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Abstract 

Parkinson’s disease (PD) is the most common movement disorder and the second most common 

neurodegenerative disease affecting around 4 million people worldwide. Movement symptoms in PD 

are primarily due to degeneration of dopaminergic nigrostriatal neurons. These symptoms can be 

partially controlled by dopamine replacement therapies, however long term use of these drugs lead 

to debilitating side-effects and more importantly do not protect degenerating dopaminergic neurons 

from death. Hence novel neuroprotective strategies are sought. Recent evidence implicates 

αSynuclein accumulation, the hallmark of degenerating neurons in PD, with perturbed epigenetic 

acetylation of histone proteins around which DNA is coiled. A misbalance between the activities of 

the two enzyme classes responsible for control of histone acetylation, histone acetyltransferases and 

histone deacetylases (HDACs), have been linked to cell death in animal models of 

neurodegeneration. It is therefore hypothesised that if this pathogenic imbalance can be rectified 

with the use of HDAC inhibitors (HDACIs) then neurodegeneration observed in PD can be avoided. 

Here, the first evidence of altered histone acetylation and perturbed HDAC isoform expression in 

degenerating regions of the human Parkinsonian brain are demonstrated. Cell culture studies using 

dopaminergic neuronal and microglial cell lines demonstrate that dependent on the HDAC class(s) or 

isoform(s) inhibited, HDACIs are capable of inducing neuroprotection and reduction of microglial 

activation in vitro. Study of two broad-spectrum HDACIs in vivo, in the lactacystin rat model of PD 

demonstrate that, also dependent on isoform inhibition, HDACIs cause dose-dependent histone 

acetylation and upregulated expression of neurotrophic and neuroprotective factors, resulting in 

dopaminergic nigrostriatal neuroprotection and reduction of morphological changes and motor 

behavioural deficits detected through magnetic resonance imaging and behavioural testing 

respectively. Taken together the data herein provide compelling evidence to support the concept 

that dependent on isoform specificity, HDACIs represent a novel class of neuroprotective 

therapeutics for the treatment of PD.  
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1 – Introduction 

1.1 – Overview of Chapter 

Parkinson’s disease (PD) is the most common movement disorder and the second most common 

neurodegenerative, affecting around 4 million people worldwide. Despite its abundance in today’s 

society, current pharmacotherapy for PD is lacking, only able to partially tackle symptoms of the 

disorder yet unable to stop the progressive degeneration of neurons. Epigenetics, the process by 

which gene activity is altered without altering genetic information, has long attracted interest in 

neurodegenerative disease, due to the multifactorial origins of pathology. Epigenetic factors are 

thought to contribute to neuronal cell death in PD, and it is suggested that alteration in epigenetic 

regulation could hold therapeutic promise against neurodegeneration. One way by which this can be 

achieved is through histone remodelling; via acetylation and deacetylation of the histone proteins 

around which deoxyribonucleic acid (DNA) is coiled. This chapter will firstly summarise and review 

the current understanding of the clinical presentation, neuropathology, treatment and modelling of 

PD before reviewing the primary literature on the pharmacological targeting of histone acetylation 

for the treatment of PD. 
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1.2 – Parkinson’s Disease 

1.2.1 – History 

Historically numerous sources describe symptoms which resemble PD, including biblical texts, an 

ancient Egyptian papyrus (12th Century B.C.), an Ayurvedic medical treatise (10th Century B.C.) and 

the writings of Galen, a Roman physician and surgeon (2nd Century A.D.) (Lees, 2007, Garcia-Ruiz, 

2004). However despite having roots in prehistoric medicine, PD was first described in western 

medicine in 1817 by London physician James Parkinson (Goetz, 2011). In his iconic essay entitled “An 

Essay on the Shaking Palsy”, he provides symptomatic description for the first time of six patients 

displaying what we now describe as Parkinsonian symptoms (Parkinson, 2002, Goetz, 2011). 

However it was not for another 60 years after the publication of Parkinson’s original essay, that the 

term ‘Parkinson’s disease’ was used in place of its former title, paralysis agitans (shaking palsy), by 

French neurologist and professor of anatomical pathology, Jean-Martin Charcot (Lees, 2007). 

 

1.2.2 – Epidemiology 

1.2.2.1 – Prevalence and Incidence 

The prevalence of PD in industrialised countries is estimated to be around 0.3% of the general 

population. Being a disease of the elderly its prevalence increases greatly with age to around 1% of 

those aged over 60 years (Nussbaum and Ellis, 2003). It is known to be more prevalent in 

industrialised countries and also in Caucasian compared with Afro-American and Asian populations 

(de Lau and Breteler, 2006, Mayeux et al., 1995). Similarly some studies have found a greater 

incidence of PD in men than women (de Lau and Breteler, 2006), thought to be attributable to the 

neuroprotective effects of oestrogens however this remains debated (Saunders-Pullman, 2003, 

Gillies et al., 2004). In terms of incidence, the prevalence of PD translates to between 8-19 per 

100,000 people diagnosed per year dependent upon the population studied (de Lau and Breteler, 

2006). Early onset PD being diagnosed before age 50 accounts for just 10% of cases and hence 

incidence in people aged 60 years and above is greater than in young populations (de Lau and 

Breteler, 2006). The prevalence of PD translates to significant economic burden: the total cost per 

year in the UK estimated to be between £449 million and £3.3 billion (Findley, 2007). 

1.2.2.2 – Genetic Risk Factors and Familial PD 

Familial forms of PD (fPD) are thought to account for approximately 10% of PD cases. Study of fPD 

has identified at least 17 autosomal dominant and autosomal recessive mutations associated with 

varients of the disease, providing essential clues about the molecular mechanisms of disease 

pathogenesis (Houlden and Singleton, 2012). Of the autosomal dominant genes associated with PD, 

leucine-rich repeat kinase 2 (LRRK2) is far the most common, mutations in which accounting for 10% 
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of fPD (Spatola and Wider, 2014), associated with disruption of  LRRK2’s cellular pathways involved 

with regulating neuronal dendrite formation and growth (Cookson, 2010b). Similarly, LRRK2 

mutation has also been linked to the aggregation of αSynuclein (αSyn) a dominant pathological 

hallmark of PD (Lin et al., 2009, Tong and Shen, 2009). Likewise alterations in SNCA, the gene 

responsible for encoding αSyn have also been noted: duplications, triplication and point mutations 

in families leading to PD and atypical forms of PD (Spatola and Wider, 2014). Autosomal recessive 

mutations have also been noted to be associated with fPD. For example mutations in PINK1 (PTEN-

induced kinase 1) and DJ-1 (Daisuke Junko-1) have been shown to both result in mild Parkinsonism, 

thought to be attributable to the convergence of PINK1 and DJ-1 in the induction of oxidative stress 

(Cookson, 2010a). Dopaminergic neurons, the population of neurons known to degenerate most 

prolifically in PD, have a uniquely weak tolerance to oxidative stress and mitochondrial dysfunction, 

hence the Parkinsonian phenotype upon mutation in either of these genes, attributed to its kinase 

function in the mitochondria (PINK1) and coordinating cellular response to oxidative stress (DJ-1) 

(Cookson, 2010a). Autosomal recessive mutations in PARK2 are thought to account for 50% of early 

onset fPD (Padmaja et al., 2012). Parkin, the product of this gene, is a ligase protein crucially 

involved in the ubiquitin mediated proteosomal degradation of proteins. This system is known also 

to be involved in sporadic PD, thought to be linked to the failure of protein degradation in 

degenerating neurons in the brains of sufferers (McNaught and Jenner, 2001, Tofaris et al., 2001, 

McNaught et al., 2002a). Genetic studies have also identified a number of susceptibility genes, 

polymorphisms in which are thought to contribute significantly to a person’s genetic risk of 

developing PD. For example, UCH-L1 (Ubiquitin Carboxy-terminal Hydrolase L1) is also involved in 

ubiquitin mediated proteosomal degradation, resulting in cytosolic accumulation of abnormal 

protein in neurons leading to their demise (Maraganore et al., 2004). 

1.2.2.3 – Environmental Risk Factors 

The first evidence that environmental factors may be involved in the development of PD came from 

the coincidental discovery of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) 

(Langston et al., 1983). Discovered as being a by-product of the crude sythesisis of an illicit 

meperidine derivative by a group of drug addicts, when administered intravenously this MPTP 

contaminant produced striking Parkinsonian symptoms in the four users (Langston et al., 1983). This 

by-product, MPTP, was later shown to be readily converted in the brain in astrocytes to 1-methyl-4-

phenylpyridinium (MPP+), the pyridinium ion, catalysed by monoamine oxidase type-B (MAO-B). 

MPP+ is then taken up by the dopamaine transporter (DAT) into dopaminergic neurons causing 

inhibition of mitochondrial complex I leading quickly to neuronal cell death (Przedborski et al., 2000). 

MPTP is now routinely used to model PD in vivo in mice and primates, causing progressive 
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nigrostriatal neurodegeneration when injected peripherally, depending on the extent and duration 

of treatment. Similarly the active metabolite MPP+ is used to model dopaminergic degeneration in 

vitro.    

 The discovery of MPTP led to a surge of epidemiological studies into environmental factors 

which could be associated with increased incidence of PD. Farming and living in rural areas were 

quickly identified as surrogate markers associated with increased incidence of PD, moreover an 

increased incidence of PD was observed in those with agricultural occupations (Gorrell et al., 1996, 

de Lau and Breteler, 2006). Farming and rural residency are often associated with increased 

exposure to herbicides and pesticides hence it was demonstrated that the herbicide paraquat and 

the pesticide rotenone are also potent mitochondrial complex I inhibitors like MPTP (Betarbet et al., 

2000). Both of these toxins are now used alongside MPTP for the modelling of PD in animals.  

Exposure to metals such as iron, manganese, copper, lead, zinc, mercury and aluminium 

have also been suggested as possible risk factors for the development of PD, due to the 

accumulation of metals within affected brain regions in PD (Dexter et al., 1989b, Gorell et al., 1999). 

For example, exposure to magnesium ore is known to be toxic towards the basal ganglia, resulting in 

development of Parkinsonian symptoms (Huang, 2007). Furthermore, inhalation of magnesium 

fumes from welding has led to a suggested explanation of the increase incidence of PD in welders 

(Jankovic, 2005).  

 Numerous lifestyle choices have also more recently been implicated in risk of developing PD. 

For example, multiple epidemiological studies suggest that cigarette smoking reduces the risk of 

developing PD (Kiyohara and Kusuhara, 2011). Although the mechanism behind this finding is still 

not conclusive, it is suggested that the increase of dopamine release in the dopaminergic reward 

pathways by nicotine in cigarette smoke may be responsible for the decreased risk. Additional to 

this, nicotine is also thought to act as an antioxidant and alters activity of MAO-B adding further 

weight to its beneficial effects against PD (Quik et al., 2012). Studies of the neuroprotective effects 

of nicotine in animals models of PD are conflicting however, positive finding only being reported in 

some animal models (Maggio et al., 1998), but not in others (Pauly et al., 2004). Interestingly it has 

also been shown that nicotine-free tobacco smoke is capable of inducing neuroprotection in a 

drosophila model of PD (Trinh et al., 2010), highlighting the possibility that the active 

neuroprotectant in cigarette smoke may well not be nicotine at all. Coffee consumption has also 

been linked to PD, however it is far more clear in this instance that caffeine is the active agent: 

caffeine consumption being inversely related to the risk of developing PD (Costa et al., 2010). 

Caffeine has therefore been shown to be neuroprotective in animal models of PD (Chen et al., 2001). 

Interestingly however this correlation is only noted in men, it being later confirmed that this is due 
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to the effect of oestrogen at inhibiting the neuroprotective effects of caffeine (Xu et al., 2006). Also 

of note, caffeine acts directly as an adenosine A2A receptor antagonist, which has also been 

proposed as a potential non-dopaminergic treatment for PD itself (Armentero et al., 2011). 

 Lastly, inflammation is thought to play a significant role in PD pathogenesis, in particular the 

activation of the brain’s innate immune cells, the microglia, inducing parenchymal release of 

numerous pro-inflammatory cytokines and cytotoxic factors contributing to neurodegeneration. 

Likewise it has been discovered that non-steroidal anti-inflammatory drugs (NSAIDs), principally 

ibuprofen, when taken two times per week, reduce the risk of development of PD by 45% (Chen et 

al., 2005a, Chen et al., 2003). 

 

1.2.3 – Clinical Presentation 

1.2.3.1 – Diagnosis 

Following the Queens Square Brain Bank clinical criteria for the probable diagnosis of PD (figure 1.1) 

(Gibb and Lees, 1988), a patient suspected of having PD is primarily diagnosed with ‘Parkinsonian 

syndrome’, which is defined as displaying bradykinesia (slowness of initiation of voluntary 

movement with progressive reduction in speed and amplitude of repetitive action) co-presented 

with at least one of either muscle rigidity, 4-6 Hz rest tremor, or postural instability not caused by 

primary visual, vestibular, cerebellar, or proprioceptive dysfunction (Jankovic, 2008). Any disorder 

which results in striatal dopamine depletion or direct damage of the striatuim can result in 

Parkinsonism hence the second stage of PD diagnosis is to exclude other diseases associated with 

Parkinsonism, e.g. supernuclear palsy, multiple system atrophy and corticobasal degeneration. 

However, PD is the most common cause of Parkinsonism, constituting ~80% of cases (Hughes et al., 

1992). Three or more of a list of ‘supportive prospective positive criteria for PD’ are then used to 

confirm the diagnosis of ‘probably PD’. For example, unilateral onset, rest tremor present and the 

progressive nature of the disorder (figure 1.1) (Gibb and Lees, 1988). It is important to note here 

however that even after fulfilment of the diagnostic criteria, the patient is only diagnosed ‘probable 

PD’, confirmed diagnosis only able to be made post-mortem (Tolosa et al., 2006). In more recent 

years however, the advances in clinical imaging have enabled this diagnosis pathway to be 

supplemented with sensitive imaging protocols e.g. single photon emission computed tomography 

(SPECT) using the dopamine transporter ligand Ioflupane (123I) (de la Fuente-Fernández, 2012), 

capable of differentiating PD from Parkinsonism syndrome adding confidence to the eventual clinical 

diagnosis. 
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Figure 1.1 – Queens Square Brain Bank clinical diagnostic criteria 
Clinical criteria used in the UK for the diagnosis of probable PD (Gibb and Lees, 1988). 

 

 

 

 

 

Step 1 Diagnosis of Parkinsonian syndrome 

 Bradykinesia (slowness of initiation of voluntary movement with progressive reduction in speed 
and amplitude of repetitive actions) 

 And at least one of the following: 
o muscular rigidity 
o 4-6 Hz rest tremor 
o postural instability not caused by primary visual, vestibular, cerebellar, or 

proprioceptive dysfunction. 
 

Step 2 Exclusion criteria for Parkinson's disease 

 History of repeated strokes with stepwise progression of parkinsonian features 

 History of repeated head injury 

 History of definite encephalitis 

 Oculogyric crises 

 Neuroleptic treatment at onset of symptoms 

 More than one affected relative 

 Sustained remission 

 Strictly unilateral features after 3 years 

 Supranuclear gaze palsy 

 Cerebellar signs 

 Early severe autonomic involvement 

 Early severe dementia with disturbances of memory, language, and praxis 

 Babinski sign 

 Presence of cerebral tumour or communicating hydrocephalus on CT scan 

 Negative response to large doses of levodopa (if malabsorption excluded) 
 MPTP exposure 

 

Step 3 Supportive prospective positive criteria for Parkinson's disease 
(Three or more required for diagnosis of probable Parkinson's disease) 

 Unilateral onset 
 Rest tremor present 
 Progressive disorder 
 Persistent asymmetry affecting side of onset most 
 Excellent response (70-100%) to levodopa 
 Severe levodopa-induced chorea 
 Levodopa response for 5 years or more 
 Clinical course of 10 years or more 
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1.2.3.2 – Motor Symptoms 

PD presents clinically as a quartet of cardinal symptoms which can be identified with the acronym 

TRAP: Tremor at rest, Rigidity, Akinesia (or bradykinesia) and Postural instability (Jankovic, 2008). 

Perhaps the most important of these, due to its relevance in diagnosis is akinesia (or bradykinesia). 

Literally meaning ‘absence of movement’, akinesia is slowness or lack of movement characteristic of 

PD. Bradykinesia is probably the more realistic description however given the presentation in PD, 

referring to the slowness of movement more commonly experienced by patients (Berardelli et al., 

2001). Bradykinesia affects all voluntary and involuntary movement, encompassing difficulties with 

planning, initiating and executing movement (Berardelli et al., 2001). This initially manifests as 

slowness in performing everyday tasks and reduced reaction times however commonly secondarily 

manifests as loss of facial expression, impaired swallowing, decreased blinking and reduced arm 

swing whilst walking (Jankovic, 2008). Resting tremor is by far the symptom most synonymous with 

PD, presenting most predominantly in the extremities between frequencies of 4 to 6Hz (Jankovic, 

2008). Parkinsonian tremor is often associated with a characteristic ‘pill-rolling’ motion in the thumb 

and fingertips which is suppressed during voluntary movement and during sleep (Jankovic, 2008). 

This symptom itself is not necessarily debilitating or disabling but can often cause psychological 

suffering due to the stigmatism associated with PD and the conspicuous nature of a resting tremor. 

Rigiditiy in the muscles is often one of the most frequent early manifestations of PD but it is often 

misdiagnosed as arthritis (Jankovic, 2008). In PD this often is accompanied by the ‘cogwheel’ 

phenomenon, in which circular jerking rigiditiy in flexion, extension and rotation about a joint are 

observed with a background of tremor, which continues throughout an entire movement (Jankovic, 

2008). This increased resistance with movement can lead to pain whilst moving and hence can be 

become difficult to manage for patients. Postural instability is one of the later manifestations of PD, 

observed after the onset of most other clinical symptoms (Jankovic, 2008). It is detected clinical 

using the ‘pull test’, in which a patient is pulled quickly backwards or forwards by the shoulders: 

used to assess the degree of retropulsion or propulsion respectively. Taking more than two steps or 

the absence of any postural response is indicative of abnormal postural stability. In the elderly PD 

populations this is the most common cause of falls and risk of hip fractures (Williams et al., 2006). 

1.2.3.3 – Non-Motor Symptoms 

Non-motor symptoms of PD are generally associated with the advanced stages of the disease, 

however some of the non-motor symptoms, e.g. olfactory disturbances, constipation and depression 

can often occur earlier in the disease (Chaudhuri et al., 2006). The non-motor symptoms associated 

with PD are wide-ranging, and the occurrence and combination of non-motor symptoms 

experienced by individual PD sufferers vary greatly. The symptoms which are currently well know 
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can be categorised into five main groups: neuropsychiatric, sleep disorders, autonomic, sensory, and 

other (table 1.1) (Chaudhuri et al., 2006). The neuroanatomical and neurochemical substrates for 

most of these symptoms are starting to become better understood, however the pathophysiology 

associated with many of these symptoms still remains elusive. 

 

1.2.4 – Neuropathology 

The cardinal clinical symptoms of PD (tremor, rigidity, akinesia and postural instability) are generally 

accepted to be the result of neurodegeneration of dopaminergic nigrostriatal pathways within the 

central nervous system of sufferers (Dexter and Jenner, 2013). Degeneration is most notable within 

neuromelanine positive neurons in the Substantia Nigra pars compacta (SNpc), the mescencephalic 

brain nucleus responsible for the synthesis of the neurotransmitter, dopamine, hence production of 

the classic gross neuropathological finding of SNpc depigmentation (figure 1.2). Dopaminergic 

pathways project from the SNpc to the striatum, the subcortical brain nucleus composed of the 

caudate and putamen, responsible for the planning and modulation of movement. Therefore 

degeneration of these pathways in PD leads to loss of striatal dopamine and the clinical presentation 

of disrupted movement and motor based symptoms. At the onset of neurodegeneration, movement 

symptoms do not typically appear due to the existence of compensatory mechanisms of 

dopaminergic neurons, i.e. increased dopamine release, upregulation of dopaminergic receptors and 

reduced reuptake of dopamine by adjacent neurons. Therefore by the onset of movement based 

symptoms, it is known that 60-70% of neurons in the SNpc have already degenerated, and ~80% of 

striatal dopamine has been depleted (Riederer and Wuketich, 1976). 

 The neuropathological hallmark of degenerating neurons in the PD are concentric hyaline 

intracytoplasmic inclusions composed predominatly of a synaptic protein called αSyn (Spillantini et 

al., 1997). These ubiquitinated aggregates form intraneuronal structures known as Lewy bodies and 

dystrophic neurites known at Lewy neurites, which cause numerous detrimental consequences for 

their inhabiting cells (section 1.2.5). Lewy body like inclusions have also been shown to be present in 

glial cells in the midbrain of PD patients (Mochizuki et al., 2002), indicative of microglial phagocytosis 

of affected neurons (Fellner and Stefanova, 2013). In PD however these microglial inclusions are 

distinctly different from those found in other neurodegenerative disorders, such as in multiple 

system atrophy which is characterised by cytoplasmic microglial inclusions (Fellner and Stefanova, 

2013). The cellular consequences of αSyn accumulation in Lewy formations are yet to be fully 

elucidated, however associated events in neurons such as oxidative stress, mitochondrial 

dysfunction, altered proteolysis, inflammation and excitotoxicity are thought to lead rapidly to 

neuronal death (Lee and Trojanowski, 2006a).  
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Table 1.1 – Non-Motor Symptoms of Parkinson’s Disease 
Range of non-motor symptoms associated with the development and progression of PD. Symptoms known to be (partly) treatable with existing dopaminergic therapies 
used for the treatment of motor symptoms shown in italics (Chaudhuri and Schapira, 2009). 
 
Neuropsychiatric Sleep disorders Autonomic Sensory Other 

Depression, apathy, anxiety Restless legs and periodic 

limb movements 

Bladder disturbances Pain Non-motor fluctuations 

Anhedonia REM behaviour disorder Sweating Paraesthesia Fatigue 

Cognitive dysfunction REM loss of atonia Erectile impotence Olfactory disturbances Weight loss/gain 

Attention deficits Non-REM sleep-related 

movement disorders 

Gastrointestinal symptoms Visual dysfunction  

Dementia Excessive daytime 

somnolence 

Dribbling of saliva   

Confusion Vivid dreaming Reflux, vomiting   

Panic Attacks Insomnia Nausea   

Attention deficit Sleep-disordered breathing Constipation   

 

 

 



32 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.2 – Degeneration of Nigrostriatal Pathways in PD 
Cartoon and cross section of dopaminergic projections from the SNpc to the striatum (composed of the 
caudate and putamen) of (A) normal subjects and (B) PD patients (adapted from Dauer and Przedborski, 2003).  
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 Although neurodegeneration in PD is often thought to be confined to the SNpc and related 

dopaminergic nuclei, it is now well known that Lewy body pathology and αSyn deposition extends 

well beyond the dopaminergic centres: into noradrenergic, serotinergic, γ-amino butyric acid 

(GABA)-ergic and cholinergic neurotransmitter systems (Lim et al., 2009) located in the locus 

coeruleus, reticular formation of the brain stem, raphe nucleus, dorsal motor nucleus of the vagus, 

basal nucleus of Meynert, amygdala, and hippocampus etc., suggesting a common pathogenic 

process with the SNpc (Dexter and Jenner, 2013). In 2003, Braak and colleagues proposed that αSyn 

deposition begins in the dorsal motor nucleus of vagus (stage 1), from where they suggested it 

spreads upwards via the pons (stage 2) to the midbrain (stage 3), to the basal prosencephalon and 

mesocortex (stage 4) and onto the neocortex (figure 1.3) (Braak et al., 2003). The initial Braak stages 

(1-2) are therefore pre-motor symptom development: these symptoms only becoming evident from 

stage 3-4 onwards due to excessive dopaminergic degeneration in the midbrain. Although it has 

been noted that not all cases of PD strictly follow this staging system (Kalaitzakis et al., 2008), this 

progressive nature of αSyn pathology may well provide explanation for the progressing 

symptomology associated with PD development. For example, early αSyn pathology in the olfactory 

bulb leading to the olfactory disturbances experienced by patients prior to the motor based 

symptoms as a result of pathology within the midbrain and SNpc. Pathology then spreading in a 

rostral direction causing the development of dementia and neuropsychiatric symptoms synonymous 

with late stage PD.  

 

1.2.5 – Pharmacotherapy and Current Approaches to Treatment 

PD is characterised by degeneration of the dopaminergic nigrostriatal pathways, hence the primary 

route of pharmacotherapy lies in dopaminergic replacement strategies. Due to the inability of 

dopamine to cross the blood brain barrier (BBB), its synthetic precursor, L-3,4-

dihydroxyphenylalanine (L-DOPA) is given orally which crosses the BBB with ease and is converted in 

the brain to dopamine via the enzyme DOPA decarboxylase (Whitfield et al., 2014, Poewe et al., 

2010). L-DOPA administration therefore increases the concentration of this important 

neurotransmitter for nigrostriatal signalling and hence transiently alleviates the motor based 

symptoms of PD. L-DOPA however is also converted to dopamine in the peripheral as well as the 

central nervous system. This can result in peripheral hyperdopaminergia and hence it is now 

standard clinical practice to administer L-DOPA with a peripheral DOPA decarboxylase inhibitor (i.e. 

carbidopa) enabling L-DOPA to cross the BBB intact (Whitfield et al., 2014). For 40 years L-DOPA has 

very much become the ‘gold standard’ for the treatment of PD however in the majority of cases long 
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Figure 1.3 – Braak’s Staging of αSyn Pathology in Sporadic PD 
Ascending course of αSyn pathology within the brain during PD progression. The darker the shade of pink, the 
more pronounced the αSyn pathology is in the area. (A-D) Various views of the brain. (E) Topographic 
expansion of αSyn progression from left to right, and growing severity from top to bottom. Abbreviations: co, 
coeruleus–subcoeruleus complex; dm, dorsal motor nucleus of the glossopharyngeal and vagal nerves; fc, first 
order sensory association areas, premotor areas, as well as primary sensory and motor fields; hc, high order 
sensory association areas and prefrontal fields; mc, temporal mesocortex; sn, substantia nigra (adapted from 
Braak et al., 2003). 
 

A B 

C D 

E 



35 
 

term use leads to the development of well characterised ‘L-DOPA induced dyskinesia’. L-DOPA is 

therefore often combined with other drugs acting on the dopaminergic system, lowering the 

effective dose and limiting the development of drug induced dyskinesia (Buck and Ferger, 2010, 

Poewe et al., 2010). For example, synaptic dopamine can be increased with the use of drugs such as 

amantadine, which increases pre-synaptic release of dopamine. Similarly, synaptic dopamine can 

also be increased with the use of inhibitors of dopamine degradation enzymes, e.g. catecholamine-

o-methyl transferase (COMT) inhibitors such as tolcapone and entacapone, and monoamine oxidase 

(MAO) inhibitors such as selegline and rasagiline. Direct dopaminergic receptor agonism is often also 

used, through administration of drugs such as apomorphine, pergolide, pramipexole and ropinirole 

(figure 1.4) (Poewe et al., 2010, Buck and Ferger, 2010). These drugs only correct the deficit in 

dopamine however and such do not return patients to full normal function. 

Recent advances in deep brain stimulation have led to even greater use of surgical 

treatment of PD patients, in direct electrical stimulation of areas such as the Subthalamic nucleus 

and the Globus Pallidus interna (Foltynie and Hariz, 2010). Stimulation of such brain nuclei have 

been proven to benefit resting and postural tremor, truncal and limb rigidity, and limb or axial 

bradykinesia, as well as improvements in the severity and frequency of fluctuations and dyskinesias 

(Krack et al., 1997). This plethora of therapeutic options available for the treatment of PD has 

therefore revolutionised its management, allowing for therapeutic control of many motor 

symptoms. However, none of these drugs provide long term protection against continual 

dopaminergic neuronal cell death. Additionally, these drugs have very little effect on non-motor 

symptoms (table 1.1) which are the main determinants for deteriorating quality of life and patient 

care costs, hence more novel neuroprotectant agents are sought. 

 

1.2.6 – Mechanisms of Neurodegeneration 

The deposition of insoluble misfolded protein, be it nuclear, cytoplasmic or extracellular is a feature 

of numerous neurodegenerative diseases (Soto, 2003). This common feature suggests that protein 

deposition is in some way neurotoxic.  There are numerous mechanisms by which this neurotoxicity 

could occur, many of which are known to contribute to the neurotoxic effects of αSyn aggregates in 

PD. However, these pathogenic factors are by no means mutually exclusive, quite the contrary. In 

fact many of the factors thought to contribute to neurodegeneration in PD interact with one 

another, adding multiple layers of complexity to the pathogenesis of the disease (figure 1.5).  

 

 

 

http://en.wikipedia.org/wiki/Subthalamic_nucleus
http://en.wikipedia.org/wiki/Globus_pallidus_interna
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Figure 1.4 – Dopaminergic Therapeutic Strategies for Parkinson’s Disease 
Various therapeutic points of intervention shown in red, leading to increased dopamine content for signalling 
in the degenerating SNpc (adapted from Rang et al., 2007). 
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1.2.6.1 – Mitochondrial Dysfunction and Oxidative Stress 

Evidence for the involvement of mitochondrial dysfunction and oxidative stress in the pathogenesis 

of PD came from the discovery of MPTP (section 1.2.2.3). MPTP causes selective dopaminergic 

neurodegeneration following its inhibition of mitochondrial complex 1 and blockade of the electron 

transport chain, resulting in energy starvation and the production of cytotoxic reactive oxygen 

species (ROS) and oxidative stress (Przedborski et al., 2000). Furthermore two genes associated with 

fPD are mitochondrial in nature: PINK1 and DJ-1, adding weight to the involvement of mitochondria 

in Parkinsonian neurodegeneration (Cookson, 2010a). Dopaminergic neurons themselves are 

particularly susceptible to oxidative stress, given the presence of ROS generating enzymes such as 

monoamine oxidase in this cell type, and the ability of dopamine to autooxidise. ROS themselves are 

very difficult to detect, however markers of oxidative stress have been extensively shown in the 

SNpc in PD, e.g. lipid peroxidation, and protein and DNA oxidation (Yoritaka et al., 1996, Dexter et 

al., 1989a, Zhang et al., 1999, Alam et al., 1997). In PD it is therefore thought that αSyn aggregates 

impact on mitochondrial function, for example it has been observed that transgenic mice 

overexpressing αSyn treated with MPTP exhibit significantly more mitochondrial abnormalities than 

saline or wild type mice treated with MPTP (Song et al., 2004). Moreover mutant αSyn has been 

previously shown to localise at the mitochondrial membrane leading to dysfunction and oxidative 

stress (Parihar et al., 2008). Likewise, oxidative stress leads to oxidation of iron species within 

degenerating dopaminergic neurons, leading to exacerbation of αSyn accumulation (Levin et al., 

2011).   

1.2.6.2 – Altered Proteolysis 

The extensive accumulation of misfolded protein in PD, predominantly αSyn, coupled with its 

minimal clearing, led to investigation of the function of the ubiquitin proteasome system (UPS) in 

the disease. Additionally, two mutations associated with fPD take place in the genes of UPS 

elements: PARK2 (parkin) and UCH-L1. Investigation of the function of the UPS in PD led to the 

discovery that there are specific alterations in catalytic activity of UPS elements in the SNpc in PD 

(McNaught and Jenner, 2001, Tofaris et al., 2001, McNaught et al., 2002a). Furthermore, 

administration of UPS inhibitors such as proteasome inhibitor 1 (PSI) to cell culture systems and 

directly into animal brains, led to degeneration of dopaminergic neurons (McNaught et al., 2002b, 

McNaught et al., 2002c). Additionally, it was observed that UPS inhibition in cell culture led to a 

cascade of events including both mitochondrial dysfunction as well as oxidative stress (Hyun et al., 

2003). UPS inhibition therefore presents a pivotal mechanism of cell death in PD, capable of 

exacerbating other known factors in neuronal demise in the disease. 
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1.2.6.3 – Inflammation 

The suggestion that inflammation may also contribute to neuronal cell death in PD came from the 

discovery that activated microglia are present in the SNpc of PD patients (McGeer et al., 1988). Upon 

activation, microglia upregulate their expression and secretion of inflammatory cytokines such as 

interleukin 1-β (IL-1β), IL-6 and tumour necrosis factor-α (TNFα) as well as activation inducible nitric 

oxide synthase (iNOS) resulting in production of nitric oxide (NO) and nitrative stress by microglial 

cells. Correspondingly each of these changes were shown to be present in PD brains (Hirsch et al., 

2003). Pro-inflammatory cytokines such as these initiate and amplify the immune response of 

microglia and in concert with iNOS exert neurotoxicity (Stoll et al., 2000). Likewise, 

lipopolysaccharide (LPS), a potent inducer of microglia has been shown to initiate selective 

dopaminergic neurodegeneration when acutely injected into the SNpc in rats (Herrera et al., 2000). 

1.2.6.4 – Excitotoxicity 

Because of the circular nature of signalling within the basal ganglia, neurodegeneration within the 

SNpc leads to increased glutamatergic firing in the Subthalamic Nucleus (Rodriguez et al., 1998). It is 

thought that this over activation leads to excitotoxic damage of target structures, such as the Globus 

Palidus interna, Substantia Nigra pars reticulata, Pedunculopontine Nucleus, and most importantly 

the SNpc. Activation of glutamatergic receptors on nigral dopaminergic neurons leads to release of 

intracellular calcium, which in turn is thought to mediate excitotoxic cell death through a number of 

pathways (Marambaud et al., 2009). For example, intracellular calcium activates calcium dependent 

proteases and lipases which damage critical structural proteins and lipid membranes. Similarly, 

increased cytoplasmic calcium can lead to activation of iNOS and mitochondrial damage leading to 

production of ROS and oxidative stress leading to neurodegeneration (section 1.2.6.1).  

 

1.2.7 – Modelling Parkinson’s Disease in Animals 

As has been described above, a number of the mechanistic studies seeking to understand the 

neurodegeneration associated with PD have utilised toxins known to induce Parkinsonian pathology 

in humans, e.g. MPTP. Additionally, others have used genetic aspects of the disease: genes known to 

be associated with fPD to model differing aspects of Parkinsonian neurodegeneration, i.e. αSyn 

accumulation. From these studies it is becoming increasingly clear that neurodegeneration in PD is a 

hugely complex affair with multifactorial origins. Taken together, it is apparent that clues from 

human post-mortem tissue, epidemiological studies and cell culture systems can go some way to 

investigating the roots and causes of the disease, however animal models are vital in aiding more 

complex investigations of disease pathogenesis. Likewise, animal models are pivotal in testing the 

efficacy of disease modifying agents against the progressing pathology associated with PD.  
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Figure 1.5 – Mechanisms of Neurodegeneration in Parkinson’s Disease 
Key molecular mechanisms which contribute to neurodegeneration of dopaminergic neurons in the SNpc in PD. Blue arrows interactions between the molecular 
mechanism associated with neurodegeneration. Double helix structures indicate common gene mutations found in fPD. Abbreviations: ROS, reactive oxygen species 
(adapted from Dexter and Jenner, 2013). 
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 The ‘holy grail’ in PD research would be an animal model which recapitulates the sporadic 

and progressive nature of the disease, mirroring the complex anatomical spread of an even more 

complex mechanism of neurodegeneration throughout the brain, all the while modelling motor and 

non-motor symptoms of the disease. To date, no such model exists. That being said, numerous 

animal models are now used in PD research which model a wide range of the spontaneous, 

progressive, mechanistic and symptomatic aspects of the disease using both genetic and toxin based 

approaches.  

1.2.7.1 - Gene Based Models 

It may seem counter intuitive to study rare genetic forms of a common sporadic disease, however it 

is expected that there is a phenotypic similarity between the genetic and sporadic forms of the 

disease, them sharing pathogenic mechanisms. Overexpression of either wild-type or mutant αSyn in 

drosophila leads to αSyn positive inclusions and loss of dopaminergic neurons as well as motor 

behavioural changes (Feany and Bender, 2000). Most importantly these behavioural changes are 

alleviated upon treatment with dopaminergic therapeutics (section 1.2.5) known to address motor 

symptoms in human PD (Pendleton et al., 2002). The A53T mutation of the SNCA gene in mice has 

been shown to produce αSyn positive Lewy body like inclusions in addition to neuropathological 

changes such as neuronal atrophy, dystrophic neurites and astrocytosis with a severe motor 

phenotype (Giasson et al., 2002, Matsuoka et al., 2001, Lee et al., 2002). These animals however are 

void of nigral pathology questioning their relevance as a model of PD itself. Similarly there are mixed 

results using viral vector approaches to overexpress human αSyn in the SNpc of rats: αSyn 

accumulation being consistently demonstrated however whether this results in cell loss in the SNpc 

continues to be debated (Lo Bianco et al., 2002, Kirik et al., 2002). More recent studies using 

different viral vector strategies and injection of αSyn fibrils to induce αSyn pathology have shown 

encouraging results however, demonstrating nigrostriatal neurodegeneration, dopamine depletion 

and a motor behavioural phenotype in experimental animals (Luk et al., 2012, Oliveras-Salva et al., 

2013). These studies were published post-initiation of the studies presented here; however they 

represent an exciting development in the field of PD animal modelling. Mixed results have also been 

seen in animals using overexpression of parkin, DJ-1, PINK1 and LRRK2: changes in striatal function, 

altered morphology of dopaminergic neurons, changes in other monoaminergic systems, 

inflammatory change all being observed yet animals lacking dopaminergic neurodegeneration 

(Goldberg et al., 2003, Chen et al., 2005b, Kitada et al., 2007, Li et al., 2009). Despite the lack of 

dopaminergic neurodegeneration in these models there is still value in them, allowing for 

investigation of the effects of mutations associated with fPD.  
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1.2.7.2 - Toxin Based Models 

Toxin based models on the other hand are designed such that toxins are used which specifically 

result in dopaminergic neuronal degeneration, providing a more relevant platform on which to test 

the efficacy of novel neuroprotective therapies. Additionally, because of specific dopaminergic 

neurodegeneration, animals exhibit motor specific symptoms quantifiable through a number of 

behavioural test paradigms. The difficulty with using such toxins however is that many of them 

require direct intracerebral administration into either the SNpc, striatum or medial forebrain bundle 

(MFB) to cause localised Parkinsonian degeneration. High concentrations of toxins are required to 

cause dopaminergic degeneration and behavioural consequences making control of neuronal 

exposure and time course of pathology difficult to control. Similarly, a limitation of such models lies 

in the fact that toxin administration is often acute, animals by no means model the progressive 

nature of the disorder unlike gene based approaches. That being said, a number of toxins allow 

chronic treatment and neuropathological development, i.e. administered peripherally via osmotic 

mini-pump, or administration into areas such as the striatum which cause a more gradual profile of 

degeneration.  

 Based mainly on epidemiological findings of environmental factors known to induce 

dopaminergic neurodegeneration (section 1.2.2.3), and the pathways associated with 

neurodegeneration in PD (section 1.2.5) numerous toxins are used to induce Parkinsonian 

neurodegeneration in vivo (table 1.2). For example toxins which induce oxidative stress (6-

hydroxydopmine (6-OHDA) and paraquat), nitrative stress and neuroinflammation (LPS), 

mitochondrial dysfunction (rotenone, MPTP and MPP+), excitotoxicity (glutamate, quinolinic and 

ibotinic acid), proteasomal dysfunction (PSI, epoximycin, lactacystin) are used to induce 

dopaminergic neurodegeneration in vivo and produce animal models of PD (Dexter and Jenner, 

2013). Based on their mechanism of action, differing sites of administration are required. For 

example environmental toxins such as MPTP and rotenone can be given peripherally because of 

their ability to cross the BBB and cause SNpc dopaminergic neurodegeneration. However, due to 

their poor BBB penetrance, toxins such as 6-OHDA need to be administered at their site of action to 

cause oxidative stress responsible for initiating cell death within the area. Similarly, the speed of 

neurodegeneration associated with administration of an intracerebral toxin depends greatly on its 

site of injection (Jonsson, 1983). Injections in the MFB for example induce a fast lesion: pathological 

effects of the toxin spreading both rostrally to the striatum and caudally to the SNpc simultaneously. 

A slower development of pathology would be induced as a result of toxin administration to the 

SNpc, whereby it takes some time for dopaminergic terminals within the striatum to become 

dysfunctional. Similarly, an even more gradual development of degeneration would occur when 
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toxins are administered to the striatum due to the retrograde degeneration of dopaminergic 

neurons. It is of note however that the several of these toxin based models fail to mirror one of the 

principle pathological features of PD, that being altered protein accumulation, apart from the 

proteasome inhibitors.  
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Table 1.2 – Toxins Used to Model Parkinson’s Disease 
Toxins used to model PD in vivo based on modelling elements of pathology associated with the disease, and 
the sites/routes of administration. *remains debated Abbreviations: LPS, lipopolysaccharide; 6-OHDA, 6-
hydroxydopamine; MFB, medial forebrain bundle; SNpc, Substantia Nigra pars compacta; MPTP, 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine; MPP+, 1-methyl-4-phenylpyridinium, PSI, proteasome inhibitor 1 (adapted 
from Dexter and Jenner, 2013).  
 
Pathology Modelled Toxin(s) Site(s) of Administration 

Oxidative Stress 6-OHDA 

Paraquat 

SNpc, MFB, striatum 

Peripherally 

Nitrative Stress LPS SNpc, striatum, peripherally 

Mitochondrial Dysfunction Rotenone 

MPTP and MPP+ 

Peripherally 

Peripherally 

Excitotoxicity Quinolinic acid 

Ibotinic acid 

Glutamate 

SNpc and striatum  

SNpc and striatum 

SNpc and striatum 

Proteasomal Dysfunction PSI 

Epoximycin 

Lactacystin 

SNpc and peripherally* 

SNpc and peripherally* 

SNpc and peripherally* 

Glial Cell Activation LPS SNpc, striatum, peripherally 
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1.3 – Epigenetic Regulation of Gene Expression 

All cells inherit the same genetic material and code. However, the regulation of these genes which 

enables cells to retain their unique physical and biological phenotype in line with the specific tissue 

or organ to which they reside varies from cell to cell. This collection of regulatory mechanisms is 

hence named the epigenome (literally meaning ‘above the genome’): the combination of DNA and 

histone post-translational modifications and related interacting proteins that together package the 

genome and help define the transcriptional programme of a given cell (Arrowsmith et al., 2012, 

Bernstein et al., 2007). Dynamic changes in epigenetic regulation therefore underlie the 

physiological basis of cell function and crucially enable its malleability in response to environment 

(Meaney, 2010). Likewise by extension, perturbations of these epigenetic mechanisms are now 

known to play a pivotal role in a number of disease states, from cancer to metabolic disease and 

from neuropsychiatric to neurodegenerative disorders (Portela and Esteller, 2010). 

 To enable the highly compact packaging of the eukaryotic genome, DNA is tightly coiled 

around histone proteins forming nucleosome structures which make up chromatin (figure 1.6). 

Electrostatic interactions between the negatively charged DNA and positively charged octamers of 

four highly basic histone proteins (H3, H4, H2A and H2B) as well as a linker histone (H1) enable this 

wrapping. Each 147 base pairs of DNA are tightly coiled around each histone octamer. However, in 

order for promoter and transcriptional factors to have access to the DNA, its packaging needs to be 

highly dynamic and changeable. Hence, molecular masking and unveiling of promoter sequences 

along with local interactions between histone molecules with one another and with their 

surrounding DNA enables the changeability in chromatin structure vital for transcriptional activation 

and repression. A large number of molecular mechanisms contribute to this epigenetic regulation of 

genes. In order for us to understand how any of these mechanisms can be advantageously 

manipulated for the treatment of PD, we must first understand the relevance of their dysregulation 

in PD and the physiological impact their manipulation has upon disease state. Below, the two most 

abundant and important mechanisms will be introduced and a brief explanation of how they are 

thought to be relevant in PD.  

 

1.3.1 – DNA Methylation 

The brain as an organ displays the highest level of DNA methylation in the body, however this 

equates to just ~1% of nucleic acid bases being methylated (Ehrlich et al., 1982). DNA methylation, 

unlike histone post-translational modification, is less transiently dynamic, playing a vital role in 

longer term repression of gene expression (Miranda and Jones, 2007, Moore et al., 2012, Rottach et 

al., 2009). The covalent methylation of the 5’ position of cytosine residues in CpG dinucleotides in  
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Figure 1.6 – Packaging of DNA into Chromatin and the Epigenome 
DNA is tightly coiled around cores of eight histone proteins to form nucleosomes. Post-translational 
modification sof these histone proteins (acetylation and methylation, amongst others) as well as direct 
modification of DNA (methylation) help control the compression of this structure and enable transcriptional 
factor access to DNA. Abbreviations: Ac, acetyl; Me, methyl (reproduced with permission from Harrison and 
Dexter, 2013).  
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the DNA sequence is catalysed by DNA methyltranferases (DNMTs) (Miranda and Jones, 2007, 

Rottach et al., 2009). There are three DNMTs known to be active in mammals: DNMT1, the 

maintenance DNMT which maintains the methylation pattern of CpG sites which have been 

previously established by DNMT3a and DNMT3b, the de novo DNMTs, which are active mainly 

during development (Miranda and Jones, 2007, Rottach et al., 2009).  The main methyl (CH3) donor 

for DNMT mediated methylation is S-adenosyl-methionine (SAM), a compound which results from 

one-carbon metabolism of numerous B vitamins, such as folic acid, B6 and B12 (Miranda and Jones, 

2007, Rottach et al., 2009). Therefore, the potential of CpG methylation is partially dependent on 

the ratio between SAM and its unmethylated counterpart: S-adenosyl-homocysteine (SAH). The 

large majority of CpG dinucelotides in the mammalian genome are richly methylated resulting in 

gene repression through both physical blocking of DNA to transcription factors (Miranda and Jones, 

2007, Rottach et al., 2009) and via recruitment of methyl binding proteins such as methyl-CpG 

binding protein 2 (MeCP2), which further exacerbate this blockade and are thus associated with 

gene silencing (Fuks, 2005, Fuks et al., 2003). 

In sporadic PD patients, it has been noted that there is impaired one-carbon metabolism in 

areas such as the SNpc, putamen and cortex: reducing DNA methylation of intron 1 of the αSyn 

gene, SNCA, linking DNA demethylation to αSyn expression (Jowaed et al., 2010). Furthermore, 

demethylation of a CpG rich island in SNCA was identified in PD patients (Matsumoto et al., 2010). It 

was shown using cell culture that demethylation of this region of the SNCA gene resulted in 

increased expression of αSyn (Matsumoto et al., 2010). Similarly, a recent collaborative project 

identified methylation and expression changes in a further three PD risk gene variants 

(PARK16/1q32, GPNMB and STX1B) in PD patients, indicating that SNCA is not the only 

hypomethylated gene subjected to altered epigenetic regulation in PD (IPDGC and WTCCC, 2011). 

Lastly, for obvious reasons, the maintenance DNMT, DNMT1, is most abundantly located in the 

nuclear compartment. However, it was discovered recently that there is a reduction in nuclear 

DNMT1, combined with a translation to the cytoplasm, in post-mortem PD brains as well as in the 

brains of αSyn transgenic mice (Desplats et al., 2011). This sequestration of DNMT1 to the cytoplasm 

was shown to result in global DNA hypomethylation in both human and transgenic αSyn mice brains, 

including CpG islands in the SNCA gene (Desplats et al., 2011). These effects were partially reversed 

in cell culture and transgenic animal experiments by overexpressing DNMT1, indicating that αSyn 

might mediate aberrant subcellular localisation of DNMT1 in PD (Desplats et al., 2011). 
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1.3.2 - Post-Translational Histone Modifications 

As well as direct methylation of promoter sequences, gene expression profiles are also modulated by 

the extent of chromatin packaging, which determines how accessible the genome is to 

transcriptional factors. Appropriately, chromatin can be condensed, hence becoming 

transcriptionally inactive (heterochromatin) or relaxed, becoming transcriptionally active 

(euchromatin). This process of condensing and relaxing the genome is controlled principally through 

histone post-translational modification (Maze et al., 2012). Histones are subjected to a number of 

covalent modifications including but not limited to phosphorylation, ubiquitination, sumoylation, 

acetylation and methylation (Maze et al., 2012). In fact, proteins recruited to the sites of CpG 

methylation induce gene silencing not only through blockade of DNA but also through recruitment of 

histone modifying enzymes such as histone methyl transferases and histone deacetylases (Fuks, 

2005, Fuks et al., 2003). This crosstalk between the epigenetic mechanisms is only just beginning to 

be understood (Fuks, 2005).  

1.3.2.1 - Histone Methylation/Demethylation 

First described in 1964 (Allfrey et al.), histone methylation is a dynamic process which involves the 

methylation of either arginine or lysine residues on the N-terminal tails of either H3 or H4 histone 

proteins to bring about a transcriptional change (Kouzarides, 2007). This methylation itself is 

facilitated, on arginine residues, by arginine specific histone methyltransferases (HMTs) and 

accordingly on lysine residues by lysine specific HMTs (Habibi et al., 2011). As is the case with DMNTs 

and DNA methylation, both arginine and lysine specific HMTs use SAM as a cofactor and methyl 

donor (Arrowsmith et al., 2012). Correspondingly, this methyl group is then returned to SAH after 

cleavage from either the histone lysine or arginine residue by histone demethylases (HDMs): either 

the Jumonji C family of 2-oxoglutarate-dependent demethylases (Tsukada et al., 2006), or the flavin-

dependent enzymes lysine-specific histone demethylase 1 (LSD1) and LSD2 (Shi et al., 2004). 

 To add further complexity, multiple methylation valences of lysine and arginine residues on 

histone proteins H3 and H4 are also possible: lysine residues can be either monomethylated, 

dimethylated or trimethylated and similarly arginine residues can be either monomethylated or 

dimethylated (Habibi et al., 2011). In addition, arginine residues can be methylated either 

symmetrically or asymmetrically, an intricacy which has been shown to be associated with differing 

functional consequences (Habibi et al., 2011). Accordingly, methylation does not affect the structure 

of chromatin directly as the addition of a methyl group does not change the charge of the lysine or 

arginine residue. Instead, the methylated sites act as recognition sites for other proteins that either 

aid condensation of chromatin or recruit other transcriptionally regulating proteins (Arrowsmith et 

al., 2012). The functional effect of histone methylation on transcriptional activation is therefore 
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dependent on the site of the residue within the histone tail and the degree to which it is methylated 

(Kouzarides, 2007). For example, both positive transcriptional methylation marks (histone protein H3 

lysine 4 (H3-Lys4), H3-Lys36, H3-Lys79; H3-Arg2, H3-Arg17, H3-Arg26 and H4-Arg3) and negative 

transcriptional methylation marks (H3-Lys9, H3-Lys7, H3-Lys36, and H4-Lys20; H4-Arg8 and H4-Arg3) 

exist (Habibi et al., 2011, Maze et al., 2012). 

 In 2008, Nicholas and colleagues measured the level of the positive histone methylation 

mark H3-Lys4-me3 in striatal neurons (Nicholas et al., 2008). It was shown in both the murine and 

primate MPTP models of PD that a reduction of this methylation mark was associated with a 

depletion of dopamine in these neurons (Nicholas et al., 2008). Moreover, the active site structure 

of MAO-A and B has significant sequence homology to LSD1 (Shi et al., 2004). Therefore, it has been 

shown that the classical MAO inhibitor tranylcypromine inhibits demethylation by LSD1 (Lee and 

Trojanowski, 2006b, Mimasu et al., 2008, Schmidt and McCafferty, 2007).  This was accompanied by 

a global increase in H3-Lys4-me2 in the P19 embryonic carcinoma cell line (Lee et al., 2006, Schmidt 

and McCafferty, 2007). This has great implications in PD in that the treatment of patients with MAO 

inhibitors such as Selegiline and Rasagaline could contribute to the rectification of the reduced H3-

Lys4 methylation levels previously described in PD models by Nicholas and colleagues (2008). 

Nevertheless, far greater understanding of the role of LSD1 in PD is required to understand how this 

could contribute to disease aetiology and pathophysiology. 

1.3.2.2 -  Histone Acetylation/Deacetylation 

Histone acetylation, like histone methylation, was first described in 1964 (Allfrey et al.), and is a 

highly dynamic process regulated by two classes of enzyme: histone acetyltransferases (HATs) and 

histone deacetylases (HDACs). HATs are categorised into three families: the Gcn5-related 

acetyltransferases (GNATs); the MOZ, Ybf2/Sas3, Sas2 and Tip60 (MYST)-related HATs; and 

p300/CREB binding proteins (CBP) HATs. All of these use acetyl-coenzyme A as an acetyl group donor 

to transfer an acetyl group to the ε-amino of lysine residues on the N-terminal tails of the four core 

histones, H2A, H2B, H3 and H4 (Roth et al., 2001). Addition of an acetyl group to lysine neutralises 

the positive charge of the residue (figure 1.7), hence reducing the electrostatic interaction between 

the lysine in the histone tail and the negatively charged phosphate group on DNA which disrupts the 

inter- and intra-nucleosomal interactions between the histone and DNA (Grayson et al., 2010). This 

causes a relaxation in the structure of chromatin, otherwise referred to as euchromatin, and allows 

transcriptional factor access to the DNA. Deacetylation of lysine residues is facilitated by HDACs, 

which remove the acetyl groups from the ε-amino of lysine restoring the positive charge and causing 

a condensation of chromatin, known as heterochromatin, thus repressing transcription. In addition 

to enabling transcription through remodelling of chromatin, acetyl-lysine residues serve as  
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Figure 1.7 – Acetylation of Histone Lysine Residues 
Addition of an acetyl group to a histone lysine residue neutralises its positive charge, reducing the electrostatic 
interaction between histone tail lysine residues and negatively charged phosphate groups on DNA. 
Abbreviations: Ac-Lys, acetyl-lysine; Lys, lysine; HATs, histone acetyl transferases; HDACs, histone deacetylase 
(reproduced with permission from Harrison and Dexter, 2013).  
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recognition sites for transcriptional activators that contain protein motifs known as bromodomains, 

thus indirectly facilitating transcriptional initiation (Grayson et al., 2010).  Crosstalk between 

acetylation and methylation at specific residues further influences transcriptional activation, for 

example, simultaneous methylation and deacetylation of H3-Lys9 has been shown to cause stringent 

silencing of surrounding genes (Fuks, 2005). To this end, of the numerous histone lysine acetylation 

sites, some appear to be more crucial in the switching from heterochromatin to euchromatin, for 

example this methylated and acetylated residue H3-Lys9 and also another residue in histone protein 

H4: H4-Lys16 (Shahbazian and Grunstein, 2007).  

In health, a tightly controlled equilibrium exists between HAT and HDAC activity enabling the 

dynamic control of transcription (figure 1.8) (Dietz and Casaccia, 2010, Saha and Pahan, 2006). In 

neurons, such a harmonized balance is therefore conducive to appropriate regulation of gene 

expression and subsequently facilitates appropriate neuronal homeostasis (Saha and Pahan, 2006). 

Therefore, it is thought that if an imbalance of HAT/HDAC was to occur then neuronal cell death 

would likely follow, implicating the possibility of HAT/HDAC misbalance in disease (Dietz and 

Casaccia, 2010, Saha and Pahan, 2006). Rouaux and colleagues in 2003 were the first researchers to 

identify alterations of histone acetylation levels in neurodegeneration, by demonstrating that 

histone acetylation levels were decreased globally in neurons accompanied by a decrease in HAT 

CBP/p300. Authors observed increased levels of histone deacetylation in both an in vitro model of 

cortical neuronal cell death induced by activation of amyloid precursor protein signalling, a hallmark 

of Alzheimer’s disease (AD), and in an in vivo model of Amylotrophic Lateral Sclerosis (ALS): the G86R 

mutant Superoxide Dismutase 1 (SOD-1) mouse displaying motor neuron degeneration (Rouaux et 

al., 2003). Since then, histone hypoacetylation has become heavily implicated in numerous 

neurodegenerative diseases, especially PD. For example, in PD it has also been shown that αSyn 

accumulation promotes histone H3 hypoacetylation as ascertained from overexpression studies in 

SH-SY5Y cells as well as in an in vivo αSyn transgenic drosophila model (Kontopoulos et al., 2006). No 

direct binding was observed between αSyn and H3 therefore the effect of reduced acetylation of H3 

is said to likely be through histone ‘masking’: the mechanism through which transcription is inhibited 

by ataxin-3, a polyglutamine containing protein involved in Huntington’s disease (HD) (Li et al., 

2002). Therefore it is theorised that the accumulation of misfolded αSyn promotes neurotoxicity in 

PD by ‘masking’ histone proteins: preventing histone acetylation, condensing chromatin, repressing 

gene expression and ultimately leading to cell death. Accumulations of misfolded proteins such as 

αSyn are a commonality in a number of neurodegenerative diseases and it is therefore thought this 

histone hypoacetylation could be at least partly responsible for the induction of cell death in these 

disorders. The use of HDAC inhibitors (HDACIs) to restore the imbalance between HAT/HDACs is  
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Figure 1.8 – Histone Acetylation Dependent Relaxation and Condensation of Chromatin 
Relaxation and condensation of chromatin is facilitated by acetylation and deacetylation of histone proteins 
respectively. The level of histone acetylation depends on the interplay between HATs and HDACs. Inhibition of 
HDACs results in a net increase of histone acetylation, relaxation of chromatin and transcriptional activation. 
Abbreviations: Ac, acetyl; HATs, histone acetyl transferases; HDACs, histone deacetylases; HDACIs, histone 
deacetylase inhibitors (reproduced with permission from Harrison and Dexter, 2013). 
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therefore becoming a popular area of neurodegenerative research (Chuang et al., 2009, Dietz and 

Casaccia, 2010, Hahnen et al., 2008, Kazantsev and Thompson, 2008, Saha and Pahan, 2006): in AD 

(Xu et al., 2011), in motor neuron diseases such as ALS (Echaniz-Laguna et al., 2008, Schmalbach and 

Petri, 2010), HD (Butler and Bates, 2006, Sadri-Vakili and Cha, 2006), Multiple Sclerosis (Faraco et al., 

2011), and most relevant to this thesis, PD. However to understand the relevance of inhibiting 

HDACs, we must first understand the functionality of HDACs and more importantly their expression 

patterns both within the cell and the brain. 
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1.4 – Histone Deacetylase 

HDACs are conserved between yeast and man. To date 18 human HDAC isoforms have been 

characterised, and based on their sequence homologies and co-factor dependencies they have been 

phylogenetically categorised into 4 main classes: class I, II (a and b), III and IV (table 1.3) (Xu et al., 

2007). Classes I, II and IV are all zinc dependent enzymes containing zinc-dependent catalytic 

domains. Class III on the other hand work independently of zinc, however require nicotinamide 

adenine dinucleotide (NAD+) for their enzymatic activity (Saunders and Verdin, 2007, Blander and 

Guarente, 2004). Class I HDACs include HDACs 1, 2, 3, and 8, and share high sequence homology in 

their catalytic sites with yeast RPD3 deacetylase (Xu et al., 2007). Class II HDACs are closely related 

to yeast Hda1 and include HDACs 4, 5, 6, 7, 9, 10. This class is further subcategorised into class IIa, 

consisting of HDACs 4, 5, 7 and 9, which contain only one catalytic site, and class IIb consisting of 

HDACs 6 and 10, which contain two catalytic sites (Xu et al., 2007). Class III, the NAD+ dependent 

class, are structurally and enzymatically distinct from other HDAC classes and share homology with 

yeast silent information regulator 2 (SIR2) (Blander and Guarente, 2004, Saunders and Verdin, 2007). 

This class comprises of sirtuin 1, 2, 3, 4, 5, 6, and 7 (Blander and Guarente, 2004, Outeiro et al., 2008, 

Saunders and Verdin, 2007, Haigis and Sinclair, 2010). Lastly, class IV consists of HDAC 11 alone, due 

to conserved residues within its catalytic core region shared by both class I and II (Xu et al., 2007). 

Despite their principle role in the cell being to deacetylate histone proteins in the nucleus, 

the different classes and isoforms of HDACs vary in their sub-cellular localisation (table 1.3) (Haigis 

and Sinclair, 2010, Konsoula and Barile, 2012, Outeiro et al., 2008, Salminen et al., 1998). Similarly in 

the brain, expression of the different classes of HDACs varies between cell types: expression is 

restricted mainly to neurons however numerous classes are known to be present in glia (Broide et 

al., 2007). Likewise in the brain, the expression level of HDAC isoforms varies from nucleus to 

nucleus. There has been no distribution study of the expression of class III HDACs (the sirtuins) in the 

brain, however the expression levels of the 11 ‘classical’ HDAC isoforms, i.e. classes I, II and IV, were 

studied and the relative expression patterns mapped in the rat brain in 2007 using high-resolution in 

situ hybridization study of 56 brain regions in the rat brain (Broide et al.). Related to PD it is of 

interest that the majority of HDAC expression in the SNpc is limited mainly to HDAC 2, 3, 4, 5, and 

11, however lower levels of HDAC 1, 6, 7, 8 and 9 also exist here (table 1.4) (Broide et al., 2007). 

Moreover in this study, HDAC 10 was not detected in the SNpc at all (Broide et al., 2007). 

The role of HDACs in epigenetic regulation is to reverse the effects of HATs, by catalysing the 

deacetylation of N-terminal tails of histone proteins. This facilitates a condensation of chromatin 

structure which prevents transcription factor access to DNA, thus leading to transcriptional 

repression. HDACs are therefore effective deacetylating enzymes; however their activity is not 
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restricted to histone proteins. A recent phylogenetic study of bacterial HDACs revealed that all four 

classes of HDACs preceded the evolution of histone proteins, suggesting that the primary function of 

HDACs may have been towards non-histone proteins (Gregoretti et al., 2004). For example, at least 

50 acetylated non-histone proteins of known biological function are known to act as substrates for 

HDACs (Glozak et al., 2005, Spange et al., 2009). Notably, non-histone targets include transcription 

factors and co-regulators, signalling mediators, nuclear hormone receptors and cytoskeletal 

elements (Glozak et al., 2005, Spange et al., 2009). 

It is evident that HDACs represent a vast and diverse class of deacetylating enzyme and given 

their distinct expression patterns in the brain and in the cell they represent an ideal target for 

therapeutic inhibition. To that end, recent years have witnessed increasing interest in, and vast 

acceleration of the development of both broad isoform non-selective inhibitors as well as isoform 

selective inhibitors of HDACs (Burridge, 2013, Carey and La Thangue, 2006). Hence, the functional 

roles of HDACs have largely been inferred from their inhibition using either broad-spectrum class 

inhibitors or more recently designed isoform selective inhibitors. 
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Table 1.3 – Sub-Cellular Localisation of Histone Deacetylases 
Abbreviations: HDAC, histone deacetylase; NAD+, nicotinamide adenine dinucleotide (adapted from Harrison 
and Dexter, 2013). 
 
