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Bearing failure in stainless steel bolted connections

E L Salih, L Gardner and D A Nethercot

Abstract

Although the mechanical behaviour of stainless steel and carbon steel differs significantly,
design provisions for stainless steel connections in current standards are essentially based on
the rules for carbon steel. For bolted connections, the design resistances in EN 1993-1-4 and
the SCI/Euro Inox Design Manual for Structural Stainless Steel are based on those in EN
1993-1-8 and EN 1993-1-3 with only some minor modifications. In this paper, an
investigation into the bearing behaviour of stainless steel connections between both thick and
thin plates has been conducted. Numerical models for previously tested specimens in
austenitic and ferritic stainless steel have been developed and validated. The validated models
were then used to perform parametric studies to investigate the key variables affecting the
bearing failure of bolted connections; these include edge distance e,, end distance e; and plate
thickness t. The investigation showed the deformation behaviour of stainless steel connections
to be somewhat different from that of carbon steel connections, with stainless steel exhibiting
pronounced strain hardening. However, the locations of fracture initiation obtained from the
numerical models matched those observed during experimental studies of both carbon steel
and stainless steel connections and this feature has been used as the basis for defining a
consistent, strength based criterion of failure. The results of the parametric studies have been
utilised as the basis for design provisions for bearing failure in stainless steel bolted
connections that cover both the ultimate and the serviceability limit states and which are both

more economic and more straightforward than the present EC3 provisions.
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1. Introduction

Although its usage in structural situations is still only a small fraction of that of conventional
carbon steel, stainless steel is steadily growing in popularity [1]. Corrosion resistance is the
property most often cited as the reason for its adoption while the high initial material cost acts
to limit the number of suitable applications. This situation may, however, be about to alter
with the introduction of low nickel (lean duplex) stainless steel [2] at a material cost of around
twice that of carbon steel — this could make hitherto prohibitively expensive applications

much more cost effective.

This situation of growing popularity has been assisted during the past decade through the
production of Design Standards [3-6]. All of these, however, borrow heavily from design
rules for carbon steel [7-9] taking little, if any, account of the fundamentally different stress-
strain properties of stainless steel. Most important of these for structural behaviour is the
rounded uniaxial stress-strain curve, meaning that there is no sharp yield-point and that as the
strains increase so material strength continues to rise. Current Design Codes for stainless steel
[3-6], therefore, tend to follow rules for cold-formed (or light gauge) steel [8, 9] — even

though the physical properties of the materials are somewhat different.

Work on the behaviour of stainless steel members, covering local and member buckling [10]
has shown that explicit recognition of stainless steel’s stress-strain behaviour leads to
significant improvements in design capacity. Moreover, concepts such as cross-sectional
classification have been shown to be inappropriate [11], leading to the development of more
suitable treatments; some of these e.g. the continuous strength method for determining cross-
sectional strength, have subsequently been shown to be advantageous when dealing with

carbon steel [12].

Joints between stainless steel members may generally involve either bolting or welding, with

bolted connections typically favoured on site. The authors [13] have previously reviewed all



the available test data on stainless steel bolted connections. This previous study [13] did,
however, focus on net section failure, while the present paper covers arrangements in which
bearing failure of the plate elements governs. This is done through the use of a
comprehensive and rigorous finite element analysis, suitably validated against test data that
has permitted several detailed facets of behaviour, not previously fully understood, to be
explained. Of particular significance is the development of a rational and consistent criterion
for bearing failure. Use of this leads to simplifications and improvements in the current
design rules [3, 4].

2. Failure Criteria for Bolted Joints Operating in Shear

Bolts operating in shear are a fundamental component of many forms of steelwork connection.

For such arrangements, three modes of failure are possible, as illustrated in Fig. 1:

1. Bolts fail in shear.
2. Plates fail in tension at net section.

3. Bolts or plates fail in bearing.

Of these, the first and second are well understood, with clear failure criteria corresponding to
fracture in either the bolt shank or the plate respectively. Because the strength of the bolt
material in bearing under the tri-axial stress conditions experienced within the hole will
almost certainly be substantially greater than that of the surrounding plate, bearing failure of
bolts is extremely unlikely, being possible only for combinations of low strength bolts and
very high strength plates [14]. Bearing failure of the plates is, however, far more common
and somewhat more problematic. Fig. 2 shows the load-deflection relationship for a single
bolt in an arrangement for which the proportions are such that neither bolt shear nor net
section rupture are critical. The curves omit any possible slip phase and assume that the bolt
bears directly against the back of the hole from the start of loading. The results shown are for
a carbon steel test [15] and a numerical simulation, performed herein, of the same test, but
using austenitic stainless steel material properties. In the absence of a distinct failure due to
end tear out (which can be eliminated by ensuring adequate end distances), the curves show
no clear maximum — deflections become very large and load continues to rise — significantly

