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Summary

A two-scales approach, for discrete lattice structures, is developed that uses microscale
information to find asymptotic homogenized continuum equations valid on the
macroscale. The development recognises the importance of standing waves across an
elementary cell of the lattice, on the microscale, and perturbs around the, potentially
high frequency, standing wave solutions. For examples of infinite perfect periodic and
doubly-periodic lattices the resulting asymptotic equations accurately reproduce the
behaviour of all branches of the Bloch spectrum near each of the edges of the Brillouin
zone. Lattices in which properties vary slowly upon the macroscale are also considered
and the asymptotic technique identifies localised modes that are then compared with
numerical simulations.

1. Introduction

Discrete mass-spring lattice systems form classical models of crystal vibrations in solid
state physics (1, 2) and were used by Newton, Kelvin, Born, and many others, to model
and interpret wave phenomena and these models were instrumental in the development of
wave mechanics; a review of the historical literature is contained in Brillouin’s monograph
(2). Lattice models remain a valuable and instructive way of modelling and understanding
fundamental wave phenomena in crystal lattices and cellular structures (3). A common
characteristic behaviour of such models is that they exhibit band-gaps, (4), namely bands of
frequencies for which waves do not propagate through the atomic lattice. More recently such
discrete models have been used for engineering structures (5) with a view to designing smart
structures capable of filtering out various frequencies. These discrete systems, exhibiting
band gap behaviour, are closely related to periodic continuous media, for instance photonic
crystal fibres (6, 7, 8), for which band-gaps occur and that have numerous and varied
industrial applications; in some limits there is a direct analogy between the discrete and
continuum models (9). In the mechanics of cellular structures and lattices, considerable
knowledge has been gained about the static and low-frequency behaviour in terms of
homogenized models, but comparatively less is known of their high frequency behaviour.

A common feature of both discrete and continuum models, that are defect-free and infinite
in extent, is that the periodicity of the structure leads to dispersion relations between
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frequency and Bloch wavenumber; the latter being the phase shift that a wave exhibits as it
passes through one of the periodic cells that form the structure. The periodic cell structure
means that there are only a finite range of Bloch wavenumbers that are of interest and
these form the irreducible Brillouin zone and within, and at the edges of, this zone there
are critical wavenumbers for which standing waves occur; these standing waves can occur
at high frequencies. The behaviour of the solutions near these standing wave frequencies
is often associated with the extrema of the range of stop-band frequencies, although there
are counter-examples where the extrema occur within the Brillouin zone (10). The fact
that pass- and stop-band behaviour is apparent for such structures suggests their use
as mechanical frequency and spatial filters (5, 11). Our aim is to develop asymptotic
techniques capable of describing the solutions near frequencies that allow for standing
waves; these are potentially high frequencies. The methodology generates continuum partial
differential equations (PDEs) that have the micro-structural behaviour in-built. In part,
our interest is also in the localised defect modes can occur if the crystal lattice or cellular
structure is imperfect (12) and one by-product of the asymptotic scheme that we develop is
that the high frequency homogenization model captures localization effects. This approach
is complementary to recent work on defect states using band gap Green’s functions (e.g.
for lattices (13) and in photonics (14, 15)); the asymptotics of the Green’s function and
localized defect modes near the edges of the Brillouin zone are related, at least conceptually,
to the homogenization model. Green’s functions for lattices are of interest in their own right,
and have a long history, see (16) and the references therein.

In the continuous case the authors (17) have developed an asymptotic scheme based
upon a separation of scales and demonstrated the efficacy of high frequency homogenized
models, that consist of an equation entirely on the macro-scale, but incorporating integrated
quantities over the microscale, in modelling wave phenomena on the macroscale. We now
turn our attention to the discrete analogue and show that these too can be analysed using
a two-scales approach; there are two disparate lengthscales in the system, that of a local
periodic cell (the elementary cell) and that of the global structure itself. The essential
insight is that, for critical frequencies, standing waves form across the elementary cells that
form the medium; in terms of the Bloch wavenumber these are high frequency “long waves”
and so can be analysed in a similar manner to the high frequency long waves that occur near
transverse thickness resonance in waveguides (18, 19, 20) for which localised solutions can
also be found (21, 22). It is worth noting that the idea of long waves in crystal acoustics
and solid state physics is usually limited to the lowest acoustical phonon branch that passes
through the origin in frequency-wavenumber space, but that the ideas we develop are valid
at high frequency and for standing waves formed at the edges of the Brillouin zone; they
can correspond to in-phase or out-of-phase motion of the masses across an elementary cell
on the microscale.

The plan of this paper is as follows: we begin, in section 2, by illustrating our ideas on
the classical diatomic chain (2) with a slight variation in that the masses of each type are
not necessarily constant, but can vary with position. One useful check upon the analysis,
and illustrative example, is that of Bloch waves for an infinite chain and we explicitly return
to this example throughout the text; for the diatomic chain it is dealt with in section 2.2.
Bloch waves require each type of mass to remain constant, allowing the masses to vary can
lead to localised modes and these are found both directly from the full equations and from
the asymptotic model in section 2.6. The asymptotic model itself, for the chain, is deduced
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Fig. 1 The diatomic chain of alternating masses considered in section 2.

in section 8 and homogenized models, in the sense that they are set on the macroscale,
but with the local structure incorporated through assumption of local symmetries on the
elementary cell, are deduced. This all naturally extends to higher dimensional lattice
models, and we consider a square lattice explicitly in section 3 deducing the asymptotic
structure associated with the Bloch dispersion diagram that allows for considerable physical
interpretation. Finally, some closing remarks are drawn together in section 4.

2. Diatomic chain

The simplest lattice model exhibiting band gaps is that of the diatomic lattice which is a
classical model, due to Born, for the vibration of atoms in solid state physics as described in
(1, 2). For generality, and to illustrate another important point connected to localization,
we consider a slightly more general setting with each type of mass varying gradually in
spatial location.

2.1 Formulation

The masses are connected by a massless string stretched to a constant tension and so the
transverse displacement, y2n, y2n+1, of the masses satisfy

y2n−1 + y2n+1 − 2y2n = −M2nλ2y2n (1)

y2n + y2n+2 − 2y2n+1 = −M2n+1λ
2y2n+1. (2)

The masses M2n, M2n+1 are taken to vary with position so

M2n = M2[1 + γg2n], M2n+1 = M1[1 + γg2n+1] (3)

where M1, M2 are constant masses, γ is a constant, g2n, g2n+1 are functions that quantify
the change in mass with position along the lattice. In the model the tensions, lengths and
so on have been scaled out of the problem and the vibration frequency squared is denoted
by λ2. The position of the masses is at x2n = 2n and the displacement is y2n = y(x2n).
This formulation can easily be generalised to poly-atomic chains and so on, but this adds
nothing to the methodology bar to obfuscate the presentation.

2.2 Bloch waves

One common setting in which the diatomic chain is encountered is that of an infinite chain,
with no defects or spatial variation of the masses (γ = 0), for which waves travelling through
it can be considered over an elementary cell of four masses. The displacements are found
using quasi-periodicity conditions relating the phase change at each end of the cell; a Bloch
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wavenumber, κ, is introduced as the phase change across a cell. It is convenient to introduce
the vector y2n = (y2n, y2n+1)

T where the Floquet-Bloch conditions across the cell are

y2n+2 = exp(iκ)y2n. (4)

There is then an explicit dispersion relation,

M1M2λ
4 − 2(M1 + M2)λ

2 + 2(1 − cosκ) = 0, (5)

relating the frequency to Bloch wavenumber and plots of the dispersion relation are
commonplace in the literature and are shown in Figure 2; this is an ideal case against
which to verify and explain the asymptotic procedure, although the asymptotics are more
versatile than for just generating asymptotic dispersion curves.

