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Abstract 
Vibrating tube densimeters are well-established tools for measuring fluid densities precisely at 
elevated temperatures and pressures. However, the conventional method of calibrating them 
utilises a model in which the apparatus parameters are represented as polynomials of temperature 
and pressure that contain a variable number of terms. Here a robust, physically-based model is 
presented and demonstrated for six different instruments at temperatures from (273 to 473) K, 
pressures from (0 to 140) MPa and densities from (0 to 1050) kg m-3. The model’s physical basis 
ensures that only seven apparatus parameters are required to relate the measured resonant period 
to fluid mass density with an average r.m.s. deviation of ±0.23 kg m-3 across all six densimeters. 
Estimates for each of the apparatus parameters were made based on the geometry and material 
properties of the vibrating tubes, and these estimates were consistent with the parameter values 
determined by calibration with reference fluids. Three of the apparatus parameters describe the 
temperature dependence of the resonant period: for the six vibrating tubes tested, the relative 
standard deviations of these parameters were all within the range of values estimated from the 
thermoelastic properties of the Hastelloy tubes. Two distinct parameters are required to describe 
the pressure dependence of the vibrating tube’s volume and effective spring constant, both of which 
are estimable from equations describing the elastic deformation of thick-walled tubes. The extensive 
calibrations conducted demonstrate that, for these densimeters, the variations with pressure of the 
tube’s spring constant and its volume have a ratio that is neither 0 nor 1, as has been assumed 
previously. The model’s physical basis allows vibrating tube densimeters to be calibrated accurately 
using fewer reference fluid measurements than required by the conventional method. Furthermore, 
use of the physically-based model reduces the uncertainty of measurements made at densities, 
temperatures or pressures beyond the range of the calibration.  
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Introduction 
Vibrating tube densimeters (VTDs) have been used widely for over 30 years to determine the density 
of fluids, with many designs reported in the literature for operation at high pressures and 
temperatures1. Several commercial suppliers provide vibrating tube densimeters to many industries 
for multiple applications (e.g. refs. 2 and 3) because they provide a rapid and robust means of 
measuring the density of a wide range of gases and liquids. The precision achievable with a VTD is 
excellent and can often be limited by the ability to control the temperature, pressure or composition 
of the sample: typically densities can be measured with a precision of ±0.01 kg m-3, which for 
aqueous liquids corresponds to a relative precision of 10 parts per million.1 

In general a VTD consists of a hollow tube that has been bent into a ‘U’ or ‘V’ shape and which, for 
purposes of making a measurement, is filled with the fluid sample of interest. The U shape allows 
the tube’s fundamental bending mode to be excited and monitored using wire-coil electromagnets 
mounted on or near the tube1.  Measurement of the VTD’s resonance period, τ, can be related to 
the mass density of the fluid, ρF, contained within the tube at pressure, p, and temperature, T, by 
means of the relation 

2( , ) ( , ) ( , )F p T A p T B p Tρ τ= − .      (1) 

Here, A and B are apparatus parameters specific to the VTD being used, which vary with 
temperature and pressure and which must be determined by calibration through measurements of 
the resonance period when the VTD is evacuated and/or filled with reference fluids. Such relative 
density measurements are conducted in one of two ways. Either the reference calibration fluid is 
used to determine the values of A and B at (almost) exactly the same (p, T) condition at which the 
sample fluid’s density is to be determined as described, for example, by Morrison and Ward.4 
Alternatively calibration measurements are made with the reference fluid over a range of conditions 
to establish how A and B vary with pressure and temperature sufficiently well, so that the sample 
fluid density can be determined reliably over a similar (but not identical) range of conditions. Both 
approaches require that the apparatus parameters are sufficiently stable that they do not change 
over the time between calibration and sample measurement; however this requirement is more 
stringent for the latter approach if it is to be useful. For many applications and VTDs this 
requirement is met, in which case the second approach can significantly reduce amount of time and 
effort spent calibrating the VTD if sample measurements need to be measured over a wide range of 
pressures and temperatures. Of course, in such cases the stability of the calibration should be 
checked sufficiently often to ensure that inadvertent changes in the apparatus parameters have not 
occurred, particularly if the sample fluids are chemically aggressive or able to deposit solids. 

Ideally, the calibration measurements used to determine A(p,T) and B(p,T) should cover a range of 
temperature, pressure and reference fluid density that encompasses the intended range of 
conditions to be measured for the unknown fluid. Under those circumstances, the particular model 
used for the (p,T) dependence of the apparatus parameters is not critical as long as it varies 
smoothly over the calibrated range because it is being used for interpolation. As suggested by a 
leading manufacturer,5 power series expansions in temperature and pressure are a common choice 
for the functional forms of A(p,T) and B(p,T): 
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Here, t = T - T0, where T0 is a reference temperature (which if chosen to be 273.15 K makes t the 
temperature in °C), and the coefficients a ij and b ij are determined by regression of Eq. (1) to the 
reference fluid densities. There are some problems with this approach, however, such as 
determining the values of n, m, N and M, which determine the highest order dependencies on 
pressure and temperature. In addition, it can be difficult to establish whether all the terms in these 
equations are necessary. The extent of the summations is related to the (p, T) range over which the 
calibration is conducted, and statistical tests can help identify significant and correlated terms. 
However, these guiding considerations can only be of assistance so far because, for example, 
statistical tests cannot adequately resolve whether a linear pressure dependence should be included 
in both A and B, just B, or just A.  

Furthermore there are circumstances, such as the measurement of brine densities6,7, for which 
appreciable extrapolation of the model used to describe the VTD is required beyond the range of the 
typical reference fluid (water) calibration. In that case, if the data being measured are to be 
converted to accurate densities, it is vital to ensure the apparatus model and the parameters therein 
are well linked to quantities that are representative of the VTD’s physical properties. Thus, while use 
of Eqs. (2) and (3) can be sufficient for interpolation, such an approach is far from ideal in a general 
sense because (a) any extrapolation has limited reliability, (b) extensive/excessive calibrations with 
reference fluids are required, (c) the parameters aij and bij are not readily linked to physical 
properties of the apparatus, and (d) it can be difficult to determine whether or not the model is over 
parameterised.  Accordingly it would be desirable to develop an alternative model of a VTD 
apparatus in which the parameters determined by regression could be directly compared with, or 
even constrained to, physically reasonable values. 

