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Abstract

Control performance and cost optimization can be conflicting goals in
the management of industrial processes. Even when optimal or optimization-
based control synthesis tools are applied, the economic cost associated
with plant operation is often only optimized according to static criteria
that pick, among all feasible steady states, those with minimal cost. In
mathematical terms an economic cost functional differs from stage costs
commonly adopted in MPC as it need not be minimal at its best equilib-
rium.

This note collects and illustrates some recent advances in receding
horizon optimization of nonlinear systems that allow the control designer
to simultaneously and dynamically optimize transient and steady-state
economic performance.

In particular, we show that average performance of economic MPC
is never worse than the optimal steady-state operation. We introduce a
dissipation inequality and supply function that extend previous sufficient
conditions for asymptotic stability of economic MPC. Dissipativity is also
shown to be a sufficient condition for concluding that steady-state op-
eration is optimal. We show how to modify an economic cost function
so that steady-state operation is asymptotically stable when that feature
is deemed desirable. Finally, for the case when steady-state operation is
not optimal, we develop two modified MPC controllers that asymptoti-
cally guarantee (i) improved performance compared to optimal periodic
control and (ii) satisfaction of constraints on average values of states and
inputs.

1 Introduction

Standard practice in most industrial process control systems is to decompose
the plant’s management and optimization into two levels. The first level, usu-
ally referred to as real-time optimization (RTO) takes into account all sorts of
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different constraints (including production, safety or physical constraints) and
essentially performs a static optimization. That is, it determines, among all
feasible steady-state plant operating conditions (setpoints) those with minimal
cost; see for instance [15, 5, 13, 12, 9, 4, 16]. The second level, instead, is re-
sponsible for deciding suitable dynamic control actions that steer the plant’s
operation to the desired steady-state operating condition within a reasonable
amount of time. Since constraints are also of concern during transient operation,
in many advanced industrial control systems, the dynamic operation is usually
implemented with some kind of model predictive control (MPC) scheme.

Three considerations are worthwhile in this respect. First of all, compu-
tational complexity of hierarchical approaches is typically lower than that of
alternative non-decoupled schemes. Having acknowledged that, however, hier-
archical separation often means that the control law is designed disregarding
the issue of transient costs. In fact, even though cost functionals are commonly
employed in control design, they are usually shaped in order to yield control per-
formance, that is induce quick asymptotic tracking of setpoints and need not
bear any resemblance to the actual economic cost involved in plant operation,
in particular to the one used in order to select the optimal steady state. On
these grounds, a hierarchical approach is only meaningful provided a time-scale
separation is assumed between constants characterizing system’s dynamics and
rates of variations of setpoints and constraints for the problem at hand. Only
under such circumstances does the system spend most of its time close to equi-
librium so that, in the long term, suboptimal transient profiles can be neglected.
When this is not the case, however, transient costs could also be significant and
therefore a hierarchical approach could be inappropriate.

Finally, plant’s nonlinearities and nonconvex cost functionals can be respon-
sible for somewhat counter-intuitive situations, in which the best operating
regime for given plant and constraints could actually fail to be an equilibrium,;
periodic or even complex chaotic regimes might outperform the best possible
steady states. This phenomenon has been widely recognized during the 1970s
and 1980s, giving rise to intense research on periodic operation of chemical
reactors, (see the survey [18]), and optimal periodic control (OPC), [6, 11].

From the practical point of view, there are two main stumbling blocks that
are faced when trying to improve plant performance on periodic operation cycles:

e finding an optimal periodic cycle entails the solution of a nonconvex, infi-
nite dimensional optimization problem;

e the solution found need not be asymptotically stable, therefore suitable
feedback control is still needed once the OPC is solved.

This note presents some recent advances in MPC that allow the dynamic control
layer to be used to achieve both transient and steady-state economic optimiza-
tion simultaneously.



2 Standard MPC vs. Economic MPC

In the following we compare two approaches to model predictive control of
nonlinear plants. The first one, referred to as Standard MPC, adopts a stage
cost that need not be directly related to the economic cost incurred during
plant operation. This cost is conveniently chosen to be minimal at the desired
setpoint. In other words, given (z,us) is the best feasible pair of equilibrium
state and associated control input, respectively, the following cost function is
standard.

Assumption 1 Standard MPC cost function
0 ={(xs,us) < l(z,u) for all admissible (x,u) (1)

in which £ : X x U — R denotes the stage cost, X is the state space and U the
set of admissible input values.

In economic MPC instead, the cost incurred for plant operation is used di-
rectly as a stage cost in the MPC optimization layer. Therefore, (1) cannot be
generally assumed, and it may occur that ¢(zs,us) > 0 or, even more funda-
mentally, that £(z,u) < ¢(zs,us) for some feasible pair (x,u) not corresponding
to any equilibrium point. This unconventional formulation of MPC was orig-
inally proposed in [17] in the context of MPC in the presence of unreachable
setpoints. A popular approach when the best setpoint from the economic point
of view turns out to be infeasible, (for instance due to more stringent input or
production constraints), is to replace it by the best feasible one and redesign
the stage cost ¢ in order to be zero and minimal at this alternative setpoint.
This approach is clearly compatible with the standard MPC paradigm; it may
lead to suboptimal economic performance, however, when it comes to transient
behavior. The alternative approach proposed in [17] was to leave unchanged
the stage cost used to formulate the MPC algorithm, while only replacing its
terminal constraint, namely by forcing the state z to reach the best feasible
steady state at the end of the control horizon. It is clear that, in this alter-
native formulation, Assumption 1 need not hold. In order to compare the two
approaches we take into account the fairly general set-up described below. We
consider in particular finite-dimensional discrete-time nonlinear control systems

T = f(z,u) (2)

with state x € X C R”, input u € U C R™ and state-transition map f: XxU —
X. The cost functional that we seek to optimize is given by:

D Ua(k), u(k)) 3)
k

subject to the dynamic constraints provided by (2) as well as constant pointwise-
in-time constraints:

