 = −0.2, and interest rate r = 0.05.
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Time Vol M’s MC (stdev) AP LB UB RG LN

1 0.2 0.9 19.83 (0.01) 19.83 19.82 20.29 18.45 19.13

1 14.76 (0.01) 14.76 14.76 15.23 13.75 14.26

1.1 10.73 (0.01) 10.72 10.71 11.29 10.19 10.50

0.5 0.9 26.53 (0.01) 26.51 26.48 27.40 24.20 26.16

1 22.21 (0.01) 22.18 22.15 23.17 20.12 21.89

1.1 18.56 (0.01) 18.54 18.51 19.63 16.80 18.31

0.8 0.9 35.10 (0.02) 35.04 34.97 36.57 30.02 34.89

1 31.40 (0.02) 31.33 31.27 33.04 26.45 31.20

1.1 28.17 (0.02) 28.08 28.03 29.98 23.43 27.98

3 0.2 0.9 29.55 (0.01) 29.56 29.47 31.98 25.97 28.58

1 25.36 (0.02) 25.37 25.28 27.82 22.06 24.49

1.1 21.76 (0.01) 21.75 21.68 24.23 18.82 21.01

0.5 0.9 40.98 (0.02) 40.97 40.73 45.36 32.91 40.46

1 37.64 (0.02) 37.58 37.37 42.09 29.58 37.13

1.1 34.65 (0.02) 34.56 34.38 39.19 26.73 34.16

0.8 0.9 54.48 (0.04) 54.21 53.92 59.97 37.49 54.27

1 51.94 (0.04) 51.62 51.37 57.67 34.50 51.74

1.1 49.65 (0.05) 49.27 49.03 55.60 31.91 49.43

RMSE 0.14 0.27 3.23 8.29 0.49

Table 2: Basket option values and bounds with varying maturity T , volatility

σ, and moneyness. Data: number of assets n = 2, correlation of Brownian

motions ρ12 = 0.7, jump intensities λ0 = 2, λ1 = 1, λ2 = 0.5, jump sizes

h0 = h1 = h2 = −0.2, and interest rate r = 0.05.
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Time Vol M’s MC (stdev) AP LB UB RG LN

1 0.2 0.9 16.32 (0.01) 16.32 16.29 16.83 15.40 15.74

1 10.78 (0.01) 10.77 10.74 11.40 10.27 10.48

1.1 6.66 (0.01) 6.66 6.63 7.39 6.67 6.71

0.5 0.9 21.41 (0.01) 21.37 21.23 22.83 20.19 21.15

1 16.67 (0.01) 16.61 16.46 18.33 15.70 16.48

1.1 12.86 (0.01) 12.77 12.64 14.77 12.20 12.75

0.8 0.9 28.33 (0.02) 28.16 27.72 31.43 25.74 28.27

1 24.20 (0.02) 23.96 23.53 27.77 21.81 24.15

1.1 20.68 (0.02) 20.40 19.98 24.77 18.56 20.65

3 0.2 0.9 23.42 (0.01) 23.44 23.26 26.12 21.47 22.70

1 18.74 (0.01) 18.74 18.57 21.50 17.13 18.17

1.1 14.88 (0.01) 14.85 14.70 17.69 13.68 14.48

0.5 0.9 32.94 (0.02) 32.98 32.07 39.38 28.72 32.72

1 29.10 (0.02) 28.99 28.16 35.77 25.04 28.90

1.1 25.75 (0.02) 25.52 24.76 32.67 21.96 25.59

0.8 0.9 45.31 (0.04) 45.75 42.81 58.32 35.22 46.15

1 42.29 (0.04) 42.40 39.60 56.22 32.06 43.15

1.1 39.59 (0.04) 39.39 36.72 54.47 29.34 40.45

RMSE 0.17 1.20 6.63 4.65 0.46

Table 3: Basket option values and bounds with varying maturity T , volatility

σ, and moneyness. Data: number of assets n = 4, correlation of Brownian

motions ρij = 0.3, jump intensities λ0 = λi = 1, jump sizes h0 = hi = −0.2
for i, j = 1, 2, 3, 4, and interest rate r = 0.05.
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Time Vol M’s MC (stdev) AP LB UB RG LN

1 0.2 0.9 16.99 (0.01) 16.99 16.97 17.39 16.09 16.49

1 11.60 (0.01) 11.60 11.58 12.08 11.07 11.33

1.1 7.55 (0.01) 7.55 7.53 8.11 7.47 7.55

0.5 0.9 24.19 (0.01) 24.17 24.14 24.92 22.51 23.98

1 19.71 (0.01) 19.69 19.66 20.56 18.26 19.55

1.1 16.01 (0.01) 15.99 15.96 16.98 14.86 15.90

0.8 0.9 32.89 (0.01) 32.82 32.77 34.19 28.75 32.77

1 29.06 (0.02) 28.99 28.93 30.56 25.07 28.95

1.1 25.74 (0.02) 25.66 25.61 27.43 21.99 25.64

3 0.2 0.9 24.64 (0.01) 24.64 24.55 26.65 22.51 23.99

1 20.09 (0.01) 20.08 20.00 22.16 18.28 19.56

1.1 16.31 (0.01) 16.28 16.20 18.42 14.87 15.91

0.5 0.9 37.20 (0.02) 37.13 36.98 40.14 31.14 36.91

1 33.64 (0.02) 33.54 33.40 36.71 27.66 33.35

1.1 30.49 (0.02) 30.37 30.24 33.69 24.71 30.22

0.8 0.9 51.20 (0.03) 50.90 50.70 55.35 36.74 51.12

1 48.48 (0.03) 48.15 47.96 52.97 33.70 48.41

1.1 46.01 (0.05) 45.66 45.47 50.86 31.06 45.95

RMSE 0.14 0.24 2.49 6.75 0.29

Table 4: Basket option values and bounds with varying maturity T , volatility

σ, and moneyness. Data: number of assets n = 4, correlation of Brownian

motions ρij = 0.7, jump intensities λ0 = λi = 1, jump sizes h0 = hi = −0.2
for i, j = 1, 2, 3, 4, and interest rate r = 0.05.
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