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The objective of this numerical study is to increase the base pressure on a backward-
facing step via linear feedback control, to be ultimately translated to a drag reduction
on a blunt-based bluff body. Two backward-facing step cases are simulated: a laminar
two-dimensional (2D) flow at a Reynolds number of Reθ = 280, and a turbulent
three-dimensional (3D) flow at Reθ = 1500 using large-eddy simulation. The control
is effected by a full-span slot jet with zero-net-mass-flux, and two jet locations are
examined. Linear system identification is performed to characterize the flow response
to actuation, used to synthesize a control law. The control strategy is based on the
premise that an attenuation of the instantaneous pressure fluctuations on the base of
the step should lead to an increase in the time-averaged base pressure. Open-loop
harmonic forcing is examined within a broad frequency range for both the 2D and 3D
flows, which are found to respond differently to actuation. The controllers based on
disturbance attenuation lead to sensible increases in base pressure (up to 70 % in 2D
and 20 % in 3D) with higher efficiency than the best results achieved in open-loop.
The results support the conjecture about the link between the base pressure fluctuations
and mean, although it is shown that such a black-box model approach is not suitable
for optimization without further physical insight.

Key words: control theory, drag reduction, shear layers

1. Introduction
For flows around bluff bodies with a blunt trailing edge, flow separation is fixed at

the trailing edge. This flow separation leads to an unsteady wake and high form drag.
The ability to reduce form drag by controlling the wake is highly pertinent, both in
terms of physical understanding of the control impact and with respect to industrial
applications. A prominent example where this knowledge could translate to economic
and environmental benefits is road transportation, where form drag is a dominant
source of energy loss at high speeds (Seifert et al. 2009).

One may distinguish three types of control actions: passive, active open-loop or
active closed-loop (feedback) control. Passive control, sometimes referred to as flow
management (Gad-el Hak, Pollard & Bonnet 1998), uses actuation without power
input. Passive control for form-drag reduction has been extensively studied. It is well
known that addition of a splitter plate along the wake centreline is an efficient means
to delay vortex shedding and increase the base pressure (Roshko 1954). Tanner (1972)
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investigated the flow behind a wing with a blunt trailing edge. He introduced a broken
separation line using a segmented trailing edge and measured drag reductions of up
to 64 %. More recently, Park et al. (2006) found that adding small tabs to the upper
and lower trailing edges of a blunt body yields significant drag reductions. A few
passive devices have been tested on full-scale road vehicles. For instance, Modi, Hill &
Yokomizo (1995) installed trip fences on the front face of a truck trailer and obtained
drag reductions of up to 16 %.

However, passive devices may have adverse effects away from their design point.
Open-loop control (corresponding to powered actuation without sensing) can reproduce
the beneficial effects of passive devices and widen the operating range. Wood
(1967) notably showed that base bleed displaces the vortex formation region further
downstream from the trailing edge of a two-dimensional bluff body, resulting in base
pressure increase. Extensive wind-tunnel testing on truck models by Seifert et al.
(2009) has shown open-loop control to be capable of net fuel reductions exceeding
10 %. Englar (2000) also achieved significant drag reduction for model trucks and
streamlined vehicles using circulation control.

Finally, closed-loop control is achieved via powered actuators responding to sensors
in the flow field. In contrast to open-loop actuation, feedback control can modify
the dynamics of a system, for instance stabilizing flows with unstable modes such
as cavity resonances (Cattafesta et al. 2008) or thermoacoustic instabilities (Dowling
& Morgans 2005). In addition, closed-loop control offers further degrees of freedom
to deal with uncertainty and increase efficiency. Feedback control strategies for drag
reduction of bluff bodies are usually categorized into separation control or direct wake
control. The former apply only to bodies with moveable separation points such as the
circular cylinder (Siegel, Cohen & McLaughlin 2006) or a step with a rounded edge
(Kim et al. 2006). Significantly less work has been carried out on using direct wake
control to reduce form drag on bluff bodies with a blunt trailing edge, although a few
examples do exist. For instance, Henning & King (2005) used quantitative feedback
theory to increase the base pressure of a D-shaped wind-tunnel model. Pastoor et al.
(2008) also examined feedback strategies for drag reduction on the same bluff body
and achieved a 15 % drag reduction. Stalnov, Fono & Seifert (2011) performed an
experimental investigation aimed at stabilizing the wake of a D-shaped bluff body
with a proportional-integral control law. They showed that their controller leads to a
concomitant drag reduction associated with a delayed roll-up of the separating shear
layers, hence a reduction in the streamwise momentum transferred to the recirculation
region.

