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Abstract 

Singlet molecular oxygen, O2(a
1∆g), can be created in a single cell from ground state oxygen, 

O2(X
3Σg

-), upon focused laser irradiation of an intracellular sensitizer.  This cytotoxic species 

can subsequently be detected by its 1270 nm phosphorescence (a1∆g → X3Σg
-) with 

subcellular spatial resolution.  The singlet oxygen lifetime determines its diffusion distance 

and, hence, the intracellular volume element in which singlet-oxygen-initiated perturbation of 

the cell occurs.  In this study, the time-resolved phosphorescence of singlet oxygen produced 

by the sensitizers chlorin (Chl) and 5,10,15,20-tetrakis(N-methyl-4-pyridyl)-21H,23H-

porphine (TMPyP) was monitored.  These molecules localize in different domains of a living 

cell.  The data indicate that (i) the singlet oxygen lifetime and (ii) the rate constant for singlet 

oxygen quenching by added NaN3 depend on whether Chl or TMPyP was the photosensitizer.  

These observations likely reflect differences in the chemical and physical constituency of a 

given subcellular domain (e.g., spatially-dependent oxygen and NaN3 diffusion coefficients) 

and, as such, are evidence that singlet oxygen responds to the inherent heterogeneity of a cell.  

Thus, despite a relatively long intracellular lifetime, singlet oxygen does not diffuse a great 

distance from its site of production.  This is a consequence of an apparent intracellular 

viscosity that is comparatively large.     
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Introduction  

 Singlet oxygen, O2(a
1∆g), is the lowest excited state of molecular oxygen.1-3  It is well-

established that singlet oxygen is an oxidizing/oxygenating agent for a wide range of organic 

molecules.1,4  Production of sufficient quantities of singlet oxygen in a biological environment 

can perturb cellular processes, and can ultimately cause cell death via apoptosis or necrosis.5,6  

The cytotoxic effect of singlet oxygen is currently used in clinical practice in a treatment 

modality called Photodynamic Therapy, PDT, whereby the controlled production of singlet 

oxygen leads to the eradication of undesired tissue.7  Singlet oxygen production also forms 

part of many natural signaling pathways and is often an important response to stress in 

mammalian and plant cells.8-11  

 A common and convenient way to produce singlet oxygen is photosensitization.2  In 

this process, a molecule (the so-called sensitizer or, in PDT, the added drug) absorbs light to 

populate an excited state.  Most efficient sensitizers readily produce a long-lived triplet state 

which transfers its energy of excitation to the ground state of molecular oxygen, O2(X
3Σg

-), in 

a collision-dependent process.  Quenching of a sensitizer excited state by O2(X
3Σg

-) to 

produce O2(a
1∆g) kinetically competes with sensitizer fluorescence and phosphorescence.  

Under most circumstances, the latter are sufficiently probable, even in the presence of 

oxygen, to provide a convenient optical probe of the sensitizer. 

 Arguably, the most unambiguous way to monitor singlet oxygen is by direct 

observation of its phosphorescence (a1∆g → X3Σg
−) at 1270 nm.  Although this 

phosphorescence is weak (φ ~ 10-7), we have shown that it can nevertheless be detected from 

a single cell in both steady-state and time-resolved experiments upon irradiation of a 

sensitizer incorporated into the cell.12-16  A key aspect of our work is that, using a focused 

laser beam, sensitizer excitation can be confined to small sub-cellular spatial domains.15,17,18  
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Using this approach, it is now possible to provide unique insight into singlet-oxygen-mediated 

processes that occur in a cell.  

 The lifetime of singlet oxygen depends significantly on the surrounding environment 

and also exhibits characteristically large solvent isotope effects.2  In our work on single cells 

thus far, we have exploited the latter to enhance the intensity of the singlet oxygen 

phosphorescence signal detected.  Specifically, the lifetime of singlet oxygen in D2O is ~ 67 

µs19 whereas it is ~ 3.5 µs in H2O,20 and this difference is manifested in the quantum 

efficiency of singlet oxygen phosphorescence.2,21  As such, we routinely work under 

conditions in which the intracellular H2O has been exchanged with D2O.  Most importantly, 

we have demonstrated that this H2O/D2O exchange does not affect cell viability over the time 

course of our experiments.16  

 In most of our previous singlet oxygen work in cells, we used a hydrophilic cationic 

porphyrin as a photosensitizer: 5,10,15,20-tetrakis(N-methyl-4-pyridyl)-21H, 23H-porphine 

(TMPyP).  This molecule tends to accumulate in the nucleus of cells, but an appreciable 

amount can still be found in the cytoplasm.14,22,23  Time-resolved singlet oxygen 

phosphorescence experiments performed on D2O-incubated, TMPyP-containing cells yield an 

intracellular singlet oxygen lifetime of ~ 30-40 µs, irrespective of whether the data are 

recorded from the cytoplasm or the nucleus.13-16  As expected based on the known solvent 

isotope effect (vide supra), this lifetime is progressively shortened for cells with an increasing 

ratio of intracellular H2O to D2O, and extrapolates to a value of ~ 3 µs in an H2O-containing 

cell.15,16   

  It is now well established that “apparent” diffusion coefficients of small molecules 

inside a cell can be appreciably smaller than those in a homogeneous aqueous or hydrocarbon 

solvent.24  This includes the apparent diffusion coefficient of intracellular oxygen.25-28  The 

data recorded point to a value for the oxygen diffusion coefficient that could be up to one 
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order of magnitude smaller than that in 25°C bulk water.  It is important to note that, given the 

heterogeneity of a cell and the differences in the spatial resolution of the techniques used to 

quantify the translational motion of oxygen, it is appropriate to speak of an average or 

