Dragon: Data Discovery and Collection Architecture
for Distributed IoT

Roman Kolcun and Julie A. McCann
Department of Computing, Imperial College London, United Kingdom
Email: {roman.kolcun08, j.mccann}@imperial.ac.uk

Abstract—Wireless Low-powered Sensing Systems (WLSS)
are becoming more prevalent, taking the form of Wireless
Sensor/Actuator Networks, Internet of Things, Phones etc. As
node and network capabilities of such systems improve, there is
more motivation to push computation into the network as it saves
energy, prolongs system lifetime, and enables timely responses
to events or control activities. Another advantage of such edge-
processing is that these networks can become autonomous in the
sense that users can directly query the network via any node
in the network and are not required to connect to gateways or
retrieve data via long range communications.

Dragon is a scheme that efficiently identifies nodes that can
reply to user requests based on static criteria that either describes
that node or its data and provides the ability to near-optimally
route queries or actuation control messages to those nodes.
Dragon is scalable and agile as it does not require any central
point orchestrating the search. In this paper we demonstrate
significant performance improvements compared with state-of-
the-art approaches in terms of numbers of messages required
(up to 93% less) and its ability to scale to 100s of nodes.

I. INTRODUCTION

It is estimated that there are 10 billion wirelessly connected
devices routinely used today and this is predicted to grow
to 30 billion by 2020 [1]. These devices can be found in
various areas including industrial automation, environmental
monitoring networks of sensors and actuators, or transporta-
tion. In this paper we refer to systems such as sensor enabled
Internet of Things (IoT) like phones etc., Wireless Sensor
Networks (WSNs), and sensor enabled Wireless Middleboxes
as Wireless Low-powered Sensing Systems (WLSS). It is
expected that such systems will generate vast amounts of data
streams to be analysed. Traditional methods that assume all
data is communicated to server systems are becoming outdated
due to the physical upper bounds to communication capacities,
systems resilience concerns and scalability issues.

An alternative is where any node (including mobile nodes
in close proximity) interacts with the network to generate either
queries or actuation messages. This essentially supports an
autonomous highly-distributed sensor data system, in which
all processing is carried out in the sensor nodes. In parallel
we are seeing a convergence between sensing systems and
control systems; control may be messages to affect a change
such as switch a water valve, close a gate, or even update
systems WLSS code. However, the vast majority of WLSS
work assumes that data is either periodically collected and
routed to base-stations, or queries and actuation messages
are flooded into the network and the response is processed
off-line (in servers/base-stations). Other schemes ship data to
known nodes for efficient retrieval [2], [3]. However, all these
approaches require a significant amount of communication.
Dragon, provides distributed data-centric node identification
and point-to-point routing to support actuation and in-network

query processing aiming to reduce the amount of communica-
tions required, removing single points of failure and improving
response-times to events. Let’s explore data stream processing
in detail using the following simple but illustrative scenario:

Every shop on a high street has a set of sensors providing
various readings. Customers are able to query the network in
order to find an open shop or a pub with a free space.

A traditional approach is to periodically collect data from
every sensor, send them via a base-station to a server which
then processes the data and relays answers to the user. This
approach requires the network to be equipped with a node
capable of long range communication (e.g. using GPRS). Users
then retrieve data from the main server using the long-range
communication. However, owner of the network may not be
willing to pay mobile and server fees, yet still wants to provide
its services to users.

In order to be able to answer queries such as “which pub
on this street has most free spaces” any node in the network
must be able to perform the following tasks: i) identify a set
of sensor nodes fulfilling the given criteria (sensors counting
free spaces in premises that are pubs), ii) request data from all
participating nodes, and iii) report the result back to the user.

Dragon tackles the first two of the aforementioned prob-
lems by allowing any node in the network to find a set
of nodes fulfilling given static requirements and providing
a reliable point-to-point communication. More precisely, the
contributions of the paper are as follows:

e We present a Distributed Data Table (DDT) which is
used to store static information about each node in a
scalable way allowing any node to find a list of nodes
fulfilling given static attributes by communicating with
only near neighbourhood.

e We present a new peer-to-peer routing protocol for
WLSS able to route messages via near-optimal routes
without the need to search for a path beforehand.