The objective of the present study is to investigate numerically the use of feedback
control to achieve a sensible form-drag reduction on a blunt-based bluff body,
truncated to a backward-facing step for computational economy. A simplified two-
dimensional (2D) problem is first approached, after which the flow on a fully turbulent
three-dimensional (3D) step is examined. In § 2, a short review of the backward-facing
step flow is presented, as well as the computational details and a description of the
feedback control design method. The 2D and 3D cases are respectively studied in §§ 3
and 4, before finishing with concluding remarks in § 5.

2. Problem formulation
The geometry considered is presented in figure 1, representing a bluff body with

a blunt trailing edge. Significant computational savings are obtained by focusing
on the region of interest: the wake. Thus, only the downstream part of the flow
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FIGURE 1. Diagram of the computational domain Ω . The flow is from left to right.
Dimensions not to scale.

field is computed, and the flow domain reduces to a backward-facing step. A
careful investigation comparing the full-domain and truncated flows (without actuation)
validated this approach, provided a realistic inflow boundary condition is used. A brief
overview of the backward-facing step (BFS) flow and attempts to control it is now
given.

2.1. Backward-facing step flow

The unsteady flow downstream of a step may be roughly divided into four regimes: a
growing shear layer, a recirculation bubble with backflow velocities exceeding 0.2U0

(where U0 is the free-stream velocity upstream of the step), a reattachment region
and a redeveloping boundary layer after reattachment (Henning & King 2007). The
separated shear layer appears similar to a plane mixing layer up to x/h≈ 3, where h is
the step height, except for the high level of turbulence on the low-speed side (Simpson
1989). As the shear layer grows, the presence of the wall becomes influential and the
flow reattaches.

Bradshaw & Wong (1972) argued that the shear layer splits in the reattachment
region, with a part being deflected into the separation bubble and supplying
entrainment upstream. However, there is no experimental evidence of large-scale
structures being swept upstream. Eaton & Johnston (1981) noted two important
properties of the reattaching shear layer. They first observed that the Reynolds
stresses drop abruptly in the reattachment region and secondly, that the reattached
layer is very slow to readjust to a conventional turbulent boundary layer profile. It
has been conjectured that the first characteristic is associated with a halt in vortex
pairing induced by the wall, while the second is caused by the presence of vortical
structures produced in the separated shear layer that survive for a long downstream
distance (Troutt, Scheelke & Norman 1984). Indeed, coherent structures formed in the
separated shear layer roll up and pair, which makes the shear layer grow and generates
high Reynolds stresses, as in a free mixing layer. The presence of the wall in the BFS
flow, however, interrupts this mechanism in the reattachment region.

A number of studies have focused on active control of the BFS flow. While steady
suction or blowing have been considered as control methods to reduce the size of the
separated bubble (e.g. Uruba, Jonáš & Mazur 2007), pulsating actuation resonating
with flow instabilities is recognized as more efficient. Bhattacharjee, Scheelke & Troutt
(1986), Hasan & Khan (1992), Chun & Sung (1996) and Wengle et al. (2001) have
reported the maximum reduction of the reattachment length when perturbing the flow
with a Strouhal number Sth = fh/U0 ≈ 0.2, where f is the actuation frequency.
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At least three instability modes are influential in reattaching shear layers: the shear
layer, the shedding (or step) and the flapping modes (Leschziner & Lardeau 2011).
Hasan & Khan (1992) found that the shear layer mode, linked to Kelvin–Helmholtz-
type instabilities, scales with the boundary layer momentum thickness at separation,
θ , and is characterized by Stθ = 0.011 for a turbulent separation. In addition, they
suggested that the shear layer mode reduces to the step mode through vortex pairing.
The step mode is generally recognized to be characterized by Sth ≈ 0.2. Finally,
the flapping mode corresponds to a global motion of the separation bubble, and its
frequency is expected to be one order of magnitude lower than the shedding mode.

2.2. Numerical simulations
This work employs an in-house large-eddy simulation (LES) code, ‘stream-LES’,
to solve the incompressible Navier–Stokes equations. The code was developed by
Lardat & Leschziner (1998) and a detailed description and validation can be found in
Temmerman (2004). The procedure is based on a general non-orthogonal grid, block-
structured, finite-volume method with a fully collocated storage. Pressure–velocity
decoupling, arising from the collocated formulation, is counteracted by the Rhie and
Chow interpolation practice.