“apparent” value for the intracellular diffusion coefficient.  The comparatively small values of 

intracellular diffusion coefficients are consistent with independent data that point to 

subcellular domains that can be quite viscous.29     

 For the present study, we set out to record singlet oxygen data that reflected the 

heterogeneity of a single cell.  On one hand, we were interested in seeing if we could obtain 

spatially-dependent lifetimes of singlet oxygen that might reflect the unique chemical 

composition of a given domain.  Thus far, direct evidence for subcellular spatially-dependent 

differences in singlet oxygen lifetimes has not been presented.  On the other hand, we wanted 

to ascertain if the rate constant for the quenching of singlet oxygen by an added molecule 

likewise depended on the subcellular domain that was probed.  For the latter study, the 

chemical composition of a given domain is not as important as the diffusion rate of species in 

that domain (i.e., the viscosity of the local environment). To support this intracellular 

quenching study, we performed control experiments using sucrose solutions to examine the 

effects of a viscosity change on the quenching rate constant and, thereby, establish a reference 

framework for data recorded from a cell.   

A key premise in our experiments is the fact that the intracellular environment is 

highly heterogeneous and, since the intracellular diffusion coefficient of oxygen can be small, 

one could create populations of singlet oxygen confined to selected subcellular domains.  

Although we can impart spatial resolution to our experiments by irradiating the sensitizer in 

the cell with a focused laser, our present beam waist (diameter ~ 1 µm)15,18 is still large 

relative to the structures that define intracellular heterogeneity.  As such, we chose to work 
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with both hydrophobic (chlorin, Chl) and hydrophilic (TMPyP) sensitizers (Figure 1), 

expecting that these molecules would localize in different domains of the cell.  

 

TMPyP

Chl

TMPyP

Chl

 

 

Figure 1.    Structures of the photosensitizers used in this study. 

 

Materials and Methods 

Cell Preparation and Handling.  HeLa cells were cultured and maintained using methods 

described in detail elsewhere.16   

 For experiments in which singlet oxygen phosphorescence is detected from single 

cells, we continue to exploit the advantage of exchanging the intracellular H2O with D2O 

which results in a larger quantum efficiency of singlet oxygen emission.  Although we find it 
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no longer necessary to have complete exchange of the H2O with D2O (i.e., reasonable singlet 

oxygen signals can now be observed from cells containing up to 50% H2O),15,16 it is still 

desirable to work with cells containing D2O.  The protocol for this H2O/D2O exchange is 

based on osmotic shock and has likewise been described previously.16  Given that the 

intracellular singlet oxygen lifetimes we have measured depend linearly on the H2O/D2O ratio 

in the incubating medium and that the plots extrapolate to a lifetime that is very close to that 

seen in neat H2O,15,16 we expect homogeneous replacement of intracellular H2O by D2O. 

 Experiments were performed using cells exposed to an atmosphere of 100% oxygen, a 

condition that results in the most intense singlet oxygen phosphorescence signal.15,28   

Sensitizers were incorporated into the cells by incubating the cell in a medium that 

contained 10 µM of the dye, as previously described.16  For Chl, a 1 mM stock solution of the 

dye in DMSO was diluted to a final concentration of 10 µM in the incubation medium.  The 

small amount of DMSO present in this case (1%) facilitated the incorporation of the 

hydrophobic Chl.   At present, it is difficult to assess the concentration of the sensitizer when 

it is localized in a given sub-cellular domain. 

Although sodium azide is known to be toxic to cells,30 such toxicity was not 

manifested in our measurements on azide-containing cells.  Specifically, the combined time 

over which cells were incubated with sodium azide and the data recorded never exceeded 1.0 

– 1.5 h.  Viability assays (annexin V apoptosis assay and trypan blue exclusion assay for 

necrosis) performed on our cells showed no adverse effects of sodium azide over this period 

of time. 

 5,10,15,20-Tetrakis(N-methyl-4-pyridyl)-21H, 23H-porphine (TMPyP), sodium azide 

(NaN3), and sucrose were obtained from Sigma-Aldrich and used as received.  Chlorin was 

synthesized as previously described.31,32 

 



8 

Instrumentation.  Details of the instrumentation and approach used in this study are provided 

elsewhere.13-15,18,33  Briefly, cells to be studied were contained in an atmosphere-controlled 

chamber that was mounted onto the translation stage of an inverted microscope.  Subsequent 

steps of irradiation and optical monitoring varied depending on the experiment. 

