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Highly resolved large-eddy simulation is used to investigate the characteristics of a canonical
boundary layer separating from a curved step in a channel of height 8.5 times that of the
step. The flow is treated as statistically spanwise homogeneous, in line with the conditions of
a related experimental study in a large aspect-ratio channel, undertaken within a companion
research programme. Primary attention focuses on the details of the separation process and
the properties of the separated region, including reattachment. Results are reported and anal-
ysed, from a flow-physical perspective, for a wide variety of properties, including wall pressure
and skin-friction, mean velocity, Reynolds stresses and related anisotropy maps, two-point-
correlation functions, unsteadiness indicators, budgets of the Reynolds stresses and length
scales characterising the turbulence and mean-strain fields. The study highlights a range of
distinctive features of separation from gently-curved surfaces: the separation process is highly
unsteady in time and space; turbulence is highly non-local in character; the mean reverse-flow
region is thin and highly elongated; no part of the flow is reversed at all times; the level
of production is extremely high following separation, resulting in massive departures from
turbulence-energy equilibrium, very high anisotropy and a trend towards one-component tur-
bulence in the separated shear layer. The result, apart from offering insight into the physics of
separation, constitute a valuable data set for benchmarking model solutions and investigating
statistical turbulence-closure proposals.

Keywords: Large-eddy simulation; Separated shear layer; Anisotropy; Non-equilibrium;
Second-moment budgets

1. Introduction

The accurate computational prediction of boundary-layer separation from gently-
curved surfaces is at the heart a credible application of CFD to numerous complex
engineering flows. Examples are aerodynamic bodies, blades, curved ducts and
pipes, cylinders and diffusers. With the exception of transonic flows, in which the
wall may be subjected to a strong shock, separation from continuous surfaces is
provoked by a relatively gentle adverse pressure gradient decelerating the boundary
layer over a significant streamwise distance prior to separation. In most cases, the
separating boundary layer is in a turbulent state, notable exceptions being subcrit-
ical cylinders, airfoil leading edges and highly-loaded turbomachinery blades—in
particular, in the rear-most low-pressure stage of a gas turbine, which usually op-
erates in the low-Reynolds-number regime.

When separation is provoked by a sharp edge—exemplified by the flow past a
backward-facing step—the location of the separation is fixed, and the result is
a separated shear layer with characteristics similar to an ordinary mixing layer
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(at least in statistically 2D flow), with weak dependence on the Reynolds number
and on the details of the boundary layer. This type of separated flow has been
investigated extensively in numerous experimental and computational studies, (see
review of Simpson [1] and later work exemplified by [2–9], the last on a swept step).

Separation from a gently curving surface is considerably more complicated than
that from a sharp step, because its details depend sensitively on the properties
of the boundary layer approaching the separation region. In confined geometries,
in particular, there is a pronounced two-way interaction between the outer-flow
pressure field acting on the boundary layer and the separation process. In such
circumstances, the separation process is highly unsteady, being affected by the
turbulent structures within the boundary layer, including the near-wall streaks,
and it features intermittently separated and attached patches over a streamwise
band around the time-averaged separation line. From a statistical point of view,
one recurring observation is that the turbulence-energy and shear-stress levels are
extremely high in the vicinity of the nominal separation point and in the initial
stretch of the separated shear layer, this being consistent with the highly unsteady
nature of the separation process. Another observation is that the separation region
is extremely thin, tapering knife-like towards the separation line. This implies the
importance of the near-wall processes to the separation behaviour.

In recent years, there have been several simulation studies focusing on separation
from curved surfaces. On the one hand, this trend has been encouraged by the
rapidly increasing availability, and declining costs, of high-performance computing,
allowing highly wall-resolving LES to be performed on separated flows at elevated
Reynolds numbers. On the other hand, there has been an increasing realisation
that the performance of RANS models in predicting separation from curved
surfaces was especially variable—indeed, often very poor—so that high-fidelity
DNS and LES for carefully controlled conditions have been deemed essential
for assessing alternative RANS models and for identifying the origins of defects
of specific closure approximations. Specifically in relation to the last driver, an
outstanding advantage of simulations is that these can be exploited, if conducted
with great care, to generate benchmark data that are, arguably, more extensive
and accurate than experimental data, especially if statistical two-dimensionality is
desired. A case in point is the flow in a channel with streamwise-periodic hills on
one wall, investigated by Fröhlich et al. [10] and, for a higher Reynolds numbers
and finer grids, by Breuer [11]. This geometry has served as a basis for several
studies and workshops in which the performance of various RANS and RANS–LES
hybrid models have been examined (e.g. [12–14]). An important disadvantage of
this geometry is, however, that it is rather unrepresentative of the large majority
of real flows. Specifically, the structure of flow approaching separation from any
one hill is extremely complex, due to separation, reattachment and acceleration
of the flow in the preceding periodic segment. This makes the results derived
from RANS models difficult to interpret, because even small modelling errors
can translate to large differences in predictive performance as a consequence of
periodicity-induced feedback and modelling-error amplification.

Flows that are more amenable to a physical interpretation that has greater
general applicability entail the separation of a (close to) canonical turbulent
boundary layer and subsequent reattachment and recovery. Computational studies
of such flows have been reported by [15–20], the last one being the most elaborate
of a number of studies focusing on a boundary layer separating from a 3D hill.
Three further studies, by [21–23], deserve to be mentioned, for are all are concerned
with separation from a dune-like hump examined experimentally by Greenblatt et
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Figure 1. Solution domain and reduced numerical mesh: only every eighth grid line is shown.

al. [24]. In this case, however, separation is almost fixed, because it is provoked by
high-curvature contouring in the rear portion of the hump. Several of the above
efforts relate to the experimental investigation of Song and Eaton [25] in which an
equilibrium boundary layer at Re = 9100 was made to separate from a rounded
step. While all studies report a range of flow properties and discuss flow-physical
features, the scope of the results presented is rather limited, partly because the
main emphasis was on assessing approximate modelling schemes [16, 26], or
because the simulations were done in the context of flow-control with pulsed
jets [15, 18]. In all cases, but the DNS by Dandois et al. [18] and Marquillie et
al. [27], grid resolution was relatively modest, in the range 1.5–7 million nodes.
This prevented results beyond second moments and flow-structure information
being extracted at acceptable accuracy.