The rest of the paper is structured as follows: In Section II
we state the problem in more detail and in the Section III
we describe our solution which we experimentally evaluate in
Section IV. We conclude our findings in Section V.

II. CURRENT APPROACHES & RELATED WORK

Nowadays, WLSS typically consist of several tens or
hundreds of nodes and one or more base-station(s). The base-
station is usually powered, has higher computational power
compared to a general sensor node, and has some form of
long-range network connection which is used to report results
to a server. Therefore it represents a gateway to the WLSS and
provides WLSS’s capabilities to the outside world and thus is
a vulnerable failure point in the system.

Alternative approaches dispense with the base-station but
are faced with the following three challenges: i) locating the

nodes that fulfil the static criteria in the query, ii) process-
ing data inside the network, and iii) allowing point-to-point
communication to ensure that data is routed throughout the
network in an efficient way.

A. Searching by Attribute

Each WLSS device in the network has assigned to it several
static attributes e.g. node ID, its position, type of sensor data it
is providing, or the area where the node is deployed in (e.g. on
Street #233). Information about all the static attributes found
in the network can be seen as a table, where each attribute is
represented by a column and each node represents one row in
the table. Having the possibility to search in this table, without
flooding the whole network with a request, every node can
easily retrieve a list of nodes fulfilling given static criteria, e.g.
any node can find all nodes from the given area, or all nodes
monitoring the same street. A recent survey on in-network
processing [4] states the need for a platform that permits nodes
to search WLSS networks by attribute and identifies this as one
of the subject’s largest challenges.

Several approaches have been proposed to solve this
problem. The easiest solution is to flood the network with
the request where only the nodes fulfilling the criteria reply
to the request [5]. This approach is simple, yet extremely
expensive in terms of time and amount of network traffic.
Another common approach exploits the routing tree structures
by storing summaries (e.g. a Bloom filter, histogram, or R-
Tree) of static attributes at every node in the tree. Here,
each intermediate node stores summaries for the sub-tree
rooted in given node. When a request is received, a node can
probabilistically decide whether the subtree contains node(s)
that satisfy a given static attribute and decide whether to
forward the request or not. Stern et al. rely on building one
tree [6] while Mihaylov et al. build three trees rooted in
different parts of the network [7] in order to speed-up the
search and to find shorter paths between nodes. The problem
of using summaries is that the search is probabilistic, hence the
confirmation from the destination nodes is required. Further,
different types of summaries are optimal for different types
operations (e.g. Bloom filters are optimal for equality search
while histograms are optimal for range queries). Keeping more
summaries requires larger memory.

In the third approach, Ratnasamy et al. propose a geo-
graphic hash table which stores attributes on a node closest to
the hash of an attribute key [2]. Greenstein et al. propose an
extension of this approach which supports range queries over
the stored attributes [3]. Both of these approaches place data
randomly in the network, not taking proximity to other nodes
into account, they rely on a geographical routing, which cannot
cope with obstacles in a network, and they assume rectangular
uniform network topology.

B. In-network Processing

Performing the computation inside the network has several
advantages: i) network traffic can be lowered, ii) a single point
of failure is removed, and iii) computation latency is lowered.
Minimising network traffic is especially important for WLSS
where as much as 80% of the overall energy consumption is
attributed to the radio [8], hence, by decreasing the network
traffic it is possible to significantly increase the lifetime of
the network. Decreasing the latency is especially important in
networks with actuation capabilities where action may have
temporal constraints.

The simplest variant of in-network processing is at the
base-station, where only the relevant nodes send data to the
base-station which processes them. Ciciriello et al. propose
an abstractions of virtual nodes where a node collects and
processes data from its neighbourhood [9]. However, discovery
of relevant nodes is based on flooding the network x hops from
the node. Additionally, the platform assumes a grid network
topology. Stern et al. propose a two-phase approach where
first summaries are collected from the whole network, then at
the base-station candidates fitting the query are chosen. In the
second phase only data from chosen candidates are retrieved
[6]. The last approach uses pairwise joins which splits the
processing into pairs and for each pair of sources it finds a
node on the path between them which processes data [10].
This approach can significantly lower the number of messages
but only where the selectivity of the join, i.e. the percentage
of tuples fulfilling the join predicate, is very low and the
processing can be split into pairwise joins, i.e. pairwise join
operates only on exactly two streams of data and produces only
a partial result. The final join is carried out at the base-station.