Solving the quadratic in λ2 gives two solutions, the upper branch is the optical branch
and the lower one the acoustic branch; these names follow from the wave frequencies of the
applications (1). There are four eigenvalues, λ2

0 = 2/(M1 + M2), 2/M2, 2/M1 and 0, that
correspond to standing waves at κ = 0, π. These, and the dispersion curves, are symmetric
about the line (M1 + M2)/M1M2, c.f. figure 2(a), and thus we need only consider the
asymptotics of the upper (optical) branch for the in- and out-of-phase cases. This symmetry
arises as the problem is unchanged if we interchange the masses M1 and M2 and renumber.

2.3 Asymptotic solution

In the diatomic lattice we introduce two scales: a long-scale, on the scale of the grid,
characterised by N ≫ 1 that could be, say, the number of lattice points and ǫ = 1/N ≪ 1.
We introduce η = 2n/N and take η to be a continuous, not discrete, variable. The other
scale, the short-scale is taken to be the elementary cell and we specify the integer m =
−1, 0, 1, 2; the elementary cell corresponds to the masses at 2n, 2n +1 and their immediate
neighbours. These two-scales are then considered as independent variables and formally we
set y2n+m = y(η + m/N, m) or more transparently

y2n+m = y(η + mǫ, m) ∼ y(η, m) + mǫyη(η, m) +
(mǫ)2

2
yηη(η, m) + . . . (6)

as ǫ ≪ 1. In particular the four displacements used in equations (1),(2) in this notation are
y2n−1 = y(η − ǫ,−1), y2n = y(η, 0), y2n+1 = y(η + ǫ, 1) and y2n+2 = y(η + 2ǫ, 2). In terms
of the two-scale notation, the Bloch conditions (4) are now y(η + 2ǫ, m) = exp(ikǫ)y(η, m)
where κ = kǫ, that is, the Floquet-Bloch conditions hold on the macroscale.

The asymptotic analysis only uses the displacements at y2n and y2n+1; their neighbouring
displacements are related to these two via

[y2n−1, y2n+2] = [y(η − ǫ,−1), y(η + 2ǫ, 2)] = (−1)J [y(η − ǫ, 1), y(η + 2ǫ, 0)] (7)

as we assume that the motion, on the microscale of the elementary cell, is that of locally
standing waves oscillating in-phase or out-of-phase (J = 0, 1 respectively) across the cell
(see figure 2 (b) and (c) for an illustration of the displacements for an infinite chain of
alternating constant masses).

The mass variation, g2n, g2n+1 in (3), is assumed gradual, and identical, in n so g2n =
g2n+1 = g(η), and we also take the constant γ = ǫ2α, that is

M2n = M2[1 + ǫ2αg(η)], M2n+1 = M1[1 + ǫ2αg(η)]. (8)
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Fig. 2 The Bloch diagram for M1 = 2, M2 = 1. Panel (a) shows the dispersion curves for the
diatomic chain (γ = 0) with the exact curves from (5) solid and asymptotics dotted; the asymptotics
are from (2.4) and (2.5) (and their reflections by the symmetry about λ2 = (M1 + M2)/M1M2).
Panels (b) and (c) show the displacements of the masses for the optical branch at k = 0 and ǫk = π
respectively.

The mass variation is characterised by g(η) on the macro-scale this variation is of order ǫ2;
without loss of generality we choose M1 ≥ M2.

In this two-scales notation, equations (1),(2) to order ǫ2 in matrix form become,

[A0 − λ2M(1 + ǫ2αg(η)) + ǫA1(∂, λ) + ǫ2A2(∂
2, λ)]y(η) = 0, (9)

where ∂ denotes ∂/∂η, y(η) = [y(η, 0), y(η, 1)]T is the displacement vector, M is a diagonal
matrix M = diag[M2, M1], A0 is a constant matrix and A1 and A2 are matrix differential
operators. These matrices depend on periodicity conditions and, therefore, are different for
in-phase and out-of-phase cases.

The natural separation of scales leads to a hierarchy of equations in powers of ǫ where
the ansatz

y(η) = y0(η) + ǫy1(η) + ǫ2y2(η) + . . . (10)

λ2 = λ2
0 + ǫλ2

1 + ǫ2λ2
2 + . . . (11)

is adopted. Substituting the ansatz into the lattice equations (8) gives differential-difference
equations that are treated order-by-order in ǫ.

2.4 Optical mode: in-phase

Standing waves with no phase-shift across the structure lead to periodic conditions for the
masses that are y(η,−1) = y(η, 1) and y(η, 0) = y(η, 2) (c.f. (7)); at each order the problem
on the scale of the cell maintains this relation. The matrices A0, A1 and A2 for the in-phase
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problem are

A0 =

(

2 −2
−2 2

)

, A1 =

(

0 0
−2∂ (2 − λ2

0M1)∂

)

, (12)

A2 =

(

0 −∂2

−2∂2 (1 − 1
2λ2

0M1)∂
2 − λ2

1M1∂

)

. (13)

We recall that the ansatz (8,8) is introduced and so equations are formed at each order in
ǫ and solved in turn.

The separation of scales, and lack of explicit dependence upon η, leads to y0(η) =
f0(η)Y0. The vector Y0 is defined on the scale of the elementary cell and displacements
of the masses are chosen that lead to standing waves. This also identifies the frequency at
which standing waves occur.

Taking the leading term in (8) and substituting y0(η) = f0(η)Y0 gives the eigenvalue
problem [A0 − λ2

0M ]Y0 = 0 from which

Y0 = (1,−M2/M1)
T and λ2

0 =
2(M1 + M2)

M1M2
(14)

with f0(η) to be determined. This eigenvector leads to the vibration mode of the masses
shown in figure 2(b).

The first order problem allows for an identical separation y1(η) = f1(η)Y1 and

[A0 − λ2
0M ]Y1f1 = λ2

1MY0f0 (15)

for which solvability of the matrix system demands λ2
1 = 0, with Y1 = (1,−M2/M1)

T and
f1(η) is unknown and not required in the subsequent analysis.

The second order problem, and separation y2(η, m) = f2(η)Y2, lead to the matrix system
[A0 − λ2

0M ]Y2f2 = RY0f0, where R is

R =

(

M2[λ
2
2 + αg(η)λ2

0] ∂2

2∂2 M1[λ
2
2 + αg(η)λ2

0] + M1

M2

∂2

)

. (16)

Solvability requires YT
0 RY0f0(η) = 0 and this gives a differential eigenvalue problem

2

(M1 + M2)
f0ηη − [λ2

2 + αλ2
0g(η)]f0 = 0, (17)

where f0ηη denotes ∂2f0/∂η2, relating f0 and λ2
2. Notably this differential eigenvalue

equation is exactly the same, in form, as that found in the long wave high frequency
theory leading to trapped modes in bent or deformed acoustic and elastic waveguides
(21, 22, 23, 24)

For the infinite periodic system, with α = 0 so the masses are constant and alternate,
we use the Bloch relation (4) to deduce f0(η) = exp(ikη/2) where κ = ǫk and λ2

2 is just
λ2

2 = −k2/[2(M1 + M2)] thus as k → 0, the dispersion relation has the local behaviour that

λ2 ∼ 2(M1 + M2)

M1M2
− (ǫk)2

2(M1 + M2)
+ . . . (18)
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which can also be deduced from the exact relation (5); this asymptotic behaviour is
shown in figure 2 (a). The important point behind this example is that given only the
standing wave solution to any lattice problem one can perturb off this to deduce the local
dispersion behaviour and generate the homogenized equation, (2.4), that encapsulates the
local information into a purely macroscopic equation.

