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Abstract 

 

Although the mechanical behaviour of stainless steel and carbon steel differs significantly, 

design provisions for stainless steel connections in current standards are essentially based on 

the rules for carbon steel. For bolted connections, the design resistances in EN 1993-1-4 and 

the SCI/Euro Inox Design Manual for Structural Stainless Steel are based on those in EN 

1993-1-8 and EN 1993-1-3 with only some minor modifications. In this paper, an 

investigation into the bearing behaviour of stainless steel connections between both thick and 

thin plates has been conducted. Numerical models for previously tested specimens in 

austenitic and ferritic stainless steel have been developed and validated. The validated models 

were then used to perform parametric studies to investigate the key variables affecting the 

bearing failure of bolted connections; these include edge distance e2, end distance e1 and plate 

thickness t. The investigation showed the deformation behaviour of stainless steel connections 

to be somewhat different from that of carbon steel connections, with stainless steel exhibiting 

pronounced strain hardening. However, the locations of fracture initiation obtained from the 

numerical models matched those observed during experimental studies of both carbon steel 

and stainless steel connections and this feature has been used as the basis for defining a 

consistent, strength based criterion of failure. The results of the parametric studies have been 

utilised as the basis for design provisions for bearing failure in stainless steel bolted 

connections that cover both the ultimate and the serviceability limit states and which are both 

more economic and more straightforward than the present EC3 provisions.  
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1. Introduction 

 

Although its usage in structural situations is still only a small fraction of that of conventional 

carbon steel, stainless steel is steadily growing in popularity [1].  Corrosion resistance is the 

property most often cited as the reason for its adoption while the high initial material cost acts 

to limit the number of suitable applications.  This situation may, however, be about to alter 

with the introduction of low nickel (lean duplex) stainless steel [2] at a material cost of around 

twice that of carbon steel – this could make hitherto prohibitively expensive applications 

much more cost effective.  

 

This situation of growing popularity has been assisted during the past decade through the 

production of Design Standards [3-6].  All of these, however, borrow heavily from design 

rules for carbon steel [7-9] taking little, if any, account of the fundamentally different stress-

strain properties of stainless steel.  Most important of these for structural behaviour is the 

rounded uniaxial stress-strain curve, meaning that there is no sharp yield-point and that as the 

strains increase so material strength continues to rise.  Current Design Codes for stainless steel 

[3-6], therefore, tend to follow rules for cold-formed (or light gauge) steel [8, 9] – even 

though the physical properties of the materials are somewhat different.   

 

Work on the behaviour of stainless steel members, covering local and member buckling [10] 

has shown that explicit recognition of stainless steel’s stress-strain behaviour leads to 

significant improvements in design capacity. Moreover, concepts such as cross-sectional 

classification have been shown to be inappropriate [11], leading to the development of more 

suitable treatments; some of these e.g. the continuous strength method for determining cross-

sectional strength, have subsequently been shown to be advantageous when dealing with 

carbon steel [12].   

 

Joints between stainless steel members may generally involve either bolting or welding, with 

bolted connections typically favoured on site. The authors [13] have previously reviewed all 
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the available test data on stainless steel bolted connections. This previous study [13] did, 

however, focus on net section failure, while the present paper covers arrangements in which 

bearing failure of the plate elements governs.  This is done through the use of a 

comprehensive and rigorous finite element analysis, suitably validated against test data that 

has permitted several detailed facets of behaviour, not previously fully understood, to be 

explained.  Of particular significance is the development of a rational and consistent criterion 

for bearing failure.  Use of this leads to simplifications and improvements in the current 

design rules [3, 4].  

 

2. Failure Criteria for Bolted Joints Operating in Shear 

 

Bolts operating in shear are a fundamental component of many forms of steelwork connection.  

For such arrangements, three modes of failure are possible, as illustrated in Fig. 1:  

  

1. Bolts fail in shear. 

2. Plates fail in tension at net section. 

3. Bolts or plates fail in bearing. 

 