Many models have been proposed in the literature for the temperature and pressure dependence of 
the VTD apparatus parameters. None of these, however, have been tested over the wide range of 
conditions considered in this work, namely pressures to 140 MPa and temperatures from 273 to 
473 K. In 1992 Lagourette et al.8 and Sousa et al.9 independently described methods for calibrating 
VTDs supplied by Anton Paar, including the model DMA 512 which is a stainless steel VTD operable 
at pressures to 40 MPa and temperatures to 423 K. These calibration methods involved the 
determination of the evacuated tube’s resonance period as a function of temperature and the use of 
an assumption regarding the pressure dependence of A or B, which was informed by a physical 
model of the vibrating tube. In one method8, only B was assumed to vary (linearly) with pressure 
whereas in the second method8,9 A and B were assumed to have the same pressure coefficient so 
that the ratio A/B was independent of pressure. Lagourette et al.8 found the first method resulted in 
a calibration that represented the reference fluid densities slightly better, although the second 
method has a more physical basis (as will be seen below). 
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Chang and Moldover10 presented a custom VTD that could be operated at temperatures to 573 K 
and pressures to 20 MPa, which they calibrated by monitoring the third harmonic of the tube under 
vacuum and when filled with water. The novel use of the third harmonic eliminated the need for a 
large counter mass upon which the tube is normally mounted in commercial apparatus to help filter 
external vibrations. Instead of A and B in Eq. (1), the calibration function used by Chang and 
Moldover10 was expressed in terms of a spring constant k = A/B and tube volume v = B. The spring 
constant was assumed to be independent of pressure and its temperature dependence was 
represented by a fourth-order polynomial, while the tube volume was assumed to vary linearly with 
pressure and as a cubic function of temperature. The assumptions made regarding pressure 
dependence of the parameters were consistent with the second method described by Lagourette et 
al.8 and Sousa et al.9 although many more parameters were used to describe empirically the 
temperature variation of the apparatus parameters given the much wider range of operating 
temperature. 

Holcomb and Outcalt 11 presented a framework for a physically-based model of the VTD, which was 
intended to link the elastic and thermal properties of the tube material together with its geometry 
to the parameters A and B. However, the results they presented used a quadratic function of 
temperature only for A and represented B as a linear function of temperature and pressure; 
moreover none of the parameter values determined by calibration were presented or compared 
with the tube’s elastic, thermal or geometrical properties. In addition, when deriving their 
justification of the polynomials used in the calibration function only ‘first order’ terms were retained 
as was needed to cover the range 0 < t < 150 C, p < 14 MPa. For the purpose of calibrating a VTD, 
Holcomb and Outcalt11 measured resonance periods under vacuum and for two reference fluids over 
the range of conditions. 

Bouchot and Richon12 reviewed the array of methods and functions used to calibrate VTDs, 
presented a more extensive theoretical analysis of the calibration function, and recommended a 
calibration procedure that utilised measurements of vacuum and a single reference fluid at the same 
temperature as the intended sample measurements. The framework utilised by Bouchot and 
Richon12 was similar to that presented by Holcomb and Outcalt11 but it retained more terms, and 
allowed the pressure dependence of the tube’s volume to be calculated from the elastic and 
geometrical properties of the tube. The final model contained only two unknown parameters that 
were both determined at constant temperature: the resonance period of the evacuated tube and a 
pressure distortion coefficient for the tube’s length. The variation with pressure of the tube’s 
internal radius was calculated using an elastic model. When converted to the form of Eq. (1), the 
physically-based model of Bouchot and Richon12 meant that A and B had linear pressure coefficients 
that were both non-zero and similar but slightly different.   

The calibration procedure used by Bouchot and Richon12,13 required that each time the VTD 
temperature was changed, the vacuum resonance period and tube length pressure distortion 
coefficient were re-determined because the thermal variation of the apparatus parameters was not 
sufficiently repeatable. Only a single reference fluid was needed to determine the pressure 
dependence of the apparatus at each temperature because, effectively, relationship between the 
variation of the A and B with pressure was constrained through the use of the elastic model. 
Bouchot and Richon12 demonstrated the performance of their model and it compared with others 
presented previously in the literature by using an Anton Paar DMA 512 to measure N2, water and a 
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refrigerant over the temperature range 253 to 333 K and at pressures to 40 MPa. Their results 
indicated that while for this particular VTD the variation of the vacuum resonance period with 
temperature could be reasonably well predicted, its drift with time and/or thermal cycling meant 
that (re-)calibration at each temperature prior to sample measurement was necessary to achieve the 
smallest uncertainty possible.  

Despite the analysis of Bouchot and Richon12,  Lampreia and Nieto de Castro14 reverted to the model 
of Sousa et al.9 in which only the tube volume (or B) depends on pressure, motivated by the desire to 
eliminate any pressure dependence of the vacuum resonance period. This ignores the fact that 
pressure-induced changes in the tube’s geometry result in a variation of the tube’s spring constant 
and, thus, causes the isothermal vacuum resonance period to (effectively) vary with pressure.  
Lampreia and Nieto de Castro14 also stated that vacuum resonance periods could not be measured 
directly with sufficient accuracy because the necessary low pressures could not be achieved in the 
vibrating tube. Their demonstration of this point, however, relied on the assumption that the VTD 
spring constant does not depend on pressure. Accordingly they recommended the use of two 
reference liquids at ambient pressure to determine vacuum resonance period at a given 
temperature, together with additional measurements of a reference liquid over the (p,T) 
measurement range to determine the variation of the tube’s volume with temperature and 
pressure. Lampreia and Nieto de Castro14 applied their calibration method to data measured with a 
DMA 512 at T = 298.15 K and at pressures from (0.1 to 30) MPa, and also to data measured over the 
ranges (283 < T / K < 323, 0.1 < p / MPa < 60) with the DMA 512P used by Romani and co-workers15.  