This paper presents the outcome of highly-resolved LES simulations, with meshes
containing up to 24 million nodes, for a rounded step that is a variation of the
step used by Song and Eaton [25]. Specifically, the step geometry was modified to
create a larger and more vigorous separation zone, resulting in a higher step-height
Reynolds number with virtually the same momentum-thickness Reynolds number
of the upstream boundary layer. The simulations formed part of a broader study on
the control of separation with circular synthetic jets, documented in Lardeau and
Leschziner paper [28]. Exceptionally, within the group of studies on the same theme,
this paper reports and analyses second-moment budgets, in addition to a wide range
of other statistical and structural properties. Agreement between selected results
of the LES and available experimental data of Zhang and Zhong [29] has been
discussed in [28], and this discussion is not repeated herein. Rather, this paper
confines itself to a comprehensive analysis of the LES data.

2. Flow configuration

The geometry under consideration is shown in figure 1. The rounded ramp of height
H is placed in a high-aspect-ratio duct with upstream height of 8.52H. In the
simulations, the flow is assumed to be spanwise homogeneous, with the spanwise
slab being 3.17H. The assumption of homogeneity is justified by the fact that the
experimental ratio of duct depth to the step height was 38. In the experiment,
tripped boundary layers were allowed to develop on both walls for a distance of
about 25H. The Reynolds number, based on H and the inlet free-stream velocity
Uin, is 13700. At x/H = −7.34, the computational inlet, the momentum-thickness
Reynolds number is Reθ = 1190, and the boundary-layer thickness is δ99 = 0.80H.
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Table 1. Grid resolution and respective separation and reat-

tachment positions.

Computation Grid (x/H)s (x/H)r

RUN 1 448 × 128 × 192 0.87 4.21
RUN 2 768 × 160 × 192 0.83 4.36

LDA measurements at this location have shown the boundary layers to be very
close to the canonical equilibrium state. The manner in which the inlet conditions
were specified in the simulation is explained in the following section.

The step geometry is based on that used originally by Song and Eaton [25].
Thus, the height of the step was increased by a factor of 1.5 in order to enlarge the
separation bubble, which was regarded as being rather weak in [25]’s experiment.
This adaptation was undertaken interactively with a parallel experimental effort by
Zhang and Zhong [29]. The step shape is described by the following three relations,
with the origin x/H = 0 being the upstream edge of the ramp:

ywall = (1 − R1) +
√

R2
1 − x2 for 0 < x/H < 2.3

ywall = y2 −

√

R2
1

4 − (x2 − x)2 for 2.3 < x/H < 2.835 (1)

ywall = R2 −
√

R2
2 − (3 − x)2 for 2.835 < x/H < 2.937

with R1 = 4.03, R2 = 0.333, x2 = 3.449 and y2 = 1.936. The distance from the
bottom wall yw = (y − ywall) is also used throughout the text.

3. The computational approach

Implicitly filtered LES momentum and continuity equations for incompressible
flow were solved over a general non-orthogonal, boundary-fitted, multi-block finite-
volume mesh. The solution is based on a fractional-step time-marching method,
with the time derivative approximated by a third-order Gear scheme [30]. The
fluxes are approximated by second-order centred approximations. Within the
fractional-step algorithm, a provisional velocity field results from advancing the
solution with the flux operators. This is then corrected through the pressure field
by projecting the provisional solution onto a divergence-free velocity field. To this
end, the pressure is computed as a solution to the pressure-Poisson problem with
the aid of a V-cycle multigrid scheme. In order to suppress unphysical oscillations,
associated with pressure-velocity decoupling, a practice equivalent to that intro-
duced by Rhie and Chow [31] is adopted. Fishpool and Leschziner [30] demonstrate
that the loss of accuracy associated with the smoothing introduced by this practice
is minimal.

Simulations were performed with two grids having 11 million (RUN 1) and 24
million nodes (RUN 2), respectively (table 1). Most results included herein were
derived from the latter simulation, unless grid-dependence is illustrated. The dif-
ferences between the two sets of results are very modest in most respects. For the
lower wall, the streamwise variations of the cell dimensions, normalised by the lo-
cal friction velocity, are shown in figure 2. While scaling with the friction velocity
may be argued to be inappropriate in the separated region, the sole purpose of the
distributions in figure 2 is to support statements on the resolution of the near-wall
region. An alternative scaling is that of [32], which combines the friction velocity
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with a velocity scale derived from the streamwise pressure gradient. This blended
scaling was found to result in distributions very similar to those shown in figure 2,
except in the immediate vicinity of the stagnation points, where scaling with uτ

obviously results in zero values. The distance of the wall-nearest cell centre to the
wall is ∆y+/2 < 1. Within the range x/H = 0–5.0, the spanwise cell dimension,
∆z+, is 5–13, while the streamwise cell dimension, ∆x+, is below 12 (figure 2).
The boundary layer on the upper wall was covered by a coarser grid than that
on the lower wall, with the conditions between the wall and the wall-nearest y+

location of around 25 being covered by a log-law wall function, and with about
10 grid nodes covering the boundary-layer thickness. This choice is justified by
the fact that the upper boundary layer is far away from the region of interest, is
only subjected to a weak adverse gradient and is always fully attached. An entirely
analogous approach was taken by Fröhlich et al. [10] when simulating the flow at a
similar Reynolds number in a much tighter channel with massive separation behind
streamwise periodic hill-shaped obstructions on the lower wall. In that case, this
choice was made after extensive grid-sensitivity trials, and it is now well established
that the resulting solution, including budgets, is fully trustworthy.
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Figure 2. Grid spacings in wall units and aspect ratio ∆x/∆y along the bottom wall. The inserts in the
figures show a magnified view of the normal grid spacing ∆y+/2.

Turbulent boundary layers were imposed at the domain inlet (x/H = −7.34)
on both the upper and lower walls. To this end, data were taken from a precur-
sor simulation, performed with the aid of a recycling method [33], for a stretch
of a boundary layer developing in the actual channel. At a streamwise position
at which Reθ = 1190, every realisation of the velocity field was stored over a pe-
riod of 1120H/Uin. This data set was then used to explicitly prescribe the inlet
condition. Comparisons between lower-wall boundary-layer data returned by the
present precursor simulation and DNS results of Jimenez et al. [34], for a similar
Reynolds number, Reθ = 1100, are shown on figure 3; agreement is seen to be
close. As a result, a high-fidelity representation of the boundary layer approaching
the step is obtained. This is shown in figure 4, which compares present results for
the turbulence energy, Reynolds stresses and the budget for the streamwise and
spanwise Reynolds stresses at the streamwise station x/H = −4.0 with DNS data
of Jimenez et al. [34].