The spatial derivatives are transformed to surface integrals using the Gauss-
divergence theorem and evaluated with quadrature formulae, yielding a second-
order spatial discretization. Time-marching is based on a fractional step method
incorporating third-order approximations for the convection and diffusion terms and
a third-order Gear-like scheme for the time derivative, shown to possess advantageous
stability over a corresponding second-order time-advancement scheme (Fishpool &
Leschziner 2009). The first step consists of solving the momentum equation without
the pressure term. An intermediate velocity field is obtained that does not satisfy the
continuity equation. This is corrected via the pressure gradient by projection onto a
divergence-free vector field. The implicit Poisson problem for the pressure is solved
by means of a partial diagonalization technique and a 2D V-cycle multigrid method
combined with a successive line overrelaxation algorithm. The subgrid-scale stresses
are simulated by the wall-adapting local eddy-viscosity (WALE) model proposed by
Nicoud & Ducros (1999). The WALE model reproduces the cubic wall-asymptotic
behaviour of the eddy viscosity and returns lower values of this viscosity compared to
the Smagorinsky model (Temmerman 2004).

Two distinct flow cases, both relating to figure 1, will be considered in this work:
a 2D BFS (Lz/h = 0) with a laminar inflow boundary layer and a 3D BFS (Lz/h = 4)
with a turbulent inflow boundary layer. Since the former case is laminar and the
latter is turbulent, one expects significant differences between the two flows. The
aim of examining these two cases is to show that a single feedback control strategy
may apply to both. The boundaries of the domains Ω2D and Ω3D are decomposed
into ∂Ω = ∂Ωin ∪ ∂Ωwall ∪ ∂Ωtop ∪ ∂Ωout , where ∂Ωin is the inflow boundary,
∂Ωwall represent the lower surfaces and the step face modelled with no-slip, ∂Ωtop

is the upper surface set with a free-slip condition and ∂Ωout is the outflow boundary
where an advection equation for the velocity is imposed. For Ω3D, spanwise periodic
conditions are imposed on the sidewalls. The dimensions of Ω2D and Ω3D were chosen
so as to avoid errors related to a constricted computational domain. The 2D flow was
found to be more sensitive to confinement due to the free-slip condition and to the
inlet length Li. Therefore Ω2D and Ω3D have different Li and Ly dimensions. For Ω2D,
(Li,Lx,Ly,Lz) = (4h, 24h, 9h, 0) and for Ω3D, (Li,Lx,Ly,Lz) = (2h, 14h, 3h, 4h). The
influence of the spanwise extent of Ω3D on the flow behaviour is discussed in § 4.
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FIGURE 2. (Colour online) Schematic of the two actuator locations. Actuator 1 is near
separation and actuator 2 is close to the step foot (targeting a secondary recirculation bubble).

In the 2D case, no subgrid-scale model is used because the flow is laminar; the
simulation is akin to a direct numerical simulation (DNS). A Blasius boundary layer
profile of thickness δ99 = h with a free-stream velocity U0 is imposed on ∂Ωin. The
Reynolds number is set to Reh = U0h/ν = 2000, corresponding to Reθ = 280, where
ν is the kinematic viscosity. In terms of the grid, 2.5 × 104 computational cells, with
local refinement in the step and injection regions, were found to suffice, after extensive
grid resolution checks.

The 3D case, on the other hand, has a fully turbulent inlet boundary layer
with δ99 = 0.5h and Reθ = 1500. The inlet conditions are generated by a precursor
simulation for a boundary layer developing along a flat plate. The precursor simulation
uses the recycling method of Lund, Wu & Squires (1998). The 3D mesh contains
6 × 106 cells. Near the wall, the grid resolution in wall-units is 1y+min = 0.85 and the
spanwise spacing is 1z+ = 18, with the wall-unit scaling based on the inlet friction
velocity uτ . The grid expansion ratio is limited to 1.05. A much finer grid composed
of 28 × 106 computational cells, hereafter called the fine grid, is used to check the
results for the baseline flow and a few selected cases of open-loop forcing.

2.3. System identification and feedback controller design
A fundamental consideration in any feedback control strategy is the selection of the
actuation-sensing couple. Once this parameter is fixed, various routes are possible.
Here we choose to implement a model-based feedback. Thus a model of the process to
be controlled is sought before synthesizing the controller.