so in the case of stainless steel and less so for carbon steel because the form of the material



stress-strain curve causes the load-deformation relationship to flatten out as deflections
increase. The form of the load-deflection relationship in the absence of a clear failure event
for carbon steel has led to bearing failure often being defined in terms of a limiting
displacement. Sometimes such limits are also associated with a separate limit on allowable
deflection under working loads but with the results being presented purely as an ultimate load
based criterion. Clearly, for the carbon steel specimen of Fig. 2, selecting the displacement
limit as 6 mm or 12 mm makes only a few percent difference to the associated ‘ultimate load’.
However, for stainless steel the shape of the load-deflection relationship is such that changing
from a 6 mm to a 12 mm displacement limit will lead to about 30% increase in bearing
resistance. Clearly, some form of consistency, preferably allied to an event with clear

physical significance, would be preferable. A possible answer is provided herein.

3. Finite element (FE) models

3.1 General

The finite element analysis software ABAQUS 6.7-1 [16] was used to develop numerical
models for austenitic and ferritic stainless steel bolted connections to examine their response
under static shear loading. The characteristics and applications of the different families of
stainless steels have been previously set out [1]. The configurations of the modelled
specimens are presented in Fig. 3. In order to reduce the size of the model and, consequently,
the computational cost, only one quarter of the connection was modelled by applying
appropriate boundary conditions. The 3D solid (brick) element with full integration — C3D8 —
which has been shown to be suitable for modelling bolted lap joints in several previous
investigations [17, 18] was employed in this study to model both the plates and the bolts.
Loading was applied by means of uniform displacement-control at the end of the central plate.
Fig. 3 illustrates the loading and the boundary conditions applied to the FE models.

The compound Ramberg-Osgood stress-strain model developed by Mirambell and Real [19]
and Rasmussen [20] was adopted to represent the non-linear material response of stainless
steel; this model was also adopted by Kiymaz [21] in a previous study of stainless steel
connections. Numerical analyses of bolted connections are expected to involve large inelastic

strains, therefore, nominal stresses and strains were converted to the corresponding true



values, which take into account the change in geometry under load. Contact between all
components that were expected to interact with each other was defined using the surface-to-
surface contact feature in ABAQUS. Frictional effects were taken into account by using the
classical isotropic Coulomb friction model. Bolts were located centrally into the holes with a
uniform clearance of 1.0 mm. Different levels of bolt preload were applied. Loads were
carried initially by friction until the occurrence of slippage, after which direct bearing was the
primary means of load transfer. A detailed description of the development of these FE models
can be found in Reference [13].

3.2 FE model validation

Validation of the FE models was made against a series of tests on stainless steel bolted
connections performed by Ryan [22]. Load-deformation curves for all 24 tests were compared
with those obtained from the numerical models. It is clear from the typical curves shown in
Fig. 4 that the predicted load-deformation relationships are in good agreement with the tests.
Note that the extension shown is the total deformation of the connection, as illustrated in Fig.
5(a). Some test specimens exhibited a clear failure either by net section rupture or bolt shear,
in which cases, the numerical predictions of ultimate load (based on previously described
failure criteria [13]) were in good agreement with the test results. Other tests were terminated
prior to the attainment of ultimate load — these specimens were said to have failed by bearing
owing to excessive deformation. For all tests, the load-deformation curves were consistently
accurately replicated. For the tests that exhibited a true failure, a mean FE/test ratio of
ultimate loads of 0.99 and a standard deviation of 0.03 were achieved [13]. The deformed
shapes of typical test specimens, failing (based on excessive deformation) by bearing (Fig.
5(a)) and net section rupture (Fig. 5(b)), together with the corresponding FE model
simulations, are shown in Fig. 5. The validated FE models are used in Section 4 of this paper
to highlight various behavioural features of bolted lap connections, while extensive parametric

studies are performed in Section 5.

4. Bearing capacity of bolted lap connections

In bearing type connections, load is initially transferred by friction until the occurrence of slip,
after which the bolt shank and the side of the bolt hole come into direct contact. Bearing



stresses are developed at the contact surfaces. As the applied load increases, contact stresses
increase until bearing failure finally occurs. The bearing resistance of bolted connections has
been determined in previous studies either on the basis of a strength or a deformation
criterion. These two concepts are discussed in this section.