The quality of the resolution is conveyed in figure 5 by way of three indicators:
the ratio of maximum cell dimension to the Kolmogorov scale, the latter obtained
from the dissipation rate as part of the turbulence-energy budget; the ratio of the
RANS-equivalent turbulent viscosity and the fluid viscosity, the former obtained
from k2/ε; and the ratio of subgrid-scale viscosity to fluid viscosity, obtained with
the mixed-time-scale model of Inagaki et al. [35]. Thus, within the recirculation
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Figure 3. Comparison of inflow conditions with DNS data of a turbulent boundary-layer flow [34]. Lines:
LES data from precursor simulation (profiles are normalized by the friction velocity); symbols: DNS data
at Reθ = 1100.

zone, the maximum cell dimensions are around 6–9 Kolmogorov lengths, while the
ratio of turbulent viscosity to the fluid viscosity is of order 1–2×103. Consistently,
the subgrid-scale viscosity is low—below 0.24 of the fluid viscosity. Finally, the
resolved dissipation was observed to be of order 70% of the level determined from
balancing all the other terms in the turbulence-energy budgets, to be discussed
later.

The time step corresponds to a maximum cell-CFL value of around 0.5. Simu-
lations were run for 300 time units, one time unit being H/Uin, before statistical
sampling commenced. The flow was then computed for further 1700 time units
during which data for various statistical properties were gathered. Statistical con-
vergence was increased by spanwise averaging.

4. Results

4.1. Overall view and major characteristics

Two instantaneous realisations of the flow are given in figures 6 and 7, by way of
velocity contours and iso-surfaces of the Q-criterion, respectively. In the latter,
colours indicate variations in streamwise velocity—red denoting high values,
yellow and green moderate values and blue low values. The former realisation,
and others like it, demonstrate that instantaneous, local separation extends over
a substantial distance across the surface of the rounded step. The time-averaged
separation location is at x/H = 0.83, but the PDF of the upstream-most local
separation point (included in Lardeau and Leschziner [28] paper) indicates that
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Figure 4. Comparison of LES simulation with DNS data of a turbulent boundary layer flow [34] at
x/H = −4.0, where Reθ ∼ 1060. Lines: LES data, profiles are normalized by the friction velocity; open
symbols: DNS data at Reθ = 1100; closed symbols: DNS data at Reθ = 1551.

the instantaneous separation extends from around x/H = 0.6 to 1.5. Given that
the spanwise slab, shown in figure 6, extends over L+

z = 2000, visual inspection
of the separation pattern suggest structures that are of order 100 wall units
apart, a distance that is resolved by around 9–10 spanwise cells and one that is
in agreement with other results for inter-streak separation in channel flow and
boundary layers (e.g. [36]). This inter-streak distance is confirmed in figure 8,
which shows the streamwise variation of the spanwise correlation function Ruu

at two distances from the wall, corresponding to y+ = 15 and y+ = 100 at
x/H = 0. In particular, the distribution at x/H = 0 reveals a minimum at around
z+ = 80, corresponding to one-half the inter-streak (low-speed-to-low-speed or
high-speed-to-high-speed) distance. Further downstream, following separation,
the turbulence structures grow rapidly, and the correlation function follows suit,
maintaining a value of 0.2 at dz+ of approximately 400. As this value is only
one-fifth of the extent of the spanwise box, the implication is that this box
is sufficiently wide to capture all important structures in the simulation. The
Q-criterion plotted in figure 7 gives qualitative support for the above observations.
Thus, spanwise-elongated structures are observed in the upper portion of the
separated shear layer with a typical length of around one-quarter to one-third of
the spanwise box. These structures may be associated with the Kelvin–Helmholtz
(KH) instability in the shear layer. In Lardeau and Leschziner’s [28] study, it is
shown, based on energy spectra derived from the coarser-grid simulation, that the
energy peaks at the Strouhal number StH = fH/Uin = 0.2, corresponding to the
so-called ”flapping instability”. Moreover, the spectrum features another weak
peak at a frequency that corresponds to the first sub-harmonic of the KH mode.
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Figure 5. Assessment of the resolution—In the Kolmogorov length scale η ≡ (ν3/ε)1/4 (figure 5(a)), the
dissipation rate ε is either determined from balancing all the other terms in the k-budget (open symbols)
or evaluated explicitly (closed symbols)).

Figure 6. Instantaneous streamwise velocity. Top view at a distance y+ = 15 (with uτ at x/H = 0)
from the surface, corresponding to the surface y/H ∼ 0.02; side view at spanwise mid-plane. Gray regions
bordered by lines indicate reversed flow.

Figure 6, as well as animations, show that patches of attached flow exist along the
entire region downstream of the mean separation point. A statistical representation
of this fact is conveyed in figure 9. This figure shows contours, in the spanwise plane,
of the proportion of time the flow is reversed—essentially the probability of reverse
flow. The thick dashed line represents the zero time-averaged streamwise velocity
locus, i.e. the line signifying the height of the time-mean reverse-flow layer, and
this matches with the contour 0.5. As seen, there is only a small patch within
which the flow is reversed for 90% of the time, and there is no region in which
the flow is reversed at all times. The locus 0.1 intersects yw/H = 0 at x/H = 0.7,
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Figure 7. Isosurface of the Q-criteria (Q = 5U2
in

/H2), colored by the streamwise velocity.

Figure 8. Spanwise two-point velocity correlation for two different distances from the surface (y+ = 15
and y+ = 100 at x/H = 0) along the streamwise direction.

confirming a statement made earlier about the PDF of the upstream-most location
of separation being at around x/H = 0.6.)