There are a number of actuator types in use in flow control (see Cattafesta &
Sheplak 2011). In the present work, zero-net-mass-flux slot jets are selected. For
both the laminar and turbulent flows, two actuator configurations are investigated.
The first slot jet actuator is located just upstream of the step corner and injected
at an angle of 45◦ whilst the second actuator is placed near the step foot and
injected in the streamwise direction, as sketched in figure 2. Both actuators extend
along the entire domain span and have a slot width s = 0.03h. The first slot jet
is located over (−0.03h 6 x 6 0, y = 0) and the second slot jet is located over
(x = 0,−0.94h 6 y 6 −0.91h). The modelling of the actuators is kept simplistic and
the jet cavity is not resolved. The discharge conditions are instead described by an
imposed mass flux at the jet orifice with a top-hat spatial velocity profile. This is
a numerical simplification which is widely used in the literature (see e.g. Dejoan &
Leschziner 2004; Kim et al. 2004) and it has been shown that the details of the
cavity and the slot are less critical for slot jets than for round jets (Leschziner &
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FIGURE 3. (Colour online) (a) Root-mean square of the error e(t) = y(t) − yn(t) against
number of sensors, n, for the baseline flow in Ω2D. Base pressure averaged continuously in
space is denoted by y(t), and yn(t) is the pressure signal averaged over n uniformly spread
sensors on the base. (b) Map of cross-correlation coefficient, for baseline flow in Ω3D between
y(t) and single-point pressure signal located at a given (0, y, z) position on the base.

Lardeau 2011). The effects of the jet cavity can be modelled using more sophisticated
velocity profiles (Aram, Mittal & Cattafesta 2010) but this is not considered here. The
actuation amplitude Aj is characterized by the maximum ejection velocity at the slot
if the actuation signal is periodic. If the actuation signal is not perfectly periodic, as
is to be expected with closed-loop control, the actuation amplitude is time-dependent
and equal to the slot velocity Aj(t) = Uj(t), where t is time non-dimensionalized
by U0/h.

The choice of the sensing arrangement – including the measured quantity, the
number of sensors and their location – depends on the control objectives and on
physical constraints. A heuristic method based on proper orthogonal decomposition
(POD) was introduced by Cohen, Siegel & McLaughlin (2006) to find an efficient
configuration sufficient for closed-loop control. Here, an intuition-based approach
is followed. Body-mounted sensors are preferred to sensors in the flow field,
because they are more convenient for real-time control in experiments and practical
applications. The sensor measurement should correlate with the target flow quantity,
the mean base pressure, which is to be increased so as to reduce the form drag.
Investigations of flow control on blunt-based bluff bodies indicate that a reduction in
the amplitude of the base pressure fluctuations is associated with a time-mean base
pressure increase (see Heenan & Morrison 1998; Qubain 2009). The present feedback
control approach utilizes this finding and aims to attenuate the fluctuations in base
pressure with a view to consequentially increasing the mean base pressure. Hence, the
sensor signal y(t) used as input to the controller is the instantaneous base pressure
fluctuations averaged spatially over the step base area, highlighted in figure 2. Note
that the choice of a zero-mean sensor signal is convenient since it will automatically
lead to zero-net-mass-flux actuation. The spatial averaging is done continuously (using
all the computational nodes covering the base). In practical applications, however,
discrete pressure transducers are used. It is thus important to examine the impact of
this averaging. Figure 3(a) shows the evolution, for the baseline flow in Ω2D, of the
root-mean-square of the error e(t)= y(t)− yn(t), with n the number of sensors used for
averaging (yn denotes the signal obtained by averaging pressure with n sensors). Using
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FIGURE 4. (Colour online) Frequency-domain models for: (a) the open-loop control system;
and (b) the closed-loop control system.

a single sensor at the centre of the base results in a small error, which falls sharply
if more points are used. The continuous average is recovered by using only 8 sensors.
For the flow in the 3D domain Ω3D, figure 3(b) plots contours of the cross-correlation
coefficient between the continuous average and single-point sensors on the base. The
correlations are everywhere very high, which means the continuous average does not
hide any important localized structures. Furthermore, it implies that the flow near the
base does not see significant 3D effects; this provides support for the use of 2D
actuation.

The models used for the feedback controller design are sketched in figure 4. They
assume that the fluctuations in the base pressure are caused both by actuation and by
disturbances present in the uncontrolled flow. The latter are collectively represented
as noise. I(s), N(s) and Y(s) denote respectively the actuation input, noise and plant
output (sensor) signals. Note that s is the complex Laplace transform variable. The
input I(s) is the Laplace transform of the actuation signal Uj(t) = Aj sin(2π Sth t),
where Sth is the non-dimensional forcing frequency. The noise represents the upstream
flow structures which affect the output signal. Finally, the output Y(s) is the Laplace
transform of y(t) = 1/Sb

∫
Sb

C′P(t) dS, where C′P is the fluctuating part of the pressure
coefficient (based on free-stream velocity and pressure) CP = 2(P − P0)/(ρU2

0) and Sb

is the area of the base. G(s) and H(s) are the unknown transfer functions from the
forcing input and the noise to the output, respectively.