The disadvantage of all of the aforementioned approaches
is that their set-up phase is very expensive and in some cases
they heavily rely on the base-station (i.e. traditional base-
station processing, the two-phase approach, and the second
half of the pairwise join). On contrary, Dragon allows any
node to find all relevant nodes and request data from them in
an efficient way.

C. Routing

The most common routing mechanisms used in WLSS are
CTP [11] and RPL [12]. Both exploit a tree structure rooted at
the base-station. From these two protocols, only RPL supports
point-to-point communication. Here, the message is routed up
the tree until either the destination, an ancestor that has a
known route to the destination, or the root is reached. An
alternative designed for in-network processing is Innet [10]
which exploits three summary trees rooted in different parts of
the network to establish a path between two nodes. Number of
paths discovered is equal to the number of summary trees. The
shortest path is chosen for further communication between the
nodes. Innet is able to find close to optimal paths between any
two nodes but at the expense of a costly search, in terms of time
and numbers of messages, therefore it is not suitable for ad-
hoc communication. AODV [5] is an ad-hoc routing protocol
allowing P2P communication. The protocol first floods the
whole network with a request and the destination node replies
to the request. During the reply a distance vector is built which
is then used for communication. As the request floods the
whole network the path set-up overhead is even larger than
in case of Innet.

Other routing protocols rely on knowledge of the geo-
graphical location, which is not always possible. Routing
protocols like GPSR [13] cannot cope with obstacles or voids
in the network, resulting in a node not being able to find a
path to another node. Further, the last group of protocols are
referred to as hierarchical routing protocols [14]. Here, those
that support P2P routing cannot do so in an optimal way in
terms of the length of the discovered paths.

III. COMPUTATIONAL PLATFORM
In this section we present Dragon - a platform for WLSS,
which supports efficient and reliable peer-to-peer communica-
tion in a multi-hop environment. Additionally, it efficiently

Algorithm 1 Routing Table Discovery

1: procedure RECEIVERECORD(record, senderld)

2 local Record <— findRecordInLocalTable(record)

3 if local Record = null then

4: addRecord(record)

5: markUpdated(record)

6 else if localRecord.hops > record.hops + 1 OR

local Record.nextHop = senderId then

7: local Record.hops < record.hops

8: local Record.next Hop < senderld

9: markUpdated(local Record)
10: else if local Record.hops < record.hops — 2 then
11: markUpdated(local Record)
12: end if

13: end procedure

14: procedure SENDRT(rt, packet)

15: for all updated record in rt do
16: addToPacket(packet, record)
17: end for

18: if notEmpty(packet) then

19: broadcast(packet)

20: end if

21: end procedure

distributes information about static attributes of each node
throughout the network, allowing any node to easily find other
nodes matching given criteria.

In the rest of this section we will present each subsystem
separately in more detail. Before the platform can be used
for query processing a bootstrapping phase is required during
which each node learns the Routing Table (RT), splits the
Distributed Data Table (DDT), and fills the DDT with Static
Attributes (SA). Once bootstrapping has finished every node
in the network is ready to receive queries or send actuation
messages. For each query or actuation command the node finds
all participating nodes and either requests data from them or
sends actuation messages to them.

A. Routing Table Discovery

Many of Dragon’s subsystems rely on a routing table stored
at every node. The routing table (RT) stores for each node in
the network three pieces of information: destination, next hop,
and distance. For the distance we have chosen the number of
hops as the simplest, yet representative metric; but any other
kind of additive metric could be used (e.g. energy spent by
nodes to deliver a packet from one node to another).

During the bootstrapping phase each node runs an algo-
rithm (Alg. 1) inspired by Netchage [15]. Netchange was de-
signed for wired distributed computer networks with no broad-
cast capability and which assumes reliable packet delivery. Our
algorithm is optimised for wireless networks which are by their
nature unreliable but with real broadcast capabilities where one
packet is received by all nodes within broadcasting distance.