Figure 10 shows contours of two sets of two-point correlation functions, in the
spanwise plane, one for streamwise-velocity fluctuations, Ruu, and the other for
pressure fluctuations, Rpp, at four positions in the flow. The shaded contours re-
late to the former, while the lines identify the latter. The contours for Ruu are
fairly narrowly confined in the wall-normal direction, especially those indicating
high correlation levels, but elongated in the streamwise direction, primarily with a
forward orientation. The growth of the correlation domain, both in the streamwise
and lateral directions, is consistent with the increased size of turbulence structures
with downstream distance as separation is approached and beyond separation. A
useful qualitative message that Ruu conveys is that the degree of non-locality of tur-
bulence is generally high and increases substantially following separation. In fact,
close to the position of reattachment, the correlation region is extensive, being of
the same order as the whole recirculation region. This issue of non-locality is es-
pecially important in relation to the validity of single-point-closure principles. The
contours of Rpp differ greatly from those pertaining to the velocity fluctuations.
The main point of distinction is the large wall-normal extent of the correlation
domain and the much higher level of correlation value over large distances. This
is, qualitatively, consistent with the elliptic nature of the pressure-fluctuation field,
and more specifically, with the role of wall-reflection processes, which cause pres-
sure fluctuations to propagate across the flow and result in pronounced wall-normal
coherence in the correlation function. Here again, the message is that non-locality is
very high, and that the formulation of single-point approximations to the statistical
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terms representing pressure-velocity interactions is based on a weak foundation.
The characteristics described above convey a complex, highly unsteady sepa-

ration process that points to a tenuous balance between the diffusive processes
that favour attachment and the gradually increasing adverse-pressure gradient that
tends to provoke and maintain separation. Reattachment is even more patchy than
separation (figures 6 and 9), with the reattachment location extending, instanta-
neously, over most of the separated zone, down to around x/H = 5.5, relative to a
time-averaged reattachment at x/H = 4.36, determined from the wall-shear stress.

Figure 9. Contours of the probability of reverse streamwise velocity. The dashed line represents the zero
time-averaged streamwise velocity locus.
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Figure 10. Contours, in the spanwise plane, of two points correlations Ruu (color scale) and Rpp (lines)
at four different points.

The time-averaged stream-function field is shown in figures 11 and 12. The lat-
ter includes magnified views of the separation and reattachment regions to bring
out more clearly the very shallow angle of the zero-streamline, especially at the
separation end. Also included is the zero-streamwise-velocity locus, essentially bi-
secting the recirculation zone. The separated region is seen to be extremely thin
and elongated following separation. As will be shown later, this region is marked,
despite its close proximity to the wall, by a rapid increase in turbulence energy
and shear stress, due to very high production. In fact, the highest production oc-
curs at around x/H = 1.4, which is close to the separation point, x/H = 0.83,
thus indicating a high level of fluctuations implied by the pattern in figure 6. The
reattachment angle is around 10◦, and this particular parameter is a sensitive in-
dicator of the delicate near-wall balance between a gain and loss contributions in
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the shear-stress budget. RANS models, especially those based on second-moment
closure, have great difficulties representing this region realistically.

Figure 11. Streamline contours of the time-averaged flow field in the recirculation region. The dashed-dot
line represents the zero-streamwise-velocity locus.

(a) Separation: x/H = 0.83. (b) Reattachment: x/H = 4.36.

Figure 12. Streamline contours of the time-averaged flow field: magnified views of the separation and
reattachment regions.

-0.2

-0.1

 0

 0.1

 0.2

-5  0  5  10  15

Separated flow

x/
H

=
0
.8

3

x/
H

=
4
.3

6

RUN 1
RUN 2

x/H

C
p

(a) Pressure coefficient.

-2

 0

 2

 4

 6

 8

-5  0  5  10  15

Separated flow

x/
H

=
0
.8

3

x/
H

=
4
.3

6
RUN 1
RUN 2
RUN 2, Cf,rms

x/H

C
f
,
C

f
,
r
m

s
(×

1
0
−

3
)

(b) Skin-friction coefficient.

Figure 13. Distribution of pressure and skin-friction coefficients along the lower wall.

Streamwise distributions for the pressure and skin-friction coefficients are shown
in figure 13. In this particular figure, solutions obtained with 11 million (RUN
1) and 24 million nodes (RUN 2) are compared. Both coefficients indicate that
the near-wall layer accelerates well upstream of the step, due to distortions in the
velocity field in the downstream curved section associated with the attached near-
wall flow maintaining a near-constant vorticity as it curves downwards. As the
flow progresses downstream, just beyond x/H = 0, the overall deceleration causes
a pressure rise on the surface and the near-wall flow decelerates until separation
occurs at x/H = 0.83. The unevenness in the skin-friction coefficient within the
separated region is due entirely to curvature discontinuities in the surface shape,
and very similar distributions arise with both grids. The pressure coefficient fea-
tures a weak plateau with centre around x/H = 2.7, this weakness reflecting the
thin and elongated shape of the separation bubble—in particular the thin separa-
tion and reattachment tongues at either end of the bubble. The surface pressure
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reaches a maximum close to the reattachment point, and the flow is seen to re-
cover towards an equilibrium channel condition beyond x/H = 10. Figure 13(b)
also contains the streamwise variations of the r.m.s. of the skin-friction coefficient,
which is appropriately viewed in conjunction with figure 9. The r.m.s. level is of
the same order as the mean skin friction itself, and this signifies the substantial
unsteadiness that prevails in the separated region. As the probability of near-wall
reverse flow in the region 1 < x/H < 4 is of order 0.7, the near-wall flow is in-
termittently attached and separated, leading to very high r.m.s. values, relative to
the mean, in the near-wall velocity and hence in the skin friction.

4.2. Velocity and Reynolds-stress profiles
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Figure 14. Mean velocity and Reynolds stress profiles at various vertical locations: x/H = 0, 0.5, 1.5, 2,
3, 4, and 5. Note that scaling multipliers are used to simply gain an equally clear view of the variations
for all quantities.

Six sets of 7 profiles, for velocity, Reynolds stresses and turbulence energy, re-
spectively, are given in figure 14. The locations have been chosen to provide a
representative view of the three major flow regions: the attached boundary layer
(x/H = 0 and 0.5), the recirculation zone (x/H = 1.5, 2, 3 and 4) and the post-
reattachment flow (x/H = 5).

The velocity profiles are akin to those observed in most separated flows, except in
so far as that they accentuate the fact that the reverse-flow region here is very thin,
especially following separation and preceding reattachment, reaching a maximum
of only 0.33H at x/H = 2.9, and that the maximum reverse-flow velocity is low,
at only 13%, reached at x/H = 3.0. The last U -profile is in the post-reattachment
region, and its shape indicates the acceleration of the near-wall layer associated
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with the preceding impingement, coupled with the formation of the new boundary
layer in this region.
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The profiles of the Reynolds stresses reveal a steep rise in turbulence activity
following separation. This rise is brought out particularly well in figure 15, which
shows the streamwise variations of the maximum turbulence energy, k, and the
shear stress, −uv, their respective vertical distance to the bottom wall being iden-
tified by the dashed lines and denoted by dw. Both quantities start rising upstream
of the separation point and reach a maximum at around x/H = 1.8, i.e. 1.0H
downstream of the mean separation point. In addition, k and −uv feature two
maxima, separated by a weak dip that is associated with the upward turning of
the flow where the curved step merges into the horizontal wall.