 For all kinetics experiments, the sensitizer that had been incorporated into the cell was 

irradiated using the output of a femtosecond laser system that had been focused into the cell 

using the microscope objective.  The light emitted, be it singlet oxygen phosphorescence or 

sensitizer phosphorescence, was collected using the microscope objective, spectrally isolated 

using an interference filter, and transmitted to a cooled photomultiplier tube operated in a 

photon counting mode.  In a typical experiment, excitation energies ranged from 3 to 10 

nJ/pulse at a repetition rate of 1 kHz.      

 Cell imaging was performed by irradiating the entire cell and its surroundings with a 

steady-state Xe lamp using interference filters to select the appropriate excitation wavelength.  

Light emitted by the sample was detected through interference filters using a CCD camera 

(Evolution QEi controlled by ImagePro software, Media Cybernetics) placed at the image 

plane of the microscope.  Bright-field images were recorded using the same CCD camera, and 

back-lighting was achieved with a tungsten lamp provided as an accessory to Olympus IX70 

inverted microscope.   

 Singlet oxygen quantum yields were obtained in bulk solution-phase experiments by 

comparing the intensity of the singlet oxygen phosphorescence recorded from the sensitizer in 

question to that obtained from a sensitizer standard using an approach that has been 

described.34 
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Results and Discussion 

1.  General characterization of TMPyP and Chl 

 TMPyP is a water-soluble photosensitizer that has a comparatively large quantum 

yield of singlet oxygen production, φ∆ = 0.77 ± 0.04.35  The absorption spectrum of TMPyP, 

which is typical of porphyrins, is shown in Figure 2.  Singlet oxygen can be produced upon 

irradiation into either the intense Soret band at ~ 420 nm or the weaker Q-band system over 

the range 500-600 nm.  Also shown in Figure 2 are fluorescence spectra for TMPyP in water 

and in an aqueous sucrose solution.  The differences in these emission spectra are consistent 

with what has been observed for TMPyP dissolved in water and methanol and, as examined 

and discussed in detail elsewhere,36 likely reflect solvent-dependent phenomena rather than 

aggregation.  Most importantly, the singlet oxygen kinetic data that we record, see Section 2, 

do not depend on phenomena that influence these emission spectra.   
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Figure 2.  Absorption (a) and fluorescence (b) spectra of TMPyP in H2O and Chl in toluene. 

Also shown is the fluorescence spectrum of TMPyP recorded in 1 M aqueous 

sucrose solution. 

 

 TMPyP is readily incorporated into a cell upon incubation of the cell in a medium that 

contains TMPyP.16  Upon initial incorporation, TMPyP is first localized in lysosomes.37,38  

However, the dye eventually localizes in the nucleus (Figure 3a).22,39  Under our cell handling 

conditions, experiments were invariably initiated with an intracellular TMPyP distribution 

such as that shown in Figure 3a.  



11 

����

����

����

����

����

����

����

����

����

����

����

����

����

����

(a)

(b)

(c)

����

����

����

����

����

����

����

����

����

����

����

����

����

����

(a)

(b)

(c)
 

Figure 3.  (a) Image of HeLa cells based on the fluorescence of TMPyP that shows the 

preference for this sensitizer to localize principally in the nucleus (white arrows).  

(b) Image of HeLa cells based on the fluorescence of Chl that shows the 

preference for this sensitizer to localize in the cytoplasm.  Dark spots (white 

arrows) are the nuclei.  (c)  Overlay of the Chl fluorescence image shown in panel b 

with a transmission image that better shows the position of the nuclei (white 

arrows).  Each image shows an area of 90 µm × 65 µm. 
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 Chlorins are a class of porphyrin-like compounds containing one pyrrole ring that is 

reduced at the β-position.  For our present study, we opted to use the parent, unsubstituted 

chlorin, Chl, which is lipophilic (Figure 1).  The absorption spectrum of this compound 

(Figure 2) shows the characteristic features that, in general, distinguish chlorins from 

porphyrins.40  We have determined that the singlet oxygen quantum yield of Chl is φ∆ = 0.44 ± 

0.05 in toluene (obtained by monitoring the intensity of singlet oxygen phosphorescence 

using porphine as the standard sensitizer, φ∆ = 0.67 ± 0.06).41 

Upon incorporation into a cell, Chl clearly localizes outside the nucleus in the cell 

cytoplasm with a distribution that appears to be quite inhomogeneous (Figure 3b).  At present, 

we cannot determine the exact organelles and/or structures in the cytoplasm with which this 

hydrophobic dye associates.  Nevertheless, and most importantly, the intracellular distribution 

of Chl is strikingly different from that of TMPyP.  

 

2.   Singlet oxygen quenching by sodium azide in sucrose solutions of different viscosity 

 As discussed in the Introduction, there is considerable evidence to indicate that 

subcellular domains can be quite viscous.  With this in mind, and prior to discussing data 

recorded from single cells, we present results obtained from bulk aqueous solutions of 

sucrose.  By changing the concentration of sucrose in water, one obtains solutions in which 

viscosity and oxygen solubility can be varied over a large range.42,43  More importantly, these 

sucrose-concentration-dependent changes in viscosity and oxygen solubility have been well-

quantified.42,43  As such, singlet oxygen quenching experiments performed in sucrose 

solutions can be used to establish a reference framework for data recorded from a cell. 