4.1 Strength criterion

When strength is the determining factor, the bearing capacity of a bolted connection is taken
as the maximum load attained in the test regardless of the associated deformation. Many
researchers [23-26] who conducted experimental studies adopted this criterion to develop
bearing design equations even though large deformations were observed at the ultimate load.
For instance, Rogers and Hancock [25] developed a bearing design equation for cold-formed
carbon steel bolted connections based on the maximum loads from their tests, even though in
many specimens a level of deformation as large as 15 mm was reached. In the above-
mentioned studies and in Kim’s [15] experimental work, the researchers observed that bearing
failure i.e. the attainment of a peak on the load-displacement relationship, corresponded with
fracture at the edge of the elongated bolt hole at two symmetrical locations oriented at
approximately 6 = 45° and 135° to the axis of loading; 6 is defined in Fig. 6, which also sets
out the configurations considered in the parametric studies described in the next section.
These findings appear to be consistent, irrespective of the exact arrangement tested i.e. value
of ei/do, e,/dy, bolt size/plate thickness, number and arrangement of bolts etc. As shown in
Fig. 7 and discussed further in the next section, for connection geometries where bearing is
critical, peak strains may also be observed in the numerical results at these two symmetrical

locations (6 = 45° and 135°) indicating that fracture will initiate at these points.

4.2 Deformation criterion

The bearing resistance of a connection according to this second criterion is taken as the
applied load measured at a pre-specified acceptable deformation depending upon the
application. This limit does not correspond to the maximum load attained in the test and
hence, no rupture takes place in the material. The determination of bearing failure loads of
bolted shear connections through limiting deformations has been performed by many

researchers. However, there has been no consensus about whether to limit the permanent or



the total elongation, nor on the value to adopt as a suitable deformation limit. Perry [27]
investigated carbon steel bolted connections, and recommended that the failure load be the
load corresponding to a deformation of 6.35 mm, since beyond this level, the load-deflection
curves of typical connections become virtually flat. Perry’s definition has been adopted in
developing design guidance for carbon steel connections in the AISC Specification [28]. The
SCI/Euro Inox [4] design provisions for stainless steel connections were developed on the
basis of a 3.0 mm deformation limit under ultimate conditions. By imposing this limit, it was
suggested that the deformation under service loads would be of the order of 1.0 mm. Eurocode
3 Part 1.4 [3] adopted the same design provisions. The deformation-based definition of
bearing failure has led to an inconsistent approach with — as Fig. 2 has already illustrated —

failure load levels being dependent on an, often, arbitrary selection of a limiting deformation.

4.3 Failure modes and connection geometry

In order to distinguish between end tear-out failure and bearing failure from the FE models, a
failure criterion that depends on the deformation of the connection has been devised. In the
FE models five reference points A, B, C, D, E and F were assigned to the plate as shown in
Fig. 8. The overall deformation of a connection is often considered as the elongation of the
plate parallel to the direction of the load between points C and E. Four components of
deformation contribute to the plate elongation to a different degree depending on the precise
arrangement. The first is the relative horizontal displacement between points A and B. Since
this deformation shows approximately the protrusion of the bolt from the plate material, it will
be called ‘Bolt protrusion’. The second component is the shortening of the plate material in
front of the bolt, which is measured by the relative horizontal displacement between points B
and C. Because this part measures the amount of the bolt embedding into the plate material, it
will be called ‘Bolt embedding’. The third component of deformation is the elongation in the
net section that occurs as a result of the high stresses over the net section. This elongation is
approximately twice the relative horizontal displacement between points D and F. The fourth
component that contributes to the overall elongation is the elongation in the gross section and
this is measured as a relative displacement between points D and E. The elongation in the
gross section of the plate is very small relative to other sources of deformation as shown in
Figs. 9to 11.



By examining the relative contributions of these components of deformation, three failure
modes can be identified. When the ‘Bolt protrusion’ constitutes the majority of the
deformation, as shown in Fig. 9, the connection has failed by end tear-out. This mode takes
place in connections with small end distances as can be seen in Fig. 12. In connections with
relatively small edge distance e,, the deformation is essentially due to net section elongation
as shown in Fig. 10 — net section fracture is the mode of failure in this case (see Fig. 13).
When the deformation of the plate is mainly due to the ‘Bolt embedding’ as shown in Fig. 11,
the failure mode is bearing (see Fig. 14). Note that this criterion is used solely to distinguish
between end-tear out and bearing failure, while the failure load is determined by employing

the strain-based criterion which has been discussed in the next section (Fig. 7).