Histone Deacetylase Class Protein(s) Sub-Cellular Location 

Class I (Zn2+ Dependent) HDAC1 
HDAC2 
HDAC8 
HDAC3 

Nucleus 
Nucleus 
Nucleus 
Shuttles between nucleus and cytoplasm 

Class IIa (Zn2+ Dependent) HDAC4 
HDAC5 
HDAC7 
HDAC9 

Shuttles between nucleus and cytoplasm 
Shuttles between nucleus and cytoplasm 
Shuttles between nucleus and cytoplasm 
Nucleus-cytoplasm 

Class IIb (Zn2+ Dependent) HDAC6 
HDAC10 

Cytoplasm 
Cytoplasm 

Class III  (NAD+ Dependent) Sirtuin1 
Sirtuin2 
Sirtuin3 
Sirtuin4 
Sirtuin5 
Sirtuin6 
Sirtuin7 

Nucleus 
Cytosol 
Mitochondria 
Mitochondria 
Mitochondria 
Nucleus 
Nucleolus 

Class IV (Zn2+ Dependent) HDAC11 Nucleus 
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Table 1.4 – Brain Regional Expression of Histone Deacetylases 
Summary of the regional expression of histone deacetylase in the rat brain, as ascertained through high 
resolution in situ hybridisation analysis performed by Broide et al. (2007). Expression is listed and scored from 
low to high (0-5) (adapted from Harrison and Dexter, 2013). 
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Olfactory bulb 2.5 3.5 4 4 4 1.5 1 1 0.5 0.5 4.5 
Cortex 2 3 3.5 3.5 3.5 1 0.5 0.5 0.5 0.5 4 

Caudate putamen 0.5 2 3 1 3 0.5 0.5 0 0 0 4 
Nucleus accumbens 0.5 2 3 1 3 0.5 0.5 0 0 0 4 

Globus palidus 0 0 1 0.5 1 0 0 0 0 0 2 
Amygdala 2.5 3 3.5 3 3 1 1 1 0.5 0.5 4.5 

Hippocampus 2.5 4.5 5 4.5 5 2 1 2 1 1 4 
Choroid plexus 2 0 3 0 2 0 0 0 0 0 0 

Substantia nigra - compacta 1 1.5 3.5 2.5 3.5 1 1 1 1 0 4 
Substantia nigra - reticulata 0.5 1 1 1 1.5 0 0 0 0 0 3 

Hypothalamus 1 1.5 3.5 2.5 3.5 1 0.5 0.5 0 0 4.5 
Pons 1.5 2 2.5 2.5 3 1 0.5 0.5 0.5 0 4.5 

Cerebellum  4 4 5 5 5 1.5 1.5 2 0.5 0 4 
Medulla 0.5 1.5 3 2 2.5 0.5 0.5 0.5 0 0 3 

Spinal cord 1 2 2.5 2 2.5 0.5 0.5 0.5 0 0 3.5 
 22 31.5 47 35 46 12 9 9.5 4.5 2.5 53.5 
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1.5 – Histone Deacetylase Inhibitors 

HDACIs have shown to be efficacious in numerous disorders: for example sickle-cell anaemia, 

diabetes and immune disorders (Lawless et al., 2009). However, they are most commonly 

therapeutically used and studied as anti-cancer agents. HDAC inhibition emerged as a potential 

therapeutic strategy to reverse aberrant epigenetic changes associated with cancer a number of 

years ago (Bolden et al., 2006, Marks et al., 2001a) and hence HDACIs have since been shown to 

cause growth arrest, differentiation and/or apoptosis of many tumours cells by altering the 

transcription of a small number of genes (Marks et al., 2001b). Subsequently, clinical trials are on-

going of the use of HDACIs in various cancers: non-small cell cancers and hepatocellular carcinomas, 

leukaemia and t-cell lymphoma (Minucci and Pelicci, 2006, Wagner et al., 2010).  

It seems counter intuitive that a drug class studied for therapy in cancer, where cells refuse 

to die, could be efficacious for a neurodegenerative disease such as PD, where cells prematurely die 

in the midbrain. However, a number of cell systems have emerged in recent years which represent a 

substantial pathological convergence between cancer and PD (Devine et al., 2011). For example, 

alterations in protein folding and degeneration, cell cycle and DNA repair, mitochondria and 

oxidative stress, and chronic inflammation are all implicated in both cancer and PD (Devine et al., 

2011). It is therefore not unreasonable to suggest that a drug class with such a varied scope of action 

such as HDACIs would represent a viable therapeutic option for both cancer as well as PD. 

Small molecule HDACIs which inhibit the zinc dependent classes of HDACs, fall into 4 main 

classes according to their chemical structure: hydroxamates, cyclic peptides, short chain fatty acids 

and benzamides (figures 1.9 and 1.10). It is important to note that these small-molecule HDACIs do 

not affect class III HDACs, the sirtuins, due to the structural and functional dissimilarity between this 

class of HDACs and classes I, II and IV. However, a number of sirtuin inhibitors have now been 

developed both isoform selective and isoform non-selective (figures 1.9 and 1.10). Below the 

currently available chemical classes of HDACIs will be introduced in terms of their chemical structure 

and pharmacological mechanisms of action, and the isoforms they are known to display most 

potency for.  

 

1.5.1 - Hydroxamates 

Hydroxamate based inhibitors are composed of three main elements: the hydroxamic acid (-CO-NH-

OH), a hydrophobic linker, and a polar tail (figure 1.9). Each of the elements of the inhibitor is 

thought to interact with a different part of the catalytic site of the HDAC (Marks et al., 2004, Villar-

Garea and Esteller, 2004). The hydroxamate moiety is thought to bind to the zinc ion in the catalytic 

domain of HDACs thus inactivating the enzyme (Marks et al., 2004, Villar-Garea and Esteller, 2004). It  
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Figure 1.9 – Chemical Classes of Histone Deacetylase Inhibitors 
Inhibitors of the zinc dependent HDACs can be divided into 4 main classes dependent on their chemical 
structure: hydroxamates, short chain fatty acids, cyclic peptides and benzamides. Inhibitors of the NAD+ 
dependent HDACs however vary greatly in their structure, see miscellaneous (adapted from Harrison and 
Dexter, 2013). 
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Figure 1.10 – Target Selectivity of Isoform Specific and Isoform Non-Specific Histone Deacetylase Inhibitors 
Abbreviations: HDAC, histone deacetylase; NAD+, nicotinamide adenine dinucleotide; Zn2+, zinc (adapted from 
Harrison and Dexter, 2013). 
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is for this reason that hydroxamates are known to only inhibit classes of HDACs which share the 

same zinc dependent catalytic site: classes I and II HDACs only (figure 1.10). The large majority of 

hydroxamate HDACIs act as pan-HDACIs meaning that they possess no profound isoform selectivity 

within the zinc dependent classes (Hahnen et al., 2008). In general, drugs within this class of HDACIs 

are known to have relatively short half-lives, however possess long lasting effects (Plumb et al., 

2003).  

A large number of hydroxamate containing HDACIs have now been engineered, for example 

Scriptaid, Oxamflatin, Belinostat, Dacinostat, Panobinostat, Givinostat and Abexinostat (Grayson et 

al., 2010, Wagner et al., 2010, Xu et al., 2007). A number of these compounds are now in various 

stages of clinical development for cancers (Wagner et al., 2010). However, the two most clinically 

advanced and most prominent hydroxamate HDACIs are trichostatin A and vorinostat, both of which 

cross the BBB (Chuang et al., 2009), hence highlighting them as targets from neurological conditions 

such as PD.  

 

1.5.2 – Cyclic Peptides 

A number of cyclic peptides act as HDACIs as they too are thought to interact with the catalytic zinc 

ion site of HDACs to cause inhibition (Furumai et al., 2002). However, due to the large variation in 

chemical structure among peptides (figure 1.9), peptide HDACIs exert inhibition of various different 

specific HDAC isoforms. Nevertheless, the development and research into the use of cyclic peptide 

drugs has been somewhat lacking, there being only two notable examples of drugs of this class to 

date: apicidin and romidepsin. Apicidin displays selectivity for HDAC2 and HDAC3 (and HDAC8) while 

romidepsin shows potent efficacy for inhibition of HDAC1 and HDAC2 (and HDAC4) (figure 1.10) 

(Khan et al., 2008). Due to their structurally dependent selectivity for HDAC isoforms, cyclic peptide 

HDACIs remain an encouraging template for development of HDACIs with selectivity for differing 

combinations of HDAC isoforms, limiting the likely side effects with their treatment. 

 

1.5.3 – Short Chain Fatty Acids 

Short chain fatty acids (SCFAs), compared with other HDACIs, are relatively small, simple structured 

compounds, the molecular weights of which do not much exceed 150g/mol (figure 1.9). The three 

most notable drugs within this class are valproate, butyrate and phenylbutyrate. Most SCFAs share 

HDAC isoform inhibition profiles: inhibiting the action of classes I and IIb with most efficacy (figure 

1.10) (Grayson et al., 2010).  Compared with the other HDACIs described thus far, SCFAs are 

relatively less potent, working in the range of millimoles rather than nanomoles (Grayson et al., 

2010, Hahnen et al., 2008). It is thought that this weak potency is attributable to their inability to 
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access the zinc cation in the HDAC active-site pocket, which appears to be pivotal to the 

deacetylation catalysis (Lu et al., 2003). It therefore appears likely that SCFAs use mechanisms other 

than direct interface with the catalytic site of HDACs to bring about inhibition. SCFAs do however 

have hugely diverse properties, and due to their small molecular weights are able to cross the BBB 

with ease (Xu et al., 2007). SCFAs hence remain an encouraging class of HDACIs for neuroscience 

research. 

 

1.5.4 - Benzamides 

As opposed to SCFAs, cyclic peptides and hydroxamates, benzamides represent a new relatively 

selective class of HDACI which exhibit a relatively long half-life as compared with other potent 

HDACIs (Glozak et al., 2005). Two notable drugs within this class are currently in clinical trial for 

cancers: MS275 and CI994 (figure 1.9) (Grayson et al., 2010). Both MS275 and CI994 selectively 

inhibit HDAC1 (and HDAC3 to a lesser extent) over other HDAC isoforms within class I (figure 1.10). 

They therefore represent an exciting new population of HDAC inhibiting agents being designed 

selectively against individual HDAC isoforms. The vast majority of pan-HDACIs described above 

exhibit some toxic effects due to their wide selectivity for numerous HDACs and other off target 

effects. Design of more isoform specific HDACIs will lead to an even greater potential of the use of 

HDACIs in diseases other than cancers where HAT/HDAC activity is known to be perturbed, such as 

PD. 

 

1.5.5 - Miscellaneous 

Thus far all of the classes of HDACIs mentioned exhibit selectivity for the classical zinc dependent 

HDAC classes. However, as has already been alluded to, the NAD+-dependent class of HDACs 

represents a large functional sub-group of HDACs. Class III HDACs are structurally and enzymatically 

distinct from classes I, II and IV, therefore HDACIs which interact with this class do not fit into any of 

the previous mentioned chemical structural groups of classical HDACIs. Class III HDACs are NAD+-

dependent and therefore they require the binding of an NAD+ molecule in their active site to enable 

deacetylation (Spange et al., 2009). Nicotinamide is a competitive inhibitor of all 7 sirtuin HDACs due 

to its ability to competitively bind to the NAD+ binding site of Sirtuins, preventing NAD+ from 

binding and thus inhibiting deacetylation of acetylated substrates such as histone proteins. 

Nicotinamide represents an encouraging HDACI in neuroscience due to its ability to cross the BBB 

when given orally, a feature that few HDACIs possess (Spector, 1987). Another more specific 

inhibitor of this class of HDACs is suramin, a symmetric polyanionic nephthylurea, which itself and its 

structural homologs has been shown to inhibit both sirtuin1 and sirtuin2 isoforms within the class 
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(Gregoretti et al., 2004). Moreover, more specific inhibitors of sirtuin1 alone have also been 

identified: sirtinol (Trapp et al., 2007) and EX527 (Gertz et al., 2013). Likewise specific inhibitors of 

sirtuin2 have also now been developed: AGK2 (Outeiro et al., 2007) and in collaboration with Dr 

Matthew Fuchter and colleagues (Department of Medicinal Chemistry, Imperial College London), 

ICL-SIRT078 (Di Fruscia et al., 2014). 
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1.6 – Histone Deacetylase Inhibitors in Parkinson’s Disease 

HDACIs have been theorised to be efficacious in neurodegenerative disease. Yet the mechanism of 

action in how histone acetylation is transferred to neuroprotection still remains elusive. 

Neuroprotection and neurotrophicity are thought to be maintained through the combined 

transcriptional and non-transcriptional effects of HDACIs. Inhibition of HDACs reduces the 

deacetylation of histones which is therefore thought to lead to chromatin relaxation and activation 

of multiple gene products conducive to neurotrophicity, anti-inflammation and subsequently 

neuroprotection. For example, brain derived neurotrophic factor (BDNF), glial derived neurotrophic 

factor (GDNF), heat shock protein 70 (Hsp70), αSyn, B-cell lymphoma (Bcl)-2, Bcl-XL, p21 and gelsolin 

(GSN) have all been shown to be induced upon HDACI treatment (Chuang et al., 2009, de Ruijter et 

al., 2003). Similarly, non-transcriptional effects of HDACs i.e. the non-histone targets of HDAC 

catalysed deacetylation, are also thought to be involved in aiding neuroprotection (Glozak et al., 

2005).  For example, inhibition of HDACs increases the acetylation of α-tubulin, a non-histone target, 

which increases microtubule stabilisation and axonal transportation aiding the release of BDNF and 

neuroprotection (Zhang et al., 2003). Additionally, gathering evidence highlights the multicellular 

involvement of HDAC inhibitors with other brain cells: immuno-modulatory effects in microglia, and 

reducing astrocyte and T-cell mediated inflammation (Dietz and Casaccia, 2010). It is apparent that 

the mechanism of neuroprotection of HDACIs is likely to be multi-targeted. Given the multi-faceted 

origins of PD pathogenesis, HDACIs seem like an optimistic candidate for therapy.  

The distinct patterns of expression of HDACs in the brain crossed with the large number of 

compounds now available designed to selectively target specific isoforms and combinations of 

isoforms of HDACs, position HDACIs as an excellent therapeutic target in neuroscience. However 

current research of the use of HDACIs in neurodegeneration is limited to those that have been 

previously shown to cross the BBB (Kazantsev and Thompson, 2008, Morrison et al., 2007). 

Regardless, inhibition of HDAC classes has been observed to normalize the deficiency of histone 

acetylation in numerous in vitro and in vivo models of PD leading to stringent neuroprotection. 

Similarly non-transcriptional consequences of HDAC inhibition have also been observed in models 

relevant to PD, such as improvement of microtubule stability due to acetylation, aiding 

neuroprotection. In addition, as detailed above, multiple neuroprotective and neurotrophic factors 

have been identified to be upregulated as a result of HDACI mediated histone hyperacetylation, not 

only in neurons but also in microglia and astrocytes. Table 1.5 summarises evidence of the use of the 

most abundantly researched HDACIs with reference to PD: from the effects of drug treatment in cell 

culture models of PD cytotoxicity and immune cell activation, to the effects of HDACIs in the well-

established animal models of the disease. HDACI mediated neuroprotection is therefore likely 
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achieved through an amalgamation of these effects: microtubule stabilisation in conjunction with 

numerous neurotrophic and neuroprotective agents being upregulated simultaneously to evoke a 

neuroprotective parenchymal environment inauspicious to neuronal cell death. 

It is of note however that the in vivo models of PD used thus far for assessing the 

neuroprotective effects of HDACIs have not involved altered protein accumulation. αSyn 

accumulation is the principle pathological feature of PD and hence to truly rationalise the use of 

HDACIs for the treatment of PD in the clinic, their neuroprotection must be demonstrated in animal 

models which recapitulate aggregation of altered proteins in dopaminergic nigral neurons to cause 

neurodegeneration. Additionally, many of the studies assessing the neuroprotective effects of 

HDACIs use pre-treatment regimes in which the HDACI is delivered prior to toxin administration as a 

prophylactic treatment. These studies fail to model the clinical scenario in which HDACIs would be 

used; hence further investigation of this neuroprotective drug class should focus on their 

neuroprotective effects when administered after toxin lesioning.   

Given the small molecular nature of the vast majority of HDACIs, they embody an exciting 

target for therapy for neuroscience due to their ability to traverse the BBB with ease. The multi-

targeted and multi-cellular neuroprotective and neurotrophic affects induced upon HDACI treatment 

make HDACIs one of the most disease relevant drug class being investigated in PD today.  Further 

study to facilitate our understanding of the consequences of HDAC isoform inhibition and their 

effects in producing neuroprotection are now required to further refine the prospective use of 

HDACIs in this complex disorder and translate their use to the clinic. 
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Table 1.5 – Evidence of Neuroprotection/Anti-Inflammation in Models of Parkinson’s Disease 
Abbreviations: HDAC, histone deacetylase; LPS, lipopolysaccharide; MPP+, 1-methyl-4-phenylpyridinium; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; 6-OHDA, 6-
hydroxydopamine; αSyn, α-Synuclein. 

Chemical Class Drug Inhibitor 
Type 

HDACs Inhibited BBB 
Permeable 

Neuroprotection/Anti-Inflammation 
Demonstrated In Vitro 
(Model (Reference)) 

Neuroprotection/Anti-Inflammation 
Demonstrated In Vivo 
(Model (Reference)) 

Hydroxamates 

Trichostatin A Pan-
Inhibitor 

Classes I, IIa and IIb Yes LPS (Suh et al., 2010, Chen et al., 2007) 
MPP+ (Wu et al., 2008a, Wu et al., 
2008b) 
Glutamate (Leng and Chuang, 2006) 

None  reported 

Vorinostat Pan-
Inhibitor 

Classes I, IIa and IIb Yes MPP+ (Kidd and Schneider, 2010, Chen 
et al., 2012) 
LPS (Chen et al., 2012) 

None  reported 

Cyclic Peptides 
Apicidin Isoform- 

Specific 
HDAC2 and 3 Yes Glutamate (Marinova et al., 2009) None  reported 

Short Chain 
Fatty Acids 

Valproate Pan-
Inhibitor 

Classes I and IIa  Yes LPS (Peng et al., 2005, Chen et al., 2007, 
Chen et al., 2006, Wu et al., 2008b) 
Glutamate (Leng and Chuang, 2006) 
6-OHDA (Monti et al., 2007) 
Rotenone (Pan et al., 2005) 
MPP+ (Kidd and Schneider, 2010) 

Rotenone (Monti et al., 2010) 
6-OHDA (Monti et al., 2012) 
MPTP (Kidd and Schneider, 2011, Castro 
et al., 2012) 

Butyrate Pan-
Inhibitor 

Classes I and IIa Yes MPP+ (Kidd and Schneider, 2010, Wu et 
al., 2008b) 
LPS (Chen et al., 2007) 

6-OHDA (Rane et al., 2012) 

Phenylbutyrate Pan-
Inhibitor 

Classes I and IIa Yes Glutamate (Leng and Chuang, 2006) 
LPS (Roy et al., 2012) 
6-OHDA (Zhou et al., 2011) 

MPTP (Gardian et al., 2004, Roy et al., 
2012, Zhou et al., 2011) 
SNCA (A30P+A53T) (Ono et al., 2009) 
Rotenone (Inden et al., 2007) 

Miscellaneous 

Nicotinamide Pan-
Inhibitor 

Class III Yes MPP+ (Jia et al., 2008) MPTP (Anderson et al., 2006, Anderson et 
al., 2008, Xu et al., 2012) 
αSyn overexpression (Jia et al., 2008) 

AGK2 Isoform-
Specific 

Sirtuin2 ? αSyn overexpression (Outeiro et al., 
2007) 

αSyn overexpression (Outeiro et al., 
2007) 
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1.7 – Aims  

It is hypothesised that histone hypoacetylation and transcriptional dysfunction contribute to the 

pathological process of neurodegeneration in PD, hence HDAC inhibition is neuroprotective. This 

thesis therefore has the following aims to assess this hypothesis. Firstly, although accumulating 

evidence implicates histone hypoacetylation and transcriptional dysfunction in the pathogenesis of 

neurodegenerative diseases such as PD, the findings of pathogenic histone hypoacetylation and 

transcriptional dysfunction have yet to be confirmed in the brains of PD patients: all work previously 

being described in animal and cellular models of neurodegeneration. Similarly, it is thought that 

pathogenic histone hypoacetylation is in part due to the ‘masking’ effects of αSyn accumulates 

towards histone proteins (Rouaux et al., 2003). Its remains to be questioned however as to the 

expression levels of the HDACs themselves in degenerating regions of the Parkinsonian brain: 

perhaps in concert with αSyn ‘masking’ of histone protein, PD pathology is directly driving a 

misbalance in expression between HATs and HDACs in degenerating nuclei. The first aim of this 

thesis is therefore to: 

 

1. Quantify the level of histone acetylation in degenerating regions on the Parkinsonian brain 

in relation to healthy age matched controls, and conduct expression profiling of HDAC 

isoforms in these same brain regions, with the aim of identifying targetable HDAC isoforms 

for treatment in PD. 

 

From the previous studies discussed above, it remains unknown as to whether isoform-specific or 

pan-HDAC inhibitors present most efficacy for neuroprotection in models of Parkinsonian 

neurodegeneration. Similarly, it is unknown which of the numerous HDAC subclasses presents 

greatest neuroprotective efficacy. This is thought mainly due to previous unavailability of specific 

subtype inhibitors. However, in recent years the development of HDACIs have advanced hugely: a 

large variety of both isoform-specific and non-specific inhibitors now being available. Nevertheless, 

at present, the PD field is not keeping up with the recent flourish in HDACI development: notable 

examples of isoform-specific drugs such as MS275 and EX527 have yet to be tested in models of PD. 

The second aim of this thesis is therefore to:  

 

2. Test the potential of a range of isoform specific and pan-HDACIs at reducing dopaminergic 

neurodegeneration and microglial activation in vitro, with the aim of identifying suitable lead 

compounds for further investigation in vivo. 
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Historically, successful treatment of the classical animal models of PD has translated little to success 

in clinical trials. Therefore, in order to bridge this gap between bench and bedside the 

neuroprotective effects of HDACIs must be validated appropriately in more clinically translatable 

animal experiments. For example, as has already been discussed, at time of symptom onset and 

presentation to the clinic, a large majority of cell loss is already apparent within the SNpc of PD 

patients. Therefore, for greater clinical relevance and translatability, preclinical studies seeking to 

determine the neuroprotective effects of HDACIs in PD need to be designed such that the drug 

treatment is administered after neurodegeneration is induced in the animal model, i.e. after toxin 

administration. The third aim of this thesis is therefore to: 

 

3. Determine the neuroprotective and behavioural effects of delayed start HDACI treatment in 

the progressive lactacystin lesion animal model of PD, and attempt to elucidate the 

mechanism by which HDACI mediated neuroprotection is achieved. 

 

In order to achieve these aims, human brain tissue donated at post mortem will firstly be utilised 

from the Parkinson’s UK Tissue Bank (PUKTB), at Imperial College London, to profile the level of 

histone acetylation and HDAC isoform expression in degenerating regions of the Parkinsonian brain 

with relation to controls. Cell culture studies will then be performed the test the efficacy of a 

number of HDACIs at reducing toxin induced neurodegeneration in a mesencephalic dopaminergic 

cell line, and activation in a microglial cell line, with the aim of identifying lead compounds for study 

in vivo. The lactacystin rat model of PD will then be established and the neuropathology induced as a 

result of toxin administration will be profiled using behavioural test paradigms and magnetic 

resonance imaging. Following the profiling of this model it will be challenged with two effective 

broad spectrum HDACIs identified from cell culture studies to determine if they are capable of 

inducing neuroprotection in vivo. A number of molecular and cellular analyses will then be 

conducted on animal tissue samples in attempt to elucidate the mechanism by which HDACI 

mediated neuroprotection is achieved.  
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Chapter Two 

Materials and Methods 
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2 - Materials and Methods 

2.1 - Outline of Chapter 

In this chapter the materials and methods used for investigation of the use of HDACIs as disease 

modifying agents in PD are outlined. Firstly the materials and methods used for isolation and 

extraction of messenger ribonucleic acid (mRNA) and protein samples from human PD and control 

brain tissue for the profiling of histone acetylation and HDAC expression are detailed. Secondly the 

materials and methods used for in vitro cell culture experiments for the initial screening of the 

neuroprotection and anti-inflammatory effects of HDACI compounds are detailed with particular 

focus on the assays used for quantification of cell viability and microglial activation in cell lines. 

Thirdly the materials and methods used for in vivo experiments using the lactacystin rat model of PD 

are detailed including the behavioural tests and magnetic resonance imaging conducted throughout 

the duration of the animal studies. Finally, the reagents and protocols used for all cellular and 

molecular analyses of samples obtained from these previously described human, cell culture, and 

animal experiments are detailed. 
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2.2 – Human Tissue Experiments 

2.2.1 – Introduction 

In order to rationalise the use of HDACIs as possible disease modifying therapeutic agents for PD, the 

level of histone acetylation and HDAC expression was first profiled in the human condition to 

confirm that a pathological misbalance exists. For this, brain tissue from PD patients and age 

matched controls was utilised from the PUKTB at Imperial College London. Protein and mRNA was 

extracted from samples of whole brain tissue from a number of regions of interest, for quantification 

of histone acetylation and HDAC expression respectively.  

 

2.2.2 – Human Brain Tissue Samples 

Human brain tissue samples (PD and controls) were obtained from the PUKTB at Imperial College 

London, and all experiments using the tissue samples were previously approved by the PUKTB’s 

Ethical Review Panel. Post-mortem (<24hrs) human brain tissue was removed from the body of the 

donor, and prepared and dissected using a standardised dissection protocol (Vonsattel et al., 1995). 

Dissected brain blocks were then snap frozen in isopentane pre-chilled on dry ice and stored at -80°C 

until further use.  

 

2.2.3 - mRNA and Protein Extraction From Whole Brain Tissue 

For extraction of mRNA and protein from whole brain tissue samples, 30mg of tissue from the brain 

block containing the region of interest was collected into ribonuclease (RNase)-free microcentrifuge 

tubes. Tissue was then homogenised for sequential extraction of mRNA and protein using the 

RNeasy® Plus Universal Mini Kit (Qiagen, Crawley, UK). 

2.2.3.1 – Tissue Homogenisation and Phase Separation 

Tissue was homogenised in 900µl of QIAzol® Lysis Reagent (Qiagen) using a tissue homogeniser 

(Tissue Tearor, Model 985370-395, BioSpec Products Inc, USA). After incubation of the homogenate 

at room temperature (RT) for 5mins, genomic DNA was eliminated by addition of 100µl of Qiagen 

gDNA Elimination Solution and mixed by inversion for 15s. 180µl of chloroform was then added and 

samples mixed again before being left at RT for 5mins. Samples were centrifuged at 12,000 x g for 

15mins at 4°C to separate into phases: an upper aqueous phase containing RNA, a solid interphase 

containing DNA, and a lower phenol phase containing protein. 

2.2.3.2 – mRNA Extraction and Quantification 

The upper, aqueous phase was removed to a new RNase-free microcentrifuge tube and 600µl of 

70% ethanol was added to precipitate RNA. This RNA containing solution was then passed through a 

Qiagen RNeasy Mini spin column to bind and collect RNA onto the column membrane. This was then 
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washed twice with Qiagen Buffer RWT and once with Qiagen Buffer RPE before drying the 

membrane via high speed centrifugation. RNA was then eluted from the column with RNase free 

water and quantified. Due to the ability of nucleic acids to absorb ultraviolet light, it is possible to 

quantify their concentration in a solution using a spectrophotometer which measures sample 

absorption at 260 and 280nm. For this a NanoDrop ND-1000 spectrophotometer (Thermo Fischer 

Scientific, Waltham, MA) was used. The RNA concentration for each sample was then calculated 

using the Beer-Lambert law: 

𝑨 = 𝒍𝒐𝒈𝟏𝟎

𝑰𝟎

𝑰
=  𝜺𝒍𝒄 

Where: 

𝑨 = 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 

𝑰𝟎 = 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑙𝑖𝑔ℎ𝑡 𝑝𝑎𝑠𝑠𝑖𝑛𝑔 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑡ℎ𝑒 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑐𝑒𝑙𝑙 

𝑰 =  𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑙𝑖𝑔ℎ𝑡 𝑝𝑎𝑠𝑠𝑖𝑛𝑔 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑐𝑒𝑙𝑙 

𝜺 = 𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑅𝑁𝐴 (0.025(𝑛𝑔/𝜇𝑙−1)𝑐𝑚−1) 

𝒍 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑡ℎ𝑒 𝑙𝑖𝑔ℎ𝑡 𝑝𝑎𝑠𝑠𝑒𝑠 𝑡ℎ𝑟𝑜𝑢𝑔ℎ (𝑐𝑚) 

𝒄 = 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 (𝑛𝑔/𝜇𝑙) 

 

In order to assess the purity of RNA samples, absorbance at 260 and 280nm was utilised. ‘Pure’ RNA 

is generally accepted to have an A260/280 ratio of ~2. RNA purity of samples was therefore verified by 

an average A260/280 ratio of 1.99 (range 1.97-2.01). See figure 2.1 for a representative example of the 

absorbance vs. wavelength plot produced by an RNA sample used to calculate its concentration and 

assessment of its purity. RNA samples were then stored at -80°C until further quantitative real time 

polymerase chain reaction (qRT-PCR) analysis (see section 2.5.3). 

2.2.3.3 – Protein Extraction and Quantification 

For extraction of protein, 300µl of 100% ethanol was added to the solid interphase and lower phenol 

phase, of the centrifuged tissue homogenate and mixed by inversion. Samples were then left at RT 

for 3mins before being centrifuged at 2,000 x g at 4°C for 2mins to sediment DNA. The 

phenol/ethanol supernatant containing the protein fraction was transferred to new microcentrifuge 

tubes and 1.5ml of isopropenol was added to precipitate protein. Samples were left at RT for 10mins 

before being centrifuged at 12,000 x g for 10mins at 4°C. The supernatant was removed and 2ml 

guanidine-ethanol solution (0.3M guanidine hydrochloride in 95% ethanol) was added to the protein  

pellet and samples centrifuged at 7,500 x g for 5mins at RT. This step was repeated twice before the 

supernatant was removed and 2ml 100% ethanol added to the pellet. The tubes were centrifuged 

again at 7,500 x g for 5mins at RT and the supernatant then removed to allow the protein pellet to 

air dry. The pellet was then resuspended in 500µl of urea-dithiothreitol (DTT) solution (10M Urea, 
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Figure 2.1 – Quantification and Assessment of RNA Purity Using Spectrophotometry 
Absorbance vs. wavelength plot produced by an RNA sample used to calculate its concentration and 
assessment of its purity. The Beer-Lambert law is used to convert the absorbance of the sample at 260nm to 
RNA concentration using its known extinction coefficient, 0.025(ng/µl)-1cm-1. The ratio of the samples 
absorbance at 260 and 280nm is used for assessment of sample’s RNA purity.  
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50mM DTT in water) and sonicated 10 times in short bursts. Samples were then centrifuged at 

10,000 x g for 10mins at RT and the supernatant removed to new microcentrifuge tubes and 

quantified. For this the 96 well plate variant of the Bradford assay was used. The Bradford assay, 

originally developed by Marian M. Bradford (1976), relies on Coomassie Brilliant Blue G-250 in the 

Bradford reagent binding to protein causing an absorbance shift from 465nm to 595nm wavelength. 

Briefly, in triplicate, 5µl of each protein sample was loaded into a 96 well plate. In addition, a set of 

protein standards was loaded in parallel with each plate by loading 5µl of a solution of known 

protein concentration (0 - 1.4mg/ml bovine serum albumin (BSA) in distilled water (dH20)) to wells in 

triplicate. 250µl of Bradford reagent (Sigma, Poole, UK) was then added to each well containing 

protein samples or standards, and the plate shaken rapidly on a microtitre plate shaker for 20mins at 

RT. The light absorbance at 595nm was then read using a 96 well plate reader (VersaMax Microplate 

Reader, Molecular Devices, CA, USA). A standard curve of the spectrophotometric reading of A595 for 

each standard, minus the reading for the standard void of protein was plotted against its protein 

concentration (see figure 2.2 for representative example). The slope of the line of best fit of this data 

set was then used for calculation of the protein concentration for protein samples. Protein samples 

were stored at -20°C until further Western blot analysis (see section 2.5.4). 
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Figure 2.2 – Bradford Assay Standard Curve 
For each Bradford assay plate a standard curve was constructed using solutions of known protein 
concentration (0 – 1.4mg/ml BSA in dH2O) run in triplicate. The slope of the resulting line of best fit was used 
in order to translate the A595 for each sample into protein concentration. Protein standards were prepared by 
dissolving BSA into dH2O and were stored at -20°C between uses. Standards were used for a maximum of five 
freeze/thaw cycles before fresh solutions were made. Data presented as mean ± SEM, n=3. 
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2.3 - In Vitro Experiments 

2.3.1 – Introduction 

To investigate the potential neuroprotective and anti-inflammatory effects of HDACIs against 

Parkinsonian cellular pathology, in vitro cell culture models of neuronal cell death and microglial 

activation were utilised. Cell lines were treated with toxins designed to model the pathophysiological 

scenario of microglial activation and neuroinflammation, and dopaminergic cell death associated 

with PD. At optimised time points cells were then treated with HDACIs and numerous assays 

subsequently performed to determine if they were able to alleviate the effects of these agents and 

therefore act with a neuroprotective and/or anti-inflammatory phenotype, in vitro.  

 The rat dopaminergic 1RB3AN27 (N27) cell line is a line of undifferentiated neurons originally 

derived from an immortalised clone of rat dopaminergic neurons by transfecting foetal 

mescencephalon cells with the plasmid vector pSV3neo, which carries the LTa gene from the SV40 

virus (Prasad et al., 1994). This cell line possesses both biochemical and physiological properties of 

dopaminergic neurons (Adams et al., 1996), making it an ideal candidate cell line for the modelling of 

the Parkinsonian dopaminergic neuronal cell death in vitro. In this thesis neuronal cell death was 

induced in this cell line with the use of the irreversible UPS inhibitor, lactacystin. Since the discovery 

that the UPS becomes dysfunctional in PD, UPS inhibitors such as PSI, epoxomycin, MG-132 and 

lactacystin have been used in attempt to generate animal models of PD. Lactacystin was first shown 

to induce neuronal cell death, in vitro, in PC12 cells, a catacholaminergic cell line, in 2001 (Rideout et 

al.). Subsequently, it has been shown extensively to recapitulate Parkinsonian dopaminergic 

neuronal cell death, in vivo, in rats (McNaught et al., 2002b, Niu et al., 2009, Vernon et al., 2010, 

Lorenc-Koci et al., 2011, Pienaar et al., 2013). Lactacystin covalently binds to catalytic subunits of the 

20/26S proteosome, preventing accessibility of ubiquitinated proteins to the catalytic sites of UPS 

elements and therefore causes the cytoplasmic accumulation of unwanted proteins (McNaught et 

al., 2002b, McNaught et al., 2002c). This results in formation of ubiquitin/αSyn immunopositive 

inclusions in lactacystin treated dopaminergic neurons and subsequent neurodegeneration, both in 

vitro (McNaught et al., 2002c) and in vivo (McNaught et al., 2002b, Niu et al., 2009, Vernon et al., 

2010, Lorenc-Koci et al., 2011, Pienaar et al., 2013). In this study, lactacystin is therefore used to 

model Parkinsonian neuronal cell death in the N27 cell line. Cell cultures were then treated with 

HDACIs to determine if the histone acetylation induced as a result of drug treatment was able to 

reduce/prevent the neuronal cell death observed by lactacystin.  

 The mouse microglial (N9) cell line was originally derived through oncogenic retroviral 

transformation of embryonic day 13 mouse microglial cells (Righi et al., 1989). N9 cells have been 

shown to be devoid of astrocytic and neuronal cell surface markers but stably retain microglial 
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phenotypic cell surface markers, and most importantly are stringently activated upon treatment 

with LPS (Righi et al., 1989) making them an ideal cell line for the study of microglial activation in 

vitro. LPS is found in the outer membrane of Gram-negative bacteria and acts as endotoxin capable 

of potent stimulation of microglia (Nakamura et al., 1999). When cultured and treated with LPS, 

primary microglia display a multi-faceted profile of activation: adopting an activated amoeboid 

morphology, upregulating pro-infammatory cytokines such as TNF-α, IL-6 and IL-1β, and activation of 

iNOS resulting in production of NO (Nakamura et al., 1999). LPS has therefore been used extensively 

for modelling the inflammatory profile of microglial activation in PD and has been used in vivo to 

induce microglial activation and subsequent nigral dopaminergic neuronal cell death to model 

inflammatory aspects of the disease in rats (Liu and Bing, 2011, Hoban et al., 2013). In this study, LPS 

is therefore used to model microglial activation in the N9 cell line. Cell cultures were then treated 

with HDACIs to determine if the histone acetylation induced as a result of drug treatment was able 

to reduce/prevent the microglial activation observed by LPS.  

 

2.3.2 – Cell Culture Experiments 

All in vitro experiments were carried out in ventilated sterile hoods (u.v. light irradiated and cleaned 

with 70% ethanol) with autoclaved or ethanol-sterilized equipment and latex gloves. Care was taken 

to ensure sterile conditions were maintained throughout the experimentation period by maintaining 

appropriate hood screen height and ventilation level. Incubators were cleaned monthly with 70% 

ethanol and water reservoirs replaced weekly with autoclaved water containing SigmaClean® Water 

Bath Treatment (Sigma). For experiments in 96 well plates, experimental conditions were conducted 

in triplicate, and repeated independently at least three times. For experiments in 6 well plates, 

experimental conditions were not replicated in each plate however experiments were repeated 

independently at least three times. 

 

2.3.3 – N27 Neuronal Cell Line 

N27 cells were maintained in 75cm2 cell culture flasks (Corning, NY, USA) in RPMI 1640 medium 

(Sigma) supplemented with 10% foetal calf serum, 2mM L-glutamine, 50U/ml Penicillin and 50µg/ml 

Streptomycin (henceforth referred to as complete N27 medium) in a humidified incubator 

temperature controlled at 37°C and with 5% CO2 ventilation. For experimentation, neurons were 

seeded into 6 or 96 well plates at densities of 500 and 10 x 103 cells/well respectively and left for 

24hrs to allow neurons to readopt their natural morphology. On the day of experiments cell medium 

was removed and replaced with fresh complete N27 medium (2ml or 100µl per well for 6 well and 

96 well plates respectively). 
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2.3.4 – N9 Microglial Cell Line 

N9 cells were maintained in 75cm2 cell culture flasks (Corning) in Dulbecco's Modified Eagle's 

Medium (Sigma) supplemented with 5% foetal calf serum, 4mM L-glutamine, 50U/ml Penicillin and 

50µg/ml Streptomycin (henceforth referred to as complete N9 medium) in a humidified incubator 

temperature controlled at 37°C and with 5% CO2 ventilation. For experimentation, microglia were 

seeded into 6 or 96 well plates at densities of 500 and 10 x 103 cells/well respectively and left for 

24hrs to allow microglia to readopt their natural resting state morphology. On the day of 

experiments cell medium was removed and replaced with fresh complete N9 medium (2ml or 100µl 

per well for 6 well and 96 well plates respectively). 

 

2.3.5 - Passaging/Seeding Cells 

Once confluency was reached (around every 3-4 days) cells were passaged by trypsinisation (N27 

cells) or scraping (N9 cells) for either seeding for experimentation or replatting for maintenance. Cell 

cultures were maintained up to a passage number 45 before being discarded. 

2.3.5.1 - Trypsinisation of N27 Cells 

Spent medium was removed from the flask and cells were washed with 5ml sterile Dulbecco’s 

Phosphate Buffered Saline (DPBS) (Sigma) to remove any trypsin inhibitors found in the foetel calf 

serum in the culture medium. 5ml trypsin (Sigma) was then added to the flask and cells left to 

incubate for 2-3mins. After this time the flask was tapped strongly against the palm multiple times to 

detach all adherent cells. This cell suspension was collected and centrifuged at 1,200 x g for 5mins to 

pellet the cells. The supernatant was then removed and the cell pellet resuspended in warmed 

complete N27 medium. The number of viable cells in this suspension was then calculated by mixing 

10µl of the suspension with 10µl of Trypan blue stain (Sigma) and manually counting the number of 

unstained (viable) cells within a 0.1µl volume of this mixture utilising a haemocytometer. 

Appropriate dilutions were made of the cell suspension in complete N27 medium to seed cells at the 

desired densities for experimentation (in either 6 or 96 well plates (Corning) at densities of 500 and 

10 x 103 cells/well respectively). Seeded plates were returned to the incubator for 1hr to allow the 

cells to adhere to the well surface. Wells were then washed in warmed complete N27 medium to 

remove any dead/unadherant cells and appropriate volumes of medium replaced (2ml or 100µl per 

well for 6 well and 96 well plates respectively). Remaining cells not used for seeding plates were 

used to repopulate a new 75cm3 flask and maintained as previously mentioned.  
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2.3.5.2 – Scraping of N9 Cells 

Spent medium was removed from the flask and cells were washed twice with warmed complete N9 

medium. 10ml of complete N9 medium was then added to the flask and cells scraped manually from 

the surface using a sterile cell scraper (VWR). The resulting cell suspension was then collected and 

centrifuged at 1,200 g for 5mins to pellet the cells. The supernatant was then removed and the cell 

pellet resuspended in warmed complete N9 medium. The number of viable cells in this suspension 

was then calculated by mixing 10µl of the suspension with 10µl of Trypan blue stain (Sigma) and 

manually counting the number of unstained (viable) cells within a 0.1µl volume of this mixture 

utilising a haemocytometer. Appropriate dilutions were made of the cell suspension in complete N9 

medium to seed cells at the desired densities for experimentation (in either 6 or 96 well plates at 

densities of 500 and 10 x 103 cells/well respectively). Seeded plates were returned to the incubator 

for 1hr to allow the cells to adhere to the well surface. Wells were then washed in warmed complete 

N9 medium to remove any dead/unadherant cells and appropriate volumes of medium replaced 

(2ml or 100µl per well for 6 well and 96 well plates respectively). Remaining cells not used for 

seeding plates were used to repopulate a new 75cm3 flask and maintained as previously mentioned.  

 

2.3.6 - Freezing/Thawing Cells 

In order to have a stock of cells with low passage number, cells were aliquoted and frozen. Once 

confluency had been reached in a 75cm3 flask, cells were dislodged from the surface (by either 

trypsinisation (N27) or scraping (N9)) and collected as previously described. The cell pellet was 

resuspended in warmed complete medium and viable cells quantified using Trypan blue as also 

previously described. This cell suspension was then diluted with complete medium in the absence of 

antibiotics and with 10% dimethyl sulphoxide (DMSO) added, to give a final concentration of 200 x 

103 cells/ml. 500µl of this cell suspension was aliquoted into freezing vials and placed into a 

cryopreservation freezing chamber at -20°C for 1hr before being placed at -80°C overnight and then 

moved to a liquid nitrogen store for long term storage.  

 Frozen cells were thawed by adding 200µl of warmed complete medium to the frozen 

aliquot and placing at 37°C for ~10mins. The vial was then vortexed and the cell suspension diluted 

in 10ml of warmed complete medium. This suspension was then centrifuged at 1,200 x g for 5mins 

and the DMSO containing medium removed. The cell pellet was then resuspended in 10ml warmed 

complete medium and incubated in a 25cm2 flask until cells had recovered from the thawing 

procedure. Cells were then passaged as previously described and transferred to a 75cm3 flask.  
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2.3.7 - MTS Assay 

The MTS assay was used as an endpoint determination of the relative number of viable cells 

remaining in culture after incubation with toxins and/or HDACIs for varying time points. The MTS 

reagent (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, 

inner salt) is a tetrazolium compound which is reduced by nicotinamide adenine dinucleotide 

phosphate (NADPH) or NAD+ produced by dehydrogenase enzymes in metabolically active cells 

(Berridge and Tan, 1993) to produce coloured formazan product (see figure 2.3). Therefore the 

spectrophotometric absorbance at 490nm is directly proportional to the number of metabolically 

active, viable cells remaining after the appropriate incubation period with the MTS reagent.  

For performing the MTS assay the CellTiter 96® AQueous One Solution Cell Proliferation Assay 

Kit (Promega, WI, USA) was used as per the manufacturer’s instructions. Briefly, after incubation of 

cells with the test compound(s) for the appropriate time period in a 96 well plate in triplicate, 20µl 

of the CellTiter 96® AQueous One Solution reagent was added directly to each well containing 100µl of 

cell culture medium. Plates were then incubated at 37°C in a humidified incubator temperature with 

5% CO2 ventilation for 3hrs. Absorbance was read using a 96-well plate reader (VersaMax Microplate 

Reader, Molecular Devices) at 490nm. The absorbance at 490nm (A490) was then converted to % of 

control group and data expressed as mean ± standard error or mean (SEM). 

 

2.3.8 - Neutral Red Assay 

The neutral red (NR) assay was also used as an endpoint determination of the relative number of 

viable cells remaining in culture after incubation with toxins and/or HDACIs for varying time points. 

This assay, first described in 1983 (Parish and Mullbacher), is based on the ability of viable cells to 

incorporate and bind a supervital dye, NR (Repetto et al., 2008). At physiological pH, the dye is 

weakly cationic enabling it to passively penetrate the membrane of the cell and accumulate in the 

lysosome. Once inside, due to the proton gradient of the lysosome maintaining a pH lower than that 

of the cytoplasm, the dye becomes charged and is retained within the lysosome (see figure 2.4) 

(Repetto et al., 2008). The dye can then be extracted from viable cells using an acidified ethanol 

solution and the absorbance of the solubilised dye quantified spectrophotometrically at 540nm. The 

assay therefore depends on viable cells being able to maintain a pH gradient, consequently if the cell 

dies the pH gradient is reduced and the dye cannot be retained: the absorbance of the solubilised 

dye is therefore directly proportional to the number of viable cells 

 For performing the NR assay a previously published protocol was followed (Repetto et al., 

2008). Briefly, NR stock solution (4mg/ml NR dye (Sigma) in DPBS) was dissolved into complete cell 

culture medium (either N9 or N27 depending on the cell line tested) to give a final concentration of  
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Figure 2.3 – MTS Assay Chemistry 
The MTS reagent is added directly to wells containing cells in which the viability is to be determined. NADPH or 
NAD+ produced by dehydrogenase enzymes in metabolically active cells reduces the MTS reagent to a 
coloured product, formazan, the concentration of which is then measured spectrophotometrically at 490nm.  
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40µg/ml NR (henceforth referred to as NR medium) and incubated at 37°C for 24hrs. To perform the 

assay, after incubation of cells with the test compound(s) for the appropriate time period in a 96 

well plate in triplicate, the test medium was removed by aspiration and replaced with 100µl neural 

red medium. Plates were then incubated at 37°C in a humidified incubator temperature controlled 

at 37°C and with 5% CO2 ventilation for 3hrs. After this time cells were inspected using an inverted 

microscope to confirm intracellular precipitation of NR. The NR medium was removed by aspiration 

from wells and cells washed by adding 150µl DPBS and removing by aspiration. 150µl of NR destain 

solution (50% ethanol, 49% water, 1% glacial acetic acid) was then added to wells before plates were 

shaken rapidly on a microtitre plate shaker for 10mins to solubilise the dye. Absorbance was read 

using a 96-well plate reader (VersaMax Microplate Reader, Molecular Devices) at 540nm. The 

absorbance at 540nm (A540) was then converted to % of control group and data expressed as mean ± 

SEM.  

 

2.3.9 - Bradford Assay 

The NR assay was followed sequentially by determination of total protein content in the same well 

as an additional endpoint measure of relative cell viability using a variation of the Bradford assay 

(Arranz and Festing, 1990). The Bradford assay, originally developed by Marian M. Bradford (1976), 

relies on Coomassie Brilliant Blue G-250 in the Bradford reagent binding to protein causing an 

absorbance shift from 465nm to 595nm wavelength. In the context described here following the NR 

assay, cell containing wells are washed multiple times to remove dead cells before the remaining 

viable cells are lysed and their protein content solubilised. Bradford reagent is then added directly to 

this cell lysate in parallel to its addition to a set of standards of known protein concentration in order 

to translate the spectrophotometric absorbance at 595nm to protein concentration and therefore to 

the starting number of viable cells. 

Briefly, after spectrophotometric reading of the wells for the NR assay, the neural red 

destain solution was removed from wells by aspiration before cells were washed three times with 

150µl DPBS. Cells were then lysed and proteins solubilised by addition of 50µl sodium hydroxide 

(0.1M) solution. A set of protein standards was run in parallel with each plate by addition of 50µl 

sodium hydroxide (0.1M) solution to 5µl of a known concentration of protein (0 - 1.4mg/ml BSA in 

dH20) run in triplicate. 200µl of Bradford reagent (Sigma) was then added to each well and plates 

were shaken rapidly on a microtitre plate shaker for 20mins. Absorbance was read using a 96-well 

plate reader (VersaMax Microplate Reader, Molecular Devices) at 595nm. A standard curve of the 

spectrophotometric reading at A595 for each standard, minus the reading for the standard void of 

protein was plotted against its protein concentration (see figure 2.2 for representative example). 
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Figure 2.4 – Incorporation of Neutral Red into the Lysosomes of N27 Cells 
Cultured N27 cells incubated with (A)/without (B) NR in the growth medium for 3hrs. Arrows designate 
incorporation of NR into the lysosome of cells indicating cell viability. Arrowheads designate NR crystals in the 
medium. Scale bar equal to 50µm. 
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The slope of the line of best fit of this data set was then used for calculation of the protein 

concentration for cell lysates. Data was then converted to % of control group and data expressed as 

mean ± SEM. 

 

2.3.10 – Griess Assay 

NO is a simple molecule with vast biological function. It acts not only as potent mediator of 

vasodilation but also as a neurotransmitter in the brain, and a key mediator in pathological defence 

(for review see Bredt and Snyder, 1994). As part of their function as resident immune modulators in 

the brain, upon their activation, microglia upregulate iNOS resulting in production of NO (Possel et 

al., 2000). NO is then available to react with ROS produced by the mitochondrial respiratory chain in 

the formation of neurotoxic peroxynitrites (Possel et al., 2000). NO has a short half-life in biological 

systems due to its auto-oxidation into two primary, stable and non-volatile metabolites: nitrite 

(NO2
−) and nitrate (NO3

−). The Griess assay, first developed by Peter Griess over 100 years ago 

(Griess, 1879) is a method of detection of one of these metabolites: nitrite. In this thesis this assay 

was therefore used as an end point determination of nitrite concentration in microglial cell cultures 

as indicator of NO production by upregulation of iNOS by microglia, and by extension, an indicator of 

microglial activation. The assay itself works on the principle that NO2
− reacts with sulfanilamide in 

the Griess reagent to form a diazonium salt intermediate that subsequently reacts with N-1-

napthylethylenediamine (NED) to form a coloured azo dye (see figure 2.5). The absorbance of this 

coloured compound can then be quantified spectrophotmetrically at 540nm. 

For performing the Griess assay, after incubation of microglial cells with the test 

compound(s) for the appropriate time period in a 6 well plate, the medium was removed and 

centrifuged at 1,200 x g for 5mins to removed cell debris. 100µl of medium samples were pipetted 

into a 96 well plate in triplicate. In parallel, a set of standards of known nitrite concentration (0 - 

50µM sodium nitrite in complete N9 medium) were run in triplicate in order to translate the 

spectrophotometric reading to nitrite concentration. 100µl of Greiss Reagent (Sigma) was then 

added directly to each well and plates were shaken rapidly on a microtitre plate shaker for 10mins. 

Absorbance was read using a 96-well plate reader (VersaMax Microplate Reader, Molecular Devices) 

at 540nm. A standard curve of the spectrophotometric reading at A540 for each standard, minus the 

reading for the standard void of nitrite was plotted against its nitrite concentration (see figure 2.6 

for representative example). The slope of the line of best fit of this data set was then used for 

calculation of the nitrite concentration for medium samples and data expressed as mean ± SEM. 
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Figure 2.5 – Griess Assay Chemistry 
One of the metabolites of NO, NO2

- is quantified in the Griess assay by its primary reaction with sulfaniliamide 
in the Greiss reagent to for an intermediate. This then subsequently reacts with N-1-napthylethylenediamine 
dihydrochloride (NED) to form a coloured azo compound which is then measured spectrophotometrically at 
540nm. 
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Figure 2.6 – Griess Assay Standard Curve 
For each Griess assay plate a standard curve was constructed using solutions of known protein concentration 
(0 – 1.4mg/ml BSA in dH2O) run in triplicate. The slope of the resulting line of best fit was used in order to 
translate the A540 for each sample into nitrite concentration. Nitrite standards were prepared by dissolving 
sodium nitrite into complete N9 medium. Standards were freshly prepared for each plate. Data presented as 
mean ± SEM, n=3. 
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2.3.11 – TNFα Enzyme-Linked Immunosorbent Assays 

Enzyme-Linked Immunosorbant Assays (ELISAs) exploit the specificity of antibodies for a protein of 

interest to capture and detect the target protein. Amplification reaction steps in the sandwich 

format ELISA allow for efficient detection of minute amounts (pg/ml) of protein of interest (figure 

2.7). In this thesis, in conjunction with Griess assays, ELISAs were used for the detection and 

quantification of TNFα, a pro-inflammatory cytokine secreted from microglial cell cultures as an 

indicator of microglial activation. Briefly, 96 well plates are firstly coated with a capture antibody 

which captures the protein of interest, here TNFα, from the cell culture medium sample. A 

biotinylated detection antibody is then added which then also binds to the protein of interest. The 

biotin signal from this antibody is then amplified by addition of an avidin-peroxidase conjugate, 

creating a complex with multiple peroxidase molecules. The conversion of the colourless 2,2'-azino-

bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) substrate is catalysed by the peroxidase enzyme, 

resulting in a soluble green product which can be quantified spectrophotometrically. 

 For performing TNFα ELISAs, murine TNFα ELISA development kits (Peprotech Ltd., London, 

UK) were used as per the manufacturer’s instructions. Briefly, the surface of a high binding EIR/RIA 

96 well plate (Corning) was coated with the anti-TNFα capture antibody (1µg/ml in phosphate 

buffered saline (PBS)) overnight at RT. After this time, wells were washed four times in PBST (PBS 

with 0.05% Tween-20). Non specific binding was then blocked by incubating wells with PBS with 1% 

BSA for 1hr at RT. Wells were then washed again four times with PBST and incubated with either 

sample or standard (0 – 2ng/ml TNFα in PBS with 0.05% Tween-20 and 0.1% BSA) run in triplicate 

and incubated for 2hrs at RT. Wells were then washed again four times in PBST and incubated with 

anti-TNFα detection antibody (0.25µg/ml) for a further 2hrs at RT. Wells were washed again four 

times in PBST and incubated in avidin complex (1:2000 TNFα in PBS with 0.05% Tween-20 and 0.1% 

BSA) for 30mins at RT. Wells were then washed a final four times in PBST and 100µl of ABTS added 

to each well. Absorbance was read using a 96-well plate reader (VersaMax Microplate Reader, 

Molecular Devices) at 405nm and 650nm. Colour development was monitored for ~45mins and the 

reading in which the A405nm was ≤0.2 for the 0ng/ml TNFα standard and ≤1.4 for the 2ng/ml TNFα as 

per the manufacturer’s instruction. A standard curve of the spectrophotometric reading at A405 

minus the reading at A650 was then plotted against TNFα concentration (see figure 2.8 for 

representative example). The equation of this line of best fit was then used for calculation of the 

TNFα concentration for medium samples and data expressed as mean ± SEM. 
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Figure 2.7 – Sandwich Format Enzyme-Linked Immunosorbant Assay 
The well is firstly coated with a capture antibody specific to the protein of interest. The sample/standard is 
then added and the protein of interest binds directly to this capture antibody. A biotinylated detection 
antibody is then added which also binds to the protein of interest. The biotin signal on the capture antibody is 
then amplified by addition of the avidin-peroxidase conjugate, creating a complex with multiple peroxidase 
molecules. The conversion of the colourless 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) 
substrate is catalysed by the peroxidase enzyme, resulting in a soluble green product which can be quantified 
spectrophotometrically at 405nm. Abbreviations: S, ABTS substrate; P, ABTS product.  
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Figure 2.8 – TNFα ELISA Standard Curve 
For each TNFα ELISA plate a standard curve was constructed using solutions of known TNFα concentration (0 – 
2ng/ml in PBS with 0.05% Tween-20 and 0.1% BSA run in triplicate. The equation of the resulting line of best fit 
was used in order to translate the A405-A650 for each sample into TNFα concentration. Standards were freshly 
prepared for each plate. Data presented as mean ± SEM, n=3. 
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2.3.12 – Protein Extraction and Quantification 

To determine the effects of cell culture treatments on the expression level of proteins of interest, 

cells were lysed and containing proteins solubilised for subsequent Western blot analysis (see 

section 2.5.4). For this Radio-Immunoprecipitation Assay (RIPA) buffer (Sigma) was used as per the 

manufacturer’s instructions. Briefly, after incubation of cells with the test compound(s) for the 

appropriate time period in a 6 well plate, the growth medium was removed and cells were washed 

twice with ice cold DPBS to remove any residual medium. After this cells were incubated with RIPA 

buffer with 1% protease inhibitor cocktail (Sigma) (200µl/well) on ice for 5mins. Cells were then 

scraped manually from the surface using a sterile cell scraper (VWR) to remove and lyse residual 

cells. Cell lysate was collected and clarified to remove denatured nucleic acid by centrifugation at 

8,000 x g for 10mins at 4°C. The protein containing supernatant was then transferred to new tubes 

and quantified using the Bradford assay (see figure 2.2.3.3). Proteins were then stored at -20°C until 

further Western blot analysis (see section 2.5.4). 
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2.4 - In Vivo Experiments 

2.4.1 – Introduction 

To assess the potential neuroprotective effects of HDACIs in vivo, an animal model of PD was utilised 

which recapitulates the formation of neurotoxic protein inclusions within the SNpc to cause 

progressive dopaminergic cell death via a mechanism similar to that observed in PD. This animal 

model was then systemically treated on a daily basis with differing doses of HDACIs to determine if 

the drugs used were able to delineate the course of the animal model of the disease, in vivo. 

Magnetic resonance imaging of the rat brain in situ and motor behavioural testing of the animals 

throughout each study were utilised to elucidate the temporal effects of HDACI treatment on brain 

structure and motor symptomology of the model. 

 In this thesis the lactacystin rat model was chosen to model PD for in vivo study. As has been 

previous described since the discovery of lactacystin’s ability induce neuronal cell death, in vitro, in 

PC12 cells in 2001 (Rideout et al., 2001), it has been extensively used to recapitulate Parkinsonian 

dopaminergic neuronal cell death, in vivo, in rats (McNaught et al., 2002b, Niu et al., 2009, Vernon et 

al., 2010, Lorenc-Koci et al., 2011, Pienaar et al., 2013). By irreversibly inhibiting elements of the 

UPS, lactacystin causes the cytoplasmic accumulation of unwanted proteins including ubiquitin/αSyn 

immunopositive aggregates in nigral dopaminergic neurons when stereotaxically injected into the 

SNpc of rats (McNaught et al., 2002b, McNaught et al., 2002c). This intracellular accumulation 

results in progressive nigral neurodegeneration and subsequent progressive development of motor 

behavioural deficits. For example neurological scoring of lactacystin lesioned animals has previously 

been shown to gradually worsen post-lesioning: rats displaying progressive deficits in spontaneous 

motility and horizontal bar, grasping reflex and placing reaction tests (Vernon et al., 2010). Similarly 

lactacystin lesioned rats have also previously been shown to display deficits in forelimb grip 

strength, reduced performance on an accelerating rotarod and ostensible circling behaviour after 

apomorphine challenge (Vernon et al., 2010, Vernon et al., 2011). In this study, the lactacystin rat 

model was therefore used to model PD in vivo and subsequently treated with HDACIs to determine 

the effects of the drugs on the progression of the disease model. 

 

2.4.2 - Experimental Animals 

All animal procedures were carried out in accordance with the Home Office Animals (Scientific 

Procedures) Act, 1986 (PPL No.: 70/7398 held by Prof David Dexter; PIL No.: 30/8231 held by Mr Ian 

Harrison) and were previously approved by Imperial College London’s Ethics Review Panel. Male 

Sprague-Dawley rats (250±10g, Charles River, UK) were housed in groups of two or three at 21±1°C 



91 
 

on a 12-hour light-dark cycle with relative humidity maintained at 55±10%. Standard rat chow and 

drinking water were available ad libitum throughout the duration of the study.  

 

2.4.3 - Stereotaxic Lesioning of the Substantia Nigra in Rats 

Prior to performing lactacystin lesioning of experimental animals, to test experimenter lesioning 

accuracy, the left SNpc of a group of male Sprague-Dawley rats (n=5) was stereotaxically lesioned 

with 6-OHDA using the same procedure detailed below. Lesioning accuracy was deemed acceptable 

given the development of amphetamine induced rotations in all animals (data not shown). 

The left SNpc in male Sprague-Dawley rats was stereotaxically lesioned using the irreversible 

proteasome inhibitor, lactacystin. Animals were anaesthetised by inhalation of 5% isoflurane 

(IsoFlo®, Abbot Laboratories, Maidenhead, UK) vaporised into O2 at a flow rate of 2l/min in an 

anaesthetic induction chamber. Once the animal was sufficiently anaesthetised as determined by 

the lack of a pedal pinch reflex response, it was moved to stereotaxic frame (Kopf Instruments, 

Tujunga, USA) and maintained under anaesthesia using a nose cone delivering 1-2% isoflurane 

vaporised into O2 at a flow rate of 1.5l/min. The animal was positioned into the horizontal skull 

position (see figure 2.9A) by fitting non-traumatic ear bars into the ear canals of the animal and 

tightening the nose clamp with the incisor bar positioned at 3.3mm below the interaural line. 

Analgesia was administered in the form of buprenorphine (Vetergesic, Alstoe Animal Health, York, 

UK) injected intramuscularly in the femoral muscle (0.1ml/kg of 0.3mg/ml solution) and local 

anaesthesia was applied to the top of the head in the form of bupivacaine (Bupivicaine, Taro, 

Tipperary, Ireland) injected subcutaneously at four sites along the midline (0.02ml of 0.25% solution 

per site). Fluid replacement (glucosaline, 5ml of 0.18% NaCl, 4% Glucose, administered i.p.) was 

given prior to surgery as well as eye lubrication (Lacri-lube, Allergan, Buckinghamshire, UK) applied 

to the surface of the eyes to prevent their dehydration. A midline incision was made on the top of 

the head and the subcutaneous tissue was scraped away to reveal the surface of the skull. Bregma 

was identified (see figure 2.9B) and the location of the SNpc was identified with reference to it 

(coordinates in relation to bregma: anterio-posterior, -5.2mm, medio-lateral, +2.5mm, see figure 

2.9C (Paxinos and Watson, 2009)). A small burr hole was made in the skull above the location of the 

SNpc using a microdrill. A Hamilton syringe was filled with 10µg of lactacystin (2.5µg/µl in sterile 

(0.9%) saline, total volume 4µl) and mounted onto the stereotaxic frame. The tip of the needle was 

placed on the surface of the brain and the needle was advanced ventrally to the location of the SNpc 

(coordinates in relation to bregma: ventral-dorsal, -7.6mm, see figure 2.9C (Paxinos and Watson, 

2009)). The lactacystin was injected at a rate of 1µl/min and the needle left in situ for a further 

3mins before being retracted slowly. The wound was sutured closed with 4 or 5 surgeons’ knots  
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Figure 2.9 – Coordinates Used for Stereotaxic Lesioning of the Substantia Nigra pars compacta 
(A) Horizontal positioning of the rat brain in the sterotaxic frame, defined by the incisor bar being positioned 
3.3mm below the interaural line. (B) Top down view of the rat skull, indicating the location of bregma. (C) 
Stereotaxic coordinates used for injection into the left SNpc (yellow) (anterio-posterior, -5.2mm, medio-lateral, 
+2.5mm, ventral-dorsal, -7.6mm) (adapted from Paxinos and Watson, 2009). 
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using 4-0 polyamide suture material (Ethicon, New Jersey, USA). Animals were then removed from 

the stereotaxic frame and place in a heated recovery chamber until conscious. Fusiderm was then 

applied along the site of the sutures daily for 3 days following surgery to prevent infection and 

itching of the wound when healing. Sutures were removed once the wound had healed completely 

(~10days post-surgery). Standard rat chow was supplemented with wet diet for 5 days following 

surgery, and animal weight and general health was checked daily to ensure recovery. Animals were 

culled if post-surgical weight reached 80% of pre-surgical. Throughout the duration of all animal 

studies conducted here, two animals were culled on this basis. 