Romani and co-workers15 themselves used a model for the VTD based on the analysis of Bouchot 
and Richon12 . However, because they aimed to measure high-density ionic liquids they used three 
calibration fluids with densities between (700 and 1600) kg∙m-3 to determine the apparatus 
parameters at each temperature as small deviations from the linearity between ρF and τ2 implied by 
Eq. (1) can become apparent over sufficiently large density range. As shown by Kayukawa et al. 16,  
for example, the mass ratio of the vibrating tube to its attached counter weight determines the 
extent of the non-linearity. Kayukawa et al. 16 described a specialised apparatus in which a DMA 512 
was removed from its normal mounting and attached to a 5.5 kg counter weight suspended by 
springs. The system had a mass ratio of 0.003; the corresponding non-linearity causes a systematic 
error of less than 0.1 kg m-3 for densities below 1100 kg m-3 which increases to more than 0.3 kg m-3 
by 1500 kg m-3. To determine this mass ratio and calibrate the VTD, Kayukawa et al. 16 also used two 
reference liquids at ambient conditions (water and isooctane) together with measurements of water 
over the temperature and pressure range of interest.  

In this work we present an apparatus model for VTDs, developed by extending the framework 
presented Holcomb and Outcalt,11 that is similar in several respects to the model presented Bouchot 
and Richon12. However, the model presented here does not require determination of apparatus 
parameters at each measurement temperature and, furthermore, we demonstrate its validity for six 
VTDs (labelled VTD-1 to VTD-6) over the range 0 < t < 200 °C, p < 140 MPa. All of these VTDs were 
Hastelloy (HC-276) DMA HP or DMA HPM models supplied by Anton Paar, three of which were rated 
to 140 MPa and three of which were rated to 70 MPa. These VTDs were developed more recently 
than the DMA 512 models and, based on the consistency of the apparatus parameters determined 
by reference fluid calibrations, appear to be significantly more stable with time and/or uniform 
across several different vibrating tubes. The theoretical framework developed allows the apparatus 
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parameters to be predicted from the material properties of HC-276 and some limited information 
about the geometry of the vibrating tubes. These predictions are in good agreement with the values 
obtained by calibration. We demonstrate that the linear pressure coefficients of A and B are similar 
but slightly different, and that for these six VTDs the ratio of these pressure coefficients has a 
consistent value. We conclude by considering the minimum number of measurements and reference 
fluids required for calibration and the likely uncertainty increase associated with extrapolation of the 
model. 

Physically-based Model 
The framework presented by Holcomb and Outcalt11 was based on an analysis of a vibrating rod for 
which the equation of motion is 

4
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Here, Y is the vertical displacement of the tube/rod at position Z,  Y is the second time derivative of 
the vertical displacement, and  E, I and ρR are the tube’s Young’s modulus, moment of inertia and 
mass density, respectively. For a tube of length L, the boundary conditions  

(0) ( ) 0Y Y L= =  and      (5) 
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give rise to the eigenvalue equation that determines the resonance condition 

cos( )cosh( ) 1 0n nk L k L − =      (7) 

where kn is an eigenvalue with k1  ≅ 4.73004. Solutions to this equation correspond to the resonance 
condition of the vibrating tube/rod, with the resonance frequency of the nth mode given by 
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The resonance period of the fundamental mode, τ, can be expressed in terms of the mass of the 
evacuated tube, m0, its internal volume, V i, and the density of the fluid it contains, ρF. 
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By re-arranging this equation to make it explicit in the fluid density 
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 and by defining a vacuum resonance period, τ0,   
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with τ00 being the vacuum period at the reference temperature t = 0  °C. Equation (12) indicates that 
the measurement of squared period ratios provides a quantity that is linear with ρF and that the 
temperature and pressure dependence of the VTD apparatus is set by the variation of E with t, and 
the change in V i, L and I with t and p, respectively. It is therefore helpful to define the following 
functions and coefficients to describe the variation of these geometric and material properties of the 
tube with temperature and pressure   

( )2
0 1 21E E t tε ε= + +  ,      (13) 
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0
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Mm
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ρρ = = .       (17) 

In equations (13) - (17), ρM is the density of the material from which the tube wall is made, S is a 
dimensionless measure of the VTD’s sensitivity (as discussed further below), and the subscript “00’ 
denotes the value of the property when the tube is evacuated and at the reference temperature t = 
0 °C; the single subscript “0” used with E refers to the reference temperature only because the 
Young’s modulus is assumed not to vary with pressure. We consider only a linear variation with 
pressure for I, L and V, quantified by the corresponding pressure response coefficients, β, but have 
retained terms to second order in temperature. The temperature and pressure response coefficients 
for I, L and V are related by geometry and can be re-expressed in terms of common, underlying 
coefficients. For example  
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where r denotes the internal radius and R the external radius of the tube. Consequently, 
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which gives 
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The compound pressure coefficients β I and βV can be expressed in terms of the pressure coefficients 
associated with the tube’s linear dimensions: radii r and R and length L. From Eq. (19) we have 
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and, since the vibrating tube is a cylinder, we have 

2V r Lβ β β= +          (23) 

The values of β r and β L can be estimated from expressions derived from standard elastic theory to 
describe the expansion of a tube subject to an internal pressure 17. Holcomb and Outcalt11 assumed 
thin-walled open tubes were most appropriate but as mentioned by Bouchot and Richon12 the ratio 
of the VTD’s wall thickness to internal radius does not meet the criterion of < 0.1, so thick-walled 
formulae should be used. It is less clear whether the deformation formulae used should be for an 
open or closed cylinder, although based on the results presented below the latter appears to be a 
better description. A similar approach can be followed for the estimation of βR; however there is 
some ambiguity here because the mechanical constraints associated with the tube’s mounting mean 
that its outer radius is unlikely to be able to deform freely or in a simple manner, as is assumed in 
the derivation of the standard formula. 

Two quantities characterise how much the resonance period varies in response to the VTD being 
loaded with a fluid of given density: the density of the tube wall material and the ratio of the tube’s 
external and internal radii. The larger the value of ρM, the less sensitive the VTD, while the larger the 
value of sensitivity parameter, S00, which may be estimated via 

2
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00 2 2
00 00

rS
R r

=
−

,        (24) 

the greater the instrument’s response. In deriving the Eq (24) from Eq (17) it was assumed that the 
tube’s length is long in comparison with its wall thickness. The precise quality of this approximation 
is not particularly important, however, as the main purpose of S00 is to provide a relative measure of 
the sensitivities of different VTDs made from the same material. Eq (24) is useful if the objective is to 
estimate R00 and, ultimately, an absolute value of τ00. However, in general this is not necessary for 
fluid density measurements with VTDs.   
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Comparison of the magnitudes of the thermal coefficients in Eq (21) allows further simplification 
without significant loss of generality. For Hastelloy HC-27618 and stainless steel SS31619, |ε1 / α1| > 
10, |ε2 / α2| > 100, and |α1 / (α1

2+α2)| > 1000. These ratios suggest that any second order variation 
with temperature should be retained only for terms involving the tube’s elastic properties. 
Furthermore, since the elastic properties only vary with temperature and their variation is manifest 
in the vacuum resonance period which can be measured directly over the temperature range of 
interest, it is convenient to represent τ0 empirically as a quadratic function of temperature. These 
considerations lead to the following, seven parameter model which we recommend for wide-ranging 
calibrations of VTDs.  