 The molecule we have chosen as a singlet oxygen quencher for these studies is sodium 

azide, NaN3, which readily penetrates cell membranes.30  It is well established that NaN3 is a 
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good quencher of singlet oxygen.  Quenching rate constants, kq, over the range ~ 3-6 × 108 s-

1M-1 have been reported for experiments performed in aqueous systems, and a value as large 

as 5 × 109 s-1M-1 has been reported for CH3CN.44  Although these values of kq are slightly less 

than the rate constant expected for a diffusion-limited process in a solvent whose viscosity is 

approximately 1 mPa s (i.e., kdiff ~ 1-3 × 1010 s-1M-1),45 the quenching of singlet oxygen by 

NaN3 should readily approach the diffusion-controlled limit as the viscosity of the 

surrounding medium is increased.  Although this viscosity-dependent phenomenon is general, 

it has been explicitly demonstrated for the quenching of singlet oxygen in a number of 

polymer-based systems.46-48  We now quantify the phenomenon in aqueous liquid-phase 

systems suitable for comparison to data recorded from cells.  

 We monitor the viscosity-dependent rate of singlet oxygen quenching by NaN3 using 

the time-resolved 1270 nm phosphorescence of singlet oxygen as an experimental probe.  For 

the triplet state photosensitized production of singlet oxygen, the evolution of the 

phosphorescence signal, P, in time should follow Eq. 1.15,20,49,50  

 

( ) )1()( tktk

Trem

remT ee
kk

K
tP

−− −
−

=  

 

where K is a scaling parameter that includes the efficiency of singlet oxygen production, kT 

is the rate constant for all channels of sensitizer triplet state deactivation, and krem is the rate 

constant that accounts for all channels of singlet oxygen removal.  In our experiments, the 

latter can be expressed as the sum of three terms (Eq. 2), 

 

[ ] [ ] )2(QkSkkk qsdrem ++=  
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where kd is the pseudo-first-order rate constant for solvent-induced deactivation (i.e., 

quenching by water), ks[S] accounts for quenching by the sucrose added to change the 

viscosity of the solution, and kq[Q] accounts for quenching by any other molecules (i.e., in 

this case, added NaN3).  Note that, in aqueous and hydrocarbon systems, the rate constant for 

singlet oxygen radiative deactivation is small (~ 0.1 – 1.0 s-1)51 compared to the rate constants 

for these other deactivation channels and, as such, has not been included in the expression for 

krem.  A rate constant for singlet oxygen quenching by sucrose has been published (ks = 2.5 × 

104 s-1M-1),52 and we have independently confirmed this value in our present experiments 

(vide infra).  Although the latter is comparatively small (i.e., far removed from those in the 

diffusion-controlled regime), it can still be influenced by a change in viscosity.46,47    

 In systems such as ours, where kT ~ krem, the observed phosphorescence signal will 

indeed appear as a difference of two exponential functions.  In the analysis of such data, one 

cannot, a priori, assign the rising portion of the observed signal to kT and the falling portion of 

the signal to krem.  Rather, independent experiments and/or tests must be used to ascertain 

what the rate-limiting step is in the overall time evolution of the 1270 nm phosphorescence 

signal.  This is often done in time-resolved experiments to quantify kT (i.e., sensitizer triplet 

absorption or phosphorescence measurements).  It is also well-established that (i) changes in 

the concentration of dissolved oxygen only influence kT, not krem (an exception occurs only in 

solvents where the inherent lifetime of singlet oxygen is extraordinarily long; e.g., CCl4 or 

CS2), and (ii) changes in the H/D isotopic composition of the surrounding medium only 

influence krem, not kT.2,15  In the present study, we used both direct triplet state measurements 

and H/D isotopic exchange to assign the rising and decaying portions of the signal to either kT 

or krem. 

 Time-resolved singlet oxygen phosphorescence signals were monitored as a function 

of NaN3 concentration in aqueous solutions containing different amounts of sucrose.  Data 
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recorded in solutions of 0.88 M (2.4 mPa s) and 1.96 M sucrose (19 mPa s) are shown in 

Figure 4.  Eq. 1 was used as a fitting function for the time-resolved signals. The observed 

phosphorescence signals respond as expected which allows us to clearly assign values of kT 

and krem to a given time-resolved trace.    
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Figure 4.   Time-resolved 1270 nm singlet oxygen phosphorescence traces recorded upon 

pulsed laser irradiation of TMPyP in air-saturated D2O solutions containing (a) 

0.88 M and (b) 1.96 M sucrose.  At these sucrose concentrations, [O2] = 0.84 and 

0.45 mM, respectively.42  In each case, data were recorded with different 

concentrations of added NaN3.  The solid lines show fits of Eq. 1 to the data. 

The insets show plots of the rate constant for singlet oxygen removal, krem, 

against the concentration of NaN3 (i.e., Eq. 2). 
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 With an increase in the amount of added sucrose, and the corresponding increase in 

viscosity and decrease in oxygen solubility,42,43 the rate of sensitizer triplet state decay 

decreases reflecting a decrease in the rate of bimolecular quenching by ground state oxygen.  