(x(k),u(k)) e Z kel (4)



for some compact set Z C X x U. Since there is no natural termination time
for production of an industrial plant, ideally one would like to consider (3)
over an infinite time horizon. This however introduces nontrivial computational
and theoretical complications as optimization of (3) entails the solution of a
nonconvex infinite dimensional problem; see for instance [7]. To overcome at
least in part such difficulties, one may replace the cost functional in (3) by a
similar one defined over a sufficiently long, but finite horizon:

N-1
Vn(z,u) = ) L(x(k),u(k)) (5)

k=0
where u = [u(0),u(1),...,u(N —1)] and 2t = f(z,u), (0) = z. As is custom-
ary in MPC, (5) is repeatedly minimized in a receding horizon manner, that is
applying only the first control sample of the optimal solution computed at any
given time instant. The motivation is that, by doing so, the total resulting cost
associated to the closed-loop behavior is not too far from that of the infinite

horizon optimal solution. More in detail, with the notation adopted so far, the
best feasible steady-state control-input pair fulfills:

(s, us) = min {E(x,u) | (z,u) € Z, x = f(x,u)} (6)

A feedback control law sy : Xy — U is implicitly defined by solving the follow-
ing optimization problem:
min  Vy(z,u)

zt = f(x,u)
subject to ¢ (z(k),u(k)) €Z k€ lp.n-1 (7)
z(N)=zs, 2(0)==z

An input sequence u = {u(0),u(1),...u(IN — 1)} is termed feasible for initial
state x if the input sequence and corresponding state sequence generated by
the model z7 = f(x,u) with initial condition z(0) = z together satisfy the
constraints of the optimal control problem. We define the admissible set Zy as
this set of (z,u) pairs

Zy ={(z,u) | 3z(1),...,z(N): t = f(z,u),
(x(k),u(k)) € Z,Vk € lo.n—1, x(N)==zs, 2(0)=uzx}

The set of admissible states X'y is then defined as the projection of Zy onto X
Xy = {x € X| Ju such that (z,u) € Zy}
The control law is then defined as

u = ky(r) =u’(0;2) r € Xn (8)



where u’(x) denotes the optimal solution of (7) for initial state z, and u°(k; z)
denotes the solution at time k € Iy.ny_1. For the sake of simplicity we assume
u’(z) to be uniquely defined (the case of multivalued optima can be treated by
arbitrarily assigning a constant selection map). The control algorithm defined
by (7) and (8) is appropriate for describing both standard MPC and economic
MPC. As previously remarked, the difference between the two approaches only
comes with respect to Assumption 1, which holds for the former and does not
for the latter. Finally, to ensure the existence of: (i) a solution to the optimal
control problem (7) and (ii) an interesting admissible set, we make the following
assumption.

Assumption 2 (Model, cost, and admissible set) 1. The model f(-) and
stage cost (-) are continuous. The admissible set Xy contains x4 in its
intertor.

2. There exists v of class Koo such that for each x € Xy there exists a feasible
u, with
lu— [uS’ e ’U'SH <(|z — zsl)

As in standard MPC it might be desirable to relax the terminal equality con-
straint and replace it by a terminal weighting function and possibly inequality
constraints. This is investigated in [1].

3 Analysis of average asymptotic performance

A standard approach for closed-loop stability analysis of most variants of MPC
algorithms is the definition of a cost-to-go function and its use as a Lyapunov
function. In our setup we denote the optimal cost in problem (7) by V(). It is
clear that Assumption 1 implies 0 = V9 (z5) < V3 (z) for all z € Xy. Moreover,
as is customary in MPC, along solutions of the closed-loop system the following
inequality holds:

Va(a®) = V(@) < lzs,us) — 0(z,u) (9)

provided u is selected according to (8). In the case of standard MPC, (1) implies
that VY (zT) < V2 (z), that is monotonicity of the cost-to-go function evaluated
along solutions of the closed-loop system; this provides a first important step
towards the proof of asymptotic stability of MPC algorithms (usually completed
under mild additional assumptions, such as ¢(x, us) being a strict minimum of
£(z,u), by using standard Lyapunov-like analysis tools).

As remarked and exemplified in [16], if Assumption 1 does not hold, VY (z)
need not be monotonically decreasing, even in the simplest case of a linear sys-
tem with a convex stage cost and subject to convex constraints. Loss of VJ(-)
as a Lyapunov function does not necessarily imply loss of stability, however. In-
deed, for the case of strictly convex cost functionals and linear systems subject
to convex constraints, x, turns out to be asymptotically stable with a region of



attraction Xy. The original proof, contained in [17], is based on convexity argu-
ments. Recently, a different proof based on Lyapunov arguments was developed
[8].

For general nonlinear systems and/or nonconvex cost functionals, however,
there is no reason why x5 should even be an equilibrium point of the closed-loop
system (2)—(8) and therefore its stability cannot be expected in general. It is
in fact conceivable that the optimal path from z, at time 0 to x, at time NV
(that is at the end of the control horizon N) be different from the constant
solution x(k) = z, for all k € Tp.;y. While this can at first sight appear to be
a dangerous drawback of economic MPC, it might be, for specific applications,
one of its major strengths. Indeed, even though stability is not in general
guaranteed, asymptotic performance of the controller is preserved, however, as
was first investigated in [3]. For the sake of completeness we recall here the
main result of [3] together with its proof.

Theorem 1 Let 2(0) € Xy be a feasible initial condition such that for at least
one admissible control sequence, the state is steered to xs at time N without leav-
ing Xn. Then, system (2) in closed-loop with (8) has an average performance
that is mo worse than that of the best admissible steady state.