( )
( ) ( ) ( )

2

00
2

00 1 2

1 1
1 1

M
F

V V

S
p

t p t t τ
τ τ

ρ τρ β
α β τ ε ε

  
  = + −  + + + +   

       (25) 

A summary and description of the seven apparatus parameters used in this model and how they 
might be determined is given in Table 1.  

Table 1. Summary of the seven VTD apparatus parameters used in Eq. (25) and a description of how each 
might be determined. 

Symbol Parameter Determined from 

S00 
Geometric sensitivity factor of evacuated 

tube at reference temperature 
Reference fluid measurements  

(set by tube’s radius and wall thickness) 

00τ  Resonance period of evacuated tube at 
reference temperature Vacuum measurements 

1τε  Linear temperature response coefficient 
of spring constant 

Vacuum measurements or material properties 
estimates 

2τε  Quadratic temperature response 
coefficient of spring constant 

High temperature vacuum measurements or 
material properties estimates 

τβ  Pressure response coefficient of spring 
constant High pressure reference fluid measurements 

Vα  Linear temperature response coefficient 
of tube volume 

Reference fluid measurements or material 
properties estimates 

Vβ  Pressure response coefficient of tube 
volume High pressure reference fluid measurements 

The use of seven adjustable parameters within an apparatus model may at first sight give cause for 
concern in terms, for example, of parameter correlation and/or the ability to determine all seven 
simultaneously via non-linear regression against reference fluid data. Importantly, however, the 
parameters can and should be determined in two separate sub-groupings from independent sets of 
measurements. The three parameters describing the vacuum resonance and its variation with 
temperature, τ00, ετ1, and ετ2 are determined by linear least squares regression to data measured 
with the evacuated VTD. Consequently it is then only necessary to determine four parameters by 
non-linear regression to reference fluid data measured at high pressure and over the same 
temperature range. Additionally, as we show in the following sections, it is possible to estimate and 
even constrain some of the parameters values and thereby further reduce the number of 
parameters requiring adjustment in the non-linear regression. In principle the number of parameters 
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could possibly be reduced further because, as shown by Ledbetter20, there is a relationship between 
a solid’s coefficient of thermal expansion and its modulus of elasticity. Romani and co-workers15 
described the variation of the VTD’s modulus of elasticity with a semi-empirical function containing 
Einstein-type exponentials that potentially might be a better representation of the elastic theory of 
solids. However, we retain the use of a quadratic function to represent the impact of E and its 
temperature dependence on τ0 because (i) it has the same number of parameters as the semi-
empirical Einstein function, and (ii) the quadratic parameters are simply obtained from linear 
regression to vacuum resonance period data. 

The physically-based model shown in Eq. (25) is related to the conventional apparatus parameters, A 
and B in Eq. (1) via the following relations: 
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2 2
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1

1
V Vt p

A
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τ τ
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+ + +
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( )00 1 V VB t pρ α β= + + .      (27) 

Independent Physical Estimates of VTD Parameter Values 
Six of the seven parameters in Table 1 can be estimated independently from knowledge of the VTD’s 
material properties and either of the following pairs of geometric properties [r00  and L00] or [r00 and 
V00]. To determine S00, however, either the empty tube’s mass must also be known or the VTD’s 
sensitivity must be measured; this could be done, for example, at ambient conditions using a 
reference fluid such as water. As shown in Figure 1, ρM  and S00 determine the slope of the VTD’s 
linear relationship between the fluid density and the squared ratio of the tube’s resonance periods 
when fluid-filled and evacuated: the larger ρM/S00, the less sensitive the instrument.    

 

Figure 1. Sensitivities of the two types of VTD used in this work, determined by plotting the equation of state 
density, ρEOS, of the reference fluid within the tube against the squared ratio of the resonance period to the 

1200

1000

800

600

400

200

0

ρ E
O

S
 / 

kg
 m

-3

1.151.101.051.00
(τ / τ0)

2

 VTD-4
 VTD-1

( )VTD-1 3
00 16.1 g cmM Sρ −≈

( )VTD-4 3
00 5.8 g cmM Sρ −≈

VTD-1
00 0.552S ≈

VTD-4
00 1.53S ≈

10 
 



vacuum resonance period, (τ/τ0). The slopes of these linear responses determine the sensitivity parameter S00, 
with VTD-1 (pressure rating of 140 MPa) being 2.8 times less sensitive than VTD-4 (pressure rating of 70 MPa). 

From Figure 1 it is clear that VTD-1, which was rated for operation at pressures to 140 MPa, was less 
sensitive than VTD-4, which was only rated for operation at pressures to 70 MPa. If this measured 
sensitivity is combined with knowledge of the tube’s internal radius and volume then it is possible to 
estimate τ00. The manufacturer of the VTDs21 provided the following information about the 
Hastelloy VTDs used in this work: all had r = 1.29 mm and V i = 0.86 cm3. By assuming the tube’s 
internal volume is geometrically equivalent to that of a cylinder, these values correspond to an 
effective tube length of 16.5 cm. Using a standard value for the density of Hastelloy 18, Eq (24) can be 
used to provide an estimate of the tubes external radius, R, and therefore its empty mass.  As shown 
in Table 2 for VTD-1 and VTD-4, this in turn allows the tube’s moment of inertia to be determined, 
and when combined with Young’s modulus for Hastelloy18, an absolute value of τ00 to be estimated.   

Table 2. Estimates for the two types of VTDs used in this work of the empty tube mass m0, external radius R, 
moment of inertia I, and vacuum resonance period made using the material properties of Hastelloy, 
manufacturer-specified values of the tube’s internal radius and volume, and the measured parameter S00. 