2.5 Optical mode: out-of-phase

Standing waves with complete phase-shift across the structure lead to periodic conditions
for the masses which are y(η,−1) = −y(η, 1) and y(η, 0) = −y(η, 2) (c.f. (7)) at each order.
Matrices A0, A1 and A2 become

A0 =

(

2 0
0 2

)

, A1 =

(

0 −2∂
2∂ (2 − λ2M1)∂

)

, A2 =

(

0 0
2∂2 (1 − 1

2λ2M1)∂
2

)

. (19)

The analysis closely mirrors the in-phase calculation, at leading order

Y0 = (1, 0)T , and λ2
0 =

2

M2
(20)

(with the eigenvector shown in figure 2 (c)) and solutions at first and second order lead to
the differential eigenvalue problem that determines f0(η) and λ2

2 as

2

(M1 − M2)
f0ηη + [λ2

2 + αλ2
0g(η)]f0 = 0. (21)

For α = 0 the Bloch relation (4) yields the local behaviour as ǫk → π that

λ2 ∼ 2

M2
+

(ǫk − π)2

2(M1 − M2)
+ . . . (22)

which also follows from (5); and is shown in figure 2(a).
The asymptotic behaviour of the acoustic mode follows from symmetry and is not given

here.

2.6 Localization

If we allow the masses to vary with position, according to (??) with α 6= 0, then it is
possible for discrete defect modes to occur that correspond to modes which are spatially
localized (12). These localised defect modes can have frequencies that lie in the stop-
bands of the structure and the eigenfunctions associated with these frequencies exponentially
decay with distance from the defect. The asymptotic technique that is developed here
explicitly identifies the frequencies at which these modes occur and their spatial structure.
For definiteness we take the mass variation with position as g(η) = sech2(η), that is, the
masses alternate between M1 and M2 as before but with a gradual variation that is strongest
near the origin and decays exponentially as η → ±∞.

Localized eigensolutions from the difference equations (1,2) are found numerically (they
form a generalized eigenvalue problem of the form A − λ2M = 0, for matrices A, M that
follow from the difference equations, that is solved using an adaption of the standard QR
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Fig. 3 Localised modes for M1 = 2, M2 = 1 showing the numerical solution of (1,2) versus
the f0 from the asymptotic equations (2.4,2.5) with the sech2(η) variation. Panel (a) shows a
localised in-phase solution for which the numerics give λ2

∼ 3.01896 and the asymptotics, (2.6),
give λ2

∼ 3.01880 that differ in the fourth decimal place. Panel (b) shows the localised out-of-
plane eigensolution for α = 1 and the numerics give λ2 = 1.99239 with the asymptotics, (2.6), as
λ2 = 1.99236.

matrix eigenvalue algorithm) and typical results are shown in figure 3; the numerics have
α = ±1 and are on a lattice of 201 masses for varying ǫ (ǫ = 0.1 in figure 3). Our
interest is in eigensolutions that have frequencies within the stop-bands of the unperturbed
structure. These solutions of the exact equations are then compared with those found
from our asymptotic differential eigenvalue problems (2.4,2.5) above. As the differential
eigenvalue problems are, so far, posed on an infinite domain, the eigenfunctions f0 arbitrary
to within a constant multiple. The lattice we model, is however on a finite range. We can
treat this finite domain exactly with the differential eigenvalue problem by noting that
η = ǫn. The range for the ODE is −10 < η < 10 for the example illustrated in figure
3, with f0 = 0 at the end points. This is solved numerically using a Chebyshev spectral
collocation scheme to extract both eigenvalue and eigenvector, this provides the f0, with no
ambiguity, to compare with the full eigensolutions from (1,2).

On the infinite interval equations (2.4,2.5), with the specific mass variation we have
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Fig. 4 The localized eigenvalues for M1 = 2, M2 = 1 showing the numerical solution (solid) versus
the asymptotics (dotted) from equations (2.6) and (2.6) as ǫ varies. Panels (a) and (b) show the
eigenvalues for α = −1 and α = 1 respectively.

chosen, lead to an exactly solvable differential eigenvalue problem. Equations (2.4,2.5) are
of the form

α̂fξξ + [sech2(ξ) + λ̂]f = 0 (23)

posed on −∞ < ξ < ∞ with f decaying at infinity and α̂ constant; this type of eigenvalue
problem is exactly that which occurs in the long wave trapping of modes in acoustic or
elastic waveguides and the differential eigenvalue problem (2.6) is treated numerically and
asymptotically in (24). It turns out to actually have an exact solution. Mapping this
equation onto [−1, 1] using a tanh substitution turns (2.6) into an associated Legendre
equation and the eigenvalues are then extracted explicitly; this is a well-known solvable
Schrödinger equation (25). The lowest eigenvalue is always negative (for α̂ > 0) and

λ̂ = − α̂

4

[

1 −
√

4 + α̂

α̂

]2

. (24)

More generally, setting ν to be

2ν = −1 +
√

1 + 4/α̂

gives the negative eigenvalues as

λ̂ = −α̂(ν − i)2

for i = 0, 1, . . . although we are primarily interested in the first of these.
For the optical mode, at k = 0, with λ2

0 = 2(M1 + M2)/M1M2 we turn to (2.4) and
localised modes require α < 0 and the largest eigenfrequency is

λ2 = λ2
0 − ǫ2αλ2

0

α̂

4

[

−1 +
√

1 + 4/α̂
]2

, where α̂ = − 2

(M1 + M2)αλ2
0

. (25)
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As α < 0, the masses are decreasing as we approach the origin and the correction to λ2
0

is always positive. One can use the properties of a positive operator and Sturm-Liouville
theory, as in (21), to make these arguments more rigorous.

At the other end of the optical branch, ǫk = π, and λ2
0 = 2/M2 and we turn to (2.5), for

M1 ≥ M2, localised modes require α > 0 and the localised eigenfrequency of interest is

λ2 = λ2
0 − ǫ2αλ2

0

α̂

4

[

−1 +
√

1 + 4/α̂
]2

and α̂ =
2

(M1 − M2)αλ2
0

. (26)

As α > 0, the masses are increasing near the origin and the correction to λ2
0 is negative

thereby placing the eigenfrequency in the stop-band of the structure.
The asymptotic eigenfunctions, f0, are shown in figure 3, for typical values, for both in-

and out-of- phase localisation, these are plotted against the numerical eigenfunctions from
(1,2). The numerical eigenfunctions clearly oscillate, either in- or out-of- phase for each
elementary cell and the asymptotic f0 provide an envelope for this oscillatory solution; note
the full asymptotics give the leading order solution as y2n = f0(η)Y0 and Y0 incorporates
the correct oscillatory behaviour. The caption to figure 3 gives the numerical and asymptotic
values of the eigenvalues which agree to four decimal places; a more extensive comparison
of the eigenvalues versus ǫ is given in figure 4 for both cases.

Variations of the masses in space such that they tend to constant values as η → ±∞ are
not the only types of variation possible. For contrast, we briefly consider g(η) = η2 so the
masses now increase gradually until they tend to infinite values at sufficient distance from
the origin. For the in-phase case the localization differential eigenvalue problem is

2

(M1 + M2)
f0ηη − [λ2

2 + λ2
0η

2]f0 = 0 (27)

which can be transformed into Hermite’s differential equation, (22), from which the
eigenvalue correction λ2

2 is −2/
√

M1M2. Note the correction here is negative and so the
eigenvalue does not sit inside the stop-band, but is now outside it. The localised mode still
decays exponentially, but it is perhaps less interesting than a mode which lies inside the
stop-bands. The asymptotics and numerics again give almost perfect agreement as shown
in figure 5 where eigenvalues are given in the caption.