 

2.4.4 - Behavioural Testing 

Due to the unilateral lesioning of the SNpc of animals, two behavioural tests were employed to 

assess asymmetry in motor function. Animals were routinely handled in order to calm and enhance 

reliability when testing.  

2.4.4.1 - Vertical Cylinder Test  

To assess asymmetry in forelimb motor function the vertical cylinder test was employed (Schallert et 

al., 2000). Briefly, animals were placed into a Perspex cylinder (200mm diameter by 300mm height, 

see figure 2.10A) and rearing behaviour was recorded with a video camera for either ten complete 

rears or 3mins. Forelimb movements were examined using frame by frame analysis of video 

recordings. Forelimb use during each complete rear was analysed in terms of which forelimb the 

animal used to ‘push-off’, ‘explore’ and ‘land’. ‘Push-off’ was defined as the independent use of 

either forelimb or simultaneous use of both forelimbs to push away from the base of the cylinder 

when rearing. ‘Explore’ was defined as the initial placement of either forelimb or simultaneous 

placement of both forelimbs on the walls of the cylinder. ‘Land’ was defined as the initial placement 

of either forelimb or simultaneous placement of both forelimbs on the base of the cylinder. The 

percentage of contralateral forelimb use was calculated as: 

 

𝑵 =
(𝑛𝑜. 𝑢𝑠𝑒𝑠 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑎𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑓𝑜𝑟𝑒𝑙𝑖𝑚𝑏 +  ½ 𝑛𝑜. 𝑢𝑠𝑒𝑠 𝑜𝑓 𝑏𝑜𝑡ℎ 𝑓𝑜𝑟𝑒𝑙𝑖𝑚𝑏𝑠 𝑠𝑖𝑚𝑢𝑙𝑡𝑎𝑛𝑒𝑜𝑢𝑠𝑙𝑦) × 100

 (𝑛𝑜. 𝑢𝑠𝑒𝑠 𝑜𝑓 𝑖𝑝𝑠𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑓𝑜𝑟𝑒𝑙𝑖𝑚𝑏 +  𝑐𝑜𝑛𝑡𝑟𝑎𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑓𝑜𝑟𝑒𝑙𝑖𝑚𝑏 +  𝑏𝑜𝑡ℎ 𝑓𝑜𝑟𝑒𝑙𝑖𝑚𝑏𝑠 𝑠𝑖𝑚𝑢𝑙𝑡𝑎𝑛𝑒𝑜𝑢𝑠𝑙𝑦)
 

 

2.4.4.2 - Amphetamine Induced Rotation Test 

Rotational asymmetry was assessed using the amphetamine induced rotation test (Ungerstedt and 

Arbuthnott, 1970). Briefly, animals were administered amphetamine (D-amphetamine sulphate 

(5mg/kg i.p.), Sigma) to induce rotational behaviour. Amphetamine competitively inhibits 

dopaminergic reuptake via the DAT (Fleckenstein et al., 2007),  mediating reverse transport of 

dopamine into the synaptic cleft and also facilitates the movement of dopamine out of vesicles into  
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Figure 2.10 – Apparatus Used for Behavioural Testing 
(A) For the vertical cylinder test animals were placed in a Perspex cylinder (200mm diameter by 300mm 
height) with a mirror positioned in order to observe forelimb movement when the animal was facing away 
from the camera. (B) For amphetamine induced rotations animals were injected with amphetamine (5mg/kg 
i.p.) to induce rotational behaviour and placed in a clear test arena (400mm diameter by 360mm height, 
Circling Bowl, Harvard Apparatus, USA) and recorded for 30mins. 
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the cytoplasm. This results in synaptic release of dopamine and therefore causes dopaminergic 

transduction to synapsed neurons.  Due to the imbalance of dopaminergic neurons between 

hemispheres after lesioning, this causes rotational behaviour. Animals were therefore  placed in a 

clear test arena (400mm diameter by 360mm height, Circling Bowl, Harvard Apparatus, USA, see 

figure 2.10B) for 30mins to acclimatise, after which time rotational behaviour was recorded for 

30mins and the numbers of contraversive and ipsiversive rotations were counted in bins of 5 

minutes. The net number of ipsiversive rotations per 5 minute bin was calculated as: 

 

𝑵 =  (𝑛𝑜. 𝑜𝑓 𝑖𝑝𝑠𝑖𝑣𝑒𝑟𝑠𝑖𝑣𝑒 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠) −  (𝑛𝑜. 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑖𝑣𝑒 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠) 

  

The area under the curve produced by plotting N against time for the 30mins was then calculated as 

a measure of amphetamine induced rotational asymmetry. 

 

2.4.5 - Magnetic Resonance Imaging of the Rat Brain 

2.4.5.1 - Image Acquisition 

T2 weighted (T2W) magnetic resonance images of the rat brain in situ were acquired using a 4.7 Tesla 

DirectDrive horizontal small bore magnetic resonance imaging (MRI) scanner (Varian, Palo Alto, CA, 

USA) and a separate 72mm quadrature birdcage head radiofrequency coil (M2M Imaging, OH, USA) 

linked to a Linux-based control console running Vnmrj acquisition software (v2.3, Varian, Palo Alto, 

CA, USA). Animals were anaesthetised by inhalation of 5% isoflurane (IsoFlo®, Abbot Laboratories, 

Maidenhead, UK) vaporised into O2 at a flow rate of 2l/min in an anaesthetic induction chamber. 

Once the animal was sufficiently anaesthetised as determined by the lack of a pedal pinch reflex 

response, it was moved to an MRI compatible polytetrafluroethylane (PTFE) bed (M2M Imaging, OH, 

USA) and  maintained under anaesthesia using a nose cone delivering 1-2% isoflurane vaporised into 

O2 at a flow rate of 1.5l/min. Depth of anaesthesia was monitored using a respiratory balloon (SA 

Instruments, Stoney Brook, NY, USA) placed under the animal’s chest and body temperature of the 

animal was monitored and maintained at 37°C using a rectal probe and heated fan (SA Instruments, 

Stoney Brook, NY, USA), respectively (see figure 2.11). The head of the animal was immobilised using 

a PTFE stereotaxic head holder after topical administration of Xylocaine Spray (Lidocaine, 10mg per 

ear) and EMLA cream within the ear canal for topical pain relief and displacement of air. Eye 

lubrication (Lacri-lube, Allergan, Buckinghamshire, UK) was applied to the surface of the eyes to 

prevent their dehydration. Scout images were firstly acquired to ensure correct positioning of the 

animal within the centre of the magnetic bore. T2W images were then  acquired using a multi-echo, 

multi-slice spin-echo pulse sequence (MEMS) previously designed for rat structural rat brain imaging 

by Dr. Marzena Wylezinska-Arridge  (Biological Imaging Centre, Imperial College London), with the 
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Figure 2.11 – MRI Scanner and Physiological Monitoring Equipment Setup 
Animal was maintained under anaesthesia by positioning into an MRI compatible PTFE stereotaxic head holder 
and bed fitted with a nose cone delivering isoflurane vaporised into O2. Depth of anaesthesia was monitored 
by placing a respiratory balloon (purple) under the animal’s chest which was connected to the animal 
monitoring console in the console room. Delivery of isoflurane was adjusted (generally 1.5-2%) to maintain the 
respiratory rate at 60-70 breaths/min. Body temperature was monitored using rectal thermometer (green) 
connected to the animal monitoring console in the console room. Warm air was delivered to the magnetic 
bore (generally 35.5-37.5°C) to maintain the body temperature at 36.5-37.5°C. Physiological parameters were 
monitored throughout the scanning session and scanning was abandoned and the animal recovered if it 
showed any sign of physiological distress. 
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following scan parameters: FOV = 35 mm × 35 mm; matrix = 192 × 192; TR = 5155.2 ms; TE = 10, 20, 

30, 40, 50, 60, 70, 80, 90, 100 ms; 4 averages, scan duration 1hr 5mins 59s. Fifty contiguous 0.5mm 

thick coronal slices with an in plane resolution of 256 × 256μm were acquired such that the entire 

brain of each animal was covered. Once scanning was completed, animals were removed from the 

magnetic bore to a heated recovery chamber. Following full recovery from anaesthesia, animals 

were returned to their home cages. Each animal received a maximum of four MRI scans spaced no 

less than 7days apart. Throughout the duration of all animal studies conducted here, two animals 

were culled due to physiological complications in the scanner. 

2.4.5.2 - Image Post-Processing 

Post-acquisition, magnetic resonance (MR) images were transferred from the console to a 

workstation and visually inspected for motion or intensity artefacts. No scans were excluded on this 

basis. Images corresponding to the ten TE times used (TE = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 ms) 

were summed using the “Z Project” function in ImageJ (v1.4, Rasband, U. S. National Institutes of 

Health, USA) before the fifty resulting images were stacked. Parametric T2 relaxation maps from the 

fifty images were obtained using the “T2 Calculation” function in the ‘MRIAnalysisPak’ plugin for 

ImageJ and the resulting fifty images were also stacked.  

2.4.5.3 – Confirmation of Correct Needle Placement 

To confirm that all of the lesioned animals received lactacystin to the left SNpc, MRI scans acquired 

at week 1 post-lesion were examined to confirm the location of stereotaxic injection of the toxin. 

The SNpc containing plate of the rat brain atlas (-5.2mm from bregma) was overlaid on the acquired 

T2W MR image of the rat brain most resembling the size and shape of the brain in the atlas plate 

(figure 2.12). Accurate lactacystin lesioning was accepted if the needle tract was visible on the MR 

image (confirming anterio-posterior positioning) and the end of the needle tract was located above 

the left SNpc (confirming medio-lateral, and ventral-dorsal positioning).  

2.4.5.4 – Manual Segmentation Analysis 

For regional volumetric analysis, ImageJ software (v1.4) was used to manually delineate and 

measure the area of brain structures on T2W MR images. Six brain regions (whole brain, lateral 

ventricles, corpus striatum, hippocampus, midbrain and cerebellum) were delineated based on 

anatomical landmarks previously described (Vernon and Modo, 2011) and with reference to the rat 

brain stereotaxic map (Paxinos and Watson, 2009) (see table 2.1 and figure 2.13). Volumes were 

then calculated by multiplying the sum of the areas for a given structure on all MR slices in which it 

appears, by the MR image slice thickness (0.5mm). Brain volumes were then expressed as a 

percentage change from each animal’s baseline scan.   
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Figure 2.12 - Confirming Lesion Site Accuracy in Lactacystin Injected Animals 
The SNpc containing plate of the rat brain atlas (A), was overlaid on the acquired T2W MR image of the rat 
brain most resembling the size and shape of the brain in the atlas plate (B) in order to confirm lesion site 
accuracy in the left SNpc. (C) Accurate lactacystin lesioning was accepted if the needle tract was visible on the 
MR image (confirming anterio-posterior positioning) and the end of the needle tract was located above the left 
SNpc (confirming medio-lateral, and ventral-dorsal positioning). 
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Table 2.1 – Anatomical Criteria for Delineation of Brain Structures from MR Images 
Description of anatomical landmarks and criteria used for the delineation of brain structure for manual 
segmentation analysis of MR images (anatomical reference taken from Vernon et al., 2010, Vernon et al., 
2011, Paxinos and Watson, 2009). See figure 2.13 for further details. 

 

Brain Region Anatomical Criteria Used For Measurement 
Whole Brain Base of olfactory bulb to the last slice containing cortex 
Lateral Ventricles Defined from brain tissue by intense contrast of CSF 
Corpus Striatum Defined with reference to the corpus callosum, external capsule, anterior comissure 

and lateral ventricles 
Midbrain Defined with reference to dorsal hippocampal formation 
Hippocampus Defined with reference to corpus callosum and external capsule 
Cerebellum Defined with reference to fourth ventricles and brainstem as a guide 
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Figure 2.13 – Volumetric Manuel Segmentation Analysis of the Rat Brain from Magnetic Resonance Images.  
Representative MR images of the brain of a suigically naïve rat used for volumetric manual segmentation analysis, indicating the delineation of six brain structures: whole 
brain, lateral ventricles, corpus striatum, hippocampus and cerebellum. See table 2.1 for anatomical criteria used (anatomical reference taken from Vernon et al., 2010, 
Vernon et al., 2011, Paxinos and Watson, 2009).  
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2.4.5.5 – Tensor Based Morphometry 

The number of regions that can be studied using manual segmentation analysis is limited by the 

ability of the operator to reliably define anatomical boundaries using the inherent tissue contrast in 

the image. In addition, whilst manual segmentation can be robust and informative it is subject to 

operator bias, relatively insensitive to subtle anatomical changes and lacks sub-regional specificity. 

In contrast Tensor Based Morphometry (TBM) is an automated image analysis tool which allows 

unbiased detection of changes in individual voxels across the whole brain (Crum et al., 2013a, Kielar 

et al., 2012, Hua et al., 2008). Therefore in collaboration with Drs Anthony Vernon and William Crum 

at King’s College London, T2W images were also analysed using an automated TBM pipeline (Crum et 

al., 2013a). Briefly, a single, well-positioned good-quality control animal scan was chosen as an initial 

reference for rigid (6 degrees of freedom) and rigid + scaling (9 degrees of freedom) registration 

using a robust population approach (Crum et al., 2013b). Then, a template image was constructed as 

the mean of the registered control group scans and used as the reference in subsequent processing. 

High-dimensional non-rigid registration was applied to each scan to warp it onto the control 

template, and thereby obtain maps of apparent local volume difference for each scan, encoded as 

the Jacobian determinant at each voxel (Crum et al., 2013a). Non-parametric t-tests at each voxel 

were used to detect differences in the Jacobian determinants between each study group and the 

control group and thereby infer differences in volume across groups (Bullmore et al., 1999). 

Significance values were corrected for multiple comparisons using the False Discovery Rate with 

q=0.05 (Genovese et al., 2002). 

2.4.5.6 – Measurement of T2 Relaxivity 

For T2 relaxivity measurements the stack of fifty T2W MR images was synchronised with the 

corresponding stack of fifty T2 relaxivity maps such that signal intensity values for T2 from T2 

relaxivity maps could be measured using T2W images as anatomical reference. T2 relaxivity values 

were determined in the corpus striatum and midbrain in both the ipsilateral and contralateral 

hemispheres using the same anatomical landmarks and with reference to the stereotaxic brain map 

as mentioned above (see table 2.1 and figure 2.13). Due to the poor resolution of MR images the 

SNpc could not be delineated manually. Therefore T2 relaxivity was measured in the SNpc by placing 

a square region of interest of area 1.35mm2 over the area approximate to the SNpc for each SNpc 

containing slice using the corresponding T2W image and the rat stereotaxic brain map as reference 

(see figure 2.14). All T2 relaxivity measurements were expressed as the ratio between the ipsilateral 

and contralateral hemisphere: the T2 signal intensity ratio. 
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Figure 2.14 – Measurement of T2 Relaxivity in the Substantia Nigra  
Due to the poor resolution of the MR images, instead of manual delineation, a square region of interest 
(1.35mm2) was placed over the area approximate to the SNpc using the corresponding T2W image and the rat 
stereotaxic brain map as reference. (A) Representative T2W image of the rat brain at the level of the SNpc (~-
5.2mm from bregma) with regions of interest placed over the area approximate to the SN. (B) Synchronised 
corresponding T2 relaxivity map from which measurements were taken (anatomical reference taken from 
Paxinos and Watson, 2009).  
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2.4.5.7 – Image Analysis Reliability Validation 

To ensure that manual scan analysis was performed with consistent accuracy, a single scan was 

chosen at random and manually analysed (manual segmentation analysis and measurement of T2 

relaxivity) five times by a single rater for assessment of intra-rater reliability. Each result was plotted 

in terms of its percentage deviation from the mean of all five analyses, to provide a graphical 

illustration of intra-rater reliability (see figure 2.15). The standard deviation of these values, 

otherwise known as the Coefficient of Variation (CV), were all below the threshold of 5% indicative 

of robustly reliable manual segmentation and measurement of T2 relaxivity by the single rater (see 

table 2.2). To confirm these findings statistically, an intra-class correlation coefficient (ICC) was also 

calculated for each set of five results. An ICC of ≥0.99 was observed in all datasets. 

 

2.4.6 – Tissue Collection and Preparation 

At the end of the each study period, animals were sacrificed according to Home Office Schedule 1 

procedures using inhalation of CO2. Animals were decapitated and the brain quickly dissected out of 

the skull onto ice. Using a rodent brain matrix, each brain was cut coronally at ~-4.16mm from 

bregma (Paxinos and Watson, 2009) at the level of the infundibular stem to produce forebrain and 

hindbrain blocks containing the frontal cortex and SNpc respectively. Frontal brain tissue was snap 

frozen on dry ice and stored at -80°C prior to mRNA and protein extraction (see section 2.4.7) and 

subsequent qRT-PCR (see section 2.5.3) and Western blot (see section 2.5.4) analysis respectively. 

The hindbrain block was firstly fixed by incubation in 4% paraformaldehyde in PBS (pH7.4) for 72hrs 

at 4°C before being cryoprotected by incubation in 30% sucrose in PBS until the tissue was observed 

to have sunk. Blocks were then snap frozen in isopentane pre-chilled on dry ice and stored at -80°C 

for subsequent immunohistochemical analysis (see section 2.5.2).  

 

2.4.7 - mRNA and Protein Extraction and Quantification 

RNA and protein from 30mg samples of rat frontal brain tissue were sequentially extracted using the 

RNeasy® Plus Universal Mini Kit (Qiagen, Crawley, UK) as previously described in section 2.2.3. After 

quantification, mRNA and protein samples were stored at -80 and -20°C respectively for subsequent 

qRT-PCR (see section 2.5.3) and Western blot (see section 2.5.4) analysis. 
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Figure 2.15 – Magnetic Resonance Image Analysis Reliability Validation 
(A) Intra-rater reliability validation of manual segmentation analysis of rat brain MR images. (B) Intra-rater 
reliability validation of T2 relaxivity analysis of brain MR images. The CV value for each brain structure is below 
the threshold of 5% indicative of robustly reliable segmentation and measurement of T2 relaxivity by the single 
rater. 
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Table 2.2 – Magnetic Resonance Image Analysis Reliability Validation 
Intra-rater reliability validation of manual segmentation and T2 relaxivity measurement analysis of rat brain MR 
images. (The CV value for each brain structure is below the threshold of 5% indicative of robustly reliable 
segmentation and measurement of T2 relaxivity by the single rater. Abbreviations: Ipsi, ipsilateral; Contra, 
contralateral; µ, mean; σ, standard deviation; CV, coefficient of variation; ICC, intra-class correlation 
coefficient. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 µ σ %CV  (𝝈
𝝁⁄ ) ICC 

Manual Segmentation Analysis      
Whole Brain 1569.957 3.820845 0.243373 ** ≥0.99 
Lateral Ventricles (Ipsi) 2.487815 0.073312 2.946838 * ≥0.99 
Lateral Ventricles (Contra) 2.115199 0.04817 2.277328 * ≥0.99 
Corpus Striatum (Ipsi) 70.76143 2.253864 3.185159 * ≥0.99 
Corpus Striatum (Contra) 64.14539 1.610684 2.510989 * ≥0.99 
Midbrain (Ipsi) 57.10785 0.441424 0.772966 ** ≥0.99 
Midbrain (Contra) 57.57048 0.362582 0.629806 ** ≥0.99 
Hippocampus (Ipsi) 56.04614 0.610481 1.089247 * ≥0.99 
Hippocampus (Contra) 52.13673 0.67881 1.30198 * ≥0.99 
Cerebellum 273.8156 1.29047 0.471292 ** ≥0.99 
      
T2 Relaxivity Measurement      
Corpus Striatum (Ipsi) 0.902329 0.000529 0.058587 *** ≥0.99 
Corpus Striatum (Contra) 0.896312 0.001018 0.113525 ** ≥0.99 
Midbrain (Ipsi) 0.47492 0.001501 0.316155 ** ≥0.99 
Midbrain (Contra) 0.470919 0.000669 0.141992 ** ≥0.99 
Substantia Nigra (Ipsi) 0.481655 0.001993 0.413882 ** ≥0.99 
Substantia Nigra (Contra) 0.482868 0.002585 0.53534 ** ≥0.99 
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2.5 – Cellular and Molecular Analyses 

2.5.1 - Introduction 

To investigate the histone acetylation profile and expression levels of HDACs in human PD, as well as 

assess the neuroprotective effects of HDACIs on a molecular and cellular level within the animal 

models of PD used here, numerous molecular and cellular biological techniques were used. Firstly, in 

order to quantify the amount of dopaminergic cell loss and neuroprotection associated with 

lactacystin lesioning and HDACI treatment in animal studies, the dopaminergic neurons within the 

SNpc were directly quantified in rat brains. For this the brains of animals which were removed at the 

end of each study were cryosectioned, immunohistochemically stained and the number of 

dopaminergic neurons within the SNpc stereologically counted. In addition to this, as previously 

described, mRNA and protein were extracted from human brain tissue samples, rat brain tissue 

samples and cell culture systems, for quantification of the expression of genes and proteins of 

interest. For gene expression analysis, RNA was first converted to complementary DNA (cDNA), and 

quantitative real-time polymerase chain reactions used to assess the relative expression of 

numerous neuroprotective proteins thought to change upon treatment with HDACIs as well as the 

level of HDACs themselves. Correspondingly, Western blot analysis was used to quantify the level of 

histone acetylation directly in extracted protein samples.  

 

2.5.2 – Immunohistochemical Staining of the Rat SNpc 

Cells were immunohistochemically labelled for either tyrosine hydroxylase (TH) or MHC Class II RT1B 

(clone OX6) (OX6). TH is the rate limiting enzyme in monoamine synthesis and it is therefore used 

here to stain dopaminergic neurons in the SNpc since this is the only population of monoaminergic 

neurons within this nucleus. In SNpc containing sections however the ventral tegmental area (VTA) is 

also present which is dopaminergic. Therefore for quantification of dopaminergic TH positive 

neurons specifically in the SNpc defined boundaries were employed to delineate it from the adjacent 

VTA (Carman et al., 1991) (see section 2.5.2.3). The OX6 clone of MHC Class II however is a marker 

specific to activated microglia in the brain (Ogura et al., 1994). It is therefore used here to stain 

activated microglia present in the SNpc of rats. In addition to immunohistochemical staining, tissue 

sections were counterstained with cresyl violet to stain the Nissl body present in all neurons. This 

stain was performed and quantified  in conjunction with quantification of TH immunopositive cells to 

confirm neuronal cell loss as opposed to potential loss of TH expression.   

2.5.2.1 – Crysectioning 

Following removal of the hindbrain from rats, the tissue was fixed, cyroprotected, snap frozen and 

stored at -80°C for subsequent immunohistochemical analysis. Prior to cryosectioning, hindbrain 
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tissue was embedded in Optimal Cutting Temperature compound and equilibrated to -22°C in a 

cryostat (Bright Instruments, UK) for 1hr. 30µm-thick coronal sections of the hindbrain block were 

then cryosectioned and collected throughout the extent of the SNpc (-4.8 to -6.3mm from bregma) 

(Paxinos and Watson, 2009), and thaw mounted onto SuperFrost® Plus slides (VWR). Slides were 

then stored at -80°C until immunohistochemically stained. 

2.5.2.2 – Immunohistochemistry 

For immunohistochemistry, the Avidin-Biotin Complex (ABC)/peroxidase method of 

immunohistochemistry was used  (see figure 2.16) (Key, 2009). Firstly, tissue sections were brought 

to RT and left to thaw, dry and anneal onto the slides for approximately 2hrs. Due to post-fixation of 

brain tissue, sections had a very high level of endogeneous peroxidase activity. To block this, 

sections were incubation in 0.3% H2O2 stabilised in either methanol (TH) or PBS (OX6) for 45mins. 

Sections were then rehydrated in a descending series of alcohol washes (100%, 100%, 90%, 70% and 

50% ethanol in dH2O) followed by dH2O and then PBSTX (PBS with 0.1% Triton-X), each for 5mins. 

Non-specific antibody binding was then blocked by incubation with either 20% normal goat serum 

(TH) or 20% normal horse serum in PBSTX for 1hr at RT before incubating the sections with the 

primary antibody, either Rabbit Polyclonal Anti-TH (1:1000, Millipore, MA, USA) or Mouse 

Monoclonal Anti- MHC Class II RT1B, clone OX6 (1:1000, Serotec, Oxford, UK) in PBSTX for 24hrs at 

RT. Sections were then washed in PBSTX (3 x 5min washes) and incubated in the secondary antibody, 

either Biotinylated Goat Anti-Rabbit Secondary Antibody (TH) or Biotinylated Horse Anti-Mouse 

Secondary Antibody, (VectorLabs, Perteborough, UK) at 1:200 in PBSTX for 1hr at RT. Sections were 

then washed again (PBSTX, 3 x 5min washes) and incubated in ABC (Vectastain Elite ABC Kit, 

VectorLabs) for a further 1hr at RT. Sections were then washed thoroughly in Tris-Buffered Saline 

(TBS) (pH8.4) (3 x 5min washes). Primary antibody binding was then visualised by incubating tissue 

sections with 3,3'-Diaminobenzidine (DAB) (DAB peroxidase substrate kit, VectorLabs). When the 

DAB colour development was deemed sufficient (visualised microscopically, ~5min incubation), the 

reaction was stopped by washing sections in dH2O before sections were counterstained using cresyl 

violiet. For this slides were incubated in cresyl violet solution (0.1% in dH2O) for 3mins. Sections 

were then washed thoroughly in dH2O before being differentiated and dehydrated in an ascending 

series of alcohol washes (70%, 90%, 100% and 100% ethanol in dH2O) followed by two washes of 

xylene. Sections were then mounted under cover slips using DPX. See figure 2.17 for example of TH 

immunohistochemical staining.  
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Figure 2.16 - Avidin-Biotin Complex/Peroxidase Immunohistochemistry 
The presence of the tissue antigen is firstly detected by the primary antibody which becomes tightly bound to 
its target epitope. The secondary antibody is then added which binds to the Fc region of the primary antibody 
forming a complex. The biotin signal on the secondary antibody is them amplified by addition of the avidin-
biotin complex (ABC), creating a complex with multiple peroxidase molecules. The peroxidase activity of the 
ABC is then used to catalyse the conversion of 3,3'-Diaminobenzidine (DAB) to a brown insoluble DAB 
precipitate, hence labelling the tissue antigen (adapted from Key, 2009).  
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Figure 2.17 – Tyrosine Hydroxylase Immunohistochemistry in the Rat SNpc 
Representative images of TH immunoreactivity in the rat SNpc. (C) Image of the ipsilateral and contralateral 
SNpc (iSNpc and cSNpc respectively) with the ipsilateral and contralateral VTA (iVTA and cVTA respectively) 
included. (A and B) High magnification images show close up examples of TH immunopositive cells in the SNpc 
of both hemispheres. (D) Negative control section consecutive to that shown in (C) which was stained with the 
same protocol but not incubated with TH primary antibody. Low magnification images taken at x4 
magnification, scale bar equal to 50µm. High magnification images taken at x20 magnification, scale bar equal 
to 500µm. 
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2.5.2.3 - Stereological Cell Quantification of Dopaminergic Neurons in the SNpc 

To quantify the number of TH positive (TH+) and Nissl positive (Nissl+) cells in the SNpc of rat brains, 

the unbiased optical fractionator method of stereological cell quantification was used as previously 

described (West et al., 1991). For this, a computer based stereology software system (ImagePro, 

MediaCybernetics, PA, USA) attached to a Nikon Eclipse E8—microscope (Nikon Instruments, Surrey, 

UK) and JVC 3CCD camera (JVC, London, UK) was used. Nissl+ neurons were identified by their 

pyramidal shape and blue intracellular Nissl body staining with a visible nucleus. TH+ neurons were 

identified by their brown immunopositive cell body and pyramidal shape with a visible nucleus 

Stereological estimates of cell numbers were made in all five previously published stereotaxic 

regions of the rat SNpc, defined as A-E (-4.8, -5.3, -5.6, -5.8 and -6.3mm from bregma respectively) 

(Carman et al., 1991). Briefly, of every sixth section, a tiled image was taken at x4 magnification, and 

the ipsilateral and contralateral SNpc were delineated manually with reference to previously 

published boundaries, to create areas of interest (AOI) (see figure 2.18A). Using the uniform 

systematic random sampling method with a sampling fraction of 2, the computer system then placed 

counting frames (140 x 160µm) across the entirety of the AOI. The numbers of TH+ and Nissl+ cells in 

each of the placed counting frames were then counted at x10 magnification. To avoid edge effects, 

“acceptance” and “forbidden” lines were used: cells crossing either the north or east borders were 

included in the count, whereas cells crossing either the south or west borders were excluded from 

the count (see figure 2.18B). The height of the optical dissector was also then calculated for each 

section, by measuring the average height of the counted optical plane relative to the section 

thickness using a Heidenhain microcator (Heidenhain, Traunreut, Germany). For each section the 

number of TH+ and Nissl+ was then calculated using the following equation: 

𝑵 = 𝒏 (
𝟏

𝒔𝒔𝒇
) (

𝟏

𝒂𝒔𝒇
) (

𝟏

𝒉𝒔𝒇
) 

Where: 

𝑵 = 𝑡𝑜𝑡𝑎𝑙 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑓𝑜𝑟 𝑠𝑒𝑟𝑖𝑒𝑠 𝑜𝑓 6 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠 

𝒏 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝑐𝑒𝑙𝑙𝑠 

𝒔𝒔𝒇 (𝒔𝒆𝒄𝒕𝒊𝒐𝒏 𝒔𝒂𝒎𝒑𝒍𝒊𝒏𝒈 𝒇𝒓𝒂𝒄𝒕𝒊𝒐𝒏) =  1
6⁄  

𝒂𝒔𝒇 (𝒂𝒓𝒆𝒂 𝒔𝒂𝒎𝒑𝒍𝒊𝒏𝒈 𝒇𝒓𝒂𝒄𝒕𝒊𝒐𝒏) =  
𝑎𝑟𝑒𝑎 𝑜𝑓 𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔 𝑓𝑟𝑎𝑚𝑒 (22400𝜇𝑚2) × 𝑛𝑜. 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑠 𝑐𝑜𝑢𝑛𝑡𝑒𝑑

𝑎𝑟𝑒𝑎 𝑜𝑓 𝐴𝑂𝐼 (𝜇𝑚2)
 

𝒉𝒔𝒇 (𝒉𝒆𝒊𝒈𝒉𝒕 𝒔𝒂𝒎𝒑𝒍𝒊𝒏𝒈 𝒇𝒓𝒂𝒄𝒕𝒊𝒐𝒏) =  
ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝑜𝑝𝑡𝑖𝑐𝑎𝑙 𝑝𝑙𝑎𝑛𝑒 (𝜇𝑚)

𝑡𝑜𝑡𝑎𝑙 ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡𝑖𝑠𝑠𝑢𝑒 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 (𝜇𝑚)
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Figure 2.18 – Stereological Cell Quantification 
(A) Representative example tiled image of a TH immunohistochemically stained tissue section of a lactacystin 
lesioned rat brain used for manual delineation of the AOI of the ipsilatreral (iSNpc) and contralateral (cSNpc) 
SNpc (delineated in green) with reference to previously defined boundaries (Carman et al., 1991) for 
stereological counting. (B) Representative counting frame used for quantification of TH+ (red marker) and 
Nissl+ (yellow marker) within the SNpc at x10 magnification. To avoid edge effects, “acceptance” (green) and 
“forbidden” (red) lines were used. 
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2.5.3 – Gene Expression Analysis 

2.5.3.1 – cDNA Synthesis 

500ng of extracted RNA from each sample, quantified spectrophotometrically (section 2.2.3), was 

reverse transcribed using the QuantiTect® reverse transcription kit according to the manufacturer's 

instructions with integrated removal of genomic DNA contamination (Qiagen). Briefly, genomic DNA 

was eliminated by incubation of 500ng of extracted RNA with 2µl of Qiagen gDNA Wipeout Buffer at 

42°C for 2mins. A master mix was then made of 1µl Quantitect Reverse Transcriptase, 4µl Quantitect 

Reverse Transciption Buffer and 1µl Reverse Transciption Primer Mix, which was added to the RNA 

containing sample and incubated at 42°C for 15mins. After this time the reverse transcription 

enzyme was inactivated by incubating the sample at 95°C for 3mins. The resulting cDNA samples 

were stored at -20°C until qRT-PCR analysis. 

2.5.3.2 – qRT-PCR 

qRT-PCR experiments were performed using the Brilliant® II QPCR master mix with low ROX (Agilent 

Technologies UK Ltd, Edinburgh, UK) and an Mx3000P™ real-time PCR system with MxPro software 

(v4.10, Stratagene, La Jolla, CA, USA). For quantification of the level of expression of each gene in 

each sample, in a 96 Well Optical Reaction Plate (Applied Biosystems®, Life Technologies, Paisley, 

UK), 20μl reactions were set up in triplicate, and run in duplex with the reference gene (novel 

reference gene XPNPEP1 (X-prolyl aminopeptidase (aminopeptidase P) 1)). This novel reference gene 

was included specifically as it has been previously shown to remain constant in post-mortem tissue 

between numerous diseases of the CNS (Durrenberger et al., 2012). Each reaction contained 10μl of 

Brilliant® II QPCR master mix, 7μl of RNase-free water, 1μl template cDNA sample (see section 

2.5.3.1) and 2μl (1μl gene of interest + 1μl reference gene) of PrimeTime™ qPCR assays (table 2.3 

and 2.4, Integrated DNA technology, Coralville, IA, USA). After loading reaction mixtures into wells 

the plate was sealed using MicroAmp Optical 8-Cap Strips (Life Technologies), and spun to collect 

reagents at the bottom of each tube. The plate was then loaded into the Mx3000P™ real-time PCR 

system and reactions were carried out using the following optimised cycling protocol: 95°C for 10 

min, then 60 cycles with a 3-step program (95°C for 30s, 55°C for 30s and 72°C for 30s) as these 

denaturing, annealing and extension temperatures were observed to work most efficiently with the 

PrimeTime™ qPCR assays in combination with the Brilliant® II QPCR master mix (data not shown). 

Fluorescence data collection was performed during the annealing (55°C) step. A negative control for 

each PrimeTime™ qPCR assay containing no cDNA template was run in each plate. Similarly an inter-

plate calibrator for each PrimeTime™ qPCR assay, created by pooling control cDNA samples, was also 

run in each plate.  
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Table 2.3 – Probe and Primer Sequences of Human PrimeTime™ qPCR Assays 
 All PrimeTime™ qPCR assays were obtained from Integrated DNA Technology (Coralville, Iowa, USA) and 
contained 2.5nM of probe, 5nM of primer 1 and 5nM of primer 2. Abbreviation: A, adenine; C, cytosine; G, 
guanine; T, thymine; HEX™, Hexachlorofluorescein; IABkFQ, Iowa Black® FQ; Fwd, forward; Rev, reverse.  
 

Gene 
Name 

Protein 
Product 

Sequence 

XPNPEP1 
  
  

XPNPEP1 
  
  

Probe 5'-/5HEX/CTTTGGGAA/ZEN/CCTCTTTCTCCAGCCA/3IABkFQ/-3' 

Fwd Primer 5'-CGAAACTCCTCAGCTTTGTCA-3' 

Rev Primer 5'-CTGTTGCTCTCTGTGAACTCT-3' 

TH 
  
  

TH 
  
  

Probe 5'-/56-FAM/ACGTCTCAA/ZEN/ACACCTTCACAGCTCG/3IABkFQ/-3' 

Fwd Primer 5'-GGTCTCTAGATGGTGGATTTTGG -3' 

Rev Primer 5'-TGCTAAACCTGCTTCTTCTCC -3' 

HLADPA1 
  
  

HLA-DPα1 
  
  

Probe 5'-/56-FAM/CCTAAGTCC/ZEN/TCTTCTGTTCAGATATTTTGTCACC/3IABkFQ/-3' 

Fwd Primer 5'-GTTTGTAGGGCAGCTGGAG-3' 

Rev Primer 5'-CACCGTCCTCATCATAAAGTCTC -3' 

HDAC1 
  
  

HDAC1 
  
  

Probe 5'-/56-FAM/AACGTTGAA/ZEN/TCTCTGCATCTGCTTGC/3IABkFQ/-3' 

Fwd Primer 5'-ACAGAACCACCAGTAGACAAC -3' 

Rev Primer 5'-CCATCCGTCCAGATAACATGTC -3' 

HDAC2 
  
  

HDAC2 
  
  

Probe 5'-/56-FAM/CCAATATCC/ZEN/CTCAAGTCTCCTGTGCC/3IABkFQ/-3' 

Fwd Primer 5'-GACAGCATAGTATTTGCCTTTTCC -3' 

Rev Primer 5'-CAACAGATCGTGTAATGACGGT -3' 

HDAC3 
  
  

HDAC3 
  
  

Probe 5'-/56-FAM/CGATGACTG/ZEN/CCCAGTGTTTCCCG/3IABkFQ/-3' 

Fwd Primer 5'-CTGTGTAACGCGAGCAGAA -3' 

Rev Primer 5'-CACCAATATGCAAGGCTTCAC -3' 

HDAC4 
  
  

HDAC4 
  
  

Probe 5'-/56-FAM/TCCTCAATA/ZEN/AAAAGAAGGCGCTGGC/3IABkFQ/-3' 

Fwd Primer 5'-TGGAAATGCAGTGGTTCAGAT -3' 

Rev Primer 5'-AGCTCAAGAACAAGGAGAAGG -3' 

HDAC5 
  
  

HDAC5 
  
  

Probe 5'-/56-FAM/CCAACGCCA/ZEN/GCTTCCTGCAG/3IABkFQ/-3' 

Fwd Primer 5'-GTTCCCGACCTGACATCC -3' 

Rev Primer 5'-TTGACATCACCGCAGCTC -3' 

HDAC6 
  
  

HDAC6 
  
  

Probe 5'-/56-FAM/TCCTTTCAG/ZEN/GCCCGGTTTGCT/3IABkFQ/-3' 

Fwd Primer 5'-ACCAACATCAGCTCTTCCTT -3' 

Rev Primer 5'-CATTGCCTCTGGGATGACA -3' 

HDAC7 
  
  

HDAC7 
  
  

Probe 5'-/56-FAM/CGGCATTCC/ZEN/CTACAGAACCCTGG/3IABkFQ/-3' 

Fwd Primer 5'-GGCAAAAAGCTGCTGAGC -3' 

Rev Primer 5'-AAGAACAGTCCATCCCAACAG -3' 

HDAC8 
  
  

HDAC8 
  
  

Probe 5'-/56-FAM/CAAAGAATG/ZEN/CACCATACTGGCCCG/3IABkFQ/-3' 

Fwd Primer 5'-TGAGATAACAAAAACCAGATGCTTC -3' 

Rev Primer 5'-GTCCCGAGTATGTCAGTATGTG -3' 

HDAC9 
  
  

HDAC9 
  
  

Probe 5'-/56-FAM/AAATCATTC/ZEN/CGTGAGCCGCCATC/3IABkFQ/-3' 

Fwd Primer 5'-GAGCTTTGATCCAATGATGTGTG -3' 

Rev Primer 5'-TCAGCAACGAAAGACACTCC -3' 

HDAC10 
  
  

HDAC10 
  
  

Probe 5'-/56-FAM/CTTCACTGT/ZEN/CAACCTGCCCTGGA/3IABkFQ/-3' 

Fwd Primer 5'-GTAGTCAGCGTTTCCCATCC -3' 

Rev Primer 5'-CTTTCCTGCGAGAGTCAGATG -3' 
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SIRT1 
  
  

Sirtuin1 
  
  

Probe 5'-/56-FAM/CTCGATGTC/ZEN/CTAGGTGCCCAGC/3IABkFQ/-3' 

Fwd Primer 5'-GTTTCATGATAGCAAGCGGTTC -3' 

Rev Primer 5'-GTCATGGTTCCTTTGCAACAG -3' 

SIRT2 
  
  

Sirtuin2 
  
  

Probe 5'-/56-FAM/TGACCTTGG/ZEN/AAGGGGTGGCC/3IABkFQ/-3' 

Fwd Primer 5'-CTCCCACCAAACAGATGACTC -3' 

Rev Primer 5'-TCTCCCAGACGCTCA -3' 



115 
 

 

 

 

 

Table 2.4 – Probe and Primer Sequences of Rat PrimeTime™ qPCR Assays 
 All PrimeTime™ qPCR assays were obtained from Integrated DNA Technology (Coralville, Iowa, USA) and 
contained 2.5nM of probe, 5nM of primer 1 and 5nM of primer 2. Abbreviation: A, adenine; C, cytosine; G, 
guanine; T, thymine; HEX™, Hexachlorofluorescein; IABkFQ, Iowa Black® FQ; Fwd, forward; Rev, reverse. 

 

 

 

 

  

Gene 
Name 

Protein 
Product 

Sequence 

XPNPEP1 
  
  

XPNPEP1 
  
  

Probe 5'-/5HEX/CCATCATTC/ZEN/ACTACGCGCCGATCC/3IABkFQ/-3' 

Fwd Primer 5'-GTTCCATCCTTGTACTGAGCA-3' 

Rev Primer 5'-TTCCCAACGATTTCCAGCA-3' 

SNCA 
  
  

α-Synuclein 
  
  

Probe 5'/56-FAM/CTTCTCAGC/ZEN/CACTGTTGTCACTCCA/3IABkFQ/-3' 

Fwd Primer 5'-CCCTCCAACATTTGTCACTTG-3' 

Rev Primer 5'-GCGTCCTCTATAGGTTCCA-3' 

BDNF 
  
  

BDNF 
  
  

Probe 5'-/56-FAM/CAGCAAAGC/ZEN/CACAATGTTCCACCA/3IABkFQ/-3' 

Fwd Primer 5'-GCAACCGAAGTCTGAAATAACCA-3' 

Rev Primer 5'-GACACATTACCTTCCAGCATCT-3' 

GDNF 
  
  

GDNF 
  
  

Probe 5'-/56-FAM/CGCTGACCA/ZEN/GTGACTCCAATATGCC/3IABkFQ/-3' 

Fwd Primer 5'-CAGTCTTTTGATGGTGGCTTG-3' 

Rev Primer 5'-GCCGAAGACCACTCCCT-3' 

HSPA1A 
  
  

Hsp70 
  
  

Probe 5'-/56-FAM/CCGTGTTGT/ZEN/GGACAGTTGGTTGTG/3IABkFQ/-3' 

Fwd Primer 5'-TGAGTGGAATGGACAGGAAAG-3' 

Rev Primer 5'-CATAATCAGAACTGTGCGAGTCT-3' 

GSN 
  
  

Gelsolin 
  
  

Probe 5'-/56-FAM/CGCCAGGAA/ZEN/CCTCTTCGATCACAA/3IABkFQ/-3' 

Fwd Primer 5'-CATCAGTAGCCAGGTCTTCC-3' 

Rev Primer 5'-GGCTTAAGGACAAGAAGATGGA-3' 

BCL2 
  
  

Bcl-2 
  
  

Probe 5'-/56-FAM/CAGGATAAC/ZEN/GGAGGCTGGGATGC/3IABkFQ/-3' 

Fwd Primer 5'-CCAGGAGAAATCAAACAGAGGT-3' 

Rev Primer 5'-GATGACTGAGTACCTGAACCG-3' 

BAD 
  
  

BAD 
  
  

Probe 5'-/56-FAM/CCATAGTCC/ZEN/CAGCCCTCCATG/3IABkFQ/-3' 

Fwd Primer 5'-CATCCCTTCATCTTCCTCAGTC-3' 

Rev Primer 5'-GACAGGCAGCCAATAACAGT-3' 
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2.5.3.3 – Data Analysis  

Relative gene expression was determined using the comparative CT (ΔΔCT) method (Livak and 

Schmittgen, 2001) normalising to the expression of the reference gene and the appropriate control 

group. Briefly, fluorescence was plotted against cycle number and a florescence threshold line (the 

value of which was determined empirically for each gene) was placed in the exponential phase of 

the resulting line. A threshold cycle (CT) value (cycle number at which the fluorescence generated 

within the reaction crosses the threshold line) for each reaction was calculated and the resulting 

values averaged for replicates. For each sample the ΔCT was then calculated as given by the following 

equation: 

∆𝑪𝑻 =  𝑪𝑻(𝒈𝒆𝒏𝒆 𝒐𝒇 𝒊𝒏𝒕𝒆𝒓𝒆𝒔𝒕) −  𝑪𝑻(𝒓𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝒈𝒆𝒏𝒆)  

This ΔCT value was then normalised to the appropriate control group by subtracting the mean ΔCT  

for that group, as given by the following equation: 

∆∆𝑪𝑻 =  ∆𝐶𝑇(𝑠𝑎𝑚𝑝𝑙𝑒) − 𝑚𝑒𝑎𝑛∆𝐶𝑇(𝑎𝑝𝑝𝑟𝑜𝑝𝑟𝑖𝑎𝑡𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑔𝑟𝑜𝑢𝑝) 

The amount of the target gene of interest, normalized to an endogenous reference gene and relative 

to the appropriate control group was then calculated, as given by the following equation:  

𝟐−∆∆𝑪𝑻 

The resulting expression values were converted to fold changes from the appropriate control group 

and data expressed as mean ± SEM.  

2.5.3.4 – Validation of the Comparative CT Analysis Method 

For the ΔΔCT method of analysis to be valid, it is assumed that the efficiency of the target gene 

amplification and the efficiency of the reference gene amplification are approximately equal (Livak 

and Schmittgen, 2001). To test whether this was the case for the PrimeTime™ qPCR assays used, a 

standard curve for each amplicon was run utilising a single sample known to express all genes 

(calibrator cDNA described previously) diluted serially. A semi-logarithmic plot of CT values 

generated vs. log of the amount of input nucleic acid was then plotted (see figure 2.19A and B). The 

probe efficiencies (E) were then calculated using the slope of the resulting lines (see figure 2.19A and 

B) and the following equation: 

𝑬 (%) =  (𝟏𝟎−𝟏 𝒔𝒍𝒐𝒑𝒆⁄ − 𝟏) × 𝟏𝟎𝟎 

The ΔCT for each standard was then calculated (see above) and plotted against log of the amount of 

input nucleic acid: the slope of which must be <0.1 to pass validation (see figure 2.19C and D). All 

genes displayed slopes of <0.1 (range 0.019-0.089). 
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Figure 2.19 – Validation Experiments For Comparative CT Analysis Method 
Semi-logarithmic plots of CT values generated for each (A) human and (B) rat PrimeTime™ qPCR assay vs. log of 
input amount of nucleic acid, used for calculated of probe efficiencies. Semi-logarithmic plots of ΔCT vs. log of 
input amount of nucleic acid for (C) human and (D) rat PrimeTime™ qPCR assays, used for testing the validity 
of the comparative CT method. All genes displayed slopes of <0.1 (range 0.019-0.089). 
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2.5.4 – Protein Expression Analysis 

To assess the expression levels of proteins of interest, chemiluminescent Western blot analysis was 

employed (see figure 2.20). For this, the appropriate volume of Laemmli sample buffer (Sigma) was 

added to 10µg of extracted protein sample and incubated at 95°C for 15mins to denature the 

protein and disrupt any secondary/tertiary/quaternary structures precluding antibody binding. 

Samples were then loaded onto 1mm thick 15-well hand-cast 15% Tris-Glysine gels and proteins 

separated by electrophoresis in Tris-Glycine running buffer (0.25M Tris-Base, 2M Glycine, and 1% 

Sodium Dodecyl Sulphate) for ~40mins at a constant current of 60mA. Proteins were transferred to 

polyvinylidene fluoride (PVDF) membrane (pore size, 0.45µm) using semi-dry transfer (20V for 

45mins) in transfer buffer (0.25M Tris-Base, 2M Glycine, 20% methanol). Membrane was then 

equilibrated in TBST (TBS with 0.2% Tween-20) before non-specific binding was blocked (see table 

2.5 for details). Membranes were then washed in TBST before being incubated in primary antibody 

(see table 2.5 for details). Membranes were washed again in TBST and incubated in horseradish 

peroxidase (HRP)-conjugated secondary antibody (see table 2.5 for details). Membranes were 

washed again in TBST and incubated in chemiluminescent developing substrate (Clarity Western ECL 

Substrate, Bio-Rad, Hemel Hempstead UK) for 1min. Membranes was then wrapped in cling film and 

positioned into a Hypercassette™ (GE Healthcare Life Sciences, Buckinghamshire, UK). In the dark, 

high performance chemiluminescent film (GE Healthcare Life Sciences) was then exposed to 

membranes and films developed using a film developer (Konica, SRX-101A, Konica Minolta, NJ, USA). 

Protein bands were then quantified using densitometry analysis software (ImageJ, v1.4).  
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Figure 2.20 – Chemiluminescent Western Blot Analysis 
The presence of the target antigen is firstly detected by the primary antibody which becomes tightly bound to 
its target epitope. The secondary antibody, conjugated to horseradish peroxidase, is then added which binds 
to the Fc region of the primary antibody forming a complex. The conversion of the chemiluminescent substrate 
is catalysed by the peroxidase enzyme on the secondary antibody, resulting in the conversion product and light 
being emitted. This is then detected through exposure to chemiluminescent film. Abbreviations: S, 
chemiluminescnet substrate; P, chemiluminescent product.  
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Table 2.5 – Antibodies Used for Western Blotting 
Incubations and blocking conditions used for Western blotting. Abbreviation: BSA, bovine serum albumin; FCS, foetal calf serum; TBS-T, tris-buffered saline containing 0.2% 
tween-20; HRP, horseradish peroxidase; RT, room temperature. 

Antigen Molecular 
Weight 

Blocking 
Conditions 

Primary 
Antibody 

Primary Antibody 
Incubation 
Conditions 

Secondary 
Antibody 

Secondary Antibody 
Incubation 
Conditions 

Histone H3 acetylated on lysine 9 
(AcH3-K9) 

~ 17kDa 5% non-fat milk 
in TBST for 1hr 
at RT 

Rabbit polyclonal 
anti-AcH3-K9 
(Sigma) 

1:10,000 in TBST for 
1hr at RT 

HRP-conjugated 
goat anti-rabbit 
(Vector Labs) 

1:10,000 in TBST for 
1hr at RT 

β-Actin ~ 42kDa Either 5% BSA 
or non-fat milk 
in TBST for 1hr 
at RT 

Mouse monoclonal 
anti-β-actin 
(Abcam, 
Cambridge, UK) 

1:20,000 in TBST for 
1hr at RT 

HRP-conjugated 
horse anti-mouse 
(Vector Labs) 

1:10,000 in TBST for 
1hr at RT 

Tyrosine Hydroxylase ~ 62kDa 5% BSA in TBST 
for 1hr at RT 

Rabbit polyclonal 
anti-TH 
(Millipore) 

1:1,000 in 1% BSA in 
TBST with 0.01% NaN3 

for 20hrs at RT 

HRP-conjugated 
goat anti-rabbit 
(Vector Labs) 

1:10,000 in TBST for 
1hr at RT 

NeuN ~ 46/48kDa 5% BSA in TBST 
for 1hr at RT 

Mouse monoclonal 
anti-NeuN 
(Millipore) 

1:1,000 in 1% BSA in 
TBST with 0.01% NaN3 

for 20hrs at RT 

HRP-conjugated 
horse anti-mouse 
(Vector Labs) 

1:10,000 in TBST for 
1hr at RT 
 

Iba-1 ~ 17kDa 3% foetal calf 
serum in TBST 
for 1hr at RT 

Rabbit polyclonal 
anti-Iba-1 
(Wako, Osaka, 
Japan) 

1.67ug/ml in 3% FCS in 
TBST for 20hrs at 4°C 

HRP-conjugated 
goat anti-rabbit 
(Vector Labs) 

1:2,000 in 3% FCS in 
TBST for 1hr at RT 
 

 



121 
 

2.6 - Materials and Sources 

Lactacystin and LPS were both obtained from Enzo Life Sciences Ltd. (Exeter, UK). Valproate, 

Nicotinamide, Sodium Butyrate and EX527 were all obtained from Sigma-Aldrich Chemical Co. Ltd 

(Pool, UK). Trichostatin A, AGK2 and Suramine were all obtained from Tocris Bioscience Ltd. (Bristol, 

UK). Apicidin was obtained from Enzo Life Sciences Ltd. (Exeter, UK). MS275 was obtained from 

Stratech Scientific Ltd. (Suffolk, UK). RNA extraction and reverse transcription kits were obtained 

from Qiagen Ltd. (Crawley, UK). qRT-PCR mastermix was obtained from Agilent Technologies UK Ltd. 

(Edinburgh, UK). PrimeTime™ qPCR Assays were all obtained from Integrated DNA Technology 

(Coralville, Iowa, USA). ELISA kits were obtained from Peprotech Ltd. (London, UK). Primary 

antibodies were obtained from either Sigma-Aldrich Chemical Co. Ltd. (Poole, UK), Millipore Ltd. 

(MA, USA), Abcam Ltd. (Cambridge, UK) or Wako Chemicals Ltd. (Osaka, Japan). Secondary 

antibodies, serums, ABC kits, and DAB peroxidase substrate kits were obtained from VectorLabs 

(Peterborough, UK). Unless otherwise stated all other reagents were obtained from either Sigma-

Aldrich Chemical Co. Ltd. (Poole, UK) or VWR (Lutterworth, UK).  
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2.7 - Statistical Analysis 

Unless otherwise stated all data is presented as mean ± SEM based on n independent observations. 

For individual comparisons, either two-tailed paired or unpaired Student t-tests were used. For 

multiple comparisons either one way or two way (repeated measures) analyses of variance (ANOVA) 

were used with Bonferroni post-hoc tests for multiple comparisons.  For multiple comparisons to a 

single control group a one way ANOVA was used with Dunnet’s post-hoc tests for multiple 

comparisons. Individual tests conducted on each dataset are detailed in the ‘Experimental Design’ 

section of each chapter. Unless otherwise stated statistical significance is indicated in figure legends 

using the following system: p<0.05 (*, #), p<0.01 (**, ##), p<0.001 (***, ###), p<0.0001 (****, ####). All 

statistical tests were performed using GraphPad Prism (v5.0 for Windows, GraphPad Software, San 

Diego, CA, USA). 
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Chapter Three 

Histone Acetylation and HDAC Expression in 
Parkinson’s Disease 
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3 – Histone Acetylation and HDAC Expression in Parkinson’s Disease 

3.1 – Introduction 

In healthy cells there is a tightly controlled equilibrium between the effects of HATs and HDACs 

enabling histone (de)acetylation and the dynamic control of transcription (Dietz and Casaccia, 2010, 

Saha and Pahan, 2006). In healthy neurons this therefore results in appropriate regulation of gene 

expression and subsequently facilitates appropriate neuronal homeostasis (Saha and Pahan, 2006). 

In neurodegenerative disease, however there is known to be an imbalance between the activity of 

HATs and HDACs in favour of histone deacetylation, thought to be pathogenic in disease progression 

(Dietz and Casaccia, 2010, Saha and Pahan, 2006, Rouaux et al., 2003). This misbalance in 

neurodegeneration was first noted in both an in vitro model of cortical neuronal cell death induced 

by activation of amyloid precursor protein signalling, a hallmark of AD, and in an in vivo model of 

ALS: the G86R mutant SOD-1 mice displaying motor neuron degeneration (Rouaux et al., 2003). 

More specific to PD, it was later demonstrated that αSyn accumulation itself promotes histone H3 

hypoacetylation as ascertained from overexpression studies in SH-SY5Y cells as well as in an in vivo 

αSyn transgenic drosophila model, thought to be achieved through αSyn ‘masking’ acetylation sites 

on histone proteins (Kontopoulos et al., 2006). From these findings then it is hypothesised that the 

misbalance in HAT/HDAC activity could be rectified with the use of HDACIs to reduce the extent of 

cell death exhibited in the SNpc in PD.  

 Thus far pathogenic histone hypoacetylation and transcriptional dysfunction have yet to be 

confirmed as being present in the brains of PD patients: all work previously being described in 

animal and cellular models of neurodegeneration. The acetylation level of histone proteins within 

degenerating regions of the Parkinsonian brain must therefore be quantified and compared with age 

matched control subjects to confirm this hypothesis in the human disease. This represents a vital 

stage in the drug development process as without confirming the dysregulation of histone 

acetylation and trascitpional dysfunction in primary diseased tissue, the use of HDACIs for the 

treatment of PD cannot truly be rationalised. The first part of this chapter will therefore focus on 

quantifying histone acetylation levels in the midbrain, putamen and fontal cortex of control human 

brain tissue and brain tissue from both early (ePD, Braak stage 3/4) and late (lPD, Braak stage 6) 

stage PD cases from the PUKTB at Imperial College London with the aim of determining if histone 

acetylation is indeed a function PD development and/or if histone acetylation maps with the 

spreading of pathology in the Parkinsonian brain. Although it is thought that pathogenic histone 

hypoacetylation is in part due to the ‘masking’ effects of αSyn accumulates towards histone 

proteins, it remains unanswered whether the expression levels of the HDACs themselves in 

degenerating regions of the PD brain are affected in PD: studies thus far focussing on directly 
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measuring histone acetylation rather than expression levels of the enzymes responsible for 

(de)acetylating histone proteins. Due to the well-defined link between  HDACs and cancer, 

expression studies have been conducted in a number of tumour types demonstrating their alteration 

in diseased tissue (Poyet et al., 2014, Pacheco and Nielsen, 2012, Yeung et al., 2004, Zhang et al., 

2004, Wilson et al., 2006). To the authors knowledge however such a study is yet to be conducted in 

the neurodegenerative diseased brain, the only study of diseased brain tissue being conducted upon 

astrocytoma brain tumours (Lucio-Eterovic et al., 2008). The second part of this chapter therefore 

focuses on profiling the expression level of the various HDAC isoforms in levels in the midbrain, 

putamen and fontal cortex of control human brain tissue and brain tissue from both early (Braak 

stage 3/4) and late (Braak stage 6) stage PD cases with the aim of determining if HDAC isoform 

expression is indeed a function PD development and/or if perturbation of HDAC expression maps 

with the spreading of pathology in the Parkinsonian brain.  
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3.2 – Aims of Chapter 

The aims of this chapter are therefore to:  

1. Determine whether histone acetylation is affected in the Parkinsonian brain 

a. Using tissue from early (ePD, Braak stage 3/4) and late (lPD, Braak stage 6) stage PD 

cases and age matched controls, quantify the level of histone acetylation in the 

midbrain, putamen, and frontal cortex.  

b. Determine whether histone acetylation is affected in these brain regions in the 

Parkinsonian brain, and to what extent. 

2. Determine whether the level of HDAC isoform expression is affected in the Parkinsonian 

brain 

a. Quantify the difference in expression levels of various HDAC isoforms between the 

midbrain, putamen and frontal cortex in control brain tissue. 

b. Using tissue from early (ePD, Braak stage 3/4) and late (lPD, Braak stage 6) stage PD 

cases and age matched controls, quantify the expression levels of various HDAC 

isoforms in the midbrain, putamen, and frontal cortex.  

c. Determine whether changes of expression in any of the HDAC isoforms are present 

in these brain regions of the Parkinsonian brain, and to what extent. 
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3.3 – Experimental Design 

3.3.1 – Quantification of Histone Acetylation and Gene Expressions in the Parkinsonian Brain  

Human brain tissue from cases of early (Braak stage 3/4, ePD, n=8) and late (Braak stage 6, lPD, 

n=12) stage pathologically confirmed PD, as well as age matched controls (n=10) was obtained from 

the Parkinson’s UK Tissue Brain Bank. Table 3.1 for full description of control and PD cases used. For 

each case, 30mg of tissue from the brain block containing the midbrain, the putamen or frontal 

cortex was collected. Protein and mRNA were simultaneously extracted from tissue samples (section 

2.2.3) for further analysis. The level of histone acetylation was quantified in protein samples by 

performing Western blot analysis for a commonly acetylated histone lysine residue, AcH3-Lys9 

(section 2.5.4). Extracted mRNA from each region was converted to cDNA and the expression levels 

of cellular markers (TH for dopaminergic neurons and HLA-DPα1 for activated microglia) were firstly 

quantified using qRT-PCR (section 2.5.3). The expression levels of HDAC1 to 10, and sirtuin1 and 2 

was then similarly quantified using qRT-PCR (section 2.5.3). 

 

3.3.2 – Statistical Analysis 

All data is presented as mean ± SEM. Western blot and qRT-PCR were analysed using two-way 

ANOVA with Bonferroni post-tests to compare individual groups. All statistical tests were performed 

using GraphPad Prism (v5.0 for Windows, GraphPad Software, San Diego, CA, USA). 
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Table 3.1 – Control and Parkinson’s Disease Cases Utilised 
Abbreviations: PMI, post-mortem interval; AAD, age at death; AAO, age at onset; DD, disease duration; PD, Parkinson’s disease; ePD, early Parkinson’s disease; lPD, late 
Parkinson’s disease. Total row at bottom of each table: mean shown in bold, SEM shown in italic. 
 

Control 
Case 

Sex PMI 
(hrs) 

AAD 
(yrs) 

Cause of Death 

PDC08 F 17 71 Myocardial infarction  

PDC23 F 23 78 Unknown 

PDC26 F 23 80 Breast carcinoma with spinal metastasis; carcinosarcoma uterus 

PDC28 F 11 84 Pancreatic cancer  

PDC30 M 17 77 Conductive cardiac failure. Chronic kidney disease. Osteoporosis. Malignant neoplasm of prostate 

PDC34 M 12 90 Respiratory failure secondary to bronchial cancer 

PDC50 F 28 80 End stage primary pulmonary hypertension 

PDC53 F 22 89 Not reported 

C032 M 22 88 Prostate cancer, bone metastases  

C037 M 5 84 Bladder cancer, pneumonia 

n=10 4M:6F 18 
2.2 

82.1 
1.9 

 

 
ePD 
Case 

Sex PMI 
(hrs) 

AAD 
(yrs) 

AAO 
(yrs) 

DD 
(yrs) 

Braak 
(stage) 

Cause of Death PD Medication 

PD07 M 22 78 70 10 3 Pneumonia Sinemet, Orphenadrine, Amantadine 

PD14 M 21 79 67 12 3 Not reported Ropinirole, Madopar, Artane, Amitriptyline, Hyoscine, Risperidone 

PD22 F 14 76 65 14 4 Not reported Selegiline, Madopar, Cabergoline 

PD36 M 10 76 66 10 3 Unknown Madopar 

PD63 F 10 80 67 13 4 Not reported Sinemet, Entacapone, Sinemet, Selegiline 

PD86 F 22 87 77 9 4 Gastrointestinal bleeding Madopar, Amantadine, Selegiline 

PD109 M 9 72 66 6 4 Cardio-respiratory arrest; aspiration 
pneumonia 

Pergolide, Selegiline, Sinemet , Sinemet, Cabergoline 

PD204 F 5 86 68 18 3 Not reported Selegiline, Madopar, Cabergoline, Roprinirole 

  n=8 4M:4F 14.1 
2.4 

79.3 
1.8 

68.3 
1.4 

11.5 
1.3 

3.5 
0.2 
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lPD 
Case 

Sex PMI 
(hrs) 

AAD 
(yrs) 

AAO 
(yrs) 

DD 
(yrs) 

Braak 
(stage) 

Cause of Death PD Medication 

PD01 F  87 76 12 6 Not reported Madopar, Sinemet, Selegiline 

PD16 F 14 85 67 18 6 Bronchopneumonia and breast cancer 
with metastasis 

Madopar, Sinemet, Bromocriptine, Pergolide, Lysuride, Selegiline 

PD23 M 28 82 75 7 6 Not reported Sinemet, Pramipexole 

PD28 M 14 82 65 18 6 Not reported Sinemet preparations, Cabergoline, Bromocriptine, Pergolide, 
Selegiline 

PD41 M 6 77 67 10 6 Not reported Selegiline; Benzhexol; Sinemet; Pergolide; Pramipexole; 
Quetiapine; Paroxetine. 