 VTD-1 VTD-4 
S00 0.552 1.53 

m0 / g 13.9 4.95 
ρHastelloy / g cm-3 8.89 8.89 

R / mm 2.16 1.66 
I / mm4 15 3.7 

EHastelloy / GPa 205 205 
τ00 / µs 1256 1508 

 

The measured values of τ00 for VTD-1 and VTD-4 are 2566 µs and 2439 µs, respectively, which are 
within a factor of two of the values calculated in Table 2. This level of agreement is reasonable 
considering that the predicted values of the vacuum resonance period made using Eq. (11) are very 
sensitive to the specified tube length or, equivalently, volume. The measured values of τ00 
correspond to V i = 1.23 cm3 and 1.09 cm3 for VTD-1 and VTD-4, respectively.  

Of more importance to fluid density measurements are estimates of the apparatus temperature and 
pressure dependence. Comparison of equations (21) and (25) indicates that the temperature 
dependence of the apparatus is determined by the tube material’s linear coefficient of thermal 
expansion and the temperature dependence its Young’s modulus. Specifically, the thermal 
parameters in eq. (25) can be related to these material properties as follows: 

( )1 1 1
1 2 2τ

α ε εε
− + −

= ≅         (28) 

( ) ( )2 2 1 1 2 1 1 HC-276 2
2 22 2 2τ τ

ε α ε α ε ε α εε ε
− + + − + −

= ≅ → ≅     (29) 

13Vα α≅           (30) 
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Equations (28) and (29) indicate that the apparatus parameters ετ1 and  ετ2  (for HC-276) correspond 
to (-1/2) times the coefficients describing the temperature variation of the material’s modulus of 
elasticity. This is a consequence of the choice to express the VTD spring constant’s temperature 
dependence within the denominator of eq. (25); this choice is made because allows ετ1 and  ετ2 to be 
determined directly from linear least squared regression of vacuum period measurements made 
over a wide temperature range. Values of the apparatus temperature dependence parameters αV, 
ετ1 and  ετ2  for predicted for the Hastelloy tubes used in this work are listed in Table 3. 

To predict the values of βτ and βV in eq. (25), it is necessary to evaluate the pressure coefficients β r, 
βL, and βR shown in eqs (22) and (23) for the key tube dimensions, r, L, and R. This can be done using 
elastic theory and the following formulae for closed, thick-walled tubes17.  

( ) ( )2 2

2 2

1 1 21
r

R r
E R r

ν ν
β

 + + −
=   − 

     (31) 

( )2

2 2

1 21
L

r
E R r

ν
β ν

 −
=   − 

      (32) 

Here υ is Poisson’s ratio, which for HC-276 is 0.307 18. The volume pressure dependence parameter 
βV can then be evaluated using eq. (23). To estimate the pressure dependence of the spring 
constant, βτ, the variation of the tube’s outer radius with internal pressure must be estimated. For 
βR there is some ambiguity regarding the most appropriate expression to use for its deformation 
because the tube’s outer boundary must be subject to some constraint (likely at its ends) given that 
it is supported but it cannot be considered completely constrained either given that it is able to 
vibrate. For the purpose of predicting a physically reasonable value of βR, one approach to dealing 
with this ambiguity is to evaluate the two limiting cases: 

( )2

2 2

210  or  R R

r
E R r

ν
β β ν

 −
= =   − 

     (33) 

In Eq. (33), the external radius is completely constrained in the first case and completely 
unconstrained in the second. Using values for β r, β L, and βR calculated using eqs. (31), (32), and (33), 
respectively, the spring constant’s pressure dependence is given by 

( )4 4
00 00

4 4
00 00

4
3R r

L

R r
R rτ

β β
β β

−
= −

−
 .     (34) 

Values for the pressure dependence coefficients are also listed in Table 3 for VTD-1 and VTD-4, 
where the two limiting cases for the constraint on the deformation of the tube’s external radius of 
have been used to establish the range over which βτ could be expected to vary.  
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Table 3. Predicted values for the apparatus temperature and pressure dependence coefficients evaluated 
using equations (23) and (28)-(34) for VTD-1 and VTD-4 based on their geometry and material properties. The 
two limiting cases shown in eq.(33), corresponding to complete or no constraints on the external radius’ 
deformation, were used to provide bounds on the spring constant’s pressure dependence, βτ. 

 105 βτ / MPa-1 105 βV / MPa-1 106 αV /3 K-1 106 ετ1 / K-1 108 ετ2 / K-2 
VTD-1, R unconstrained 1.2 3.3 12 130 6 VTD-1, R constrained -0.95 
VTD-4, R unconstrained 2.7 5.7 12 130 6 VTD-4, R constrained -5.2 

 

Results 
Apparatus parameters for the three densimeters, VTD-1, VTD-2, and VTD-3, each with a maximum 
pressure rating of 140 MPa, were determined by calibrations in which their resonance periods were 
measured under vacuum and/or using a combination of reference fluids over a wide range of 
temperature and pressure. The seven parameters in eq. (25) were determined in two stages. First 
τ00, ετ1, and ετ2 were determined by linear least squares regression of vacuum resonance periods 
measured at various temperatures. For VTD-1, the (t, τ0) data were measured directly, whereas for 
VTD-2 and VTD-3 the value of τ0 at each temperature was determined by extrapolating high-
pressure helium measurements to zero pressure (as described below). In the second stage the 
remaining 4 parameters were determined by non-linear regression of resonance periods measured 
with the VTD filled with reference fluids to densities calculated from the experimental pressure and 
temperature using the reference equation of state for those fluids,22,23,24,25 all of which were 
implemented in the software REFPROP 9.0 26. For each data point used in the second stage, the 
measured temperature was used together with the values of τ00, ετ1, and ετ2 determined in the first 
stage to evaluate the ratio (τ / τ0) prior to the non-linear regression.  