Although H(s) does not need to be explicitly evaluated, the design of a feedback
controller, K(s), requires a low-order model for G(s). Assuming that the forcing
amplitude is sufficiently small for the flow response to be dynamically linear (this
assumption is later checked), this can be achieved via linear system identification (see
Ljung 1999). Dynamic linearity implies that sinusoidal input modes are present in the
sensor measurement with a gain and phase shift. The latter two may be measured from
the LES and they define the frequency response G(iω) as a function of the angular
frequency ω = 2πSth.

There exist a wide variety of input signals available for system identification. One
may, for example, actuate the flow harmonically at various frequencies and measure
the gain and phase shift from the sensor output in each case. The main drawback of
this approach is that each calculation yields information for a single frequency, so that
many computations are required. Although a more economical solution is to select an
input signal that contains a range of frequencies, such as a finite-time impulse or a
sum-of-sines signal, harmonic forcing holds two important advantages: it allows one to
derive physical insight into the effect of the forcing (at specific frequencies) on various
aspects of the flow and it also allows weak nonlinearities to be characterized via the
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FIGURE 5. Unforced flow characteristics: (a) contours of time-averaged streamfunction; and
(b) amplitude spectrum of base pressure coefficient (sensor signal).

describing functions methodology (Gelb & Vander Velde 1968). Therefore, harmonic
forcing is used in the present work for system identification. A linearity check is
carried out by forcing at three different amplitude levels.

3. Two-dimensional case
In the first instance, a 2D planar domain is considered. Although the imposed 2D

confinement of the flow prevents the development of turbulence that would arise at the
present Reynolds number (Reh = 2000) in a 3D domain, the results provide an initial
evaluation of the feedback control strategy targeting the pressure fluctuations.

3.1. Unforced flow

The baseline flow is first examined to establish a reference against which to contrast
the control results. Figure 5(a) shows the time-averaged streamlines for the unforced
flow while figure 5(b) shows the spectrum of the base pressure coefficient. The shear
layer emanating from the step edge grows and rolls up into a large-scale vortical
structure under the combined influence of an adverse pressure gradient and presence of
the lower wall. The mean reattachment point is observed at x/h = 6.1, corresponding
to the location of zero wall shear stress. The reattachment length is sensitive to the
Reynolds number, the expansion ratio of the step and the state and thickness of the
boundary layer at separation, with a low expansion ratio laminar flow expected to
yield a reattachment length of around 6h (Eaton & Johnston 1981). A counter-rotating
corner eddy extending up to x/h = 1.8 is also captured in the time-averaged solution.
This feature has been observed experimentally, confined between the step foot and
x/h= 2 (Driver & Seegmiller 1985).

As the large coherent structure formed by the shear layer grows, the reattachment
location travels downstream. An abrupt detachment of this structure leads to a
reduction in the bubble size. This periodic phenomenon causes the separation bubble
to oscillate around the mean reattachment point. The amplitude spectrum of the base
pressure indicates that the flow near the step is dominated by the shear layer instability
mode. The corresponding non-dimensional frequency is found to be approximately
Sth = fh/U0 = 0.0655, or Stθ = 0.0092, which agrees relatively well with the value
reported by Hasan (1992), Stθ = 0.012, for a backward-facing step with laminar
separation.
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FIGURE 6. Amplitude spectra for (open-loop) harmonic forcing with (a) actuator 1 and
(b) actuator 2. The solid line is the forced signal and the dashed line is the baseline.

3.2. Open-loop forcing and system identification

After characterizing the unforced flow, the transfer function between the actuator
signal and the sensor measurement, denoted by G(s) in figure 4, is to be determined
using system identification. The flow is thus subjected to harmonic forcing via the slot
jets described in § 2.3. The forcing frequency is varied over the range 0.04 6 Sth 6 1
and three amplitudes are examined for each frequency (Aj/U0 = 0.1, 0.2 and 0.3).
Actuators 1 and 2 are considered independently.