When the values of krem obtained from the fits of Eq. 1 to the data are plotted against the 

sucrose concentration according to Eq. 2, we obtain a value for ks, (1.8 ± 0.2) × 104 s-1 M-1, 

which is consistent with published data (vide supra).     

 For all singlet oxygen phosphorescence traces recorded in a solution of the same 

viscosity (i.e., at a given sucrose concentration), the first-order rate constant for singlet 

oxygen decay (krem) increases with an increase in the NaN3 concentration, whereas the rate 

constant for sensitizer triplet state decay (kT) remains constant.  This is entirely consistent 

with the expectation that NaN3 will not efficiently quench the sensitizer triplet state.53  In 

support of this latter expectation, we independently monitored the decay rate of TMPyP 

phosphorescence as a function of added NaN3 and obtained a bimolecular quenching rate 

constant of (1.3 ± 0.1) × 105 s-1 M-1 which is indeed much smaller than the rate constant for 

singlet oxygen quenching by NaN3.  At the limit of a highly viscous solution (e.g., 1.96 M 

sucrose), increasing the azide concentration leads to a reversal in the magnitude of the rate 

constants in Eq.1 (i.e., krem > kT).  Under these conditions, the rate of sensitizer triplet state 

deactivation is principally responsible for the falling part of the observed time-resolved 

signal, while the singlet oxygen decay is manifested on the rising part (Figure 4b).   

 Values of krem obtained from our fits to the time-resolved traces were plotted against 

the concentration of added azide (i.e., Eq. 2) to yield values for the bimolecular rate constant, 

kq, for singlet oxygen quenching by NaN3 (see insets in Figure 4).  The value we obtain in 

sucrose-free D2O, (5.1 ± 0.1) × 108 s-1 M-1, agrees well with previously published values of kq 

in aqueous environments.44 
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 Before discussing the viscosity dependence of singlet oxygen quenching by NaN3, it is 

useful to be reminded of the general model that describes singlet oxygen quenching.46,54  As 

with many other species, singlet oxygen removal can be considered to occur in two steps: (i) 

reversible diffusion in which an encounter complex is formed, and (ii) chemical/physical 

interactions within the encounter complex that result in removal (Scheme 1). 

 

 

Scheme 1.   General kinetic scheme used to model singlet oxygen removal by a quencher Q, 

where kdiff and k-diff are the rate constants for diffusion-limited processes. 

  

On the basis of the kinetic scheme shown, the overall quenching rate constant, kq, that 

would be obtained experimentally is described by Eq. 3,55 
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 Two limiting conditions occur: (i) when kcom >> k-diff, quenching will be determined by 

solute diffusion to form the encounter complex, and kq = kdiff, and (ii) when kcom << k-diff, 

events that occur within the encounter pair will be determining, and kq = (kdiff / k-diff) kcom.  The 

latter case defines the so-called reaction or pre-equilibrium limit.55       

 Values of kq for the quenching of singlet oxygen by NaN3 obtained from plots of Eq. 2 

for all sucrose concentrations are plotted against the reciprocal solution viscosity in Figure 5.  

This plot illustrates that there are two distinct viscosity-dependent regimes in the reaction 

between singlet oxygen and NaN3.  At low viscosities, the rate of singlet oxygen deactivation 

is determined by the pre-equilibrium condition.  This is consistent with the behavior of many 
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singlet oxygen quenchers.47,54  As the solution viscosity is increased, however, the magnitude 

of the bimolecular quenching rate constant decreases indicating that the process of singlet 

oxygen deactivation is now determined by the rate at which singlet oxygen and NaN3 

encounter each other (i.e., the diffusion-controlled limit).   
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Figure 5.  Rate constant for singlet oxygen quenching by NaN3 in six different aqueous 

sucrose solutions plotted against the inverse viscosity of the solution. 

  

 Considering that the apparent intracellular diffusion coefficient for a small molecule 

such as oxygen can be comparatively small,25-28 and that subcellular domains can have 

apparent viscosities that are comparatively large,29 the data shown in Figure 5 provide the 

necessary framework to interpret data recorded upon the quenching of intracellular singlet 

oxygen by NaN3. We note here that while the intracellular matrix is intrinsically 

heterogeneous, it is expected that, on a microscopic scale, homogeneous domains will exist.29  

(In this way, Figure 5 is still a pertinent reference.)   The intent in our intracellular 

experiments is to probe the diffusion-dependent behavior of singlet oxygen kinetics in these 

microscopic domains. 

 

3.   Singlet oxygen production and quenching by NaN3 in cells with TMPyP as the sensitizer 
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 When incorporated into HeLa cells, TMPyP ultimately tends to localize in the nucleus 

where it most likely binds to DNA (Figure 3a).39,56,57  Nevertheless, appreciable amounts of 

this hydrophilic dye appear in the cytoplasm.  At present, it is unclear whether extra-nuclear 

TMPyP freely diffuses in the cytosol or if it binds, for example, to proteins.58,59   

Upon irradiation of TMPyP in these respective intracellular domains, we are able to 

record time-resolved singlet oxygen phosphorescence signals.  Note that the cross sectional 

diameter of the irradiating laser beam (~ 1 µm) is large relative to microscopic intracellular 

structures.  Singlet oxygen signals recorded from the nucleus of a HeLa cell are shown in 

Figure 6a.  The absence of a visible rising component on our signals is consistent with the 

high oxygen concentration used in these experiments (i.e., kT is comparatively large).  Data 

were recorded from cells that had been exposed to a buffered medium containing 

concentrations of NaN3 ranging from 0 to 0.7 mM, and clearly show a significant NaN3-

dependent increase in the rate of singlet oxygen decay.  Similar data were recorded upon 

irradiation of TMPyP in the cytoplasm of HeLa cells.     