Proof. Pick an arbitrary € Xy so Uy (z) is nonempty. It is easily seen that if
u € Uy (x) is a feasible control sequence at time k, from initial state « and «(0)
gets applied, then {u(1),...,u(N — 1),us} is also a feasible control sequence
at time k + 1, from initial state f(x,u(0)). Hence, by induction, feasibility of
optimization problem (7) follows for all non-negative times for all z € Xy. In
other words, solutions are globally defined for £ > 0 and fulfill pointwise-in-time
constraints.
In addition, along solutions of the closed-loop system

Vﬁ(x"‘) — V](\),(x) < l(zs,us) — Uz, u) (10)

Taking averages in both sides of (10) yields:

S0 VR (a(k + 1)) — VR (x(k))

lim inf
T—+oc0 T+1
T
< liminf Zk:o é(lfs, us) - E(x(k)a U(k’))
T—+o00 T+1

T
= lxs,us) — 1%111?;5 2 k=0 fjgxikl),u(k)) )

On the other hand, assuming without loss of generality ¢(x,u) > 0 for all (x,u) €



S0 Vi (a(k +1)) — VR (x(k))

lim inf
T— oo T —+ 1
0 T 1)) — 0
= liminf V(@@ +1)) = Vy(@(0)) (12)
T— oo T =+ 1
VO (z(0
> liminf —M =0
T—~+o0 T —+ 1
Combining (11) and (12) we come to the conclusion:
T
L(x(k k
i sup Shco ) uk) _
T—4o00 T+1
which completes our proof. O

Remark 3.1 It is worth pointing out that only the asymptotic average cost
is guaranteed to be not worse than that of the best steady-state. Transient
averages, as defined for a given t by the following quantity:

Yo L (k), u(k))
t+1

are in fact allowed to take any value.

)

4 Stability and convergence analysis

Asymptotic stability of economic MPC was first proved in [17] under the as-
sumption of linear plant dynamics and strictly convex cost functionals. The
original proof heavily relied on convexity properties and had no apparent Lya-
punov interpretation. Such interpretation is subsequently provided in [8], where
it is shown how to define a standard MPC algorithm (on a “rotated” stage cost)
yielding exactly the same closed-loop behavior of the original economic MPC
scheme. Analysis of the standard MPC scheme can then proceed along the usual
lines by choosing the rotated cost-to-go as a candidate Lyapunov function.

In the following we significantly relax the assumptions of [8] and highlight the
role played by a suitable dissipativity inequality in proving stability of economic
MPC.

Definition 4.1 A control system as in (2) is dissipative with respect to a supply
rate s : X x U — R if there exists a function A : X — R such that:

A(f (2, u)) = M) < s(z,u) (13)

for all (z,u) € Z C X x U. If in addition p : X — Rx( positive definite' exists
such that:

A(f(2,0)) = A() < —p(a) + s(z, u) (14)

LA function is positive definite with respect to some point zs € X if it is continuous,
p(xzs) =0 and p(x) > 0 for all © # xs.




then the system is said to be strictly dissipative. O
We now state the main result for this Section.

Theorem 2 Suppose Assumption 2 holds and consider a nonlinear control sys-
tem as in (2) and the MPC control scheme defined by (7) and (8), where (x5, us)
is a best feasible equilibrium-control pair as defined in (6). If system (2) is
strictly dissipative with respect to the supply rate:

s(z,u) = Lz, u) — (s, us) (15)

then s is an asymptotically stable equilibrium point of the closed-loop system
with region of attraction Xy .

Remark 4.2 It is worth pointing out that the assumption of dissipativity can
equivalently be stated as follows: there exists a function A(-) such that

Jmin () 4+ \(w) = A(f () 2 (e us) (16)

In the case of linear Lyapunov-like functions A(z) = Nz for some A € R",
condition (16) reads

min_£(z,u) + N (z — f(z,u)) > (s, us) (17)
(z,u)EZ

This is a classic condition in the context of infinite horizon optimal control, see
Assumption 4.2 (ii) in [7], usually referred to as strong duality (see for instance
[8]). Indeed, defining the rotated stage-cost

L(z,u) = (z,u) + Mx) — M f(z,u)) (18)

the following holds for all A(+):

min L(z,u) < min L(z,u)
(x,u)€Z (z,u)€Z,x=f(z,u)
= min K(JT,U/) :e(xsaus)

(z,u)EZ,x=f(z,u)
so that condition (17) can be interpreted as the absence of a duality gap:

max min f(z,u) + N (x — f(z,u))
AeR™ (z,u)€EZ

= min Uz, u)
(z,u)€Z,x=f(z,u)

As remarked in [8] this is always fulfilled for linear control systems with a strictly
convex stage cost satisfying a Slater condition. O

We show next, by means of an example, that the dissipativity definition 4.1 is
an effective way of relaxing strong duality.



Example 4.3 Consider the following scalar linear system:
T =az+(1-a)u (19)

where « € [0, 1) is a parameter to be discussed later, along with the non-convex
cost functional:

lz,u) = (x+u/3)(2u — ) + (x —u)*. (20)

Notice that, regardless of «, for each input u, there exists a unique equilib-
rium x. = u. Moreover:
4
Uz, u)|pmy = §u2

so that (xs,us) = (0,0) is the best steady-state and ¢(xs,us) = 0. The point
(0,0) is not, however, the global minimum of ¢(x, u), which in fact has 2 global
minima for (z,u) = 4(21v/6/64,7v/6/192). In fact (0,0) is a saddle-point of
{(x,u) and the level-set Lo = {(x,u) : (x,u) = 0} is in (0,0) tangent to the
lines of equation v = —3z and v = z/2.

(21)

Notice that zero-average period-2 solutions of (19) are possible. These cor-
respond to input sequences of alternating signs: —+ug, —ug, +ug, —ug, - - ., with
the resulting periodic state sequence:

—(14a)/(1 —a)ug, (1 +a)/(1 — a)ug, —(1 + @)/(1 — &)uog, . ..

Non-zero average period-2 solutions are also possible, but for the sake of sim-
plicity and for the purpose of this analysis we will not take them into account.

Choosing a = 0 or sufficiently small, yields period 2 solutions which, suit-
ably tuning the input amplitude ug, belong to the sublevel set L<o = {(x,u) :
l(xz,u) < 0}, thus outperforming the best steady state. Under such circum-
stances, one cannot expect dissipativity to hold. For larger values of a;, however,
the period 2 solution leave L<( and get closer to the u-axis. One may therefore
wonder for which values of « (if any) the system fulfills dissipativity or strong
duality.