At the beginning of the algorithm, each node creates a
record in its local RT and broadcasts a RT discovery packet
to all its neighbours. A RT discovery packet contains a list of
(destination, distance) pairs. Upon receiving a RT discovery
packet the receiving node updates its records in the RT. If there
is no record for the destination a new record is created (line 4).
If there is a record and the received distance is shorter than the
one already learnt or the same node sends an updated record
(possibly with longer distance), the routing record is updated.
As the “next hop” is set as the node from whom the message
was received. The record is marked as “updated” so during the
next iteration the record is broadcast to all neighbours.

Due to the unreliability of the wireless communication
some nodes may not receive the message, hence they may
learn a sub-optimal route to some nodes. This is mitigated by
proactively broadcasting better paths, should a node identify
one and by exploiting overhearing of neighbours updating
their tables. Assume nodes ni,no,ns are neighbours. Node
np broadcasts a path to node n, with a distance d which
is received by node ny but not by the node n3. In the next
iteration node ny broadcasts the path to node n, with distance
d+1 which is now received also by node ng, so node ng learns
a path to n, with distance d 4 2 via node n,. When node n3
broadcasts this path further, node n; receives this message and
compares it with its RT (line 10). Because its distance to n,
is d it means that the distance to n, of any of its neighbours
should be at most d + 1. Node n; assumes that the node ns
has not received its previous message, therefore the path to n,
is rebroadcast so the node ng can learn a better path via n;.

Once the node has not updated its RT for some predefined
time At it assumes that the RT is complete and it switches to
the stable phase. During the stable phase it broadcasts small
parts of its RT in a round robin fashion as a heartbeat beacon
but only if no other message is scheduled.

In case a node detects a node failure it executes a failure
recovery procedure. The node which detected the node failure
marks the failed node and all destinations where the failed
node is set as the “next hop” as unreachable. Then it broadcasts
the request which contains the failed node, list of unreachable
nodes, and the node’s distance to the failed node. Upon
receiving the message a node waits for a random delay which
increases with the distance to the failed node. The receiving
node collects messages from all nodes closer to the failed node.
Then for all unreachable nodes the node checks its RT. If
for an unreachable node the “next hop” is set a node from
which the failed message was received, the record is marked
as unreachable. Otherwise the record is marked as updated
and it will be broadcast in the next round. Finally, a message
containing the failed node along with the list unreachable
nodes is broadcast.

By requiring the distance from the failed node to increase
we avoid loops and repeated re-broadcasting of the same
message. By increasing the delay with the distance from the
failed node we assure that a nodes closer to the failed node
broadcasts their unreachable nodes sooner.

In order to store the routing table the node stores for each
neighbour a list of (destination, distance) pairs where the
neighbour is the next hop. The cost to store the RT is computed
as ¢; = 2N + nb, where N is the size of the network and nb
is number of neighbours of the node n;.

B. Distributed Data Table

Most of the current platforms for WLSS do not readily
allow a node to search the network based on a given criteria
[4]. An example of such search could be a node looking for all
nodes with the same type of sensors or monitoring the same
phenomena.

Each node in a network may have a set of static attributes
assigned (e.g. id, type, room id). All static attributes in a
network can be represented as a table where each column
represents an attribute and each row represents a node. In
summary, currently the strategies a node may follow in order
to find another node with a given static attribute are: i) flood
the whole network with a search query and wait for a response

Algorithm 2 Distributed Data Table

Algorithm 3 Static Attributes Propagation

1: procedure RECEIVEDDT(ddt)

2 updateDdtCounter(ddt)

3 updateDdt(ddt)

4 if partId = null then

5 ddtTimeSend < currentTime+randomDelay()
6 end if
7: end procedure

8: procedure SENDDDT(packet)

9: partld < partWithLeastNodes()
10: ddtlpartId] + this.id
11: broadcast(ddt)
12: end procedure

from all nodes, ii) use a summary of all static attributes which
can probabilistically say whether a given node, or part of
the network, has or does not have got the specific attribute,
iii) store information on a set of predefined node.

We take a form of the third approach, i.e. we store
information about static attributes on nodes. Because WLSS
nodes are very limited in terms of memory, fitting the whole
table of static attributes on a single node may not be possible.
However, if the table is split into p equally sized parts, each
node needs only to store one part. In case some nodes have
a larger memory, they may store several parts of the table.
We refer to this distributed table as the Distributed Data
Table (DDT).