For these intracellular experiments, the rate constant that accounts for all channels of 

singlet oxygen removal, krem, can be expressed as a sum of four terms (Eq. 4), 

 

[ ] [ ] [ ] [ ] )4(22 QkCkODkOHkk qc

D

d

H

drem +++=  

 

where kd
H[H2O] and kd

D[D2O] are the pseudo first-order rate constants for H2O and D2O 

induced deactivation, respectively.  The relative contribution of these two terms depends on 

the extent of H2O/D2O exchange in the cell.  The third term, kc[C], represents all channels for 

singlet oxygen removal by components inherent to the cell (e.g., proteins, DNA).  The final 

term, kq[Q], accounts for quenching by added NaN3. 



20 

The lifetimes (i.e., 1/krem) obtained in the absence of added NaN3 are consistent with 

those previously reported.13-16  Specifically, for D2O-incubated cells, we repeatedly find that 

the lifetimes determined both in the cytoplasm and in the nucleus (~ 30-40 µs) are shorter 

than that for singlet oxygen in pure D2O (67 µs).  These data point to a non-negligible kc[C] 

term,13-16 as is indeed expected given that singlet oxygen can induce cell death.  The 

quenching plots obtained using the NaN3-dependent lifetime data are shown in Figures 6b and 

6c, and yield kq(nucleus) = (7.8 ± 0.7) × 107 s-1M-1 and kq(cytoplasm) = (1.0 ± 0.1) × 108 s-1M-

1 for irradiation of TMPyP localized in the nucleus and cytoplasm, respectively.  
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Figure 6.    (a) Time-resolved singlet oxygen phosphorescence traces recorded at 1270 nm 

upon irradiation of TMPyP in the nucleus of oxygen-saturated HeLa cells.  Data 

are shown for cells that had been exposed to a medium containing 0 mM (■), 

0.13 mM (●), and 0.65 mM (▲) NaN3.  The lower panels show plots of the rate 

constant for singlet oxygen removal, krem, against the concentration of NaN3 in 

the incubating medium for data recorded from the nucleus (b) and cytoplasm (c). 
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 These rate constants for the quenching of intracellular singlet oxygen by NaN3 are 

very similar to each other, and both are significantly smaller than the value obtained in neat 

D2O, kq = 5.1 ± 0.1 × 108 s-1M-1.  Assuming that the intracellular concentration of NaN3 

equals the extracellular concentration in the incubating medium, the data in Figure 5 suggest 

that this intracellular quenching occurs at the diffusion-controlled limit.  Moreover, in 

accordance with the calibration graph in Figure 5, the quenching rate constant of (1.0 ± 0.1) × 

108 s-1M-1 corresponds to an apparent intracellular viscosity of >25 mPa s.  This conclusion is 

further strengthened by comparison with the results of singlet oxygen quenching by NaN3 in 

Chl-sensitized experiments, vide infra.    

 

4.  Singlet oxygen production and quenching by NaN3 in cells with Chl as the sensitizer 

 As already discussed, the sensitizer Chl localizes in different intracellular domains 

than does TMPyP.  Upon 390 nm pulsed laser irradiation of Chl in the cytoplasm, we were 

indeed able to observe a time-resolved emission signal at 1270 nm.  However, since this is the 

first time Chl has been used in such an experiment, it is necessary to perform a few control 

experiments to ascertain that the signal we observe is indeed due to singlet oxygen 

phosphorescence.     

First, although the phosphorescence spectrum of singlet oxygen depends slightly on 

solvent, the emission maximum is always ~ 1270 nm and there is no emission at 1200 nm.60,61  

Indeed, we do not observe a signal at 1200 nm, but see an appreciable signal at 1270 nm upon 

irradiation of intracellular Chl.  Second, we observe a two-fold decrease in the intensity of our 

signal when the amount of oxygen in the ambient atmosphere is decreased from 100% to 

60%, which is consistent with the expectation for intracellular singlet oxygen 

phosphorescence.28  Third, upon successively increasing the intracellular H2O/D2O ratio, we 

see a corresponding successive increase in the decay rate of our signal (Figure 7).  Although 
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Chl is presumably located in lipophilic domains and the singlet oxygen produced would 

likewise be initially located in these domains, subsequent diffusion of singlet oxygen is 

expected to allow for appreciable encounter with aqueous domains.  As such it is not just 

reasonable, but indeed expected, to see a H2O/D2O solvent effect on such a singlet oxygen 

signal.62  This point is discussed further below.  Thus, in conclusion, we can assign the 1270 

nm emission signal observed upon irradiation of intracellular Chl to singlet oxygen 

phosphorescence. 
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Figure 7.  Plot of the rate constant for singlet oxygen removal, krem, against the concentration 

of H2O in the D2O-based medium used to incubate HeLa cells.  The data were 

recorded upon irradiation of Chl that had been incorporated into the cells, and 

indicate that the intracellular lifetime in this system is indeed sensitive to the 

intracellular [H2O]/[D2O] ratio. 