The features described above suggest that the separated shear layer is far from
turbulence-energy equilibrium. This is confirmed by figure 16, which shows the
ratio of turbulence production to dissipation, Pk/ε, and the ratio of −uv/k, both
along the locus of maximum turbulence-energy production. The former ratio is seen
to reach about 3.3 immediately downstream of the separation point, not dropping
below 2 until reattachment. Consistently, −uv/k is significantly above 0.3, reaching
a maximum value of 0.46, again close to the separation point. Attention is drawn
to the fact that both ratios need to be viewed with caution upstream of separation,
because of the particular choice of loci along which the ratios were determined.

Figure 14 shows that the transverse stresses, vv and ww, are close to each other
over a substantial portion of the separated layer, reflecting the near-symmetric
redistribution of energy from dominant streamwise, uu, to the transverse stresses.
A clearer, quantitative, view of the variation of the anisotropy will be conveyed
below by reference to anisotropy invariants. Before this is done, however, it is
noted, upon inspection of figure 14, that the bulging of the uu and ww profiles, in
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contrast to the vv profile, is a first indication of the trend towards two-component
turbulence very close to the wall, demonstrated quantitatively later. The bulging
in the ww is especially remarkable, and is an indicator, again explored later, of
a strong, preferential transfer of energy from uu to ww due to ”splatting”, i.e.

pressure-velocity interaction. The shear stress is observed to grow dramatically
after separation, and this is the reason for the very gradual growth of the separated
region: the flow resists separation despite the strong adverse pressure gradient by
virtue of the steep increase in mixing. An analogous behaviour was observed in
separation from a 3D hill, based on simulations by Garcia-Villalba et al. [20]. The
above behaviour of turbulence around the separation point is among the most
challenging to represent statistically, and is also one of the most potent sources of
error in RANS modelling of separation from curved surfaces.

(a) Flatness parameter A.

(b) Second invariant A2.

(c) Third invariant A3.

Figure 17. Contours of stress anisotropy parameters (equation (2)). The dashed-dot line represents the
zero-streamwise-velocity locus.

Anisotropy properties are presented in figures 17–19 in three ways: figure 17 gives
a global view of the flatness parameter as well as the second and third anisotropy
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Figure 18. Profiles of stress anisotropy parameters (equation (2)) at selected streamwise locations.
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Figure 19. Anisotropy-invariant mapping at two streamwise locations, with y/H ≤ 1.5. The open square
symbol stands for the nearest point to the bottom wall.

invariants, respectively:

A = 1 −
9

8
(A2 − A3), A2 = aijaji, A3 = aijajkaki, (2)

where

aij =
uiuj

k
−

2

3
δij ;

figure 18 shows profiles of these same invariants at selected streamwise locations;
while figure 19 shows, for the positions x/H = 1.0 and 1.5, the relationship between
the parameters η and ξ, representing, respectively, the second and third invariants,
A2 and A3, via:

6 η2 = A2/4; and 6 ξ3 = A3/8, (3)
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along cross-flow traverses, in the range y/H < 1.5, within the ”Lumley triangle”.
The two streamwise stations chosen relate, respectively, to the immediate post-
separation zone and the position at which the turbulence energy and the shear
stress are close to their respective maxima following separation.

With attention focusing first on the separated shear layer, it is observed, espe-
cially in figure 18, that the flatness parameter drops to low minima (of order 0.1) in
the early stages of separation (around x/H = 1.0), driven primarily by high values
of A2 (of order 2), but counteracted by somewhat lower values of A3 (of order 1).
This behaviour is associated with the strong rise, by production, in streamwise fluc-
tuations, matched only gradually by the redistribution process as the shear layer
evolves and diverges from the wall. In the Lumley triangles, figure 19, the central
portion of the shear layer is identified by the right-hand-side sharp peak. Thus,
the turbulence state has features akin to one-component turbulence, in which one
eigenvalue of the stress tensor dominates, consistent with a highly-elongated, cigar -
like shape of the deviatoric Reynolds-stress tensor. Further downstream, including
in the recovering wake, anisotropy weakens, as shear-generation declines and re-
distribution operates more effectively, but is still substantial in central portions of
the shear layer (of order 0.6), with A3 close to zero and A2 of order 0.4. Hence,
over a major proportion of the flow, A is essentially dictated by A2. In the outer
portion of the shear layer, turbulence is in a state not far from isotropy (A = 0.8),
associated with low strain-induced production and effective redistribution.

Figure 19 shows, first, that the turbulence field approaches a two-component
state very close to the wall. As is also evident from figure 18, this region is char-
acterised by steeply rising A2 and negative values of A3. This behaviour implies
a pancake-like shape of the deviatoric Reynolds-stress tensor, with broadly equal
eigenvalues associated with wall-parallel fluctuation components and rapidly dimin-
ishing wall-normal component. Within the reverse-flow portion of the recirculation
region, away from the immediate vicinity of the wall, where the reverse-flow layer
reaches its minimum velocity, straining is weak, turbulence intensity is high, and
the turbulence tends to move away from the state of two-component turbulence
towards the isotropic state. In the Lumley triangle pertaining to x/H = 1.5, this
region corresponds to the plateau of the cross-flow locus, and the beginning of this
trend is discernible already at x/H = 1.0 at which the reverse-flow layer is still
extremely thin.

4.3. Budgets

A few aspects of the budgets, associated with turbulence production and dissipa-
tion, have already been highlighted in the previous section. Here the budgets are
discussed in detail.
With the pressure-velocity interaction terms decomposed into pressure-strain and
pressure-diffusion fragments, the budgets may be written as follows:

Duiuj

Dt
= Pij − εij + Tij + Φij + Dij + Vij; (4)

Pij = −ujuk
∂Ui

∂xk
− uiuk

∂Uj

∂xk
; εij = 2ν

∂ui

∂xk

∂uj

∂xk
; Tij = −

∂uiujuk

∂xk
;

Φij =
p

ρ

(

∂ui

∂xj
+

∂uj

∂xi

)

; Dij = −
1

ρ

(

puj

∂xi
+

pui

∂xj

)

; Vij = ν
∂2uiuj

∂xk∂xk
;
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where Pij , εij , Tij, Φij, Dij and Vij represent, respectively, production, dissipation,
turbulent transport, pressure-strain, pressure diffusion and viscous diffusion.