The base pressure amplitude spectra for various forcing frequencies at a fixed
injection amplitude of Aj = 0.2 are shown in figure 6. The flow is left to develop
for 15 flow-through times after the start of the forcing to ensure the effects of
transients are discarded. A first observation, common to both actuator locations, is that
the flow response is strongly dependent upon the jet frequency. At frequencies near
the dominant instability Sth = 0.0655, the shear layer locks in to the forcing, after
transients. The time-averaged pressure CP increases as a result of the frequency lock-
in, which is associated with a decrease in pressure fluctuations. In contrast, frequencies
away from the lock-in region do not suppress the shear layer instability, for the
range of amplitudes tested. Instead, beating is observed; both unforced and actuation
frequencies are present in the response. As evidenced by figure 6, the lock-in range
is larger for actuator 1, which acts directly onto the shear layer, whereas actuator 2
is buried within the wake. Interestingly, the response to actuator 2 appears to increase
rapidly with frequency.
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FIGURE 7. Phase-averaged vorticity contours (dashed lines for negative and solid lines
for positive vorticity) for the baseline (averaging frequency Sth = 0.0655) and open-loop
controlled (Aj = 0.2 and Sth = 0.04) flows for both actuators 1 and 2 downstream of
separation.

The gain and phase shift of the response are found using spectral analysis, by
expanding the base pressure signal into a Fourier series,

CP(t)=
N∑

n=0

an sin(ωnt)+ bn cos(ωnt), (3.1)

and evaluating the magnitude and the argument of the term corresponding to the
forcing. Hence, the gain and phase shift of the response modes are recorded over the
frequency range considered. Linearity is then confirmed by verifying that changing
the input amplitude leaves the gain and phase shift – between the input and output
signals – unchanged. In the present 2D study, the gains and phase shifts recorded with
the three different amplitudes tested vary by less than 4 dB and 13◦ respectively, for
any given frequency within the considered range. These variations are small hence
the response of the base pressure fluctuations to the forcing can be considered to be
dynamically linear, within the range of parameters examined.

Information pertinent to the effect of the jet injection in its different stages may
be derived from examining phase-averaged results. The unforced flow is also phase-
averaged at various phases of the dominant wake motion (Sth = 0.0655). Figure 7
compares phase-averaged vorticity fields downstream of the step, for the unforced
flow and that forced at Sth = 0.04, which leads to lock-in and base pressure increase.
In the unforced case, the large vortical structures emerging from the shear layer
rapidly roll up, convect downstream at a velocity of 0.4U0 and detach abruptly in
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order of the resulting transfer function.

the reattachment region. After reattachment, the large-scale vortices lose coherence but
remain visible for a long downstream distance. The low-frequency forcing significantly
alters the shear layer dynamics with both actuators. It delays the roll-up and thereby
elongates the recirculation bubble. This mechanism reduces the interaction of low-
pressure structures, carrying high-momentum fluid, with the base wall. As a result,
unsteadiness in the near-wake is reduced and the time-averaged pressure on the base
increases. The shed structures also appear to be smaller with the forcing. Note that
both actuators have a similar effect, although actuator 2 delays reattachment further.

The open-loop responses corresponding to both actuator locations, Gactu1(iω) and
Gactu2(iω), are summarized in figure 8. The dots are gain and phase information
obtained from the harmonic forcing and the lines show low-order models obtained by
fitting four systems (of denominator order one, two, three and four) to the data via the
‘fitfrd’ MATLAB command. For the first actuator location the second-order fit provides
a good match, while the fourth-order fit is chosen for the second location. The fit
equations are as follows:

Gactu1(s)= −0.154s− 0.0235
s2 + 1.776s+ 0.168

, (3.2)

Gactu2(s)= −745.5s3 − 148.4s2 − 195.3s− 7.25
s4 − 27.89s3 − 7758s2 − 1705s− 2029

. (3.3)

For actuator 1, the transfer function is minimum phase (i.e. it has neither poles nor
zeros with a positive real part) and has relatively flat dynamics, acting as a low-pass
filter with a constant gain drop rate of ∼20 dB decade−1 at high frequencies. As
already noted from figure 6, the response to actuator 2 has a gain increasing with
frequency. In addition, a phase increase is observed across the shear layer instability,
corresponding to an unstable pole which will need to be stabilized by the controller.