PD45 M 16 80 60 19 6 Not reported Sinemet, Ropinirole, Selegiline, Entacapone, Tolcapone, 
Cabergoline 

PD67 M 10 83 74 9 6 Not reported Madopar Sinemet, Selegiline, Pergolide, Ropinirole, Tolcapone, 
Entacapone 

PD79 F 22 78 59 19 6 Chest infection Fludrocortisone, Sulpiride, Sinemet, Dothiepin, Selegiline, 
Madopar, Dispersible, Amitriptyline, Madopar, Sertraline, Artane, 
Propranolol 

PD93 F 22 81 67 14 6 Not reported Madopar, Madopar, Cabergoline, Sulpiride, Selegiline, Olanzapine, 
Amantadine 

PD99 M 10 82 72 11 6 Pneumonia, fractured neck of femur, 
pulmonary embolisms, COPD 

Pramipexole, Benzhexol, Sinemet, Madopar 
 

PD104 M 15 75 50 25 6 Pancreatic cancer  Sinemet, Madopar Dispersible, Madopar, Madopar, Pergolide, 
Entacapone, Disipal, Galantamine, Benzhexol, Bromocriptine, 
Selegiline 

PD180 F 15 85 70 15 6 Not reported Sinemet, Selegiline, Risperidone, Pergolide, Haloperidol, 
Rivastigmine 

n=12 7M:5F 15.6 
1.9 

81.4 
1.0 

66.8 
2.2 

14.8 
1.5 

6 
0 
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3.4 – Results 

3.4.1 – Expression of TH and HLA-DPα1 in Brain Tissue Samples  

Firstly the expression levels of TH, the rate limiting enzyme in monoamine synthesis, were quantified 

in midbrain and putamen tissue samples as an indicator of dopaminergic cell content in these brain 

regions. Additionally, the expression levels of HLA-DPα1, a MHC protein known to be present on 

activated microglia, were quantified in midbrain, putamen and frontal cortex tissue samples as an 

indicator of activated microglial cell content in these brain regions. Quantification of both of these 

cellular markers revealed significant differences in expression across brain regions and with disease 

progression (figure 3.1).  In line with degeneration of dopaminergic neurons in the SNpc in PD, there 

was a disease dependent reduction of TH expression in midbrain tissue samples (early and late PD 

cases, 0.549 ± 0.345 and 0.219 ± 0.089 fold change from control cases respectively, p>0.05 and 

p<0.05). No overt changes in TH expression were observed in putamen samples with disease 

progression. With HLA-DPα1 expression however, increases were observed in the midbrain in both 

early and late stage PD cases, however these differences did not reach significance. In the putamen 

however significant increases in HLA-DPα1 expression were observed in both early and late stage PD 

cases compared to controls (early and late stage PD cases, 2.127 ± 0.369 and 2.094 ± 0.476 fold 

change from control, p<0.05 in both comparisons). In the frontal cortex however, reductions in HLA-

DPα1 expression were observed in both early and late PD cases, however these changes did not 

reach significance. Summary of changes shown in table 3.2.  

 

3.4.2 – Histone Acetylation in the Parkinsonian Brain 

Quantification of a commonly acetylated histone residue (AcH3-Lys9) in whole brain tissue protein 

extracts from the midbrain, putamen and frontal cortex revealed significant differences in histone 

acetylation across brain regions and with PD progression (figure 3.2). An increase in histone 

acetylation was observed in the midbrain with disease progression: a subtle increase in AcH3-Lys9 

being observed in early PD cases and significantly more AcH3-Lys9 in late stage PD cases (early and 

late PD cases, 116.86 ± 32.93% and 174.58 ± 19.22% of control respectively, p>0.05 and p<0.05). No 

significant changes in histone acetylation were observed in the putamen. In contrast, a significant 

increase of histone acetylation was observed in the frontal cortex of early PD cases (early PD cases, 

180.44 ± 30.50% of control, p<0.05 and 0.001 compared to control and late stage PD cases 

respectively). In the frontal cortex of late PD cases however a non-significant reduction of histone 

acetylation was observed. Summary of changes shown in table 3.2. 
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Figure 3.1 – Dopaminergic Neurons and Activated Microglial in the Parkinsonian Brain 
Expression of (A) TH and (B) HLA-DPα1 in the midbrain, putamen and frontal cortex of control and early and 
late stage PD brains. Statistical significance from control group indicated with asterisks: *p<0.05. n=8-12 per 
group. Abbreviations: ePD, early stage PD; lPD, late stage PD.  
 

 

 

 

 

 

 

 

 

 

TH

Midbrain Putamen
0.0

0.5

1.0

1.5

*

Brain Region

R
e
la

ti
v
e
 E

x
p

re
s
s
io

n

(F
o

ld
 C

h
a
n

g
e
 F

ro
m

 C
o

n
tr

o
l)

HLA-DP1

Midbrain Putamen Frontal Cortex
0

1

2

3

Control

lPD

* *
ePD

Brain Region

R
e
la

ti
v
e
 E

x
p

re
s
s
io

n

(F
o

ld
 C

h
a
n

g
e
 F

ro
m

 C
o

n
tr

o
l)

A B 



132 
 

 

   

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 – Histone Acetylation in the Parkinsonian Brain  
Histone protein H3 acetylated on lysine 9 was quantified in protein extracts of from tissue sample of the 
midbrain, putamen and frontal cortex of control, early and late stage PD brains. (A) Densitometry analysis of 
the AcH3-Lys9 band relative to the β-actin band used as a loading control. (B) Representative blot of data 
presented in (A). (C) Correlation analyses between Braak staging of αSyn pathology in each case and amount of 
AcH3-Lys9 in the (i) midbrain, (ii) putamen and (iii) the frontal cortex. Statistical significance from control 
group indicated with asterisks: *p<0.05. Statistical significance from early PD group indicated with hashes: 
###p<0.001. n=8-12 per group. Abbreviations: ePD, early stage PD; lPD, late stage PD. 
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3.4.3 – HDAC Distribution in the Human Brain 

To ascertain the differences in expression level of HDAC isoforms in the healthy brain between the 

three brain regions examined, HDAC isoform expression in the putamen and frontal cortex were 

firstly compared with that in the midbrain of control cases. A number of differences were observed 

in HDAC class I isoform expression (figure 3.3A). Compared with its expression in the midbrain, there 

was a reduced and increased level of HDAC1 expression in the putamen and the frontal cortex 

respectively, however these differences did not reach significance. No difference in expression of 

HDAC2 was observed between the midbrain, putamen and frontal cortex. HDAC3 expression was 

reduced in both the putamen and frontal cortex compared with the midbrain, however similarly 

these differences did not reach statistical significance. HDAC8 expression however was significantly 

less in the putamen compared with the midbrain (0.071 ± 0.026 fold change from midbrain 

expression, p<0.05). Conversely, HDAC8 expression was observed to be significantly more in the 

frontal cortex compared to both the midbrain and the putamen (2.856 ± 0.700 fold change from 

control, p<0.001 compared to both midbrain and putamen expression). Differences in expression 

were also observed in HDAC Class IIa isoform expression (figure 3.3B). HDAC4 showed non-

significant reduced expression in the putamen and increased expression relative to the midbrain in 

the frontal cortex. HDAC5 expression was observed to be greater in the putamen however and less 

in the frontal cortex compared with the expression in the midbrain. HDAC7 on the other hand was 

markedly reduced compared with the midbrain in the putamen, yet significantly greater HDAC7 

expression was observed in the frontal cortex (1.844 ± 0.588 relative to midbrain expression, 

p<0.001 compared to putamen expression). No change in expression of HDAC9 was observed 

between the midbrain and the putamen, however a large increase in HDAC9 expression was 

observed in the frontal cortex. This difference however was non-significant. Differences in 

expression of HDAC Class IIb isoforms between brain regions was also observed (figure 3.3C). A 

reduction and increase in HDAC6 expression was observed in the putamen and frontal cortex 

compared to the midbrain respectively. However HDAC10 expression was unchanged between the 

midbrain and putamen, yet significantly increased in the frontal cortex (1.945 ± 0.541 relative to 

midbrain expression, p<0.05 compared to both midbrain and putamen expression).  Greatest 

differences between regional expressions of HDACs were observed in the sirtuin class of HDACs 

(figure 3.3D). No significant alterations in sirtuin1 or 2 expressions were observed between putamen 

and midbrain expression. However significantly greater expression levels of both sirtuin1 and 2 

compared to the midbrain were observed in the frontal cortex (sirtuin1 and 2 expression, 2.670 ± 

0.632 and 4.748 ± 0.867 fold change from midbrain expression respectively, p<0.05 and p<0.001).  
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Figure 3.3 – HDAC Distribution in the Human Brain 
Expression of (A) Class I, (B) Class IIa, (C) Class IIb and (D) Class III HDACs in the putamen and frontal cortex of 
the control human brain relative to their expression in the midbrain. Statistical significance from midbrain 
expression indicated with asterisks: *p<0.05, ***p<0.001. Statistical significance from putamen expression 
indicated with hashes: ##p<0.01, ##p<0.001. n=8-12 per group. 
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3.4.4 – HDAC Isoform Expression in the Parkinsonian Brain 

qRT-PCR analysis of the expression level of HDAC class I isoforms revealed significant differences in 

expression across brain regions and with PD progression (figure 3.4). With HDAC1 expression, no 

changes were observed in the midbrain or putamen however a significant reduction of expression 

was observed in the frontal cortex of PD brains, both early and late stage PD, compared to controls 

(early and late stage PD, 0.194 ± 0.057 and 0.413 ± 0.104 fold change from control respectively, 

p<0.01 and p<0.05). With HDAC2 expression, little or no change was observed in the midbrain 

however in the putamen a subtle disease dependent increase in HDAC2 expression was observed. 

This however was not significant. Similar with the case of HDAC1, HDAC2 expression was reduced in 

the fontal cortex in PD brains, this however also did not reach statistical significance. HDAC3 

however, was shown to significantly reduce in PD in both the midbrain and the frontal cortex 

(HDAC3 expression in early and late stage PD midbrain, 0.429 ± 0.048 and 0.501 ± 0.067 fold change 

from control respectively, p<0.01 in both comparisons, HDAC3 expression in early and late stage PD 

frontal cortex, 0.412 ± 0.067 and 0.377 ± 0.071 fold change from control respectively, p<0.01 and 

p<0.001 respectively). There was no change of HDAC3 expression however in the putamen. With 

HDAC8 expression, no change was observed in the midbrain however HDAC8 was disease 

dependently upregulated in the putamen, reaching statistical significance from controls in late stage 

PD (early and late stage PD, 0.152 ± 0.347 and 2.317 ± 0.439 fold change from control respectively, 

p>0.05 and p<0.05). A reduction was also observed in HDAC8 expression in the frontal cortex in PD 

brains, however this change was not significant. Summary of changes shown in table 3.2. 

 Significant changes were also observed in the expression of class IIa HDACs (figure 3.5). No 

change was observed in the HDAC4 expression in the midbrain yet an increase of HDAC4 expression 

in the putamen was observed with disease progression, reaching statistical significance in late stage 

PD cases (1.627 ± 0.155 and 1.847 ± 0.303 fold change from control in early and late stage cases, 

p>0.05 and p<0.05). A reduction in HDAC4 expression was also observed in PD cases compared with 

controls. Reductions in midbrain and frontal cortex HDAC5 expression were observed, however they 

did not reach significance. No change in HDAC5 expression was observed in the putamen. A disease 

dependent reduction in HDAC7 was observed in the midbrain, reaching statistical significance from 

control in late stage PD cases (early and late stage PD cases, 0.681 ± 0.119 and 0.429 ± 0.070 fold 

change from control respectively, p>0.05 and p<0.05). No change in HDAC7 expression was observed 

in the putamen however a statistically significant reduction in HDAC7 was observed in both early and 

late stage PD cases in the frontal cortex. With HDAC9 expression, no changes were observed in the 

midbrain or putamen expression however reductions in expression were observed in both early and 

late stage PD cases. Summary of changes shown in table 3.2. 



136 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 – HDAC Class I Expression in the Parkinsonian Brain 
Expression of (A) HDAC1, (B) HDAC2, (C) HDAC3 and (D) HDAC8 in the midbrain, putamen and frontal cortex of 
control and early and late stage PD brains. Statistical significance from control group indicated with asterisks: 
*p<0.05; **p<0.01, ***p<0.001. n=8-12 per group. Abbreviations: ePD, early stage PD; lPD, late stage PD. 
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Figure 3.5 – HDAC Class IIa Expression in the Parkinsonian Brain 
Expression of (A) HDAC4, (B) HDAC5, (C) HDAC7 and (D) HDAC9 in the midbrain, putamen and frontal cortex of 
control and early and late stage PD brains. Statistical significance from control group indicated with asterisks: 
*p<0.05. n=8-12 per group. Abbreviations: ePD, early stage PD; lPD, late stage PD. 
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Changes were also observed in HDAC class IIb expression in PD brains (figure 3.6). An 

increase and a decrease were observed in midbrain HDAC6 expression in early and late stage PD 

cases respectively (early stage PD cases, 1.330 ± 0.285, and late stage PD cases, 0.703 ± 0.109 fold 

change from control, p<0.05). Slight non-significant increases in HDAC6 expression were also 

observed in the putamen. However significant reductions in HDAC6 expression were observed in 

both early and late stage PD cases compared with controls (early and late stage PD cases, 0.125 ± 

0.021 and 0.379 ± 0.093 fold change from control respectively, p<0.01 and p<0.05). A decrease in 

HDAC10 expression was observed in the midbrain of late stage PD brains, however no changes were 

observed in the expression of this HDAC in the putamen. Similar to those changes above, reductions 

were also observed in HDAC10 expression in the frontal cortex of both early and late stage PD cases, 

however these did not reach significance. Summary of changes shown in table 3.2. 

 With expression of class III HDACs, the sirtuins, a number of changes were similarly observed 

(figure 3.7). Despite not displaying any changes in sirtuin expression in disease cases in the midbrain, 

a significant increase in sirtuin1 expression was shown in the putamen, more so in early stage PD 

cases as opposed to late (sirtuin1 expression in early and late stage PD cases, 2.240 ± 0.295 and 

1.600 ± 0.157 relative to control respectively, p<0.001 and p<0.05). Significant reductions on the 

other hand were observed in sirtuin1 expression in the frontal cortex of both early and late stage PD 

cases (p<0.01 in both comparisons). A similar pattern of changes was also observed with sirtuin2 

expression. No significant changes were observed in the midbrain however a greater level of sirtuin2 

expression was observed in the putamen compared with controls, this reached significance in late 

stage PD cases (late stage PD cases, 1.597 ± 0.295 fold change from control, p<0.05). Additionally, 

reductions in sirtuin2 expression were observed in the frontal cortex of both early and late stage PD 

cases. Summary of changes shown in table 3.2. 
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Figure 3.6 – HDAC Class IIb Expression in the Parkinsonian Brain 
Expression of (A) HDAC6 and (B) HDAC10 in the midbrain, putamen and frontal cortex of control and early and 
late stage PD brains. Statistical significance from control group indicated with asterisks: *p<0.05. Statistical 
significance from early PD group indicated with hashes: #p<0.05. n=8-12 per group. Abbreviations: ePD, early 
stage PD; lPD, late stage PD. 
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Figure 3.7 – HDAC Class III Expression in the Parkinsonian Brain 
Expression of (A) sirtuin1 and (B) sirtuin2 in the midbrain, putamen and frontal cortex of control and early and 
late stage PD brains. Statistical significance from control group indicated with asterisks: *p<0.05; **p<0.01, 
***p<0.001. Statistical significance from early PD group indicated with hashes: #p<0.05. n=8-12 per group. 
Abbreviations: ePD, early stage PD; lPD, late stage PD. 
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Table 3.2 – Summary of Changes with Parkinson’s Disease  
Summary of the changes observed in TH and HLA-DPα1 expresson, histone acetylation, and HDAC isoform 
expression in the midbrain, putamen and frontal cortex with PD development. Arrows designate changes: 
↑increase, ↓decrease, ↔no overt change. First arrow designates change in early PD, second arrow 
designates change in late PD from control. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Midbrain Putamen Frontal Cortex 

TH 
HLA-DPα1 

↓↓ ↔↔  
↑↑ ↑↑ ↓↓ 

AcH3-Lys9 ↑↑ ↔↔ ↑↓ 
HDAC1 
HDAC2 
HDAC3 
HDAC8 

↔↔ ↔↔ ↓↓ 
↔↔ ↑↑ ↓↓ 
↓↓ ↔↔ ↓↓ 

↔↔ ↑↑ ↓↓ 
HDAC4 
HDAC5 
HDAC7 
HDAC9 

↔↔ ↑↑ ↓↓ 
↓↓ ↔↔ ↓↓ 
↓↓ ↔↔ ↓↓ 

↔↔ ↔↔ ↓↓ 
HDAC6 
HDAC10 

↔↓ ↔↔ ↓↓ 
↔↓ ↔↔ ↓↓ 

Sirtuin1 
Sirtuin2 

↔↔ ↑↑ ↓↓ 
↓↔ ↑↑ ↓↓ 
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3.5 – Discussion 

It has been observed here that a number of changes exist in levels of both histone acetylation and 

HDAC expression in regions of the Parkinsonian brain (table 3.2). Accompanying these changes, as 

would be expected, a reduction in TH expression was observed in the midbrain of PD disease cases 

which worsens with disease progression. Added to this were increases in HLA-DPα1, a marker of 

microglial activation, in both the midbrain and putamen. Dependent on the isoform, expression of 

many of the HDACs were observed to either be unchanged or reduced with disease progression in 

the midbrain. In contrast, increases of a number of the HDAC isoforms were observed in the 

putamen. The frontal cortex however was shown to present marked reductions in the expression 

levels in the majority of the HDAC isoforms tested here. Careful interpretation of these data will add 

insight into the possible pathogenic effects of alterations of HDAC expression in PD.  

 This is the first instance in which HDAC isoform expression in the Parkinsonian brain has 

been quantified. Due to the well-defined link between  HDACs and cancer, expression studies have 

been conducted in a number of tumour types demonstrating their alteration in diseased tissue 

(Poyet et al., 2014, Pacheco and Nielsen, 2012, Yeung et al., 2004, Zhang et al., 2004, Wilson et al., 

2006). Yet to the authors knowledge such a study is yet to be conducted in the neurodegenerative 

diseased brain, the only study of diseased brain tissue being conducted upon astrocytoma brain 

tumours (Lucio-Eterovic et al., 2008). 

Based on the findings by Broide et al (2007), in the rat SNpc, HDAC expression is confined 

mainly to HDAC3, 4, 5 and 11. Lower levels of expression of HDAC1, 2, 6, 7, 8 and 9 are also known 

to be present in the SNpc however, yet HDAC10 is thought to be absent. In the putamen, HDAC2, 3, 

5 and 11 are known to be most abundant, with lower levels of expression of HDAC1, 4, 6 and 7, and 

absence of HDAC8, 9 and 10. In the frontal cortex however, all of the ‘classical’ HDACs are known to 

be present: HDAC1, 2, 3, 4, 5 and 11 are expressed most abundantly with lower levels of expression 

of HDAC6, 7, 8, 9 and 10. It is important to note however that these in situ findings were based on 

HDAC expression in the rat brain and hence while still of relevance to the current study, do not 

translate directly to HDACs in the human brain. For example here however, mRNA for HDACs 1-10 

and sirtuin1 and 2 were all detected in the midbrain, putamen and frontal cortex, yet due to the 

comparative method of qRT-PCR analysis used it is impossible to tell from the current data as to the 

absolute amounts of HDAC mRNA expression in each of these brain regions. However a number of 

differences were detected in the relative expression of HDAC isoforms from their expression in the 

midbrain of control tissue. In the putamen for example, reduced expression of HDAC1, 3, 6, 7, and 8, 

and sirtuin1 and 2 were observed relative to the midbrain. Whereas in the frontal cortex, greater 

expression levels of HDAC4, 6, 7, 8, 9, and 10, and sirtuin1 and 2 were observed compared to the 
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midbrain. It is difficult to directly comment on the agreement of these findings in humans compared 

to those previously published in rats due to the ‘relative’ rather than ‘absolute’ quantifications of 

HDAC isoform expressions presented here and by Broide et al  (2007). However given the findings of 

altered HDAC isoform expression in PD presented here and the implication of HDACIs for 

neuroprotection in PD, a full mapping of HDAC isoform expression in the human brain is warranted. 

To the best of the authors’ knowledge, a full study of HDAC isoform expression using in situ 

hybridisation in the human brain is yet to be conducted. Likewise the brain distribution of the 

sirtuins is yet to be mapped in either rat or human. Advances have recently been made in the 

development of radiolabelled HDACIs and HDAC substrates for Positron Emission Tomography (PET) 

imaging however, allowing direct imaging of HDACs within the brains of conscious patients. Due to 

the unavailability of many isoform specific HDACIs, it may be some time before HDAC isoforms 

themselves can be directly images in humans. This represents an exciting prospect however, given 

the implication shown here of HDAC expression in PD pathogenesis.  

A reduction in histone acetylation in degenerating neurons was first observed by 

Caroline Rouaux and colleagues (2003) which was soon confirmed in cells overexpressing αSyn: 

Kontopoulos and colleagues (2006) suggesting that this is due to αSyn ‘masking’ histone proteins 

directly resulting in a reduction in histone acetylation and subsequent cell death. In the midbrain, in 

human PD however, it has been observed here that an increase in histone acetylation exists rather 

than a decrease. However a reduction in TH expression was also observed in the region suggestive of 

dopaminergic neuronal degeneration. Perhaps then because of the reduced population of 

dopaminergic neurons in the midbrain in PD, which according to the literature exhibit a reduction in 

histone acetylation, any decrease in acetylation observed in the remaining cells is diluted in this 

brain region by the histone acetylation level of glial and other neuronal cell populations present. 

Likewise, in these same samples an increase in HLA-DPα1 expression was also observed, suggestive 

of an increased population of activated microglia. Upon activation, microglia upregulate their 

expression of numerous cytokines and immunomodulatory factors, therefore it is thought that 

chromatin would be in a relaxed, acetylated state, allowing for transcription factor access to DNA. In 

accordance with increased expression of HLA-DPα1 in the midbrain, an overall increase in histone 

acetylation was observed. In conjunction with these changes, reduced expression of HDAC3, 5 and 7 

were observed with PD development and a reduction of HDAC6 and 10 in late stage PD cases was 

also observed. Additionally the expression levels of other HDACs remain unchanged from control. 

These changes are observed on a background of severe neuronal degeneration within the midbrain, 

i.e. 45.1 and 78.0% loss of TH expression in early and late stage cases respectively. The static nature 

or subtle reductions in HDAC isoform expression observed in the midbrain with PD development, 
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combined with the significant neurodegeneration in this region perhaps suggest then that HDAC 

expression is actually increased in surviving neurons. Further study of isolated degenerating neurons 

is therefore warranted to help elucidate the role of increased HDAC expression in these cells, and 

help understand the implications of such an increase in PD pathogenesis. 

In the putamen however, there was only a subtle reduction in TH expression, yet significant 

increases of HLA-DPα1 expression in both early and late stage PD. In line with previously findings  

however (Kontopoulos et al., 2006, Rouaux et al., 2003), it would be assumed that degenerating 

dopaminergic projections from the SNpc to this area, despite being only projections and therefore 

not expressing the same magnitude of TH which would be expressed in the cell body in the SNpc, 

would exhibit histone deacetylation. Yet because of the coincidental increase in activated microglia 

in this area it is thought that these two changes counteract each other, resulting in the lack of either 

histone acetylation or deacetylation observed. What is interesting however, are the increases of 

HDAC isoform expression in this area. Though because of the lack of change in acetylation, it would 

be reasonable to assume that corresponding increases in the expression of HATs were also evident 

in the putamen in PD. HDAC isoforms, as has been previously discussed however, have numerous 

non-histone effects, many of which could be linked to pathogenesis in PD. The disease dependent 

increases of expression of HDAC2, 4 and 8 as well as sirtuin1 and 2 therefore warrant further 

investigation as to their effects when overexpressed.  

According to Braak staging, the frontal cortex does not typically become affected in PD until 

Braak stage 6, i.e. late PD (Braak et al., 2003). However in both the early (Braak stge 3/4) and late 

(Braak stage 6) stage PD cases examined here, a reduction in HLA-DPα1, a marker of activated 

microglia, was observed in this brain region. In line with this reduction in activated microglia in the 

area, reduced expression of all of the HDAC isoforms was similarly observed. What is most 

interesting about the results presented here however are the changes in histone acetylation in the 

frontal cortex. Despite the apparent lack of Parkinsonian pathology in the frontal cortex of early PD 

cases, in line with the reduction of HDAC expression, a significant increase in histone acetylation is 

observed. However, in late stage PD cases, where αSyn pathology is known to have reached the 

frontal cortex, in conjunction with a similar reduction in microglia marker expression to early PD 

cases, histone acetylation in the frontal cortex of these late stage cases is reduced. Likewise, HDAC 

expression in these late stage cases, with many of the isoforms is slightly greater than that of the 

early stage cases. These findings therefore corroborate those previously described in which αSyn 

pathology was shown to cause histone deacetylation: histone acetylation observed in early stage PD 

cases where αSyn pathology is known not to be present in the frontal cortex, whereas histone 
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deacetylation is observed once αSyn pathology becomes evident in this brain region, with both  

regions displaying similar levels of microglial marker expression.  

Although the current dataset, for the first time, identifies perturbations in histone 

acetylation and HDAC isoform expression in the Parkinsonian brain, it is important to note that in 

the current study protein and mRNA were extracted from whole brain tissue sections from the post-

mortem brain block containing a region of interest, rather than from either dopaminergic neurons or 

microglia specifically. In the midbrain samples for example, a mixed population of both degenerating 

dopaminergic neurons and activated microglial would therefore exhibit a profile of acetylation and 

HDAC expression unrepresentative of either cell type, but the histone acetylation and HDAC 

expression in the brain region alone. This therefore, makes interpretation of the data difficult when 

trying to ascertain acetylation and HDAC expression in an individual population of cells within it. 

Similarly, the astrocytes and oligodendrocytes have yet to be considered, their histone acetylation 

status and HDAC expression patterns will too affect that observed in whole brain tissue samples, 

adding further complexity to the dataset. Although it has been surmised above as to the 

contribution of both neurons and microglia to the changes observed, this remains conjecture. To 

truly understand the state of histone acetylation and HDAC expression in degenerating 

dopaminergic neurons and/or activated microglia in PD, techniques such as laser capture 

microdissection need be utilised to isolate specific cell types from a region of interest and conduct 

protein and mRNA analysis on the resulting extracts. Until then the result presented here can only 

give an indication of the acetylation and HDAC expression within degenerating regions of the brain. 

Reductions in the expression of all of the HDAC isoforms was seen here in the frontal cortex, 

however what is most interesting is the alterations in the expression levels of HDAC isoforms in the 

other two brain regions examined, which play a greater role in PD pathogenesis: the midbrain and 

the putamen. With the exception of only a few HDAC isoforms, it is interesting to note that 

expression of a given HDAC isoform is affected in either the midbrain or putamen, rarely both. For 

example, in the midbrain, expression of HDAC3, 5, 7, 6 and 10, and sirtuin2 are reduced, whereas in 

the putamen, expression of HDAC2, 4, 6 and 8, and sirtuin1 and 2 are increased. This makes 

identification of specific HDAC isoforms for targeting with HDAC very difficult, as it would appear 

many of them are affected in PD. Similarly, the fact that expression of a HDAC isoform is affected in 

either the midbrain or putamen, but rarely in both indicates that perhaps specific HDAC isoforms are 

differentially affected by regional pathogeneses. Of note however, unlike the other HDACs 

investigated here, the expression levels of HDAC6 and sirtuin2 were affected in both the midbrain 

and putamen, highlighting their priority for further investigation in neuroprotective and anti-

inflammatory strategies. Likewise, it may be possible that HDAC isoforms are differentially affected 
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in different cell types, further investigation should therefore focus on identifying the effects of 

specific HDAC inhibition on PD pathogeneses.  
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3.6 – Conclusions 

To conclude it has been observed here that a number of changes exist in the levels of both histone 

acetylation and HDAC expression in regions of the Parkinsonian brain. In the midbrain, disease 

dependent histone acetylation is accompanied by downregulation of a number of HDAC isoforms. In 

the putamen however, histone acetylation remains unchanged from controls, however marked 

increases in HDAC isoforms unaffected in the midbrain are seen. In the frontal cortex however, 

reductions in the expression levels of all the HDAC isoforms quantified here were observed, yet this 

was accompanied by increased histone acetylation in early stage PD cases, and reduced histone 

acetylation in late stage PD cases. The observed changes in HDAC isoform expression highlight 

HDAC6 and sirtuin2 for further investigation for neuroprotective and anti-inflammatory therapeutic 

strategies, due to the altered expression levels in both the midbrain and putamen in PD cases. Data 

presented here demonstrate the first quantification of histone acetylation and HDAC expression in 

the PD brain.  

 

  



148 
 

Chapter Four 

Neuroprotective and Anti-Inflammatory 
Effects of Histone Deacetylase Inhibitors In 
Vitro 
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4 – Neuroprotective and Anti-Inflammatory Effects of Histone Deacetylase 

Inhibitors In Vitro 

4.1 – Introduction 

HDACIs have been theorised to be efficacious in PD. Yet the mechanism of action in how histone 

acetylation is transferred to neuroprotection still remains elusive. Neuroprotection and 

neurotrophicity are thought to be maintained though the combined transcriptional and non-

transciptional effects of HDACIs. Inhibition of HDACs reduces the deacetylation of histones which is 

therefore thought to lead to chromatin relaxation and activation of multiple gene products 

conducive to neurotrophicity, anti-inflammation and subsequently neuroprotection. For example, 

BDNF, GDNF, Hsp70, αSyn, Blc-2, Bcl-XL, p21 and GSN have all been shown to be upregulated upon 

HDACI treatment (de Ruijter et al., 2003, Chuang et al., 2009). Similarly, non-transcriptional effects 

of HDACs i.e. the non-histone targets of HDAC catalysed deacetylation, are also thought to be 

involved in aiding neuroprotection (Glozak et al., 2005).  For example inhibition of HDACs increases 

the acetylation of α-tubulin, a non-histone target, which increases microtubule stabilisation and 

axonal transportation aiding the release of BDNF leading to neuroprotection (Zhang et al., 2003). 

Additionally, gathering evidence highlights the multicellular involvement of HDACIs on other brain 

cells, such as: immuno-modulatory effects in microglia, and reduction of astrocytic and T-cell 

mediated inflammation (Dietz and Casaccia, 2010). It is apparent then that the mechanism of 

neuroprotection of HDACIs is likely to involve several targets, achieved through an amalgamation of 

these effects: microtubule stabilisation in conjunction with the upregulation of numerous 

neurotrophic and neuroprotective agents in neurons, immunomodulation of microglia and reduction 

of astrocytic inflammation simultaneously to evoke a neuroprotective parenchymal environment 

inauspicious to neuronal cell death. 

 Regardless of the neuroprotective mechanism of action, inhibition of HDAC classes using 

small HDAC inhibiting compounds have been observed to normalise the deficiency of histone 

acetylation in numerous in vitro and in vivo models of PD leading to stringent neuroprotection. 

Inhibition of HDACs present an excellent therapeutic target in neuroscience given the distinct 

patterns of expression of HDACs in the brain crossed with the large number of compounds now 

available designed to selectively target specific isoforms and combinations of HDAC isoforms. 

However, thus far it remains unknown which of the numerous HDAC subclasses present greatest 

neuroprotective efficacy in the mescencephalic dopaminergic neurons which are susceptible to 

degeneration in PD. Additionally, it remains unclear which of the HDAC subclasses present most 

efficacy in modulating the innate immune response in the brain, which is thought to contribute to 

the neuroprotective effects of this drug class. This chapter therefore aims to better understand the 
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effects of inhibiting specific HDAC isoforms, classes and groups of classes in vitro, in systems 

modelling both Parkinsonian neuronal degeneration and neuroimmune cell activation, in lieu of 

identifying lead HDACI compounds to proceed to preclinical study in subsequent chapters.  

 Based on their HDAC inhibiting specificity, ten HDACI compounds were chosen for study 

including both isoform specific and pan-HDAC inhibitors (table 4.1). Firstly, two pan-inhibitors of 

HDAC classes I and IIa were chosen: valproate and butyrate. These short chain fatty acids are 

relatively small, simple structured compounds with molecular weights not much exceeding 

150g/mol. Despite strong selectivity over other HDAC classes, these compounds have relatively low 

potencies for HDAC classes I and IIa working in the range of millimoles rather than nanomoles 

(Grayson et al., 2010). Trichostatin A is also a pan-inhibitor or HDAC classes I and IIa but which also 

inhibits class IIb. It is a hydroxymate and therefore inhibits the zinc dependent HDAC classes with 

relatively equal potency (Khan et al., 2008). Nicotinamide was also chosen which acts as a pan-

inhibitor of class III HDACs due to its ability to competitively bind to the NAD+ binding site of the 

sirtuin HDACs (Avalos et al., 2005). It is therefore thought to inhibit the activity of all seven sirtuin 

HDACs with relatively equal potency. MS275 was also chosen which selectively inhibits HDAC1, and 

to a lesser extent HDAC3 (Grayson et al., 2010). This benzamide is part of a relatively new selective 

class of HDACIs. Apicidin was also studied which is a cyclic peptide which specifically inhibits HDAC2, 

HDAC3 and to a lesser degree, HDAC8 (Khan et al., 2008). The relatively large compound suramin 

was also included in the study. This symmetric polyanionic nephthylurea compound inhibits both 

sirtuin1 and sirtuin2 isoforms of HDACs (Gregoretti et al., 2004, Trapp et al., 2007). In addition to this 

pan-inhibitor of both sirtuin1 and 2, isoform selective inhibitors of both sirtuin1 and sirtuin2 were 

also included for study. EX527 was  included due to its ability to selectively inhibit sirtuin1 (Gertz et 

al., 2013), whilst AGK2 selectively inhibits sirtuin2 (Outeiro et al., 2007). Furthermore, in 

collaboration with Dr Matthew Fuchter and colleagues (Department of Medicinal Chemistry, 

Imperial College London), a novel sirtuin2 inhibitor synthesised in-house was also included for study, 

shown to exhibit far greater potency and specificity for sirtuin2 than other commercially available 

inhibitors (Di Fruscia et al., 2014). 

 The neuroprotective effects of these HDACIs will firstly be assessed in vitro in the N27 rat 

mescencephalic dopaminergic neuronal cell line. Neurodegeneration in this cell line will be induced 

using the irreversible UPS inhibitor, lactacystin. By convalently binding to elements of the UPS, 

lactacystin causes formation of ubiquitin/αSyn immunopositive inclusions leading to subsequent cell 

death (McNaught et al., 2002b, McNaught et al., 2002c). Cell cultures will then be treated with 

HDACIs to determine if the histone acetylation induced as a result of drug treatment is able to 

reduce/prevent the neuronal cell death induced by lactacystin. The potential of the ten HDACIs at 
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Table 4.1 – HDACIs Studied  
HDACIs used in the current study, the chemical class of HDACI to which they belong, their molecular weight 
and the HDAC class(es)/isoform(s) which they inhibit. 

 

 

 

 

 

 

 

 

 

 

 

Drug Chemical Class Molecular 
Weight (g/mol) 

HDAC Class(es)/Isoform(s) 
Inhibited 

Valproate Short Chain Fatty Acid 166.20  Classes I and IIa 
Butyrate Short Chain Fatty Acid 87.10 Classes I and IIa 
Trichostatin A Hydroxamate 302.37 Classes I, IIa and IIb 
Nicotinamide Miscellaneous 122.12 Class III 
MS275 Benzamide 376.41 HDAC1 (and 3)  
Apicidin Cyclic Peptide 623.78 HDAC2 and 3 (and 8) 
Suramin Miscellaneous 1297.29 Sirtuin 1 and 2 
EX527 Miscellaneous 248.71 Sirtuin 1 
AGK2 Miscellaneous 434.27 Sirtuin 2 
ICL-SIRT078 Miscellaneous 482.00 Sirtuin 2 



152 
 

reducing microglial activation will then also assessed in vitro, in a mouse N9 microglial cell 

line. When cultured and treated with LPS, this microglial cell line displays a multi-faceted 

profile of activation: adopting an activated amoeboid morphology, upregulating pro-

infammatory cytokines such as TNF-α, IL-6 and IL-1β, and activation of iNOS resulting in 

production of NO. Cell cultures will then be treated with HDACIs to determine if the histone 

acetylation induced as a result of drug treatment is able to reduce/prevent the microglial 

activation induced by LPS. 
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4.2 – Aims of Chapter 

The aims of this chapter are therefore to: 

1. Test the potential of a range of isoform specific and isoform non-specific HDACIs at reducing 

lactacystin induced cell death in the rat mescencephalic dopaminergic N27 neuronal cell 

line. 

a. Confirm the suitability of the N27 cell line at modelling Parkinsonian dopaminergic 

neuronal cell death in vitro by confirming their expression of markers of 

dopaminergic neurons 

b. Optimise an appropriate concentration and incubation period of lactacystin to be 

used to model neurodegeneration in N27 cells for subsequent neuroprotection 

studies, and quantify changes in histone acetylation induced as a result of incubation 

of N27 cells with lactacystin for the optimised time period and concentration  

c. Optimise an appropriate time period in which to pre-treat N27 cells with candidate 

neuroprotective HDACIs in subsequent neuroprotection studies 

d. Test the potential of a range of isoform specific and isoform non-specific HDACIs 

against lactacystin induced neurodegeneration in the N27 cell line 

2. Test the potential of a range of isoform specific and isoform non-specific histone deacetylase 

inhibitors at reducing LPS induced activation in the mouse N9 microglial cell line. 

a. Confirm the suitability of the N9 cell line at modelling microglial activation in vitro by 

confirming their expression of markers of microglial cells 

b. Optimise an appropriate concentration and incubation period of LPS to be used to 

model microglial activation in N9 cells for subsequent activation reduction studies 

and quantify changes in histone acetylation as a result of incubation of N9 cells with 

LPS for the optimised time period and concentration 

c. Optimise an appropriate time period in which to pre-treat N9 cells with candidate 

neuroprotective HDACIs in subsequent activation reduction studies 

d. Test the anti-inflammatory effects of a range of isoform specific and isoform non-

specific HDACIs against LPS induced microglial activation in the N9 cell line 
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4.3 – Experimental Design 

4.3.1 - Testing the Neuroprotective Potential of HDACIs at Reducing Lactacystin Induced Cell Death 

in the Rat Mescencephalic Dopaminergic N27 Neuronal Cell Line 

In order to accurately and reliability test the potential of a range of isoform specific and non-specific 

HDACIs at reducing lactacystin induced cell death in the rat mescencephalic dopaminergic N27 

neuronal cell line, a number of parameters needed to be confirmed and optimised. Firstly the 

suitability of the cell line at modelling Parkinsonian dopaminergic neuronal cell death in vitro, the 

concentration and time period in which to incubate N27 cells with lactacystin in subsequent 

neuroprotection studies, and an appropriate pre-treatment incubation period with HDACIs. For 

these experiments a number of different in vitro study designs were used dependent on the 

parameter being tested/optimised. These study formats are described below (graphical illustration 

in figure 4.1) 

The suitability of the N27 cell line at modelling Parkinsonian dopaminergic neuronal cell 

death in vitro was firstly confirmed by verifying N27 cell expression of markers of dopaminergic (TH) 

neurons (NeuN). For this, N27 cells were seeded at increasing densities in a 6 well plate 24hrs prior 

to them being lysed and the TH and NeuN content of lysates analysed using Western blot analysis 

(figure 4.1A). In addition, a lysate of N9 cells was run simultaneously as a negative control which 

should not express either TH or NeuN. 

In order to test the potential of HDACIs against the neurotoxic effects of lactacystin in the 

N27 cell line, a concentration of lactacystin capable of inducing an appropriate sub-maximal level of 

cell death firstly needed to be optimised. For this N27 cells were seeded at 10 x 103 cells/well into 96 

well plates 24hrs prior to being treated with either lactacystin (0.2 to 10µM) or vehicle (PBS) and left 

to incubate for 24hrs. After this time the MTS, NR, and Bradford assays were conducted on cell 

containing wells to quantify the level of cytotoxicity induced as a result of lactacystin incubation 

(figure 4.1B). To elucidate the timecourse of lactacystin toxicity in N27 cells and for optimisation of 

the most appropriate incubation period of N27 cells in lactacystin, N27 cells were firstly seeded at 10 

x 103 cells/well into a 96 well plate 24hrs prior to being  treated with the concentration of lactacystin 

previously identified as being capable of causing an appropriate sub-maximal level of 

neurodegeneration in N27 cultures after 24hrs. Cell cultures were left to incubate in this 

concentration of lactacystin for a range of timepoints (0 to 72hrs) before MTS, NR, and Bradford 

assays were conducted on cell containing wells to quantify the level of cytotoxicity caused by 

lactacystin exposure for these timepoints (figure 4.1C).  The change in histone acetylation as a result 

of incubation of N27 cells with the optimised concentration of lactacystin for the optimised time 

period was then quantified by firstly seeding N27 cells at 500 x 103 cells/well into a 6 well plate 24hrs  
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Figure 4.1 – N27 Cell Culture Study Design Schematics 
Schematic of study designs used for (A) verification of N27 expression of TH and NeuN, (B) optimisation of 
lactacystin concentration used to induce a sub-maximal level of neurodegeneration in subsequent studies, (C) 
optimisation of lactacystin incubation period used to induce sub-maximal level of neurodegeneration in 
subsequent studies, (D) quantifying the extent of histone acetylation after incubation of N27 cells will 
previously optimised concentration and incubation period with lactacystin, (E) optimisation of pre-treatment 
incubation period with HDACIs required to induce histone hyperacetylation in N27 cells and (F) testing the 
neuroprotective potential of a range of isoform specific and isoform non-specific HDACIs against lactacystin 
induced neurodegeneration in the N27 cell line. Abbreviations: 6WP, 6 well plate; 96WP, 96 well plate. 
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prior to them being incubated with either the previously established optimal concentration of 

lactacystin or vehicle (PBS) for the previous established time period. Cells were then lysed and the 

level of histone acetylation quantified using Western blot analysis for AcH3-Lys9 (figure 4.1D).  

Due to the transcription dependent mechanism of HDACIs, cell cultures were pre-treated 

with HDACIs in order to allow for appropriate transcription and translation to occur prior to toxin 

administration. To establish the optimal timepoint at which to pre-treat cells with HDACIs, histone 

acetylation was measured after treatment with a reference HDACI, valproate, due to it being  

extensively shown to cause histone hyperacetylation in vitro and in vivo (Gottlicher et al., 2001, Kidd 

and Schneider, 2010, Kidd and Schneider, 2011, Leng and Chuang, 2006, Marinova et al., 2009, Pan 

et al., 2005, Phiel et al., 2001). N27 cells were seeded at 500 x 103 cells/well into a 6 well plate 24hrs 

prior to them being treated with valproate (1µM) and incubated for a range of timepoints (0 to 

72hrs). After this time cells were then lysed and the level of histone acetylation as a result HDACI 

treatment was then quantified using Western blot analysis for AcH3-Lys9 (figure 4.1E). 

Finally to test the neuroprotective potential of a range of isoform specific and isoform non-

specific HDACIs against lactacystin induced neurodegeneration in the N27 cell line, N27 cells were 

seeded at 10 x 103 cells/well into a 96 well plate 24hrs prior to them being pre-treated with either 

vehicle (PBS) or HDACIs at a range of concentrations (nine 10-fold serial dilutions of a saturated 

stock solution in PBS) and left to incubate for the previously established optimal timepoint for HDACI 

pre-treatment. After this time, lactacystin or vehicle (PBS) was then added to cell cultures containing 

HDACIs/vehicle at the optimised concentration required for submaximal neurodegeneration and left 

to incubate for the optimised time period. After this time MTS, NR and Bradford assays were 

conducted on HDACI/lactacystin treated cells to quantify the level of HDACI induced 

neuroprotection against lactacystin (figure 4.1F). 

 

4.3.2 - Testing the Potential of HDACIs at Reducing LPS Induced Activation of the Mouse N9 

Microglial Cell Line 

In order to accurately and reliably test the potential of a range of isoform specific and non-specific 

HDACIs at reducing LPS induced activation in the mouse N9 microglial cell line, a number of 

parameters needed to be confirmed and optimised. Firstly the suitability of the cell line at modelling 

microglial activation in vitro, the concentration and time period in which to incubate N9 cells with 

LPS in subsequent activation reduction studies, and an appropriate pre-treatment incubation period 

with HDACIs. For these experiments, like above, a number of different in vitro study designs were 

used dependent on the parameter being tested/optimised. These study formats are described below 

(graphical illustration in figure 4.2). 
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Figure 4.2 – N9 Cell Culture Study Design Schematics 

Schematic of study designs used for (A) verification of N9 expression of Iba-1, (B) optimisation of LPS 
concentration used to induce a sub-maximal level of activation in subsequent studies, (C) optimisation of LPS 
incubation period used to induce sub-maximal level of activation in subsequent studies, (D) quantifying the 
extent of histone acetylation after incubation of N9 cells will previously optimised concentration and 
incubation period with LPS, (E) optimisation of pre-treatment incubation period with HDACIs required to 
induce histone hyperacetylation in N9 cells, (F) testing the potential of a range of isoform specific and isoform 
non-specific HDACIs at reducing LPS induced activation of N9 microglial cells and (G) confirming N9 cell viability 
after HDACI treatment. Abbreviations: 6WP, 6 well plate; 96WP, 96 well plate. 
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The suitability of the N9 cell line at modelling microglial activation in vitro was firstly 

confirmed by verifying N9 cell expression of a marker of microglia, Iba-1. For this, N9 cells were 

seeded at increasing densities in a 6 well plate 24hrs prior to them being lysed and the Iba-1 content 

of lysates analysed using Western blot analysis (figure 4.2A). In addition, a lysate of N27 cells was 

run simultaneously as a negative control which should not express Iba-1.    

 In order to test the potential of HDACIs at reducing LPS induced activation of the N9 cell line, 

a concentration of LPS capable of inducing an appropriate sub-maximal level of microglial activation 

firstly needed to be optimised. For this, N9 cells were seeded at 500 x 103 cells/well into 6 well plates 

24hrs prior to them being treated with either LPS (3.90 to 1000ng/ml) or vehicle (PBS) and left to 

incubate for 24hrs. After this time the medium was removed from cells and Griess assays for NO 

quantification and ELISAs for TNFα were conducted to quantify the level of activation induced as a 

result of LPS incubation (figure 4.2B). To elucidate the timecourse of LPS activation of N9 cells and 

for optimisation of the most appropriate incubation period of N9 cells in LPS, N9 cells were firstly 

seeded at 500 x 103 cells/well into a 6 well plates 24hrs prior to them being treated with the 

concentration of LPS previously identified as being capable of causing an appropriate sub-maximal 

level of microglial activation in N9 cultures after 24hrs. Cell cultures were left to incubate in this 

concentration of LPS for a range of timepoints (0 to 48hrs) before the medium was removed from 

cells and Griess assays for NO quantification and ELISAs for TNFα were conducted to quantify the 

level of activation induced as a result of LPS exposure for these timepoints (figure 4.2C). The change 

in histone acetylation as a result of incubation of N9 cells with the optimised concentration of LPS 

for the optimised time period was then quantified by firstly seeding N9 cells were seeded at 500 x 

103 cell/well into a 6 well plate 24hrs prior to them being incubated with either the previously 

established optimal concentration of LPS or vehicle (PBS) for the previously established time period. 

Cells were then lysed and the level of histone acetylation quantified using Western blot analysis for 

AcH3-Lys9 (figure 4.2D). 

Due to the transcription dependent mechanism of HDACIs, cell cultures were pre-treated 

with HDACIs in order to allow for appropriate transcription and translation to occur prior to toxin 

administration. To establish the optimal timepoint at which to pre-treat cells with HDACIs, histone 

acetylation was measured after treatment with a reference HDACI, valproate, due to it being  

extensively shown to cause histone hyperacetylation in vitro and in vivo (Gottlicher et al., 2001, Kidd 

and Schneider, 2010, Kidd and Schneider, 2011, Leng and Chuang, 2006, Marinova et al., 2009, Pan 

et al., 2005, Phiel et al., 2001). N9 cells were seeded at 500 x 103 cells/well into a 6 well plate 24hrs 

prior to them being treated with valproate (1µM) and incubated for a range of timepoints (0 to 
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72hrs). After this time cells were then lysed and the level of histone acetylation as a result HDACI 

treatment was then quantified using Western blot analysis for AcH3-Lys9 (figure 4.2E). 

Finally to test the potential of a range of isoform specific and isoform non-specific HDACIs 

against LPS induced activation in the N9 cell line, cells were firstly seeded in 6 well plates 24hrs prior 

to them being pre-treated with either vehicle (PBS) or HDACIs at a range of concentrations (nine 10-

fold serial dilutions of a saturated stock solution in PBS) and left to incubate for the previously 

established optimal timepoint for HDACI pre-treatment. After this time, LPS or vehicle (PBS) was 

then added to cell cultures containing HDACIs/vehicle at the optimised concentration required for 

submaximal activation and left to incubate for the optimised time period. After this time the 

medium was removed from cells and Griess assays for NO quantification and ELISAs for TNFα were 

conducted to quantify the level of HDACI induced reduction of LPS induced activation (figure 4.2F). 

In addition, to confirm that any reduction in NO and TNFα observed were not simply the result of 

cytotoxicity caused by the HDACI compound, cell viability assays were conducted on cells treated 

with the HDACIs for the time period and concentration used in previous microglial activation studies. 

Briefly N9 cells were seeded in 96 well plates and left for 24hrs to readopt their natural morphology. 

After this time cells were incubated with the concentrations of HDACIs previously used in microglial 

activation reduction studies for the same time period. MTS, NR and Bradford assays were then 

conducted on HDACI treated cell culture wells to quantify the extent of cytotoxicity, if any, exerted 

by the HDACI compounds (figure 4.2G). 

 

4.3.3 - Statistical Analysis 

For experiments conducted in 96 well plates, well conditions were replicated in triplicate in each 

plate, the mean of which was calculated for each experiment.  All experiments were repeated 

independently at least three times. All data is expressed as mean ± SEM between independent 

replicates. For correlation analysis between cellular markers (TH, NeuN and Iba-1) and seeded cell 

number, linear regression analyses were performed. For lactacystin and LPS dose and time response 

studies in N27 and N9 cells respectively, a one way ANOVA with post-hoc Dunnet’s multiple 

comparison test, comparing all groups to the control column for each dataset. Semi-log plot data 

were fitted onto variable slope sigmoidal dose-response curves, and the estimated IC50 and R2 values 

quoted. Western blot AcH3-Lys9 data for the effects of lactacystin and LPS in N27 and N9 cells 

respectively were analysed using individual unpaired student t-tests. Western blot AcH3-Lys9 data 

for the effects of HDACI treatment of N9 and N27 cells was analysed using a one way ANOVA with 

post-hoc Dunnet’s multiple comparison test, comparing all groups to the control column for each 

dataset. All neuroprotection and microglial activation reduction study data in N27 and N9 cells 
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respectively was analysed using a one way ANOVA with post-hoc Dunnet’s multiple comparison test, 

comparing all groups to the vehicle treated column for each dataset. All statistical tests were 

performed using GraphPad Prism (v5.0 for Windows, GraphPad Software, San Diego, CA, USA). 
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4.4 – Results 

4.4.1 – Confirming the Expression of TH and NeuN in N27 Cells 

N27 cells were seeded at increasing densities in 6 well plates 24hrs prior to being lysed. In addition, 

a well void of cells and a well containing N9 cells (seeded at 20 x 105 cells/well) were also included as 

negative controls which should not contain either TH or NeuN. The TH and NeuN protein content of 

well lysates was then analysed using Western blot analysis. As expected the wells containing no cells 

and the well containing N9 cells did not show expression of TH or either splice variant of NeuN 

(figure 4.3A). N27 cells seeded at increasing densities however demonstrated linearly increasing 

expression of TH and both spice forms of NeuN with cell number, indicative of N27 cellular 

expression of both markers (figure 4.3B, R2>0.98 in all linear regression analyses).  

 

4.4.2 – Concentration and Incubation Period of Lactacystin with N27 Cells To be Used in 

Subsequent Neuroprotection Studies 

4.4.2.1 - Optimising Concentration of Lactacystin  

N27 cells were seeded in 96 well plates 24hrs prior to the addition of lactacystin (at a range of 

concentrations) or vehicle (PBS). Cells were then left to incubate for 24hrs before MTS, NR, and 

Bradford assays were conducted on cell containing wells to quantify the level of cytotoxicity induced 

as a result of lactacystin incubation. In each of the three cell viability assays used here, 

concentrations ≥0.5µM of lactacystin demonstrated significantly reduced survival of N27 cells in 

culture (figure 4.4Ai, Bi and Ci). When semi-log plots of these data were constructed, each of the 

three assays shown here illustrated that lactacystin induced cytotoxicity through a sigmoidal profile 

with lactacystin concentration (figure 4.4Aii, Bii and Cii). From this data, 0.75µM lactacystin was 

chosen for subsequent studies due to its ability to produce a suitably robust sub-maximal level of 

cytotoxicity in all assays (61.81 ± 1.51%, 49.38 ± 5.99% and 51.37 ± 5.79% of control in MTS, NR and 

Bradford assays respectively, p<0.01 in all comparisons). 

4.4.2.2 - Optimising Incubation Period of Lactacystin 

N27 cells were seeded in 96 well plates 24hrs prior to the addition of lactacystin (75µM). Cells were 

then left to incubate for a range of timepoints before MTS, NR, and Bradford assays were conducted 

on cell containing wells to quantify the level of cytotoxicity induced as a result of lactacystin 

incubation for the time periods examined. In each of the three cell viability assays used here, 

timepoints ≥9hrs demonstrated significantly reduced survival of N27 cells in culture (figure 4.5A1, Bi 

and Ci). When semi-log plots of these data were constructed, each of the three assays shown here 

illustrated that lactacystin induced cytotoxicity through a sigmoidal profile with time (figure 4.5Aii, 

Bii and Cii). From these semi-log plots it was also evident that the majority of lactacystin induced cell 
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Figure 4.3 – Confirmation of N27 Expression of Dopaminergic Neuronal Markers 
TH and NeuN protein content of lysates from N27 cells seeded at increasing densities were quantified using 
Western blot analysis for confirmation of N27 expression of markers of dopaminergic neurons. In addition a 
well void of cells and a well containing N9 cells (seeded at 20 x 105 cells/well) were also included as negative 
controls which should not contain either TH or NeuN. Equal volumes of cell lysates for each well were run on a 
Western blot to confirm expression of dopaminergic (TH) and neuronal (NeuN) markers. (B) Densitometry 
analysis of TH and NeuN bands confirming linear expression of both cellular markers with cell density. Lines 
indicate linear regression lines of best fit with respective 95% confidence intervals (dotted lines). (A) 
Representative blot of data presented in (B).  
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Figure 4.4 – Optimising Lactacystin Dose for Subsequent Neuroprotection Studies in N27 Cells 
N27 cells were incubated in a range of concentrations of lactacystin for 24hrs in order to quantify the extent 
cytotoxicity as a result of lactacystin. After lactacystin treatment, MTS, NR and Bradford assays for cell viability 
were conducted. (Ai, Bi and Ci) Dose response data from the MTS, NR and Bradford assays respectively 
indicating significance from vehicle treated cells and (Aii, Bii and Cii) dose response data plotted as semi-
logarithmic plot indicating IC50 and respective R2 values for MTS, NR and Bradford assays respectively. 
Statistical significance from control cells indicated using asterisks: *p<0.05, **p<0.01, ***p<0.001. n=3. 
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Figure 4.5 – Optimising Lactacystin Incubation Period for Subsequent Neuroprotection Studies in N27 Cells 
N27 cells were incubated with lactacystin (0.75µM) for a range time periods in order to quantify the extent 
cytotoxicity as a result of lactacystin. After lactacystin treatment, MTS, NR and Bradford assays for cell viability 
were conducted. (Ai, Bi and Ci) Timecourse data from the MTS, NR and Bradford assays respectively indicating 
significance from untreated cells and (Aii, Bii and Cii) timecourse data plotted as semi-logarithmic plot 
indicating IC50 and respective R2 values for MTS, NR and Bradford assays respectively. Statistical significance 
from control cells indicated using asterisks: *p<0.05, **p<0.01, ***p<0.001. n=3. 
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death occured between ~6 and 18hrs of incubation, after which time neurodegeneration plateaued 

and the number of surviving population remained unchanged. From this data, 24hrs lactacystin 

incubation was chosen for subsequent studies due to the fact that lactacystin induced 

neurodegeneration has come to an end by this timepoint allowing for robust detection of sub-

maximal cytotoxicity in all assays.  

4.4.2.3 – Histone Acetylation in Lactacystin Treated N27 Cells 

For quantification of histone acetylation in N27 cells treated with the chosen concentration of 

lactacystin for the chosen incubation period, N27 cells were seeded in 6 well plates 24hrs prior to 

incubation with either lactacystin (0.75µM) or vehicle (PBS) for 24hrs. After this time cells were lysed 

and the AcH3-Lys9 content of lysates quantified using Western blot analysis (figure 4.6). There was 

significantly less AcH3-Lys9 in cell lysates from cells treated with lactacystin than vehicle treated cells 

indicative of histone deacetylation with lactacystin treatment (lactacystin treated, 0.187 ± 0.040 vs. 

vehicle treated cells, 0.348 ± 0.049, p<0.05). 

 

4.4.3 – Incubation Period of HDACIs with N27 Cells To be Used in Subsequent Neuroprotection 

Studies 

For optimisation of the appropriate pre-treatment incubation period of HDACIs to be used in 

subsequent neuroprotection studies, cells were seeded in 6 well plates 24hrs prior to incubation 

with the reference HDACI, valproate (1µM) for a range of time periods. After this time cells were 

lysed and the AcH3-Lys9 content of lysates quantified using Western blot analysis. There was a 

significant time dependent increase in AcH3-Lys9 in HDACI treated cells indicative of time-

dependent histone acetylation with HDACI (valproate) treatment (figure 4.7). This increase in 

histone acetylation however did not become significantly different from control cell lysates until 

48hrs (cells treated with valproate for 48 and 72hrs, 0.315 ± 0.038 and 0.361 ± 0.057 respectively 

compared to control cells, 0.091 ± 0.031, p<0.05 and p<0.01 respectively).  

 

4.4.4 – Neuroprotective Potential of Isoform Specific and Isoform Non-Specific HDACIs against 

Lactacystin Induced Neurodegeneration in N27 Cells 

After optimisation of the concentration and incubation period of lactacystin most suitable for 

inducing neurodegeneration in N27 cells, and the appropriate pre-incubation period this cell line 

with a HDACI the neuroprotective potential of a number of HDACIs, both isoform specific and non-

specific, were tested in vitro in the N27 mescencephalic dopaminergic cell line. Cells were seeded in 

96 well plates 24hrs prior to incubation with varying concentrations of the HDACI for 48hrs. After 

this time lactacystin (0.75µM) was added to cell cultures containing HDACIs/vehicle and incubated  
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Figure 4.6 – Histone Acetylation in Lactacystin Treated N27 Cells 
AcH3-Lys9 content of lysates from N27 cells treated with either lactacystin (0.75µM) of vehicle (PBS) for 24hrs 
were quantified by Western blot analysis. (A) Densitometry analysis of AcH3-Lys9 bands relative to β-actin 
used as a loading control demonstrate that there is significantly less histone acetylation in lactacystin 
compared to vehicle treated cells. (B) Representative blot of data presented in (A). Statistical significance 
indicated using asterisks: *p<0.05, **p<0.01, ***p<0.001. n=3. 
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Figure 4.7 – Histone Acetylation in HDACI Treated N27 Cells 
AcH3-Lys9 content of lysates from cells treated with valproate (1µM) for a range of incubation periods were 
quantified by Western blot analysis. (A) Densitometry analysis of AcH3-Lys9 bands relative to β-actin used as a 
loading control demonstrate that histone acetylation increases with incubation time with valproate. (B) 
Representative blot of data presented in (A). Statistical significance indicated using asterisks: *p<0.05, 
**p<0.01. n=3. 
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for a further 24hrs. After this time MTS, NR and Bradford assays were conducted on 

HDACI/lactacystin treated cells to quantify the level of HDACI induced neuroprotection against 

lactacystin. 

4.4.4.1 – Neuroprotective Effects of Isoform Non-Specific HDACIs 

In all three cell viability assays used here, toxicity of N27 cells was observed in concentrations of 

valproate ≥10µM, reaching significance from vehicle treated cells at the highest concentrations 

(figure 4.8A). In cells treated with lower concentrations of valproate however a very subtle 

neuroprotective effect was observed in two of the three cell viability assays used (NR and Bradford 

assays). This effect was most pronounced in cells treated with 1µM valproate, however neither of 

these differences reached statistical significance. A similar profile of toxicity and neuroprotection 

were observed in cells treated with butyrate (figure 4.8B): in all three cell viability assays used, 

toxicity of N27 cells was observed in concentrations of butyrate ≥100µM, reaching significance from 

vehicle treated cells at the highest concentrations. Likewise neuroprotection was observed in two of 

the three cell viability assays used. A subtle level of neuroprotection was observed in Bradford 

assays of butyrate treated cells most notable at 1 and 10µM however these effects did not reach 

significance. In NR assays of butyrate treated cells however a notable neuroprotective effect was 

observed at 100nM, 1µM and 10µM butyrate, reaching statistical significance from vehicle treated 

cells (100nM, 1µM and 10µM butyrate treated cells, 77.03 ± 7.99, 81.21 ± 9.42 and 85.62 ± 11.16% 

cell viability respectively compared to vehicle treated cells, 50.80 ± 2.61% cell viability, p<0.05, 

p<0.01 and p<0.001 respectively). 

 Toxicity of N27 cells was observed in concentrations of trichostatin A ≥10nM in all three cell 

viability assays, reaching significance from vehicle treated cells at higher concentrations (figure 

4.9A). No overt neuroprotective effects are observed with lower trichiostatin A concentrations 

however.  