Budgets for the turbulence energy and all Reynolds stresses are shown in fig-
ures 20–24 at four streamwise locations within the recirculation region: x/H = 1.5,
2, 3 and 4, the first two stations being close to the region where the turbulence-
energy production reaches a maximum in the separated shear layer. Data at other
locations, including upstream of separation and downstream of reattachment, are
available, but are not included herein. All contributions have been normalised by
using the scales Uin and H. In the following, a number of preliminary comments
are made ahead of the discussion of physical interactions implied by the budgets.
First, attention is drawn to the fact that the dissipation rate included in the bud-
gets was obtained so as to balance the sum of the other terms, all associated with
large-scale processes. Tests have shown that the resolved dissipation, extracted ex-
plicitly from the simulation, is of order of 50–70% of the balance, thus indicating a
good resolution even beyond the wave-number separating inertial and highly dis-
sipative ranges.
Second, as noted above, the pressure-velocity interaction is split into (non-
deviatoric) pressure-diffusion and (deviatoric) pressure-strain contributions. The
latter set of terms in the normal-stress equations are readily shown to formally
contract to zero (for incompressible flow), and the validity of this constraint in the
present simulations has also been verified explicitly by summing up the normal-
stress contributions. The above split of the pressure-velocity interaction is a stan-
dard practice, that is held to be useful for second-moment-closure modelling. It is
not unique, however, and various rational options for splitting the pressure-velocity
term are discussed by Groth [37] and Dejoan et al. [38]. As will be argued in the
discussion below, the split does not necessarily aid transparency of the physical
interactions. In particular, very close to the wall, the two contributions tend to
diverge dramatically, in the case of the streamwise and cross-flow normal stresses
(there is no pressure diffusion in the spanwise normal stress), the sum of the two
being much smaller than the fragments themselves.
Third, when the cross-flow variation of the various budget contributions for the
streamwise stations included, x/H = 1.5, 2, 3 and 4, are examined, it is helpful
to take note of the thickness of the reverse-flow layer at these streamwise stations,
namely: yw/H = 0.05, 0.13, 0.3 and 0.05, respectively (see figure 9). The locus of
the zero-velocity positions and the zero-streamfunction line, the latter defining the
recirculation bubble, is shown in figure 11 (also reported in figure 17).
A final preliminary point to note is the remaining weak unevenness of the curves
beyond x/H = 3.0, despite a very long time integration period—1700 time units.
This reflects the increasing difficulty of obtaining full numerical convergence in the
budget contributions, a limitation associated with the increasing predominance of
large-scale motions in the separated shear layer. Moreover, beyond separation, the
budget contributions decline significantly in magnitude with increasing stream-
wise distance, so that relative errors, from whatever source, tend to be magnified,
especially in the case of the vv budgets in which contributions tend to be lowest.

The turbulence-energy budgets (figure 20) confirm one statement made earlier,
namely that the separated shear layer is very far away from a state of equilibrium,
and this is so especially in the early stages of separation. Thus, at x/H = 1.5,
the ratio of production to dissipation in the shear layer reaches a value close to
2.5 (the maximum factor is around 3.3, at x/H = 1.0—figure 16), while this ratio
drops no lower than 2 further downstream. This high level of imbalance reflects
the very strong generation of streamwise fluctuations, consistent with the trend
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Figure 20. Budgets for k at x/H = 1.5, 2 (top), 3 and 4 (bottom).

towards one-component turbulence, as discussed in the previous section. Another
important observation—in part a corollary of the previous comment—is that tur-
bulent diffusion is a major contributor to the balance. Indeed, this has to be so
in order to compensate for the imbalance between production and dissipation, in
the highest-shear portion of the shear layer within which both are close to their
respective peaks. Thus, diffusion drains energy from this region and transports
it both into the outer part of the shear layer and towards the wall. In the outer
part, where both production and dissipation weaken, this diffusion is counteracted
mainly by forward convective transport of energy (a loss) in the streamwise di-
rection. Within the reverse-flow layer, but away from the immediate vicinity of
the wall, the balance is mainly between turbulent diffusion (gain) and dissipation
(loss); shear is low, and this is a region in which the flow shows a trend towards
isotropy (see plateau in figure 19(b) at x/H = 1.5). Very close to the wall, dissi-
pation is balanced by pressure diffusion (which is identical to the pressure-velocity
interaction) and viscous diffusion, the former being a minor contributor elsewhere.
This behaviour is in contrast to the near-wall state in attached flow, where the
high value of dissipation is balanced by viscous diffusion only, as confirmed also by
budgets from the present simulation upstream of separation—e.g. at x/H = −4,
shown in figure 4(c). The scenario described above is essentially valid throughout
the flow region examined, including at the sections x/H = 3 and 4, except that
the contributions decline as reattachment is approached, because of the progressive
decrease in straining.

The budgets for uu (figure 21) are similar to those for k in several respects, and
this is expected, as the streamwise stress is by far the most important contributor
to the energy. However, there are also some significant differences. First and fore-
most, the pressure-strain process, which is zero in the case of the k-budget, is a
very important drain of uu over most of the flow, acting together with dissipation
and turbulent diffusion, the latter in the centre of the separated shear layer, to
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Figure 21. Budgets for uu at x/H = 1.5, 2 (top), 3 and 4 (bottom).

counteract a production level that exceeds dissipation by a factor of up to 5.5.
This term transfers energy to the other two normal stresses—preferentially to ww,
as will transpire later. The low level of the dissipation rate is remarkable, and may
be interpreted as indicating that down-scale transfer in the cascade in the shear
layer cannot keep pace with the very high rate of production, associated with high
levels of shear stress, which then requires turbulent diffusion and pressure-strain
redistribution to act as the principal sinks, at least in the heighest-sheared portion
of the separated shear layer. A peculiar feature of the pressure-velocity interaction
process is the highly localised divergence of the pressure-strain and the pressure-
diffusion fragments very close to the wall in the early stages of separation. While
the budgets of vv will be considered separately below, it is noted here that this
divergence is mirrored in that budget through a steep decline in the pressure-strain
term and a sharp rise in the pressure-diffusion term. This behaviour is presumed
to be linked to the need to secure the asymptotic approach of turbulence to the
two-component limit through a rapid decay of wall-normal fluctuations, in the face
of the zero-divergence constraint that has to be satisfied by the pressure-strain
process. Very close to the wall, this process drains energy from vv, transferring it
to ww and uu. However, this drain, if operating on its own, would drive vv into
non-realisable negative levels, and this dictates the presence of a counteracting
pressure-diffusion process. Analogously, uu would be driven to non-realisable, high
levels were it not for the counteracting pressure-diffusion term, at least in the early
stages of separation. The result of the combination of the two fragments is then a
positive pressure-velocity contribution in uu (of the same order as the dissipation),
a nearly zero contribution in vv and a decisively positive contribution (purely a
pressure-strain interaction) in ww—a budget discussed below—which reflects the
splatting effect at the wall.