For the three densimeters rated to 140 MPa, the most extensive set of calibration measurements 
were made for VTD-1. These consisted of 17 measurements under vacuum at 9 temperatures 
between (273.17 and 447.85) K; 161 measurements of de-ionised water at 7 temperatures between 
(298.90 and 447.94) K and pressures between (0.26 and 135.30) MPa; and 159 measurements of 
toluene at 7 temperatures between (298.67 and 448.30) K and pressures between (0.36 and 135.38) 
MPa. Both the water and toluene were degassed prior to loading into the VTD. The temperature 
variation for each experimental isotherm was less than 0.03 K, while the measurements at high 
pressures were each made within a 2 MPa range of one of 17 target pressures separated by about (5 
to 10) MPa. The results of the measurements and calibration for VTD-1 are shown in Figure 2, with 
the best-fit parameters and statistical uncertainties listed in Table 4. 
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Figure 2. Lower panel: Water and toluene densities calculated using their respective equations of state22,23, 
ρEOS, as a function of the squared normalised resonance period (τ/τ0)2 measured for VTD-1. Upper panel: 
Residuals between the EOS density and the density, ρVTD, calculated using eq. (25) with the parameters for 
VTD-1 listed in Table 4. 

The regression of the measured vacuum periods to the quadratic function of temperature had a root 
mean square error (r.m.s.) of 0.0073 µs. The r.m.s. error of the non-linear regression to the 
reference fluid densities was 0.22 kg⋅m-3, which is comparable to the propagated density uncertainty 
arising from the uncertainties in the measured temperature, pressure and resonance period of 
±0.02 K, ±0.003 MPa, and ±0.02 µs, respectively. 

A similar approach was taken to calibrate VTD-2 and VTD-3, except that no vacuum measurements 
were made with these two instruments, and supercritical CO2 was used as the one of the reference 
fluids instead of toluene.  The three sets of reference fluid data consisted of 35 measurements of 
helium at 5 temperatures between (304.76 and 473.50) K and pressures between (4.91 and 31.51) 
MPa; 35 measurements of deionised water at 5 temperatures between (304.92 and 473.19) K and 
pressures between (5.10 and 65.50) MPa; and 27 measurements of CO2 at 5 temperatures between 
(304.76 and 473.48) K and pressures between (5.11 and 65.11) MPa. In lieu of making any vacuum 
measurements for VTD-2 and VTD-3, the resonance periods measured for helium along each 
isotherm were fit to a quadratic function of pressure, and the constant term in the quadratic was 
taken to be the vacuum period for that temperature. The results of the measurements and 
calibrations for VTD-2 and VTD-3 are shown in Figure 3, with the best-fit parameters and statistical 
uncertainties listed in Table 4. 
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Figure 3. Lower panel: Water, CO2 and helium densities calculated using their respective reference equations 
of state22,24,25, ρEOS, as a function of the squared normalised resonance period (τ/τ0)2 measured for VTD-2 and 
VTD-3. Upper panel: Residuals between the EOS density and the density, ρVTD, calculated using eq. (25) with 
the parameters for VTD-2 or VTD-3 listed in Table 4. 
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Table 4. Best-fit values for the parameters in eq. (25) determined by calibration to vacuum and/or reference 
fluid  data for VTD-1, -2, and -3, all of which were rated to 140 MPa. The absolute and relative r.m.s. errors of 
the best fits to each calibration data set are listed, as are the averages of each parameter across the three 
VTDs. The subscript numbers listed in parentheses correspond to the statistical uncertainty of either the best-
fit value or the standard deviation of the averaged values. The (range of) value(s) of each parameter predicted 
using equations (11), (23) and (28)-(34) are listed for comparison.  

Parameter VTD-1 VTD-2 VTD-3 <VTD>1-3 PREDICTION 

S00  0.552388(14) 0.549715(75) 0.551776(96) 0.5513(14) 

 τ00 / µs 2566.1579(44) 2578.331(95) 2577.964(62) 2574.1(6.9) 1256 

106ετ1 / K-1 128.360(60) 128.21(80) 128.06(53) 128.21(14) 130 

108ετ2 / K-2 4.981(34) 4.97(34) 4.78(23) 4.91(11) 6 

106αV /3 K-1 13.860(74) 14.56(29) 13.88(36) 14.10(41) 12 

105βV / MPa-1 1.81(25) 2.56(41) 1.87(52) 2.11(40) 3.3 

105βτ / MPa-1 -0.471(14) -0.321(18) -0.371(23) -0.388(76) -0.95 to +1.2 
 

0.22 0.35 0.44 

  
 

0.025 0.071 0.089 
  

 

Apparatus parameters for the three densimeters with a maximum pressure rating of 70 MPa, VTD-4, 
VTD-5, and VTD-6, were similarly determined by calibration by measuring their resonance period 
under vacuum and one or more reference fluids over a wide range of temperature and pressure. Of 
these three densimeters VTD-4 was calibrated most extensively, with vacuum, helium, toluene and 
water measurements each made at 9 temperatures between (283.15 and 473.15) K. For each of the 
three fluids over 125 measurements were made with pressure ranges of (1.01 and 65.01) MPa for 
helium, (1.01 and 65.07) MPa for water, and (1.02 and 65.08) MPa for toluene. The results of the 
regression of eq. (25) to the fluid densities calculated from the experimental pressure and 
temperature using the respective reference equations of state for each fluid22,23,25 are shown in 
Figure 4, with the best fit parameter values listed in Table 5. 

The lower pressure rating of VTD-4 in comparison with VTDs-1 to 3 is reflected in the difference 
between the best-fit values of ρ00, βV and βτ listed in Table 4 and Table 5. As the two types of 
vibrating tube have the same internal volume and radius 21, the lower value of ρ00 reflects that the 
wall thickness of the densimeter with the lower pressure rating was 0.5 mm smaller than the 
densimeter with the higher pressure rating (see Table 2). The reduced wall thickness means that the 
magnitudes of both βV and βτ for VTD-4 are about three times as large as for VTD-1. Importantly, 
however, their ratio is the same for both VTD-1 and VTD-4, which were the two most extensively 
calibrated VTDs, with βV/βτ = -3.87 ± 0.02. The results obtained for VTD-2 and VTD-3 are also 
consistent with this ratio. If the regression of eq. (25) is re-done for VTDs-2 and -3 with the 
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constraint βV = -3.87 βτ imposed, the impact on the quality of the best fit is negligible even though 
there is one less parameter with the r.m.s. deviation increasing by only 0.01 kg m-3.   

 

Figure 4. Lower panel: Water, toluene, and helium densities calculated using their respective reference 
equations of state22,23,25, ρEOS, as a function of the squared normalised resonance period (τ/τ0)2 measured for 
VTD-4. Upper panel: Residuals between the EOS density and the density, ρVTD, calculated using eq. (25) with 
the parameters for VTD-4 listed in Table 5. 