 Like with other pan-inhibitors discussed thus far, nicotinamide was toxic to N27 cells at 

higher concentrations, however this toxicity did not become apparent with nicotinamide until 

incubation with very high concentrations, several degrees of magnitude higher than others: toxicity 

becoming apparent at concentration ≥10mM (figure 4.9B). Similarly, no overt neuroprotection was 

observed against lactacystin toxicity with nicotinamide treatment. The NR assay shows some 

evidence of neuroprotection though given the large error the concentrations in question (10nM and 

1µM) and the lack of an effect observed in other cell viability assays, this appears to be artefact.  
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Figure 4.8 – Neuroprotective Effects of Class I and IIa HDACIs Against Lactacystin in N27 Cells  
N27 cells pre-treated with HDACIs for 48hrs prior to addition of lactacystin and incubation for a further 24hrs. 
MTS, NR and Bradford assays were then performed for quantification of HDACI induced neuroprotection 
against lactacystin toxicity. Red bar indicates cells which received PBS in place of both drug and lactacystin. 
Blue bar indicates cells which received PBS in place of drug treatment but which received subsequent 
treatment with lactacystin. Green bars indicate cells treated with HDACIs and which received subsequent 
treatment with lactacystin. Crossed green bars indicate concentrations subsequently used for N9 experiments. 
(A) Valproate (class I and IIa HDACI) treated cells. (B) Butyrate (class I and IIa HDACI) treated cells. Statistical 
significance from vehicle treated cells indicated using asterisks: *p<0.05, **p<0.01, ***p<0.001. n=5. 
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Figure 4.9 – Neuroprotective Effects of Isoform Non-Specific HADACIs Against Lactacystin in N27 Cells  
N27 cells pre-treated with HDACIs for 48hrs prior to addition of lactacystin and incubation for a further 24hrs. 
MTS, NR and Bradford assays were then performed for quantification of HDACI induced neuroprotection 
against lactacystin toxicity. Red bar indicates cells which received PBS in place of both drug and lactacystin. 
Blue bar indicates cells which received PBS in place of drug treatment but which received subsequent 
treatment with lactacystin. Green bars indicate cells treated with HDACIs and which received subsequent 
treatment with lactacystin. Crossed green bars indicate concentrations subsequently used for N9 experiments. 
(A) Trichostatin A (class I, IIa and IIb HDACI) treated cells. (B) Nicotinamide (class III HDACI) treated cells. 
Statistical significance from vehicle treated cells indicated using asterisks: *p<0.05, **p<0.01, ***p<0.001. n=5. 
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4.4.4.2 – Neuroprotective Effects of Isoform Specific HDACIs 

In the current study, MS275 displayed marked levels of toxicity in N27 cells, the lowest 

concentration of MS275 tested (100pM) inducing significant reductions in cell viability in two of the 

three assays (figure 4.10A, MTS assay, MS275 treated cells, 21.90 ± 7.75, vs. vehicle treated 

cells,48.19 ± 4.80, p<0.001; NR assay MS275 (100pM) treated cells, 26.99 ± 5.82, vs. vehicle treated 

cells, 41.70 ± 3.10, p<0.01). This toxicity becomes more evident at higher concentrations: MS275 

given at concentrations ≥100nM inducing significantly reduced cell viability in all assays compared to 

vehicle treated cells, p<0.001 in all comparisons. 

 Like with all other HDACIs discussed previously higher concentrations of apicidin (≥1µM) 

induced cytotoxicity of N27 cells in culture evident in all three cell viability assays (figure 4.10B). No 

marked neuroprotective effects were observed upon incubation of N27 cells with apicidin at lower 

concentrations. NR assays results suggested a modest increase in cell viability most evident at 

100pM however given that this effect was not observed in either of the other two assays suggest 

that this result appears to be artefact.  

4.4.4.3 – Neuroprotective Effects of Isoform Specific Sirtuin Inhibitors 

Suramin itself was observed here to be toxic towards N27 cells at concentration exceeding 10nM, 

reaching statistical significance form vehicle treated cells at higher concentrations tested (figure 

4.11A). Due to differences between assay results it is difficult to ascertain the level of 

neuroprotection exhibited by the drug at lower concentrations, if any. NR and Bradford assays 

highlight the possibility of a very subtle level of neuroprotection at concentrations in the nM range, 

however these differences were not observed in MTS assay data making interpretation difficult.  

 Again as with many of the HDACIs mentioned thus far, EX527 was toxic at higher 

concentration, toxicity becoming evident at concentrations exceeding 100µM (figure 4.11B). 

Similarly no overt neurorprotective effect was observed with cell treatment at lower concentrations.  

 Of all the HDACIs tested here, Sirtuin2 inhibiting compounds exhibited the most 

neuroprotection against lactacystin in N27 cells. Higher concentrations (>1µM) of both of these 

compounds exhibited toxicity in N27 cells, however marked neuroprotection was observed upon 

treatment with lower concentrations of both compounds (figure 4.12A and B). With AGK2 

treatment, 1µM resulted in greater cell viability than vehicle treated cells, reaching significance from 

vehicle treated cells in both the MTS and NR assays (figure 4.12A, AGK2 treated cells, 69.49 ± 8.80 

and 65.27 ± 7.94, vs. vehicle treated cells, 32.19 ± 4.54 and 37.21 ± 5.25 in the MTS and NR assays 

respectively, p<0.05 in both comparisons). Similarly with ICL-SIRT078 treatment, protection of N27 

cells was observed in all three of the cell viability assay used here, most notably but not limited to 

1µM ICL-SIRT078 (figure 4.12B, ICL-SIRT078 1µM treated cells 69.25 ± 7.85, 68.80 ± 9.12 and 47.84 ±  



172 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 – Neuroprotective Effects of Isoform Specific HADACIs Against Lactacystin in N27 Cells  
N27 cells pre-treated with HDACIs for 48hrs prior to addition of lactacystin and incubation for a further 24hrs. 
MTS, NR and Bradford assays were then performed for quantification of HDACI induced neuroprotection 
against lactacystin toxicity. Red bar indicates cells which received PBS in place of both drug and lactacystin. 
Blue bar indicates cells which received PBS in place of drug treatment but which received subsequent 
treatment with lactacystin. Green bars indicate cells treated with HDACIs and which received subsequent 
treatment with lactacystin. Crossed green bars indicate concentrations subsequently used for N9 experiments. 
(A) MS275 (HDAC1 inhibitor) treated cells. (B) Apicidin (HDAC2 and 3 inhibitor) treated cells. Statistical 
significance from vehicle treated cells indicated using asterisks: *p<0.05, **p<0.01, ***p<0.001. n=5. 
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Figure 4.11 – Neuroprotective Effects of Isoform Specific Sirtuin Inhibitors Against Lactacystin in N27 Cells  
N27 cells pre-treated with HDACIs for 48hrs prior to addition of lactacystin and incubation for a further 24hrs. 
MTS, NR and Bradford assays were then performed for quantification of HDACI induced neuroprotection 
against lactacystin toxicity. Red bar indicates cells which received PBS in place of both drug and lactacystin. 
Blue bar indicates cells which received PBS in place of drug treatment but which received subsequent 
treatment with lactacystin. Green bars indicate cells treated with HDACIs and which received subsequent 
treatment with lactacystin. Crossed green bars indicate concentrations subsequently used for N9 experiments. 
(A) Suramin (Sirtuin1 and 2 inhibitor) treated cells. (B) EX527 (Sirtuin1 inhibitor) treated cells. Statistical 
significance from vehicle treated cells indicated using asterisks: *p<0.05, **p<0.01, ***p<0.001. n=5. 
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Figure 4.12 – Neuroprotective Effects of Sirtuin2 Inhibitors Against Lactacystin in N27 Cells  
N27 cells pre-treated with HDACIs for 48hrs prior to addition of lactacystin and incubation for a further 24hrs. 
MTS, NR and Bradford assays were then performed for quantification of HDACI induced neuroprotection 
against lactacystin toxicity. Red bar indicates cells which received PBS in place of both drug and lactacystin. 
Blue bar indicates cells which received PBS in place of drug treatment but which received subsequent 
treatment with lactacystin. Green bars indicate cells treated with HDACIs and which received subsequent 
treatment with lactacystin. Crossed green bars indicate concentrations subsequently used for N9 experiments. 
(A) AGK2 (Sirtuin2 inhibitor) treated cells. (B) ICL-SIRT078 (Sirtuin2 inhibitor) treated cells. Statistical 
significance from vehicle treated cells indicated using asterisks: *p<0.05, **p<0.01, ***p<0.001. n=5. 
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6.21% compared to control wells vs. vehicle treated cells, 46.26 ± 2.27, 44.29 ± 2.21 and 29.86 ± 

2.77% compared to control wells in vehicle treated cells in the MTS, NR and Bradford assays 

respectively, p<0.01, p<0.01 and p<0.05 respectively). Concentrations of this compound >1µM 

however resulted in significant toxicity towards N27 cells. 

 

4.4.5 – Confirming the Expression of Iba-1 in N9 Cells 

N9 cells were seeded at increasing densities in 6 well plates 24hrs prior to being lysed. In addition, a 

well void of cells and a well containing N27 cells (seeded at 20 x 105 cells/well) were also included as 

negative controls which should not contain Iba-1. The Iba-1 protein content of well lysates was then 

analysed using Western blot analysis. As expected the wells containing no cells and the well 

containing N27 cells did not show expression of Iba-1 (figure 4.13A). N9 cells seeded at increasing 

densities however demonstrated linearly increasing expression of Iba-1 with cell number, indicative 

of N9 cellular expression of this marker (figure 4.13B, linear regression analysis, R2>0.96).  

 

4.4.6 – Concentration and Incubation Period of LPS with N9 Cells to be Used in Subsequent 

Activation Reduction Studies 

4.4.6.1 - Optimising Concentration of LPS 

N9 cells were seeded in 6 well plates 24hrs prior to the addition of LPS (at a range of concentrations) 

or vehicle (PBS). Cells were then left to incubate for 24hrs before the medium was removed for 

quantification of NO using Griess assays and TNFα using ELISAs for indirect quantification of the level 

of microglial activation as a result of LPS incubation. Incubation of N9 cells with LPS of 

concentrations ≥15.625ng/ml induced significant increases of NO production as measured through 

the Griess assay (figure 4.14Ai). When a semi-log plot of this data was constructed, it became 

evident that LPS induced NO production in N9 cells through a shallow sigmoidal profile (figure 

4.14Aii). With TNFα production however, all concentrations of LPS tested here induced significant 

increases in production in the N9 cell line (figure 4.14Bi). When a semi-log plot of this data was 

constructed, unlike Griess assay results, it was unclear as to the nature of the line of best fit (figure 

4.14Bii). Given the large amount of NO produced by cells treated with even the lowest of 

concentrations, it is most likely then that the concentrations of LPS used here were too high to 

observe the sigmoidal curve of TNFα production in the N9 cell line. From this data 125ng/ml was 

chosen for subsequent studies due to its ability to produce a suitably robust sub-maximal level of 

microglial activation in N9 cells through quantification of NO and TNFα (7.93 ± 0.44µM nitrite and 

23.92 ± 0.99µg/ml TNFα, vs. 1.96 ± 0.18µM nitrite and 1.06 ± 0.03µg/ml TNFα in LPS (125ng/ml) 

treated and vehicle treated cell respectively, p<0.001 in both comparisons).  
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Figure 4.13 – Confirmation of N9 Expression of Microglia Marker 
Iba-1 protein content of lysates from N9 cells seeded at increasing densities were quantified using Western 
blot analysis for confirmation of N9 expression of a marker of microglial cells. In addition a well void of cells 
and a well containing N27 cells (seeded at 20 x 105 cells/well) were also included as negative controls which 
should not contain Iba-1. Equal volumes of cell lysates for each well were run on a Western blot to confirm 
expression of Iba-1 marker. (B) Densitometry analysis of Iba-1 bands confirming linear expression with cell 
density. Lines indicate linear regression lines of best fit with respective 95% confidence intervals (dotted lines). 
(A) Representative blot of data presented in (B).  
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Figure 4.14 – Optimising LPS Dose for Subsequent Activation Reduction Studies in N9 Cells 
N9 cells were incubated in a range of concentrations of LPS for 24hrs in order to quantify the extent microglial 
activation as a result of LPS. After LPS treatment, the cell medium was removed for quantification of NO using 
Griess assays and TNFα using ELISAs for quantification of the level of microglial activation as a result of LPS 
incubation. (Ai and Bi) Dose response data from the Griess assay for NO and ELISAs for TNFα respectively 
indicating significance from vehicle treated cells and (Aii and Bii) dose response data plotted as semi-
logarithmic plot indicating IC50 and respective R2 values for Griess assays and ELISAs respectively. Statistical 
significance from control cells indicated using asterisks: *p<0.05, **p<0.01, ***p<0.001. n=3. 
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4.4.6.2 - Optimising Incubation Period of LPS 

N9 cells were seeded in 6 well plates 24hrs prior to the addition of LPS (125ng/ml). Cells were then 

left to incubate for a range of timepoints before the medium was removed for quantification of NO 

using Griess assays and TNFα using ELISAs for indirect quantification of the level of microglial 

activation as a result of LPS incubation for these timepoints. Significant increases of nitrite were not 

observed in the Griess assay until 15hrs post LPS treatment (time points ≥15hrs, p<0.001 compared 

to control untreated cells). After this time nitrite concentration in cell medium increased gradually 

with time. When a semi-log plot of this data was constructed it appeared evident that nitrite 

production occurs with a sigmoidal profile with time, plateauing before 48hrs of LPS incubation 

(figure 4.15A). TNFα production however occurred less quickly after incubation with LPS: significant 

increases of TNFα being observed in cell cultures incubated with LPS for ≥18hrs (figure 4.15B). When 

a semi log plot of this data was constructed it was evident that over the timepoints examined here 

TNFα is still being exponentially produced by activated microglia with time, not reaching the 

expected plateaux at 48hrs post LPS production. From these data, 24hrs LPS incubation was chosen 

for subsequent studies due to the fact that LPS induced significant yet submaximal production of 

both NO and TNFα, allowing for robust detection and quantification of any HDACI mediated 

reduction in the production of NO and TNFα in subsequent studies.  

4.4.6.3 – Histone Acetylation in LPS Treated N9 Cells 

For quantification of histone acetylation in N9 cells treated with the chosen concentration of LPS for 

the chosen incubation period, N9 cells were seeded in 6 well plates 24hrs prior to incubation with 

either LPS (125ng/ml) or vehicle (PBS) for 24hrs. After this time cells were lysed and the AcH3-Lys9 

content of lysates quantified using Western blot analysis (figure 4.16). There was significantly more 

AcH3-Lys9 in cell lysates in cells treated with LPS than vehicle treated cells indicative of histone 

acetylation upon LPS treatment and subsequent microglial activation (LPS treated, 0.642 ± 0.056, vs. 

vehicle treated cells, 0.381 ± 0.066, p<0.05). 

 

4.4.7 – Incubation Period of HDACIs with N9 Cells To be Used in Subsequent Activation Reduction 

Studies 

For optimisation of the appropriate pre-treatment incubation period of HDACIs to be used in 

subsequent microglial activation reduction studies, cells were seeded in 6 well plates 24hrs prior to 

incubation with the reference HDACI, valproate (1µM) for a range of time periods. After this time 

cells were lysed and the AcH3-Lys9 content of lysates quantified using Western blot analysis. There 

was a significant time dependent increase in AcH3-Lys9 in HDACI treated cells indicative of time-

dependent histone acetylation with HDACI (valproate) treatment (figure 4.17). This increase in  
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Figure 4.15 – Optimising LPS Incubation Period for Subsequent Activation Reduction Studies in N9 Cells 
N9 cells were incubated with LPS (125ng/ml) for a range time periods in order to quantify the extent microglial 
activation as a result of LPS. After LPS treatment, the cell medium was removed for quantification of NO using 
Griess assays and TNFα using ELISAs for indirect quantification of the level of microglial activation as a result of 
LPS incubation. (Ai and Bi) Timecourse data from the Griess assay for NO and ELISAs for TNFα respectively 
indicating significance from vehicle treated cells and (Aii and Bii) timecourse data plotted as semi-logarithmic 
plot indicating IC50 and respective R2 values for Griess assays and ELISAs respectively. Statistical significance 
from control cells indicated using asterisks: *p<0.05, **p<0.01, ***p<0.001. n=3. 
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Figure 4.16 – Histone Acetylation in LPS Treated N9 Cells 
AcH3-Lys9 content of lysates from cells treated with either LPS (125ng/ml) of vehicle (PBS) for 24hrs were 
quantified by Western blot analysis. (A) Densitometry analysis of AcH3-Lys9 bands relative to β-actin used as a 
loading control demonstrate that there is significantly more histone acetylation in LPSA compared to vehicle 
treated cells. (B) Representative blot of data presented in (A). Statistical significance indicated using asterisks: 
*p<0.05. n=3. 
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Figure 4.17 – Histone Acetylation in HDACI Treated N9 Cells 
AcH3-Lys9 content of lysates from N9 cells treated with valproate (1µM) for a range of incubation periods 
were quantified by Western blot analysis. (A) Densitometry analysis of AcH3-Lys9 bands relative to β-actin 
used as a loading control demonstrate that histone acetylation increases with incubation time with valproate. 
(B) Representative blot of data presented in (A). Statistical significance indicated using asterisks: *p<0.05. n=3. 
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histone acetylation however did not become significantly different from control cell lysates until 

24hrs of HDACI treatment, after which time there were no further increases in acetylation (cells 

treated with valproate for 24, 48 and 72hrs, 0.191 ± 0.019, 0.186 ± 0.014, 0.189 ± 0.025 respectively 

compared to control cells, 0.060 ± 0.033, p<0.05 in all comparisons).  

 

4.4.8 - Potential of Isoform Specific and Isoform Non-Specific HDACIs at Reducing LPS Induced 

Activation of N9 Cells 

After optimisation of the concentration and incubation period of LPS most suitable for inducing 

activation of N9 cells, and the appropriate pre-incubation period with HDACIs required to induce 

histone acetylation in the cells, the ability of the range of isoform specific and non-specific HDACI 

used previously at reducing LPS induced activation of N9 cells was examined. Cells were seeded in 6 

well plates 24hrs prior to incubation with varying concentrations of the HDACIs for 24hr. Four 

concentrations of each HDACI were chosen for study  in N9 cells based on the results described 

above, spanning the concentration range at which the HDACI was shown to be both neuroprotective 

and cytotoxic in N27 cells (chosen concentrations indicated by crossed green bars in figure 4.8, 4.9, 

4.10, 4.11 and 4.12). After this time LPS (125ng/ml) was added to cell cultures containing 

HDACIs/vehicle and incubated for a further 24hrs. After this time the medium was removed for 

quantification of NO using Griess assays and TNFα using ELISAs for indirect quantification of the level 

of HDACI mediated reduction of LPS induced microglial activation. In addition to confirm that any 

reduction of NO or TNFα observed were a result of reduction of microglial by the HDACI and not 

cytotoxicity, MTS, NR and Bradford assays were then conducted on HDACI treated cell culture wells 

to quantify the extent of cytotoxicity, if any, exerted by the HDACI compounds. 

4.4.8.1 –Effects of Isoform Non-Specific HDACIs on Microglial Activation 

In both the Griess assay and TNFα ELISA, there was a strong correlation of reduction of NO and TNFα 

in the medium of N9 cells treated with increasing valproate concentration indicative of reduction of 

microglial activation with valproate treatment. At the highest concentration of valproate tested here 

(10µM), a marked reduction in both nitrite and TNFα were both observed (figure 4.18A, valproate 

treated cells, 168.64 ± 52.33 and 460.57 ± 176.71% of control vs. vehicle treated cells, 279.49 ± 

45.96 and 1164.09 ± 285.20% of control, nitrite and TNFα respectively) however these differences 

did not reach statistical significance (p>0.05 in both comparisons). No reduction in cell viability was 

observed in valproate treated N9 cells even with the highest concentration tested, previously 

observed to be toxic towards N27 cells indicative that the reduction in NO and TNFα in valproate 

treated cells is a result of HDACI mediated reduction in LPS induced activation. Despite also 

inhibiting HDAC classes I and IIa with similar potency, no overt changes in the production of NO and  
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Figure 4.18 –Effects of Class I and IIa HDACIs On LPS Activated N9 Cells  
N9 cells pre-treated with HDACIs for 24hrs prior to addition of LPS and incubation for a further 24hrs. Cell 
medium was then removed for Griess assay of NO content and ELISA of TNFα content. For cell viability assays 
cells were treated for 24hrs with HDACIs alone and MTS, NR and Bradford assays performed for HDACI induced 
cytotoxicity. Red bar indicates cells which received PBS in place of both drug and LPS. Blue bar indicates cells 
which received PBS in place of drug treatment but which received subsequent treatment with LPS. Green bars 
indicate cells treated with HDACIs and which received subsequent treatment with LPS. (A) Valproate (class I 
and IIa HDACI) treated cells. (B) Butyrate (class I and IIa HDACI) treated cells. Statistical significance from 
vehicle treated cells indicated using asterisks: *p<0.05, **p<0.01. n=5. 
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TNFα were observed upon treatment of cells with butyrate (figure 4.18B). A very subtle reduction of 

NO was observed upon increasing butyrate treatment, however this difference did not reach 

statistical significance. Additionally, similar to valproate, the highest concentration of butyrate used 

to treat the N9 cells did not result in cytotoxicity as it did with N27 cells.  

 Treatment of N9 cells with trichostatin A at the four concentrations examined here did not 

have any effect on the resulting concentration of NO or TNFα in the cell medium (figure 4.19A). 

Similarly no cytotoxicity was observed upon treatment of N9 cells with 10nM trichostatin A unlike in 

N27 cells. This was also the case with N9 cells treated with the highest dose of nicotinamide (10mM), 

previously shown to induce modest cytotoxicity in N27 cells. No cytotoxicity was observed in any of 

the three cell viability assays utilised here. However there was a concentration dependent reduction 

in the production of both NO and TNFα in nicotinamide treated N9 cell cultures, reaching 

significance from vehicle treated cells at the highest concentration tested indicative of nicotinamide 

induced reduction of LPS activation of N9 cells (figure 4.19B, nicotinamide (10mM) treated cells, 

60.11 ± 4.59 and 282.11 ± 29.55% of control vs. vehicle treated cells, 255.88 ± 34.01 and 686.62 ± 

126.95% of control, nitrite and TNFα respectively, p<0.001 and p<0.01 respectively).  

4.4.8.2 –Effects of Isoform Specific HDACIs on Microglial Activation 

In the above N27 cell studies, MS275 was shown to be extremely cytotoxic. This did not appear to be 

the case in N9 cells: there being only a slight non-significant reduction in cell viability at the highest 

MS275 concentration examined in N9 cells (figure 4.20A). Griess assay data does not suggest any 

reduction in NO production upon MS275 treatment, however there was a subtle concentration 

dependent decrease in TNFα production in cells treated with MS275, reaching significance from 

vehicle treated cells at the highest concentration tested here (MS275 (100nM) treated cells, 398.18 

± 45.40% of control vs vehicle treated cells, 552.91 ± 35.86% of control, p<0.05). This result however 

is difficult to interpret give the reduction, however subtle, in cell viability upon treatment of cells 

with this concentration of MS275. In N9 cells apicidin did not induce any reduction in either NO or 

TNFα, nor did it induce cytotoxicity of N9 at any of the concentrations examined here (figure 4.20B). 

4.4.8.3 –Effects of Isoform Specific Sirtuin Inhibitors on Microglial Activation 

Treatment of N9 cells with suramin at the four concentrations examined here did not have any 

effect on the resulting concentration of NO or TNFα in the cell medium (figure 4.21A). Similarly no 

cytotoxicity was observed upon treatment of N9 cells with this HDACI. EX527 however induced 

significant cytotoxicity at its highest concentration (100µM) in all three cell viability assays described 

here mirroring its effects on N27 cells shown above (figure 4.21B, p<0.05 compared to vehicle 

treated cell wells in all comparisons). In line with this change, there are subtle non-significant 

reductions in both nitrite and TNFα production by cell treated with this concentration of the drug,  
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Figure 4.19 –Effects of Isoform Non-Specific HADACIs On LPS Activated N9 Cells  
N9 cells pre-treated with HDACIs for 24hrs prior to addition of LPS and incubation for a further 24hrs. Cell 
medium was then removed for Griess assay of NO content and ELISA of TNFα content. For cell viability assays 
cells were treated for 24hrs with HDACIs alone and MTS, NR and Bradford assays performed for HDACI induced 
cytotoxicity. Red bar indicates cells which received PBS in place of both drug and LPS. Blue bar indicates cells 
which received PBS in place of drug treatment but which received subsequent treatment with LPS. Green bars 
indicate cells treated with HDACIs and which received subsequent treatment with LPS. (A) Trichostatin A (class 
I, IIa and IIb HDACI) treated cells. (B) Nicotinamide (class III HDACI) treated cells. Statistical significance from 
vehicle treated cells indicated using asterisks: **p<0.01, ***p<0.001. n=5. 
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Figure 4.20 –Effects of Isoform HDACIs On LPS Activated N9 Cells  
N9 cells pre-treated with HDACIs for 24hrs prior to addition of LPS and incubation for a further 24hrs. Cell 
medium was then removed for Griess assay of NO content and ELISA of TNFα content. For cell viability assays 
cells were treated for 24hrs with HDACIs alone and MTS, NR and Bradford assays performed for HDACI induced 
cytotoxicity. Red bar indicates cells which received PBS in place of both drug and LPS. Blue bar indicates cells 
which received PBS in place of drug treatment but which received subsequent treatment with LPS. Green bars 
indicate cells treated with HDACIs and which received subsequent treatment with LPS. (A) MS275 (HDAC1 
inhibitor) treated cells. (B) Apicidin (HDAC2 and 3 inhibitor) treated cells. Statistical significance from vehicle 
treated cells indicated using asterisks: *p<0.05, ***p<0.001. 
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Figure 4.21 – Effects of Isoform Specific Sirtuin Inhibitors On LPS Activated N9 Cells  
N9 cells pre-treated with HDACIs for 24hrs prior to addition of LPS and incubation for a further 24hrs. Cell 
medium was then removed for Griess assay of NO content and ELISA of TNFα content. For cell viability assays 
cells were treated for 24hrs with HDACIs alone and MTS, NR and Bradford assays performed for HDACI induced 
cytotoxicity. Red bar indicates cells which received PBS in place of both drug and LPS. Blue bar indicates cells 
which received PBS in place of drug treatment but which received subsequent treatment with LPS. Green bars 
indicate cells treated with HDACIs and which received subsequent treatment with LPS. (A) Suramin (Sirtuin1 
and 2 inhibitor) treated cells. (B) EX527 (Sirtuin1 inhibitor) treated cells. Statistical significance from vehicle 
treated cells indicated using asterisks: *p<0.05, ***p<0.001. n=5. 
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likely the result of the observed cytotoxicity at this concentration. 

AGK2 did not exert any cytotoxicity at any of the concentrations used here in N9 cells. 

However a subtle concentration dependent reduction in both NO and TNFα production were 

observed with AGK2 treatment in the cells (figure 4.22A). These changes however did not reach 

significance from vehicle treated cells. Like in N27 cells assays shown above, 10µM ICL-SIRT078 

however induced significant cytotoxicity in all three cell viability assays (p<0.01 compared to vehicle 

treated cells in all comparisons). In line with this, significant reductions in NO and TNFα were 

observed in N9 cells treated with the concentration of the Sirtuin2 inhibitor (p<0.001 compared to 

vehicle treated cells in both comparisons). Additionally, a significant concentration dependent 

decrease in NO production was observed in lower, non-cytotoxic concentrations of ICL-SIRT078, 

reaching significance from vehicle treated cells at the highest of the non-cytotoxic concentrations of 

the drug (figure 4.22B, ICL-SIRT078 treated cells, 76.51 ± 17.51% of control cells vs. vehicle treated 

cells, 228.36 ± 40.95% of control cells, p<0.001). A similar concentration dependent decrease in 

TNFα production is also observed in with ICL-SIRT078 treatment of cells, reaching significance from 

vehicle treated cells in all concetrations tested (10nM, 100nM and 1µM ICL-SIRT078, p<0.01, 

p<0.001 and p<0.001 compared to vehicle treated cells respectively).  
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Figure 4.22 –Effects of Isoform Sirtuin2 Inhibitors On LPS Activated N9 Cells  
N9 cells pre-treated with HDACIs for 24hrs prior to addition of LPS and incubation for a further 24hrs. Cell 
medium was then removed for Griess assay of NO content and ELISA of TNFα content. For cell viability assays 
cells were treated for 24hrs with HDACIs alone and MTS, NR and Bradford assays performed for HDACI induced 
cytotoxicity. Red bar indicates cells which received PBS in place of both drug and LPS. Blue bar indicates cells 
which received PBS in place of drug treatment but which received subsequent treatment with LPS. Green bars 
indicate cells treated with HDACIs and which received subsequent treatment with LPS. (A) AGK2 (Sirtuin2 
inhibitor) treated cells. (B) ICL-SIRT078 (Sirtuin2 inhibitor) treated cells. Statistical significance from vehicle 
treated cells indicated using asterisks: *p<0.05, **p<0.01, ***p<0.001. n=5. 
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Table 4.2 – Summary of Neuroprotective/Anti-Inflammatory Effects of HDACIs In Vitro  
Summary of the effects of HDACIs on neuronal and microglial cell culture systems in terms of their 
neuroprotective and anti-inflammatory respectively. Statistical significance from vehicle treated cells indicated 
using asterisks: ns, non-significant, *p<0.05, **p<0.01, ***p<0.001.  

 

 

 

 

 

 

 

 

 

 

 

 

Drug Neuroprotective 
Concentration? 

Significance from 
Vehicle Treated 

(MTS, NR, 
Bradford) 

Anti-
Inflammatory 

Concentration? 

Significance from 
Vehicle Treated 
(Greiss assay, 
TNFα ELISA) 

Valproate 1μM ns, ns, ns 10μM ns, ns 
Butyrate 10μM ns, **, ns 100μM ns, ns 
Trichostatin A - - - - 
Nicotinamide 10μM ns, ns, ns 10mM ***, ** 
MS275 - - 100nM ns, * 
Apicidin 100pM ns, *, ns 10nM ns, ns 
Suramin 10nM ns, ns, ** - - 
EX527 10μM ns, ns, ns 10μM ns, ns 
AGK2 1μM *, *, ns 10μM ns, ns 
ICL-SIRT078 1μM **, **, * 1μM ***, *** 
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4.5 – Discussion 

It has been shown here that HDACIs reduce lactacystin induced neurodegeneration in N27 cells and 

LPS induced activation of N9 cells (table 4.2). Dependent on the class or isoform inhibited, HDACIs 

vary hugely in their effects as neuroprotectants and their ability to reduce microglial activation, in 

vitro. Disparity between results from neurons and microglia also highlight the possible differing 

effects of HDAC isoform inhibition on Parkinsonian pathogeneses. Careful interpretation of these 

findings will identify suitable lead HDACIs for study in subsequent in vivo neuroprotection studies. 

 In the current study, subtle reductions in lactacystin induced neurodegeneration and LPS 

induced microglial activation were observed upon treatment of cells with the HDAC class I and IIa 

pan-inhibitor, valproate. These are consistent with previous findings in both neurons and microglia. 

Valproate mediated neuroprotection has been observed in cerebellar granule cell cultures treated 

with a glutamate excitotoxic insult (Leng and Chuang, 2006) and 6-OHDA (Monti et al., 2007), in rat 

cortical neurons treated with a glutamate excitotoxic insult (Marinova et al., 2009), in a 

neuroblastoma cell line treated with rotanone (Pan et al., 2005) and in human dopaminergic 

neuroblastoma derived and rat dopaminergic neuroblastoma derived cells treated with MPP+ (Kidd 

and Schneider, 2010). Similarly valproate has also been observed to reduce the levels of nitrite and 

TNFα secreted by microglial cell cultures, translating to protection of dopaminergic neurons in rat 

primary mescencephalic neuron-glia cultures (Peng et al., 2005). In contrast however, it has also 

been demonstrated that this reduction of inflammatory cytokines and markers of microglial 

activation induced by valproate are a result of increased microglial apoptosis (Chen et al., 2007). 

These results are in direct disagreement with those described here: in conjunction with nitrite and 

TNFα assays, cell viability assays were conducted to validate that any reduction in nitrite and TNFα 

observed were a direct result of reduced microglial activation rather than cell death. In contrast to 

Chen and colleagues observations, a reduction of nitrite and TNFα were observed here in the 

absence of a reduction in cell viability. This disparity is difficult to comment on given the differences 

in cell culture systems and concentrations of valproate used. Therefore it may be likely then at 

higher concentrations, valproate induces apoptosis of microglial cells, similar to those results 

obtained here using neuronal cultures. Regardless, at lower non-cytotoxic concentrations of 

valproate, marked reductions in both nitrite and TNFα are observed here, highlighting the ability of 

valproate to reduce microglial activation without inducing apoptosis. Extending the findings 

discussed thus far in neurons and microglia, astrocytes are also likely involved in valproate’s 

neuroprotective phenotype: valproate was shown to protect against spontaneous dopaminergic 

neuronal cell death in microglial-depleted cell cultures (Chen et al., 2006), and protect neuron 

enriched cultures against the toxic effects of conditioned astrocytic medium when astrocytes were 
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pre-treated with valproate (Wu et al., 2008b). Taken together with the results from the experiments 

conducted here, valproate appears a valid candidate for further study in vivo. 

 Like valproate, butyrate is also a pan-inhibitor of HDAC classes I and IIa, however in the 

experiments described here it appears to exert different effects in neuronal and microglial cultures 

than valproate. Butyrate appears to mediate neuroprotection in N27 cell cultures, reducing 

lactacystin induced neurodegeneration detected through two of the three assays described. These 

findings are consistent with those in rat dopaminergic mescencephalic derived dopaminergic cells in 

which butyrate was previously observed to protect against MPP+ induced neurotoxicity (Kidd and 

Schneider, 2010) as well as in neuron-glia cultures treated with this same neurotoxin (Wu et al., 

2008b). Unlike valproate however, butyrate was not observed here to mediate a reduction in 

microglial activation in N9 cultures. Previous work by others have eluded to a reduction of microglial 

pro-inflammatory factors as a result of butyrate treatment, however this was attributed to the 

significant induction of apoptosis of microglial cells caused by butyrate (Chen et al., 2007). The 

results presented here are encouraging however, in that butyrate was able to induce 

neuroprotection against a toxin such as lactacystin, be it modest and only detected through two of 

the three cell viability assays described. However given the difference in butyrate’s effects on 

neuronal and microglial cultures, valproate appears a more suitable compound for further study of 

these two HDAC class I and IIa inhibitors. 

 In addition to inhibiting HDAC classes I and IIa, trichistatin A also inhibits HDAC class IIb, 

HDAC6 inclusive which was highlighted in human post-mortem studies. However in contrast to 

results produced from pan-inhibitors of HDAC classes I and IIa valproate and butyrate described 

above, in the current study trichostatin A does not appear to have any effect on lactacystin induced 

neurodegeneration or microglial activation. These findings are in conflict with previously published 

reports of the use of trichostatin A in culture. For example trichostatin A has been previously 

observed to reduce microglial activation in culture (Suh et al., 2010) and protect neurons against 

Parkinsonian insults such as MPTP toxicity, oxidative stress and excitotoxicity in culture (Wu et al., 

2008b, Langley et al., 2008, Leng and Chuang, 2006). This difference in findings could be for a 

number of reasons given the different cell culture systems used and in particular the toxin used to 

induce neurodegeneration in the current study of N27 cells. Here, trichostatin A was unable to 

relieve lactacystin induced neurodegeneration and microglial activation, it does not present as a 

viable candidate for further investigation in vivo.  

 The other pan-inhibitor examined in the current work, nicotinamide, produces far more 

positive results compared to trichostatin A. Despite not being able to reduce lactacystin toxicity in 

N27 cells, a marked significant reduction of microglial activation was observed in N9 cell cultures. To 
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the authors knowledge this is the first time in which the effects of nicotinamide have been studied in 

microglial culture. In contrast however, despite not showing any significant neuroprotective effect in 

the current study, nicotinamide has previously been shown to increase neuronal cell viability in 

culture (Jia et al., 2008) and protect against dopaminergic neuronal cell death in vivo in the MPTP 

mouse model of PD (Anderson et al., 2006, Anderson et al., 2008) improving motor behavioural 

performance (Xu et al., 2012). Authors suggest that neuroprotection occurs at higher nicotinamide 

concentrations in vivo, therefore given the positive effects of nicotinamide on microglial activation at 

higher concentrations shown here, high concentrations of nicotinamide presents as an interesting 

candidate for study in vivo in an animal model of PD.  

 The benzamide MS275 is an inhibitor of HDAC1 and to a lesser degree HDAC3. In the current 

study, this drug had hugely contrasting effects on the cell culture systems examined: producing 

marked toxicity in dopaminergic neurons in culture yet reducing TNFα production in microglial cells. 

This latter finding however needs to be interpreted cautiously however as a slight reduction in cell 

viability was similarly observed with the concentration of MS275 in question and hence could have 

resulted in the reduction observed. However, in microglial cells, unlike neurons, this benzamide is 

not nearly as cytotoxic as it is in neurons. To the authors knowledge, this is the first time in which 

MS275 has been studied in culture in a cellular model of Parkinsonsian neurodegeneration or 

microglial activation. That being said, these results do not support further investigation of this HDACI 

in future studies as inhibition of HDAC1 (and HDAC3) does not appear sufficient to exert beneficial 

effects.  

 Likewise, the selective HDAC2, HDAC3 (and HDAC8) inhibitor apicidin fails to exert any 

marked affects in the assays described here in neuronal or microglial cultures. A significant level of 

neuroprotection from vehicle treated cells was observed upon apicidin treatment in the NR assays 

however given the lack of a response observed in other assays this result appears to be invalid. 

Apicidin did not mediate any reduction of microlgial activation either, as measured through nitrite 

and TNFα production from N9 cells. It would therefore also appear that HDAC2, HDAC3 (and HDAC8) 

inhibition is insufficient to produce a neuroprotective/anti-inflammatory phenotype similar to that 

observed with by other pan-inhibitors of the HDACs. This is disappointing given that HDAC2 and 

HDAC3 are two of the most highly expressed HDACs in the SNpc (Broide et al., 2007), effectively 

highlighting the attractive nature of apicidin as a PD therapeutic due to its ability to inhibit the two 

HDACs expressed most abundantly in the brain nuclei most associated neuronal cell death within the 

disease. The above mentioned results however do not support further investigation of this 

compound in future in vivo studies.  
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 The pan-sirtuin inhibitor, nicotinamide was observed here to produce positive results in 

terms of its reduction of microglial activation but not protection of dopaminergic neurons in culture. 

It remains unknown from the experiments conducted here however whether or not this was a result 

of nicotinamide’s effects on bioenergetics rather its inhibition of the sirtuin class of HDACs (Liu et al., 

2013a).  Suramin however, a selective inhibitor of only sirtuin1 and sirtuin2 did not mediate similar 

results. No change in TNFα or nitrite production in microglial cells was observed upon suramin 

treatment. In neuroprotection studies however a subtle extent of neurorprotection may have been 

observed, yet given that this was only shown in one of the cell viability assays, this finding may be 

erroneous. Recent evidence however highlights the contrasting effects of sirtuin1 and sirtuin2 in 

neurodegenerative disorders, it being argued that sirtuin1 inhibition is damaging towards neurons 

whereas sirtuin2 inhibition is neuroprotective (Donmez and Outeiro, 2013). This theory therefore 

may explain the lack of efficacy observed in the current study using an inhibitor of both sirtuin1 and 

sirtuin2: the positive effects of sirtuin2 inhibition being outweighed by sirtuin1 inhibition. If this were 

the case however, one would expect an inhibitor of sirtuin1 to exacerbate neurodegeneration in 

neuronal cultures. Upon treatment with EX527 however, little to no neuroprotection was observed 

here in N27 cells. Contrastingly however, both of the sirtuin2 inhibitors studied, AGK2 and ICL-

SIRT078, mediated marked neuroprotection in N27 cells treated with lactacystin, and marked 

reduction in LPS activated microglia. ICL-SIRT078 is a sirtuin2 inhibitor developed and synthesised in-

house by Dr Matthew Fuchter and colleagues (Department of Medicinal Chemistry, Imperial College 

London). Compared with the IC50 of AGK2 (3.5µM) (Outeiro et al., 2007), this novel compound is 

more than twice as potent (IC50 = 1.45µM) and far more selective than for sirtuin2 than sirtuin1 

compared to AGK2 (Di Fruscia et al., 2014). This increased potency and selectively is reflected in data 

presented here indicative that the effects of drug treatment on cell assays are indeed an effect of 

sirtuin2 inhibition. Very few studies investigating the neuroprotective effects of sirtuin2 inhibition 

have been conducted to date: only one publication looking at the neuroprotective effects of AGK2 in 

PD. Outeiro and colleagues (2007) demonstrated dose dependent rescue of αSyn mediated toxicity 

in neuroglioma cells upon treatment with the sirtuin2 inhibitor AGK2. Furthermore it was 

demonstrated that AGK2 when fed to drosophila overexpressing αSyn, a dose dependent protection 

of TH+ dorsomedial neurons was similarly observed. Extending these observations in neurons, in the 

current study reductions in nitrite and TNFα were also observed in LPS activated microglia treated 

with sirtuin2 inhibitors. To the authors knowledge this is the first time in which the effects of sirtuin2 

inhibitors have been studied in activated microglia. Taken together these results are extremely 

encouraging given the success of compounds in treating both lactacystin induced neurodegeneration 
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as well as microglial activation. Sirtuin2 inhibitors therefore warrant further investigation in 

subsequent in vivo studies.  

 The broad aims of this study were to test the potential of a range of HDACIs at reducing 

lactacystin induced neurodegeneration and LPS induced activation of neuronal and microglial 

cultures respectively. Based on these findings, lead compounds for subsequent testing in vivo would 

then be identified. The obvious choice would be one of the sirtuin2 inhibitors. However, there is no 

evidence to date on the brain penetrance of AGK2 in either animals or human, or its toxicity in 

experimental animals. Similarly due to the novel and experimental nature of ICL-SIRT078 neither of 

these issues have yet to be elucidated with this drug either. None of the isoform specific inhibitors 

examined here (MS275, apicidin, suramin and EX527) mediated any marked effects in the cell 

culture models described here ruling them out for further study. Of the four pan-inhibitors 

remaining (valproate, butyrate, trichostatin A and nicotinamide), trichostatin A failed to exert any 

neuroprotective or anti-inflammatory actions in the experiments described therefore this was ruled 

out also. The pan-inhibitors of HDAC class I and IIa, valproate and butyrate, mediated respectable 

effects in cell culture. However due to the effects of valproate on both neuronal and microglial 

cultures unlike butyrate, this compound was chosen for further study. Similarly unlike butyrate, this 

HDAC class I and IIa inhibitor has a large body of evidence suggesting its beneficial effects against 

Parkinsonian pathologies in neuronal, microglial and astrocytic cultures as well as its 

neuroprotection in vivo. Similarly, valproate, being already FDA-approved for the treatment of 

epilepsy and seizures comes with years of clinical experience for treatment of neurological disorder 

and if proved to be successful in pre-clinical investigations could be translated to the clinic quickly. 

The remaining HDACI, nicotinamide, was therefore also chosen for further study in vivo. 

Nicotinamide itself is an amide converted, in vivo, from its dietary precursor, niacin (or vitamin B3), 

found in numerous food sources, making it extremely well tolerated orally in man. This is most 

opportune given the wealth of previously published evidence suggesting its neuroprotection when 

administered at high doses in vivo. The neuroprotective and behavioural effects of valproate and 

nicotinamide on an animal model of PD will therefore be assessed in subsequent chapter. 

 The choice of both of these broad spectrum pan-HDACIs therefore represents an exciting 

prospect for their further study in vivo given their previous FDA-approval, making their translatability 

to the clinic relatively easy if found to be successful. Likewise the use of two broad spectrum pan-

HDACIs which both inhibit a wide range of distinctly different sets of HDAC isoforms will hopefully 

add insight into the potential of inhibiting individual HDAC isoforms within classes I and IIa 

(valproate) and class II (nicotinamide).  
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4.6 – Conclusions 

To conclude, this study demonstrates that pre-treatment of cell cultures with HDACIs, dependent on 

the class(es) or isoform(s) inhibited, results in neuroprotection against lactacystin induced 

neurodegeneration in dopaminergic neurons, and reduction of LPS induced activation of microglial 

cells in culture.  From these data, valproate and nicotinamide were identified as most suitable lead 

compounds for further investigation in vivo, in the lactacystin rat model of PD. 
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Chapter Five 

Generating and Profiling Progression of the 
Lactacystin Rat Model of Parkinson’s Disease   
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5 – Generating and Profiling Progression of the Lactacystin Rat Model of 

Parkinson’s Disease 

5.1 – Introduction 

In order to reliably test the efficacy of a candidate neuroprotective compound for PD in vivo, a 

reproducible animal model which recapitulates elements of Parkinsonian dopaminergic neuronal cell 

death, neuropathological and behavioural deficits of the disease, is essential. As has been previously 

introduced (section 1.2.7), numerous animal models of PD are routinely used for the study of 

neuroprotective agents, in vivo. From genetic mouse models harbouring familial PD associated 

mutations, to systemic and focal toxin administration induced models, animal models of PD are 

available which recapitulate differing aspects of the human condition dependent on the research 

question being asked. A relatively novel animal model of PD is one utilising the irreversible UPS 

inhibitor, lactacystin. Lactacystin (figure 5.1) is a naturally synthesised product of the Streptomyces 

genus of bacteria, which was first described in 1991 (Omura et al.). The discovery that lactacystin 

acts as a potent covalent inhibitor of the UPS by binding to 20/26S catalytic subunits came in 1995 

(Fenteany et al.) making it the first non-peptidic selective proteasome inhibitor discovered. Today, 

lactacystin is a commonly used research tool in the biochemical study of the UPS, and more recently, 

in PD research in modelling UPS inhibition and dopaminergic neurodegeneration both in vitro and in 

vivo.  

 Since the discovery that activity of the UPS is reduced in PD (McNaught and Jenner, 2001, 

McNaught et al., 2002a), and two mutations in familial PD, namely UCH-L1 and parkin affect the 

functioning of the UPS (Kitada et al., 1998, Leroy et al., 1998), UPS inhibitors such as the synthetic 

proteasome inhibitor PSI, epoxomycin, MG-132 and lactacystin have been used in attempt to 

generate animal models of PD (McNaught et al., 2002c, McNaught et al., 2004). Lactacystin was first 

shown to induce neuronal cell death, in vitro, in PC12 cells, a catacholaminergic cell line, in 2001 

(Rideout et al.). Subsequently, it has been shown extensively to recapitulate Parkinsonian 

dopaminergic neuronal cell death, in vivo, in mice (Li et al., 2010, Pan et al., 2008, Xie et al., 2010, 

Zhu et al., 2007) and rats (McNaught et al., 2002b, Niu et al., 2009, Vernon et al., 2010, Lorenc-Koci 

et al., 2011, Pienaar et al., 2013). Lactacystin covalently binds to catalytic subunits of the 20/26S 

proteosome, this prevents accessibility of ubiquitinated proteins to the catalytic sites of UPS 

elements and therefore causes the cytoplasmic accumulation of unwanted proteins (McNaught et 

al., 2002b, McNaught et al., 2002c). Lactacystin is not brain penetrant and is therefore 

stereotaxically injected into the SNpc of rats to cause the formation of ubiquitin/αSyn 

immunopositive inclusions in nigral dopaminergic neurons (McNaught et al., 2002b, Niu et al., 2009, 

Vernon et al., 2010, Lorenc-Koci et al., 2011, Pienaar et al., 2013). This intracellular accumulation  
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Figure 5.1 – Chemical Structure of Lactacystin 
The chemical structure of lactacystin (2-(acetylamino)-3-[({3-hydroxy-2-[1-hydroxy-2-methylpropyl]-4-methyl-
5-oxopyrrolidin-2-yl}carbonyl)sulfanyl]propanoic acid) is given. Unlike many other toxins used for inducing 
Parkinsonism in rats (e.g. 6-OHDA) lactacystin is not subject to oxidisation and hence is relatively stable when 
stored on ice for stereotaxic injection. It is however subject to hydrolysis and is therefore stored as a stock 
solution in an organic solvent and reconstituted in sterile (0.9%) saline on the day of stereotaxic surgery.  
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results in progressive nigral neurodegeneration and subsequent progressive development of motor 

behavioural deficits. For example neurological deficit scoring of lactacystin lesioned animals has 

previously been shown to gradually worsen post lactacystin-lesion: rats displaying progressive 

deficits in spontaneous motility and horizontal bar, grasping reflex and placing reaction tests 

(Vernon et al., 2010). Similarly lactacystin lesioned rats have also previously been shown to display 

deficits in forelimb grip strength, reduced performance on an accelerating rotarod and ostensible 

circling behaviour after apomorphine challenge (Vernon et al., 2010, Vernon et al., 2011). The 

behavioural symptoms have also been observed to be attenuated with chronic L-DOPA treatment 

(Konieczny et al., 2014). Clinically relevant changes have also been observed in lactacystin lesioned 

rats in PET scans (Mackey et al., 2013). Therefore unlike many other animal models of PD, the 

lactacystin model not only recapitulates the formation of protein inclusions in dopaminergic 

neurons, but also models the progressive nature of both dopaminergic neurodegeneration and 

development of L-DOPA attenuated motor behavioural deficits. These qualities make the lactacystin 

rat model of PD and ideal platform on which to study the neuroprotective potential of candidate 

therapeutics, allowing for simultaneous study of motor behaviour, neuropathology, and cellular and 

molecular changes in a single animal model.  

 The purpose of this chapter is to generate and profile progression of the lactacystin animal 

model of PD with the aim of identifying a clinically translatable therapeutic window in which 

pathological features and motor behavioural symptoms are evident in order to start treatment with 

the candidate HDACI, and model the clinical scenario in which a neuroprotective drug would be 

administered. Firstly the animal model of PD will be established by stereotaxic injection of 

lactacystin into the SNpc. MRI and behavioural testing will then be used to longitudinally monitor 

the neuropathological and symptomatic progression of the disease model over time. At the end of 

the study, animals will be culled, and the brains removed for cellular and molecular analysis. From 

longitudinal findings a suitable therapeutic timepoint will be identified in which neuropathological 

and symptomatic features of the model are evident. An additional group of animals will then be 

similarly lesioned with lactacystin, culled at this earlier timepoint, and cellular and molecular 

analyses performed on the brains in order to quantify lactacystin induced changes prior to HDACI 

treatment. 
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5.2 - Aims of Chapter 

The aims of this chapter are therefore to: 

1. Generate a lactacystin rat model of PD which recapitulates progressive motor behavioural 

symptoms and neuropathological features of the disease 

a. Profile the symptomatic progression of lactacystin induced motor behavioural 

symptoms in the model. 

b. Profile the progression of lactacystin induced pathological changes in brain structure 

in the model. 

c. Quantify the extent of lactacystin induced dopaminergic neuronal cell death in the 

SNpc in the model. 

d. Quantify the extent of lactacystin induced changes in histone acetylation in the 

model. 

e. Quantify the extent of lactacystin induced changes in expression of key neurotrophic 

and neuroprotective genes in the model. 

2. Identify a suitable clinically translatable delayed therapeutic window in which to treat the 

animal model with candidate neuroprotective HDACIs.   

a. From symptomatic and neuropathological profiling of the lactacystin model, identify 

a suitable timepoint in which early pathological features and motor behavioural 

symptoms are evident. 

b. Quantify lactacystin induced dopaminergic neuronal cell death and ascertain the 

level of microglial activation in the SNpc of model animals at the chosen timepoint. 

c. Quantify the extent of lactacystin induced changes in histone acetylation and 

changes in expression of key neurotrophic and neuroprotective genes at this chosen 

timepoint. 
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5.3 – Experimental Design 

5.3.1 – Generating and Profiling Disease Progression in the Lactacystin Rat Model of PD 

Male Sprague-Dawley rats (n=7) were intra-nigrally lesioned with the irreversible proteasome 

inhibitor, lactacystin, by stereotaxic injection into the SNpc (see section 2.4.3). In order to follow the 

behavioural and neuropathological progression of the model of PD and to identify a suitable 

clinically translatable delayed therapeutic window in which to treat the animals with candidate 

neuroprotective HDACIs, motor behavioural testing (see section 2.4.4) and MRI of the rat brain, in 

vivo (see section 2.4.5), were conducted at baseline prior to stereotaxic lesioning and at weeks 1, 3 

and 5 of the study. For comparison, a second group of male Sprague-Dawley rats (n=7) was also 

subjected to the same behavioural testing and MR imaging in parallel but which did not receive 

lactacystin lesioning surgery (table 5.1 for study groups). Both the vertical cylinder and 

amphetamine induced rotation tests were used to study the progression of behavioural motor 

asymmetry. Similarly, manual volumetric segmentation analysis, tensor based morphometry and T2 

relaxivity analysis using MR images were conducted to study the neuropathological progression of 

the model. Five weeks post-surgery, animals were culled and brain tissue collected (see section 

2.4.6), and prepared for qRT-PCR, Western, and immunohistochemical analysis (see section 2.5) for 

profiling of the cellular and molecular effects of lactacystin after the five week study period (figure 

5.2 for graphical illustration of study design). At the end of the study the hind brain was fixed, 

cryoprotected, cryosectioned and dopaminergic neurons (TH+) immunohistochemically stained and 

stereologically quantified in the SNpc. Frontal cortex tissue was dissected out and snap frozen for 

molecular analysis. Protein content was extracted from tissue samples and Western blot analyses 

were conducted to quantify the level of histone acetylation in the brains of lactacystin/non-lesioned 

animals. In addition, mRNA content was extracted for qRT-PCR analysis to quantify the expression of 

numerous key neurotrophic and neuroprotective factors. 

 

5.3.2 – Identification of a Clinically Translatable Therapeutic Window in the Lactacystin Rat Model  

From the experiments detailed above a clinically translatable therapeutic window in the lactacystin 

rat model of PD was identified based on the existence of  behavioural motor asymmetry and brain 

morphological changes evident from behavioural testing and manual segmentation of MR images 

respectively. However to confirm that lactacystin induced neurodegeneration of dopaminergic 

neurons in the SNpc was similarly evident at this early timepoint, an additional group of animals 

were lesioned similar to that described above (section 5.3.1) and culled early for cellular and 

molecular analysis of brain changes. Male Sprague-Dawley rats (n=7) were intra-nigrally lesioned 

with the irreversible proteasome inhibitor, lactacystin, by stereotaxic injection into the SNpc (see 
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section 2.4.3). Animals were culled at the early timepoint chosen and brain tissue was collected and 

prepared for qRT-PCR, Western, and immunohistochemical analysis (see section 2.5) for detailing of 

the cellular and molecular effects of intranigral injection. As above, at the end of the study the hind 

brain was fixed, cryoprotected, cryosectioned and dopaminergic neurons (TH+) 

immunohistochemically stained and stereologically quantified in the SNpc. Frontal cortex tissue was 

dissected out and snap frozen for molecular analysis. Protein content was extracted from tissue 

samples and Western blot analyses were conducted to quantify the level of histone acetylation in 

the brains of lactacystin lesioned animals. In addition, mRNA content was extracted for qRT-PCR 

analysis to quantify the expression of numerous key neurotrophic and neuroprotective factors. 

 

5.3.3 – Statistical Analysis 

All data is presented as mean ± SEM. All Western blot datasets were analysed using a one-way 

ANOVA with Bonferroni post-tests. All qRT-PCR datasets were analysed using a two-way ANOVA with 

Bonferroni post-tests. For the five week lactacystin study, two-way (repeated measures) ANOVA 

with Bonferroni post-tests were used for analysis of vertical cylinder test, amphetamine induced 

rotations, MRI manual segmentation and T2 relaxivity datasets analysis. An additional unpaired 

student t-test and one-way ANOVA with Bonferroni post-tests were used for analysis of area under 

curve data from vertical cylinder and amphetamine induced rotation tests, respectively. For 

correlation analysis of behavioural test outcomes, a non-linear one-phase decay regression line was 

fitted onto the data. Paired and unpaired student t-tests were used to compare stereological cell 

counts in the ipsilateral and contralateral hemispheres of animal brains, and percentage cell loss 

between hemispheres respectively. For the one week lactacystin study, two-way (repeated 

measures) ANOVA with Bonferroni post-tests were used for analysis of vertical cylinder test, MRI 

manual segmentation and T2 relaxivity datasets analysis. A one-way ANOVA with Bonferroni post-

tests was used for analysis of amphetamine induced rotation test data. An additional one-way 

ANOVA with Bonferroni post-tests and unpaired student t-test were used for analysis of area under 

curve data from vertical cylinder and amphetamine induced rotation tests, respectively. Paired 

student t-tests were used to compare stereological cell counts in the ipsilateral and contralateral 

hemispheres of animal brains and a one-way ANOVA with Bonferroni post-tests was used for 

analysis of percentage cell loss data between hemispheres. All statistical tests were performed using 

GraphPad Prism (v5.0 for Windows, GraphPad Software, San Diego, CA, USA). 
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Table 5.1 - Disease Model Progression Animal Treatment Groups 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Group N= Intranigral Injection Behavioural Tests 

Lacta(-) 
 

7 None Vertical Cylinder Test 

Lacta(+) 
 

7 Lactacystin (10μg in 4μl saline) Vertical Cylinder & Amphetamine Induced 
Rotation Tests 
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Figure 5.2 – Disease Model Progression Animal Study Design 
Study design used for investigation of the behavioural and neuropathological progression of the lactacystin rat 
model of PD and investigation of the cellular and molecular effects of intranigral injection of lactacystin. 
#Only group Lacta(+) was intranigrally injected with lactacystin.  
ǂOnly group Lacta(+) were tested using the amphetamine induced rotation test at these time points. 
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5.4 – Results 

5.4.1 – Confirming Lesion Accuracy in Lactacystin Injected Animals 

Firstly to confirm that all of the lesioned animals received lactacystin to the left SNpc, MRI scans 

acquired at week 1 post-lesion were examined to confirm the location of stereotaxic injection of the 

toxin (see section 2.4.5.3). The SNpc containing plate of the rat brain atlas (-5.2mm from bregma) 

was overlaid on the acquired T2W MR image of the rat brain most resembling the size and shape of 

the brain in the atlas plate. Accurate lactacystin lesioning was accepted if the needle tract was visible 

on the MR image (confirming anterio-posterior positioning) and the end of the needle tract was 

located above the left SNpc (confirming medio-lateral, and ventral-dorsal positioning). The lesion 

site was confirmed in all lesioned animals and therefore no animals were excluded on this basis. 

 

5.4.2 – Progressive Development of Motor Behavioural Symptoms in the Lactacystin Rat Model 

5.4.2.1 – Vertical Cylinder Test 

The vertical cylinder test was conducted on both lactacystin-lesioned and non-lesioned animals at 

baseline and weeks 1, 3 and 5 of study. At baseline there was equal use of both the left and right 

forelimbs in all animals (figure 5.3A, 51.98 ± 1.67% mean contralateral forelimb use). However one 

week after surgery there was a significant reduction in the contralateral forelimb use of lactacystin-

lesioned animals compared with non-lesioned animals (week 1, non-lesioned animals, 46.47 ± 0.95% 

vs. lactacystin-lesioned animals, 39.59 ± 4.11% contralateral forelimb use, p<0.01). From one week 

onwards the contralateral forelimb use of lactacystin-lesioned animals continued to decline with 

time (week 1, 39.59 ± 4.11%; week 3, 35.80 ± 3.37%; week 5, 35.50 ± 4.08% contralateral forelimb 

use, p<0.01 compared with non-lesioned animals at each time point). This resulted in a significantly 

reduced area under the curve produced from plotting percentage contralateral forelimb use vs. time 

compared with non-lesioned animals (figure 5.3B, lactacystin-lesioned animals, 262.04 ± 3.38 vs. 

non-lesioned animals, 193.31 ± 13.71 area under curve, p<0.001).  

5.4.2.2 – Amphetamine Induced Rotation Test 

In addition to vertical cylinder tests, amphetamine induced rotation tests were conducted on 

lactacystin-lesioned animals at week 1, 3 and 5 following lesioning surgery. At week 1 following 

lesioning surgery, all lactacystin-lesioned animals exhibited rotational asymmetric behaviour upon 

treatment with amphetamine (figure 5.3C, week 1, 24.31 ± 4.80 mean number of rotations per 5 

mins). This rotational behaviour continued to develop over the further two time points examined 

(average number of ipsiversive rotations per 5 mins, week 1, 24.31 ± 4.80, week 3, 41.72 ± 9.84, 

week 5, 66.22 ± 19.43). This resulted in a significantly increased area under the curve produced from  
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Figure 5.3 – Lactacystin Lesioning Causes Progressive Development of Motor Asymmetry 
(A) Vertical cylinder test outcomes demonstrate that one week after lactacystin lesioning, animals exhibit a 
significant reduction in contralateral forelimb use compared with non-lesioned animals. (B) Area under the 
curve of data represented in (A) demonstrating more clearly the differences between percentage contralateral 
forelimb use in animal treatment groups. (C) Amphetamine induced rotation test outcomes demonstrate that 
one week after lactacystin lesioning, animals exhibit rotational asymmetric behaviour after administration of 
amphetamine. The extent of this behaviour continues to develop over the five weeks of study. (D) Area under 
the curve of data represented in (C) demonstrating more clearly the progressive nature of rotational behaviour 
after lactacystin lesioning. (E) Correlation analysis between contralateral forelimb use in the vertical cylinder 
test, and total net number of ipsilateral rotations in the amphetamine induced rotation test demonstrate the 
relationship between these two behavioural outcomes in lesioned animals. Black line indicates non-linear one-
phase decay line of regression with 95% confidence interval (dotted lines). Statistical significance between 
groups/timepoints is indicated using asterisks: *p<0.05, **p<0.01, ***p<0.001. n=7. 
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from plotting net ipsiversive rotations vs. time, between week 1 and week 5 following lactacystin-

lesioning (figure 5.3D, week 1, 612.83 ± 121.59, vs. week 5, 1641.00 ± 477.50, p<0.05). 

5.4.2.3 – Behavioural Test Outcome Correlation Analysis 

As has been seen, both vertical cylinder and amphetamine induced rotation test outcomes progress 

with lesion development in the lactacystin rat model of PD. Both of these behavioural paradigms 

demonstrate motor asymmetry, therefore to determine how they relate to one another a 

correlation analysis was performed between the percentage contralateral forelimb use exhibited by 

the animal in the vertical cylinder test and the corresponding total net number of ipsiversive 

rotations in the amphetamine induced rotation test performed on the same day. In the lactacystin-

lesioned animals described here, the outcomes of these two motor asymmetry behavioural tests 

were correlated by a non-linear one-phase decay line of regression (figure 5.3E). As expected the 

lower the percentage contralateral forelimb use exhibited by an animal, the greater total net 

number of ipsiversive rotations. However due to the non-linear nature of the correlation the 

contralateral forelimb use of animals produces a plateaux at 29.67 ± 3.497%, meaning that animals 

which perform greater than ~300 ipsiversive rotations do not exhibit a deficit in contralateral 

forelimb use more than ~20%.  

 

5.4.3 – Neuropathological Development of the Lactacystin Rat Model of Parkinson’s Disease 

5.4.3.1 – Manual Segmentation Analysis 

Post-acquisition, MR images of the brains of all animal treatment groups were analysed using 

manual segmentation analysis to assess changes in regional brain volume over the course of the five 

week study (figure 5.4A). In line with rat growth there was a steady increase in whole brain volume 

of both treatment groups over the five weeks of examination, however this trend of volume increase 

with time was steeper in lactacystin-lesioned compared with non-lesioned animals (figure 5.4B, 

week 5, non-lesioned animals, 6.60 ± 1.18%, vs. lactacystin-lesioned animals, 9.08 ± 2.44% increase 

from baseline). Similar is the case with cerebellum volume: lactacystin-lesioned animals exhibit a far 

greater increase in cerebellum volume with time than non-lesioned animals, reaching statistical 

significance at week 5 of study (figure 5.4C, week 5, non-lesioned animals, 3.30 ± 2.74%, vs. 

lactacystin-lesioned animals, 12.91 ± 1.65% increase from baseline, p<0.05). 