In order to prove strong duality we look for A such that:
Art — Ao < 02, u) (22)

Notice that the left-hand side of (22) defines, regardless of A and «, a linear
function in (x,w). Since £(z,u) has a saddle point in (0, 0), there is no choice of
A and « which can fulfill (22).

Next we look for a candidate quadratic storage function A\(x) = kz2. Dissi-
pativity holds for all « € [0,1) for which there exists k£ and e > 0 so that:

k(zt)? — ka? < —ex? + 0(z,u) (23)
holds for all (z,u) € R?. For (23) to hold, it is enough that:
E(ar + (1 — a)u)? — ka? < —ex® + ( +u/3)(2u — ). (24)



All terms in (24) are quadratic functions in z and u, therefore, inequality (24)
is fulfilled if the following matrix is positive definite:

E(1-a?)—1 2 —ka(l-a)

Q=12 ra(l—a) 2-k(1-a)? (25)
Requiring that diagonal entries of ) be positive we find the conditions:
1
——<k< —— 26
-2 ~ " 30-ap (26)

These are fulfilled for some values of k provided « € (1/5,1). Finally, requiring
det(Q) > 0 yields:

—E*(1—a)* + k(1 — a)(4a/3 +5/3) —49/36 > 0. (27)
Letting Z = k(1 — o) we can rewrite condition (27) as:
~Z% + Z(4a/3 +5/3) — 49/36 > 0, (28)
which is fulfilled for Z between

4o+ 5 £ V1602 + 40a — 24
6 b

provided a > 1/2. Condition (29) implies that & should be chosen between

do+ 5+ V/16a? + 40 — 24
6(1 — ) '

(29)

(30)

In fact it can be shown that

is a feasible choice for all @ € (1/2,1). Hence, for all such as condition (23) is
fulfilled and economic MPC yields convergence to the best equilibrium. Notice
that « = 1/2 is exactly the value of « for which the zero average period 2
solutions exit the sublevel set L<(; this shows that dissipativity is in this case
a tight condition (see Fig. 1 ). O
Definition of the rotated stage-cost L(x,u) also allows to state an auziliary
optimization problem by replacing in (5) ¢ by L:
. N—1
Vy(z,u) = )  L(z(k),u(k)) (31)
k=0
and considering this new cost functional for optimization:
min Vi (z,u)

at = f(m,u)
subject to ¢ (z(k),u(k)) € Z k€ lpn_1 (32)
z(N)==zs, 2(0)==z

The following Lemma (which closely follows the steps of a related one in [8]) is
crucial to the proof of Theorem 2).

10



Figure 1: Qualitative picture of Ly: global minima (a),(b); a-dependent period-
2 solution (black dots)
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Lemma 4.4 The set of points # € X for which optimization problems (7) and
(32) are feasible coincide. Moreover, any optimal trajectory u’ of (32) is also
optimal for (7) (and vice versa). O

Proof.  Notice that problems (7) and (32) share the same set of constraints
and only differ as far as cost functionals are concerned. Hence the first claim
of the Lemma trivially follows. Take any feasible pair (x,u). Straightforward
computations show that:

N-1
Vn(z,u) = Y £z (k) ulk)) + Mz (k) = A(f (2(k), u(k)))
k=0
_y Uz(k),u(k)) + Max(k)) — Max(k + 1))
= N-1
= M(0)) = Ma(N)) + ) ez (k), ulk))
k=0

= )\(.’L’(O)) - )\(CL'S) + VN(SU’ u)

Hence, on any feasible solution the objective functionals (31) and (5) only differ
by a constant quantity (that does not depend upon optimization variables).
This completes the proof of the Lemma.

O

We are now ready to prove the main result for this Section, that is Theorem
2.
Proof. By virtue of Lemma 4.4 we may analyze stability of (7) by considering
the MPC closed-loop system induced by the auxiliary optimization problem
(32). Notice that, thanks to dissipativity:

L(zs,us) = l(xs,us) < min L(z,u) (33)
(z,u)EZ
which shows, assuming without loss of generality L(zs,us) = 0, how the newly
formulated MPC scheme fulfills conditions (1) and can therefore be analyzed
along the lines of a standard MPC scheme. To this end, define the rotated
cost-to-go as the optimal cost in problem (32), and denote it by V(z) We
claim that f/f,(x) can serve as a Lyapunov function in order to assess stability
of the closed-loop system. Indeed, \719,(30) is continuous for x = x, thanks to the
assumption 2 and positive-definite with respect to zs (assuming without loss of
generality L(z,,us) = 0). Moreover, exploiting strict dissipativity the following
holds along solutions of the closed-loop system:
V]E),($+) (7) + L(ws,us) — L(x,u)
(2)  p(x).

Hence, f/]?[ is strictly decreasing and therefore x4 is an asymptotically stable
equilibrium with region of attraction Xy . O

<Vy
< (34)
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When using purely economic cost functions, we have seen that the optimal
steady state may not be stable. If steady operation is deemed desirable, we next
show one method to modify the cost function to achieve this goal. We consider
the following modified stage cost in which we shall determine the function « :
XxU—=Rxg

Uz, u) = L(z,u) + oz, u) (35)
in which a(-) is chosen positive definite with respect to (x5, u,). Hence, £(-) and
£(-) share the same optimal steady state, (s, us). To achieve strict dissipativity,
it is sufficient to satisfy the following inequality for some A € R™ and all (z,u) €
Z

Nz — f(z,u) < —p(x) + l(z,u) — l(2s,u5) + (T, 1)
Rearranging, we must satisfy for some A and all (z,u) € Z
oz, u) > h(z,u, \)
in which h(z,u, A) := N (x — f(z,u)) + p(x) — €(x,u) + {(xs,us). The function
h(x,u, A) is continuous in (z,u) for all A, so define for r € R>g

h(r,\) = max h(z,u, \)

(xz,u)EL

in which the maximum exists for all » € R>y by the Weierstrass theorem.
Using a(z,u) = h(|(x,u) — (xs,us)|, ) for any A € R™ is positive definite with
respect to (xs,us) and suffices for strict dissipativity. If desired, we can select
the weakest modification to the purely economic problem by searching? over A.
We then have the following stability result.