3.3. Feedback control

In light of the measured open-loop responses, simple controllers are designed,
targeting a reduction in the fluctuation levels. Based on figure 4, one can infer the
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ratio of outputs Y(s) with and without control, as follows:

Y(s)|with control

Y(s)|without control
= 1

1+ G(s)K(s)
= S(s). (3.4)

As the objective of the feedback control is to reduce the amplitude of base pressure
fluctuations, it is clear that the ratio (3.4) needs to have magnitude less than unity.
That is, a reduction in the output amplitude can be achieved via a controller K(s)
such that the denominator in (3.4) has magnitude larger than 1. This synthesis for
fluctuation attenuation translates into a condition on the sensitivity function S(s) to
have a gain below unity over the range of frequencies at which the system operates. It
is also necessary to ensure that the controller satisfies closed-loop stability.

A second-order polynomial controller K(s) = 1/(s2 + 2ξωns + ω2
n) is selected for

both actuator locations and is implemented in the LES code. The resonant frequency
is set to the dominant instability ωn = 2π × 0.0655 and the damping coefficients
ξ = 0.2 (actuator 1) and ξ = 0.1 (actuator 2) are chosen to ensure that the actuation
signal does not deviate far off from the linear range of forcing amplitudes. Some
of the characteristics of K are shown in figure 9(a), where the sensitivity gain can
be observed to be below unity around the shear layer instability frequency. Both
actuator locations produce a similar response by stabilizing the near-wake and pushing
the unsteady reattachment region further downstream, an effect akin to that observed
in open-loop with the lock-in phenomenon. The stabilizing effect of the controller
was expected since disturbance attenuation and stabilization are closely linked in
control theory. After transients the base pressure oscillations are completely suppressed
(figure 9b). This leads to a 70 % increase in the time-averaged pressure. Thus, in these
2D BFS simulations, feedback control targeted at reducing fluctuations in the base
pressure has indeed resulted in a form-drag reduction. In closed-loop, the work done
by the actuator adapts to the evolution of the flow (here, for example, requiring only
minimal input once the flow has been stabilized), which is a distinct advantage over
open-loop.
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FIGURE 10. (Colour online) Flow characteristics at separation (x/h = 0) compared with
DNS data from Jimenez et al. (2010) (solid lines) for a fully developed zero-pressure
gradient boundary layer. (a) The root-mean-square turbulent fluctuations and the Reynolds
stress. (b) Plot of the mean streamwise velocity profile.

4. Three-dimensional case
Attention now turns to the more physically representative 3D BFS flow with a

turbulent boundary layer at separation. The domain illustrated in figure 1 is considered,
with Reθ = 1500. A similar procedure as for the 2D flow is followed but with more
emphasis on the effects of the forcing on the flow. The unforced flow solution is
first examined, after which system identification is carried out and controllers are
synthesized for both actuator locations.

4.1. Unforced flow
Figure 10 shows the turbulent second moments and mean streamwise velocity
profile at separation, compared with the DNS data of Jimenez et al. (2010) for
a turbulent boundary layer at Reθ = 1551, with zero streamwise pressure gradient.
Good agreement is obtained, confirming a satisfactory representation of the incoming
turbulent boundary layer in the LES simulations. In figure 11, time-averaged velocity
and Reynolds stress profiles in the initial stages of the separated shear layer are
compared with experimental data, obtained by particle image velocimetry (PIV) on
a BFS flow at Reθ = 1381 (Brosco 2011). Despite some small discrepancies in the
streamwise and transverse normal stresses, the overall conclusion is that the LES is
capturing the unforced flow well.

In the following, we investigate whether the spanwise extent Lz = 4h is sufficient.
Structures with large scales in the spanwise direction may exist in spanwise-
homogeneous flows and some error is induced if the domain does not contain these
fully. The two-point spanwise correlation coefficient R gives an indication of the
spanwise extent of those structures. The definition of the correlation coefficient used
here is

Rφψ(1z)= φ(z)ψ(z+1z)

(φ(z)φ(z) ψ(z+1z)ψ(z+1z))
1/2 , (4.1)

where φ and ψ are two fluctuating quantities. Figure 12 displays the correlation
coefficients Ruu and Rpp along three spanwise lines inside the shear layer. For both
the streamwise velocity and the pressure, the correlation levels decrease rapidly and
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FIGURE 11. (Colour online) Time-averaged velocity and Reynolds stress profiles compared
via LES (solid lines) and PIV from Brosco (2011) (dashed lines). (a) Mean streamwise
velocity; (b) streamwise normal stress; (c) transverse normal stress; (d) Reynolds shear stress.

remain close to zero for 1z/h > 0.5. Note that the correlation does not vanish fully
within a half-domain width (2h), which suggests that a larger spanwise extent may
improve the accuracy of the results. Nevertheless, the spanwise extent Lz = 4h is
deemed acceptable.