When a node receives a query, e.g. S.x > 25, it first
looks at its local DDT and then forwards the query to p — 1
nodes which contain the rest of the table. These nodes search
in their local copy of the table and reply with the result only.
DDT introduces a challenge how to assign parts of the table to
nodes in such a way that if any node in the network wants to
search the whole table it ought to send the minimum number
of messages. The minimum number of messages a node needs
to send is (p — 1), however, only if the node has at least p — 1
neighbours and each neighbour holds different part of the table.
Obviously, this cannot be always achieved, especially in sparse
networks where nodes have less than p — 1 neighbours. In that
case we also want to minimise the number of messages by
having the nodes with the missing part of the table a minimal
number of hops away.

If we think about each part as a colour, the objective of
assigning DDT parts to nodes is similar to a graph colouring
problem with two main differences: i) a node can have a
neighbour with the same colour and ii) each node wants to
reach all other colours within minimum number of hops.

Let p be the number of parts the DDT is split into and
partld € {0,...,p — 1} be the ID of a DDT part. The basic
idea of the algorithm is shown in Algorithm 2. Each node
stores the following global variables: p - how many parts the
DDT is split into, partld - which part of the DDT the node
stores (initially NULL), ddt - a vector of size p storing which
node stores given part of the DDT, ddtCounter - a vector of
size p which stores how many neighbours store a given part of
the table (initially all zeros), ddtTimeSend - a time at which
the node will choose its partld and broadcast its ddt vector.

The algorithm is initiated by a random node which calls
procedure SENDDDT. The key idea of the algorithm is that a
node upon receiving a ddt (a list of (partId,nodeld)) from
a neighbour, waits for a random delay (line 5) during which it
collects ddt from other neighbours. After this delay the node
chooses the partld which has been chosen least times (ties are

1: procedure RECEIVESA(staticAttr, senderId)

2 sa < retrieveFromBuffer(staticAttr)

3 if sa = null then

4: sa < insertIntoBuffer(staticAttr)

5: sa.sentAt < currentTime+ randomDelay()
6: sa.recetved By < getListOfNeigh(this.id)

7 sa.sent < False

8: if mapToDDT(sa) = this.partld then

9: insertintoDDT(sa)

10: end if

11: end if

12: removeFromList(sa.received By, senderId)

13: sender Neighbours < getListOfNeigh(senderId)

14: removeFromList(sa.received By, sender N eighbours)

15: end procedure

16: procedure SENDSA(sa)
17: if sa.received By # null then

18: broadcast(sa)

19: end if

20: sa.sent <— True

21: removeFromBuffer(sa)

22: end procedure

decided randomly) by its neighbours (line 9). Next, the node
broadcasts to all neighbours its ddt.

Currently, dynamic scalability is not supported and p has
to be chosen at deployment time. It cannot be changed without
re-initialising the bootstrapping phase.

C. Static Attribute Propagation

Dragon stores all Static Attributes (SA) in the DDT.
However, the DDT has to be filled with data prior to using
it. Using a traditional data dissemination protocol like Drip
[16] to disseminate SA about every node to every other node
leads to exchange of at least N2 messages, where N is the
size of the network.

However, this number could be significantly reduced using
algorithm described below (Alg. 3). Every node stores for
each of its neighbour a list of common neighbours. When a
receiving node n,. receives a list of static attributes sa from a
sending node ng for the first time (line 3), n, stores sa in a
buffer. Along with sa two additional pieces of information are
stored: In - a list of neighbours (of n,) and a random delay
after which the n, will broadcast the received sa. Now, we
can assume that all n,’s neighbours have also received the sa,
so we can remove n, and all common neighbours with ng
from the In. If n, has already received the sa before, n,. just
removes ns and all n,’s neighbours from the n (lines 12-14).

Once a random delay has expired, n,. is ready to broadcast
the sa by calling SENDSA. Prior to broadcasting, n, checks
the In (line 17). If the In is empty, i.e. all n,’s neighbours
have received the sa from other nodes, the n, removes the
sa from the buffer without broadcasting the sa. If the In is
not empty the node broadcasts the sa (line 18). The delay is
chosen randomly in order to avoid all nodes broadcasting at
the same time.

Due to the unreliability of wireless communication it may
happen that a node (n,) does not receive the list of SA for
some node n. In this case, the node asks for the missing data
from the nearest node storing the same part of DDT. If that
node also missed the data, n, requests data directly from n,.