5. Parametric studies

5.1 General

In order to investigate the bearing behaviour of stainless steel bolted connections so as to
assess, and where necessary modify, the current bearing design guidance, the validated FE
models have been employed to conduct parametric studies. The results of these studies are
used in Section 6 of this paper as the basis for proposing design equations for connections
between both thick and thin plates. In order to investigate the effects of the degree of
roundedness of the stress-strain curve and the level of stain hardening of the material on the
bearing behaviour, two types of stainless steels were studied — austenitic and ferritic.
Specifically, austenitic grade 1.4306 and the ferritic grade 1.4016 were investigated, with
these grades considered to be representative of their respective families. The material
properties of these stainless steels are shown in Table 1. The investigated parameters include
the end distance e;, the edge distance e, and the thickness of the plate t, with a constant bolt

diameter of 20 mm.

Two additional phenomena are associated with the bearing behaviour of thin sheet
connections as compared to thick sheet connections: curling and pulling into line. Curling is
the out-of-plane deformation of the connected sheet in front of the end bolt. This deformation,
which occurs in both sheets in single shear connections and in the outer sheets of double shear
connections, is effectively buckling of the plate when it is subjected to compressive stresses



[29]. The part of the plate in front of the end bolt can be regarded as a strut that is fixed at one
end by means of the bolt head or nut and is free at the other end. Pulling into line only takes
place in single shear connections to permit the applied tensile loads, which are initially acting
at an eccentricity to one another and inducing bending of the plate, to act along the same line
(see Fig. 18(b)).

Eurocode 3 Part 1.3 [8] provides design expressions for bolted connections between thin
plates with thicknesses of 4.0 mm or less. This 4.0 mm limit has also been adopted in the
present study to mark the transition between ‘thick’ and ‘thin’ material; hence, 8.0 mm and
10.0 mm thick plates were investigated to represent thick plate connections, while plates with

thicknesses of 1.0 mm and 2.0 mm were used to investigate thin plate connections.

5.2 Connections between thick plates

For thick plates, lap connections with bolts in double shear and plate thicknesses of 8.0 mm
and 10.0 mm were investigated. The arrangement of the FE models is shown in Fig. 6(a). The
end distance ratio e;/dg was varied from 0.8 to 4.0; for the edge distance ratio e,/dy, four
values (1.5, 2.0, 3.0 and 4.0) were used.

A typical distribution of plastic strain in the plate in front of the bolt obtained from the FE
model is presented in Fig. 7(a). It shows that the strains are very high at two symmetrical
locations at about 6 = 45° and 135°. This strain distribution accords with the observations
from the experimental studies discussed in Section 4 and confirms that bearing fracture
initiates at these two locations of peak strain. This conclusion is adopted in the present study
to define the bearing capacity of a connection when using the strength criterion: when the
peak plastic strain in the plate material in front of the bolt reaches the localized fracture strain
of the material (Salih et al. [13]), fracture occurs and the maximum load is said to have been

reached.

The load-deformation plot given in Fig. 15(a) shows the stiffness at three stages of loading of
typical stainless steel connections which failed by bearing. The stiffness at the point of
bearing fracture is almost equal to the stiffness at 6.35 mm deformation and is about 50% of

the stiffness at 3.0 mm deformation. For a corresponding connection failing by net section



rupture, Fig. 16 shows that the stiffness at fracture is about 25% of that at 6.35 mm
deformation and about 12% of that at 3.0 mm deformation. It is clear that for connections
failing by bearing the loss of stiffness at bearing fracture is relatively modest compared to the
loss of stiffness at net section fracture in connections failing by net section rupture. Thus, it
may be concluded that defining bearing failure on the basis of deformation limits (3.0 mm or
6.35 mm), underestimates the true bearing resistance of stainless steel connections.
Furthermore, for consistency with net section failure, in which the ultimate load is taken as the
load causing fracture, it is proposed that the load at bearing fracture can be considered as the
bearing ultimate load. Note that connection deformation is measured as the elongation

between points A and B, shown in Fig. 6.

5.3 Connections between thin sheets

The bearing behaviour of bolted connections composed of thin sheets was thoroughly
examined by considering three scenarios. The first scenario addresses the case of double shear
connections in which the inner sheet is critical. In this case, due to the restraint provided by
the outer sheets, curling will be prevented. The second scenario again considers double shear
connections, but those in which the outer sheets are critical and curling is expected. The third
scenario covers bolted connections in single shear where both curling and pulling into line

take place.