Of these, the first and second are well understood, with clear failure criteria corresponding to 

fracture in either the bolt shank or the plate respectively.  Because the strength of the bolt 

material in bearing under the tri-axial stress conditions experienced within the hole will 

almost certainly be substantially greater than that of the surrounding plate, bearing failure of 

bolts is extremely unlikely, being possible only for combinations of low strength bolts and 

very high strength plates [14].  Bearing failure of the plates is, however, far more common 

and somewhat more problematic.  Fig. 2 shows the load-deflection relationship for a single 

bolt in an arrangement for which the proportions are such that neither bolt shear nor net 

section rupture are critical.  The curves omit any possible slip phase and assume that the bolt 

bears directly against the back of the hole from the start of loading.  The results shown are for 

a carbon steel test [15] and a numerical simulation, performed herein, of the same test, but 

using austenitic stainless steel material properties.  In the absence of a distinct failure due to 

end tear out (which can be eliminated by ensuring adequate end distances), the curves show 

no clear maximum – deflections become very large and load continues to rise – significantly 

so in the case of stainless steel and less so for carbon steel because the form of the material 
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stress-strain curve causes the load-deformation relationship to flatten out as deflections 

increase.  The form of the load-deflection relationship in the absence of a clear failure event 

for carbon steel has led to bearing failure often being defined in terms of a limiting 

displacement.  Sometimes such limits are also associated with a separate limit on allowable 

deflection under working loads but with the results being presented purely as an ultimate load 

based criterion.  Clearly, for the carbon steel specimen of Fig. 2, selecting the displacement 

limit as 6 mm or 12 mm makes only a few percent difference to the associated ‘ultimate load’.  

However, for stainless steel the shape of the load-deflection relationship is such that changing 

from a 6 mm to a 12 mm displacement limit will lead to about 30% increase in bearing 

resistance.  Clearly, some form of consistency, preferably allied to an event with clear 

physical significance, would be preferable.  A possible answer is provided herein.   

 

3. Finite element (FE) models 

 

3.1 General 

 

The finite element analysis software ABAQUS 6.7-1 [16] was used to develop numerical 

models for austenitic and ferritic stainless steel bolted connections to examine their response 

under static shear loading. The characteristics and applications of the different families of 

stainless steels have been previously set out [1]. The configurations of the modelled 

specimens are presented in Fig. 3. In order to reduce the size of the model and, consequently, 

the computational cost, only one quarter of the connection was modelled by applying 

appropriate boundary conditions. The 3D solid (brick) element with full integration – C3D8 – 

which has been shown to be suitable for modelling bolted lap joints in several previous 

investigations [17, 18] was employed in this study to model both the plates and the bolts. 

Loading was applied by means of uniform displacement-control at the end of the central plate. 

Fig. 3 illustrates the loading and the boundary conditions applied to the FE models. 

 

The compound Ramberg-Osgood stress-strain model developed by Mirambell and Real [19] 

and Rasmussen [20] was adopted to represent the non-linear material response of stainless 

steel; this model was also adopted by Kiymaz [21] in a previous study of stainless steel 

connections. Numerical analyses of bolted connections are expected to involve large inelastic 

strains, therefore, nominal stresses and strains were converted to the corresponding true 
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values, which take into account the change in geometry under load. Contact between all 

components that were expected to interact with each other was defined using the surface-to-

surface contact feature in ABAQUS. Frictional effects were taken into account by using the 

classical isotropic Coulomb friction model. Bolts were located centrally into the holes with a 

uniform clearance of 1.0 mm. Different levels of bolt preload were applied. Loads were 

carried initially by friction until the occurrence of slippage, after which direct bearing was the 

primary means of load transfer. A detailed description of the development of these FE models 

can be found in Reference [13]. 

 

3.2 FE model validation 

 

Validation of the FE models was made against a series of tests on stainless steel bolted 

connections performed by Ryan [22]. Load-deformation curves for all 24 tests were compared 

with those obtained from the numerical models. It is clear from the typical curves shown in 

Fig. 4 that the predicted load-deformation relationships are in good agreement with the tests. 

Note that the extension shown is the total deformation of the connection, as illustrated in Fig. 

5(a). Some test specimens exhibited a clear failure either by net section rupture or bolt shear, 

in which cases, the numerical predictions of ultimate load (based on previously described 

failure criteria [13]) were in good agreement with the test results. Other tests were terminated 

prior to the attainment of ultimate load – these specimens were said to have failed by bearing 

owing to excessive deformation. For all tests, the load-deformation curves were consistently 

accurately replicated. For the tests that exhibited a true failure, a mean FE/test ratio of 

ultimate loads of 0.99 and a standard deviation of 0.03 were achieved [13]. The deformed 

shapes of typical test specimens, failing (based on excessive deformation) by bearing (Fig. 

5(a)) and net section rupture (Fig. 5(b)), together with the corresponding FE model 

simulations, are shown in Fig. 5. The validated FE models are used in Section 4 of this paper 

to highlight various behavioural features of bolted lap connections, while extensive parametric 

studies are performed in Section 5. 