Although vv is a minor contributor to the turbulence energy, especially close to
the wall, its behaviour is extremely important, nevertheless, for it is responsible,
in conjunction with the shear strain, for the generation of the shear stress. In
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Figure 22. Budgets for vv at x/H = 1.5, 2 (top), 3 and 4 (bottom).

contrast to the conditions in an attached boundary layer, production of vv is, here, a
significant contributor to the budget. This production in the highly-sheared portion
of the separated layer, in combination with a positive pressure-strain transfer of
energy from uu to vv, is counteracted mainly by dissipation and turbulent diffusion,
with convection being increasingly important in the outer part of the shear layer.
In contrast to the budget of uu that for vv features a substantial pressure-diffusion
contribution outside the immediate near-wall region. Within the reverse-flow layer,
this term counteracts the gain in vv by the pressure-strain process (except very
close to the reattachment point, where the pressure-strain term is itself negative),
as turbulence begins to be driven towards the two-component state. In the outer
part of the shear layer, the pressure-diffusion term counteracts the gain arising from
a strong outward diffusion of vv and the high level of the pressure-strain process
in the face of a relatively low dissipation rate.

As noted already, the ww budget lacks a pressure-diffusion contribution, because
of spanwise homogeneity. Moreover, production is zero, for the same raison. With
the near-wall region left aside, this budget is largely characterised by a balance
between a positive pressure-strain contribution and dissipation, with turbulent dif-
fusion transferring energy from the high-shear central portion of the shear layer
to both inner and outer regions, thus aiding dissipation in balancing the gain by
the pressure-strain process. As is the case with the other normal stresses, negative
convection provides an additional drain in the outer part of the shear layer to com-
pensate for the positive pressure-strain and turbulent-diffusion contributions. An
important observation, made earlier when discussing the budget of uu, but deserv-
ing to be highlighted again, is that pressure-strain rises close to the wall. This rise
is especially pronounced as the reattachment region is approached, a process that
is compensated by increased dissipation, turbulent diffusion and viscous diffusion.
This rise in the pressure-strain, associated with splatting, generates large spanwise
fluctuations, leading to near-wall normal stress ww being of the same order as uu
(true only near the reattachment), despite the absence of production.
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Figure 23. Budgets for ww at x/H = 1.5, 2 (top), 3 and 4 (bottom).

The shear-stress budget (figure 24) is dominated by negative production—
especially large in the initial portion of the separated shear layer—and positive
pressure-strain contribution, the latter enhanced by positive turbulent diffusion in
the central portion of the shear layer. As expected, dissipation is minor, in the
separated shear layer, but also near the wall—the latter less expected, because
anisotropy in the small scales is likely to be significant close to the wall. In the
former, this reflects the near-isotropy of the dissipative scales, while in the latter
region, dissipation is essentially forced to keep pace with the decline in all other
terms, especially production and the pressure-strain term, as the shear stress dimin-
ished rapidly towards the wall. Pressure diffusion is a relatively minor contributor
in the separated shear layer, but more influential in the reverse-flow layer and very
close to the wall. In fact, in the reverse-flow layer, pressure diffusion plays the dom-
inant role—much more so than the pressure-strain term—in diminishing the shear
stress. Turbulent diffusion, while not negligible in the reverse-flow layer, is not a
dominant contributor to the balance. It opposes production in the highly-sheared
region and transports shear stress towards the wall and the outer region shear-layer,
thus elevating its magnitude in these regions. Very close to the wall, the dramatic
reversal and divergence of the two fragments of the pressure-velocity-interaction is
observed, and this mirrors the process observed in the vv budget.

4.4. Length scales

The length scale used most frequently in fully-turbulent flow is the ”macro scale”,
usually expressed as L = k3/2/ε. This scale is held to represent the energetic eddies
which are associated with mixing (i.e. shear stress, fluxes). It is also the primary
length scale that underpins statistical closures, and is regarded as an identifier of
the degree of locality of turbulence, when compared to the length scale associated
with mean-flow straining Ls = S/|∇S|, where S =

√

2SijSij and Sij is the mean



October 25, 2011 17:55 Journal of Turbulence JoT-paper-ICL

22 Y. Bentaleb et al.

-0.08

-0.04

 0

 0.04

 0.7  0.8  0.9  1  1.1

Turbulent transport
Viscous diffusion
Pressure-strain
Pressure diffusion
Production
Dissipation
Convection

y/H

L
o
s
s

−
G

a
in

-0.04

-0.02

 0

 0.02

 0.04

 0.5  0.6  0.7  0.8  0.9  1  1.1  1.2

y/H

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0  0.2  0.4  0.6  0.8  1  1.2

y/H

L
o
s
s

−
G

a
in

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0  0.2  0.4  0.6  0.8  1  1.2

y/H

Figure 24. Budgets for uv at x/H = 1.5, 2 (top), 3 and 4 (bottom).

rate-of-strain tensor. If the former is small, relative to the latter, turbulence can
be said to be ”localised”; otherwise turbulence is held to be non-local and its state
ought to be describable adequately by local analysis (see [39]).

To explore the above issues, the turbulence and mean-flow length scales are
shown in figures 25(a) and 25(b), respectively. Both are normalised by the step
height H. The macro-scale is relatively low near the wall, especially upstream
of separation, scaling with the wall distance broadly within the range y3 to y,
depending on the distance from the wall. It begins to grow rapidly following
separation, to reach values 0.5–1.2H within the recirculation zone and in the wake
region. The rather uneven map of the length scale in the region beyond x/H = 3,
especially above y/H = 0.7, reflects the influence of two factors. First, and most
important, the dissipation values decline rapidly beyond the shear layer, so that
slight variations in its value will have a major impact of the length scale, which
is indirectly proportional to the dissipation. Second, at around x/H = 3, there is
a rapid change in the curvature of the grid lines due to a corresponding change
in the orientation of the lower wall, and this is aggravated by a coarsening of the
normal grid beyond x/H = 3 station in the central region, due to the channel
expansion (figure 1). However, the overall message is clear, namely that the macro
scale is substantial in the recirculation zone, of the order of the height of the
separated region.