Theorem 3 Consider a nonlinear control system as in (2) and the MPC control
scheme defined by (7) and (8), where (zs,us) is a best feasible equilibrium-
control pair as defined in (6). If the stage cost is chosen according to (35) with
a(r,u) = h(|(z,u) — (vs,us)|,A) for any A € R™, then x4 is an asymptotically
stable equilibrium point of the closed-loop system with region of attraction Xy .

Proof. By construction of a(-), strict dissipativity is satisfied and Theorem 2
applies, giving asymptotic stability of x,. O

Theorem 3 essentially says that, for any continuous nonlinear system dy-
namics f(x,u), we can turn up the convexity in the stage cost £(x,u) until we
stabilize the optimal steady state. From this perspective, the pure economic
problem can be viewed as one extreme in which ¢(x, u) represents the economic
cost, a(+) is chosen to be zero, and the optimal steady state may not be asymp-
totically stable. The standard tracking problem can be viewed as the other
extreme in which the economics are completely ignored, ¢(-) is set to zero, and
a(z,u) = (1/2)(Jz — xs|é + |u— us|§%) is the usual tracking objective, and the
optimal steady state is asymptotically stable by design. The function «(-) allows
us to capture a range of behaviors between these two extremes. We illustrate
this feature in the later example.

2Note that to fully exploit the generality of dissipativity, one could extend this result and
search over continuous functions A(-) rather than scalar \.
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5 Extensions of economic MPC

The observation that economic MPC need not converge to the best feasible
equilibrium introduces the possibility for further performance improvements as
well as the introduction of additional features to the control algorithm. We
briefly discuss below two variants of economic MPC schemes developed in order
to deal with the following issues:

e outperforming Optimal Periodic solutions

e dealing with average constraints

5.1 Periodic terminal constraint

For a plant that is not optimally operated at steady state, it is meaningful to
alm at an average asymptotic cost that is strictly less than that of the best fea-
sible equilibrium. In [3] this is achieved by considering the situation in which a
Q-periodic solution z*(k), k € Ip.go—1 that outperforms the best feasible steady
state has been precomputed. This can be done by solving the following opti-
mization problem:

min Vo (2(0),u) = Y fa(k), u(k))

z(0),u
subject to z(k),u(k)) € Z, kelpg- (36)

with u = {u(0),u(1),...,u4(Q — 1)}. Denote the optimal state and input se-
quence for this problem as (z*(k),u*(k)), k € Ip.g—1.

Next we obtain a time-varying state feedback law by solving online the fol-
lowing optimization problem over the set of terminal constraints indexed by
integer q € Ip.g—1

Z+*f(2, )

~ - (2(k),v(k)) € Z, k€lon
mvanN(:E,v,q) subject to A(N) = 2 (q)

z(0) =z

(37)

Let (z°(z,q),v’(x,q)) denote the optimal state and input of (37) (assumed
unique) for initial state x using the gth element of the periodic terminal con-
straint. Next define the function xky(-) to be the first element of the optimal
input sequence using the gth constraint

kn(z,q) = 0052, q) (38)

and system (2) is controlled by selecting inputs according to the time-varying
feedback control law

u(z,t) = iy (2, t mod Q) t el (39)
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This law is defined on the set of x for which problem (37) is feasible. Notice
that, due to the periodic terminal constraint, the resulting closed-loop system
is also a @-periodic nonlinear system. It is shown in [3] that the feedback
law (39) induces an asymptotic average cost that is not worse than that of
the optimal periodic solution. As in the case of optimal equilibria, asymptotic
convergence to the periodic solution is not generally to be expected and can
only be ensured provided suitable “dissipativity” assumptions are in place. For
the sake of completeness we state here the main result concerning performance
of periodic economic MPC and defer its proof to the appendix.

Theorem 4 Consider a nonlinear control system as in (2) under periodic state-
feedback as defined by (38) and (39). Then, the average asymptotic performance
of the closed-loop system fulfills:

sy S () u(k) _ Sy 0 (k), (k)
T—+o00 T+1 - Q

(40)

5.2 Average constraints

Shifting the focus from convergence to average performance leads naturally to
the consideration of constraints on average values of variables (typically inputs
and states), besides pointwise in time hard bounds as discussed in the previous
Sections and customary in MPC. As standard MPC guarantees convergence
to equilibrium, asymptotic averages of any variable are in fact determined by
the value of such quantity at equilibrium; therefore average constraints do not
deserve special attention as they can be taken into account as static constraints
in the RTO layer. We present in the following an adaptation of the control
scheme (7) (also discussed in a preliminary version in [3] ) that, together with
a guaranteed average cost, also ensures satisfaction of asymptotic constraints
on average quantities. To this end, for any given vector valued bounded signal
v : >0 — R, we define the set of asymptotic averages:
. noolk)
Av[p] = {v e R™ \Eltn—>+oo:n£rfoo% =7}

Notice that, Av[v] is always nonempty (because bounded signals have limit
points). It need not be a singleton, though, as there may be more than one
asymptotic average for each given signal. As an example take the sequence v
as:

0,1,0,0,1,1,0,0,0,0,1,1,1,1,...

in which the number of consecutive 0 and 1s doubles at each time. The highest
possible asymptotic average is achieved by sampling averages at the end of each
string of 1s, in particular for ¢, = 2(2" — 1) — 1. For such a choice of t,, we have
i v(k) = (2% — 1), so that:
tn
o v(k) 1

-~  vn
to+1 2 "

15



The lowest possible asymptotic average is achieved instead by sampling averages
at the end of each string of Os, in particular for ¢,, = (2" +2"~! — 3). It holds:

o v(k) on—1_1 1
P :2n+2n71_2—>§ as n — +o0o

Hence Av[v] contains at least two distinct points. In fact it is possible to show
that Av[v] =[1/3,1/2].