The 70 MPa rated densimeters VTD-5 and VTD-6 were used by Al-Ghafri et al. 6,7 to measure the 
densities of twelve aqueous electrolyte solutions at molalities up to 6 mol kg-1. While sufficient for 
that work, relative to the other VTDs studied here, the calibrations of VTD-5 and VTD-6 was the least 
extensive in terms of the number of reference fluids. The calibration measurements were conducted 
at temperatures (vacuum and water) and pressures (water) identical (within the uncertainty of the 
measurements) to those at which the aqueous solutions were measured. This approach ensures the 
mixture density measurements are reliable but the use of only one reference fluid means limits the 
information about βV and βτ  that can be extracted from the calibration data. The vacuum 
measurements at nine temperatures between (283.15 and 472.96) K were sufficient to determine 
ετ1 and ετ2 by linear regression with statistical uncertainties equal to or smaller than any of the other 
densimeters.  Determination of the other four parameters by non-linear regression of eq. (25) to the 
71 water measurements made at the same temperatures at pressures between (1.10 and 
68.60) MPa, gave values of βV and βτ that were not statistically significant, thereby confirming that 
the calibration data for VTD-5 and VTD-6 were inadequate for the purpose of completely resolving 
the pressure dependence of the apparatus. Accordingly, the regression of eq. (25) was re-done for 
VTD-5 and VTD-6 with the constraint βV = -3.87 βτ, and the results are listed in Table 5. Imposing this 
constraint produced values of βV that were statistically significant, and which were consistent with 
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the values both predicted and measured for the other VTDs rated to 70 MPa. Furthermore, the 
constrained regression had negligible impact on the quality of the fit achieved even though there 
was one less parameter, with the r.m.s. deviations increasing from those obtained with the over-
parameterised fit by only 0.049 kg m-3 and 0.035 kg m-3 for VTD-5 and VTD-6, respectively.    

Table 5. Best-fit values for the parameters in eq. (25) determined by calibration to vacuum and/or reference 
fluid  data for VTD-4, -5, and -6, all of which were rated to 70 MPa. The absolute and relative r.m.s. errors of 
the best fits to each calibration data set are listed, as are the averages of each parameter across the three 
VTDs. The subscript numbers listed in parentheses correspond to the statistical uncertainty of either the best-
fit value or the standard deviation of the averaged values. The (range of) value(s) of each parameter predicted 
using equations (11), (23) and (28)-(34) are listed for comparison. For VTD-5 and VTD-6, βτ was not an 
adjustable parameter but was set by the constraint  βV / βτ = -3.87, which was the ratio found for VTD-1 and 
VTD-4. 

Parameter VTD-4 VTD-5 VTD-6 <VTD>4-6 PREDICTION 

S00
 

1.545481
(46)

 1.627686
(48)

 1.627544
(39)

 1.600(47) 
 

τ00 / µs 2438.659
(11)

 2389.1433
(87)

 2389.219
(13)

 2406(29) 1508 

106ετ1 / K-1 
127.81

(11)
 128.135

(85)
 128.11

(13)
 128.03(20) 130 

108ετ2 / K-2 4.830
(51)

 4.712
(40)

 4.731
(61)

 4.758(63) 6 

106αV /3 K-1 13.189
(63)

 12.570
(83)

 13.646
(64)

 13.13(54) 12 

105βV / MPa-1 5.365
(80)

 5.140
(25)

 5.017
(19)

 5.14(13) 5.7 

105βτ / MPa-1 -1.382
(07)

 -1.328 -1.296 -1.329(34) -5.2 to +2.7 

 

0.17 0.12 0.09 

  
 

0.028 0.014 0.011 
  

 

Discussion and Conclusions 
The consistency of the parameters values obtained from the calibration measurements across all six 
VTDs and with the values predicted from the thermoelastic and geometrical properties of the 
Hastelloy tube is striking, particularly considering that the predicted values are based on many 
assumptions, such as the homogeneity of the material used to form the tubes and the equivalence 
of straight and bent tubes. Across all six VTDs the temperature parameters ετ1, ετ2, and αV have 
averages of (128.12 ± 0.18) × 10-6 K-1, (4.83 ± 0.12) × 10-8 K-2, and (13.62 ± 0.68) × 10-6 K-1, 
respectively, where the uncertainty bounds are the standard deviations and correspond to fractional 
values of 0.1 %, 2.4 % and 5.0 %. For the VTDs rated to 140 MPa, the fractional standard deviations 
of βV and βτ are both 20 %, which improves to 14 % for the values obtained via the constrained 
regression. For the VTDs rated to 70 MPa, the constrained regression produces values of βV and βτ  
which have fractional standard deviations of 2.5 %.  Arguably, the most interesting finding is that the 
two most extensively calibrated  densimeters, VTD-1 and VTD-4, which had quite different pressure 
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ratings and, thus, values of βV  nevertheless had identical ratios for the parameters βV / βτ. This 
observation enables the confident use of constrained regression to minimise the number of 
adjustable parameters in the apparatus model, further increasing its robustness. The similarity of the 
βV / βτ ratio possibly indicates that the mounting of the tube, and hence the effective constraint on 
the deformation of the tube’s external radius is similar for the two types of VTD.  

There are two primary advantages of using a robust model with physically-based adjustable 
parameters over other calibration approaches: the ability to extrapolate with reduced uncertainty, 
and a reduction in the number of calibration measurements required. The latter advantage was 
demonstrated in part for VTD-5 and VTD-6 where apparatus parameters consistent with those of 
VTD-4 could be obtained from only vacuum and water measurements using the constraint βV / βτ 
= -3.87. To test the advantage relating to extrapolation, VTDs-1 to 4 were re-calibrated by excluding 
the water data and using the constraint βV / βτ = -3.87. The results are shown in Table 6 and indicate 
that the increase in r.m.s. error when the extrapolated model is used to predict the measured water 
densities is less than 0.4 kg m-3. This contribution to this increase in error of any non-linearity 
associated with the extrapolation to higher densities, as discussed by Kayukawa et al.16, is not 
considered, as no information about the VTD’s counter mass was available.  