3. Two dimensional theory

The two-scale asymptotic approach naturally works for higher dimensional lattices and
we choose to illustrate this using a square two-dimensional lattice structure constructed
by alternating masses as shown in figure 6. This structure has considerable symmetry,
both geometrically and from interchanging masses, and these symmetries lead to some
degeneracies. This square lattice then usefully highlights the wide range of possible
behaviours that can arise. For clarity we shall consider only constant, alternating, masses
and so localisation phenomena will not occur.

3.1 Formulation and Bloch waves

For the square lattice shown in Figure 6 with masses connected by linear strings, and only
nearest neighbour interactions, the simplest model, equivalent to anti-plane shear of the
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Fig. 5 An in-plane localised solution for the quadratic variation, g(η) = η2, the eigenvalue is
2.98591 from the numerics and from the asymptotics, (2.6), 2.98585.
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The square lattice

(2n,2m) (2n+1,2m)

(2n,2m+1) (2n+1,2m+1)

Fig. 6 The square lattice showing an elementary cell of the lattice structure, the masses M2 (blue)
and M1 (red) alternate.
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continuous version, connects the displacements yi,j of the elementary cell of four masses via

y2n+1,2m + y2n−1,2m + y2n,2m+1 + y2n,2m−1 − 4y2n,2m = −M1λ
2y2n,2m (28)

y2n+2,2m+1 + y2n,2m+1 + y2n+1,2m+2 + y2n+1,2m − 4y2n+1,2m+1 = −M1λ
2y2n+1,2m+1 (29)

y2n+2,2m + y2n,2m + y2n+1,2m+1 + y2n+1,2m−1 − 4y2n+1,2m = −M2λ
2y2n+1,2m (30)

y2n+1,2m+1 + y2n−1,2m+1 + y2n,2m+2 + y2n,2m − 4y2n,2m+1 = −M2λ
2y2n,2m+1 (31)

c.f. (26) amongst others. Once again there is an inherent symmetry created by
interchanging M1 and M2 and we can, without loss of generality, choose M1 ≥ M2.

If we consider an infinite medium and utilise the Bloch relation, (4), then

y2n+N̂,2m+M̂ = exp(i[κ1N̂ + κ2M̂ ])y2n,2m (32)

holds, for even integers N̂ , M̂ and a wavenumber vector κ = (κ1, κ2). Equation (3.1) leads
to the exact dispersion relation given as the eigenvalue problem

[A(κ) − λ2M ]y2n,2m = 0. (33)

Here y2n,2m is the displacement vector

y2n,2m = [y2n,2m, y2n+1,2m+1, y2n+1,2m, y2n,2m+1]
T ,

M is a diagonal matrix, M = diag[M1, M1, M2, M2], and A(κ) is the matrix

A(κ) =









4 0 −(1 + e−2iκ1) −(1 + e−2iκ2)
0 4 −(1 + e2iκ2) −(1 + e2iκ1)

−(1 + e2iκ1) −(1 + e−2iκ2) 4 0
−(1 + e2iκ2) −(1 + e−2iκ1) 0 4









(34)

which is Hermitian and thus all eigenvalues are real. This dispersion relation is easily solved
numerically and the resulting dispersion curves are shown in Figure 7; it is conventional
to show the frequency squared versus wavenumber. In this two-dimensional setting the
wavenumber is deduced from the reciprocal lattice, shown as the inset to Figure 7, from
which the irreducible Brillouin zone is given by the triangle ABC. At the wavenumbers
corresponding to the points A, B and C the lattice vibrates in standing waves and the
asymptotic procedure identifies PDEs and thus expansions around these wavenumbers that
connect frequency to wavenumber. The square lattice is an interesting structure as it
contains several symmetries and these lead to special cases and degeneracies in the analysis,
that is, there are repeated eigenvalues (marked as 1 and 5 in Figure 7), flat portions of
the dispersion diagram (connecting 3 and 4), as well as distinct eigenvalues (points 2, 3).
For the example upon which we have chosen to illustrate the methodology, the square
matrix with alternating masses, there is an additional symmetry as the dispersion relation
is unaltered by interchanging M1 with M2 and this leads to the inherent vertical symmetry
about λ2 = 2/M1 + 2/M2 in Figure 7. Thus we need only consider the upper curves in
terms of the asymptotics.

Although we choose to illustrate the asymptotics upon the Bloch wave problem it is
notable that the PDEs that we deduce are much more versatile and could, for instance, be
used to generate localisation effects or model transient motion on the macro-scale.
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Fig. 7 The dispersion curves for the square lattice: the inset shows shows the reciprocal lattice in
κ = (κ1, κ2) space, the irreducible Brillouin zone is completely characterised by the triangle ABC.
The dispersion curves show the frequency squared versus length along the path BACB for M1 = 2
and M2 = 1. The frequencies at the wavenumbers at B, A, C correspond to various standing waves
across the lattice; these are numbered 1 to 5 to allow reference to them in the text. The dotted
lines in the upper half of the figure are the asymptotic results.

3.2 Asymptotics

We now proceed to treat this problem asymptotically using the natural separation of scales
so y2n+m1,2m+m2

= y(η1 + m1ǫ, η2 + m2ǫ, m1, m2) where the long-scale is characterised
by ǫ = 1/N ≪ 1 (where N is again a lengthscale associated with the macroscale) with
η1 = 2n/N and η2 = 2m/N . The short-scale is that of an elementary cell of the structure;
in this case the labelled four cell arrangement of figure 7(a). The separation of scales leads
to a separation y(η + mǫ,m) where η = (η1, η2) and m = (m1, m2). For the four points
that make the elementary cell

y2n,2m = [y(η1, η2, 0, 0), y(η1 + ǫ, η2 + ǫ, 1, 1), y(η1 + ǫ, η2, 1, 0), y(η1, η2 + ǫ, 0, 1)]T . (35)

There are four fundamental cases to consider: (i) standing waves set up with periodic
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boundary conditions both in n and m (horizontally and vertically) for the elementary cell,
that is, waves are perfectly in-phase on the scale of the cell. (ii) and (iii) Standing waves
are in-phase in one direction, but out-of-phase in another, and finally (iv) standing waves
out-of-phase across the cell. Cases (ii) and (iii), from the symmetry of the structure are
identical to within a rotation.

The standing wave assumptions of periodicity and anti-periodicity (completely out-of-
phase) across the cell impose constraints upon the displacements of the masses lying outside
the elementary cell, but which appear in (3.1)-(3.1). A concise notation is that

[y2n−1,2m, y2n−1,2m+1, y2n+2,2m, y2n+2,2m+1] = (−1)J1

[y(η1 − ǫ, η2, 1, 0), y(η1 − ǫ, η2 + ǫ, 1, 1), y(η1 + 2ǫ, η2, 0, 0), y(η1 + 2ǫ, η2 + ǫ, 0, 1)] (36)

and

[y2n,2m−1, y2n+1,2m−1, y2n,2m+2, y2n+1,2m+2] = (−1)J2

[y(η1, η2 − ǫ, 0, 1), y(η1 + ǫ, η2 − ǫ, 1, 1), y(η1, η2 + 2ǫ, 0, 0), y(η1 + ǫ, η2 + 2ǫ, 1, 0)] (37)

where Ji = 0 if the standing wave is periodic in the direction ηi for i = 1, 2, and Ji = 1
for standing waves completely out-of-phase in direction ηi. Thus in the cases (i)-(iv) above:
J1 = J2 = 0; J1 = 1 J2 = 0; J1 = 0 J2 = 1; J1 = J2 = 1 respectively.