 

 To further characterize the Chl-sensitized intracellular singlet oxygen system, we 

examined the decay kinetics of the Chl triplet state which is the immediate precursor to 

singlet oxygen.  Phosphorescence from free-base porphyrins is routinely observed with 

reasonable intensity over the wavelength range ~ 750-950 nm,40 and this phosphorescence can 

even be observed from cells that contain an appreciable amount of oxygen.15,50  Chl 
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phosphorescence can be readily detected at 800 nm from our HeLa cells (Figure 8).  Upon 

exposing our cells to a nitrogen-saturated medium, intracellular 3Chl decays with a lifetime of 

8.8 ± 0.3 µs.  This comparatively short lifetime can be attributed to incomplete deoxygenation 

of the cell.  Upon exposure to an atmosphere of air, the decay rate increases yielding a 

lifetime of 4.8 ± 0.3 µs.  Under an atmosphere of 100% oxygen, we can not differentiate 

between our instrument response to scattered light (τ ~ 1.5 µs) and the Chl triplet state decay.  

The key point here is that, under the conditions in which we observe our intracellular Chl-

sensitized singlet oxygen signal (100% oxygen), we have no evidence of an intracellular 

population of 3Chl with a lifetime longer than 4 µs.  This is manifested in our singlet oxygen 

signals by the apparent lack of a rising component (i.e., kT > krem in Eq.1.). 
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Figure 8.   Time-resolved Chl phosphorescence decays recorded at 800 ± 40 nm following 

irradiation of Chl in a HeLa cell exposed to a nitrogen-saturated (○) and air-

saturated (■) medium.  The first point in each data set is in a time domain in 

which our signal is characterized by the system response to scattered laser light 

(τ ~ 1.5 µs), and these points have not been included in the exponential fits 

shown.  Data were recorded from cells that had been incubated with a Chl-

containing medium for 2 h. 
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 After 2 h incubation of HeLa cells with a Chl-containing D2O-based medium, we 

obtain a Chl-sensitized intracellular singlet oxygen lifetime of 17 ± 2 µs.  It is important to 

note that this lifetime is appreciably shorter than those obtained when TMPyP was used as the 

sensitizer (vide supra).  In itself, this is a significant observation; we are now able to provide 

evidence of subcellular, sensitizer-dependent singlet oxygen lifetimes. Such differences in the 

lifetime of intracellular singlet oxygen could reflect different chemical compositions of 

cellular domains (i.e., different kc[C] terms in Eq. 4).  These data could also reflect 

partitioning of singlet oxygen between hydrophobic and hydrophilic domains (e.g., one must 

also consider a hydrocarbon-derived solvent-dependent deactivation term in Eq. 4, 

kd
Hyd[Hyd]).  In any case, this difference in lifetimes indicates that the environment of singlet 

oxygen produced by either TMPyP or Chl is unique to each photosensitizer. 

 The Chl-sensitized intracellular singlet oxygen data are also characterized by another 

unique feature; the decay kinetics of the singlet oxygen phosphorescence signal depend on the 

elapsed time with which the HeLa cells were incubated with the medium containing Chl 

(Figure 9).  Specifically, we observe a marked decrease in the intracellular singlet oxygen 

lifetime as the incubation time with the Chl-containing medium is increased.  After an 

incubation period of 24 h, we obtain a lifetime of 4.5 ± 0.5 µs.  It is reasonable to assume that 

this dependence on the incubation time reflects the effect of singlet oxygen quenching by the 

sensitizer and that, with an increased incubation period, the intracellular concentration of the 

sensitizer correspondingly increases (i.e., we must consider yet another term in Eq. 4, 

ksens[sens]).  We have indeed substantiated this latter point by ascertaining that the distribution 

pattern of the intracellular Chl fluorescence does not change with an increase in the 

incubation time, while the intensity of the intracellular fluorescence of Chl increases 

markedly with incubation time. 
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Figure 9.  The singlet oxygen lifetime recorded upon irradiation of Chl incorporated in a 

HeLa cell as a function of the incubation time of the cell in a Chl-containing 

medium. The plot yields a limiting value for the lifetime of 18 ± 1 µs at an 

incubation time of 0 h. 

 

In an independent control experiment, we monitored the singlet oxygen lifetime in a 

bulk methanol solution as a function of the Chl concentration.  We likewise find that the 

measured lifetime decreases with an increase in the Chl concentration.  From these methanol 

data, we obtain a rate constant of (9 ± 2) × 108 s-1M-1 for the quenching of singlet oxygen by 

Chl at the limit of low Chl concentrations (< 2 × 10-5 M).  This number is consistent with 

those reported for the quenching of singlet oxygen by other porphyrin-based systems.44  If we 

assume that the magnitude of this rate constant does not change appreciably with solvent, then 

we can use it to estimate that an intracellular Chl concentration of ~ 0.2 mM would lead to the 

observed change in the singlet oxygen lifetime from 17 ± 2 µs to 4.5 ± 0.5 µs.  