 

4. Bearing capacity of bolted lap connections 

 

In bearing type connections, load is initially transferred by friction until the occurrence of slip, 

after which the bolt shank and the side of the bolt hole come into direct contact. Bearing 
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stresses are developed at the contact surfaces. As the applied load increases, contact stresses 

increase until bearing failure finally occurs. The bearing resistance of bolted connections has 

been determined in previous studies either on the basis of a strength or a deformation 

criterion. These two concepts are discussed in this section. 

 

4.1 Strength criterion 

 

When strength is the determining factor, the bearing capacity of a bolted connection is taken 

as the maximum load attained in the test regardless of the associated deformation. Many 

researchers [23-26] who conducted experimental studies adopted this criterion to develop 

bearing design equations even though large deformations were observed at the ultimate load. 

For instance, Rogers and Hancock [25] developed a bearing design equation for cold-formed 

carbon steel bolted connections based on the maximum loads from their tests, even though in 

many specimens a level of deformation as large as 15 mm was reached. In the above-

mentioned studies and in Kim’s [15] experimental work, the researchers observed that bearing 

failure i.e. the attainment of a peak on the load-displacement relationship, corresponded with 

fracture at the edge of the elongated bolt hole at two symmetrical locations oriented at 

approximately  = 45 and 135° to the axis of loading;  is defined in Fig. 6, which also sets 

out the configurations considered in the parametric studies described in the next section.  

These findings appear to be consistent, irrespective of the exact arrangement tested i.e. value 

of e1/d0, e2/d0, bolt size/plate thickness, number and arrangement of bolts etc. As shown in 

Fig. 7 and discussed further in the next section, for connection geometries where bearing is 

critical, peak strains may also be observed in the numerical results at these two symmetrical 

locations ( = 45 and 135°) indicating that fracture will initiate at these points. 

 

4.2 Deformation criterion 

 

The bearing resistance of a connection according to this second criterion is taken as the 

applied load measured at a pre-specified acceptable deformation depending upon the 

application. This limit does not correspond to the maximum load attained in the test and 

hence, no rupture takes place in the material. The determination of bearing failure loads of 

bolted shear connections through limiting deformations has been performed by many 

researchers. However, there has been no consensus about whether to limit the permanent or 
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the total elongation, nor on the value to adopt as a suitable deformation limit. Perry [27] 

investigated carbon steel bolted connections, and recommended that the failure load be the 

load corresponding to a deformation of 6.35 mm, since beyond this level, the load-deflection 

curves of typical connections become virtually flat. Perry’s definition has been adopted in 

developing design guidance for carbon steel connections in the AISC Specification [28]. The 

SCI/Euro Inox [4] design provisions for stainless steel connections were developed on the 

basis of a 3.0 mm deformation limit under ultimate conditions. By imposing this limit, it was 

suggested that the deformation under service loads would be of the order of 1.0 mm. Eurocode 

3 Part 1.4 [3] adopted the same design provisions. The deformation-based definition of 

bearing failure has led to an inconsistent approach with – as Fig. 2 has already illustrated – 

failure load levels being dependent on an, often, arbitrary selection of a limiting deformation. 

 

4.3 Failure modes and connection geometry 

 

In order to distinguish between end tear-out failure and bearing failure from the FE models, a 

failure criterion that depends on the deformation of the connection has been devised.  In the 

FE models five reference points A, B, C, D, E and F were assigned to the plate as shown in 

Fig. 8. The overall deformation of a connection is often considered as the elongation of the 

plate parallel to the direction of the load between points C and E. Four components of 

deformation contribute to the plate elongation to a different degree depending on the precise 

arrangement. The first is the relative horizontal displacement between points A and B. Since 

this deformation shows approximately the protrusion of the bolt from the plate material, it will 

be called ‘Bolt protrusion’. The second component is the shortening of the plate material in 

front of the bolt, which is measured by the relative horizontal displacement between points B 

and C. Because this part measures the amount of the bolt embedding into the plate material, it 

will be called ‘Bolt embedding’. The third component of deformation is the elongation in the 

net section that occurs as a result of the high stresses over the net section. This elongation is 

approximately twice the relative horizontal displacement between points D and F. The fourth 

component that contributes to the overall elongation is the elongation in the gross section and 

this is measured as a relative displacement between points D and E. The elongation in the 

gross section of the plate is very small relative to other sources of deformation as shown in 

Figs. 9 to 11.  
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By examining the relative contributions of these components of deformation, three failure 

modes can be identified. When the ‘Bolt protrusion’ constitutes the majority of the 

deformation, as shown in Fig. 9, the connection has failed by end tear-out. This mode takes 

place in connections with small end distances as can be seen in Fig. 12. In connections with 

relatively small edge distance e2, the deformation is essentially due to net section elongation 

as shown in Fig. 10 – net section fracture is the mode of failure in this case (see Fig. 13). 