We seek a solution in the limit as ǫ → 0 and Taylor expand with

y(η1 + α1ǫ, η2 + α2ǫ,m) = y(η,m) + ǫ[α1yη1
(η,m) + α2yη2

(η,m)+

ǫ2

2
[α2

1yη1η1
(η,m) + 2α1α2yη1η1

(η,m) + α2
2yη2η2

(η,m)] + . . . (38)

To order ǫ2, the differential-matrix problem

[A0 − λ2M + ǫA1(∂i, λ) + ǫ2A2(∂i∂j , λ)]y(η) = 0 (39)

emerges where y(η) is the displacement vector

y(η) = [y(η, 0, 0), y(η, 1, 1), y(η, 1, 0), y(η, 0, 1)]T .

For brevity we use ∂i as a shorthand notation for ∂/∂ηi (for i = 1, 2). In y(η) we drop
the explicit dependence on the second scale m as we can ultimately limit ourselves to
dealing with the elementary cell of the four fundamental masses used in y. In (3.2), M
is a diagonal matrix M = diag[M1, M1, M2, M2], A0 is a constant matrix, and A1, A2 are
matrix differential operators that are different for each of the Ji above. The asymptotic
expansions

y(η) = y0(η) + ǫy1(η) + ǫ2y2(η) + . . . (40)

λ2 = λ2
0 + ǫλ2

1 + ǫ2λ2
2 + . . . (41)

are adopted.
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3.3 Case (i): in-phase in both directions

The matrix A0 is

A0 =









4 0 −2 −2
0 4 −2 −2
−2 −2 4 0
−2 −2 0 4









(42)

from which the leading order problem that defines the standing wave solutions is (A0 −
λ2

0M)y0(η) = 0. which has eigenvalues λ2
0 = 0, 4(M2 + M1)/(M1M2), 4/M1, 4/M2 and

associated eigenvectors y0(η) = f0(η)Y0 with

Y0 = (1, 1, 1, 1)T , (1, 1,−M1/M2,−M1/M2)
T , (1,−1, 0, 0)T and (0, 0,−1, 1)T (43)

respectively. As noted earlier there is a symmetry of the problem, interchanging M2 and
M1, and we need only consider the behaviour near the largest two eigenvalues: 4(M2 +
M1)/(M1M2) and 4/M2. The matrices A1 and A2, for use in (3.2), are

A1 = −









0 0 0 0
0 M1(∂1 + ∂2) 2(∂1 + ∂2) 2(∂1 + ∂2)

2∂1 2∂1 M2∂1 0
2∂2 2∂2 0 M2∂2









(44)

A2 = −










0 0 ∂2
1 ∂2

2

0 M1

(

∂2

1

2 + ∂1∂2 +
∂2

2

2

)

+ M1λ
2
1(∂1 + ∂2) ∂2

1 + 2(∂1∂2 + ∂2
2) 2(∂2

1 + ∂1∂2) + ∂2
2

2∂2
1 ∂2

1 + ∂2
2 M2∂

2
1/2 + M2λ

2
1∂1 0

2∂2
2 ∂2

1 + ∂2
2 0 M2∂

2
2/2 + M2λ

2
1∂2











(45)
where the combinations Mi = Miλ

2
0 − 4, for i = 1, 2, are the only places where the leading

order eigenvalue appears.
We now consider the asymptotic behaviour near the eigenvalues λ2

0 = 4(M2 +
M1)/(M1M2) and λ2

0 = 4/M2 in detail; a schematic of the standing wave oscillations of
the masses for these cases is given in Figure 8.

At leading order λ2
0 = 4(M2 + M1)/(M1M2), and Y0 = (1, 1,−M1/M2,−M1/M2)

T . To
first order the equation that determines y1 and the correction to the frequency, λ2

1, is

(A0 − λ2
0M)y1(η) = −(A1 − λ2

1M)f0(η)Y0.

The matrix problem is only solvable if YT
0 (A1 − λ2

1M)Y0f0 = 0 which forces λ2
1 = 0 and

y1(η) = f1(η)Y0. The second order problem is that

(A0 − λ2
0M)y2(η) = −[A1f1(η) + (A2 − λ2

2M)f0(η)]Y0 (46)

and the solvability condition leads to a partial differential eigenvalue problem connecting
f0 and λ2

2,

∇2f0 −
(M1 + M2)

2
λ2

2f0 = 0, (47)
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Fig. 8 The standing wave pattern for the two in-phase standing wave cases considered in section
3.3: stationary masses are indicated by black circles, the relative amplitude of the positive and
negative displacements follow from the eigenvector values. The larger (smaller) circles correspond
to masses M1 and M2 respectively.

where ∇2 = ∂2
1 + ∂2

2 . This PDE now completely captures the asymptotic behaviour of this
lattice structure for frequencies close to λ2

0 = 4(M1 + M2)/M1M2.
For infinite periodic systems satisfying the quasi-periodicity (Bloch) conditions, (3.1),

f0(η) = exp[i(k1η1 + k2η2)] (48)

where κ = ǫk. For the dispersion diagram in Figure 7(c) this corresponds to the behaviour
near the point labelled 2. From (3.3) the asymptotics are

λ2 ∼ 4(M1 + M2)

M1M2
− 2(k2

1 + k2
2)

(M1 + M2)
+ . . . (49)

so the behaviour is locally quadratic in the wavenumber and holds as the point 2 is
approached from either direction; these asymptotics are shown in Figure 7(c). From
symmetry, the asymptotic behaviour near the point labelled 2′ is controlled by ∇2f0 +
(M1 + M2)λ

2
2f0/2 = 0 with λ2

0 = 0. This point is where one would conventionally think of
long waves, namely where κ ∼ 0, and where classical low-frequency homogenization would
be applicable. The asymptotics near the point 2′ are readily deduced; this can be done near
all the primed points and we do not mention this again.

For λ2
0 = 4/M2 the eigenvector Y0 = (0, 0,−1, 1)T and the matrices A1 and A2 simplify

to have several zero elements. The leading order solution is that y0 = Y0f0(η), and at
first order solvability gives λ1 = 0 and (A0 − λ2

0M)y1(η) = 0 from which y1(η) = Y0f1(η)
again. Proceeding to second order gives

[A0 − λ2
0M ]y2 = −[A1f1 + (A2 − λ2

2M)f0]Y0

and from the simplified form of A2 the solvability condition gives λ2
2 = 0. Thus, for this

case we anticipate the partial differential equation that we shall deduce is of higher order
than second, and that the local behaviour for the Bloch problem near this eigenvalue will no
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Fig. 9 The standing wave pattern for, panel (a), the standing wave cases considered in section
3.4 and in panel (b) for that is section 3.5: stationary masses are indicated by black circles, the
relative amplitude of the positive and negative displacements follow from the eigenvector values.
The larger (smaller) circles correspond to masses M1 and M2 respectively.

longer be simply quadratic. The second order problem is then solved to give y2 explicitly
as

y2 = f2(η)Y0 +
M2(∂

2
1 − ∂2

2)

4(M2 − M1)
f0(η)Y2, with Y2 = (−1, 1, 0, 0)T . (50)

Proceeding to yet higher order one discovers that the matrix differential operators A3 and
A4 play no role, and at third order λ2

3 = 0, with the fourth order problem yielding a
solvability condition

YT
0 [λ2

4My0 − A2y2] = 0. (51)