 Time-resolved singlet oxygen phosphorescence signals were recorded from Chl-

containing HeLa cells as a function of the NaN3 concentration in the incubating medium to 

which the cells had been exposed (Figure 10).  These data were recorded using a 2 h 

incubation period for Chl incorporation.  The quenching plot obtained using the NaN3-

dependent lifetimes (i.e., Eq. 4) is shown in Figure 10b, and yields kq = (8 ± 1) × 108 s-1M-1.  
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This value is significantly larger than those obtained in the TMPyP photosensitized 

experiments (e.g.,  kq(cytoplasm) = (1.0 ± 0.1) × 108 s-1M-1).  Moreover, the quenching 

constant obtained in this Chl-photosensitised experiment is slightly larger than the value of kq 

= (5.1 ± 0.1) × 108 s-1M-1 determined in a bulk D2O solution (vide supra). 

 

0 20 40 60 80

0

200

400

P
h

o
s

p
h

o
re

s
c
e

n
c
e
 I

n
te

n
s
it

y

Time  /µµµµs

(a)

0.0 0.1 0.2 0.3 0.4
0.0

0.1

0.2

0.3

0.4

0.5

k
re

m
  
/ 
x
 1

0
-6
 s

-1

[NaN
3
]  /M

(b)

[NaN3] / mM

0 20 40 60 80

0

200

400

P
h

o
s

p
h

o
re

s
c
e

n
c
e
 I

n
te

n
s
it

y

Time  /µµµµs

(a)

0.0 0.1 0.2 0.3 0.4
0.0

0.1

0.2

0.3

0.4

0.5

k
re

m
  
/ 
x
 1

0
-6
 s

-1

[NaN
3
]  /M

(b)

0 20 40 60 80

0

200

400

P
h

o
s

p
h

o
re

s
c
e

n
c
e
 I

n
te

n
s
it

y

Time  /µµµµs

(a)

0.0 0.1 0.2 0.3 0.4
0.0

0.1

0.2

0.3

0.4

0.5

k
re

m
  
/ 
x
 1

0
-6
 s

-1

[NaN
3
]  /M

(b)

[NaN3] / mM

 

Figure 10.  (a) Time-resolved singlet oxygen phosphorescence traces recorded at 1270 nm 

following irradiation of Chl in oxygen-saturated HeLa cells.  Data are shown for 

cells that had been exposed to a medium containing 0 mM (■), 0.065 mM (●), 

and 0.26 mM (▲) NaN3. (b) Plot of the rate constant for singlet oxygen 

removal, krem, obtained from traces such as those shown above against the 

concentration of NaN3 in the incubating medium.   The data yield a rate constant 

for the quenching of singlet oxygen by NaN3 of (8 ± 1) × 108 s-1 M-1. 
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 Explanations for the differences in the magnitudes of these NaN3 quenching rate 

constants must start with the recognition that, with hydrophobic Chl and hydrophilic TMPyP, 

singlet oxygen is produced and presumably principally localized in different domains of the 

heterogeneous cellular matrix.  This is consistent with our lifetime data (vide supra).  Thus, it 

is reasonable to suggest that the average environments seen by singlet oxygen in these 

respective cases are different.  On this basis, a very simplistic explanation for the NaN3 

quenching rate constant in the Chl-sensitized experiment is that, in this case, an appreciable 

fraction of the singlet oxygen produced exists in a non-aqueous environment and the 

difference between kq(Chl) in a cell and kq(bulk D2O) would then reflect a solvent effect on kq.  

For example, compare kq for the reaction of singlet oxygen with NaN3 in an aqueous 

environment (ca 4 × 108 s-1M-1) and in CH3CN (5 × 109 s-1M-1).44  

 A more general explanation for the NaN3 quenching data is that there could be 

domain-dependent local gradients in the intracellular NaN3 concentration.  However, the 

validity of this interpretation still relies on the significant fact that the diffusion of singlet 

oxygen from one subcellular domain to another must be restricted due, principally, to a 

comparatively high intracellular viscosity.  

  

Conclusions 

 Time-resolved singlet oxygen phosphorescence experiments were performed at the 

level of a single cell using sensitizers that localize in different subcellular domains.  

Sensitizer-dependent values for (i) the intracellular singlet oxygen lifetime and (ii) the rate 

constant for singlet oxygen quenching by added NaN3 were obtained.  The data are consistent 

with a model in which, irrespective of which sensitizer is used, singlet oxygen exists in 

intracellular domains that are more viscous than 25 °C water.  Given its finite lifetime, and 

viscosity-dependent diffusion coefficients that can be small, it appears that singlet oxygen 
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lifetimes and diffusion rates are sensitive probes of the local environment.  In short, we have 

demonstrated that singlet oxygen senses the inherent heterogeneity of a cell.  This result has 

ramifications on issues that range from cell death to mechanisms of oxygen-dependent signal 

transmission.    
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