As expected in the non-lesioned animals the volume of the lateral ventricles increased 

comparably in both hemispheres over the 5 weeks of study (figure 5.4D). Animals which received an 

intranigral injection of lactacystin however exhibited a greater increase in ventricular volume than 

non-lesioned controls, a change which was more pronounced in the lesioned hemisphere. Neither of 

these changes however reached statistical significance compared with non-lesioned animals.  
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Figure 5.4 – Manual Segmentation Analysis of MR Images Reveals Dose Dependent Attenuation of 
Lactacystin Induced Volumetric Changes by Valproate 
(A) Representative examples of the manual segmentation of (i) whole brain, (ii) lateral ventricles, (iii) corpus 
striatum, (iv) midbrain, (v) hippocampus and (vi) cerebellum in MR images. Administration of valproate 
(designated by arrow and grey shading) dose dependently attenuates volumetric changes observed in the (D) 
lateral ventricles and (E) the midbrain as a result of lactacystin lesioning, as ascertained through manual 
segmentation analysis of rat brain MR images. Similar, albeit more subtle changes are observed in the (F) 
corpus striatum and (G) hippocampus mirroring those seen in the midbrain. Administration of valproate 
and/or lactacystin also have marked effects on (B) whole brain and (C) cerebellum volume. Statistical 
significance between groups is indicated using asterisks: *p<0.05, **p<0.01, ***p<0.001. n=7. 
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The most pronounced changes in regional brain volume took place in the midbrain, the 

location of the SNpc and therefore the site of stereotaxic injection of lactacystin (figure 5.4E). One 

week after surgery, lactacystin-lesioned animals displayed a significant reduction in the volume of 

the ipsilateral midbrain compared with non-lesioned control animals (figure 5.4E, week 1, 

lactacystin-lesioned animals, -7.07 ± 3.04% change from baseline vs. non-lesioned animals 10.88 ± 

4.73% change from baseline, p<0.01). This volume decrease in the ipsilateral midbrain continued to 

progress with time, resulting in the percentage change in volume from baseline being significantly 

different from non-lesioned animals at both weeks 3 and 5 (figure 5.4E, lactacystin-lesioned animals, 

-10.90 ± 6.54% and -16.76 ± 5.94%, vs. non-lesioned animals 10.89 ± 8.45 and 13.63 ± 7.41% change 

from baseline at weeks 3 and 5 respectively, p<0.001 in both comparisons).  Identical, albeit more 

subtle changes are similarly observed upon lactacystin lesioning in the contralateral hemisphere of 

the midbrain. 

No significant differences were observed in corpus striatum volume in either the ipsilateral 

or contralateral hemispheres. However a number of trends in the ipsilateral hemisphere exist 

mimicking those changes observed in the midbrain (figure 5.4F). There was a trend of reduced 

corpus striatal volume in lactacystin-lesioned animals compared with non-lesioned, however unlike 

the ipsilateral midbrain volume at these time points these differences were not statistically 

significant. No statistical differences or notable trends were observed in the contralateral corpus 

striatum volume. Similar non-significant differences of a reduction in ipsilateral volume were also 

observed in the hippocampus. However as with the case of the contralateral corpus striatum, there 

were no discernible trends or statistically significant differences observed in the volume of the 

contralateral hippocampus. 

5.4.3.2 – Tensor Based Morphometry 

In collaboration with Drs Anthony Vernon and William Crum at Kings College London, tensor based 

morphometry analysis was applied to MR images acquired at week 5 to confirm and extend 

observations from manual segmentation analysis (figure 5.5). After correcting for global differences 

in brain volume (9dof registration) to search for relative differences in structural volume, several 

distinct anatomical patterns were observed between treatment groups (all data shown are corrected 

for multiple-comparison over voxels using the False Discovery Rate with q<0.05).  

Consistent with manual segmentation analyses, in lactacystin-lesioned animals widespread 

significant contraction of cortical voxels in the ipsilateral hemisphere of the brain was observed. 

These included the cingulate, motor, somatosensory and parietal cortical sub-fields. Sub-cortically, 

widespread clusters of contracted voxels were observed in the ipsilateral striatum, globus pallidus, 

thalamus, ventral midbrain and brainstem nuclei. Some of these clusters extended across the 
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Figure 5.5 – Tensor Based Morphometry Validates Findings from Manual Segmentation Analyses of Rat Brain 
MR Images 
Regions of significant volume difference relative to whole brain compared with non-lesioned animals at week 5 
are shown. Positive differences (yellow/orange) indicate volume increases, and negative differences (blue) 
indicate volume decreases compared with non-lesioned animals. Results shown are significant after correction 
for multiple comparisons across voxels using the False Discovery Rate with q<0.05. n=7. 
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midline into the contralateral hemisphere. No significantly contracted voxels were observed in the 

hippocampus. Clusters of significantly expanded voxels were also observed in the ipsilateral 

hemisphere. Primarily this reflected an increase in cerebrospinal fluid signal accompanying 

deformation of the ventral midbrain. Significantly expanded voxels were however also seen in the 

cerebellar white matter and dorsolateral entorhinal cortex.  

5.4.3.3 – T2 Relaxivity Measurement 

In conjunction with manual segmentation analysis, at each of the time points examined, inter-

hemispheric differences in T2 signal intensity were assessed in the SNpc, the midbrain and the corpus 

striatum. For each brain region the T2 signal intensity ratio (ipsilateral divided by contralateral T2 

signal) was then calculated as a measure of interhemispheric difference (figure 5.6). The most 

marked changes in T2 relaxivity occurred within the SNpc (figure 5.6A). In lactacystin-lesioned 

animals 1 week post-surgery there was a significant increase in T2 signal intensity ratio compared 

with the signal ratio from non-lesioned animals (figure 5.6A, lactacystin-lesioned animals, 1.057 ± 

0.010 vs. non-lesioned animals, 1.000 ± 0.016, p<0.01). This increase in T2 signal intensity ratio 

however was reversed by week 3, and continued to decline by week 5 (lactacystin-lesion animals, 

0.935 ± 0.012 vs. non-lesioned animals 0.999 ± 0.012, p<0.001). Subtle changes were also observed 

in the midbrain mimicking those seen in the SNpc (figure 5.6C). However due to the subtlety of these 

alterations no significant differences were observed. No noticeable alterations in T2 signal intensity 

ration were observed in the corpus striatum (figure 5.6E).   

 

5.4.4 – Neuronal Cell Death in the SNpc of Lactacystin Lesioned Animals 

At week five of the study, animals were culled and the hind brain tissue collected for 

immunohistochemical staining and stereological counting of dopaminergic neurons TH positive) in 

the SNpc (figures 5.7E and F). As expected, non-lesioned animals did not shown any 

interhemispheric loss of TH+ dopaminergic neurons in the SNpc (figure 5.7A and C, left SNpc, 11724 

± 729 vs. right SNpc, 11652 ± 493 TH+ cells, % difference +1.30 ± 7.04%). Lactacystin-lesioned 

animals however exhibited a marked interhemispheric loss of TH+ neurons (left SNpc, 4257 ± 1364 

vs. right SNpc, 12328 ± 580 TH+ cells, % difference -53.81 ± 14.32%, p<0.01). This change was 

similarly observed in the numbers of Nissl+ cell number in lactacystin-lesioned animals, indicative of 

TH+ neuronal cell death rather than loss of the TH enzyme expression in dying neurons. 
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Figure 5.6 – T2 Signal Intensity Analyses Reveal Alteration in T2 Signal Between Hemispheres of Lactacystin-
Lesioned Animals 
T2 signal intensity measurements were made from T2 relaxivity maps in the ipsilateral and contralateral (B) 
SNpc, (D) midbrain, and (F) corpus striatum. Data was then expressed as the ratio between the ipsilateral and 
contralateral hemisphere: the T2 signal intensity ratio. Graphs show T2 signal intensity ratio between the 
ipsilateral and contralateral hemisphers over time in the (A) SNpc, (C) midbrain and (E) corpus striatum. 
Statistical significance between groups is indicated using asterisks: *p<0.05, **p<0.01, ***p<0.001. n=7. 
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Figure 5.7 – Stereological Estimates of Cell Number Demonstrate the Toxic Effects of Lactacystin-Lesioning 
Stereologically estimated (A) TH+ and (B) Nissl+ neuron numbers in the SNpc of rats demonstrate the toxic 
effects of lactacystin-lesioning. This is exemplified by the percentage interhemispheric loss of TH+ (C) and 
Nissl+ (D) neurons calculated between hemispheres of the SNpc. Statistical significance indicated with 
asterisks: *p<0.05, **p<0.01, ***p<0.001. n=7. Representative examples of the stained SNpc of non-lesioned 
(E) and lactayctsin-lesioned (F) rats demonstrating interhemispheric cell loss. Scale bar equal to 500µm. 
Abbreviations: I, ipsilateral; C, contralateral. 
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5.4.5 – Lactacystin-Lesioning Causes Histone Hypoacetylation in the Frontal Brain 

At the end of the study the frontal brain tissue was removed and snap frozen for subsequent 

extraction of mRNA and protein for molecular analysis.  Histone protein H3 acetylated on lysine 9 

(AcH3-Lys9) was quantified using Western blot analysis. Significantly less AcH3-Lys9 was observed in 

both frontal brain hemispheres in lactacystin-lesioned animals compared to non-lesioned controls 

(figure 5.8, ipsilateral and contralateral frontal brain hemispheres, 2.96 ± 6.41% and 21.05 ± 11.07% 

of control respectively, p<0.01 in both comparisons).  

 

5.4.6 – Lactacystin-Lesioning Causes Downregulation of Neurotrophic Growth Factors and 

Neuroprotective Protein Genes in the Frontal Brain 

In conjunction with proteins for Western blot analysis, mRNA was extracted from frontal brain tissue 

and the expression level of a number of neuroprotective factors, apoptotic regulators and genes of 

interest to neurodegeneration/neuroprotection were quantified using qRT-PCR (figure 5.9). Modest 

reductions in the expression of αSyn, Hsp70, GSN, Bcl-2 and Bad were observed in both the 

ipsilateral and contralateral frontal brain hemispheres of lactacystin-lesioned compared with control 

animals. Additionally, marked reductions in the expression of BDNF and GDNF were observed in 

both brain hemispheres of lactacystin-lesioned animals compared with controls, more so in the 

lesioned hemisphere (BNDF and GDNF expression in the ipsilateral hemisphere, 0.14 ± 0.01 and 0.08 

± 0.02 fold change from control respectively, p<0.05 in both comparisons).  

 

5.4.7 – Behavioural, Neuropathological and Molecular and Cellular Marks of Neurodegeneration 

are Evident Seven Days Post Lactacystin-Lesioning 

From symptomatic and neuropathological profiling of the lactacystin model detailed above, week 1 

was identified as a suitable timepoint in which early pathological features and motor behavioural 

symptoms in the model were evident, and therefore highlighted as a suitable therapeutic window in 

which to start HDACI treatment. Therefore to quantify the lactacystin induced cellular and molecular 

marks of neurodegeneration at this early timepoint, an additional group of animals was lesioned 

with lactacystin and culled after behavioural testing at week 1 and the brains removed for molecular 

and cellular analyses. 

5.4.7.1 – Motor Behavioural Symptoms Comparable with Previously Lesioned Animal Group 

To confirm that animals had been lesioned accurately, both the vertical cylinder test and 

amphetamine induced rotation tests were conducted at week 1 to compare behavioural outcomes 

to previously lesioned rats in which needle placement was confirmed with MRI. Lactacystin-lesioned  
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Figure 5.8 – Lactacystin-Lesioning Induces Histone Hypoacetylation in the Frontal Brain 
Lactacystin-lesioning causes a reduction in histone H3-lysine 9 acetylation in the frontal brain. (A) 
Densitometry analysis of the AcH3-Lys9 band relative to the β-actin band used as a loading control. (B) 
Representative blot of data presented in (A). Statistical significance between groups is indicated using 
asterisks: **p<0.01. n=7. Abbreviations: I, ipsilateral; C, contralateral. 
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Figure 5.9 – Downregulation of Neurotrophic Growth Factors and Neuroprotective Protein Genes in 
Lactacystin-Lesioned Animal Brains 
qRT-PCR of the frontal brain mRNA reveals downregulation of neurotrophic and neuroprotective gene 
proteins. Statistical significance from control is indicated using asterisks: *p<0.05. n=7. Abbreviations: I, 
ipsilateral; C, contralateral. 
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animals later culled at week 1 compared favourably with those later culled at week 5: animals 

developing a similar reduction in contralateral forelimb use 7 days post lesion detected through the 

vertical cylinder test (figure 5.10A, contralateral forelimb use of animals later culled at week 1, 39.76 

± 3.53% vs. animals later culled at week 5, 39.59 ± 4.11%, p<0.01 compared with non-lesioned 

animals in both comparisons). This resulted in a significantly reduced area under the curve produced 

from plotting percentage contralateral forelimb use vs. time in both lesioned groups compared to 

non-lesioned animals (figure 5.10B, animals later culled at week 1 and 5, 44.42 ± 2.32 and 45.12 ± 

2.05 respectively compared with non-lesioned animals, 52.43 ± 0.74, p<0.05 in both comparisons).  

 In addition to vertical cylinder tests, additional animals were also subjected to amphetamine 

induced rotation tests at week 1 post lesion. As with vertical cylinder test outcomes from these 

animals at this timepoint, animal behaviour compared favourably between lactacystin-lesioned 

groups. Both animal groups performed similar numbers of rotations when administered 

amphetamine at week 1 (figure 5.10C, mean number of rotations per 5 mins, 20.51 ± 5.89 and 24.31 

± 4.80 in animals later culled at week 1 and 5 respectively). This translated to a similarly comparable 

area under the curve from plotting net ipsiversive rotations vs. time in both of the groups (figure 

5.9D, animals later culled at week 1, 513.34 ± 149.98 vs. animals later culled at week 5, 612.08 ± 

121.59). 

5.4.7.2 – Progressive Neuronal Cell Death in Lactacystin-Lesioned Animals 

One week post lesion, animals were culled and the hind brain tissue collected for 

immunohistochemical staining and stereological counting of dopaminergic neurons (TH positive) in 

the SNpc (figures 5.11 and 5.12A and B). Lactacystin-lesioned animals culled seven days post lesion 

exhibited a marked interhemispheric loss of TH+ neurons in the SNpc (left SNpc, 7817 ± 1733 vs. 

right SNpc, 14027 ± 538 TH+ cells, % difference -45.17 ± 10.96%, p<0.05). This interhemispheric 

difference however was lower than that observed in animals culled 5 weeks post lactacystin-lesion 

indicative of progressive degeneration of dopaminergic neurons after lactacystin-lesioning (animals 

culled at one and five weeks, -45.17 ± 10.96% and -53.81 ± 14.32% interhemispheric cell loss 

respectively). A similar albeit more subtle decrease in Nissl+ neurons was also observed between the 

left and right SNpc of animal culled at week 1 (left SNpc, 11712 ± 2890 vs. right SNpc, 18162 ± 1174 

Nissl+ cells, % difference -38.23 ± 11.60%, p<0.05).  

 In addition to stereological cell quantification, comparative study of the morphology of 

nigral dopaminergic neurons at the two timepoints examined add insights into the pathological 

progression of this disease model. One week after lactacystin-lesioning, despite substantial cell loss, 

TH immunopositive neuropil, axonal and dendritic projections were still evident within the ipsilateral 

SNpc (figure 5.12Ai). By week five however this staining was reduced (figure 5.12Bi).   
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Figure 5.10 – Motor Behavioural Symptoms are Comparable with Previously Lesioned Animal Group 
(A) Vertical cylinder test outcomes demonstrate that one week after lactacystin lesioning, both lesioned 
animal groups exhibit significant reductions in contralateral forelimb use compared with non-lesioned animals. 
(B) Area under the curve of data represented in (A) demonstrating more clearly the differences between 
percentage contralateral forelimb use in animal treatment groups. (C) Amphetamine induced rotation test 
outcomes demonstrate that one week after lactacystin lesioning, animals exhibit rotational asymmetric 
behaviour after administration of amphetamine. (D) Area under the curve of data represented in (C). Statistical 
significance between groups is indicated using asterisks: *p<0.05, **p<0.01. n=7. 
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Figure 5.11 – Stereological Estimates of Cell Number One Week Post Lactacystin-Lesion 
Stereologically estimated (A) TH+ and (B) Nissl+ neuron numbers in the SNpc of lactacystin-lesioned rats 
demonstrate progressive nature of cell death in the model, and suitability of week 1 as a therapeutic window 
in which to start drug treatment. This is exemplified by the percentage interhemispheric loss of TH+ (C) and 
Nissl+ (D) neurons calculated between hemispheres of the SNpc. Statistical significance indicated with 
asterisks: *p<0.05; **p<0.01. n=7. Abbreviations: I, ipsilateral; C, contralateral. 
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Figure 5.12 – Immunohistochemistry in the SNpc One and Five Weeks Post Lactacystin-Lesioning 
[Previous page] Immunohistochemistry for TH with Nissl counterstain in the SNpc of animals lesioned with 
lactacystin and culled one (A) and five (B) weeks post lesion.  Higher power magnification of TH 
immunohistochemistry in the ipsilateral (Ai and Bi) and contralateral (Aii and Bii) hemispheres of SNpc in animals 
culled at week one and five respectively. Immunohistochemistry for OX6 with Nissl counterstain in the SNpc of 
animals lesioned with lactacystin and culled one (C) and five (D) weeks post lesion.  Higher power magnification 
of TH immunohistochemistry in the ipsilateral (Ci and Di) and contralateral (Cii and Dii) hemispheres of SNpc in 
animals culled at week one and five respectively. Examples of immunopositive DAB (brown) stained cells 
indicated with arrows. Examples of immunopositive DAB (stained) neuropil indicated with arrowheads. Low 
magnification images taken at x4 magnification, scale bar equal to 50µm. High magnification images taken at x20 
magnification, scale bar equal to 500µm. 
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5.4.7.3 – Presence of Activated Microglia One Week After Lactacystin-Lesioning 

As well as TH staining of the SNpc, consecutive sections were immunohistochemically stained for OX6, 

a marker of activated microglia. As expected immunopositive cells were not present in contralateral 

hemispheres of either lactacystin-lesioned animal groups (figure 5.12Cii and Dii). However in 

lactacystin-lesioned animals culled seven days post-surgery, OX6+ microglia were present in the SNpc. 

Similar cells were not present however when animals were culled at week 5.  

5.4.7.4 – Histone Hypoacetylation One Week After Lactacystin-Lesioning 

Western blot analysis of extracted frontal brain proteins of animals culled one week after lactacystin-

lesioning revealed marked reduction of histone acetylation in line with animals culled at five weeks 

post lactacystin-lesion. Compared with control non-lesioned animals, there was a significant reduction 

in histone protein H3 acetylated on lysine 9 (AcH3-Lys9) (figure 5.13, ipsilateral and contralateral 

frontal brain hemispheres, 18.24 ± 4.38% and 18.03 ± 6.58% of control respectively, p<0.01 in both 

comparisons). These reductions are in similar to those observed in animals culled five weeks post 

lactacystin-lesion.  

5.4.7.5 - Downregulation of Neurotrophic Growth Factors and Neuroprotective Protein Genes in the 

Frontal Brain of Animals One Week After Lactacystin-Lesioning 

As with Western blot analyses of acetylated histone protein in the frontal brain, changes observed in 

lactacystin-lesioned animals culled at week one mirror those observed in animals culled at five weeks 

post lesion (figure 5.14). Like lactacystin-lesioned animals culled at week five, modest reductions in 

the expression of αSyn, Hsp70, GSN, and Bad were observed in both the ipsilateral and contralateral 

frontal brain hemispheres of lesioned animals culled at week one compared with control animals. 

Additionally however, unlike animals culled at the later timepoint in which only a modest reduction of 

expression was observed, Bcl-2 expression was considerably reduced in animals culled at week one 

compared with controls. This change reached significance in the level of ipsilateral hemisphere 

expression (lactacystin-lesioned animals culled at week 1, ipsilateral Bcl-2 expression, 0.21 ± 0.06 fold 

change from control, p<0.05). Similar to animals culled later, marked reductions in the expression of 

BDNF and GDNF were also observed in both brain hemispheres of lactacystin-lesioned animals culled 

at week one compared with controls, more so in the lesioned hemisphere (BNDF and GDNF expression 

in the ipsilateral hemisphere, 0.16 ± 0.04 and 0.25 ± 0.06 fold change from control respectively, p<0.05 

in both comparisons). 
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Figure 5.13 –Histone Hypoacetylation in the Frontal Brain One Week Post Lactacystin-Lesion 
Lactacystin-lesioning causes a reduction in histone H3-lysine 9 acetylation in the frontal brain at week one post 
lesion in line with the level of histone hypoacetylation observed at week five. (A) Densitometry analysis of the 
AcH3-Lys9 band relative to the β-actin band used as a loading control. (B) Representative blot of data presented 
in (A). Statistical significance indicated with asterisks: ***p<0.001. n=7. Abbreviations: I, ipsilateral; C, 
contralateral. 
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Figure 5.14 – Downregulation of Neurotrophic Growth Factors and Neuroprotective Protein Genes in 
Lactacystin-Lesioned Animal Brains One Week After Lesioning 
qRT-PCR of the frontal brain mRNA reveals that downregulation of neurotrophic and neuroprotective gene 
proteins in animals one week after lesioning is comparable to those five weeks after lactacystin-lesioning. 
Statistical significance from control group indicated with asterisks: *p<0.05, **p<0.01. n=7. Abbreviations: I, 
ipsilateral; C, contralateral. 
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5.5 – Discussion 

It has been demonstrated above that stereotaxic unilateral injection of 10µg of lactacystin into the 

SNpc produces a reproducible animal model of PD which recapitulates progressive motor behavioural 

symptoms, neuropathology and dopaminergic neurodegeneration within the SNpc. These progressive 

features of the model are accompanied by histone hypoacetylation in the brain and reduced mRNA 

expression of neurotrophic growth factors and neuroprotective proteins. Studies of the brains of 

animals culled one week post lactacystin-lesion suggest that cellular pathology and neurodegeneration 

in this model are progressive in nature and highlights this timepoint as a suitable  timepoint in which 

to start delayed treatment with candidate HDACIs in subsequent studies to mimic the clinical scenario 

in which a neuroprotective/neuroregenerative drug would be administered. 

 Since the discovery that activity of the UPS is reduced in sporadic and familial forms of PD, UPS 

inhibitors such as the synthetic proteasome inhibitor PSI, epoxomycin, MG-132 and lactacystin have 

been used in attempt to generate animal models of PD (McNaught et al., 2002c, McNaught et al., 

2004). Systemic infusions or repeated injections of lactacystin or PSI were initially proposed to 

produce progressive models of the disease. However despite initial findings that this caused 

progressive dopaminergic neurodegeneration and motor behavioural symptom development, failure 

to reproduce similar findings between laboratories quickly became apparent casting serious doubt on 

the use of UPS inhibitors as a model of PD. More recently however focal administration of UPS 

inhibitors such as lactacystin has become a more stable and reproducible model of the disease. Initial 

studies focussed largely on mice (Li et al., 2010, Pan et al., 2008, Xie et al., 2010, Zhu et al., 2007). It is 

only more recently in which studies using lactacystin to model PD in rats have started to appear in the 

literature (Konieczny et al., 2014, Mackey et al., 2013, Lorenc-Koci et al., 2011, Vernon et al., 2010, 

Vernon et al., 2011, Pienaar et al., 2013). Consistent with these previous observations, here we have 

observed that focal intranigral administration of lactacystin results in a progressive and reproducible 

model of dopaminergic neurodegeneration in the rat. 

 Behavioural test outcomes have been used extensively in the lactacystin rat model to 

demonstrate the effects of lactacystin-lesioning. For example neurological scoring of lactacystin 

lesioned animals has previously been shown to gradually worsen post lactacystin-lesion: rats 

displaying progressive deficits in spontaneous motility and horizontal bar, grasping reflex, placing 

reaction and tapered ledged beam tests (Vernon et al., 2010, Mackey et al., 2013). Similarly lactacystin 

lesioned rats have also previously been shown to display deficits in forelimb grip strength, reduced 

performance on an accelerating rotarod, and prolonged descent latency in bar tests (Vernon et al., 

2010, Vernon et al., 2011, Konieczny et al., 2014). It has been shown here that lesioned animals also 

exhibit a similar magnitude reduction of contralateral forelimb use in the vertical cylinder test 
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following lactacystin lesioning compared with previously published findings (Konieczny et al., 2014), 

demonstrating robust reproducibility of the model between laboratories. In addition to vertical 

cylinder testing in the current study, amphetamine induced rotation was similarly used as an indicator 

of the degree of lactacystin-lesioning. Lactacystin-lesioning has previously been shown to produce 

ostensible circling behaviour after apomorphine challenge (Vernon et al., 2010, Vernon et al., 2011, 

Konieczny et al., 2014). However to our knowledge this is the first time in which amphetamine has 

been used as an inducer of rotational behaviour in this model. Amphetamine was chosen in the 

current study as it is known to be a more sensitive predictor of nigrostriatal lesion (Hudson et al., 

1993). These findings therefore confirm and extent the pattern of behavioural deficits of lactacystin 

lesioning in the current model adding weight to its use in subsequent neuroprotection studies.  

To our knowledge, a full and comprehensive study of the temporal progression of the 

lactacystin rat model is yet to be conducted. However according to the very limited investigation of 

the progression of dopaminergic neurodegeneration in the current study, the findings presented here 

are in agreement with behavioural and histological findings previously published by others (Vernon et 

al., 2010, Vernon et al., 2011, Mackey et al., 2013). From stereological cell quantification of animals 

culled seven days post lactacystin-lesion and longitudinal behavioural test outcomes it appears 

evident that the vast majority of nigral degeneration occurs in the first seven days post lesion (Vernon 

et al., 2010, Vernon et al., 2011, Mackey et al., 2013).  Importantly however it has been observed here 

that a large number of TH+ neuropil, and axonal and dendritic projections remain at week 1 post 

lactacystin-lesion despite the significant reduction in TH+ neuronal cells bodies. Likewise Nissl+ 

neuronal cell degeneration is markedly less than that of TH+ cells at this early timepoint. Taken 

together, in addition to the observed TH+/Nissl+ neuronal degeneration at week 1 post lesion, it is 

likely that a number of nigral dopaminergic neuronal cells still remain present at this early timepoint, 

however their loss of expression of TH in conjunction with the significant amount of complete 

neuronal degeneration observed results in the deficits in motor behavioural tests shown here. By 

looking at neuronal cell counts at week 5 post lesion it is evident that neurodegeneration continues 

after week one resulting in the continued decline of animal performance in motor behavioural tasks. 

At present we cannot predict who will develop PD and by the time patients present to the clinic with 

the cardinal motor symptoms of the disorder, 60-70% of neurons in the SNpc have already 

degenerated, and ~80% of striatal dopamine has been depleted (Riederer and Wuketich, 1976). Week 

one post lactacystin-lesion therefore appears a suitable timepoint in which to start delayed treatment 

with candidate neuroprotective/neuroregenerative HDACIs in order to model the clinical scenario in 

which a neuroprotective drug would be administered. Likewise focal administration of lactacystin has 

now been successfully used in multiple neuroprotection studies  (Konieczny et al., 2014, Li et al., 2010, 
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Pan et al., 2008, Zhu et al., 2007, Zhang et al., 2005). Moreover neuroprotection was successfully 

observed from initiating drug treatment at this same timepoint in the lactacystin mouse model (Pan et 

al., 2008) verifying the suitability of this therapeutic window in subsequent 

neuroprotection/neuroregeneration studies. In addition to the extent of cell death it has also been 

observed here that microglial activation is also present at this early model timepoint. As has been 

extensively discussed in previous chapters, HDACIs are thought to not only protect against 

neurodegenation but also reduce microglial activation. This timepoint is therefore highly appropriate 

for subsequent drug challenge studies using HDACIs as neuroprotectants and reducers of microglial 

activation.  

MR imaging studies using toxin based models of PD have largely been focused on alterations 

in T2 water 1H relaxation and 1H MR spectroscopy, whilst potential morphological changes have been 

overlooked. Recently however, a method of using MRI to non-invasively monitor the morphological 

progression and nigrostriatal neuropathology in this proteasome inhibitor rat model of PD has been 

established (Vernon et al., 2010, Vernon and Modo, 2011, Vernon et al., 2011). Manual segmentation 

analysis was performed in the current study to examine the temporal morphological progression of 

selected brain regions. In line with previously published data following nigrostriatal neuropathology 

induced as a result of stereotaxic injection of lactacystin to the SNpc (Vernon and Modo, 2011), in the 

current study a marked reduction in the volume of the ipsilateral midbrain in the weeks following 

stereotaxic surgery was observed. Similarly an increase in the volume of the lateral ventricles was 

observed, which was far more pronounced in the ipsilateral as opposed to the contralateral 

hemisphere. Subsequent TBM analysis both confirm and extend the manual data adding further 

weight to the findings, as well as extending prior observations. For example, unbiased, automated 

TBM data reinforces manual observations, and confirms lactacystin-lesioning is associated with a 

specific reproducible pattern of neuroanatomical changes in the brain, detectable by MRI (Vernon et 

al., 2011). The combination of longitudinal in vivo MRI and automated TBM therefore has great 

potential for pre-clinical assessment of drugs with disease-modifying potential in pre-clinical models of 

PD. 

In conjunction with volumetric analysis and TBM to monitor morphological progression and 

nigrostriatal neuropathology in this model, T2 signal intensity analysis was also used to follow 

asymmetry in T2 signal intensity in the SNpc, midbrain and corpus striatum. Consistent with previous 

studies using the lactacystin rat model (Vernon et al., 2010), changes in T2 signal intensity ratio were 

observed in the SNpc and to a lesser extent the midbrain, but not in the striatum. The temporal profile 

of T2 relaxivity changes observed here also mirrors those previously seen in the lactacystin rat model 

of PD (Vernon et al., 2011). One week following lesioning, an increase in T2 signal intensity was 
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observed in the ipsilateral SNpc and to a lesser extent the ipsilateral midbrain. This change is similarly 

observed in other animal models of PD, in the 6-OHDA rodent model (Kondoh et al., 2005) and the 

MPTP primate model (Miletich et al., 1994), and is suggested to be most likely due to acute 

inflammatory oedema in the area of interest given its appearance in nigrostriatally lesioned animals 

alone and its dissipation with time. By weeks three and five however the reduction in T2 signal 

intensity in the ipsilateral hemisphere is likely due to cell death given the differences between 

treatment groups at these time points. Several studies note the accumulation of iron in the SNpc of PD 

patients (Dexter et al., 1989b, Brar et al., 2009, Gorell et al., 1995, Kosta et al., 2006, Martin et al., 

2008) and a number of studies also note the accumulation of iron in the SNpc of the lactacystin rat 

model (Vernon et al., 2010, Zhu et al., 2007). Iron affects MR signal by creating inhomogeneities in 

magnetic field which diphase nearby water protons leading to shortening of T2 relaxation and 

therefore lowering T2 signal intensity (Chen et al., 1993). Additionally therefore this reduction in T2 

signal intensity ratio observed at weeks three and five may also be a function of iron deposition in the 

SNpc.  

αSyn accumulation actively promotes histone hypoacetylation both in vitro in SH-SY5Y cells 

and in vivo in drosophila, both overexpressing αSyn (Kontopoulos et al., 2006). Lactacystin 

dopaminergic neurotoxicity is associated with the aggregation of α-synuclein to form inclusion bodies 

in the SNpc, a finding which has been extensively verified since (McNaught et al., 2002b, Vernon et al., 

2011, Zhu et al., 2007, Niu et al., 2009). Therefore in line with previous observations of the effect of 

αSyn on histone acetylation, in the current study a reduction in histone acetylation in the brains of 

lactacystin-lesioned animals is observed. Removal of an acetyl group from a histone lysine residue 

causes the residue to become positively charged and hence causes electrostatic interaction to form 

between the lysine in the histone tail and the negatively charged phosphate group on DNA. This 

results in formation of inter- and intra-nucleosomal interactions between the histone protein and DNA 

hence causing condensation of the structure of chromatin and restricting transcription factor access to 

DNA. This would therefore cause a global reduction in gene expression. Consistently, a reduction in 

expression of numerous genes have been shown in the current study. Moreover, neurotrophic factors 

such BDNF and GDNF were shown to be significantly downregulated, likely contributing to and/or 

exacerbating the progressive neuropathology observed in the brain following lactacystin-lesioning. 
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5.6 – Conclusions 

To conclude, this study demonstrates that unilateral stereotaxic injection of lactacystin produces a 

reproducible animal model of PD which recapitulates progressive motor behavioural symptoms, 

neuropathology and dopaminergic neurodegeneration within the SNpc. These changes are 

accompanied by a reduction in histone acetylation and downregulation of numerous neurotrophic and 

neuroprotective genes thought likely to contribute to and/or exacerbate neurodegeneration in the 

model. Seven days post lactacystin-lesion in the model has been identified as a suitable therapeutic 

window in which to start treatment with candidate neuroprotective/neuroregenerative HDACIs due to 

motor behavioural symptoms, brain pathology, dopaminergic neurodegeneration, microglial 

activation, histone hypoacetylation and neurotrophic gene downregulation being already evident in 

the model at this early timepoint. These findings therefore provide a clinically relevant drug testing 

platform on which to test the therapeutic potential of HDACIs at delineating the course of disease 

model progress in subsequent studies.    
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Chapter Six 

Neuroprotective Effects of Valproate in the 
Lactacystin Rat Model of Parkinson’s Disease 
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6 – Neuroprotective Effects of Valproate in the Lactacystin Rat Model of 

Parkinson’s Disease 

6.1 – Introduction 

 Valproate was first marketed as an anti-epileptic drug in France over 45 years ago (Löscher, 

2002) and is now one of the most commonly prescribed mood stabilisers and anti-epileptic drugs for 

both generalised and partial seizures in adults and children (Perucca, 2002), appearing on the WHO’s 

List of Essential Medicines (WHO, 2013). Valproic acid (2-propylpentanoic acid, figure 6.1) is a liquid at 

RT, and when reacted with a base such as sodium hydroxide forms a solid salt, sodium valproate. 

Numerous preparations can then be made from this salt dependent on the route and means of 

administration: intravenously, or orally in a capsule, tablet or syrup. Due to its relatively simple 

structure and low molecular weight (144.211 g/mol), valproate crosses the BBB with ease. 

Pharmacokinetically it is characterised by nonlinear plasma protein binding and multiple metabolic 

pathways of elimination (DeVane, 2003). It has an extensive record of use across its lifespan in the 

clinic and a good record of tolerability (DeVane, 2003). 

The rational for valproate use in epilepsy and mood stabilisation, is that it has numerous 

effects on the brain: including effects on Glycogen Synthase Kinase 3 (GSK-3), Akt/ERK pathways, 

GABA/glutamate neurotransmission, Na+ and Ca2+ voltage-dependent channels, phosphoinositol/TCA 

pathways and the oxidative phosphorylation pathway (Ximenes et al., 2012). Added to these effects in 

2001 was its capacity for HDAC inhibition, noted due to its ability to relieve HDAC-dependent 

transcriptional repression and cause histone hyperacetylation both in vitro and in vivo (Gottlicher et 

al., 2001, Phiel et al., 2001). Like many short chain fatty acids, valproate acts as a pan-inhibitor of 

HDAC classes I and IIa (section 1.5.3), at relatively low potencies (Gurvich et al., 2004). It is thought 

that this weak potency is attributable to its inability to access the zinc cation in the HDAC active-site 

pocket, which appears to be pivotal to the deacetylation catalysis (Lu et al., 2003). It therefore appears 

likely that valproate uses mechanisms other than direct interface with the catalytic site of HDACs to 

bring about inhibition. 

Valproate has been shown to produce neuroprotection in models of stroke (Kim et al., 2007, 

Xuan et al., 2012, Sinn et al., 2007), traumatic brain injury (Dash et al., 2010, Tai et al., 2014, Jepsen et 

al., 2014), and spinal cord injury (Lv et al., 2011, Yu et al., 2012). However it remains debated as to the 

neuroprotective potential of valproate in more chronic neurodegenerative diseases such as PD. It has 

been shown that in vitro, valproate reduces microglial activation and release of proinflammatory 

factors such as TNFα, nitrite and reactive oxygen species resulting in neuroprotection in neuron-glia 

co-cultures (Peng et al., 2005, Chen et al., 2007). Similarly, it has also been demonstrated that 

valproate’s HDAC inhibition results in upregulation of neurotrophic factors such as BDNF and GDNF  
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Figure 6.1 – Chemical Structure of Valproate 
The chemical structure of valproic acid is given which exists as a liquid at RT. This can be reacted with a base 
such as sodium hydroxide to form the solid salt sodium valproate. In the majority of studies cited and in the 
study described in this chapter the solid salt sodium valproate was dissolved into sterile (0.9%) saline at the 
desired concentration for animal administration.  
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in astrocytic cultures translating to neuroprotection in neuron-enriched cultures (Chen et al., 2006, 

Wu et al., 2008a). Valproate has also been shown to directly protect neurons against cell death, 

through dose dependent acetylation of histone protein H3 in the αSyn promotor, increasing 

expression of endogenous αSyn and protecting neuronal cell cultures (Leng and Chuang, 2006). 

Additionally, in line with a dose dependent increase in histone acetylation, valproate treatment has 

been shown to increase expression of neuroprotective Hsp70 and reduce release of apoptotic 

regulator caspase-3 in neuronal cultures (Marinova et al., 2009, Pan et al., 2005, Kidd and Schneider, 

2010).  

Pre-clinical in vivo studies also highlight the neuroprotective potential of valproate. 

Neuroprotection by valproate was observed in the MPTP mouse model of PD: protecting 

dopaminergic neurons and preventing the reduction of striatal dopamine observed in MPTP treated 

mice (Kidd and Schneider, 2011). These changes were also accompanied by an increase in the histone 

acetylation mark AcH3-Lys9. In addition, dietary pre-treatment with valproate was shown to 

significantly protect against rotenone induced loss of TH+ dopaminergic neurons in rats, as well as 

increasing expression of endogenous αSyn in the SNpc and striatum (Monti et al., 2010). 

Neuroprotection of TH+ neurons and upregulation of endogenous αSyn was also observed in the 6-

OHDA rat model of PD with dietary pre-treatment with valproate (Monti et al., 2012). These are 

extremely encouraging findings, especially studies utilising dietary administration of the drug, 

highlighting the translatability of valproate treatment to the clinic. However care must be taken when 

interpreting these data as valproate treatment was commenced prior to toxin administration: 4 week 

in both of these studies, highlighting the poor clinical relevance of such a study design.  

Based on preclinical evidence and clinical criteria, the American Neuropsychiatric Association 

(ANPA) Committee on Research identify FDA-approved, first-line psychotropic drugs which affect 

intracellular mechanisms and merit disease modifying clinical trials in neurodegenerative disease. 

Given the wealth of research conducted on the use of valproate in neurodegenerative diseases such as 

PD, in 2011 ANPA’s committee deemed valproate one of the ‘most promising investigative priories’ in 

PD (Lauterbach and Mendez, 2011). Two studies from the 1970s examined the effects of valproate on 

disease progression in PD patients clinically prior to its discovery as HDACI (Nutt et al., 1979, Price et 

al., 1978). Neither of these studies claims to notice any significant amelioration of symptoms. Hence 

given the age of these publications and the wealth of evidence in favour of the neuroprotective 

potential of valproate, the use of this drug in PD is being re-challenged. This chapter therefore aims to 

confirm and extend previous findings on the use of valproate in more classically used animal models of 

PD (the MPTP mouse model, and 6OHDA and rotenone rat models) by using the lactacystin rat model 

which recapitulates the formation of neurotoxic protein inclusions within the substantia nigra to cause 
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progressive dopaminergic cell death. Furthermore unlike many of the previous studies of valproate’s 

neuroprotective effects in vivo, a delayed start study design will also be used to model the clinical 

scenario in which a neuroprotective drug would be administered more accurately. In addition, 

molecular and cellular analyses of study samples will attempt to elucidate the neuroprotective 

mechanism of valproate in this model.  
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6.2 - Aims of Chapter 

The aims of this chapter are therefore to: 

1. Determine the neuroprotective and behavioural effects of delayed start valproate treatment 

in the lactacystin rat model of PD: 

a. Determine the effects of delayed start valproate treatment on the progression of 

lactacystin induced motor behavioural symptoms in the model. 

b. Determine the effects of delayed start valproate treatment on lactacystin induced 

pathological changes in brain structure in the model.  

c. Determine the effects of delayed start valproate treatment on lactacystin induced 

dopaminergic neuronal cell death in the SNpc in the model. 

2. Investigate the neuroprotective mechanism of delayed start valproate treatment in the 

lactacystin rat model of PD 

d. Quantify the level of histone acetylation in the brains of valproate treated lactacystin-

lesioned animals. 

b. Quantify the expression of numerous neurotrophic and neuroprotective factors 

thought to be associated with HDACI mediated neuroprotection in valproate treated 

lactacystin-lesioned animals. 
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6.3 – Experimental Design 

6.3.1 – Determining the Neuroprotective and Behavioural Effects of Delayed Start Valproate 

Treatment in the Lactacystin Rat Model of PD 

Three groups of male Sprague-Dawley rats (n=6 or 7) were intra-nigrally lesioned with the irreversible 

proteasome inhibitor, lactacystin, by stereotaxic injection into the SNpc (see section 2.4.3). Animals 

were then left to recover for 7 days before receiving a daily i.p. injection of sterile saline (0.9% NaCl), 

or 200mg/kg or 400mg/kg valproate dissolved into saline, for 28 days. In addition to these three 

animal treatment group, two groups of male Sprague-Dawley rats (n=6 or 7) were also included which 

did not receive lactacystin lesioning surgery: which received subsequent daily treatment with saline or 

daily treatment with 400mg/kg valproate dissolved into saline (table 6.1 for animal treatment groups). 

In order to follow the neuropathological and behavioural progression of the disease model and to 

determine to what extent valproate was able to delineate this progression, both motor behavioural 

testing and MRI were conducted at baseline, and at weeks 1, 3 and 5 of the study (figure 6.1 for 

graphical illustration of study design). Both the vertical cylinder and amphetamine induced rotation 

tests were used to study the progression of behavioural motor asymmetry. Similarly, manual 

volumetric segmentation analysis, tensor based morphometry and T2 relaxivity analysis using MR 

images were conducted to study the neuropathological progression of the model. For quantification of 

valproate neuroprotection, at the end of the 5 week study animals were culled and brain tissue was 

collected. The hind brain was fixed, cryoprotected, cryosectioned and dopaminergic neurons (TH+) 

immunohistochemically stained and stereologically quantified.  

 

6.3.2 – Investigating the Neuroprotective Mechanism of Delayed Start Valproate Treatment in the 

Lactacystin Rat Model of PD 

Upon collection of brain tissue at the end of the five week study, frontal cortex tissue was dissected 

and snap frozen for molecular analysis of the neuroprotective mechanism of valproate in the model. 

Protein content was extracted from tissue samples and Western blot analyses were conducted to 

quantify the level of histone acetylation in the brains of lactacystin-lesioned/valproate treated 

animals. In addition, mRNA content was extracted for qRT-PCR analysis to quantify the expression of 

numerous neurotrophic and neuroprotective factors thought to be involved in the neuroprotective 

effects of HDACIs such as valproate.  

 

6.3.3 – Statistical Analysis 

All data is presented as mean ± SEM. Two-way (repeated measures) ANOVA with Bonferroni post-tests 

were used for analysis of vertical cylinder test in the confirmation of lesioning. An additional student t-
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test was used for analysis of area under curve data from vertical cylinder tests in lesion confirmation. 

In the valproate study a two-way (repeated measures) ANOVA with Bonferonni post-tests were used 

for analysis of vertical cylinder test, amphetamine induced rotation test and MRI manual 

segmentation analysis datasets. An additional one-way ANOVA with Bonferroni post-tests was used 

for comparison of percentage contralateral forelimb use vs time area under the curve data. Paired t-

tests were used to compare stereological cell counts in the ipsilateral and contralateral hemispheres 

of animal brains. A one-way ANOVA with Bonferroni post-tests were used to compare cell loss 

percentages calculated from stereological cell counts. A one-way ANOVA with Bonferroni post-tests 

were used to compare Western blot data. A two-way ANOVA with Bonferroni post-tests were used to 

compare qRT-PCR data. All statistical tests were performed using GraphPad Prism (v5.0 for Windows, 

GraphPad Software, San Diego, CA, USA). 
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Table 6.1 - Valproate Neuroprotection Animal Treatment Groups 
*All daily i.p. injections given as 2ml/kg: saline injections given as 2ml/kg empty saline; 400mg/kg valproate 
injections given as 2ml/kg of 200mg/ml solution of valproate in saline; 200mg/kg valproate injections given as 
2ml/kg of 100mg/ml solution of valproate in saline. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Group N= Intranigral Injection Daily i.p. Injections* Behavioural Tests 

Lacta(-)VPA(-) 
 

7 None Saline Vertical Cylinder Test 

Lacta(-)VPA(++) 
 

6 None Valproate 
(400mg/kg) 

Vertical Cylinder Test 

Lacta(+)VPA(-) 7 Lactacystin 
(10μg in 4μl saline) 

Saline Vertical Cylinder Test & 
Amphetamine Rotation 

Lacta(+)VPA(+) 6 Lactacystin 
(10μg in 4μl saline) 

Valproate 
(200mg/kg) 

Vertical Cylinder Test & 
Amphetamine Rotation 

Lacta(+)VPA(++) 6 Lactacystin 
(10μg in 4μl saline) 

Valproate 
(400mg/kg) 

Vertical Cylinder Test & 
Amphetamine Rotation 
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Figure 6.2 - Valproate Neuroprotection Animal Study Design 
Study design used for investigation of the neuroprotective effects of delayed start valproate treatment in the 
lactacystin rat model of PD. Abbreviations: AIR, amphetamine induced rotations; MRI, magnetic resonance 
imaging; VCT, vertical cylinder test. 
 #Only groups Lacta(+)VPA(-), Lacta(+)VPA(+) and Lacta(+)VPA(++) intranigrally injected with lactacystin. Control 
groups remained surgically naïve.  
ǂOnly groups lesioned with lactacystin were tested using the amphetamine induced rotation test at these time 
points.  
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6.4 – Results 

6.4.1 – Confirming Lesion in Lactacystin Injected Animals 

To confirm that all lesioned animals included in the study received lactacystin to the left SNpc, MRI 

scans acquired at week 1 post-lesion were examined to check the location of stereotaxic injection of 

the toxin (section 2.4.3, figure 6.3E). The lesion site was confirmed in all lesioned animals and 

therefore no animals were excluded on this basis. In addition to visual confirmation of the lesion site 

from MR images, behavioural tests performed at 7 days post lesioning were also used to confirm the 

development of early motor symptoms as a consequence of lactacystin injection into the left SNpc. For 

analysis of vertical cylinder test data, animals were divided into two groups dependent on whether 

they had received stereotaxic surgery (n=19) or not (n=13) at week 1. There was a significant reduction 

in the use of the contralateral forelimb of animals lesioned with lactacystin, compared to non-lesioned 

animals at week 1 (figure 6.3A, week 1, lactacystin-lesioned animals, 40.20 ± 2.57%, vs. non-lesioned 

animals, 51.59 ± 1.39% contralateral forelimb use, p<0.001). In addition, lactacystin-lesioned animals 

were injected with amphetamine to examine the degree to which they exhibited rotational 

behavioural, indicative of degeneration of the ipsilateral SNpc. All animals lesioned with lactacystin 

exhibited amphetamine induced rotations 7 days after lesioning indicative of correct needle 

placement and delivery of lactacystin to the left SNpc (figure 6.3C and D, 19.73 ± 1.39 mean number of 

rotations per 5 mins). The extent of rotational behavioural in the animals therefore compared 

favourably to previously lesioned animals groups (figure 5.10, 21.17 ± 3.71 mean number of rotations 

per 5 mins). 

 

6.4.2 – Effects of Delayed Start Valproate Treatment on Behavioural Progression of the Lactacystin 

Rat Model of PD 

6.4.2.1 – Vertical Cylinder Test  

The vertical cylinder test was conducted in all five treatment groups at baseline and weeks 1, 3 and 5 

of the study to assess motor asymmetry in rat forelimb use. At baseline there was equal use of both 

the left and right forelimbs in all animals (figure 6.4A, 51.69 ± 0.89% contralateral forelimb use). 

However one week after surgery there was a significant reduction in the contralateral forelimb use of 

all lactacystin-lesioned animal groups compared with non-lesioned groups (figure 6.4A, p<0.05 in all 

comparisons). From one week onwards the contralateral forelimb use of the lactacystin-lesioned 

saline treated animals continued to decline with time (week 1, 39.59±4.11%; week 3, 36.01±3.37%; 

week 5, 35.50±4.08%, p<0.01 compared with control animals at each time point). However once 

animals began daily i.p. treatment with either 200mg/kg or 400mg/kg valproate one week after 

lactacystin lesioning, there was a time and dose dependent reduction in contralateral forelimb use  
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Figure 6.3 - Confirming Lesion in Lactacystin Injected Animals 
(A) Percentage contralateral forelimb use in lactacystin-lesioned (Lacta(+)) and non-lesioned (Lacta(-)) rats at 
baseline and 7 days after surgery. (B) Area under the curve of data represented in (A) demonstrating more 
clearly the differences between percentage contralateral forelimb use in animal treatment groups. (C) Number 
of amphetamine rotations performed by lactacystin-lesioned animals in five minute intervals after 
administration of amphetamine. (D) Area under the curve of data represented in (C) demonstrating more clearly 
the progressive nature of rotational behaviour after lactacystin-lesioning. (E) Representative MR image 
confirming correct needle placement and therefore delivery of lactacystin to the left SNpc in a lesioned animal.  
Statistical significance is indicated using asterisks: ***p<0.001. n=13-19. 
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Figure 6.4 – Valproate Attenuates Motor Behavioural Deficits Caused by Lactacystin in Vertical Cylinder Test 
(A) Vertical cylinder test outcomes demonstrate that once animals begin treatment with valproate at week 1 
(designated by arrow and grey shading) the lactacystin induced reduction in percentage contralateral forelimb 
use is reversed in a dose dependent manner. Statistical significance indicated with letters: asignificantly different 
from group Lacta(-)VPA(-); bsignificantly different from group Lacta(-)VPA(++); csignificantly different from group 
Lacta(+)VPA(-). See text for levels of significance. (B) Area under the curve of data represented in (A) 
demonstrating more clearly the differences between percentage contralateral forelimb use in animals treatment 
groups. Statistical significance is indicated using asterisks: **p<0.01. n=6-7. 
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deficit. Animals treated with the lower dose of valproate (200mg/kg) displayed a reduced deficit in 

contralateral forelimb use with time (week 5, valproate, 44.39 ± 6.94% vs. saline treated animals, 

35.50 ± 4.08%). Similarly animals treated with the highest dose of valproate (400mg/kg) displayed a 

reduced deficit in contralateral forelimb use with time, failing to show any deficit after 28 days of 

valproate treatment (week 5, valproate, 52.63 ± 2.66% vs. saline treated animals, 35.50 ± 4.08%, 

p<0.01). The area under the curve produced by plotting percentage contralateral forelimb use vs. time 

demonstrates the differences between treatment groups more clearly (figure 6.4B). The area under 

the curve produced by the saline treated group was significantly less than both non-lesioned groups 

(lactacystin-lesioned saline treated animals 193.31 ± 13.71 vs. non-lesioned saline treated and 

valproate (400mg/kg) treated animals 262.04 ± 3.68 and 268.4 ± 8.32 respectively, p<0.01 in both 

comparisons). Neither of the lactacystin-lesioned, valproate treated groups however were significantly 

difference from non-lesioned control groups.  

6.4.2.2 – Amphetamine Induced Rotation Test   

As well as the vertical cylinder test, the amphetamine induced rotation test was conducted on all 

lesioned animal groups at week 1, 3 and 5 following lesioning to assess the extent of drug induced 

rotational behaviour. Following amphetamine challenge, all lactacystin-lesioned animals produced 

ipsilateral rotations one week after lesioning surgery (figure 6.5A, mean number of amphetamine 

induced rotations per 5 minutes during recording, 24.31 ± 4.44, 18.81 ± 8.45, and 18.22 ± 1.83 for 

Lacta(+)VPA(-), Lacta(+)VPA(+) and Lacta(+)VPA(++) groups respectively). Over the further two time 

points examined, saline treated lactacystin-lesioned animals performed increasing numbers of 

rotations (mean number of amphetamine induced rotations per 5 minutes during recording, week 3, 

41.72 ± 9.84, week 5, 66.22 ± 19.43). However valproate administration dose dependently attenuated 

the number of ipsiversive rotations after treatment initiation at week one. Animals treated with the 

lowest dose of valproate (200mg/kg) performed fewer rotations than saline treated animals after 28 

days of valproate treatment (mean number of amphetamine induced rotations per 5 minutes during 

recording, 39.50 ± 16.39 vs. 66.22 ± 19.43 in valproate (200mg/kg) and saline treated animals 

respectively, p<0.05). Animals treated with valproate at its higher dose however performed fewer 

rotations than the saline treated group after both 14 and 28 days of treatment (saline treated animals, 

41.72 ± 9.84 and 66.22 ± 19.43 vs. valproate (400mg/kg) treated animals 21.19 ± 4.01 and 23.28 ± 4.85 

at weeks 3 and 5 respectively, p<0.001 in both comparisons). These differences between groups 

become clearer when data is expressed as the area under the curve produced by plotting net number 

of rotations vs. time (figure 6.5B). Animals treated with valproate at its highest dose exhibit a 

significantly greater area under the curve at week 5 compared with saline treated animals (valproate 

(400mg/kg) treated animals, 585.83 ± 123.47 vs. saline treated animals, 1641 ± 477.50, p<0.05). 
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Figure 6.5 – Valproate Attenuates Amphetamine Induced Rotational Asymmetry Caused by Lactacystin 
(A) Net number of ipsiversive rotations performed by animals per 5 minutes plotted against time for the 30mins 
in which rotational behaviour was recorded following amphetamine administration. Statistical significance 
indicated with letters: asignificantly different from group Lacta(+)VPA(-); bsignificantly different from group 
Lacta(+)VPA(+). See text for levels of significance. (B) The area under the curve produced by plotting raw 
rotational values against time (A) demonstrates the attenuation of amphetamine induced rotational behaviour 
by valproate. Statistical significance is indicated using asterisks: *p<0.05. n=6-7. 
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6.4.3 - Effects of Delayed Start Valproate Treatment on Neuropathological Progression  of the 

Lactacystin Rat Model of PD 

6.4.3.1 – Manual Segmentation Analysis 

Post-acquisition, MR images of the brains of all animal treatment groups were analysed using manual 

segmentation analysis to assess changes in regional brain volume over the course of the five week 

study (figure 6.6A). In line with rat growth there was a steady increase in whole brain volume in saline 

treated non-lesioned animals over the five weeks of examination (figure 6.6B, week 1, 2.09 ± 0.86% 

increase from baseline; week 3, 4.64 ± 1.33% increase from baseline; week 5, 6.60 ± 1.29% increase 

from baseline). The whole brain volumes of all other treatment groups also increased with time 

however to a greater/lesser degree than these control animals. Lactacystin-lesioned animals treated 

with saline and lactacystin-lesioned animals treated with valproate at its lower dose (200mg/kg) both 

exhibited a greater increase in brain volume compared with control animals (9.07 ± 2.44% and 9.33 ± 

0.69% increase from baseline at week 5 respectively vs. 6.60 ± 1.29% increase from baseline at week 5 

in non-lesioned saline treated animals). Animal groups treated with valproate at its higher dose 

(400mg/kg) however, both lactacystin-lesioned and non-lesioned, exhibited a discernible shallower 

increase in whole brain volume over the 5 weeks of treatment (3.76 ± 1.19% and 3.07 ± 1.34% 

increase from baseline at week 5 respectively vs. 6.60 ± 1.29% increase from baseline at week 5 in 

non-lesioned saline treated animals). Similar was the case with cerebellum volume: each of the 

treatment groups displayed an increase in volume over the five weeks of examination (figure 6.6C). 

However unlike with whole brain volume, all groups exhibited a comparably greater percentage 

cerebellum volume increase at every time points when compared to the non-lesioned saline treated 

group. The only statistically significant difference being between the cerebellar volume increase of 

lactacystin-lesioned saline treated animals and the non-lesioned saline treated animals at week five 

(lactacystin-lesioned animals, 12.91 ± 1.64% increase compared with non-lesioned animals, 5.60 ± 

2.36% increase, p<0.05). 

As expected in the non-lesioned saline treated animals the volume of the lateral ventricles 

increased comparably in both hemispheres over the 5 weeks of scan acquisition (figure 6.6D). Similarly 

the ventricular volumes of non-lesioned valproate treated animals also increased with time, yet 

unexpectedly to a greater extent than saline treated animals. This difference however was not 

significant. Animals which received an intranigral injection of lactacystin and were subsequently 

treated with saline exhibited a greater increase in ventricular volume than non-lesioned controls, a 

change which was more pronounced in the lesioned hemisphere. Neither of these increases however 

reached statistical significance compared with non-lesioned saline treated animals. In contrast the 

animal groups which received valproate (both 200mg/kg and 400mg/kg) one week after lactacystin  
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Figure 6.6 – Manual Segmentation Analysis of MR Images Reveals Dose Dependent Attenuation of Lactacystin 
Induced Volumetric Changes by Valproate 
(A) Representative examples of the manual segmentation of (i) whole brain, (ii) lateral ventricles, (iii) corpus 
striatum, (iv) midbrain, (v) hippocampus and (vi) cerebellum in MR images. Administration of valproate 
(designated by arrow and grey shading) dose dependently attenuates volumetric changes observed in the (D) 
lateral ventricles and (E) the midbrain as a result of lactacystin lesioning, as ascertained through manual 
segmentation analysis of rat brain MR images. Similar, albeit more subtle changes are observed in the (F) corpus 
striatum and (G) hippocampus mirroring those seen in the midbrain. Administration of valproate and/or 
lactacystin also have marked effects on (B) whole brain and (C) cerebellum volume. Statistical significance 
indicated with letters: asignificantly different from group Lacta(-)VPA(-); bsignificantly different from group 
Lacta(-)VPA(++); csignificantly different from group Lacta(+)VPA(-); dsignificantly different from group 
Lacta(+)VPA(+). See text for levels of significance. n=6-7. 
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lesioning surgery did not exhibit these increases in ventricular volume over time: the ventricular 

volumes of both valproate dosed groups was comparable with non-lesioned saline treated animals in 

both hemispheres, reaching significance in the lactacystin-lesioned hemisphere (left ventricle at week 

5, 200mg/kg and 400mg/kg valproate treated animals, 40.81 ± 28.20% and 60.05 ± 14.17% increase 

from baseline respectively compared with saline treated animals, 192.93 ± 61.54% increase from 

baseline, both p<0.05). 

The most pronounced changes in regional brain volume took place in the midbrain, the 

location of the SNpc and therefore the site of stereotaxic injection of lactacystin (figure 6.6E). One 

week after lesioning surgery, prior to starting vehicle/drug treatment, the ipsilateral midbrain volume 

of all lactacystin-lesioned animal groups was significantly lower than the volume of both non-lesioned 

groups (lactacystin-lesioned saline, 200mg/kg and 400mg/kg valproate treated animals, 7.07 ± 3.05%, 

4.51 ± 2.42% and 4.74 ± 0.83% decrease from baseline respectively vs. 10.88 ± 4.73% and 13.80 ± 

3.08% increase in non-lesioned saline treated and valproate treated groups respectively, p<0.05 in all 

comparisons). The ipsilateral midbrain volume in lactacystin-lesioned saline and low dose (200mg/kg) 

valproate treated animals continued to decline over the further two time points examined, remaining 

significantly different from the volume change in non-lesioned groups at both week 3 and week 5 

(p<0.001 in all comparisons). In contrast, animals lesioned with lactacystin and treated with the higher 

dose (400mg/kg) of valproate displayed a reversal of the decrease in ipsilateral midbrain volume seen 

at week 1 in the following two time points: reaching a significant difference from saline and low dose 

(200mg/kg) treated animals at week 5 (400mg/kg valproate treated animals, 3.70 ± 2.36% increase 

from baseline vs. saline and 200mg/kg valproate treated animals, 16.77 ± 5.94% and 15.90 ± 2.36% 

decrease from baseline respectively, p<0.01 in both comparisons). Identical albeit more subtle 

changes are similarly observed upon lactacystin lesioning and valproate treatment in the contralateral 

hemisphere of the midbrain: lactacystin-lesioned animals displayed a reduction in contralateral 

midbrain volume at week 1 which continued on to week 5 for saline and low dose valproate treated 

animals but not for high dose treated animals. 

No significant differences were observed in corpus striatum volume in either the ipsilateral or 

contralateral hemispheres. However a number of trends in the ipsilateral hemisphere exist mimicking 

those changes observed in the midbrain (figure 6.6F). There was a trend of reduced corpus striatal 

volume in lactacystin-lesioned animals compared with non lesioned, however unlike the ipsilateral 

midbrain volume at this time point this trend was not statistically significant (lactacystin-lesioned 

saline, 200mg/kg and 400mg/kg valproate treated animals, 2.96 ± 2.99%, 2.98 ± 2.66% and 2.76 ± 

2.76% decrease from baseline respectively vs. 3.07 ± 2.76% and 1.96 ± 2.43% increase in non-lesioned 

saline treated and valproate treated groups respectively, p>0.05 in all comparisons). The volume of 
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the ipsilateral corpus striatum continued to decrease in a dose dependent manner with valproate in 

lactacystin-lesioned animals. Again however these changes failed to reach statistical significance from 

either control non-lesioned  animals or saline treated lesioned animals. No statistical differences or 

notable trends were observed in the contralateral corpus striatum volume. 

In the hippocampus unlike the volume changes observed in the midbrain and striatum, there 

was no discernible reduction in volume in the ipsilateral hemisphere at week one after lactacystin 

lesioning (figure 6.6G). With time however, at week 3 and 5, a reduction in ipsilateral hippocampal 

volume became evident in lactacystin-lesioned saline treated animals, and to a lesser degree low dose 

valproate (200mg/kg) treated animals (lactacystin-lesioned saline treated animals, 8.81 ± 2.31% and 

10.09 ± 3.74% decrease from baseline at week 3 and 5 respectively; lactacystin-lesioned valproate 

(200mg/kg) treated animals, 5.79 ± 3.33% and 6.51 ± 2.52% decrease from baseline respectively at 

week 3 and 5 respectively). Lactacystin-lesioned animals treated with the higher dose of valproate 

(400mg/kg) however did not display this decline in ipsilateral hippocampal volume, the volumes of 

which reaching statistical significance from lactacystin-lesioned saline treated ipsilateral hippocampal 

volume at week 5 (valproate (400mg/mg) treated animals, 1.83 ± 1.99% increase from baseline vs. 

saline treated animals, 10.09 ± 3.74% decrease from baseline, p<0.05). As with the case of the 

contralateral corpus striatum, there were no discernible trends or statistically significant differences 

observed in the volume of the contralateral hippocampus. 