The fourth order partial differential eigenvalue problem connecting f0 and the correction to
the eigenvalue as λ2

4 follows as

1

4(M2 − M1)

[

∇4f0 − 4∂2
1∂2

2f0

]

+ λ2
4f0 = 0. (52)

We now consider the infinite Bloch problem and use the Bloch conditions (3.3) from
which we get

λ2 ∼ 4

M2
− 1

4(M2 − M1)
[(κ2

1 + κ2
2)

2 − 4κ2
1κ

2
2] + . . . (53)

so the frequency dependence upon wavenumber is locally quartic and these asymptotics
are shown in Figure 7, but appear different depending upon the direction in which one
approaches the point 3. Notably along AC in the Brillouin zone, k1 = k2 and the correction
term vanishes so λ2 ∼ λ2

0 and the dispersion curve is locally flat exactly as in figure 7; this
flat curve suggests that the group velocity is zero for this range of wavenumbers and has
relevance to physical applications such as slow light (27).
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3.4 Case (ii): periodic in η1 and anti-periodic in η2

Case (iii) which is based around standing waves periodic in η2 and anti-periodic in η1

is a simple rotation of the present case, so is absorbed into this section and not treated
separately. The solution methodology follows that of case (i), however there is an interesting,
and quite different, degenerative situation whereby double eigenvalues appear and so we
treat it in detail.

The matrix A0 is now

A0 =









4 0 −2 0
0 4 0 −2
−2 0 4 0
0 −2 0 4









(54)

from which the leading order problem that defines the standing wave solutions is (A0 −
λ2

0M)y0(η) = 0 which has two double eigenvalues

λ2
0 =

2

M1M2

(

M1 + M2 ±
√

M2
1 + M2

2 − M1M2

)

(55)

and associated eigenvectors

Y
(1)
0 = (1, 0, β, 0)T and Y

(2)
0 = (0, 1, 0, β)T . (56)

The constant β is β = 2/[4−M2λ
2
0], and we use superscripts on the eigenvectors as we shall

require both of them. A schematic of one of the standing wave oscillations of the masses
is given in Figure 9 (a); the other being just a vertical translation of the one shown. We
concentrate only on the behaviour near the largest eigenvalue which comes from the positive
branch of (3.4). As the eigenvalues are multiple the leading order solution involves both
eigenvectors

y0 = f
(1)
0 (η)Y

(1)
0 + f

(2)
0 (η)Y

(2)
0 (57)

where there are now two unknown functions f
(i)
0 (η) for i = 1, 2.

The first order problem yields

[A0 − λ2
0M ]y1 = −[A1 − λ2

1M ][f
(1)
0 (η)Y

(1)
0 + f

(2)
0 (η)Y

(2)
0 ] (58)

where the matrix differential operator A1 is

A1 = −









0 0 0 2∂2

0 M1(∂1 + ∂2) −2∂2 2(∂1 + ∂2)
2∂1 2∂2 M2∂1 0
−2∂2 2∂2 0 M2∂2









. (59)

There are then two solvability equations

Y
(i)T
0 [A1 − λ2

1M ][f
(1)
0 (η)Y

(1)
0 + f

(2)
0 (η)Y

(2)
0 ] = 0 (60)

for i = 1, 2 that do not give λ2
1 = 0, as in case (i). We therefore expect the correction to
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the eigenvalue to be linear in k for the Bloch problem. The result is that we have a coupled

system of partial differential eigenvalue problems for f
(1)
0 (η), f

(2)
0 (η) and λ2

1:

λ2
1[M1 + β2M2]f

(1)
0 + 4β

∂f
(2)
0

∂η2
= 0 (61)

λ2
1[M1 + β2M2]f

(2)
0 − 4β

∂f
(1)
0

∂η2
= 0. (62)

We now turn to the Bloch, infinite lattice, problem and note that the in-phase, in η1, and
out-of-phase, in η2, conditions force

f
(j)
0 (η) = f̂

(j)
0 exp

[

i
(

k1η1 +
(

k2 +
π

2ǫ

)

η2

)]

, (63)

for some constants f̂
(j)
0 , j = 1, 2. Substitution in equations (3.4,3.4) lead to the asymptotic

dispersion relation

λ2 = λ2
0 ±

4β (κ2 + π/2)

M1 + β2M2
+ . . . (64)

that is, these are straight lines independent of k1; these asymptotics are shown in figure
7 at the point 1. From the construction of the Brillouin zone, in figure 7, κ2 actually
runs from −π/2 to 0 on BA. From the periodicity of the irreducible Brillouin zone these
asymptotics should also represent the dispersion curve at the other end of the Brillouin
zone, near point 5. However, they apparently do not. The reason is that the path taken,
BC, on the rightmost segment of the Brillouin zone has

f
(j)
0 (η) = f̂

(j)
0 exp

[

i
(

k1η1 +
(

k2 −
π

2ǫ

)

η2

)]

, (65)

and κ2 = π/2 with 0 ≤ κ1 < π/2 and so is independent of η2. Thus the first order correction
is identically zero and one must proceed to the next term in the expansion, and for this we
require A2

A2 = −











0 0 ∂2
1 0

0 M1

(

∂2

1

2 + ∂1∂2 +
∂2

2

2

)

−2(∂1∂2 + ∂2
2) 2(∂2

1 + ∂1∂2) + ∂2
2

2∂2
1 2∂1∂2 M2∂

2
1/2 0

−2∂2
2 ∂2

1 + ∂2
2 0 M2∂

2
2/2











. (66)

The solvability condition

Y
(i)T
0 [A2 − λ2

2M ][f
(1)
0 (η)Y

(1)
0 + f

(2)
0 (η)Y

(2)
0 ] = 0, (67)

for i = 1, 2, occurs from which, for this degenerate case, when the structure is locally
invariant in η2, we have the decoupled equations

2β

(M1 + β2M2)

∂2f
(j)
0

∂η2
1

+ λ2
2f

(j)
0 = 0 (68)

for j = 1, 2.
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Returning to the Bloch problem, equations (3.4) have identical coefficients and thus we
expect a single, repeated, dispersion curve rather than a pair. The local dispersion equation,
from (3.4) is thus

λ2 = λ2
0 +

2βκ2
1

M1 + β2M2
+ . . . (69)

and this is shown in figure 7 as the asymptotic result near the point 5 and explains the
single curve observed along BC (in the upper half of the figure).

3.5 Case (iv): anti-periodic in both η1 and η2

In this case the matrix A0 is simply A0 = 4I where I is the identity matrix. The leading
order problem again has two double eigenvalues

λ2
0 = 4/M1, and 4/M2

and eigenvectors with

Y0 = (1, 0, 0, 0)T , (0, 1, 0, 0)T , (0, 0, 1, 0)T , (0, 0, 0, 1)T . (70)

A schematic of one of the standing wave oscillations of the masses for these cases is given
in Figure 9 (b); the others being just vertical or horizontal translations of the one shown.
In this case most of the masses remain stationary with the pattern repeating on twice the
original elementary cell. From the symmetry inherent in the problem we need only consider
the neighbourhood of the larger eigenvalue, λ2

0 = 4/M2, in detail.
As λ2

0 is a double eigenvalue the leading order solution is

y0 = f
(1)
0 (η)Y

(1)
0 + f

(2)
0 (η)Y

(2)
0 (71)

with Y
(1)
0 = (0, 0, 1, 0)T and Y

(2)
0 = (0, 0, 0, 1)T . Moving to the next order the solvability

condition is
Y

(i)T
0 [A1 − λ2

1M ]y0 = 0 (72)

where A1 is

A1 = −









0 0 2∂1 2∂2

0 M1(∂1 + ∂2) −2∂2 −2∂1

−2∂1 2∂2 M2∂1 0
−2∂2 2∂1 0 M2∂2









. (73)

Performing the algebra in (3.5) gives λ2
1 = 0 and y1 is determined from

[A0 − λ2
0M ]y1 = −A1y0 (74)

as
y1 = f

(1)
1 (η)Y

(1)
0 + f

(2)
1 (η)Y

(2)
0 + Y

(1)
1 f

(1)
0 (η) + Y

(2)
1 f

(2)
0 (η). (75)

The first two terms are the homogeneous solution and play no further role, the last two
terms have

Y
(1)
1 =

M2

2(M2 − M1)
[∂1,−∂2, 0, 0]T ,
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Y
(2)
1 =

M2

2(M2 − M1)
[∂2,−∂1, 0, 0]T .