5.3.1 Inner sheets in double shear connections

A set of FE models for the double shear configuration shown in Fig. 6(a) was developed with
plate thicknesses of 1.0 and 2.0 mm. The end distance ratio e;/dy was varied from 0.8 to 4.0;
for the edge distance ratio e,/dy, three values (1.5, 2.0 and 3.0) were used. The bearing
response in this situation is found to be similar to that for thick plate connections. The
stiffness for a connection with thin plates at different load levels shown in Fig. 15(b) exhibits
a rising load-deformation behaviour. Fig. 7(b) shows that the distribution of strains in front of
the bolt has the same peak values at about 6 = 45° and 135°. The overall response of the inner
sheets in double shear connections may therefore be said to be insensitive to the material
thickness.

10



5.3.2 Single shear connections and outer sheets in double shear connections

To investigate the effects of curling and pulling into line on the bearing behaviour of stainless
steel bolted connections, the load-deformation curves from three configurations of FE model
with sheet thickness t = 2.0 mm were compared. These models can be described as follows:

e Model I: double shear connection as shown in Fig. 6(b) where out-of-plane
deformation (curling) of the outer sheets is prevented by applying appropriate
boundary conditions.

e Model Il: double shear connection as shown in Fig. 6(b) where out-of-plane
deformation (curling) of the outer sheets is permitted.

e  Model IlI: single shear connection as shown in Fig. 6(c) with no restraint against

out-of plane deformation (curling).

Fig. 17 shows a comparison between the results obtained for the above mentioned
connections, while Fig. 18 shows the deformed shapes for Models Il and IIl. It can be
concluded that while curling, which occurs in both single and double shear connections,
significantly affects the load carrying capacity of connections, pulling into line, which takes
place in single shear connections only, does not affect bearing behaviour. Thus, Models Il and
I11 are effectively equivalent. This behaviour has been previously observed. For instance, the
tensile behaviour of lap connections between thin sheets was studied experimentally [30] and
then numerical models were employed to simulate theses specimens [31]. The test setup
consisted of single bolted connections between thin sheets (1.5 mm or 3.0 mm) which were
considered to be the test specimens, and thick plates (6.0 mm) in which no significant
deformation occurred. When these tests were replicated using FE models [31], only the
thinner sheet and bolts were modelled. This indicates that only the curling phenomenon was
thought to affect the behaviour of bolted connections between thin sheets. Moreover, the AlSI
Specification [9] provides bearing design equations for bolted connections between thin

carbon steel sheets for two situations; the first covering the inner sheet in double shear

11



connections, and the second covering single shear connections and the outer sheets in double

shear connections.

The FE models of the single shear connections between thin sheets were frequently unstable
preventing full solutions from being achieved. However, it was shown earlier that the
behaviour of the outer sheet in double shear connections can also represent the behaviour in
single shear; the arrangement in Fig. 6(b) was therefore adopted to conduct parametric studies
to represent both connection types. The end distance ratio varied from 0.8 to 4.0 with three
values of the edge distance ratio e,/dy (1.5, 2.0 and 3.0). Despite the occurrence of curling, the
strain distribution in the plate in front of the bolt as shown in Fig. 7(c) remains consistent with
that previously observed in Sections 5.2 and 5.3.1, with peak strains arising at two
symmetrical points at approximately 6 = 45° and 135°. Thus, the originally proposed failure

criterion remains valid.

6. Current design provisions

6.1 General

All existing carbon steel and stainless steel design standards consider end tear-out and bearing
failure as one limit state by providing a design equation that relates end tear-out capacity to
the end distance, and then setting an upper limit for this equation. The general form of bearing
capacity design expressions is given by:

N, = atdf, < Ctdf, (1)

where o is the bearing coefficient which is linearly related to the end distance e; and C is the
upper constant value of the coefficient o for end distances e; equal to or greater than a

limiting value.

6.2 Eurocode 3 and SCI/Euro Inox Design Manual

The design bearing resistance of carbon steel connections in Eurocode 3 Part 1.8 [7] is given

by:
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k,a, tdf,
Ym2

)

Nb,Ecs =

where oy IS the smallest of ag, fun/fy (where f, and f,, are the ultimate tensile strengths of the
plate and bolt material respectively) or 1.0, t is the plate thickness, d is the nominal bolt
diameter and yy, is a partial safety factor with a recommended value of 1.25. In the direction
of load transfer, agq = €1/3d for end bolts and (p1/3do — 1/4) for inner bolts, where dy is the bolt
hole diameter, e; is the end distance and p; is the spacing between bolts in the direction of
loading. In the direction perpendicular to load transfer, k; is the smaller of (2.8e,/dy— 1.7) or

2.5 for edge bolts and (1.4p./dy— 1.7) or 2.5 for inner bolts where e; is the edge distance.