6.4.3.2 – Tensor Based Morphometry 

In collaboration with Dr Anthony Vernon (Department of Neuroscience, Kings College London) and Dr 

William Crum (Department of Neuroimaging, Kings College London), tensor based morphometry 

analysis was applied to MR images acquired at week 5 to confirm and extend observations from 

manual segmentation analysis (figure 6.7). After correcting for global differences in brain volume (9dof 

registration) to search for relative differences in structural volume, several distinct anatomical 

patterns were observed across treatment groups (all data shown are corrected for multiple-

comparison over voxels using the False Discovery Rate with q<0.05). 

Non-lesioned animals treated with a high dose of valproate alone (Lacta(-)VPA(++)) showed 

bilateral clusters of blue contracted voxels in the globus pallidus, internal capsule, third ventricle, 

ventromedial thalamic nuclei, perirhinal cortex, amygdala and brainstem. Conversely, clusters of 

yellow/orange expanded voxels were detected in the hippocampus (dorsal and ventral regions), dorsal 

entorhinal cortex, external capsule and the 3rd and 4th cerebellar lobules.   

In lactacystin-lesioned animals treated with saline (Lacta(+)VPA(-)) widespread significant 

contraction of cortical voxels in the ipsilateral hemisphere of the brain was observed. These included 

the cingulate, motor, somatosensory and parietal cortical sub-fields. Sub-cortically, widespread  
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Figure 6.7 – Tensor Based Morphometry Validates Findings from Manual Segmentation Analyses of Rat Brain 
MR Images 
Regions of significant volume difference relative to whole brain for each group compared with Lacta(-)VPA(-) at 
week 5 are shown. Positive differences (yellow/orange) indicate where each group has volume increases 
compared with Lacta(-)VPA(-) and negative differences (blue) indicate where each group has volume decreases 
compared with Lacta(-)VPA(-). Results shown are significant after correction for multiple comparisons across 
voxels using the False Discovery Rate with q<0.05. n=6-7. 

 

 

 

 

 



251 
 

clusters of contracted voxels were observed in the ipsilateral striatum, globus pallidus, thalamus, 

ventral midbrain and brainstem nuclei. Some of these clusters extended across the midline into the 

contralateral hemisphere. No significantly contracted voxels were observed in the hippocampus. 

Clusters of significantly expanded voxels were also observed in the ipsilateral hemisphere. Primarily 

this reflected an increase in cerebrospinal fluid signal accompanying deformation of the ventral 

midbrain. Significantly expanded voxels were however also seen in the cerebellar white matter and 

dorsolateral entorhinal cortex. In lactacystin-lesioned animals treated with low dose (200mg/kg) and 

high dose (400mg/kg) valproate a more complex pattern of anatomical changes were detected. 

Valproate treatment dose-dependently reversed cortical atrophy in the cingulate, motor, 

sensorimotor and parietal cortices in the ipsilateral hemisphere.  Sub-cortically, valproate treatment 

also dose-dependently reversed atrophy of the ventromedial thalamus, ventral midbrain and 

expansion of CSF space. These effects were more marked at the higher dose tested.  

6.4.3.3 – T2 Relaxivity Measurement 

In conjunction with manual segmentation analysis, at each of the time points examined, inter-

hemispheric differences in T2 signal intensity were assessed in the SNpc, the midbrain and the corpus 

striatum. For each brain region, the T2 signal intensity ratio (ipsilateral divided by contralateral T2 

signal) was then calculated as a measure of interhemispheric difference (figure 6.8). The most marked 

changes in T2 relaxivity occurred within the SNpc (figure 6.8A). As expected there were no discernable 

alterations in T2 signal intensity ratio in the SNpc of non-lesioned  animals treated with either saline or 

valproate throughout the five weeks of study. However in all groups lesioned with lactacystin, seven 

days post-surgery there was a significant increase in T2 signal intensity ratio compared with the signal 

in both non-lesioned  groups (mean T2 signal intensity ratio in lactacystin-lesioned animals, 1.053 ± 

0.012 vs. non-lesioned animals, 0.999 ± 0.011, p<0.05 in all comparisons). In animals subsequently 

treated with saline this increase in T2 signal intensity ratio was reversed by week three and continued 

to decline, being significantly lower than both non-lesioned  groups by week five (lactacystin lesion , 

saline treated animals, 0.935 ± 0.012 vs. non-lesioned , saline treated, 0.999 ± 0.012 and valproate 

treated animals, 1.000 ± 0.013, p<0.001 in both comparisons). Lactacystin-lesioned animals 

subsequently treated with valproate (both 200mg/kg and 400mg/kg) also exhibited this reversal in T2 

signal intensity ratio at week three and decline at week five however to a much lesser degree than 

saline treated animals. Notably neither of these treatment groups displayed significant differences 

from non-lesioned  groups at either of these time points.  Subtle changes were also observed in the 

midbrain mimicking those seen in the SNpc (figure 6.8C). However due to the subtlety of these 

alterations no significant differences were observed. No noticeable alterations in T2 signal intensity 

ration were observed in the corpus striatum.   
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Figure 6.8 – T2 Signal Intensity Analyses Reveal Dose Dependent Attenuation of Lactacystin Induced Changes 
T2 signal intensity measurements were made from T2 relaxivity maps in the ipsilateral and contralateral (B) SNpc, 
(D) midbrain, and (F) corpus striatum. Data was then expressed as the ratio between the ipsilateral and 
contralateral hemisphere: the T2 signal intensity ratio. Graphs show T2 signal intensity ratio between the 
ipsilateral and contralateral hemisphers over time in the (A) SNpc, (C) midbrain and (E) corpus striatum. 
Statistical significance indicated with letters: asignificantly different from group Lacta(-)VPA(-); bsignificantly 
different from group Lacta(-)VPA(++). n=6-7. 
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6.4.4 – Neuroprotective Effects of Delayed Start Valproate Treatment on Dopaminergic Neurons in 

the SNpc in the Lactacystin Rat Model of PD 

Animals were sacrificed at week five of the study and hind brain tissue collected for 

immunohistochemical staining and stereological counting of dopaminergic (TH+) neurons in the SNpc 

(figures 6.9 and 6.10). Non-lesioned animals treated with saline did not show any interhemispheric 

loss of TH+ dopaminergic neurons of the SNpc (left SNpc, 11724 ± 729 vs. right SNpc, 11652 ± 493 TH+ 

cells). Similarly no difference was observed in the number of TH+ dopaminergic neurons in the left and 

right hemispheres of the SNpc in non-lesioned animals subsequently treated with valproate 

(400mg/kg) (left SNpc, 11706 ± 1716 vs. right SNpc, 12154 ± 1255 TH+ cells). Animals lesioned with 

lactacystin and treated with saline however exhibited a marked interhemispheric loss of TH+ neurons 

due to the intranigral injection of lactacystin (left SNpc, 4257 ± 1364 vs. right SNpc, 12328 ± 580 TH+ 

cells, % difference -53.81 ± 14.32%, p<0.01). By contrast valproate administration at its higher dose 

(400mg/kg) for 28 days afforded near complete protection of SNpc TH+ neurons against the toxic 

effects of lactacystin (left SNpc, 9729 ± 1347 vs. right SNpc, 11913 ± 578 TH+ cells, % difference -19.08 

± 10.17%, p>0.05). Administration of the lower dose of valproate (200mg/kg) resulted in only a partial 

protection of the TH+ neurons against lactacystin toxicity (left SNpc, 7659 ± 1228 vs. right SNpc, 12739 

± 862 TH+ cells, % difference -40.26 ± 9.87%, p<0.05). The changes observed in SNpc TH+ cell number 

were also similarly observed in the numbers of Nissl+ cell number, indicative of TH+ neuronal cell 

death rather than loss of the TH enzyme expression in dying neurons. 

 

6.4.5 – Effects of Delayed Start Valproate Treatment on Brain Histone Acetylation Level in the 

Lactacystin Rat Model of PD 

Upon removal of brain tissue at the end of the study the frontal brain was snap frozen for subsequent 

quantification of histone protein H3 acetylated on lysine 9 (AcH3-Lys9) using Western blot analysis 

(figure 6.11). Significantly less AcH3-Lys9 was observed in both hemispheres of animals lesioned with 

lactacystin and treated daily with saline (ipsilateral and contralateral hemispheres, 2.97 ± 4.05% and 

21.05 ± 7.00% of control non-lesioned animals respectively, p<0.001 and p<0.05). This effect was dose 

dependently attenuated in both hemispheres upon treatment of valproate for 28 days, reaching 

significance between the amount of AcH3-Lys9 observed in the left hemisphere of lactacystin animals 

subsequently treated with saline compared with those treated with 400mg/kg valproate for 28 days 

(ipsilateral hemisphere, saline treated animals, 2.97 ± 4.05% vs. animals treated with 400mg/kg 

valproate, 108.67 ± 10.14% of control non-lesioned animals, p<0.05). No difference in the amount of 

AcH3-Lys9 in either hemisphere was observed in non-lesioned animals treated with valproate 

compared with control. 



254 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9 –Valproate Dose Dependently Protects Dopaminergic Neurons in the SNpc Against Lactacystin Induced Cell Death 
Stereologically estimated (A) TH+ and (B) Nissl+ neuron numbers in the SNpc of rats suggest a dose dependent neuroprotective effect of valproate in this lactacystin rat 
model of Parkinson’s disease. This is exemplified by the percentage interhemispheric loss of TH+ (C) and Nissl+ (D) neurons calculated between hemispheres of the SNpc. 
Statistical significance indicated with asterisks: *p<0.05; **p<0.01, ***p<0.001. n=6-7. Abbreviations: I, ipsilateral; C, contralateral. 

0

2500

5000

7500

10000

12500

15000
ns

Treatment

*
**

VPA(-)     VPA(++)     VPA(-)      VPA(+)    VPA(++)
Lacta(-)    Lacta(-)    Lacta(+)   Lacta(+)    Lacta(+)

 I   C       I    C       I   C       I   C        I   C

E
s
ti

m
a
te

d
 N

u
m

b
e
r 

o
f 

T
H

+
 C

e
ll

s

0

2500

5000

7500

10000

12500

15000

17500

20000

ns

Treatment

***

VPA(-)     VPA(++)     VPA(-)      VPA(+)    VPA(++)
Lacta(-)    Lacta(-)    Lacta(+)   Lacta(+)    Lacta(+)

 I   C       I    C       I   C       I   C        I   C

E
s
ti

m
a
te

d
 N

u
m

b
e
r 

o
f 

N
is

s
l+

 C
e
ll

s

Lacta(-) Lacta(-) Lacta(+) Lacta(+) Lacta(+)
-100

-80

-60

-40

-20

0

20

**

Treatment

VPA(-)     VPA(++)     VPA(-)      VPA(+)    VPA(++)

*

In
te

rh
e
m

is
p

h
e
ri

c
 %

 L
o

s
s
 o

f 
T

H
+
 C

e
ll

s

(I
p

s
il

a
te

ra
l 

v
s
. 

C
o

n
tr

a
la

te
ra

l 
S

N
p

c
)

Lacta(-) Lacta(-) Lacta(+) Lacta(+) Lacta(+)
-100

-80

-60

-40

-20

0

20

***
*

**

Treatment

VPA(-)     VPA(++)     VPA(-)      VPA(+)    VPA(++)
In

te
rh

e
m

is
p

h
e
ri

c
%

 L
o

s
s
 o

f 
N

is
s
l+

 C
e
ll

s

(I
p

s
il

a
te

ra
l 

v
s
. 

C
o

n
tr

a
la

te
ra

l 
S

N
p

c
)

A B 

C D 



255 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.10 – Immunohistochemical Staining of TH+ Neurons in the SNpc of Animal Treatment Groups 
Representative examples of the TH and Nissl stained ipsilateral (Ai-Ei) and contralateral (Aii-Eii) SNpc of rats in 
each of the five treatment groups. Scale bar equal to 500µm. 
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Figure 6.11 – Valproate Attenuates Lactacystin Induced Reduction in Histone Acetylation 
Administration of delayed valproate treatment dose dependently reverses the reduction in histone H3-lysine 9 
acetylation caused by lactacystin. (A) Densitometry analysis of the AcH3-Lys9 band relative to the β-actin band 
used as a loading control. (B) Representative blot of data presented in (A). Statistical significance indicated 
with asterisks: *p<0.05; **p<0.01, ***p<0.001. n=6-7. Abbreviations: I, ipsilateral; C, contralateral. 
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6.4.6 - Effects of Delayed Start Valproate Treatment on Brain Neuroprotective Gene Expression in 

the Lactacystin Rat Model of PD 

qRT-PCR was performed on frontal brain tissue to quantify the expression of a number of different 

neurotrophic factors, apoptotic regulators and genes of interest previously shown to change upon 

treatment with HDACIs (Monti et al., 2009), to help elucidate the mechanism of valproate’s 

neuroprotection. In non-lesioned animals, administration of valproate induced a stringent two fold 

upregulation of BDNF (figure 6.12, ipsilateral valproate treated, 2.14 ± 0.36 times greater than saline 

treated controls, p<0.001; contralateral valproate treated, 1.94 ± 0.36 times greater than saline 

treated controls, p<0.01). Valproate did not alter the expression of the other genes in these non-

lesioned animals. However, in lactacystin-lesioned animals valproate administration significantly and 

dose dependently up regulated the expression of BDNF, GDNF and the anti-apoptotic factor Bcl-2, in 

the frontal brain hemisphere contralateral to the lesion. Most notably GDNF expression was greater 

in the contralateral hemisphere of valproate treated animals compared with saline treated control 

animals (Fig. 7b, high dose (400mg/kg) treated animals, 5.15 ± 1.48 times greater than saline treated 

controls; low dose (200mg/kg) treated animals 4.32 ± 1.34 times greater than saline treated control, 

p<0.001 in both comparisons). Similarly, expression of BDNF and Bcl-2 are also elevated in a dose 

dependent manner in the frontal brain hemisphere contralateral to the lesion, however this only 

reached significance at the higher dose of valproate (BDNF expression, 4.08 ± 0.88 times greater 

than saline treated control, p<0.01; Bcl-2 expression, 3.09 ± 0.32 times greater than saline treated 

control, p<0.05). Similar trends of an up regulation of gene expression of native αSyn and Hsp70 

upon treatment with valproate were observed but these did not reach significance. 
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Figure 6.12 - Valproate Upregulates Expression of Neurotrophic Growth Factors and Neuroprotective 
Proteins 
(A) Administration of systemic valproate alone, in non-lesioned rats upregulates bilateral expression of BDNF. 
(B) In lactacystin-lesioned animals valproate dose dependently up regulated unilateral expression of αSyn, 
BDNF, GDNF, Hsp70 and Bcl-2, as well as reducing the expression of BAD when given at its highest dose. 
Statistical significance indicated with asterisks and hashes: *p<0.05, **p<0.01, ***p<0.001 compared with the 
same hemisphere of saline treated group; #p<0.05, ##p<0.01, ###p<0.001 compared with the same 
hemisphere of Lacta(+)VPA(+). n=6-7. Abbreviations: I, ipsilateral; C, contralateral. 
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6.5 – Discussion 

In the previous chapter it was demonstrated that the neurodegenerative process has been initiated 

and clinical behavioural symptoms, MRI changes, microglial activation, dopaminergic cell loss and 

molecular hallmarks of neurodegeneration in the animal model are already observed at seven days 

post-lesion. In order to model the clinical setting in which a neuroprotective agent would be 

administered, valproate treatment was initiated seven days post lactacystin lesion. Despite the delay 

in treatment, valproate dose dependently afforded neuroprotection and neuroregeneration in this 

animal model as evidenced by an attenuation of motor behavioural deficits, longitudinal MRI brain 

volume changes and quantification of the dopaminergic neurons within the SNpc. Molecular 

analyses of brain extracts indicate that valproate’s neuroprotective/neuroregenerative effects may 

be at least part mediated through epigenetic changes via the inhibition of histone deacetylation to 

cause chromatin remodelling and upregulation of numerous neurotrophic and neuroprotective 

genes culminating in the observed phenotype.  

 The finding here that valproate acts neuroprotectively and neurorestoratively in an animal 

model of PD is consistent with findings from others. Notably Monti and colleagues (2010) were the 

first to describe the neuroprotective effects of valproate in a preclinical model of PD in 2010, in 

which they observed a significant preservation of SNpc TH+ dopaminergic neurons with valproate 

treatment in rats implanted with osmotic mini-pumps delivering a sub-chronic administration of 

rotenone. They also observed an attenuation of the loss of striatal dopamine and consistent with in 

vitro findings from their group (Monti et al., 2007), and in agreement with qRT-PCR analyses 

conducted here, they observed an increase in native αSyn expression in line with a reduction in 

mono-ubiquitinated αSyn and its nuclear translocation following valproate administration. As well as 

in the rotenone rat model of PD, Monti and colleagues also demonstrated that dietary pre-

treatment with valproate resulted in protection of the dopaminergic neuronal terminals and cell 

bodies in the SNpc in the striatal 6-OHDA model (Monti et al., 2012). An increase in endogenous 

αSyn was similarly observed in both the SNpc and striatum in these animals. Lastly, Kidd and 

Schneider (2011) also demonstrated the neuroprotective effects of valproate in the MPTP mouse 

model of PD, observing dopaminergic neuroprotection when valproate was administered 

systemically prior to MPTP. In all of these previously mentioned studies, neuroprotection was 

observed following its pre-treatment prior to toxin administration. The current study extends these 

previous findings given that valproate mediated neuroprotection was afforded despite being 

administered after toxin administration in the lactacystin animal model of PD.   

Valproate has previously been shown to partially protect against motor deficits in animal 

models of traumatic brain injury (Dash et al., 2010, Jepsen et al., 2014, Tai et al., 2014), spinal cord 
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injury (Lee et al., 2012), and stroke (Kim et al., 2007), yet this study is the first to examine the ability 

of valproate to relieve motor symptoms in an animal model of PD. Here it is observed that delayed 

start valproate treatment dose dependently reverses the lactacystin induced reduction in use of the 

forelimb contralateral to the lesioned SNpc in rats observed 7 days after lesioning, and also 

attenuates the number of rotations performed by these animals upon treatment with amphetamine. 

Additionally, using a battery of behavioural tests, Castro and colleagues (2012) have previously 

demonstrated that valproate pre-treatment prevented the development of early non-motor 

symptoms of PD e.g. cognitive and emotional deficits, in animals nasally administered MPTP 

(Prediger et al., 2011). Authors demonstrated that this was accompanied by a significant 

preservation of olfactory bulb and striatal dopamine content in MPTP treated animals (Castro et al., 

2012). This suggests that valproate may also act neuroprotectively towards other neuronal systems 

which is particularly important since the neurodegenerative process in PD is not merely confined to 

the dopaminergic nigrostriatal system (Braak et al., 2003). Taken together with the cellular evidence 

of neuroprotection presented here and by others (Kidd and Schneider, 2011, Monti et al., 2010, 

Monti et al., 2012) and previous work in models of early non-motor PD (Castro et al., 2012) and 

other more acute neurodegenerative conditions, valproate appears an encouraging candidate for 

disease modification and corresponding symptomatic relief in PD. 

The current study is the first to use MRI to non-invasively monitor the morphological 

progression and nigrostriatal neuropathology in this proteasome inhibitor rat model of PD in 

conjunction with a candidate neuroprotective drug to longitudinally assess its efficacy at disease 

modification. Manual segmentation analysis was performed here to examine the temporal 

morphological progression of selected brain regions in the model, and in line with previously 

published data following nigrostriatal neuropathology induced as a result of stereotaxic injection of 

lactacystin to the SNpc (Vernon and Modo, 2011), in the current study a marked reduction in the 

volume of the ipsilateral midbrain in the weeks following stereotaxic surgery was observed. Similarly 

an increase in the volume of the lateral ventricles was observed, which was far more pronounced in 

the ipsilateral as opposed to the contralateral hemisphere. Both of these changes were observed, in 

the current study, to be dose dependently attenuated by delayed valproate treatment. Subsequent 

TBM analysis both confirm and extend the manual data adding further weight to the findings, as well 

as extending prior observations. For example TBM reveals that chronic valproate treatment by itself 

induces a specific pattern of structural re-modelling (expansion and contraction) in the healthy brain, 

as observed for other psychotropic drugs (Vernon et al., 2012, Vernon et al., 2013). Similarly, 

unbiased, automated TBM data reinforces manual observations, and confirms lactacystin-lesioning 

by itself is associated with a specific reproducible pattern of neuroanatomical changes in the brain, 
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detectable by MRI (Vernon et al., 2011). Taken together, these data may suggest a complex drug x 

disease interaction driving the anatomical effects observed. That is, a dose-dependent 

neuroprotective effect of valproate on lactacystin-induced brain atrophy is observed. The 

combination of longitudinal in vivo MRI and automated TBM (clinically comparable technology) 

therefore has great potential for pre-clinical assessment of drugs with disease-modifying potential in 

pre-clinical models of PD. 

In conjunction with volumetric analysis to monitor morphological progression and 

nigrostriatal neuropathology in this model, T2 signal intensity analysis was also used to follow 

asymmetry in T2 signal intensity in the SNpc, midbrain and corpus striatum. Consistent with previous 

studies using the lactacystin rat model (Vernon et al., 2010), changes in T2 signal intensity ratio were 

observed in the SNpc and to a lesser extent the midbrain, but not in the striatum. One week 

following lesioning, an increase in T2 signal intensity was observed in the SNpc of all lactacystin-

lesioned animal groups consistent with findings in the 6-OHDA rodent model (Kondoh et al., 2005) 

and the MPTP primate model (Miletich et al., 1994), indicative of acute inflammatory oedema in the 

area of interest given its appearance in nigrostriatally lesioned animals alone and its dissipation with 

time. This increase in the SNpc is reversed at weeks three and five in lactacystin-lesioned animals 

likely due to the combination of cell death and iron accumulation in the area creating 

inhomogeneities in magnetic field, which diphase nearby water protons leading to shortening of T2 

and lowering T2 signal intensity. Several studies note the accumulation of iron in the SNpc of PD 

patients (Dexter et al., 1989b, Brar et al., 2009, Gorell et al., 1995, Kosta et al., 2006, Martin et al., 

2008) and a number of studies also note the accumulation of iron in the SNpc of the lactacystin rat 

model (Vernon et al., 2010, Zhu et al., 2007). Correspondingly a dose dependent reversal of this 

lowering of T2 signal intensity ratio was observed in the current study indicative that valproate may 

not only be reducing cell death and inducing neuroregeneration within the SNpc but also reducing 

iron deposition within the area as well.   

It was observed in the previous chapter from stereological cell quantification of animals 

culled seven days post lactacystin-lesion and longitudinal behavioural test outcomes that the vast 

majority of nigral degeneration occurs in the first seven days post lesion (Vernon et al., 2010, Vernon 

et al., 2011, Mackey et al., 2013). Importantly however it was also observed that a large number of 

TH+ neuropil, and axonal and dendritic projection remain at week 1 post lesion despite the 

significant reduction in TH+ neuronal cells bodies. Likewise, Nissl+ neuronal degeneration was 

markedly less than that of TH+ cells at this early timepoint. In the current study of the effects of 

valproate in this model of PD, valproate treatment was initiated seven days post lactacystin-lesion. 

Despite this delayed treatment strategy, significantly less neurodegeneration of nigral dopaminergic 
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neurons was observed after four weeks of valproate treatment. This appears counterintuitive given 

the large extent of nigral dopaminergic neurodegeneration already observed at week one 

previously, prior to the initiation of valproatre treatment. These findings therefore suggest that 

valproate is not only acting neuroprotectively towards dopaminergic nigral neurons but is also acting 

neuroregeneratively: rescuing unhealthy and/or dying neurons that have lost TH expression in the 

cell body and therefore have reduced function, yet retain TH+ projection. Additionally, valproate has 

been shown to be effective at reducing microglial activation (Chen et al., 2007, Peng et al., 2005). It 

is therefore also likely that in conjunction with its effects on nigral neurons, valproate reduces 

activation of microglia, reducing microglial exacerbation of further neurodegeneration and aiding 

the recovery/regeneration of unhealthy/dying nigral neurons. These results are extremely 

encouraging given the delayed initiation of valproate treatment in this study highlighting the 

translatability of such a treatment to the clinic to tackle Parkinsonian neurodegeneration after it is 

evident through motor symptom presentation and corresponding nigral dopaminergic 

neurodegeneration. 

αSyn accumulation actively promotes histone hypoacetylation both in vitro in SH-SY5Y cells 

and in vivo in drosophila, both overexpressing αSyn (Kontopoulos et al., 2006). Lactacystin 

dopaminergic neurotoxicity is associated with the aggregation of α-synuclein to form inclusion 

bodies in the SNpc, a finding which has been extensively verified since (McNaught et al., 2002b, 

Vernon et al., 2011, Zhu et al., 2007, Niu et al., 2009, Pienaar et al., 2013). Therefore in line with 

previous observations of the effect of αSyn on histone acetylation, in the current study a reduction 

in histone acetylation in the brains of lactacystin-lesioned animals is observed. Importantly, 

valproate treatment was observed to dose dependently attenuate this histone hypoacetylation, in 

parallel with the cellular neuroprotective effect of the drug shown through stereological cell 

quantification of dopaminergic neurons in the SNpc. Valproate is a somewhat promiscuous drug: 

affecting GSK-3 and Akt/ERK pathways, GABA/glutamate neurotransmission, Na+ and Ca2+ voltage-

dependent channels, phosphoinositol/TCA pathways and the oxidative phosphorylation pathway 

(Ximenes et al., 2012). A number of these effects too could contribute towards valproate’s 

neuroprotective phenotype observed here. However the dose dependent attenuation of histone 

hypoacetylation induced by valproate in line with the extent of neuroprotection/neuroregeneration 

observed is suggestive that valproate’s inhibition of HDACs is at least partly responsible for the 

phenotype observed.  

Addition of an acetyl group to histone lysine residues neutralises the positive charge of the 

residue and hence reduces the electrostatic interaction between the lysine in the histone tail and 

the negatively charged phosphate group on DNA. This disrupts the inter- and intra-nucleosomal 
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interactions between the histone and DNA and hence relaxes the structure of the chromatin 

allowing transcription factor access. Inhibition of HDACs and histone acetylation in the brain have 

therefore been shown to be associated with transcriptional upregulation of numerous factors that 

are thought to contribute to the neuroprotective effects observed by valproate (Monti et al., 2009). 

Similarly neurotrophic factors BDNF and GDNF are significantly upregulated upon valproate 

treatment, confirming the studies by Wu and colleagues (2008b) who demonstrated that an 

astrocytic cell line treated with valproate displays a time dependent increase in expression of both 

BDNF and GDNF; an effect which translated to neuroprotection in midbrain neuronal cultures in 

medium transfer experiments. Additionally the group demonstrated, by using chromatin 

immunoprecipitation, that the GDNF promoter associated histone H3 is significantly hyperacetylated 

when astrocytes are treated with valproate. The upregulation of both of these neurotrophic factors 

by valproate is most advantageous given the therapeutic implications of both of them in 

neurodegenerative disease, more specifically PD (Allen et al., 2013). For example BDNF treatment 

alone has been shown to reduce amphetamine induced rotational behaviour in 6-OHDA lesioned 

rats (Klein et al., 1999). Additionally, direct GDNF delivery to the striatum has been shown to protect 

dopaminergic neurons against 6-OHDA induced death, preserving locomotor function (Kirik et al., 

2001). Moreover, adding to the evidence presented here on the functional recovery and restoration 

of dopaminergic nigral neurons upon valproate treatment, GDNF has been previously shown to 

induce significant increases in nigral TH activity, associated with increased release of dopamine and 

its metabolites, and accompanying improvement of motor function (Lapchak et al., 1997, Martin et 

al., 1996). It has therefore been suggested that the functional recovery caused by GDNF is mediated 

by restoration of dopaminergic nigrostriatal neurons (Kirik et al., 2001). This may well be the case 

with valproate histone deacetylase inhibition induced upregulation of endogeneous GDNF in the 

current study.  

In addition to BDNF and GDNF, in this animal study it was also observed that gene 

expression of the anti-apoptotic molecule Bcl-2 is upregulated upon valproate treatment. This is in 

agreement with previously experiments conducted by Kidd and Schneider (2010) in which MES23.5 

dopaminergic cells treated with valproate showed a reduction in MPP+ induced activation of 

caspase-3 indicating the inhibition of apoptosis. The findings from the current study therefore 

suggest that valproate’s mechanism of histone acetylation mediated neuroprotection is a 

multifaceted and complex affair, one which may hold therapeutic potential against a complex 

disorder such as PD.  

The doses of valproate administered to rats in this study translate to human equivalent 

doses of 64 and 32mg/kg/day (400 and 200mg/kg/day rat dose respectively) (as calculated using FDA 



264 
 

guidelines (FDA, 2005)). Both of these doses are far greater than the usual therapeutic maintenance 

dose of valproate used for the treatment of epilepsy in humans (1000-2000mg/day) (Britain, 2009). 

This suggests that valproate itself, at the doses examined here, may not be a candidate for 

repositioning for PD treatment. However given the presented data, the current study acts as proof 

of principle that delayed start treatment with a HDACI is capable of producing a 

neuroprotective/neurorestorative phenotype in this animal model of PD.      
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6.6 – Conclusions 

Utilising a clinically relevant drug testing platform this study demonstrates that valproate’s inhibition 

of HDAC classes I and IIa is dose-dependently neuroprotective and neurorestorative in the 

lactacystin rodent model of PD when administered chronically starting seven days after the toxin 

administration when behavioural symptoms, MRI changes, microglial activation, dopaminergic cell 

loss and molecular hallmarks of neurodegeneration in the animal model are already observed. The 

neuroprotective and neurorestorative effects of valproate are associated with a reversal of histone 

hypoacetylation and an upregulation of neuroprotective and neurotrophic factors. These findings 

therefore support the potential of the use of HDACIs such as valproate as a clinically translatable 

treatment strategy for PD. 
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Chapter Seven 

Neuroprotective Effects of Nicotinamide in 
the Lactacystin Rat Model of Parkinson’s 
Disease   
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7 – Neuroprotective Effects of Nicotinamide in the Lactacystin Rat Model of 

Parkinson’s Disease 

7.1 – Introduction 

Nicotinamide (niacinamide or nicotinic amide), is an amide converted, in vivo, from its dietary 

precursor niacin (nicotinic acid), otherwise known as vitamin B3. This B vitamin is found in numerous 

food sources, most abundantly in beef, chicken, pork, fish, peanuts, mushrooms, green beans, 

sunflower seeds and avocado. Both niacin and nicotinamide are precursors of the coenzymes NAD+ 

and NADP (Chi and Sauve, 2013). For this reason vitamin B3 and the corresponding amide 

nicotinamide are essential dietary vitamins, required for a wide range of biological function in the 

body including include energy production, synthesis of fatty acids, cholesterol and steroids, signal 

transduction and the maintenance of genomic integrity (Maiese and Chong, 2003, Chi and Sauve, 

2013). Pharmacologically, nicotinamide does not have the same adverse effects of niacin (cutaneous 

flushing and itching apparent for around 60mins after administration) which occur incidental to 

niacin's conversion. Nicotinamide is therefore highly tolerated orally up to 3g/kg/day in man (Britain, 

2009). It displays a linear pharmacokinetic profile exhibiting maximal plasma levels as little as 30mins 

after ingestion with higher doses maintaining high plasma levels for up to 4 hours (Dragovic et al., 

1995). Nicotinamide is a solid at room temperature and is highly water soluble, making 

administration easy via numerous routes. It has a relatively low molecular weight (122.12 g/mol) and 

therefore also crossed the BBB with ease (Spector, 1987).  

 Being a precursor for NAD+, nicotinamide is known to inhibit class III HDACs through 

competition binding to the NAD+ binding site of the Sirtuin HDACs (Avalos et al., 2005). It has 

therefore gained increased interest as a neuroprotective agent in neurodegenerative conditions. For 

example nicotinamide has been shown to improve neurological outcome and reduce infarct volume 

in models of stroke (Mokudai et al., 2000, Liu et al., 2009, Ayoub et al., 1999), restore cognitive 

function in transgenic models of AD (Green et al., 2008), and improve motor deficits and upregulate 

neurotrophic factors in models of HD (Hathorn et al., 2011). Furthermore greater focus has been 

placed upon the potential use of nicotinamide in PD due to its modulatory effects of cellular energy 

metabolism and the implications these have upon dopaminergic cell death within the disease (Beal, 

2003). 

The two most notable studies came from the work of Anderson, Bradbury and Schneider 

(2006, 2008). The neuroprotective efficacy of nictotinamide was assessed in different mouse MPTP 

models taking advantage of differing dose regimes of the toxin to induce dopaminergic neuronal cell 

death. By analysing striatal DA levels and changes in number of TH+ and Nissl+ stained neurons in 

the SNpc at differing time point authors were able determine the neuroprotective profile of  
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Figure 7.1 – Chemical Structure of Nicotinamide 
The chemical structure of nicotinamide is given which exists as a solids a RT. It is highly water soluble making 
administration through numerous routes very easy.  
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nicotinamide. Administration of nictotinamide peripherally prior to MPTP injection, a dose 

dependent neuroprotective profile was observed in the ‘acute’ MPTP (four injections in 1 day at 2hr 

intervals) but not in the ‘sub-acute’ model (two injections per day at 4hr intervals for 5 days). The 

highest dose of nictotinamide was still shown to be neuroprotective in this latter ‘sub-acute’ model 

however not to the same degree as was seen in the ‘acute’ model. Authors suggest that this is a 

result of nicotinamide interacting directly with the specific mechanism of cell death operating in the 

two different models (Anderson et al., 2008). However, Anderson et al fail to elucidate the 

mechanism of neuroprotection in each of the models. Regardless, in both of these drug/MPTP 

dosing regimens, like many of the studies previously discussed using valproate in vivo in animal 

models of PD, drug administration was commenced prior to toxin administration highlighting the 

poor clinical relevance of such a study design. In addition, the focuses of their studies are not on the 

HDAC inhibition by nicotinamide hence they do not correlate the extent of neuroprotection with 

histone acetylation in any way. Therefore, it is impossible to say whether the neuroprotective effects 

observed are in any way a result of HDAC inhibition. Nonetheless, studies by Anderson and 

colleagues (2006, 2008) suggest that nicotinamide administered at higher doses, appears to be 

neuroprotective towards dopaminergic neurons in this model of Parkinsonian cell death.  

This chapter therefore aims to confirm and extend previous findings on the use of 

nicotinamide in animals models of PD by using the lactacystin rat model which recapitulates the 

formation of neurotoxic protein inclusions within the substantia nigra to cause progressive 

dopaminergic cell death. Furthermore, unlike many of the previous studies, a delayed start study 

design will also be used to model the clinical scenario in which a neuroprotective drug would be 

administered more accurately. In addition, molecular and cellular analyses of study samples will 

attempt to elucidate the neuroprotective mechanism of nicotinamide in this model. 
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7.2 - Aims of Chapter 

The aims of this chapter are therefore to: 

1. Determine the neuroprotective and behavioural effects of delayed start nicotinamide 

treatment in the lactacystin rat model of PD: 

d. Determine the effects of delayed start nicotinamide treatment on the progression of 

lactacystin induced motor behavioural symptoms in the model. 

e. Determine the effects of delayed start nicotinamide treatment on lactacystin 

induced pathological changes in brain structure in the model.  

f. Determine the effects of delayed start nicotinamide treatment on lactacystin 

induced dopaminergic neuronal cell death in the SNpc in the model. 

2. Investigate the neuroprotective mechanism of delayed start nicotinamide treatment in the 

lactacystin rat model of PD 

a. Quantify the level of histone acetylation in the brains of nicotinamide treated 

lactacystin-lesioned animals. 

b. Quantify the expression of numerous neurotrophic and neuroprotective factors 

thought to be associated with HDACI mediated neuroprotection in nicotinamide 

treated lactacystin-lesioned animals. 
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7.3 – Experimental Design 

7.3.1 – Investigating the Neuroprotective and Behavioural Effects of Delayed Start Nicotinamide 

Treatment in the Lactacystin Rat Model of PD 

Three groups of male Sprague-Dawley rats (n=6 or 7) were intra-nigrally lesioned with the 

irreversible proteasome inhibitor, lactacystin, by stereotaxic injection into the SNpc (see section 

2.4.3). Animals were then left to recover for 7 days before receiving a daily i.p. injection of sterile 

saline (0.9% NaCl), or 250mg/kg or 500mg/kg nicotinamide dissolved into saline, for 28 days. In 

addition to these three animal treatment group, two groups of male Sprague-Dawley rats (n=6 or 7) 

were also included which did not receive lactacystin lesioning surgery: which received subsequent 

daily treatment with saline or daily treatment with 500mg/kg nicotinamide dissolved into saline 

(table 7.1 for animal treatment groups). In order to follow the neuropathological and behavioural 

progression of the disease model and to determine to what extent nicotinamide was able to 

delineate this progression, both motor behavioural testing and MRI were conducted at baseline, and 

at weeks 1, 3 and 5 of the study (figure 7.1 for graphical illustration of study design). Both the 

vertical cylinder and amphetamine induced rotation tests were used to study the progression of 

behavioural motor asymmetry. Similarly, manual volumetric segmentation analysis and T2 relaxivity 

analysis of MR images were conducted to study the neuropathological progression of the model. For 

quantification of nicotinamide neuroprotection, at the end of the 5 week study animals were culled 

and brain tissue was collected. The hind brain was fixed, cryoprotected, cryosectioned and 

dopaminergic neurons (TH+) immunohistochemically stained and stereologically quantified.  

 

7.3.2 – Investigating the Neuroprotective Mechanism of Delayed Start Nicotinamide Treatment in 

the Lactacystin Rat Model of PD 

Upon collection of brain tissue at the end of the five week study, frontal cortex tissue was dissected 

and snap frozen for molecular analysis of the neuroprotective mechanism of nicotinamide in the 

model. Protein content was extracted from tissue samples and Western blot analyses were 

conducted to quantify the level of histone acetylation in the brains of lactacystin-

lesioned/nicotinamide treated animals. In addition, mRNA content was extracted for qRT-PCR 

analysis to quantify the expression of numerous neurotrophic and neuroprotective factors thought 

to be involved in the neuroprotective effects of HDACIs such as nicotinamide.  

 

7.3.3 – Statistical Analysis 

All data is presented as mean ± SEM. One-way ANOVA with Bonferroni post-tests were used for 

analysis of vertical cylinder test in the confirmation of lesioning. In the nicotinamide study a two-way 
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(repeated measures) ANOVA with Bonferonni post-tests were used for analysis of vertical cylinder 

test, amphetamine induced rotation test and MRI manual segmentation analysis datasets. An 

additional one-way ANOVA with Bonferroni post-tests was used for comparison of percentage 

contralateral forelimb use vs time area under the curve data. Paired t-tests were used to compare 

stereological cell counts in the ipsilateral and contralateral hemispheres of animal brains. A one-way 

ANOVA with Bonferroni post-tests were used to compare cell loss percentages calculated from 

stereological cell counts. A one-way ANOVA with Bonferroni post-tests were used to compare 

Western blot data. A two-way ANOVA with Bonferroni post-tests were used to compare qRT-PCR 

data. All statistical tests were performed using GraphPad Prism (v5.0 for Windows, GraphPad 

Software, San Diego, CA, USA). 
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Table 7.1 - Nicotinamide Neuroprotection Animal Treatment Groups 
*All daily i.p. injections given as 2ml/kg: saline injections given as 2ml/kg empty saline; 500mg/kg nicotinamide 
injections given as 2ml/kg of 250mg/ml solution of nicotinamide in saline; 250mg/kg nicotinamide injections 
given as 2ml/kg of 125mg/ml solution of nicotinamide in saline. 

 

  

Group N= Intranigral Injection Daily i.p. Injections* Behavioural Tests 

Lacta(-)NTA(-) 
 

7 None Saline Vertical Cylinder Test 

Lacta(-)NTA(++) 
 

5 None Nicotinamide 
(500mg/kg) 

Vertical Cylinder Test 

Lacta(+)NTA(-) 7 Lactacystin 
(10μg in 4μl saline) 

Saline Vertical Cylinder Test & 
Amphetamine Rotation 

Lacta(+)NTA(+) 6 Lactacystin 
(10μg in 4μl saline) 

Nicotinamide 
(200mg/kg) 

Vertical Cylinder Test & 
Amphetamine Rotation 

Lacta(+)NTA(++) 6 Lactacystin 
(10μg in 4μl saline) 

Nicotinamide 
(400mg/kg) 

Vertical Cylinder Test & 
Amphetamine Rotation 
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Figure 7.2 - Nicotinamide Neuroprotection Animal Study Design 
Study design used for investigation of the neuroprotective effects of delayed start nicotinamide treatment in 
the lactacystin rat model of PD. Abbreviations: AIR, amphetamine induced rotations; MRI, magnetic resonance 
imaging; VCT, vertical cylinder test. 
#Only groups Lacta(+)NTA(-), Lacta(+)NTA(+) and Lacta(+)NTA(++) intranigrally injected with lactacystin. Control 
groups remained surgically naïve.  
ǂOnly groups lesioned with lactacystin were tested using the amphetamine induced rotation test at these time 
points.  
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7.4 – Results 

7.4.1 – Confirming Lesion in Lactacystin Injected Animals 

To confirm that all lesioned animals included in the study received lactacystin to the left SNpc, MRI 

scans acquired at week 1 post-lesion were examined to check the location of stereotaxic injection of 

the toxin (section 2.4.3, figure 7.3E). The lesion site was confirmed in all lesioned animals and 

therefore no animals were excluded on this basis. In addition to visual confirmation of the lesion site 

from MR images, behavioural tests performed at 7 days post lesioning were also used to confirm the 

development of early motor symptoms as a consequence of lactacystin injection into the left SNpc. 

For analysis of vertical cylinder test data, animals were divided into two groups dependent on 

whether they had received stereotaxic surgery (n=19) or not (n=12) at week 1. There was a 

significant reduction in the use of the contralateral forelimb of animals lesioned with lactacystin, 

compared to non-lesioned animals at week 1 (figure 7.3A, week 1, lactacystin-lesioned animals, 

38.71 ± 2.06%, vs. non-lesioned animals, 50.04 ± 1.39% contralateral forelimb use, p<0.001). In 

addition, lactacystin-lesioned animals were injected with amphetamine to examine the degree to 

which they exhibited rotational behavioural, indicative of degeneration of the ipsilateral SNpc. All 

animals lesioned with lactacystin exhibited amphetamine induced rotations 7 days after lesioning 

indicative of correct needle placement and delivery of lactacystin to the left SNpc (figure 7.3C and D, 

21.58 ± 2.25 mean number of rotations per 5 mins). The extent of rotational behavioural in the 

animals therefore compared favourably to previously lesioned animals groups (figure 5.10, 21.17 ± 

3.71 and figure 6.3, 19.73 ± 1.39 mean number of rotations per 5 mins).  

 

7.4.2 – Effects of Delayed Start Nicotinamide Treatment on Behavioural Progression of the 

Lactacystin Rat Model of PD 

7.4.2.1 – Vertical Cylinder Test  

The vertical cylinder test was conducted in all five treatment groups at baseline and weeks 1, 3 and 5 

of the study to assess motor asymmetry in rat forelimb use. At baseline there was equal use of both 

the left and right forelimbs in all animals (figure 7.4A, 50.26 ± 1.10% contralateral forelimb use). 

However one week after surgery there was a significant reduction in the contralateral forelimb use 

of all lactacystin-lesioned animal groups compared with non-lesioned groups (figure 7.4A, p<0.05 in 

all comparisons). From one week onwards the contralateral forelimb use of the lactacystin-lesioned 

saline treated animals continued to decline with time (week 1, 39.59±4.11%; week 3, 36.01±3.37%; 

week 5, 35.50±4.08%, p<0.01 compared with control animals at each time point). However once 

animals began daily i.p. treatment with 250mg/kg nicotinamide one week after lactacystin-lesioning 

there was a time dependent reduction in contralateral forelimb use deficit (week 1, 35.76 ± 3.23%;  
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Figure 7.3 - Confirming Lesion in Lactacystin Injected Animals 
(A) Percentage contralateral forelimb use in lactacystin-lesioned (Lacta(+)) and non-lesioned (Lacta(-)) rats at 
baseline and 7 days after surgery. (B) Area under the curve of data represented in (A) demonstrating more 
clearly the differences between percentage contralateral forelimb use in animal treatment groups. (C) Number 
of amphetamine rotations performed by lactacystin-lesioned animals in five minute intervals after 
administration of amphetamine. (D) Area under the curve of data represented in (C) demonstrating more 
clearly the progressive nature of rotational behaviour after lactacystin-lesioning. (E) Representative MR image 
confirming correct needle placement and therefore delivery of lactacystin to the left SNpc in a lesioned animal.  
Statistical significance is indicated using asterisks: ***p<0.001.  
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Figure 7.4 – Nicotinamide Alters Extent of Lactacystin Induced Motor Behavioural Deficits in the Vertical 
Cylinder Test 
(A) Vertical cylinder test outcomes demonstrate that once animals begin treatment with nicotinamide at week 
1 (designated by arrow and grey shading), the lactacystin induced reduction in percentage contralateral 
forelimb use is either reversed or exacerbated dependent on nicotinamide dose applied. Statistical significance 
indicated with letters: asignificantly different from group Lacta(-)NTA(-); bsignificantly different from group 
Lacta(-)NTA(++); csignificantly different from group Lacta(+)NTA(-). See text for levels of significance. (B) Area 
under the curve of data represented in (A) demonstrating more clearly the differences between percentage 
contralateral forelimb use in animals treatment groups. Statistical significance is indicated using asterisks: *, 
p<0.05, **p<0.01, ***p<0.001. n=5-7. 
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week 3, 40.53 ± 2.55%; week 5, 41.63 ± 2.37% contralateral forelimb use), animals failing to show a 

statistically significant difference from either non-lesioned groups at week 5. Lactacystin-lesioned 

animals subsequently treated with the higher dose of nicotinamide (500mg/kg) however exhibited a 

continued decline of contralateral forelimb use over the subsequent time points more so than saline 

treated animals (week 1, 35.76 ± 3.23%; week 3, 40.53 ± 2.55%; week 5, 41.63 ± 2.37% contralateral 

forelimb use), reaching statistical significance from both non-lesioned animal groups and those 

lactacystin-lesioned and treated with 250mg/kg nicotinamide (p<0.05 in all comparisons). The area 

under the curve produced by plotting percentage forelimb use vs. time demonstrates the differences 

between treatment groups more clearly (figure 7.4B). 

7.4.2.2 – Amphetamine Induced Rotation Test   

As well as the vertical cylinder test, the amphetamine induced rotation test was conducted on all 

lesioned animal groups at week 1, 3 and 5 following lesioning to assess the extent of drug induced 

rotational behaviour. Following amphetamine challenge, all lactacystin-lesioned animals produced 

ipsilateral rotations one week after lesioning surgery (figure 7.5A, mean number of amphetamine 

induced rotations per 5 minutes during recording, 24.30 ± 4.80, 21.00 ± 16.73, and 24.9 ± 3.71 for 

Lacta(+)NTA(-), Lacta(+)NTA(+) and Lacta(+)NTA(++) groups respectively).  Over the further two time 

points examined, saline treated lactacystin-lesioned animals performed increasing numbers of 

rotations (mean number of amphetamine induced rotations per 5 minutes during recording, week 3, 

41.72 ± 9.84, week 5, 66.22 ± 19.43). Animals treated with the lose dose of nicotinamide (250mg/kg) 

exhibited a similar trend of increased number of rotations with time however to a slightly lesser 

extent than saline treated animals (mean number of amphetamine induced rotations performed by 

nicotinamide (250mg/kg) treated animals per 5 minutes of recording at week 3 and 5, 29.66 ± 19.73 

and 59.47 ± 18.22 respectively). Animals treated with the high dose (500mg/kg) or valproate 

however exhibited a far greater number of amphetamine induced rotations at the later two 

timepoints examined (mean number of amphetamine induced rotations performed by nicotinamide 

(500mg/kg) treated animals per 5 minutes of recording at week 3 and 5, 103.367 ± 7.42 and 131.37 ± 

18.35 respectively, p<0.001 in all comparisons from both saline and low dose (250mg/kg) treated 

animal groups at both timepoints). These differences between groups become clearer when data is 

expressed as the area under the curve produced by plotting net number of rotations vs. time (figure 

7.5B). At both week 3 and week 5 timepoints the area under the curve for animals treated with the 

high dose of nicotinamide (500mg/kg) is significantly greater than animals treated with saline 

(p<0.05 in both comparisons) and the low dose of nicotinamide (p<0.01 in both comparisons).  
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Figure 7.5 – Nicotinamide Alters Extent of Lactacystin Induced Rotational Behaviour After Amphetamine 
Challenge 
(A) Net number of ipsiversive rotations performed by animals per 5 minutes plotted against time for the 
30mins in which rotational behaviour was recorded following amphetamine administration. Statistical 
significance indicated with letters: asignificantly different from group Lacta(+)NTA(-); bsignificantly different 
from group Lacta(+)NTA(+). See text for levels of significance. (B) The area under the curve produced by 
plotting raw rotational values against time (A) demonstrates differences in amphetamine induced rotational 
behaviour with nicotinamide treatment. Statistical significance is indicated using asterisks: *p<0.05, **p<0.01. 
n=5-7. 
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7.4.3 - Effects of Delayed Start Nicotinamide Treatment on Neuropathological Progression  of the 

Lactacystin Rat Model of PD 

7.4.3.1 – Manual Segmentation Analysis 

Post-acquisition, MR images of the brains of all animal treatment groups were analysed using 

manual segmentation analysis to assess the changes in regional brain volume over the course of the 

five week study (figure 7.6A). Unfortunately due to early closure of the Biological Imaging Centre at 

Imperial College London, the non-lesioned animal group treated with nicotinamide (Lacta(-)NTA(++)) 

was not scanned. In line with rat growth there was a steady increase in whole brain volume in saline 

treated non-lesioned animals over the five weeks of examination (figure 7.6B, week 1, 2.09 ± 0.86% 

increase from baseline; week 3, 4.64 ± 1.33% increase from baseline; week 5, 6.60 ± 1.29% increase 

from baseline). Similar trends of increase were observed in all other treatment groups. With 

cerebellum volume, each of the treatment groups displayed an increase in volume over the five 

weeks of examination (figure 7.6C). However, unlike with whole brain volume, lactacystin-lesioned 

exhibited a comparatively greater percentage cerebellum volume increase at each of the time points 

examined compared with non-lesioned animals. These differences reach significance in lactacystin-

lesioned saline and nicotinamide (250mg/kg) treated animals at week 5 (lactacystin-lesioned saline, 

12.91 ± 1.65% and nicotinamide (250mg/kg) treated animals, 13.01 ± 1.88% change from baseline 

vs.non-lesioned animals 5.60 ± 2.36% change from baseline, p<0.01 and P<0.05 respectively). A 

similar trend is observed in lactacystin-lesioned animals later treated with nicotinamide at its higher 

dose (500mg/kg) for the first three weeks of study. However between week 3 and 5 of study, a large 

reduction in cerebellum volume was observed in these animals, reaching significance from the 

percentage volume increase from baseline of both other lactacystin-lesioned groups at this time 

point (week 5, lactacystin-lesioned saline, 12.91 ± 1.65% and nicotinamide (250mg/kg) treated 

animals, 13.01 ± 1.88% change from baseline vs. lactacystin-lesioned nicotinamide (500mg/kg) 

treated animals, 4.52 ± 2.14% change from baseline, p<0.01 and P<0.05 respectively).  

 As expected in the non-lesioned saline treated animals the volume of the lateral ventricles 

increase compariably in both hemispheres over the 5 weeks of scan acquisition (figure 7.6D). 

Animals which received an intranigral injection of lactacystin and were subsequently treated with 

saline exhibited a greater increase in ventricular volume than non-lesioned controls, a change which 

was more pronounced in the lesioned hemisphere. Neither of these increases however reached 

statistical significance compared with non-lesioned saline treated animals. Animals treated with 

nicotinamide however exhibited dose dependent exacerbation of this increase in ipsilateral 

ventricular volume: the ventricular volume of animals treated with nicotinamide at its highest dose 

(500mg/kg) reaching significance from non-lesioned animals at week 3 (p<0.01), and non-lesioned  



281 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.6 – Manual Segmentation Analysis of MR Images Reveals Exacerbation of Lactacystin Induced 
Volumetric Changes by Nicotinamide 
(A) Representative examples of the manual segmentation of (i) whole brain, (ii) lateral ventricles, (iii) corpus 
striatum, (iv) midbrain, (v) hippocampus and (vi) cerebellum in MR images. Administration of nicotinamide 
(designated by arrow and grey shading) exacerbates volumetric changes observed in the (D) lateral ventricles, 
the (E) midbrain, the (F) corpus striatum and the (G) hippocampus as a result of lactacystin lesioning, as 
ascertained through manual segmentation analysis of rat brain MR images. Administration of nicotinamide 
and/or lactacystin also have marked effects on (B) whole brain and (C) cerebellum volume. Statistical 
significance indicated with letters: asignificantly different from group Lacta(-)NTA(-); bsignificantly different 
from group Lacta(+)NTA(-); csignificantly different from group Lacta(+)NTA(+). See text for levels of 
significance. n=5-7. 
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and lactacystin-lesioned saline treated animals at week 5 (week 5, non-lesioned and lactacystin-

lesioned animals, 81.27 ± 55.50 and 192.93 ± 50.92 respectively vs. lactacystin-lesioned nicotinamide 

(500mg/kg) treated animals, 537.70 ± 188.71, p<0.001 and p<0.05 respectively). 

The most pronounced changes in regional brain volume took place in the midbrain, the 

location of the SNpc and therefore the site of stereotaxic injection of lactacystin (figure 7.6E). One 

week after lesioning surgery, prior to starting vehicle/drug treatment, the ipsilateral midbrain 

volume of all lactacystin-lesioned animal groups was significantly lower than the volume of the non-

lesioned group (lactacystin-lesioned saline, 250mg/kg and 500mg/kg nicotinamide treated animals, 

7.07 ± 3.05%, 5.20 ± 3.14% and 8.94 ± 3.11% decrease from baseline respectively vs. 10.88 ± 4.73% 

increase from baseline in non-lesioned saline treated animals, p<0.05 in all comparisons). The 

ipsilateral midbrain volume of all lactacystin-lesioned saline treated animals continued to decline 

over the further two time points examined, remaining significantly different from the volume change 

in non-lesioned animals at both week 3 and 5 (p<0.01 and p<0.001 respectively). The ipsilateral 

midbrain volume of lactacystin-lesioned nicotinamide treated (250 and 500mg/kg) animals also 

decrease with time, however to a far greater extent than lactacystin-lesioned saline treated animals 

(p<0.001 in all comparisons with non-lesioned animals at weeks 3 and 5). Identical albeit more 

subtle changes are similarly observed upon lactacystin lesioning and nicotinamide treatment in the 

contralateral hemisphere of the midbrain. 

A trend of reduced corpus striatal volume in lactacystin-lesioned animals compared with 

non-lesioned was observed at week 1, however unlike the ipsilateral midbrain volume at this time 

points this trend was not statistically significant (lactacystin-lesioned saline, 250mg/kg and 

500mg/kg nicotinamide treated animals, 2.96 ± 2.99%, 5.54 ± 3.18% and 4.90 ± 1.89% decrease from 

baseline vs. 3.07 ± 2.76% increase from baseline in non-lesioned saline treated animals, p>0.05 in all 

comparisons). The volume of this region in lactacystin-lesioned animals continued to decline with 

time, a reduction in volume which was more pronounced in animals which later received 

nicotinamide (week 5, lactacystin-lesioned 250mg/kg and 500mg/kg nicotinamide treated animals, 

14.59 ± 3.64% and 13.05 ± 2.87% decrease from baseline respectively vs. non-lesioned animals, 2.33 

± 2.77% increase from baseline, p<0.05 in both comparisons). Similar albeit more subtle trends were 

also observed in the contralateral corpus striatum.  

Similar changes to those previously discussed in the midbrain and corpus striatum were also 

observed to occur within the hippocampus. A trend of reduced ipsilateral hippocampal volume in 

lactacystin-lesioned animals compared with non-lesioned was observed at week 1, however unlike 

the ipsilateral midbrain and like the ipsilateral corpus striatal volume at this time points these 

differences were not statistically significant (lactacystin-lesioned saline, 250mg/kg and 500mg/kg 
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nicotinamide treated animals, 2.78 ± 3.28%, 6.08 ± 1.98% and 6.59 ± 2.13% decrease form baseline 

vs. 1.47 ± 4.01% increase from baseline in non-lesioned saline treated animals, p>0.05 in all 

comparisons). The volume of this region in lactacystin-lesioned animals continued to decline with 

time, a reduction in volume which was more pronounced in animals which later received 

nicotinamide (week 5, lactacystin-lesioned 250mg/kg and 500mg/kg nicotinamide treated animals, 

22.42 ± 3.93% and 23.12 ± 3.49% decrease from baseline vs. non-lesioned animals, 1.30 ± 2.41% 

decrease from baseline, p<0.001 in both comparisons). Similar albeit more subtle trends were also 

observed in the contralateral hippocampus. 

7.4.3.2 – T2 Relaxivity Measurement 

In conjunction with manual segmentation analysis, at each of the time points examined, inter-

hemispheric differences in T2 signal intensity were assessed in the SNpc, the midbrain and the corpus 

striatum. For each brain region, the T2 signal intensity ratio (ipsilateral divided by contralateral T2 

signal) was then calculated as a measure of interhemispheric difference (figure 7.7). The most 

marked changes in T2 relaxivity occurred within the SNpc (figure 7.7A). As expected there were no 

discernable alterations in T2 signal intensity ratio in the SNpc of non-lesioned animals treated with 

saline throughout the five weeks of study. However in all groups lesioned with lactacystin, seven 

days post-surgery there was a significant increase in T2 signal intensity ratio compared with the 

signal in both non-lesioned  groups (mean T2 signal intensity ratio in lactacystin-lesioned animals, 

1.048 ± 0.011 vs. non-lesioned animals, 1.00  ± 0.016, p<0.05 in all comparisons). In animals 

subsequently treated with saline this increase in T2 signal intensity ratio was reversed by week three 

and continued to decline, becoming significantly different from non-lesioned  animals at week five 

(lactacystin-lesioned , saline treated animals, 0.935 ± 0.012 vs. non-lesioned , saline treated animals, 

0.999 ± 0.012, p<0.001 comparisons). Lactacystin-lesioned animals subsequently treated with 

nicotinamide (both 250mg/kg and 500mg/kg) also exhibited this reversal in T2 signal intensity ratio 

at week three and decline at week five. Notably the reduction in T2 signal intensity ratio was even 

greater in animals treated with nicotinamide at its highest dose (500mg/kg), resulting in a significant 

difference from both non-lesioned animals and lactacystin lesioned animals subsequently treated 

with saline at week 5 (week 5, lactacystin-lesioned nicotinamide (500mg/kg) treated animals, 0.896 

± 0.008 vs. lactacystin-lesioned saline treated animals , 0.935 ± 0.012 and non-lesioned saline 

treated animals, 0.999 ± 0.012, p<0.05 and p<0.001 respectively). Subtle changes were also 

observed in the midbrain mimicking those seen in the SNpc (figure 7.7C). However due to the 

subtlety of these alterations no significant differences were observed. No noticeable alterations in T2 

signal intensity ratio were observed in the corpus striatum (figure 7.7E).   
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Figure 7.7 – T2 Signal Intensity Analyses Reveal Exacerbation of Lactacystin Induced Changes by 
Nicotinamide 
T2 signal intensity measurements were made from T2 relaxivity maps in the ipsilateral and contralateral (B) 
SNpc, (D) midbrain, and (F) corpus striatum. Data was then expressed as the ratio between the ipsilateral and 
contralateral hemisphere: the T2 signal intensity ratio. Graphs show T2 signal intensity ratio between the 
ipsilateral and contralateral hemispheres over time in the (A) SNpc, (C) midbrain and (E) corpus striatum. 
Statistical significance indicated with letters: asignificantly different from group Lacta(-)NTA(-); bsignificantly 
different from group Lacta(+)NTA(-). n=5-7. 
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7.4.4 – Detrimental Effects of Delayed Start Nicotinamide Treatment on Dopaminergic Neurons in 

the SNpc in the Lactacystin Rat Model of PD 

Animals were sacrificed at week five of the study and hind brain tissue collected for 

immunohistochemical staining and stereological counting of dopaminergic (TH+) neurons in the 

SNpc (figures 7.8 and 7.9). Non-lesioned animals treated with saline did not show any 

interhemispheric loss of TH+ dopaminergic neurons of the SNpc (left SNpc, 11724 ± 729 vs. right 

SNpc, 11652 ± 493 TH+ cells). Similarly no difference was observed in the number of TH+ 

dopaminergic neurons in the left and right hemispheres of the SNpc in non-lesioned animals 

subsequently treated with nicotinamide (500mg/kg) (left SNpc, 11706 ± 1716 vs. right SNpc, 12154 ± 

1255 TH+ cells). Animals lesioned with lactacystin and treated with saline however exhibited a 

marked interhemispheric loss of TH+ neurons due to the intranigral injection of lactacystin (left 

SNpc, 4257 ± 1364 vs. right SNpc, 12328 ± 580 TH+ cells, % difference -53.81 ± 14.32%, p<0.01). 

Lactacystin-lesioned animals subsequently treated with the high dose of nicotinamide (500mg/kg) 

did not result in any neuroprotection against lactacystin toxicity of TH+ cells  (left SNpc, 2551 ± 529 

vs. right SNpc, 13402 ± 922 TH+ cells, % difference -81.40 ± 3.35%, p<0.001). Similarly, unexpectedly, 

lactacystin-lesioned animals treated with the low dose of nicotinamide (250mg/kg) did not result in 

any neuroprotection against lactacystin toxicity of TH+ cells (left SNpc, 3694 ± 1813 vs. right SNpc, 

12177 ± 1246 TH+ cells, % difference -85.41 ± 4.22%, p<0.01). These changes observed in SNpc TH+ 

cell number were also similarly observed in the numbers of Nissl+ cell number, indicative of TH+ 

neuronal cell death rather than loss of the TH enzyme expression in dying neurons. 

 

7.4.5 – Effects of Delayed Start Nicotinamide Treatment on Brain Histone Acetylation Level in the 

Lactacystin Rat Model of PD 

Upon removal of brain tissue at the end of the study the frontal brain was snap frozen for 

subsequent quantification of histone protein H3 acetylated on lysine 9 (AcH3-Lys9) using Western 

blot analysis (figure 6.11). Significantly less AcH3-Lys9 was observed in both hemispheres of animals 

lesioned with lactacystin and treated daily with saline (ipsilateral and contralateral hemispheres, 

2.97 ± 4.05% and 21.05 ± 7.00% of control non-lesioned animals respectively, p<0.001 and p<0.05). 