When the deformation of the plate is mainly due to the ‘Bolt embedding’ as shown in Fig. 11, 

the failure mode is bearing (see Fig. 14). Note that this criterion is used solely to distinguish 

between end-tear out and bearing failure, while the failure load is determined by employing 

the strain-based criterion which has been discussed in the next section (Fig. 7). 

 

5. Parametric studies 

 

5.1 General 

 

In order to investigate the bearing behaviour of stainless steel bolted connections so as to 

assess, and where necessary modify, the current bearing design guidance, the validated FE 

models have been employed to conduct parametric studies. The results of these studies are 

used in Section 6 of this paper as the basis for proposing design equations for connections 

between both thick and thin plates. In order to investigate the effects of the degree of 

roundedness of the stress-strain curve and the level of stain hardening of the material on the 

bearing behaviour, two types of stainless steels were studied – austenitic and ferritic. 

Specifically, austenitic grade 1.4306 and the ferritic grade 1.4016 were investigated, with 

these grades considered to be representative of their respective families. The material 

properties of these stainless steels are shown in Table 1. The investigated parameters include 

the end distance e1, the edge distance e2 and the thickness of the plate t, with a constant bolt 

diameter of 20 mm. 

 

Two additional phenomena are associated with the bearing behaviour of thin sheet 

connections as compared to thick sheet connections: curling and pulling into line. Curling is 

the out-of-plane deformation of the connected sheet in front of the end bolt. This deformation, 

which occurs in both sheets in single shear connections and in the outer sheets of double shear 

connections, is effectively buckling of the plate when it is subjected to compressive stresses 



 9 

[29]. The part of the plate in front of the end bolt can be regarded as a strut that is fixed at one 

end by means of the bolt head or nut and is free at the other end. Pulling into line only takes 

place in single shear connections to permit the applied tensile loads, which are initially acting 

at an eccentricity to one another and inducing bending of the plate, to act along the same line 

(see Fig. 18(b)). 

 

Eurocode 3 Part 1.3 [8] provides design expressions for bolted connections between thin 

plates with thicknesses of 4.0 mm or less. This 4.0 mm limit has also been adopted in the 

present study to mark the transition between ‘thick’ and ‘thin’ material; hence, 8.0 mm and 

10.0 mm thick plates were investigated to represent thick plate connections, while plates with 

thicknesses of 1.0 mm and 2.0 mm were used to investigate thin plate connections. 

 

5.2 Connections between thick plates 

 

For thick plates, lap connections with bolts in double shear and plate thicknesses of 8.0 mm 

and 10.0 mm were investigated. The arrangement of the FE models is shown in Fig. 6(a). The 

end distance ratio e1/d0 was varied from 0.8 to 4.0; for the edge distance ratio e2/d0, four 

values (1.5, 2.0, 3.0 and 4.0) were used. 

 

A typical distribution of plastic strain in the plate in front of the bolt obtained from the FE 

model is presented in Fig. 7(a). It shows that the strains are very high at two symmetrical 

locations at about  = 45° and 135°. This strain distribution accords with the observations 

from the experimental studies discussed in Section 4 and confirms that bearing fracture 

initiates at these two locations of peak strain. This conclusion is adopted in the present study 

to define the bearing capacity of a connection when using the strength criterion: when the 

peak plastic strain in the plate material in front of the bolt reaches the localized fracture strain 

of the material (Salih et al. [13]), fracture occurs and the maximum load is said to have been 

reached.  

 

The load-deformation plot given in Fig. 15(a) shows the stiffness at three stages of loading of 

typical stainless steel connections which failed by bearing.  The stiffness at the point of 

bearing fracture is almost equal to the stiffness at 6.35 mm deformation and is about 50% of 

the stiffness at 3.0 mm deformation. For a corresponding connection failing by net section 
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rupture, Fig. 16 shows that the stiffness at fracture is about 25% of that at 6.35 mm 

deformation and about 12% of that at 3.0 mm deformation. It is clear that for connections 

failing by bearing the loss of stiffness at bearing fracture is relatively modest compared to the 

loss of stiffness at net section fracture in connections failing by net section rupture. Thus, it 

may be concluded that defining bearing failure on the basis of deformation limits (3.0 mm or 

6.35 mm), underestimates the true bearing resistance of stainless steel connections. 