IV. EVALUATION
We have evaluated various parts of our platform in the
TinyOS simulator TOSSIM [17]. TOSSIM was chosen because

of its high accuracy in the simulation of real WSNs and it is
used by many researchers. We have used the built-in radio
and noise model. We assume the nodes are synchronised and
operate with duty cycle of 15%.

All of the experiments presented in this section were run
10 times on each of 10 different networks for each network
density, and the results are grouped by the network density.
The packet size was set to 21 bytes which is the standard
packet size used in TinyOS. We evaluated our experiments
using 100 and 250-node networks of various densities: 1) dense
(D, with 12 neighbours on average), ii) medium dense (MD,
10 neighbours), iii) medium sparse (MS, 7 neighbours), and
iv) sparse (S, 5 neighbours). For each density ten random
networks were generated.

A. Routing Table Discovery

In the evaluation of the Routing Table Discovery algorithm
we focus on the routing stretch, i.e. deviation of the discovered
paths from the optimal in terms of length. We compare four
versions of routing protocols: using one routing tree (e.g. RPL),
using several routing trees (e.g. Innet), hierarchical routing, and
Dragon.

Experiments were executed on 100 and 250-node networks
of various densities. In case of hierarchical routing we use
figures from Iwancki and van Steen [14] who claim that the
average routing stretch of the hierarchical routing algorithm is
25%. The routing stretch of algorithms relying on one routing
tree is 50—105%, depending on the density. For this we used an
implementation which assumes that every node in the network
is a router, so in implementation where the router is only the
base-station, the stretch would be even bigger. The routing
stretch of the algorithm based on more routing trees (three in
case of Innet [10]), differs from 5% for a dense network to
as much as 46% for a sparse one. Dragon has achieved the
routing stretch of only 0.5% in every density and is therefore
close to the optimal.

It is important to note, that after the bootstrapping Dragon
and Hierarchical routing can start routing packets immediately,
while the paths in the platforms based on trees must be first
discovered. The discovery phase requires additional messages
being sent, hence these platforms are not suitable for ad-hoc
communication.

B. Distributed Data Table and Static Attribute Propagation
We compare the heuristic algorithm presented in Section
III-B with random assigning parts to each node. As data
processing will shift from servers and base-stations into the
network, looking up nodes with specific static attributes will
be a significant part of the overall network traffic. Therefore,
any improvement can lead to a significant reduction of the
overall traffic. We compare the average number of messages a
node has to send in order to search in the whole table while
the DDT is split into 5 — 10 parts. Nodes in a network using
heuristic algorithm to assign parts to nodes need to send up to
22% less messages when compared with random assignment.
We also compare propagation of Static Attributes (SA)
using the algorithm presented in III-C with an implementation
of a traditional small data dissemination protocol Drip [16].
Unlike Drip, which re-broadcast the message several times, our
implementation re-broadcast every message only once. Even
after this optimisation our dissemination protocol achieves
savings between 35 —59% in terms of messages and 16 —35%
in terms of time, depending on the network density. Savings

are smaller for sparse networks as there are less common
neighbours, hence a higher probability that a node has to re-
broadcast the message.

C. Sources Discovery

Each node in the network has six static attributes assigned:
id - a unique identifier, x - a random uniformly distributed vari-
able, = € (0,10), y - an exponential variable with A = 0.05,
z - an exponential variable with A = 0.1, and coord,, coord,
- virtual coordinates of the node.

We evaluate the ability of any node in the network to find a
list of nodes with certain static attributes and request data from
them. Two approaches are compared: using DDT and sum-
maries. Using summaries, unlike approaches based on flooding
the network (e.g. [S], [9]), can significantly lower the traffic
by pointing the search towards the nodes with given static
attributes. During the bootstrap phase, static attributes of every
node have been propagated throughout the network and stored
in the DDT. In the case of summaries, attributes id,x,y, 2
were stored using Bloom filters and count histograms, while
coord,, coord, were stored using an R-Tree. Using both the
Bloom filter and histogram summary allows nodes to better
answer a wider range of queries. As the Bloom filter can
only be used to check whether a given value was added to
the filter, it is useful for queries using equal comparison. In
case a user submits a query with a range of values Bloom
filters are ineffective and histograms have proven to be a better
option. However, this comes at the price of higher memory
requirements.