Both the macro and mean-flow scales are difficult to determine accurately, be-
cause they involve the dissipation rate in the former, as noted already, and the
derivatives of the strain in the latter. However, figure 25(b) shows the mean-flow
scale to be comparable or lower than the macro scale over most parts of the sepa-
ration zone, and this is brought out in figure 25(c) which shows the ratio of the two
scales. Within the recirculation zone, the macro-scale exceeds the mean-flow scale
by a factor of 1.5–4, with levels above 10 arising in the reverse-flow layer. These
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(a) Turbulence (or macro) lengthscale.

(b) Mean-flow lengthscale.

(c) Ratio of the above scales.

Figure 25. Contours of turbulence length-scale L = k3/2/ε, mean-flow length scale Ls = S/|∇S| (both
normalized by H), and their ratio L/Ls.

results lead to the supposition that single-point closure, of whatever ilk, is likely
to highly challenged when used to model this flow.

5. Conclusions

The present study was motivated by the wish, and the need, to gain insight into the
complex processes occurring when a boundary layer undergoes separation along
a gently curving wall, and develops a shallow and relatively weak recirculation
zone, in which—as it turns out—the flow is never unconditionally reversed at any
point in the recirculation zone. Despite the weakness of the separation, with the
mean reverse-flow velocity not exceeding 13% of the free-stream value, the overall
influence of the separation on the flow is significant. In particular, separation is
accompanied by a substantial modification of the pressure distribution, especially
at the wall, and by a strong elevation in the turbulence activity, relative to the
conditions in an attached boundary layer.

Important time-mean characteristics of the flow include: an extremely tenuous
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separation process, with very shallow separation angle, a thin reverse-flow layer
that hugs the wall, and is thus strongly affected by it, a reattachment at a very
shallow angle and a pronounced wall-pressure plateau within the recirculation zone.

The separation process was shown to occur over a significant proportion of the
surface, giving rise to a region of intermittently attached and separated boundary
layer. This intermittency extends over virtually the entire surface, post separation,
and within the recirculation zone, one manifestation being a high level of skin-
friction variance. In the mean, the boundary layer initially experiences acceleration
upstream of the curved step, followed by deceleration and destabilizing inflexion
as it approaches separation.

One consequence of the unsteady separation is an especially high growth rate in
the turbulence level in the initial stretch of the separated shear layer. In statistical
terms, this is due to turbulence generation exceeding dissipation by a factor rising
above 3. Much of this imbalance is due to the very strong generation of streamwise
fluctuations, which give rise to a layer that has some characteristics akin to that of
one-component turbulence. Throughout the separated shear layer, this high level of
production-to-dissipation ratio renders the state of this layer far from turbulence-
energy equilibrium. Anisotropy in the shear layer is high, with the minimum value
of the flatness parameter, A, progressing from around 0.05 immediately after sepa-
ration to around 0.4, at the position of maximum normalized Reynolds shear stress,
−uv/k, to around 0.6 in the post-reattachment wake.

The strong departure of the flow from a state of turbulence equilibrium, through-
out the flow, is also given expression by substantial levels of turbulent diffusion
and—especially in the outer portion of the separated layer—also convection of the
second moments. Typically, turbulent diffusion plays the influential role of draining
energy from the centre of the shear layer and redistributing it towards the wall and
out into the outer reaches of the shear layer. The variation of the pressure-velocity
interaction terms is complex. A dominant, expected, feature of the pressure-strain
process is a transfer of energy from the streamwise stress to the other two normal-
stress components, i.e. a process enhancing isotropisation. However, this process
is generally opposed by the pressure diffusion fragment. This is so especially very
close to the wall, where the two fragments virtually neutralise each other, and in
the case of the cross-flow normal stress vv in which pressure diffusion is as im-
portant as pressure-strain and plays a crucial role in driving turbulence towards
the two-component wall limit. These observations lead to the conclusion that the
split of the pressure-velocity interaction into pressure-strain and pressure-diffusion
contributions is not advantageous in terms of the insight it offers.

Finally, it is expected that the results of this study will contribute to validation
and testing of computational schemes for general separated flows, incorporating
models, either for the whole spectrum of turbulence or portions thereof.

Acknowledgement

The contribution of the lead author to the research documented in this paper was
supported by the EC project ATAAC, 7th Framework Programme (No. ACP8–
GA–2009-233710-ATAAC).

References

[1] R.L. Simpson, Turbulent boundary-layer separation, Annual review of fluid mechanics 21 (1989), pp.
205–232.



October 25, 2011 17:55 Journal of Turbulence JoT-paper-ICL

REFERENCES 25

[2] H. Le, P. Moin, and J. Kim, Direct numerical simulation of turbulent flow over a backward-facing
step, Journal of Fluid Mechanics 330 (1997), pp. 349–374.

[3] H.T. Huang, and H.E. Fiedler, A DPIV study of a starting flow downstream of a backward-facing
step, Experiments in Fluids 23 (1997), pp. 395–404.

[4] A.F. Heenan, and J.F. Morrison, Passive control of backstep flow, Experimental Thermal and Fluid
Science 16 (1998), pp. 122–132.

[5] T. Lee, and D. Mateescu, Experimental and numerical investigation of 2-D backward-facing step flow,
Journal of Fluids and Structures 12 (1998), pp. 703–716.

[6] P.G. Spazzini, G. Iuso, M. Onorato, N. Zurlo, and G.M. Di Cicca, Unsteady behavior of back-facing
step flow, Experiments in Fluids 30 (2001), pp. 551–561.

[7] J. Tihon, J. Legrand, and P. Legentilhomme, Near-wall investigation of backward-facing step flows,
Experiments in Fluids 31 (2001), pp. 484–493.

[8] I. Lee, and H.J. Sung, Characteristics of wall pressure fluctuations in separated and reattaching flows
over a backward-facing step: Part I. Time-mean statistics and cross-spectral analyses, Experiments
in Fluids 30 (2001), pp. 262–272.

[9] H.J. Kaltenbach, Turbulent flow over a swept backward-facing step, European Journal of Mechanics
- B/Fluids 23 (2004), pp. 501–518.
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