As λ2
1 = 0 the first correction to the eigenvalue is zero, despite there being a double

eigenvalue, and so we move to second order. The A2 matrix plays a minor role,

A2 = −











0 0 0 0

0 M1

(

∂2

1

2 + ∂1∂2 +
∂2

2

2

)

−2(∂1∂2 + ∂2
2) −2(∂2

1 + ∂1∂2)

−2∂2
1 2∂1∂2 0 0

−2∂2
2 2∂1∂2 0 0











, (76)

as the elements that would lead to it entering the calculation are all zero.
The solvability condition gives

Y
(i)T
0 A1[Y

(1)
1 f

(1)
0 + Y

(2)
1 f

(2)
0 ] − λ2

2M2f
(i)
0 = 0 (77)

for i = 1, 2 and thus the coupled partial differential eigenvalue problems

1

(M1 − M2)
[∇2f

(i)
0 + 2∂1∂2f

(j)
0 ] + λ2

2f
(i)
0 = 0 (78)

for i, j = 1, 2 and i 6= j are found connecting the f
(i)
0 with the eigenvalue correction λ2

2.
The infinite Bloch lattice in the vicinity of C now has the quasi-periodicity conditions

f
(j)
0 (η) = f̂

(j)
0 exp

[

i
((

k1 −
π

2ǫ

)

η1 +
(

k2 −
π

2ǫ

)

η2

)]

, (79)

for j = 1, 2 and f̂
(j)
0 constant. We now aim to extract the asymptotic behaviour near point

4 in figure 7. From the coupled equations (3.5) we get

λ2
2 = − 1

(M2 − M1)

[(

k1 −
π

2ǫ

)

±
(

k2 −
π

2ǫ

)]2

. (80)

Along CB κ2 = ǫk2 = π/2 and the single branch

λ2 = λ2
0 −

(κ1 − π/2)2

(M2 − M1)
(81)

is found. Along CA, κ1 = κ2, and one solution is that λ2
2 = 0 and λ ∼ λ2

0 to this order and
the corresponding curve in figure 7 is flat; this is the straight line joining points 4 and 3.
Alternatively

λ = λ2
0 −

(2κ1 − π)2

(M2 − M1)
(82)

which is the asymptotic behaviour for the curve connecting the point 4 with the point 2.

3.6 Homogenized Models

The two-scale approach we have developed leads to a variety of homogenized lattice models,
see equations (3.3), (3.3), (3.4,3.4), (3.4), and (3.5). Apart from the second-order equation
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(3.3) containing a Laplace operator, all of them take a rather sophisticated form due to
various degenerations related to the symmetries of the original discrete lattice formulation
(3.1)-(3.1).

It is worth mentioning that the derived models are valid in more general settings, than
the infinite Bloch case that we chose to illustrate the method upon, including external
transient loading. As an example, consider equation (3.3). In this case the effect of discrete
macro-scale loading may be incorporated as an inhomogeneous term ǫ4P(η), where P =
[P1, P2, P3, P4]

T , in the right-hand side of the matrix equation (3.2). Let us also take into
account transient motions satisfying the asymptotic relation

∂2f0

∂t2
− 4

M2
f0 ∼ ǫ4f0 (83)

where t is time; for transient loadings, with a broad frequency spectrum, the developed
theory describes only a part of the overall response with the variation in time given by
the last formula. The transient problem, and the subsequent treatment of the asymptotic
ordinary differential equations, is very close to that for thin plates detailed in (28, 29).

By introducing dimensional co-ordinates xi = lηi, with l denoting the distance between
masses, we finally get

l4

4(M2 − M1)

(

∂4f0

∂x4
1

+
∂4f0

∂x4
2

− 2
∂4f0

∂x2
1∂x2

2

)

+
∂2f0

∂t2
− 4

M2
f0 =

1

2M2
(P4 − P3). (84)

For a finite lattice the last equation has to be solved subject to appropriate boundary
conditions.

It is remarkable that the lattice loses its stiffness along the M2 -diagonals which coincide
with the characteristics of the hyperbolic operator in (3.6). As we have already mentioned
this results in a slow light phenomenon. We also note that the lattice governed by equation
(3.6) demonstrates a similarity with a thin elastic shell of negative Gaussian curvature
described by hyperbolic equations (e.g. (30), (31)).

To summarise, the asymptotic behaviour of this discrete system in two-dimensions is
completely characterised by continuum PDEs, valid in the neighbourhood of the standing
wave frequencies, that build in the micro-mechanics. In the special case of an infinite,
perfect, lattice one can adopt the quasi-periodic Bloch condition and cross-validate the
behaviour deduced from the PDEs with the dispersion relations for the lattice. The
asymptotics are remarkably accurate almost completely covering the dispersion diagram
shown in figure 7.

4. Concluding remarks

The asymptotic theory for lattice structures presented here allows for many generalisations
to, say, three dimensions, for localisation in two- or three-dimensions or to engineering
structures all of which will rely on understanding the behaviour of an elementary lattice
cell. In particular, many engineering structures consist of regular frames and in the case of
a discrete network of continuous strings (e.g. see (32)) this results in an infinite number
of standing modes which can be treated separately; the high frequency homogenization
technique can again be applied. In the frame structures there are several situations where
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dispersion curves become very close, or even cross, and even in those cases the asymptotic
technique still captures the behaviour.

On the cell, the masses oscillate perfectly in-phase or out-phase etc, so we can generate
an effective, homogenized, equation of the macroscale that has this behaviour in-built. This
effective equation can then be solved entirely on the macro-scale and gives a continuum
equation that has the micro-structural behaviour implicit. The localisation phenomena
that we highlight in section 2.6 clearly demonstrate this.

The square lattice, chosen as our example for two-dimensional lattices, has considerable
geometrical and physical symmetries. These lead to multiple eigenvalues occurring in
some cases and, for the infinite perfect lattice, the local behaviour for the Bloch problem
(illustrated in figure 7) is remarkably rich. In terms of spectral theory it is quite remarkable
the diversity of partial differential eigenvalue problems that emerge, these range from
decoupled second order PDEs (3.5,3.3), coupled first order PDEs (3.4,3.4) that then
degenerate requiring a higher order correction (3.4), and even fourth order PDEs (3.3).
For the Bloch problem the local dependence of frequency on wavenumber that emerges
directly from the continuum PDEs is either linear, quadratic, quartic or flat, illustrating
a wide variety of asymptotic behaviour, all of which comes naturally from the two-scales
approach that we adopt. We note that the differential matrix, and two-scales, approach that
we use is not specific, or limited, to the square lattice geometry and other lattice geometries
formed by hexagons or triangles can be treated using this formalism.