It is also important to decide whether a node stores one
summary for all children or a separate summary for every
child. Again, storing only one summary saves memory but
leads to a higher network traffic as the message is forwarded
to all children, not only to a subset of them. In our case,
having nine 16 byte summaries for every child (with 6
children on average) in all of the three trees will require
9x16x6x3 = 2592 bytes of memory. Storing data in the DDT
with 25 records per part will require only 25 x 6 = 150 bytes.
Additionally, the routing table (storing for every neighbour a
list of node ¢d along with a number of hops to given node)
will require 2 x 250 4+ 6 = 506 bytes. Therefore, unlike Innet,
Dragon is able to scale down to the Berkley-size nodes.

In the evaluation we compare Dragon with a platform
using one or three summary trees (in Figures marked as “1T”,
“3T” respectively). Each node in the tree stores either one
summary (which includes all children) or a separate summary
for each child (marked as “CHS” for ‘“child summary” and
“TS” for “tree summary”). Using one tree imitates behaviour
of networks where the base-station has a global knowledge of
the network and can deliver the query only to relevant nodes
only [6]. Using three trees was shown to be an optimal balance
between memory requirements and optimality of discovered
paths [10].

We evaluate Dragon on 250-node networks using follow-
ing scenarios. At a random node the following Query 1 is
executed: SELECT MAX (S.freespace) FROM Shop S
WHERE S.x = 1. This is a type of query a user would
submit if she wanted to find a pub on the high street which has
the most free space. The query resulted in finding a variable
sized list of nodes ranging from 0 to 11. In case the list of
nodes is not empty, every node in the list is requested to send
current sensor readings and the maximum is found at the node

9000 T — 1200 — 9000 : ; ; 1800 : ; ;
8000 8000] 1600 .
1000 ;
7000 7000 e 1400 .
£ 6000 [. & 800 | . £ 6000 [- & 1200 | .
S . k] S @ 1
S 500 [e e Q - i < 5000 - Q1000 [e
3] ; S 600 [o 3 g o :
L et | R B ° ‘ S 4000 - © 8OO | .
g i : £ 2 E i i}
8 3000 - F 400 [- 8 3000 4 F eof R
2000 - . 2000 — 400 fooogrr e
200 [~ . I S ‘
1000 1000 et 200 |- I e O e
0 ‘ ' 0 ‘] . 0 I .
Do Meg - Meg o S > S Dep. Mg - M Depe. Mg - M
onse oo pptea g arse ense Mea p, enMs? Sog0irse 56 Ve 80 g o0rse onso oo pgpiea g Jarse
e e e e
(a) Query 1 (b) Query 2

Fig. 1: Message and Time Complexity

which initiated the query. In the second scenario we evaluate
a Query 2: SELECT MAX(S.freespace) FROM Shop
S WHERE S.x = 2 AND S.z > @val, where @valisa
random number. This is a type of query a user would submit
in case she wanted to find a restaurant with the most free
space which is still open. The query resulted into receiving
data from 4 — 16 nodes. It is important to note that in case of
the platform based on summaries the buffers had to be doubled
due to congestion around some of the nodes leading to packets
being lost.

Evaluation of these queries is shown in Figure 1. The y-axis
in the graphs represents the sum of averages for each network
with given density. Our focus is on two metrics: 1) number of
messages sent and ii) time it takes to find relevant nodes. As
it can be clearly seen from the figures comparing messages,
the improvement of Dragon does not depend on the network
density and remains approximately same when compared with
the same alternative method. In the case of Query 1 (Query
2 respectively) savings between 48 — 93% (28 — 81%) are
achieved. When the search time is compared it is possible
to see that Dragon performs better as the network gets more
sparse. In the case of Query 1 we can see significant decrease
in terms of search time where Dragon is 22 —83% faster while
in the case of Query 2 the Dragon decreases delay by 3—78%.

V. CONCLUSION

Finding a list of nodes with a given set of static attributes,
without flooding the whole network, is very challenging in
WLSS. The nodes are constrained in terms of computational
power and, more importantly, memory. Therefore, it is not
possible to store global information about the whole network
on a node. Most of WLSS routing protocols do not support
point-to-point communication, or if they do, the paths among
the nodes are either far from optimal, cost of finding these
paths is very high, or both.