The SCI/Euro Inox Design Manual for Structural Stainless Steel [4] and Eurocode 3 Part 1.4
[3] adopt Equation 2 for austenitic and duplex stainless steel connections with a minor
modification: a reduced ultimate strength of the plate material f, g Obtained from Equation 3
is used in place of f, in Equation 2. This modification was proposed [4] to limit bearing
deformations at the ultimate and service loads to acceptable levels, while maintaining the
format of the resistance equation and the bearing coefficients for carbon steel. The two
standards apply these provisions for connections between both thick hot-rolled plates and thin

cold-formed sheets.

f, .= 0.5f +0.6f, <f, (3)

u,red

6.3 American and Australian Standards

The ASCE [5] and AS/NZS [6] Standards provide design rules for bolted connections
between thin cold-formed stainless steel elements but do not cover thick hot-rolled material.
These Standards adopt the design provisions for bearing set out in the AISI Standard [9] for
cold-formed carbon steel bolted connections with a minor modification which is that the upper
limit of the bearing capacity (given in Equations 4 and 5) is marginally reduced. The bearing
resistance of cold-formed stainless steel connections, which have been arranged in the format

of Eurocode 3 for comparison purposes, is given by Equations 4 and 5.
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for single shear connections: Np asce = q)end(%jtdfu < (o (20 1df) (4)

€

for double shear connections: Ny asce = ¢end( 4

)tdfu < Gpenr (275 tAT,) (5)

where ¢eng and dpear are the end tear-out and bearing resistance factors of 0.7 and 0.65

respectively.
7. Proposed design rules

In this section, the results obtained from the parametric studies are used to propose bearing
design equations for hot-rolled and cold-formed stainless steel bolted connections. Since the
bearing response of austenitic and ferritic stainless steels was found to be similar as discussed
in Section 5, these steels will be treated similarly in design. In order to exploit the high
ductility and strain hardening characteristics of stainless steel, the concept in the AISC
Standard [28] for bearing design will be adopted. Two bearing design equations will be
proposed according to whether or not a deformation limit under service loads is required. The
first bearing design equation is for bolted connections where the deformation under service
loads is not a design consideration. This equation will be developed by adopting the strength
criterion to define the ultimate bearing capacity, as controlled by fracture. The second
equation is for connections where the deformation under service loads is a design
consideration, and therefore the equation will be developed by considering the deformation
criterion to define the service load and consequently the corresponding ultimate bearing
capacity. It should be noted that two essential features were considered when suggesting the
design equations. Firstly, the format of the equation is to be similar to that of Equation 1 and
secondly, the ultimate tensile strength f, is to be used instead of a combination between the
yield strength f, and ultimate strength f, which is adopted in EN 1993-1-4 [3] and the
SCI/Euro Inox Design Manual [4].

7.1 Bearing capacity when deformation under service loads is not a design consideration

14



For this first scenario, the ultimate bearing capacity is taken as the load that corresponds to
bearing fracture Np frsc, as discussed in Section 5. The corresponding bearing coefficients By frac
defined by Equation 6, obtained from the parametric studies are plotted against the edge

distance ratio e1/do in Figs. 19, 21 and 23 — oy, frac IS the nominal bearing stress at fracture.

Nb frac Gb frac
= _Dbifrac _ Tbifrac 6
Bb,frac tdfu f ( )

u

7.2 Bearing capacity when deformation under service loads is a design consideration

In this second scenario, the ultimate bearing capacity of the bolted connection is defined such
that the deformation at the serviceability limit state is kept within an acceptable limit.
Examining the load-deformation curves for all FE models, it was found that at 1.0 mm
deformation the connections remain essentially elastic. Therefore, a service load
corresponding to 1.0 mm deformation was adopted, and the corresponding ultimate bearing
capacity Np gt (here controlled by deformation) was then obtained by assuming an average
ratio of ultimate to service loads of 1.45. Figs. 20, 22 and 24 show the resulting bearing

coefficient By gef from Equation 7; oy, gef IS the corresponding nominal bearing stress.