However, in animals subsequently treated with nicotinamide, both at its lower and higher dose, a 

more than doubling of the amount of AcH3-Lys9 was observed in both hemispheres (low dose 

(250mg/kg) nicotinamide treated animals, 233.62 ± 23.85% and 220.20 ± 46.34%, and high dose 

(500mg/kg) nicotinamide treated animals 242.01 ± 18.00% and 259.85 39.50% of control non-

lesioned animals respectively, p<0.001 compared with lactacystin-lesioned saline treated animals in  
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Figure 7.8 – Delayed Start Nicotinamide Treatment Exacerbates Lactacystin Induced Dopaminergic Neurodegeneration in the SNpc in the Lactacystin Rat Model of PD 
Stereologically estimated (A) TH+ and (B) Nissl+ neuron numbers in the SNpc of rats suggest exacerbation of dopaminergic neurodegeneration by nicotinamide in this 
lactacystin rat model of Parkinson’s disease. This is exemplified by the percentage interhemispheric loss of TH+ (C) and Nissl+ (D) neurons calculated between hemispheres 
of the SNpc. Statistical significance indicated with asterisks: *p<0.05; **p<0.01, ***p<0.001. n=5-7. Abbreviations: I, ipsilateral; C, contralateral. 
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Figure 7.9 – Immunohistochemical Staining of TH+ Neurons in the SNpc of Animal Treatment Groups 
Representative examples of the TH and Nissl stained ipsilateral (A-E) and contralateral (A’-E’) SNpc of rats in 
each of the five treatment groups. Scale bar equal to 500µm. 
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Figure 7.10 – Delayed Nicotinamide Treatment Causes Reversal of Lactacystin Induced Histone 
Hypoacetylation 
Administration of delayed nicotinamide treatment causes reversal of the reduction in histone acetylation 
observed as a result of lactacystin lesioning. (A) Densitometry analysis of the AcH3-Lys9 band relative to the β-
actin band used as a loading control. Statistical significance from corresponding hemisphere indicated with 
letters: asignificantly different from group Lacta(-)NTA(-); bsignificantly different from group Lacta(-)NTA(++), 
csignificantly different from group Lacta(+)NTA(-). See text for levels of significance. (B) Representative blot of 
data presented in (A). n=5-7. Abbreviations: I, ipsilateral; C, contralateral. 
 
 
 
 
 

AcH3-Lys9 

  I       C          I        C          I        C          I        C          I        C 

Lacta(-) 
NTA(-) 

Lacta(-) 
NTA(++) 

Lacta(+) 
NTA(-) 

Lacta(+) 
NTA(+) 

Lacta(+) 
NTA(++) 

β-Actin 42kDa 

17kDa 

0

50

100

150

200

250

300

Treatment

NTA(-)     NTA(++)     NTA(-)      NTA(+)    NTA(++)
Lacta(-)    Lacta(-)    Lacta(+)   Lacta(+)    Lacta(+)

 I   C  I    C       I   C I   C        I   C
a a

ac abc

abc

bc

A
c
H

3
-L

y
s
9
 R

e
la

ti
v
e
 t

o


-A
c
ti

n

(%
 o

f 
C

o
n

tr
o

l)

A 

B 



289 
 

each comparison). Although a slight reduction was observed in the contralateral hemispheres, no 

significant differences in the amount of AcH3-Lys9 in either hemisphere was observed in non-

lesioned animals treated with nicotinamide compared with control. 

 

7.4.6 - Effects of Delayed Start Nicotinamide Treatment on Brain Neuroprotective Gene Expression 

in the Lactacystin Rat Model of PD 

qRT-PCR was performed on frontal brain tissue to quantify the expression of a number of different 

neurotrophic factors, apoptotic regulators and genes of interest previously shown to change upon 

treatment with HDACIs (Monti et al., 2009), to help elucidate action of nicotinamide in the brain. In 

non-lesioned animals, administration of nicotinamide induced slight reductions in the expression of 

both GDNF and the anti-apoptotic factor, Bcl-2, however neither of these changes were significant. 

Nicotinamide did not overtly affect the expression of other genes in these non-lesioned animals. 

However, in lactacystin-lesioned animals, nicotinamide administration significantly and dose 

dependently upregulated expression of αSyn, GDNF, GSN, and Bcl-2 in the frontal brain hemisphere 

both ipsilateral and contralateral to the lactacystin-lesion. Most notably GDNF expression was 

expressed greater in both hemispheres in animals treated with the low (250mg/kg) dose of 

nicotinamide (ipsilateral and contralateral hemisphere expression, 3.46 ± 1.32  and 2.57 ± 1.41 fold 

change from saline treated animals respectively). Consistently, GDNF expression was even greater in 

the brains of animals treated with the high (500mg/kg) dose of nicotinamide (ipsilateral and 

contralateral hemisphere expression, 7.79 ± 2.92 and 8.18 ± 3.32 fold change from saline treated 

animals respectively, p<0.05 in both comparisons with corresponding lesioned in saline treated 

animals). Similar albeit more subtle dose dependent changes were also observed the expression of 

BDNF, Hsp70 and the pro-apoptotic factor, Bad. However these did not reach statistical significance.   
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Figure 7.11 - Nicotinamide Upregulates Expression of Neurotrophic Growth Factors and Neuroprotective 
Proteins 
(A) Administration of systemic nicotinamide alone, in non-lesioned rats causes subtle downregulation of GDNF 
and Bcl-2. (B) In lactacystin-lesioned animals nicotinamide dose dependently up regulated unilateral 
expression of αSyn, BDNF, GDNF, Hsp70, GSN, BCL-2 and Bad. Statistical significance indicated with asterisks 
and hashes: *p<0.05, **p<0.01, ***p<0.001 compared with the corresponding hemisphere of saline treated 
group; #p<0.05, ##p<0.01, ###p<0.001 compared with the same hemisphere of Lacta(+)NTA(+). n=5-7. 
Abbreviations: I, ipsilateral; C, contralateral. 
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7.5 – Discussion 

In the previous chapter it was demonstrated that valproate, when administered daily for 28days 

starting from seven days post lactacystin-lesion, dose dependently afforded neuroprotection and 

neurorestoration in the lactacystin rat model of PD as evidenced by an attenuation of motor 

behavioural deficits, longitudinal MRI brain volume changes and quantification of the dopaminergic 

neurons within the SNpc. Molecular analyses of brain extracts indicated that valproate’s 

neuroprotective/neuroregenerative effects may be at least part mediated through epigenetic 

changes via the inhibition of histone deacetylation to cause chromatin remodelling and upregulation 

of numerous neurotrophic and neuroprotective genes culminating in the observed phenotype. This 

was not the case with nicotinamide when administered using the same regime in the same model. 

At higher doses nicotinamide caused significant worsening of performance in motor behavioural 

tests. Nicotinamide administration also caused marked worsening of lactacystin induced nigral 

dopaminergic neurodegeneration as well as worsening of the morphological changes detected in the 

animal model through MRI. On a molecular level however, nicotinamide reversed lactacystin 

induced histone hypoacetylation, resulting in extensive histone hyperacetylation in nicotinamide 

treated animal brains translating to large upregulations of numerous neuroprotective and 

neurotrophic genes. Such changes however did not translate to neuroprotection. These finidings not 

only highlight the differential effects of HDAC class inhibition on neuroprotection in vivo but also 

highlight the possibility of valproate’s other non-HDAC effects given the comparable changes in 

neurotrophic gene expression and differential extents of neuroprotection observed between these 

two drug treatments.  Careful interpretation of these results and comparison to previously published 

similar datasets will help to understand how and why, nicotinamide, a HDACI which held such 

promise for neuroprotection did not translate to positive findings in vivo in this animal model of PD.  

 Nicotinamide has received increased interest in neurodegenerative disease research in 

recent years due to it being previously shown to improve neurological outcome and reduce infarct 

volume in models of stroke (Ayoub et al., 1999, Liu et al., 2009, Mokudai et al., 2000), restore 

cognitive function in transgenic models of AD (Green et al., 2008), and improve motor deficits and 

upregulate neurotrophic factors in models of HD (Hathorn et al., 2011). Additionally, in contrast to 

the results observed here, nicotinamide has also previously been shown to act neuroprotectively in 

animal models of PD (Anderson et al., 2006, 2008). Upon administration of nictotinamide 

peripherally prior to MPTP injection, a dose dependent neuroprotective profile was observed in the 

‘acute’ MPTP (four injections in 1 day at 2hr intervals) but not in the ‘sub-acute’ model (two 

injections per day at 4hr intervals for 5 days). The highest dose of nicotinamide was still shown to be 

neuroprotective in this latter ‘sub-acute’ model however not to the same degree as was seen in the 
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‘acute’ model (Anderson et al., 2006, 2008). Authors suggest that this is a result of nicotinamide 

interacting directly with the specific mechanism of cell death operating in the two different models 

(Anderson et al., 2008). However, Anderson et al fail to elucidate the mechanism of cell death in 

each of the models. Similarly, the focus of their paper is not on the HDAC inhibition by nicotinamide 

hence they do not correlate the extent of neuroprotection with histone acetylation in any way. 

Therefore, it is impossible to say whether the neuroprotective effects observed are in any way a 

result of nicotinamide’s HDAC inhibition. Regardless, nicotinamide at higher concentrations, appears 

to be neuroprotective towards dopaminergic neurons in the MPTP mouse model of PD. This finding 

is in direct contrast to those shown here in which the same dose of nicotinamide (500mg/kg) was 

shown to markedly exacerbate lactacystin induced nigral dopaminergic neurodegeneration as 

ascertained through stereological estimation of nigral cell number. A key difference between the 

designs of these two studies however is the frequency and duration of drug administration. Both 

studies by Anderson and colleagues (2006, 2008) administer nicotinamide subcutaneously either 

twice daily at 4hr intervals for five days, or four times daily at 2hr intervals for one day. In the 

current study however nicotinamide was administered intraperitonealy once daily for 28days. 

Despite it alterations in histone acetylation and neurotrophic gene expression with the dosing 

schecule used here, it may be likely then that neuroprotection and alleviation of behavioural deficits 

would only be observed in the current model if acute or lower treatment doses of nicotinamide 

were administered: continued chronic administration of nicotinamide exacerbating lactacystin 

induced dopaminergic neurodegeneration in this model. Respectively, unlike the higher dose of 

nicotinamide (500mg/kg) administered here, upon treatment with 250mg/kg nicotinamide, animals 

did not exhibit any worsening of performance in motor behavioural tests. Likewise, consistent with 

stereological quantification of dopaminergic nigral neurons, animals administered 500mg/kg 

nicotinamide perform significantly more rotations upon amphetamine challenge and have 

significantly reduced contralateral forelimb use compared with saline treated animals after 28days 

of nicotinamide treatment. 

On the other hand, nicotinamide is a precursor of NAD+ and is therefore thought to be 

involved with brain energy metabolism and preservation of mitochondrial functionality. 

Bioenergetics are becoming an increasingly attractive prospect for neuroprotection in PD (Beal, 

2003). Correspondingly nicotinamide has previously been observed to prevent oxidative 

mitochondrial dysfunction in a model of PD (Jia et al., 2008). The only other studies investigating the 

neuroprotective effects nicotinamide in animal models of PD all use MPTP to model dopaminergic 

neurodgeeration (Anderson et al., 2006, Anderson et al., 2008, Xu et al., 2012). This toxin works by 

inhibiting mitochondrial complex 1 to cause mitochondrial dysfunction and energy starvation in 
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dopaminergic neurons. It is likely then that nicotinamide, in the MPTP model, would directly 

counteract the effects of this mitochondrial toxin due to its effects on bioenergetics. Data presented 

here however demonstrate that despite the upregulation of neuroprotective factors in the 

lactacystin model, nicotinamide is incapable of counteracting the pathogenesis induced as a result of 

this toxin, i.e. accumulation of altered proteins in the SNpc.  

  Manual segmentation  analysis of MR images was performed here to examine the temporal 

morphological progression of selected brain regions in the model, and in line with previously 

published data following nigrostriatal neuropathology induced as a result of stereotaxic injection of 

lactacystin to the SNpc (Vernon and Modo, 2011), in the current study a marked reduction in the 

volume of the ipsilateral midbrain in the weeks following stereotaxic surgery was observed. Similarly 

an increase in the volume of the lateral ventricles was observed, which was far more pronounced in 

the ipsilateral as opposed to the contralateral hemisphere. Consistent with nicotinamide’s 

exacerbation of the effects of lactacystin lesioning in the SNpc as ascertained through stereological 

quantification of dopaminergic neurons, both of these MRI detected changes were observed to be 

dose dependently exacerbated by delayed nicotinamide treatment. In saline treated animals, 

lactacystin-lesioning was also observed to produce non-significant reductions in ipsilateral corpus 

striatal and hippocampal volume. These reductions were similarly observed to be exacerbated upon 

nicotinamide treatment. Moreover, nicotinamide at its higher dose (500mg/kg) was observed to 

induce caudal progression of lactacystin induced pathology: a significant reduction in cerebellar 

volume being observed after 28 days of nicotinamide treatment. From these data it is therefore 

evident that nicotinamide’s effects on the brain are not simply restricted to the worsening of 

pathology at the location of toxin administration, but brain wide, exacerbating even areas of subtle 

lactacystin induced change. 

In conjunction with volumetric analysis to monitor morphological progression and 

nigrostriatal neuropathology in this model, T2 signal intensity analysis was also used to follow 

asymmetry in T2 signal intensity in the SNpc, midbrain and corpus striatum. Consistent with previous 

studies using the lactacystin rat model (Vernon et al., 2010), changes in T2 signal intensity ratio were 

observed in the SNpc and to a lesser extent the midbrain, but not in the striatum. One week 

following lesioning, an increase in T2 signal intensity was observed in the SNpc of all lactacystin-

lesioned animal groups consistent with findings in the 6-OHDA rodent model (Kondoh et al., 2005) 

and the MPTP primate model (Miletich et al., 1994), indicative of acute inflammatory oedema in the 

area of interest given its appearance in nigrostriatally lesioned animals alone and its dissipation with 

time. This increase in the SNpc is reversed at weeks three and five in lactacystin-lesioned animals 

likely due to the combination of cell death and iron accumulation in the area creating 
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inhomogeneities in magnetic field, which diphase nearby water protons leading to shortening of T2 

and lowering T2 signal intensity. Several studies note the accumulation of iron in the SNpc of PD 

patients (Dexter et al., 1989b, Brar et al., 2009, Gorell et al., 1995, Kosta et al., 2006, Martin et al., 

2008) and a number of studies also note the accumulation of iron in the SNpc of the lactacystin rat 

model (Vernon et al., 2010, Zhu et al., 2007). Consistent with previously discussed MRI findings, the 

reversal of this lowering of T2 signal intensity ratio in the current study was dose dependent upon 

nicotinamide treatment, indicative that nicotinamide may not only be exacerbating cell death and 

neurodegeneration within the SNpc but also increasing iron deposition within the area as well.   

Addition of an acetyl group to histone lysine residues neutralises the positive charge of the 

residue and hence reduces the electrostatic interaction between the lysine in the histone tail and 

the negatively charged phosphate group on DNA. This disrupts the inter- and intra-nucleosomal 

interactions between the histone and DNA and hence relaxes the structure of the chromatin 

allowing transcription factor access. Here, nicotinamide treatment reverses lactacystin induced 

histone hypoacetylation, resulting in extensive histone hyperacetylation in nicotinamide treated 

animals. Correspondingly, large dose dependent upregulations of neuroprotective and neurotrophic 

genes were observed in the brains of nicotinamide treated rats. Unlike in valproate treated animals 

however, as previously discussed these upregulations do not translate to neuroprotection in the 

current model. Interestingly however if these gene upregulation were simply a function of 

nicotinamide treatment via HDAC inhibition, similar levels of histone hyperacetylation along with 

respective gene upregulations would also be expected in non-lesioned nicotinamide treated animals. 

This is not the case.  For that matter if the extensive progressive neuropathology observed in MR 

images was a result of nicotinamide treatment alone then these changes would also be expected in 

MR images of non-lesioned nicotinamide treated animals. Unfortunately, due to early closure of the 

Biological Imaging Centre at Imperial College London, this group of animals was not scanned. Taken 

together it is most likely that a complex drug x disease interaction is driving the anatomical and 

molecular and cellular effects of nicotinamide observed. 

As has been previously discussed, being a precursor for NAD+, nicotinamide is known to 

non-selectively inhibit class III HDACs, inhibiting sirtuin1-7 through competition binding to the NAD+ 

binding site of the sirtuin HDACs (Avalos et al., 2005). There is currently debate within the literature 

however as to the effects of these sirtuins in neuronal survival and neurodegeneration. For example, 

sirtuin1 and 5 are known to act neuroprotectively (Pfister et al., 2008, Donmez and Outeiro, 2013, 

Dobbin et al., 2013), whereas sirtuin2, 3 and 6 are known to be neurotoxic (Pfister et al., 2008). Of 

the sirtuins, most research conducted in neurodegeneration has centred around sirtuin1 and 2: 

activation of sirtuin1 and inhibition of sirtuin2 emerging as novel targets for neuroprotection 
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(Donmez and Outeiro, 2013). Sirtuin1 is known to bind to a number of transcription factors 

(Donmez, 2012) e.g. NF-κB, p65, retinoic acid receptor β (RARβ), forkhead box (FOXO) family of 

transcription factors, and most notable to neurodegeneration, peroxisome proliferator-activated 

receptor gamma coactivator 1α (PGC1α) which has long held therapeutic potential in PD (Zheng et 

al., 2010). Sirtuin1 activation has subsequently been shown to reduce αSyn aggregation through its 

upregulation of molecular chaperones (Donmez et al., 2012) and activation, via its deacetylation, of 

PGC1α maintaining mitochondrial number and function (Austin and St-Pierre, 2012). Upon inhibition 

of sirtuin1 therefore the opposite occurs: αSyn accumulation due in part to lack of molecular 

chaperones, accompanied by mitochondrial DNA depletion and subsequent mitochondrial stress. 

Like sirtuin1, sirtuin2 also interacts with the FOXO family. More specifically sirtuin2 deacetylates 

FOXO3a which causes upregulation of Bim and subsequently induces caspase-3 activated apoptotic 

cell death (Liu et al., 2012, erratum in Liu et al., 2013b). Additionally, sirtuin2 is known to regulate 

αSyn inclusion number, size and cytotoxicity rescuing αSyn toxicity in vivo (Outeiro et al., 2007). 

Upon inhibition then, sirtuin2 is therefore thought to reduce αSyn toxicity and apoptotic cell death. 

Although nicotinamide is known to non-selectively inhibit the sirtuin class of HDACIs, its IC50 values 

for each of the sirtuins vary greatly. Most notably, nicotinamide’s IC50 for sirtuin1 is 85.1µM whereas 

its IC50 for sirtuin2 is significantly less, at just 1.1µM (Peck et al., 2010). This may therefore explain 

the toxic effects of nicotinamide observed in the current study, for example lower doses of 

nicotinamide may be sufficient to inhibit sirtuin2 and yet also to a lesser degree sirtuin1. Whereas 

higher doses may be sufficient enough to induce extensive inhibition of sirtuin1 hence the dose 

dependent toxic effects of this drug in the current study. Data presented here therefore highlights 

the importance of target specificity within this class of HDACs, given the contrasting effects of its 

individual isoforms. 
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7.6 – Conclusions 

Utilising a clinically relevant drug testing platform this study demonstrates that nicotinamide’s 

inhibition of the sirtuin HDACs (class III) is dose-dependently neurotoxic in the lactacystin rodent 

model of PD when administered chronically starting seven days after the toxin administration when 

behavioural symptoms, MRI changes, microglial activation, dopaminergic cell loss and molecular 

hallmarks of neurodegeneration in the animal model are already observed. The toxic effects of 

nicotinamide’s sirtuin inhibition are associated with exacerbation of behavioural motor based 

symptoms, the neuropathological progression of the model as detected through MRI, and nigral 

dopaminergic neurodegeneration. These changes were accompanied by reversal of lactacystin 

induced histone hypoacetylation resulting in excessive histone hyperacetylation and an upregulation 

of neuroprotective and neurotrophic factors. Such upregulations however did not translate to 

neuroprotection. These findings therefore highlight the importance of target specificity within this 

class of HDACs and demonstrate the contrasting effects of sirtuin inhibition upon cell survival in this 

animal model of PD. 
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Chapter Eight 

Discussion 
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8 – Discussion 

8.1 – Summary of Main Findings 

By the time the motor based symptoms of PD first arise, 60-70% of dopaminergic nigrostriatal 

neurons have already degenerated, and around 80% of striatal dopamine is thought to be depleted. 

First line therapies for PD aim to replace this loss of dopamine signalling, yet these drugs only correct 

the deficit in dopamine however and such do not return patients to full normal function. Likewise, 

they do not protect dopaminergic neurons from death and hence are only effective if a responsive 

population of dopaminergic neurons remains intact in the SNpc to mediate their effects. The 

effectiveness of dopaminergic therapeutics against non-motor symptoms of the disease, main 

determinants for deteriorating quality of life and patient care costs, are also very limited and long 

term use is linked to the development of debilitating side effects such as L-DOPA induced 

dyskinesias. Hence more novel neuroprotective agents are sought which tackle the degeneration of 

dopaminergic nigrostriatal directly.  

 The overall aim of this thesis was to test the hypothesis that histone hypoacetylation and 

transcriptional dysfunction contribute to the pathological process of neurodegeneration in PD, 

hence HDAC inhibition is neuroprotective. To assess this hypothesis, the aims set out at the start 

were to: (1)  quantify the level of histone acetylation in degenerating regions on the Parkinsonian 

brain in relation to healthy age matched controls, and conduct expression profiling of HDAC isoforms 

in these same brain regions, with the aim of identifying targetable HDAC isoforms for treatment in 

PD, (2) test the potential of a range of isoform specific and pan-HDACIs at reducing dopaminergic 

neurodegeneration and microglial activation in vitro, with the aim of identifying suitable lead 

compounds for further investigation in vivo, and (3) determine the neuroprotective and behavioural 

effects of delayed start HDACI treatment in the progressive lactacystin lesion animal model of PD, 

and attempt to elucidate the mechanism by which HDACI mediated neuroprotection is achieved. In 

the preceding chapters, these aims have sought to be fulfilled, adding to the current body of 

knowledge concerning both the pathogenesis of HDACs in PD as well as the potential of the use of 

HDACIs for the treatment of PD.  

 Firstly, it was shown here that a number of changes exist in the levels of both histone 

acetylation and HDAC expression in regions of the Parkinsonian brain.  In the midbrain, disease 

dependent histone acetylation was accompanied by downregulation of a number of HDAC isoforms. 

However, this was upon a background of marked loss of dopaminergic neurons, hence the 

expression of HDAC isoforms in surviving neurons may be increased. In the putamen however, 

histone acetylation in PD remained unchanged from controls, however marked increases in HDAC 

isoforms unaffected in the midbrain were seen. In the frontal cortex however, reductions in the 
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expression levels of all the HDAC isoforms quantified here were observed, yet this was accompanied 

by increased histone acetylation in early stage PD cases, and reduced histone acetylation in late 

stage PD cases. Data presented here are the first demonstration of histone acetylation and HDAC 

expression quantification in PD brain. 

 Secondly, it was shown in cell culture that HDACIs are capable of reducing lactacystin 

induced neurodegeneration and LPS induced activation of microglia. However, dependent on the 

class(es) or isoform(s) inhibited, HDACIs vary hugely in their effects as neuroprotectants and their 

ability to reduce microglial activation, in vitro. Disparity between results from neurons and microglia 

also highlight the possible differing effects of HDAC isoform inhibition on Parkinsonian 

pathogeneses. From these data, two broad spectrum HDACIs, valproate and nicotinamide, were 

identified for further investigation in vivo, in the lactacystin rat model of PD.  

Thirdly, utilising a clinically relevant drug testing platform and an animal model of PD which 

models the clinical setting in which a neuroprotective agent would be administered, valproate’s 

inhibition of HDAC classes I and IIa was shown to be dose-dependently neuroprotective and 

neurorestorative when administered chronically starting seven days after toxin administration when 

behavioural symptoms, MRI changes, microglial activation, dopaminergic cell loss and molecular 

hallmarks of neurodegeneration in the animal model are already observed. In contrast when 

nicotinamide, which inhibits the sirtuin class of HDACs (class III), was administered using the same 

regime in the same model, at higher doses it caused significant worsening of performance in motor 

behavioural tests, lactacystin induced nigral dopaminergic neurodegeneration as well as worsening 

of the morphological changes detected in the animal model through MRI. However, on a molecular 

level nicotinamide reversed lactacystin induced histone hypoacetylation, resulting in extensive 

histone hyperacetylation in nicotinamide treated animal brains translating to large upregulations of 

numerous neuroprotective and neurotrophic genes. Such changes did not translate to 

neuroprotection. 

Taken together, these data highlight the importance of HDAC isoform selection for 

inhibition, for potential neuroprotection in PD.  For the first time it has been shown here that 

histone hyperacetylation is present in the midbrain in PD despite the presence of marked 

dopaminergic neuronal loss, rather than histone hypoacetylation which has been previously 

observed in animal models of neurodegeneration. Cell culture studies of histone acetylation in 

individual cell types, suggest that this may be a result of microglial infiltration and activation in the 

midbrain in PD: degenerating dopaminergic neurons display histone hypoacetylation in culture 

whereas activated microglia displayed histone hyperacetylation. Alteration of expression levels of 

HDACs in human tissue and cell culture experiments using a variety of targeted HDACIs demonstrate 
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that HDAC inhibition and neuroprotection/microglial activation are not as simply related as first 

thought. Likewise treatment of PD animal models with HDACIs targeted to different HDAC classes 

can produce hugely opposing effects. These findings therefore call for a reappraisal of the putative 

model of HDACI mediated neuroprotection. 
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8.2 – Putative Model of HDACI Mediated Neuroprotection  

Although, there have been numerous reports of the neuroprotective effects of HDACI in 

neurodegenerative disease, and more specifically PD, mechanistic studies of their neuroprotection 

are lacking. However, based on the body of literature examining the varying aspects of HDACI 

mediated neuroprotection in neurons and the effects HDACIs on astrocytic and microglial culture, a 

putative model has arisen as to the mechanisms of HDACI mediated neuroprotection in PD. Like PD 

pathogenesis, it is a multifaceted mechanism of action, affecting astrocytes, microglia and neurons, 

which are thought to culminate in the neuroprotective phenotype of HDACIs observed in models of 

PD (figure 8.1).   

 In neurons, HDACIs are thought to induce both transcriptional and non-transcriptional 

effects. In the nucleus, the inhibition of HDACs causes a reduction in the deacetylation of lysine 

residues on histone proteins. Acetylation of histone lysine residues neutralises the positive charge of 

the residue and hence reduces the electrostatic interaction between the lysine in the histone tail 

and the negatively charged phosphate group on DNA. This disrupts the inter- and intra-nucleosomal 

interactions between the histone and DNA and hence relaxes the structure of the chromatin 

allowing transcription factor access to the DNA and transcriptional activation (Grayson et al., 2010). 

This has been shown to result in increased expression of numerous growth factors, neurotrophic 

factors and anti-apoptotic mediators in neurons thought to contribute to reduced 

neurodegeneration in HDACI treated neurons (Dietz and Casaccia, 2010, Marinova et al., 2009, 

Chuang et al., 2009, Hahnen et al., 2008, Kazantsev and Thompson, 2008, Saha and Pahan, 2006). In 

astrocytes, HDACIs are thought to mediate similar transcriptional effects, resulting in transctiptional 

upregulation of neurotrophic factors such as BDNF and GDNF thought to contribute to HDACI 

mediated neuroprotection (Chen et al., 2006, Suh et al., 2010, Wu et al., 2008b). Likewise, HDACI are 

also known to mediate an increase in glutamate uptake, thought to contribute to HDACI mediated 

neuroprotection by reducing glutamate excitotoxicity in dopaminergic neurons of the SNpc (Wu et 

al., 2008a). In the cytoplasm of neurons, HDAC inhibition also leads to a reduction in the 

deacetylation of tubulin, which translates to increased microtubule stabilisation, thought to also 

contribute to the neuroprotective effects of HDACIs (Dompierre et al., 2007, Esteves et al., 2014, 

Zhang et al., 2003). In microglia, on the other hand, the mechanism by which reduced activation is 

achieved is less well understood. However, it has been extensively demonstrated that HDACI cause 

reduced expression of pro-inflammatory cytokines, reduced release of ROS, as well as reduced 

activity of NOS resulting in reduced secretion of NO (Peng et al., 2005, Roy et al., 2012, Suh et al., 

2010). Taken together, it is thought that the multicellular effects of HDACI collaborate in the 

production of a neuroprotective phenotype previously demonstrated in animal models of PD.  
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Figure 8.1 – Model of HDACI Mediated Neuroprotection in PD 
Schematic of the putative model of HDACI mediated neuroprotection in PD. Effects of HDACIs shown in red. Abbreviations: HDAC, histone deacetylase; HAT, histone acetyl 
transferase; BDNF, brain derived neurotrophic factor; GDNF, glial derived neurotrophic factor; Hsp70, heat shock protein 70; αSyn, α-Synuclein; Bcl2, B-cell lymphoma 2; 
ROS, reactive oxygen species; NO, nitric oxide; iNOS, inducible nitric oxide synthase. 
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Consistent with this putative model of HDACI mediated neuroprotection and the 

involvement of HDACs and histone acetylation in PD pathogenesis, in this thesis it has been shown 

that histone deacetylation occurs in degenerating dopaminergic neurons in culture. Additionally, 

histone acetylation was observed in activated microglial culture, in line with the changes in 

acetylation observed in the human brain. HDACIs were shown to cause histone acetylation in 

neuronal cultures, which translated to protection in the absence of either astrocytes or microglia. 

Likewise, HDACI treatment of microglial cultures has been shown here to reduce the secretion of NO 

and the pro-inflammatory cytokine TNFα. The effects of HDACIs in individual cell populations 

observed here were not very dramatic. However, consistent with the putative multicellular 

mechanism of neuroprotection, the neuroprotective effects in vivo were far greater, illustrative of 

the additive effects of different cell populations, culminating in marked neuroprotection. Both 

valproate and nicotinamide treatment of animal models resulted in upregulation of numerous 

neurotrophic factors observed in the brain, including BDNF and GDNF. This resulted in a dose 

dependent neuroprotection upon treatment with valproate, however these increases did not 

translate similarly to neuroprotection in nicotinamide treated animals. When taken as a whole the 

findings in this thesis are in agreement with the putative model of neuroprotection exerted by 

HDACIs and the involvement of HDACs and histone acetylation in PD pathogenesis. However when 

consolidated, a number of discrepancies between data sets still exist calling for further investigation 

and study.  
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8.3 – Consolidation of Findings 

In the studies utilising human post-mortem PD brains in this thesis histone acetylation was observed 

in the midbrain, contradictory to previously published findings in animal models of 

neurodegenerative disease (Kontopoulos et al., 2006, Rouaux et al., 2003). However, taken together 

with in vitro data presented here, I would hypothesise that these observations are a result of 

microglial infiltration in the midbrain of PD brains. In cell culture, it was demonstrated that activated 

microglia exhibit histone hyperacetylation, hypothesised to be because of their upregulation of and 

expression of numerous cytokines and inflammatory mediators. Whereas, degenerating neurons, 

consistent with previously published data, exhibit histone hypoacetylation. This was supported by an 

upregulation of HLA-DPα in the midbrain of human cases utilised, indicating accumulation of 

activated microglia in this area. It is therefore thought that any reduction in histone acetylation in 

degenerating dopaminergic neurons in the midbrain would therefore be diluted by the opposing 

effects of histone hyperacetylation observed in resident activated microglia. Likewise, as would be 

expected in the SNpc in the midbrain, post-mortem studies demonstrated that there is a disease 

dependent reduction of TH in this region, exacerbating this ‘dilution’ effect even further.  

 The opposing histone acetylation status of degenerating neurons and activated microglia 

become even more apparent in cell culture experiments given the disparity between HDACI 

compound effects on neuronal survival and microglial activation. Some compounds, for example ICL-

SIRT078 exhibit both neuroprotection in dopaminergic neuronal cultures and reduction of LPS 

induced activation of microglial cultures. Whereas others, for example butyrate, exhibit marked 

effects on neuronal cultures but demonstrate very little effect on microglial cells. The opposite is 

also demonstrated with the use of other HDACIs. As discussed previously, the mechanism of HDACI 

mediated reduction in microglial activation is poorly understood. However, these results suggest 

that inhibition of different HDAC isoforms can have markedly different effects on neurons and 

microglia. It remains unanswered however as to why inhibition of certain classes, such as sirtuin2, 

affect both neurons and glia equally. The differences in cell biology between these cells types could 

easily account for the observed difference, however the effects of HDAC inhibition on downstream 

pathways in such cell systems should be elucidated, if only to better understand the mechanism by 

which neuroprotection and microglial activation reduction are achieved. Additionally, the putative 

mechanism of neuroprotection by HDACIs is thought to be achieved by the combined effects of both 

neurons and glia. Further study to identify the specific isoforms which when inhibited exerts effects 

on both neurons and glia, should provide a greater magnitude of neuroprotection through their 

additive effects. 
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 From the human studies it was interestingly observed that each of the HDACs isoforms 

become perturbed in either the midbrain or the putamen, but rarely both simultaneous. However, it 

is hypothesised that due to the expected degeneration of dopaminergic terminals in the putamen, 

the changes observed in this region are probably due to the change in HDAC expression profile of 

target neurons in this nucleus. These target neurons are likely to induce a compensatory mechanism 

for their loss of innervation. This could therefore explain the changes observed here. Of note, only 

two of the HDACs examined were shown to present changes in both of these brain regions: HDAC6 

and sirtuin2, prioritising them for targeting in subsequent cell culture experiments. A specific 

inhibitor of HDAC6 is yet to be discovered, however in cell culture the use of trichostatin A, an 

inhibitor of HDAC classes I, IIa and IIb, HDAC6 inclusive was not observed to produce any marked 

neuroprotection or reduction of microglial activation. In contrast sirtuin2 inhibition, via AGK2 or ICL-

SIRT078, produced both marked neuroprotection and reduction of microglial activation in the cell 

culture systems examined.  These findings again highlight the apparent complex nature of HDACs in 

neurodegeneration, it being evident that not all targets identified from human studies present viable 

targets for therapeutic inhibition.  

 In the current thesis, HDAC class I and IIa inhibition by valproate was shown to result in in 

significant neuroprotection and alleviation of behavioural deficits in the lactacystin rat model of PD. 

In cell culture however, valproate was observed to exert only subtle effects on both neuronal and 

microglial cultures. The difference in the magnitude of effect shown between these studies in vitro 

and in vivo could firstly be attributed to the additive effects of valproate on neurons and microglia in 

vivo. Likewise, consistent with the model of HDACI mediated neuroprotection put forward 

previously, it has also been observed that valproate exerts effects on astrocytes too, such as 

upregulation of neurotrophic factors and increase of glutamate uptake (Chen et al., 2006, Suh et al., 

2010, Wu et al., 2008b). It is therefore suggested that the extent of neuroprotection observed upon 

valproate treatment in this animal model of PD is therefore a combined effects of HDAC inhibition in 

each of these brain cells types. Additionally however due to its current use in the clinic for the 

treatment of seizures, valproate is known to have multiple other effects on the brain, including 

effects on GSK-3, Akt/ERK pathways, GABA/Glutamate neurotransmission, Na+ and Ca2+ voltage-

dependent channels, phosphoinositol/TCA pathways and the oxidative phosphorylation pathway 

(Ximenes et al., 2012). A number of these affects too could contribute valproate neuroprotective 

phenotype observed here. Likewise, outside of its effects on brain cell populations, valproate could 

too affect the activity of regulatory T cells given the recent discovery that inhibition of HDAC class I 

leads to induction of this cell population, thought to be a result of acetylation of the transcription 

factor FOXP3, a key regulator of the development and function of regulatory T cells (Shen and Pili, 



306 
 

2012, Wang et al., 2009, Tao et al., 2007, Reddy and Zou, 2007). Regulatory T cells themselves have 

become recently implicated in neurodegenerative disease due to their implication in suppressing 

autoimmunity in the brain, i.e. the pathogenic activation of microglia in PD (He and Balling, 2013, 

Gendelman and Appel, 2011). Likewise, adoptive transfer of regulatory T cells has been shown to be 

neuroprotective in animal models of PD (Reynolds et al., 2007, Reynolds et al., 2010). In the 

valproate study I have carried out, valproate’s inhibition of class I HDACs could also induces 

regulatory T cells in lactacystin lesioned animals, adding to the neuroprotective effects exerted by 

the putative model of HDACI mediated neuroprotection discussed earlier (figure 8.1).  

 Nicotinamide, on the other hand despite being shown in vitro to exert subtle effects on both 

neuronal and microglial cell cultures, and its ability to reverse lactacystin induced histone 

hypoacetylation and upregulate the expression of numerous neurotrophic and neuroprotective 

factors in the brains on rats in vivo, did not result in neuroprotection in the lactacystin rat model of 

PD shown here. This finding is contradictory to the previous reports of nicotinamide induced 

neuroprotection in other animal models of PD (Anderson et al., 2008, Jia et al., 2008, Xu et al., 2012, 

Anderson et al., 2006). Outside of its effects on HDACs, nicotinamide, is a precursor of NAD+ and is 

therefore thought to be involved with brain energy metabolism and preservation of mitochondrial 

functionality. Bioenergetics are becoming an increasingly attractive prospect for neuroprotection in 

PD (Beal, 2003). Correspondingly, nicotinamide has previously been observed to prevent oxidative 

mitochondrial dysfunction in a model of PD (Jia et al., 2008). The only other studies investigating the 

neuroprotective effects of nicotinamide in animal models of PD all use MPTP to model dopaminergic 

neurodegeneration (Anderson et al., 2006, Anderson et al., 2008, Xu et al., 2012). This toxin works 

by inhibiting mitochondrial complex 1 to cause mitochondrial dysfunction and energy starvation in 

dopaminergic neurons. It is likely then that nicotinamide, in the MPTP model, would directly 

counteract the effects of this mitochondrial toxin due to its effects on bioenergetics. Data presented 

here, however demonstrate that despite the upregulation of neuroprotective factors in the 

lactacystin model, nicotinamide is incapable of counteracting the pathogenesis induced as a result of 

this toxin. Moreover, this highlights even further the implication of additional HDAC and non-HDAC 

effects of valproate in mediation of its neuroprotection observed here. Further investigation of 

nicotinamide treatment in additional animal models of PD which use different mechanisms to induce 

cell death (i.e. 6-OHDA and LPS) will help to unravel the effects displayed here. 
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8.4 – Implications and Significance of Findings 

This study provides the first evidence of perturbation of histone acetylation and alteration in HDAC 

expression in degenerating regions of the Parkinsonian brain. This is a significant progression for 

field, as all previous work implicating histone acetylation and the neuroprotective effects of HDACIs 

in neurodegeneration have been conducted in animal models of the disease. These findings 

represents a vital step in the drug development process for HDACIs as without confirming the 

dysregulation of histone acetylation and transcriptional dysfunction in primary diseased tissue, the 

use of HDACIs for the treatment of PD cannot truly be rationalised. Although the current data does 

not elucidate whether or not dysregulation of histone acetylation and HDAC expression contribute 

to PD pathogenesis or whether PD pathogenesis results in dysregulation of histone acetylation and 

HDAC expression, the findings add insight into the state of this system in degenerating regions of the 

Parkinsonian brain, adding weight to the hypothesis that HDACIs represent a viable candidate for 

therapeutic intervention in PD.  

 The cell culture studies presented here are the first in which the neuroprotective effects of a 

range of HDACIs are tested against lactacystin induced cell death in vitro. Likewise, studies of HDACIs 

in microglial cultures represent the first parallel study of numerous HDACIs in activated microglia, 

allowing for direct comparison of the efficacy of numerous inhibitors with one another, and in 

combination with their effect in neuronal cultures as well. From these data, it was shown that of all 

of the HDACIs examined, inhibitors of sirtuin2 represent the most promising in terms of their 

concurrent effects in both degenerating neurons and in activated microglia. These therefore support 

further investigation of Sirtuin2 inhibitors in vivo animal models of PD. It is unclear as yet however, 

whether sirtuin2 inhibiting agents such as AGK2 and the novel inhibitor presented here, ICL-SIRT078, 

cross the BBB. Experiments to elucidate whether or not they cross will add significant weight as to 

their potential for the treatment of PD. In the interim however, neuroprotection studies using an 

indwelling intracerebral cannula system to deliver these drugs into the brain will add insight into 

their effectiveness as neuroprotective agents in vivo, in animal models. 

 The animal work conducted here and the study of the neuroprotective effects of valproate 

using a delayed start are hugely encouraging for the use of HDACIs for the treatment of PD. Chronic 

treatment of the lactacystin rat model of PD with valproate, starting seven days post lesion, dose 

dependently afforded neuroprotection and neuroregeneration in this animal model as evidenced by 

an attenuation of motor behavioural deficits, longitudinal MRI brain volume changes and 

quantification of the dopaminergic neurons within the SNpc. Molecular analyses of brain extracts 

indicate that valproate’s neuroprotective/neuroregenerative effects may be at least part mediated 

through epigenetic changes via the inhibition of histone deacetylation to cause chromatin 
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remodelling and upregulation of numerous neurotrophic and neuroprotective genes culminating in 

the observed phenotype. Although the doses utilised here are far greater than the usual therapeutic 

maintenance dose of valproate used for the treatment of epilepsy in humans (1000-2000mg/day) 

(Britain, 2009), findings acts as proof of principle that delayed start treatment with a HDACI is 

capable of producing a neuroprotective/neurorestorative phenotype in this animal model of PD.   

 Equally, although the results of the study of nicotinamide are less positive, they represent a 

vital finding in the understanding of the neuroprotective effects of different HDACIs in PD. Namely, 

histone acetylation and upregulation of neurotrophic and neuroprotective factors alone by a HDACI 

do not translate to neuroprotection. The disparity between the findings presented here in the 

lactacystin rat model compared with previous published findings in the MPTP mouse model, 

encourage further investigation of the effects of nicotinamide in additional animal models of PD 

which rely of different mechanisms to induce cell death (i.e. 6-OHDA and LPS).  
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8.5 – Limitations and Technical Considerations 

Although the data presented here advance the understanding of the role of HDACs in PD and the 

implication of the potential use of HDACIs as neuroprotective agents, a number of limitations of the 

current study exist. Similarly, some technical considerations need to be made when interpreting the 

datasets presented here. Firstly, in the initial results presented here from human post-mortem brain 

tissue, protein and mRNA were extracted from whole brain tissue sections from the brain block 

containing a region of interest. Glial cells outnumber neurons in the brain by approximately 3 to 1 

and hence it is likely that in these extracted samples the majority of protein and mRNA are glial in 

origin. It was observed in cell culture that degenerating dopaminergic neurons exhibit histone 

hypoacetylation, while activated microglia exhibit histone hyperacetylation. A mixed population of 

both degenerating neurons and activated microglial such as that in the midbrain of a PD brain would 

therefore exhibit a profile of acetylation and HDAC expression unrepresentative of either cell type, 

but the histone acetylation and HDAC expression in the brain region alone. This therefore, makes 

interpretation of the data difficult when trying to ascertain acetylation and HDAC expression in an 

individual population of cells within it. Similarly, the histone acetylation status and HDAC expression 

patterns in both astrocytes and oligodendrocytes are yet to be determined, adding further 

complexity to the dataset.  

 Study of human post-mortem brain tissue comes with the added consideration as to the 

inhomogeneity of the study groups.  Although cases were grouped based on αSyn Braak staging, 

groups are made up differing ratios of males and females, difference ages of disease onset, different 

ages and causes of death etc. Most importantly each patient received a different combination of PD 

medications. There is no evidence as to the effects of dopamine replacement therapies on histone 

acetylation, and hence the differences observed between control and PD cases may well be a result 

of therapeutics, i.e. greater Braak stage, greater disease duration, longer time on PD medication. 

These factors add an extra complexity to results observed here, and further experiments and study 

should aid clarification.  

 Cell culture is an excellent tool for high throughput screening of compounds and mechanistic 

study of drug action due to the various manipulations possible in vitro as opposed to in vivo. 

However, with this comes various downfalls. Firstly, although cells are maintained in imitated 

physiological conditions, i.e. nutrients, pH, temperature, CO2 etc., even when treated with 

lactacystin or LPS for example as in the current study, the conditions bare very little resemblance to 

those in the Parkinsonian brain. Likewise, maintenance of individual cell lines such as neurons alone 

in culture do not represent physiology in the brain at all. Neurons are surrounding in the brain by 

glia: astrocytes, oligodendrocytes and microglia, which supply trophic support for functioning 
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neurons. The relationship between glia and neurons is vitally important in neurodegenerative 

disease as it is known that microglia play a specific role in PD pathogenesis. Modelling neuronal cell 

death or microglial activation alone in cell culture systems can therefore provide an initial indication 

of a drug’s potential, however, as has been seen here this does not always translate to similar 

findings in vivo, i.e. nicotinamide. Likewise, both of the cell lines used in the current study are 

immortalised cells lines, which have been engineered to grow and divide continuously. Again such 

cell lines while being hugely advantageous in terms of their ease of maintenance and longevity do 

not accurately represent the lifespan of cells within the CNS. Further work would be to replicate the 

studies presented in in primary cell cultures; however these too have their limitations. The flexibility, 

speed of growth, cost, and reproducibility of cell lines however vastly outweigh the limitations and 

considerations described here. However, it is clear that great care must be taken not to over 

interpret in vitro findings.  

 HDACIs are thought to act neuroprotectively via a number of different mechanisms in the 

brain (see section 8.2). The most cited and most well understood is their inhibition of HDACs in 

neurons resulting in upregulation of neurotrophic and anti-apoptotic factors thought to translate to 

neuroprotection. Unlike many other drugs targets, such as receptor ligand interactions, this process 

is thought to take place less quickly: cumulative acetylation of histone proteins by HATs without the 

HDAC mediated deacetylation. Correspondingly, significantly increased histone acetylation was not 

observed in cell culture systems until 48 (N27 cells) and 24hrs (N9 cells) with a HDACI (sections 4.4.3 

and 4.4.7 respectively). On the other hand, toxins used here to model dopaminergic 

neurodegeneration and microglial cell death exerted their action far quicker, significant cell death 

and microglial activation being observed after 6 and 15hrs in N27 and N9 cells respectively (sections 

4.4.2.2 and 4.4.6.2 respectively). For this reason, cell culture systems were pre-treated with HDACI 

compounds prior to treatment with toxins. Drug pre-treatment does not accurately model the 

clinical scenario in which a neuroprotective agent would currently be given. That being said, cell 

culture models of PD represent a far cry from the clinical disease. Results presented here however 

act as a proof of principle that HDAC inhibition of various isoform(s) is capable of mediating 

neuroprotection and reduced microglial activation, encouraging future study of their effects in vivo.  

 Controversy  has surrounded proteasome inhibitor models of PD in the past due to difficulty 

in reproducibility between laboratories (Duty and Jenner, 2011). However more recently focal 

administration of lactacystin to the SNpc has become a reproducible, well used model of PD used by 

many groups (Niu et al., 2009, Vernon et al., 2010, Lorenc-Koci et al., 2011, Pienaar et al., 2013, 

Konieczny et al., 2014, Mackey et al., 2013). Lactacystin, specifically and irreversibly inhibits the UPS. 

However, unlike many other toxins used for the modelling of PD in rats (e.g. 6-OHDA and MPTP) it is 
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unclear as to the dopaminergic specificity of lactacystin since UPS inhibition may also induce cell 

death and altered function in other cell types (Ren et al., 2009, Fine et al., 1999). Selectivity of 

lactacystin for dopaminergic over other neuronal types has been demonstrated at low 

concentrations, however higher concentrations of this UPS inhibitor are known to show reduced 

specificity (McNaught et al., 2002c). Focus in this thesis has been placed on the effects of lactacystin 

on dopaminergic neurons, however the non-specific nature of this irreversible UPS inhibitor at high 

concentrations highlights the possibility of its effects on other cell types e.g. microglia. Focal 

injection of lactacystin into the SNpc most likely leads to selective exposure of dopaminergic 

nigrostriatal neurons, however it must be considered that other cell types may play a part in 

lactacystin pathogenesis in this model. 

 All of the drugs investigated in this thesis are inhibitors of HDAC isoforms. However, some of 

the agents used here are known to also have hugely diverse actions on other cell systems in the 

brain in conjunction with their inhibitory action upon HDACs. Most pertinent, are the effects of the 

two previously approved FDA drugs chosen for study in vivo here: valproate and nicotinamide. In this 

thesis focus has been placed on valproate’s inhibition of HDACs: its upregulation of neurotrophic and 

anti-apoptotic factors and subsequent neuroprotection in vivo. However, as has already been 

described, valproate is also known to have a number of other effects on the brain ranging from 

alterations in GABAergic and glutamatergic signalling, effects on Na+ and Ca2+ voltage-dependent 

channels and induction of regulatory T cells (Ximenes et al., 2012, Shen and Pili, 2012). These 

mechanisms may equally be contributing to the neuroprotective phenotype of the drug displayed 

here. That being said, drugs which modulate glutamatergic signalling (Williams and Dexter, 2014), 

and calcium channels (Hurley and Dexter, 2012), when administered at a similar stage of disease 

model progression do not produce such dramatic effects as neurorestoration as that seen here with 

valproate.  Likewise, nicotinamide is a precursor of NAD+ and is therefore thought to also be 

involved with brain energy metabolism and preservation of mitochondrial functionality, which has 

become an increasingly attractive prospect for neuroprotection in PD (Beal, 2003). In the current 

study, it is therefore likely that both HDAC and non-HDAC mediated effects of nicotinamide are 

exerted yet together they were not capable of inducing neuroprotection against lactacystin in the 

model used here. That being said, if upregulation of neurotrophic factors by nicotinamide was not 

sufficient to produce neuroprotection in the model, it is unlikely that valproate’s upregulation of 

these same factors alone would result in neuroprotection, highlighting the probably involvement of 

valproate’s non-HDAC effects in its mechanism of neuroprotection. 
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8.6 – Further Work 

8.6.1 – Further Study of Histone Acetylation and HDAC Expression in the Parkinsonian Brain 

Firstly, in order to ascertain the specific contributions of both degenerating dopaminergic neurons 

and activated microglia to the changes observed in histone acetylation and HDAC expression in 

Parkinsonian brains, laser capture microdissection could be utilised to isolate specific cell 

populations from degenerating regions. More specifically, by rapidly immunohistochemically 

staining sections of the human midbrain under RNase free conditions, it is possible to isolate specific 

populations of cells for extraction of protein and mRNA (Brown et al., 2013). The level of histone 

acetylation and HDAC isoform expression could then be assessed specifically in these cell 

populations. Obvious experiments would firstly be to isolate dopaminergic neurons from the SNpc of 

human cases (control and early and late stage PD) to determine the level of histone acetylation and 

HDAC expression. Additional populations could also similarly be isolated such as activated microglia 

and astrocytes. Ascertaining the histone acetylation profile in each of these individual populations 

would build up a more focussed picture as to the state of histone acetylation within the disease. 

Moreover, identification of specific HDAC isoforms for therapeutic targeting in each of these cell 

types would better inform subsequent cell culture experiment using HDACIs.  

 To eliminate any confounding effects of dopaminergic replacement therapy treatment in PD 

cases, further work could be to conduct similar HDAC expression studies and quantification of 

histone acetylation in Braak stage 1/2 cases. These cases are thought to be presymptomatic and 

therefore would not be on any dopaminergic medication. If changes in HDAC expression and histone 

acetylation are indeed a function of PD development, the changes observed in these ‘pre-early PD’ 

cases would be subtle, however they would be void of any confounding effect of drug treatment.  

 The seminal paper by Broide et al (2007) remains the only study of HDAC distribution in the 

brain.  In fact this study only details the 11 ‘classical’ HDACs, the distribution of the sirtuin HDACs in 

the brain remaining unknown. To the best of the authors’ knowledge, a full study of HDAC isoform 

expression using in situ hybridisation in the human brain is yet to be conducted. Conducting such a 

study would impact hugely on the field of HDACI neuroprotection as this would highlight the HDACs 

most abundant within areas of the brain known to be affected in PD, allowing for specific targeting 

with inhibitors. This would hopefully also eliminate possible side effects of HDAC inhibition in brain 

regions not affected within the disorder, refining the investigation of the potential use of HDACI for 

the treatment of PD even further.  
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8.6.2 – Further Study of the Neuroprotective and Anti-Inflammatory Effects of HDACIs In Vitro 

To add to the findings presented here demonstrating the neuroprotective effects of HDACIs in cell 

culture, a number of additional experiments and further work could be conducted to extend results. 

Firstly, it was shown in animal studies that HDAC inhibition leads to upregulation of both 

neurotrophic and anti-apoptotic factors in the frontal cortex, an area distinctly separate from the 

nigrostriatal system. Therefore, it would be interesting to see whether this upregulation was similar 

in degenerating dopaminergic neurons in culture. Extraction of mRNA, reverse transcription, and 

qRT-PCR to quantify the expression of genes such as BDNF, GDNF,αSyn, Hsp70 etc., would add 

greatly to the findings previously presented in this thesis, and help elucidate the mechanism by 

which HDACIs exert their neuroprotective phenotype in dopaminergic neurons directly. In addition, 

the expression of a number of other genes could similarly be quantified, such as further elements 

associated with apoptosis (i.e. Bim, Bax, Bcl-XL, and the caspases), or conducting microarray studies 

to look at the expression of entire banks of related factors. Such experiments would build up a 

greater picture of the pathways associated with HDACI mediated neuroprotection in neurons.  

 It was demonstrated here that histone acetylation is increased upon LPS treatment of 

microglia. It therefore seems counterintuitive to expect HDACIs, agents which are expected to result 

in exacerbation of this histone hyperacetylation in microglia, to result in a reduction of activation. 

However, a number of the HDACIs examined here were observed to produce a reduction in 

microglial activation in culture. Understanding of the mechanism of HDACI mediated reduction of 

microglial activation therefore remains lacking. Further studies would therefore focus on the 

mechanism by which HDACIs reduce activation of microglia. For example, by determining the extent 

of histone acetylation before and after treatment with HDACIs, with and without LPS treatment, it 

may be possible to understand the mechanism by which excessive histone hyperacetylation could 

lead to reduction in activation, i.e. perhaps some sort of negative feedback mechanism exists in 

healthy active microglia which is lacking or dysfunctional in degenerating neurons. Likewise, perhaps 

in microglia, as in neurons, histone hyperacetylation encourages upregulation of protective, 

immunomodulatory factors. Further work therefore would seek to characterise this reduction of 

activation further. For example, additional ELISAs conducted on microglial incubated medium for 

other pro-inflammatory cytokines such as IL6 and IL1β and also anti-inflammatory and immune 

regulatory cytokines such as IL10 and TGFβ would add greatly to the picture of the effects of HDACIs 

on microglial activation. Additionally, ROS assays, such as the 2′,7′-dichlorofluorescin diacetate 

(DCFDA) assay which has already shown in microglial (Seo et al., 2012), conducted on the same 

medium samples would also increase our knowledge on the effects of histone deacetylase inhibition 
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on microglial activation. Together, these assays would add greatly to our understanding of the 

mechanism of HDACI mediated reduction of the activation of microglia.  

 Another possible avenue of investigation related to the cell culture experiments conducted 

here is the use of medium transfer and co-cultures. The relationship between glial cells and neurons 

in the pathogenesis of PD is a complicated one and hence by combining use of both cell types would 

produce a more realistic model of PD neurodegeneration in vitro. Their combined use with neurons 

would therefore give a greater idea of the neuroprotective potential of a HDACI in vitro. Microglial 

medium transfer experiments would generally consist of treating microglial cultures with LPS (with 

or without HDACIs) and after a period of time, transferring their medium, rich in pro-inflammatory 

cytokines, NO and ROS, to neuronal cultures (with or without HDACs) and measuring cell viability. 

Likewise, microglia-neuron co-culture systems could also be utilised, in which varying numbers of 

microglia are co-cultured with neurons to determine their contribution to cell death. Additionally, 

one has not yet considered the role of astrocytes in the neuroprotective effects of HDACIs in the 

current studies. Astrocytes have been heavily implicated in HDACI mediated neuroprotection (Chen 

et al., 2006, Suh et al., 2010, Wu et al., 2008a, Wu et al., 2008b) and hence it would also be 

interesting to study both the effects of HDACIs on astrocyte cultures alone and in combination with 

neurons and also microglia. These experiments would help to explain why such subtle effects were 

observed in individual cell lines presented here, i.e. by combining cell culture systems, a greater level 

of drug response to HDACIs would be expected given the proposed multi-cellular mechanism of 

HDACI mediated neuroprotection. Similarly, these sorts of experiments would help elucidate the 

contribution of both of these glial cell types towards the observed neuroprotective phenotype of 

HDACIs in culture, which would hopefully allow for more accurate translatability into animal models.  

   

8.6.3 – Further Study of the Effects of HDACIs in the Lactacystin Rat Model of PD 

A number of questions still remain regarding the study of the effects of valproate and nicotinamide 

on the lactacystin rat model of PD. Firstly, it has not been addressed as to the effects of HDACIs on 

striatal projections from the SNpc. Possible future experiments would therefore be to quantify 

dopamine and its metabolites in the striatum using high-performance liquid chromatography (HPLC) 

of striatal homogenates in order to calculate striatal dopamine turnover. This ratio gives an 

indication of dopaminergic functionality and whether or not drug treatment induces any degree of 

compensatory action in the dopaminergic metabolism in the striatum. Alternatively, 

immunohistochemistry for TH of striatal sections would provide an additional measure of 

nigrostriatal neurodegeneration induced as a result of intra-nigral injection of lactacystin and to 

what extent this is avoided upon treatment of the animal model with HDACIs.  
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 It has been observed here that valproate and nicotinamide both upregulate a number of 

neurotrophic and anti-apoptotic factors, however to further understand the effects of HDAC 

inhibition and histone acetylation, the expression of a number of other genes could similarly be 

quantified, such as further elements associated with apoptosis (i.e. Bim, Bax, Bcl-XL, and the 

caspases) or conducting microarray studies to look at the expression of entire banks of related 

factors. Such experiments would build up a greater picture of the pathways associated with HDACI 

mediated neuroprotection. Likewise, one of the non-histone targets of HDACIs is tubulin. In 

conjunction with Western blot analysis of AcH3-Lys9 in the current studies, quantification of acetyl-

tubulin would give an indication of the extent of tubulin acetylation in the brains of the animals. Of 

note, fPD mutations such as those in the LRRK2 gene have been shown to lead to perturbation in 

microtubule dynamics, thought to contribute to the mechanisms associated with neuronal cell death 

on PD (Gillardon, 2009, Law et al., 2014). Similarly, rescue of microtubule stability is known to be 

neuroprotective in PD (Esteves et al., 2014) and tubulin acetylation is known to be associated with 

microtubule stabilisation and neuroprotection by HDACI (Dompierre et al., 2007). Further 

investigation of the extent of tubulin acetylation in the animal studies conducted here will therefore 

help to elucidate the extent the role tubulin acetylation plays in neuroprotective phenotype of the 

HDACIs described here.  

As has been described above, due to the promiscuous nature of both of the HDACIs 

investigated in vivo in the current thesis, further work would also seek to understand the extent 

these additional effects contribute to the neuroprotective phenotype of valproate and the 

neurotoxic phenotype of nicotinamide. Due to valproate’s inhibition of HDAC class I, the induction of 

regulatory T cells are of particular interest given the recent implication of their induction upon 

inhibition of this class (Shen and Pili, 2012, Wang et al., 2009, Tao et al., 2007, Reddy and Zou, 2007),  

and the neuroprotective effects of these cells in animal models of PD (Reynolds et al., 2007, 

Reynolds et al., 2010). These regulatory T cells are known to be CD4, CD25 and FOXP3 positive and 

hence a triple chromagen immunofluorescent stain for these markers would easily identify 

infiltrating cells into the brain parenchyma in the aim of determining if this infiltration is upregulated 

upon valproate treatment. Further investigation of valproate’s other known mechanisms within the 

brain such as GABAergic and glutamatergic signalling, and its effects on Na+ and Ca2+ voltage-

dependent channels would similarly add further understanding to the complexities of valproate 

mediated neuroprotection in the current studies. Likewise with nicotinamide, however given the 

lack of neuroprotection observed here, future studies should aim to determine to what extent the 

non-HDAC actions of nicotinamide play in its neurotoxic phenotype. Similarly, they should aim to 

understand why there is such disparity between previously published reports of nicotinamide’s 
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neuroprotective effects in PD models such as the MPTP mouse model and not the lactacystin model. 

Further investigations of nicotinamide’s effects in additional animal models of PD which use 

different mechanisms to induce cell death (i.e. 6-OHDA and LPS) will help to unravel the effects 

displayed here.  

 

8.6.4 – Future Directions 

Studies conducted on post-mortem tissue from PD brains and cell culture work using a range of 

available HDACIs highlight only the ‘tip of the iceberg’ of the complexity of HDAC involvement in PD 

and the potential of HDACI potential for therapeutic intervention leading to neuroprotection. 

Similarly, results from animal model studies indicate the degree of potential of HDACI mediated 

neuroprotection in PD. Future work investigating the role of HDACs in PD pathogenesis and the 

effects of inhibition of specific groups of individual isoforms will transform this infant field into one 

which has true scope for development of an effective neuroprotective agent for the treatment of 

PD. 

 In the short term studies should focus on the specific isoforms identified to have 

neuroprotective and anti-inflammatory potential for PD treatment. Notably, further investigation of 

sirtuin2 inhibitors via mechanistic cell culture studies and neuroprotection studies in animals should 

be a priority given the extremely encouraging results observed in cell culture work presented here. 

In the first instance, an animal study using an indwelling intracerebral cannula system for delivery of 

novel sirtuin2 inhibitors to a lesioned brain region such as the SNpc should be conducted to 

ascertain the neuroprotective effects of such inhibitors in vivo. Likewise, investigation as to the brain 

permeability of sirtuin2 inhibitors will help advise their use for PD. In the long term, focus should be 

placed on the development of novel HDAC isoform specific inhibitors and distribution studies of 

HDACs within the human brain. The distinct patterns of expression of HDACs in the brain crossed 

with design of selective target specific isoform inhibitors position HDACIs as an excellent therapeutic 

target in neuroscience. Equally given the small molecular nature of the vast majority of HDACI 

available today, they embody an exciting target for therapy of brain disorders. The multi-targeted 

and multi-cellular neuroprotective and neurotrophic affects induced upon HDACI treatment make 

HDACI the most disease relevant drug class being investigated today. Further study to facilitate 

understanding of the effects of the dysregulation of histone acetylation and the changes in HDAC 

expression in PD, and the consequences of HDAC isoform inhibition, are now required to further 

refine the prospective use of HDACIs in this complex disorder and translate their use to the clinic. 

There is concern as to the use of drugs which regulate epigenetics on the general population, 

especially to those of child bearing age since epigenetics is heavily implicated in fertility, conception 
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and foetal development. However, as neurodegenerative disorders such as PD typically affect those 

later in life, these concerns are not relevant to this patient group. Once better understanding of the 

effects of HDAC inhibition is achieved, we must learn how best to wield the power of these drugs in 

PD: how best to use them in the clinic, what drugs to combine them with, and how they can be 

translated to the treatment of other neurodegenerative diseases.  
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8.6 - Conclusions 

In conclusion, this current thesis provides evidence for the first time of the altered levels of histone 

acetylation in affected regions on the Parkinsonian brain, and demonstrates that HDAC isoform 

expression is perturbed in human PD. Cell culture studies have revealed that the neuroprotective 

phenotype in neurons and the anti-inflammatory phenotype in microglia exerted by HDACIs depends 

greatly on the isoform specificity of the inhibitor: sirtuin2 inhibitors demonstrating most potent 

neuroprotection and microglial activation reduction. Furthermore, animal studies provide evidence 

that pan-inhibition of class I and IIa HDACs by valproate results in significant neuroprotection and 

neurorestoration in the lactacystin rat model of PD even when administered after toxin 

administration. Conversely, nicotinamide, despite inhibiting the sirtuin class of HDACs, results in a 

neurotoxic phenotype in this same animal model of PD. Taken together the data herein provide 

compelling evidence to support the concept that dependent on isoform specificity, HDAC inhibiting 

agents represent a novel class of neuroprotective therapeutics for the treatment of PD.  
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