Also, it is straightforward to verify that, whenever w(k) = v(k + P) for
some finite P € Isg, we have: Av[(w,v)] C {[v1,v2] € R™ x R™ | v; = va}.
In particular then, Av[v] = Av]w]. The notation adopted, which does not em-
phasize time dependence, is indeed consistent with the above shift-invariance
and does not create misunderstandings. It is worth pointing out that the above
construction leads to tighter asymptotic averages than those obtained by taking
component wise averages of vector signals and, for technical reasons, it appears
more natural in our context.

Let Y C RP be a closed and convex set and y an auxiliary output variable
defined according to:
y = h(z,u) (41)

for some continuous map h : Z — RP. The following nestedness condition is
assumed:

hzs,us) €Y (42)

Our goal is to design a receding horizon control strategy that ensures the fol-
lowing set of constraints:

Avll(z,u)] C (—o0,l(xs,us)]
(x(k),u(k)) € Z kels (43)
Avly] € Y

At each time t we solve the following optimization problem:

N—-1
min > Uz (k) v(k)) (44)
k=0

subject to the following constraints

Zt = f(z,v)
(2(k),v(k)) € Z, k€ lo:n-1
z2(N)=2x4, 2(0)==z (45)
N-1
h(z(k),v(k)) € Y,
k=0

The time-varying output constraint set is the new feature of this problem. To
enforce the average constraints, we define the constraint sets recursively

Yi—i—l =Y, YOS h(.’,l?(’t), U(Z)) for i € Hzo (46)
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in which the symbols & and © denote standard set addition, and subtraction,
respectively. We initialize the recursion using

Yo = NY + Yoo (47)

in which the set Yo9 C RP is an arbitrary compact set containing the origin.
By adjusting the output constraint sets with the closed-loop behavior, we force
the average constraints to be satisfied asymptotically. The main result for this
Section is stated below (see the Appendix for a proof).

Theorem 5 Let u®(z,t) be any minimizer of (44) subject to (45) with initial
state x at time t. Consider the closed-loop system obtained by letting u(x,t) =
u®(0;z,t) at each time t € I>q

z(t+1) = f(x(t),u’(0;z,1)) (48)

Then, provided z(0) is a feasible initial condition, feasibility is ensured for all
subsequent times and (43) holds for the closed-loop signals x(t), u(t) and y(t) =

h(x(t), u(t)).

6 On optimality of steady-state operation

As remarked in previous Sections, nonlinearity of plant dynamics and non-
convexity of cost functionals may be responsible for the existence of complex op-
eration regimes outperforming the best feasible equilibria. In order to classify in
system-theoretic terms such possibilities, the following notions were introduced
in [3].

Definition 6.1 We say that a control system ™ = f(z, u) is optimally operated
at steady state with respect to the cost functional £(x, u), if for any solution such
that (x(k),u(k)) € Z for all k € I>q, it holds:

Av[l(z,u)] C [l(xs, us), +00)
where x4 is the best admissible steady state defined in (6). If, in addition, at
least one of the conditions below holds:
1. Av[l(z,u)] C (U(xs,us), +00)
2. liminfg_ o |2(k) — 25| =0
we say that the system is suboptimally operated off steady state. O
Similarly, if average constraints are considered, we may define:

Definition 6.2 We say that a control system ™ = f(z,u) is optimally operated
at steady state with respect to the cost functional ¢(x, u) and average constraints,
if for any solution satisfying (z(k),u(k)) € Z for all t € I> and Av[h(x,u)] C Y,
the following holds

Av[l(xz,u)] C [l(xzs, us), +00)

where z; is the best admissible steady state defined in (6). If, in addition, at
least one of the conditions below holds:
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1. Av[l(z,u)] C (U(xs,us), +00)
2. liminfy o0 |2(k) — 25| =0
we say that the system is suboptimally operated off steady state. O

Note that suboptimal operation off steady state implies only that the steady
state is a limit point of solutions of the closed-loop system, not that the closed-
loop system converges to the steady state (in general multiple limit points may
exist). We show next that dissipativity and strict dissipativity are sufficient
conditions for optimal operation at steady state and suboptimal operation off
steady state, respectively. In order to treat the case of systems with average
constraints we take into account the case in which Y is a polyhedron defined as
follows:

Y = {y € R | Ay < b} (49)

for some matrix A € RP*™ and some b € R™. In this case we may define:

Definition 6.3 A system is dissipative with respect to the supply function
s(z,u) on averagely constrained solutions if there exists a function A : X — R
and a multiplier A € [0, +00)™ such that:

Af(z,u) < M) + s(z,u) + N[Ah(z, u) — b] (50)

for all (x,u) € Z. If in addition, for some positive definite p(-) we have:
A(f(@,u)) < Az) = p(@) + s(z,u) + N[Ah(z, u) = b (51)
then the system is strictly dissipative on averagely constrained solutions. O

We are now ready to state the main result for this Section.

Proposition 6.4 Assume that the control system (2) is dissipative (strictly dis-
sipative) on averagely constrained solutions with respect to the supply function
s(x,u) = €(x,u)—€(xs, us), then the system is optimally operated at steady state
on averagely constrained solutions (suboptimally operated off steady state). O
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Proof. Through the following simple manipulations we come to the desired
estimate:

0 = lim

T— 400 T
L Zieeo Akt 1) = Aa(h)
T— 400 T
< im Siza s(z(k),u(k)) + N[Ah(z(k), u(k)) — b]
T T+ T
T-1
S 1‘Flf_f)1_~1_f;£ k=0 g(zsk)a U(l{i)) _ g(xmus)
-+ i sup ko N AR (), u(k) ~ b
T—+o0 T
T—-1
S I%IB—H;E k=0 g(?k)au(k)) _ Z(&CS,’U/S)

N[Ay —b
+rgg§</\[ y— b

T—1
i S L), u()
T—~+oco T

— Uz, us) (52)

Notice that the first inequality follows by dissipativity, while the third is a
consequence of average constraints and non-negativity of A. This concludes the
proof of the first part of the claim.