Furthermore, for consistency with net section failure, in which the ultimate load is taken as the 

load causing fracture, it is proposed that the load at bearing fracture can be considered as the 

bearing ultimate load. Note that connection deformation is measured as the elongation 

between points A and B, shown in Fig. 6. 

 

5.3 Connections between thin sheets 

 

The bearing behaviour of bolted connections composed of thin sheets was thoroughly 

examined by considering three scenarios. The first scenario addresses the case of double shear 

connections in which the inner sheet is critical. In this case, due to the restraint provided by 

the outer sheets, curling will be prevented. The second scenario again considers double shear 

connections, but those in which the outer sheets are critical and curling is expected. The third 

scenario covers bolted connections in single shear where both curling and pulling into line 

take place.  

 

5.3.1 Inner sheets in double shear connections  

 

A set of FE models for the double shear configuration shown in Fig. 6(a) was developed with 

plate thicknesses of 1.0 and 2.0 mm. The end distance ratio e1/d0 was varied from 0.8 to 4.0; 

for the edge distance ratio e2/d0, three values (1.5, 2.0 and 3.0) were used. The bearing 

response in this situation is found to be similar to that for thick plate connections. The 

stiffness for a connection with thin plates at different load levels shown in Fig. 15(b) exhibits 

a rising load-deformation behaviour.  Fig. 7(b) shows that the distribution of strains in front of 

the bolt has the same peak values at about  = 45° and 135°. The overall response of the inner 

sheets in double shear connections may therefore be said to be insensitive to the material 

thickness. 
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5.3.2 Single shear connections and outer sheets in double shear connections  

 

To investigate the effects of curling and pulling into line on the bearing behaviour of stainless 

steel bolted connections, the load-deformation curves from three configurations of FE model 

with sheet thickness t = 2.0 mm were compared. These models can be described as follows: 

 

 Model I: double shear connection as shown in Fig. 6(b) where out-of-plane 

deformation (curling) of the outer sheets is prevented by applying appropriate 

boundary conditions. 

 Model II: double shear connection as shown in Fig. 6(b) where out-of-plane 

deformation (curling) of the outer sheets is permitted. 

 Model III: single shear connection as shown in Fig. 6(c) with no restraint against 

out-of plane deformation (curling). 

 

Fig. 17 shows a comparison between the results obtained for the above mentioned 

connections, while Fig. 18 shows the deformed shapes for Models II and III. It can be 

concluded that while curling, which occurs in both single and double shear connections, 

significantly affects the load carrying capacity of connections, pulling into line, which takes 

place in single shear connections only, does not affect bearing behaviour. Thus, Models II and 

III are effectively equivalent. This behaviour has been previously observed. For instance, the 

tensile behaviour of lap connections between thin sheets was studied experimentally [30] and 

then numerical models were employed to simulate theses specimens [31]. The test setup 

consisted of single bolted connections between thin sheets (1.5 mm or 3.0 mm) which were 

considered to be the test specimens, and thick plates (6.0 mm) in which no significant 

deformation occurred. When these tests were replicated using FE models [31], only the 

thinner sheet and bolts were modelled. This indicates that only the curling phenomenon was 

thought to affect the behaviour of bolted connections between thin sheets. Moreover, the AISI 

Specification [9] provides bearing design equations for bolted connections between thin 

carbon steel sheets for two situations; the first covering the inner sheet in double shear 
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connections, and the second covering single shear connections and the outer sheets in double 

shear connections.  

 

The FE models of the single shear connections between thin sheets were frequently unstable 

preventing full solutions from being achieved. However, it was shown earlier that the 

behaviour of the outer sheet in double shear connections can also represent the behaviour in 

single shear; the arrangement in Fig. 6(b) was therefore adopted to conduct parametric studies 

to represent both connection types. The end distance ratio varied from 0.8 to 4.0 with three 

values of the edge distance ratio e2/d0 (1.5, 2.0 and 3.0). Despite the occurrence of curling, the 

strain distribution in the plate in front of the bolt as shown in Fig. 7(c) remains consistent with 

that previously observed in Sections 5.2 and 5.3.1, with peak strains arising at two 

symmetrical points at approximately  = 45° and 135°. Thus, the originally proposed failure 

criterion remains valid. 