Ny et Ob.ger
— = 7
tdf, f 0

Bb,def =
u

For this situation, the proposed design equations will ensure that the deformation at

serviceability will be acceptable; there is, therefore, no need to conduct a separate check.
7.3 Connections composed of thick plates
7.3.1 Deformation under service loads is not a design consideration

Fig. 19 shows the nominal bearing stress at fracture By s for thick plate connections obtained
from the parametric studies. It can be seen that the bearing stress factor is greater than o, as

defined by Equation 8.
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25 2 |<25  for e d,>15
3d,
al: (8)
25| 2 1<20  for e,ld, <15
3d,

Thus, the proposed bearing design equation for connections where deformation is not a
consideration is given by Equation 9.

N = o, tdf, )

b,frac prop

7.3.2 Deformation under service loads is a design consideration

The factor a, given by Equation 10 may be seen to provide a lower bound to the finite
element data plotted in Fig. 20. Thus, Equation 11, with o, from Equation 10, is proposed for
the determination of ultimate bearing capacity when limiting deformation is a design

consideration.

o, =1.25£iJ <1.25 (10)
2d,
Nb,def,prop = OLZ td fu (11)

7.4 Connections composed of thin plates

7.4.1 Inner sheets in double shear connections

7.4.1.1 Deformation under service loads is not a design consideration

It can be seen from Fig. 21 that the bearing coefficient By #rac (Dased on fracture) obtained from
the FE models is greater than a4, defined by Equation 8. Therefore, the ultimate capacity for
this type of connection, when deformation is not a design consideration, may be obtained from

Equation 9.

7.4.1.2 Deformation under service loads is a design consideration

16



The factor o, defined by Equation 10 may be seen to provide a lower bound to the bearing
coefficient (based on limiting deformation) PBpqet plotted in Fig. 22. The ultimate bearing

capacity for this design scenario may therefore be taken from Equation 11.
7.4.2 Single shear connections and outer sheets in double shear connections
7.4.2.1 Deformation under service loads is not a design consideration

The bearing coefficients By #ac based on fracture for single shear connections and the outer
sheets of double shear connections (i.e. where plate curling may be expected) are plotted in
Fig. 23. The factor o3 defined by Equation 12 may be seen to provide a lower bound to these

bearing coefficients.
e1
Oy =1.6(—]31.6 (12)

Thus, the proposed bearing design equation for this scenario is given by Equation 13.

N =, tdf, (13)

b,fracprop,c
7.4.2.2 Deformation under service loads is a design consideration

The bearing coefficients By g for the same categories of connections, but for limiting
deformations, are shown in Fig. 24. For this figure, it may be seen that the factor o, given by
Equation 10 provides a lower bound to these data. It is therefore proposed that the ultimate
bearing capacity be given by Equation 11. The proposed design equations are summarised in
Table 2.

8. Conclusions

The bearing behaviour of stainless steel connections has been investigated herein by means of
FE parametric studies. The fundamental difference in the response of stainless steel and
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carbon steel connections is that, while the load-deformation curve for carbon steel connections
flattens off after the initiation and spreading of yielding, for stainless steel connections this
curve continues to rise significantly owing to strain hardening. For this reason, greater clarity
in defining bearing capacity than has previously been used when considering carbon steel
connections was necessary. Different failure definitions have therefore been devised for
stainless steel connections, and bearing design equations for both thick and thin material that
cover two cases — one restricting and one ignoring serviceability deformations — have been
proposed. These equations define the bearing capacity in terms of the material ultimate
strength f, instead of the so-called reduced ultimate strength f, .4, and therefore, are consistent
with the provisions for carbon steel connections. The proposed equations, which are based on
all available test data and the numerical results generated herein, provide a modest
enhancement in capacity compared to the current EC3 approach as well as being simpler to

use.
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Table

Table 1: Material properties of stainless steel for the parametric studies

fo2 f, Elongation at
Steel (N/mm?) (N/mm?  fracture (%) fufty
Austenitic grade 1.4306 288 581 62 2.02