Similar manipulations for the case of strictly dissipative systems allow to
derive the following inequality:

oo Ua(k), u(k)) — pla(k))

< T - |
0= %r_r}l_g;(f) T f(xs,us) (53)
Hence: .
liminfr_ o M <

_T:l L(x(k),u(k (54)
I a0t _ gy

<liminfpr_, ;o
The following two cases are possible:

SI b e (k) uk))
T

1. liminfr 4o > (x5, us), that is Av(€(z,u)) C (l(xs, us), +00);

T—1
2. alternatively liminfp_, o w = l(zs,us); by virtue of (54)

then: oy
T inf > ko Pz(k))

T—+o0 T - O

and this in turn implies, by positive definiteness of p(-),
liminf |x(k) — x| =0 55
lim inf [2(k) — 2| (55)

This concludes the proof of suboptimal operation off steady state.
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Remark 6.5 It is worth pointing out that Proposition 6.4 can be used to per-
form some convergence analysis of economic MPC subject to average constraints
for strictly dissipative systems as in (51). A Lyapunov analysis of such an MPC
scheme is not currently available, nevertheless, combining Proposition 6.4 and
Theorem 5 allows to conclude convergence of z(k) to z, at least in a weak sense,
that is as derived in equation (55). O

7 An example: consecutive-competitive reactions

We consider next the control of a nonlinear isothermal chemical reactor with
consecutive-competitive reactions [14]. Such networks arise in many chemical
and biological applications such as polymerizations, and are characterized by a
set of reactions of the following form:

Pi,1+B — Pz
i e {12...,R}. (56)

Typically a desirable distribution of products in the effluent is a primary ob-
jective in the reactor design for these processes. For simplicity we consider the
case of two reactions:

P0+B—>P1
P1+B—)P2

The dimensionless mass balances for this problem are:

j?l = Uy — X1 — 017172
Tg = Up — Ty — O1T1T2 — O2T2T3
T3 = —I3+ 01T1T2 — 02T2T3

Ty = —T4 + 02T2T3

where x1, 22, x3 and x4 are the concentrations of Py, B, P;, and P, respectively,
while uq and us are inflow rates of Py and B and are the manipulated variables.
The parameters o1 and o9 have values 1 and 0.4 respectively. The time average
value of u is constrained to lie between 0 and 1.

Avlus] C [0,1].

The primary objective for this system is to maximize the average amount of P;
in the effluent flow (¢(x,u) = —x3). Previous analysis has clearly highlighted
that periodic operation can outperform steady-state operation [14]. The steady-
state problem has a solution z, = [0.3874 1.5811 0.3752 0.2373]/ with the

optimal input u, = [1 2.4310]".
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Figure 2: Open-loop input (a), (b) and state (c), (d), (e), (f) profiles with
different cost functions and initial steady states.

We solve the dynamic regulation problem using the simultaneous approach [10].
The state space is divided into a fixed number of finite elements. The input is
parameterized according to zero order hold with the input value constant across
a finite element. An additional upper bound of 10 is imposed on wuj(¢). A
terminal state constraint is used in all the simulations.

The system is first initialized at the steady state to check suboptimality of
steady-state operation. A horizon of 100 is chosen with a sample time T = 0.1.
The steady-state solution is used as the initial guess for the nonlinear solver.
The solution of the dynamic problem is seen to be unstable (Figure 2). The
solution returned by the optimizer shows the inputs jumping between the upper
and lower bounds. Different initial guesses gave different locations of these
jumps suggesting that these solutions are local optima, with a negligible cost
difference.

In order to stabilize the system a convex term is added to the objective and
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Figure 3: Stabilization via variation in u penalty.

R avg profit

0 0.4472
0.002 0.4397
0.004 0.4233
0.006 0.4076
0.008 0.3938
0.01 0.3752

Table 1: Average economic profit for open-loop profiles with varying R penalty.

the penalties are varied.
Ua,u) = —23 + (1/2) (|2 — 2[5 + |u — usly)

Next the R penalty is tuned in fine amounts (keeping @ = 0) to see the effect
of adding the convex term. As R is increased from 0.004 to 0.04, the optimal
solution from the previous case is used as the initial guess for the next case.
Economic profit (time average of Pj(x3)) is computed for all these cases and is
compared in Table 1. It is seen that increasing the convex term by increasing
the R penalty, starts dampening the system (Figure 3). Consequently a loss in
profit is observed proving that steady-state operation is suboptimal in the sense
of economic profit.

Just increasing the R penalty to 0.02 does not make the steady-state problem
strongly dual [8]. So we increase also the ) penalty until the steady-state prob-
lem is strongly dual, which is achieved for @ = 0.3614 and R = 0.00215. Strong
duality is checked by numerically solving the dual problem [8] and checking its
solution. Figure 2 shows that this case yields the steady-state solution.

Next, the system is initialized at a random state. We compare the perfor-
mance of the three cases along with a purely tracking MPC controller with same
@ and R penalties as the strongly dual case. The tracking controller cost is:

U, u) = (1/2) (|2 — 2l5) + |u — ul %)
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Figure 4: Open-loop input (a), (b) and state (c), (d), (e), (f) profiles with
different cost functions and a random initial state.

Figure 4 shows the open-loop input and state profiles for these four cases. The
economic controller gives an unstable solution. In order to compare the be-
havior of closed-loop systems over infinite time-horizons two different kinds of
performance measures are of interest. One is average profit, that is Av[zs], the
other is the transient profit, namely:

D (k) ulk)) — (s, us)
k=0

Notice that transient profit need not be defined for pure economic MPC. On
the other hand, all MPC controllers that guarantee asymptotic tracking yield
the same average profit (corresponding to x3, ), but possibly different transient
profits. The average and transient profits are compared in Table 2. We see that
the tracking controller yields the least amount of average P;.
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Case avg profit | trans profit
Economic 0.4648 00
R=0 0.3916 2.6201
Strongly dual 0.3848 1.6034
Tracking 0.3812 1.0587

Table 2: Average profit and transient profit for open-loop profiles with varying
R penalty.