 

6. Current design provisions  

 

6.1 General 

 

All existing carbon steel and stainless steel design standards consider end tear-out and bearing 

failure as one limit state by providing a design equation that relates end tear-out capacity to 

the end distance, and then setting an upper limit for this equation. The general form of bearing 

capacity design expressions is given by: 

 

uub CtdftdfN                                                             (1) 

 

where is the bearing coefficient which is linearly related to the end distance e1 and C is the 

upper constant value of the coefficient for end distances e1 equal to or greater than a 

limiting value. 

 

6.2 Eurocode 3 and SCI/Euro Inox Design Manual 

 

The design bearing resistance of carbon steel connections in Eurocode 3 Part 1.8 [7] is given 

by:  
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2M

ub1
3EC,b

fdtk
N




                                                            (2) 

 

where αb is the smallest of  αd, fub/fu (where fu and fub are the ultimate tensile strengths of the 

plate and bolt material respectively) or 1.0, t is the plate thickness, d is the nominal bolt 

diameter and M2 is a partial safety factor with a recommended value of 1.25. In the direction 

of load transfer, αd = e1/3d0 for end bolts and (p1/3d0 – 1/4) for inner bolts, where d0 is the bolt 

hole diameter, e1 is the end distance and p1 is the spacing between bolts in the direction of 

loading. In the direction perpendicular to load transfer, k1 is the smaller of (2.8e2/d0 – 1.7) or 

2.5 for edge bolts and (1.4p2/d0 – 1.7) or 2.5 for inner bolts where e2 is the edge distance. 

 

The SCI/Euro Inox Design Manual for Structural Stainless Steel [4] and Eurocode 3 Part 1.4 

[3] adopt Equation 2 for austenitic and duplex stainless steel connections with a minor 

modification: a reduced ultimate strength of the plate material fu,red  obtained from Equation 3 

is used in place of  fu in Equation 2. This modification was proposed [4] to limit bearing 

deformations at the ultimate and service loads to acceptable levels, while maintaining the 

format of the resistance equation and the bearing coefficients for carbon steel. The two 

standards apply these provisions for connections between both thick hot-rolled plates and thin 

cold-formed sheets. 

 

           uuyred,u ff6.0f5.0f                                                      (3) 

 

6.3 American and Australian Standards 

 

The ASCE [5] and AS/NZS [6] Standards provide design rules for bolted connections 

between thin cold-formed stainless steel elements but do not cover thick hot-rolled material. 

These Standards adopt the design provisions for bearing set out in the AISI Standard [9] for 

cold-formed carbon steel bolted connections with a minor modification which is that the upper 

limit of the bearing capacity (given in Equations 4 and 5) is marginally reduced. The bearing 

resistance of cold-formed stainless steel connections, which have been arranged in the format 

of Eurocode 3 for comparison purposes, is given by Equations 4 and 5. 
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for single shear connections:            ubearu
1

endASCEb, fdt2.0fdt
d

e
N 








                         (4) 

 

for double shear connections:          ubearu
1

endASCEb, fdt2.75fdt
d

e
N 








                        (5) 

 

where end and bear are the end tear-out and bearing resistance factors of 0.7 and 0.65 

respectively.  

 

7. Proposed design rules  

 

In this section, the results obtained from the parametric studies are used to propose bearing 

design equations for hot-rolled and cold-formed stainless steel bolted connections. Since the 

bearing response of austenitic and ferritic stainless steels was found to be similar as discussed 

in Section 5, these steels will be treated similarly in design. In order to exploit the high 

ductility and strain hardening characteristics of stainless steel, the concept in the AISC 

Standard [28] for bearing design will be adopted. Two bearing design equations will be 

proposed according to whether or not a deformation limit under service loads is required. The 

first bearing design equation is for bolted connections where the deformation under service 

loads is not a design consideration. This equation will be developed by adopting the strength 

criterion to define the ultimate bearing capacity, as controlled by fracture. The second 

equation is for connections where the deformation under service loads is a design 

consideration, and therefore the equation will be developed by considering the deformation 

criterion to define the service load and consequently the corresponding ultimate bearing 

capacity. It should be noted that two essential features were considered when suggesting the 

design equations. Firstly, the format of the equation is to be similar to that of Equation 1 and 

secondly, the ultimate tensile strength fu is to be used instead of a combination between the 

yield strength fy and ultimate strength fu which is adopted in EN 1993-1-4 [3] and the 

SCI/Euro Inox Design Manual [4]. 