In this paper we presented Dragon - a platform allowing
any node in the network to easily and efficiently find a list
of nodes with given static attributes while requiring only a
very limited amount of memory. These attributes are stored in
a distributed way throughout the network using a Distributed
Data Table. Any node in the network can easily search in this
table while communicating only with a close neighbourhood.
We also present a distributed algorithm for Routing Table
discovery. The Routing Table is stored at every node allowing
point-to-point communication among any pair of nodes with-
out the need to find or establish the path. We compared Dragon
with the state-of-the-art approaches and achieved messages
reductions of up to 93% and the response time improvement
up to 82%.

In the future we will investigate possibilities of in-network

processing of continuous queries in homogeneous as well as
heterogeneous networks.

ACKNOWLEDGEMENT
The authors would like to thank the authors of Innet
[10] for providing us with the source code of Innet so our
comparison is full and fair.

REFERENCES
[1] “Abi research: More than 30 billion devices will wirelessly
connect to the internet of everything in 2020,” May 2013,

https://www.abiresearch.com/press/more-than-30-billion-devices-
will-wirelessly-conne.

[2] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and
S. Shenker, “Ght: A geographic hash table for data-centric storage,”
ser. WSNA ’02. New York, NY, USA: ACM, 2002, pp. 78-87.

[3] B. Greenstein, S. Ratnasamy, S. Shenker, R. Govindan, and D. Estrin,
“Difs: a distributed index for features in sensor networks,” Ad Hoc
Networks, vol. 1, no. 23, pp. 333 — 349, 2003, sensor Network Protocols
and Applications.

[4] H. Kang, “In-network processing of joins in wireless sensor networks,”
Sensors, vol. 13, no. 3, pp. 3358-3393, 2013.

[5] C. Perkins and E. Royer, “Ad-hoc on-demand distance vector routing,”
ser. WMCSA ’99, Feb 1999, pp. 90-100.

[6] M. Stern, E. Buchmann, and K. Bohm, “Towards efficient processing of
general-purpose joins in sensor networks,” ser. ICDE *09. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 126-137.

[71 S. R. Mihaylov, M. Jacob, Z. G. Ives, and S. Guha, “A substrate for
in-network sensor data integration,” ser. DMSN "08. New York, NY,
USA: ACM, 2008, pp. 3541.

[8] FE Zhao and L. Guibas, Wireless Sensor Networks: An Information
Processing Approach. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2004.

[9] P. Ciciriello, L. Mottola, and G. P. Picco, “Building virtual sensors and
actuators over logical neighborhoods,” ser. MidSens '06. New York,
NY, USA: ACM, 2006, pp. 19-24.

[10] S. R. Mihaylov, M. Jacob, Z. G. Ives, and S. Guha, “Dynamic join
optimization in multi-hop wireless sensor networks,” Proc. VLDB
Endow., vol. 3, no. 1-2, pp. 1279-1290, Sep. 2010.

[11] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Col-
lection tree protocol,” ser. SenSys '09. New York, NY, USA: ACM,
2009, pp. 1-14.

[12] O. Gaddour and A. KoubiA, “Survey rpl in a nutshell: A survey,”
Comput. Netw., vol. 56, no. 14, pp. 3163-3178, Sep. 2012.

[13] B. Karp and H. T. Kung, “Gpsr: greedy perimeter stateless routing for
wireless networks,” ser. MobiCom 00. New York, NY, USA: ACM,
2000, pp. 243-254.

[14] K. Iwanicki and M. van Steen, “On hierarchical routing in wireless
sensor networks,” ser. IPSN ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 133-144.

[15] W. D. Tajibnapis, “A correctness proof of a topology information
maintenance protocol for a distributed computer network,” Commun.
ACM, vol. 20, no. 7, pp. 477-485, 1977.

[16] G. Tolle and D. E. Culler, “Design of an application-cooperative
management system for wireless sensor networks.” in EWSN, vol. 5,
2005, pp. 121-132.

[17] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: accurate and
scalable simulation of entire tinyos applications,” ser. SenSys "03. New
York, NY, USA: ACM, 2003, pp. 126-137.