In passing we have noted that the differential eigenvalue problems, at least for the
diatomic chain lattice, equations (2.4), (2.5), are mathematically identical to those from
the asymptotic theory of high frequency long-waves in acoustic and elastic waveguides
(21, 22, 23, 24). For the long-wave high frequency behaviour in acoustic or elastic
waveguides the wave itself is very close to the cut-off frequency and is almost in transverse
thickness resonance; thus, although the frequency may be high, the wavelength remains very
long. For the lattice structure, the standing waves are playing the role of the transverse
thickness resonance in the waveguide. Across the elementary cell the standing waves can
occur at high frequencies and if we consider the phase shift from one cell to another this
varies slowly and if we define a Bloch wavelength relative to the Bloch wavenumber then it
is long even though the frequency is high. Thus one can draw parallels between these two,
apparently quite different, physical situations.

The analysis of localization phenomena for lattices is also similar to that occurring in
the high frequency long-wave waveguide theory. Localization is possible in waveguides due
to variation in guide curvature, thickness, material properties or nonlinear effects. In the
latter case, we can therefore draw on the analogy for discrete lattices and anticipate that
extra effects such as weak nonlinearity in the strings will lead to localization in a similar
manner to that employed by (33) for nonlinearity in elastic waveguides.

The two-scales asymptotic approach, in conjunction with building in the standing wave
behaviour on the elementary lattice cell, breaks free from the usual long-wave low-frequency
homogenization approach and enables us to move to high frequencies. We anticipate that
this approach, also valid in continuous periodic systems with a mismatch in scales (17), will
allow us to investigate and model micro-mechanical systems on the macroscale in parameter
regimes previously inaccessible.



24 R. V. Craster, J. Kaplunov and J. Postnova

Acknowledgements

RVC thanks NSERC (Canada) for support through the Discovery Grant Scheme. JK thanks
the University of Alberta for its hospitality and support, during the period whilst this
research was carried out, under the Visiting Scholar program. Support from the EPSRC
(UK) under grant EP/H021302 is also gratefully acknowledged.

References

1. C. Kittel, Introduction to solid state physics, 7th Edition, John Wiley & Sons, New
York, 1996.

2. L. Brillouin, Wave propagation in periodic structures: electric filters and crystal lattices,
2nd Edition, Dover, New York, 1953.

3. L. J. Gibson, M. F. Ashby, Cellular solids: structures and properties, 2nd Edition,
Cambridge University Press, Cambridge, 1997.

4. P. G. Martinsson, A. B. Movchan, Vibrations of lattice structures and phononic band
gaps, Q. Jl. Mech. Appl. Math., 56 (2003) 45–64.

5. J. S. Jensen, Phononic band gaps and vibrations in one- and two-dimensional mass-
spring structures, J. Sound Vib. 266 (2003) 1053–1078.

6. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic Crystals,
Molding the Flow of Light, 2nd Edition, Princeton University Press, Princeton, 2008.

7. E. Yablonovitch, Photonic crystals: semiconductors of light, Scientific American 285

(2001) 34–41.
8. F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, D. Felbacq, Foundations

of photonic crystal fibres, Imperial College Press, London, 2005.
9. A. B. Movchan, N. V. Movchan, C. G. Poulton, Asymptotic Models of Fields in Dilute

and Densely Packed Composites, ICP Press, London, 2002.
10. S. D. M. Adams, R. V. Craster, S. Guenneau, Bloch waves in periodic multi-layered

waveguides, Proc. R. Soc. Lond. A 464 (2008) 2669–2692.
11. A. S. Phani, J. Woodhouse, N. A. Fleck, Wave propagation in two-dimensional periodic

lattices, J. Acoust. Soc. Am. 119 (2006) 1995–2005.
12. A. A. Maradudin, Some effects of point defects on the vibrations of crystal lattices, Rep.

Prog. Phys. 28 (1965) 332380.
13. A. B. Movchan, L. I. Slepyan, Band gap Green functions and localised oscillations, Proc.

R. Soc. Lond. A 463 (2007) 2709–2727.
14. K. B. Dossou, L. C. Botten, R. C. McPhedran, A. A. A. abd C. Martijn de Sterke,

Gap-edge asymptotics of defect modes in two-dimensional photonic crystals, Optics
Express 15 (2007) 4753–4762.

15. S. Mahmoodian, R. C. McPhedran, C. Martijn de Sterke, K. B. Dossou, C. G. Poulton,
L. C. Botten, Single and coupled degenerate defect modes in two-dimensional photonic
crystal band gaps, Phys. Rev. A 79 (2009) 013814.

16. P. A. Martin, Discrete scattering theory: Green’s function for a square lattice, Wave
Motion 43 (2006) 619–629.

17. R. V. Craster, J. Kaplunov, A. V. Pichugin, High frequency homogenization for periodic
media, to appear Proc R Soc Lond A http://dx.doi.org/10.1098/rspa.2009.0612.

18. V. L. Berdichevski, Variational principles of continuum mechanics, Nauka, Moscow,
1983, in Russian.



asymptotics, homogenization and localization for lattices 25

19. J. D. Kaplunov, L. Yu. Kossovich, E. V. Nolde, Dynamics of Thin Walled Elastic Bodies,
Academic Press, New York, 1998.

20. K. C. Le, Vibrations of shells and rods, Springer, Berlin, 1999.
21. D. Gridin, R. V. Craster, A. T. I. Adamou, Trapped modes in curved elastic plates,

Proc R Soc Lond A 461 (2005) 1181–1197.
22. J. D. Kaplunov, G. A. Rogerson, P. E. Tovstik, Localized vibration in elastic structures

with slowly varying thickness, Quart. J. Mech. Appl. Math. 58 (2005) 645–664.
23. D. Gridin, A. T. I. Adamou, R. V. Craster, Electronic eigenstates in quantum rings:

Asymptotics and numerics, Phys Rev B 69 (2004) 155317.
24. J. Postnova, R. V. Craster, Trapped modes in elastic plates, ocean and quantum

waveguides, Wave Motion 45 (2008) 565–579.
25. L. Infeld, T. E. Hull, The factorization method, Rev. Modern Phys. 23 (1951) 21–68.
26. V. V. Zalipaev, A. B. Movchan, I. S. Jones, Waves in lattices with imperfect junctions

and localized defect modes, Proc. R. Soc. Lond. A 464 (2008) 2037–2054.
27. R. V. Craster, S. Guenneau, S. D. M. Adams, Mechanism for slow waves near cutoff

frequencies in periodic waveguides, Phys. Rev. B 79 (2009) 045129.
28. J. Kaplunov, E. Nolde, G. A. Rogerson, An asymptotic analysis of initial-value problems

for thin elastic plates, Proc. R. Soc. Lond. A 462 (2006) 2541–2561.
29. E. Nolde, Qualitative analysis of initial-value problems for a thin elastic strip, IMA J.

Appl. Math 72 (2007) 348–375.
30. A. L. Goldenveizer, Theory of elastic thin shells, Pergamon Press, Oxford, London, New

York, Paris, 1961, transl. from Goldenveizer, A. L. (1953) Teoriia uprugykh tonkikh
obolochek, Moscow: Gostekhteoretizdat. In Russian.

31. D. Caillerie, A. Raoult, E. Sanchez-Palencia, On internal and boundary layers
with unbounded energy in thin shell theory. hyperbolic characteristic and non-
characteristic cases, Asymptotic Analysis 46 (2006) 189–220.

32. E. Nolde, R. V. Craster, J. Kaplunov, Dynamic high frequency homogenization for
periodic nets, under review (2010).

33. J. Kaplunov, E. Nolde, An example of a quasi-trapped mode in a weakly non-linear
elastic waveguide, Comptes Rendus Mecanique 336 (2008) 553–558.