 

7.1 Bearing capacity when deformation under service loads is not a design consideration 
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For this first scenario, the ultimate bearing capacity is taken as the load that corresponds to 

bearing fracture Nb,frac, as discussed in Section 5. The corresponding bearing coefficients b,frac 

defined by Equation 6, obtained from the parametric studies are plotted against the edge 

distance ratio e1/d0  in Figs. 19, 21 and 23 – b,frac is the nominal bearing stress at fracture.  

u

frac,b

u

frac,b

frac,b
ffdt

N 
  (6) 

 

7.2 Bearing capacity when deformation under service loads is a design consideration 

 

In this second scenario, the ultimate bearing capacity of the bolted connection is defined such 

that the deformation at the serviceability limit state is kept within an acceptable limit. 

Examining the load-deformation curves for all FE models, it was found that at 1.0 mm 

deformation the connections remain essentially elastic. Therefore, a service load 

corresponding to 1.0 mm deformation was adopted, and the corresponding ultimate bearing 

capacity Nb,def (here controlled by deformation) was then obtained by assuming an average 

ratio of ultimate to service loads of 1.45. Figs. 20, 22 and 24 show the resulting bearing 

coefficient b,def from Equation 7; b,def  is the corresponding nominal bearing stress.   

u

def,b

u

def,b

def,b
ffdt

N 
                                                     (7) 

 

For this situation, the proposed design equations will ensure that the deformation at 

serviceability will be acceptable; there is, therefore, no need to conduct a separate check.  

 

7.3 Connections composed of thick plates 

 

7.3.1 Deformation under service loads is not a design consideration 

 

Fig. 19 shows the nominal bearing stress at fracture b,frac for thick plate connections obtained 

from the parametric studies. It can be seen that the bearing stress factor is greater than 1 as 

defined by Equation 8.  
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Thus, the proposed bearing design equation for connections where deformation is not a 

consideration is given by Equation 9. 

 

u1prop,frac,b fdtN                                                           (9) 

 

7.3.2 Deformation under service loads is a design consideration 

 

The factor 2 given by Equation 10 may be seen to provide a lower bound to the finite 

element data plotted in Fig. 20. Thus, Equation 11, with 2 from Equation 10, is proposed for 

the determination of ultimate bearing capacity when limiting deformation is a design 

consideration. 

 25.1
d2

e
25.1

0

1
2 








                                                      (10) 

u2prop,def,b fdtN                                                           (11) 

 

7.4 Connections composed of thin plates  

 

7.4.1 Inner sheets in double shear connections  

 

7.4.1.1 Deformation under service loads is not a design consideration 

 

It can be seen from Fig. 21 that the bearing coefficient b,frac (based on fracture) obtained from 

the FE models is greater than 1, defined by Equation 8. Therefore, the ultimate capacity for 

this type of connection, when deformation is not a design consideration, may be obtained from 

Equation 9. 

 

7.4.1.2 Deformation under service loads is a design consideration 
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The factor 2 defined by Equation 10 may be seen to provide a lower bound to the bearing 

coefficient (based on limiting deformation) b,def plotted in Fig. 22. The ultimate bearing 

capacity for this design scenario may therefore be taken from Equation 11. 

 

7.4.2 Single shear connections and outer sheets in double shear connections 

 

7.4.2.1 Deformation under service loads is not a design consideration 

 

The bearing coefficients b,frac based on fracture for single shear connections and the outer 

sheets of double shear connections (i.e. where plate curling may be expected) are plotted in 

Fig. 23. The factor 3 defined by Equation 12 may be seen to provide a lower bound to these 

bearing coefficients. 

 

 6.1
d2

e
6.1

0

1
3 








                                                      (12) 

 

Thus, the proposed bearing design equation for this scenario is given by Equation 13.  

 

u3c,prop,frac,b fdtN                                                         (13) 

 

7.4.2.2 Deformation under service loads is a design consideration 

 

The bearing coefficients b,def for the same categories of connections, but for limiting  

deformations, are shown in Fig. 24. For this figure, it may be seen that the factor 2 given by 

Equation 10 provides a lower bound to these data. It is therefore proposed that the ultimate 

bearing capacity be given by Equation 11. The proposed design equations are summarised in 

Table 2. 