Ferritic grade 1.4016 262 522 51 1.99




Table 2: Summary of the proposed bearing design equations

Connections composed of thick plates

Connections composed of thin plates

Inner sheets in double shear connections

Single shear connections and outer

sheets in double shear connections

Nb,fraqprop = O('ltdfu Nb,fraqprop = OLl tdfu Nb,fraqprop,c = OL3 td.I:u
Deformation under where: where: where:
. ) e
service loads is not a 25 [ij <25  for ejd,>L15 25 (ij <25  for e,/d,>15 o, :1.6(ﬁJ <16
design consideration 3d, 3d, 0
o = o, =
2521 |<2.0  for e,/d,<1.5 25| 2 |<2.0  for e,d, <15
3d, 3d,
Deformation under Nb,def,prop =0, tdfu Nb,def,prop =a, td‘I:u Nb,def,prop =0Q, td‘I:u
service loads isa | where: where: where:
design consideration e e e
a, =125 = |<1.25 a, =125 — |<1.25 a, =125 = |<1.25
2d, 2d, 2d,
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(@) Bolt shear failure
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(c) Bearing failure
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Fig. 1: Schematic representation of failure modes of bearing-type connections
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Carbon steel test by Kim [15]
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Fig. 2: Comparison between carbon steel and austenitic stainless steel connection
behaviour
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Fig. 3: FE models for bolted connections tested by Ryan [21]
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(see Fig. 3(a))
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(b) Typical ferritic stainless steel connection with two bolts in two rows
(see Fig. 3(b))

Fig. 4: Typical load-deformation curves from tests and numerical models
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(b) Net section failure

Fig. 5: Comparison between deformed test specimens and numerical models
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Fig. 6: Definition of 6 and configuration of FE models used in the parametric studies
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(b) Thin plate connection (inner sheet in double shear connection, t =2 mm)
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Fig. 7: Plastic strain distributions in the plate in front of the bolt at failure for

different connection geometries
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Fig. 9: Components of hole elongation for connection failing by end tear-out
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Fig. 10: Components of hole elongation for connection failing in the net section
(see Fig. 13)
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Fig. 12: Deformed shapes from FE models for connections failing by end tear-out
(Ez/do = 3.0, e1/do = 1.2)

Fig. 13: Deformed shape from FE models for connection failing in the net section
(ez/do = 1.5, elldo = 30)

(

Fig. 14: Deformed shapes from FE models for connections failing by bearing
(e2/d0 = 3.0, e1/do = 30)

33



350 -
300 -
250 ~

200 ~

Load (kN)

150 o
100 -

|

50 - i :
|

) |

Deformation (mm)

(a) Thick plate connection (thickness = 8 mm)

80 -
70 -
60 -
50 """ 2
40 -
30 - i

20 - i.\
10 - :

Load (KN)

Bearing fracture

|
|
|
|
6.35 mm),
:
|
|

0 T T 1
0 5 10 15

Deformation (mm)

(b) Thin plate connection (inner sheet in double shear connection, t =2 mm)

Fig. 15: Stiffness of stainless steel connection failing by bearing
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Fig. 18: Deformed shape of connections susceptible to curling and pulling into

line
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Fig. 19: Bearing coefficient for thick plates (8 and 10 mm) from parametric studies

by adopting strength criterion
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Fig. 20: Bearing coefficient for thick plates (8 and 10 mm) from parametric

studies by adopting deformation criterion
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Fig. 21: Bearing coefficient for thin sheets where curling does not occur (1 and 2 mm)

from parametric studies by adopting strength criterion
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Fig. 22: Bearing coefficient for thin sheets where curling does not occur (1 and 2 mm)

from parametric studies by adopting deformation criterion
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Fig. 23: Bearing coefficient for thin sheets where curling does occur (1 and 2 mm)

from parametric studies by

adopting strength criterion

42



Bearing coefficient (Bo,cer)

3.0 (a) ez/do =15 - 3.0 (b) eZ/do =20
&
2.0 o3 £ 20+ o3
¥ 5 ¥
//%‘ B ? = //§_ K 4
7/ o 7/
1.0 - [ S 1.0 A -4 -
’ A Austenitic - 1 mm o ’ A Austenitic - 1 mm
oy o Austenitic - 2 mm £ o o Austenitic - 2 mm
O Ferritic - 1 mm < 2 O Ferritic - 1 mm
o Ferritic - 2 mm c“d o Ferritic - 2 mm
00 T T T T 1 OO T T T T |
0.0 1.0 2.0 3.0 4.0 5.0 0.0 1.0 2.0 3.0 4.0 5.0
eI/dO elldo
—~ 304 (C) eZ/do =3.0
&
% 2.0 !(13
g R R
Ve
s v
S 1.0 Pt a Austenitic - 1 mm
2 & o Austenitic - 2 mm
E (0] o Ferritic - 1 mm
@ < Ferritic - 2 mm
@ 00 : : : : ‘
0.0 1.0 2.0 3.0 4.0 5.0
e,/dy

Fig. 24: Bearing coefficient for thin sheets where curling does occur (1 and 2 mm)

from parametric studies by adopting deformation criterion
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