8 Conclusions

The paper adresses questions of stability and performance of economic MPC
control schemes by means of suitable Lyapunov analysis techniques. The con-
tribution of the paper is to summarize several results previously scattered in
conference Proceedings and to refine them in a self-contained unified treatment.
In particular

1. definition of Economic MPC and variants for periodic terminal constraint
and asymptotic average constraints (partial results previously published
in [3])

2. performance analysis for standard, periodic and constrained in average,
Economic MPC (partial results previously published in [3] )

3. definition of the dissipativity notion to extend the concept of strong duality
(partial results previously published in [2] )

4. Lyapunov-based stability analysis of Economic MPC subject to dissipa-
tivity of the underlying dynamics (new results, generalizing the proof in

8])

5. Notions of optimality for steady-state operation and sufficient Lyapunov-
based conditions for their test (partial results appeared in [2] )

6. Example of application of Economic MPC to a chemical reactor.

The results provide a rigorous self-contained basis for anyone wishing to work
on the area of Economic Model Predictive Control.
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Proof of Theorem 5

The proof can be divided into 3 steps.

1. Feasibility: The proof is by induction, showing that feasibility at time ¢ im-

plies feasibility at time t41. At time ¢, state x(¢), let {2(0), z(1),...2(N)}
and {v(0),v(1),...v(N — 1)} denote the optimal solution to (44) subject
o (45). We claim that, at time ¢ + 1, state z(t + 1) = f(z(t),v(0)), the
optimization problem is again feasible. Construct the usual candidate se-
quences at time t+1, state z(t+1): z = {2(1),2(2), ..., 2(N=1),2(N), zs},
v = {v(1),2(2),...,9(N — 1),us}. By construction, these satisfy the
model, initial condition, Z(0) = z(t + 1), terminal condition Z(N) = x4,
and pointwise-in-time constraints (Z(k),0(k)) € Z for k € Ip.y—1. We also
have that

N—

=

h(z(k),0(k)) € Y¢ & h(x(t),u(t)) & h(zs, us)
k=0
CY: @Yo h(x(t),u(t))

= Yip1

where the inclusion follows because h(xs,us) € Y. Therefore, the time-
varying output constraint is also satisfied and the candidate sequences
satisfy (45) at time ¢ + 1, state z(t + 1).
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2. Awverage performance: The proof of the inclusion Av[¢(z,u)] C (—oo, £(zs, us)]
can be performed exactly along the lines of Section 3, given the feasibility
of the candidate control sequence v defined above.

3. Awverage constraints: We show next that Av[y] C Y. Solving the recursion
(46) with initial condition (47) gives

t—1
Y, =Yoo & (t+N)Ye Y y(k)
k=0
in which y(k) = h(x(k),u(k)). The average constraint in (45) then gives
for all ¢ € I>¢.

=

h(z(k),v(k)) + iy(/ﬂ) €Yo ®(t+N)Y
0 k=0

-
I

for solution z,v to (44) at time ¢. Notice that the first sum on the left-
hand side of the previous equation involves only N terms, irrespective of
t, and each one of them can be bounded by a quantity independent of ¢
thanks to compactness of Z and continuity of h(-). Hence, by letting ¢
grow to infinity along any subsequence t,, such that 25" y(k)/(t, + 1)
admits a limit we obtain

t
" k Y t,+1+N)Y
lim > ko Y(k) c lim 00 ©(tn+1+N)
n—-+oo tn +1 n—-+oo tn +1
=Y

where the set-limit holds in the Hausdorff topology sense. This shows
indeed that Av[y] C Y and concludes the proof of Theorem 5.

Proof of Theorem 4

Let V§(z,q) denote the optimal cost relative to the g-th terminal constraint:

Vi(z,q) = m‘;nVN(x,v,q)
Z+(k:) f((ié)l)}) Z, kel (57)
abiect to z(k),v € 4, € lo:n—1
subject t 2(N) = 2*(q)
z2(0) ==

We may define a periodic Lyapunov-like function by letting V (¢, z) := VJ(x,t mod Q).
Let z(t) be a feasible initial condition for problem (57) at time ¢ subject to the
terminal constraint z(N) = 2*(t mod @) and let {2(0),...,2(N)}, {v(0),...,0(N—
1)} be the optimal state and control sequences. Then {z(1),...,z(N),z*((t +
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1) mod @)}, {v(1),...,v(N —1),u*(t mod Q)} are a feasible (z,v) pair at time
t 4+ 1 from initial state

z(t+1) = f(z(t), kn(x(t),t mod Q))

Hence, by induction, and provided z(0) is a feasible initial condition for (57)
subject to the terminal constraint z(NN) = 2*(0), closed-loop solutions are well
defined for all subsequent times and fulfill the constraints.

Furthermore, evaluating increments of V' (¢, ) along solutions of the closed-
loop system by taking into account suboptimality of {z(1),...,2(N),z*((t +
1) mod @)}, {v(1),...,0(N —1),u*(¢t mod Q)} at time ¢ + 1 yields

V(E+ 1 f(a(t), ut) = V(¢ x(t))

< (2" (t mod Q),u*(t mod Q) — ¢(w(t), u(t)) (58)

for all ¢ € I>o. Taking asymptotic averages of (58) and denoting by 7(k) :=
k mod @ yields:

V(T +1,2(T + 1)) — V(0, z(0))

0= lm inf T+1
o S VO 1, k), (k) — VU, 2(h)
T—+oco T+ 1
i Do (), () — (k). u(h)
~ To+oo T+1

Yomo M@t (@) S (k) u(k)
= — lim sup
Q T—+oo T + 1
where the last equality follows by taking the elementary steps detailed below:
LS (), W (1))
T—+o00 T =+ 1
(S 2 et (), ()
= lim
T— 400 T —+ 1
L Xeo Tl (0),u(9))
T+1
_ o TR EE et (r),ut (7))
T—~+oco T + 1
YRR CNORNO)
T+1
_ gy (LT mod Q) Y27 U(a*(r), u* (7))
T— 400 Q(T + 1)
_ X35 U (n),w (7))
Q

This concludes the proof of Theorem 4.
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