The results presented here for six Hastelloy densimeters from Anton Paar indicate that these 
recently developed VTDs are well described by a physically robust model derived by extending the 
theoretical framework presented originally by Holcomb and Outcalt11. It is quite possible that the 
design and manufacture of this particular class of VTDs means they are more stable and have 
apparatus parameter values closer to those predicted from the extended theoretical framework 
than would be the case for older models of VTD such as the DMA 512 and 512P. With any apparatus 
that requires calibration, it is important that the stability of that calibration over time be checked 
regularly and this remains the case for the Hastelloy VTDs discussed here. However, this work 
indicates that the number of calibration points as well as the frequency of calibration could be 
reduced relative to those required to previous apparatus models of the densimeter. In particular, for 
this class of VTD, the use of eq. (25) means that it should not be necessary to measure a reference 
fluid at every single (p,T) condition of interest.  

19 
 



Table 6. Changes in apparatus parameter values for VTDs-1 to -4 when the water data are excluded from the 
regression and βV / βτ = -3.87 (NWC) relative to when the water data are included and both βV  &  βτ  are free 
parameters (W) (see Table 4 and Table 5). The r.m.s. errors of the densities calculated with eq. (25) using the 
two sets of parameters, ρVTD, relative to those calculated with the reference equations of state for each fluid, 
ρEOS, are also listed. The r.m.s. error calculated for the NWC set of parameter values corresponds to an 
extrapolation of the model as it includes the measured water densities. 

 
VTD-1 VTD-2 VTD-3 VTD-4 

 

-0.006
(26)

 0.51
(15)

 0.87
(16)

 -0.435
(67)

 
 

-0.03
(13)

 -1.76
(73)

 -0.13
(75)

 -0.38
(10)

 
 

0.00
(25)

 1.50
(42)

 0.70
(52)

 -0.02
(08)

 

 

 
0.046

(18)
 0.067

(23)
 

 
 

0.22 0.72 0.84 0.20 

 

0.22 0.35 0.44 0.17 

 

The results presented in Table 4 and Table 5 show that six of the seven apparatus parameter values 
determined by calibration were consistent with predictions based on the theoretical framework and 
knowledge of the tube’s material and geometric properties. The agreement of the five parameters 
that describe the variation of the VTD’s resonance period with temperature and pressure with the 
predicted values is particularly significant. The ability to predict with reasonable precision the values 
of the apparatus parameters that should be obtained by calibration allows experimentalists to 
detect when inadvertent errors or problems affect their measurements with reference fluids.  Such 
errors, which may arise for example from contamination of the reference fluid, poor temperature 
stability or uniformity, or changes in the calibration of their temperature or pressure transducers, 
can be difficult to detect in the absence of expected parameter values.   

The two-step calibration process followed in this work also has advantages related to helping 
increase the confidence in the results of calibration measurements and/or helping to detect 
problems early. By obtaining the vacuum period data over the measured temperature range, the 
temperature dependence of the tube’s spring constant can be determined directly by linear 
regression and compared with values estimated from the elastic properties of the tube material. This 
also reduces the number of parameters required during the non-linear regression of the high-
pressure calibration data for reference fluids to four, or even three if a constraint is used to relate 
the pressure dependence of the tube volume and spring constant. Following this approach can help 
reduce parameter correlation and again improve the ability of experimentalists to detect 
unanticipated problems encountered during the calibration stage. 
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A further motivation for developing a robust model with physically-based parameters is to reduce 
the number of calibration measurements required, and potentially identify the minimum set of data 
required to reliably calibrate a VTD. Based on the results obtained here, the minimum data set for 
calibration includes either (a) vacuum plus two different reference fluids over the required (p, T) 
range if both βV and βτ are treated as free parameters in the non-linear regression, or (b) vacuum 
plus one reference fluid over the required (p, T) range if the ratio βV /βτ  is constrained. For case (a), 
the purpose of measuring the second reference fluid is to enable the pressure dependence of the 
spring constant to be de-convolved from the pressure dependence of the tube volume. Accordingly 
it may be sufficient to only measure the second reference fluid to the extent necessary to enable 
reliable determination of βτ. For example, if the VTD is calibrated with water over the entire (p, T) 
range it may be sufficient to measure a gas such as helium or N2 along only one or two isotherms to 
the highest pressure achievable, which is often set by the pressure of the gas cylinder. However, as 
demonstrated by the increased precision achieved in this work for VTD-1 and VTD-4 relative to the 
other densimeters, the wider the range of conditions and the more reference fluids that are included 
in the calibration data set the more precise the apparatus parameter determinations can be. 

Finally, we conclude by considering the increase in uncertainty associated extrapolation of eq. (25) 
beyond the range of the calibration. When extrapolating to higher densities, the potential impact of 
non-linearity needs to be assessed and/or quantified. However, this is a systematic effect which can 
in principle be quantified, for example through the use of a reference fluid with an appreciable 
density difference to that of the calibrants, and therefore mitigated. Of the parameters listed in 
Table 1, it is the uncertainty of S00 that is most significant in terms of the resulting uncertainty of any 
extrapolation with density. Accordingly it is important that a reference fluid with as large a density 
as possible be used in the set of calibration measurements from which S00 is determined; for this 
reason deionised water should be included as a reference fluid whenever possible. The additional 
uncertainty associated with the extrapolated density calculated using eq. (25) will be approximately 

the uncertainty in ρM/S00 multiplied by the difference 2 2
ext maxτ τ− , where  2

extτ is the resonance period 

measured for the extrapolated density and 2
maxτ is the resonance period corresponding to the 

maximum density measured during the calibration.  

Extrapolation in either pressure or temperature is also improved using the robust model relative to 
other apparatus models, with the resulting uncertainty in the density at the extrapolated condition 
set by the uncertainty with which the apparatus parameters are determined during the calibration. 
Implicit in the derivation of eq. (25) was the assumption retention of the first and second order 
terms shown in the pressure and temperature expansions in eqs (13)-(16) was sufficient. The results 
presented here show that this is the case for the entire operating range of the VTDs considered 
here. Clearly, however, the uncertainty of the apparatus parameters depends on the range of the 
calibration data so it would always be best to ensure that reference fluid measurements span the 
desired temperature and pressure range even if they are made after the measurement of the 
unknown sample. Since any given temperature and pressure can be reached as readily with de-
ionised water as arguably with any other fluid, there would appear to be little impediment to 
ensuring the calibration of the VTD with reference fluids covered the necessary (p, T) range, 
eliminating the need to extrapolate in pressure or temperature.  
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