 

8. Conclusions 

 

The bearing behaviour of stainless steel connections has been investigated herein by means of 

FE parametric studies. The fundamental difference in the response of stainless steel and 
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carbon steel connections is that, while the load-deformation curve for carbon steel connections 

flattens off after the initiation and spreading of yielding, for stainless steel connections this 

curve continues to rise significantly owing to strain hardening. For this reason, greater clarity 

in defining bearing capacity than has previously been used when considering carbon steel 

connections was necessary. Different failure definitions have therefore been devised for 

stainless steel connections, and bearing design equations for both thick and thin material that 

cover two cases – one restricting and one ignoring serviceability deformations – have been 

proposed. These equations define the bearing capacity in terms of the material ultimate 

strength fu instead of the so-called reduced ultimate strength fu,red, and therefore, are consistent 

with the provisions for carbon steel connections. The proposed equations, which are based on 

all available test data and the numerical results generated herein, provide a modest 

enhancement in capacity compared to the current EC3 approach as well as being simpler to 

use.   
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Table 1: Material properties of stainless steel for the parametric studies 

Steel 
f0.2        

(N/mm
2
) 

fu     

(N/mm
2
) 

Elongation at 

fracture (%) 
fu/fy  

Austenitic grade 1.4306 288 581 62 2.02 

Ferritic grade 1.4016 262 522 51 1.99 
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Table 2: Summary of the proposed bearing design equations 

 

Connections composed of thick plates 

Connections composed of thin plates 

Inner sheets in double shear connections 
Single shear connections and outer 

sheets in double shear connections 

Deformation under 

service loads is not a 

design consideration 

 

u1prop,frac,b fdtN   

where: 
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where: 
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Fig. 1: Schematic representation of failure modes of bearing-type connections  

(b) Net section failure 

Load 

(a) Bolt shear failure 

(c) Bearing failure 

Load 

Figure
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Fig. 2: Comparison between carbon steel and austenitic stainless steel connection 

behaviour 
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Fig. 3: FE models for bolted connections tested by Ryan [21] 
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Fig. 4: Typical load-deformation curves from tests and numerical models 

 

(b) Typical ferritic stainless steel connection with two bolts in two rows  

(see Fig. 3(b)) 

 

(a) Typical austenitic stainless steel connection with two bolts in one row  

(see Fig. 3(a)) 
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(a) Bearing failure (based on excessive deformation) 

(b) Net section failure  

Substantial necking 

occurs prior to failure 

Fig. 5: Comparison between deformed test specimens and numerical models 

 Extension measured for overall connection 
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Fig. 6: Definition of  and configuration of FE models used in the parametric studies 
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Fig. 7: Plastic strain distributions in the plate in front of the bolt at failure for 

different connection geometries 

(a) Thick plate connection (t = 8 mm)  

(b) Thin plate connection (inner sheet in double shear connection, t = 2 mm) 

(c) Thin plate connection (outer sheet in double shear connection, t = 2 mm) 
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Fig. 8: Reference points assigned to plates in the FE models 
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Fig. 9: Components of hole elongation for connection failing by end tear-out  

(see Fig. 12) 
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Fig. 10: Components of hole elongation for connection failing in the net section 

(see Fig. 13) 
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Fig. 11: Components of hole elongation for connection failing by bearing  

(see Fig. 14) 
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Fig. 14: Deformed shapes from FE models for connections failing by bearing   

(e2/d0 = 3.0, e1/d0 = 3.0) 

Fig. 13: Deformed shape from FE models for connection failing in the net section  

(e2/d0 = 1.5, e1/d0 = 3.0) 

Fig. 12: Deformed shapes from FE models for connections failing by end tear-out 

(e2/d0 = 3.0, e1/d0 = 1.2) 
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(a) Thick plate connection (thickness = 8 mm)  
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Fig. 15: Stiffness of stainless steel connection failing by bearing 

 

(b) Thin plate connection (inner sheet in double shear connection, t = 2 mm) 
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Fig. 16: Stiffness of stainless steel connections failing in net section rupture 
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Fig. 17: Comparison between thin sheet connections in single and double shear  
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Fig. 18: Deformed shape of connections susceptible to curling and pulling into 

line 

(a) Outer plates in double shear connection (Model II) 

(b) Single shear connection (Model III) 

Tensile forces 

eventually act 

along this line 
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Fig. 19: Bearing coefficient for thick plates (8 and 10 mm) from parametric studies 

by adopting strength criterion 
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Fig. 20: Bearing coefficient for thick plates (8 and 10 mm) from parametric 

studies by adopting deformation criterion 
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Fig. 21: Bearing coefficient for thin sheets where curling does not occur (1 and 2 mm) 

from parametric studies by adopting strength criterion 
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Fig. 22: Bearing coefficient for thin sheets where curling does not occur (1 and 2 mm) 

from parametric studies by adopting deformation criterion 
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Fig. 23: Bearing coefficient for thin sheets where curling does occur (1 and 2 mm) 

from parametric studies by adopting strength criterion 
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Fig. 24: Bearing coefficient for thin sheets where curling does occur (1 and 2 mm) 

from parametric studies by adopting deformation criterion 
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