The unforced base pressure spectrum is shown in figure 13(a). A wide range of
scales, characteristic of turbulent flows, is observed. A peak appears around Sth = 0.32
which corresponds to Stθ = 0.0176. This peak is associated with the convective shear
layer instability. Indeed, it is also visible in the initial stage of the separating shear
layer where this instability originates (see figure 13b at x/h = 1). According to Hasan
& Khan (1992), the shear layer instability is characterized by Stθ = 0.011 for a BFS
flow with a turbulent separation. However, there are varying opinions on this in the
literature and the instability frequency decreases as the shear layer develops. Pressure
spectra at two downstream locations (x/h = 1, y/h = 0) and (x/h = 6, y/h = −0.25)
are presented in figure 13(b). The shear layer instability (Stθ = 0.0176) appears near
separation and the shedding mode (Sth ≈ 0.25) is observed further downstream, near
reattachment. The reattachment length is Xr0 = 6.2h for the baseline case. With the fine
grid used for validation Xr0 = 6.5h is obtained. The difference of 4.8 % is small given
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fluctuations) for the baseline flow. (b) Pressure amplitude spectra at (x/h = 1, y/h = 0) and
(x/h= 6, y/h=−0.25) (signals averaged along the z direction).

that the reattachment length is very sensitive to flow conditions upstream of separation
and that the boundary layers developing along the inlet plate are likely to develop
slightly different features with different grids. In addition, the value of 6.2h agrees
qualitatively with the guidelines given in Eaton & Johnston (1981) and with the value
of 6.28h obtained by Le, Moin & Kim (1997).

4.2. Open-loop forcing and system identification
After investigating the baseline flow, the purpose of this section is two-fold. Firstly,
the effects of the open-loop forcing (with both actuator locations) on the flow are
described. Secondly, the results of the system identification procedure carried out in a
similar manner to § 3.2 are discussed.

Figure 14 illustrates the effect of the slot jet forcing frequency on two time-averaged
quantities: the reattachment length Xr and the (spatially averaged) base pressure CP.
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(1996) (Reθ = 890, forcing level A0 = 0.07) is included for comparison ( ). (b) Change
in time-averaged base pressure CP (CP0 is baseline pressure). Three actuation amplitudes are
considered: , Aj = 0.1; , Aj = 0.2; , Aj = 0.3. Results obtained at a few frequencies with
actuator 1 (Aj = 0.2) on the fine grid are denoted by H. Filled symbols correspond to actuator
1 and open symbols to actuator 2.

The most evident feature is the radically different response of the wake to the two
actuator locations. Actuator 1, located near the separation edge in a region of high
receptivity, has a strong impact on both Xr and CP. On the contrary, actuator 2,
perturbing the flow near the base foot, has virtually no impact on the reattachment
length. It leads to a reduction in CP with a narrow valley at Sth ≈ 0.25 and a roughly
constant pressure decrease (which strengthens with the amplitude of the perturbation)
away from this frequency.

For actuator 1, figure 14(a) shows that forcing decreases Xr by up to 35 % at low
forcing frequencies and increases it slightly for frequencies in the range 0.8 6 Sth 6 2.
A comparison with experimental data at Reθ = 890 from Chun & Sung (1996) is
included. Although the flow conditions and actuation level differ (the latter cannot be
directly compared due to different slot widths and definitions of the forcing amplitude),
the curve for forcing level Aj = 0.3 agrees reasonably well with the experimental
data. Yoshioka, Obi & Masuda (2001) report a maximum reduction in reattachment
length of 30 % for a forcing amplitude Aj = 0.3, which provides further support for
the present results. The reduction of the reattachment length is linked to increased
turbulent stresses near separation, which lead to a higher growth rate of the shear layer.
The shear near the interface of the layer and the recirculating flow is also higher, thus
producing higher entrainment and earlier reattachment.

We now turn our attention to the effect of actuator 1 on the time-averaged base
pressure CP. Figure 14(b) shows that frequencies below Sth ≈ 0.1 lead to an increase
in CP whereas a pressure decrease is observed for Sth > 0.1. The change in CP is
nearly a linear function of forcing amplitude within the frequency range 0.1 < Sth < 2
for the three amplitudes tested, although the relation becomes nonlinear if higher
forcing amplitudes are used.

For both the reattachment length and the base pressure coefficient, results obtained
with the fine grid at a few selected forcing frequencies match well with the solutions
on the coarser grid, thereby indicating that the latter grid is adequate to compute the
perturbed flows. However, a significant discrepancy is observed in the time-averaged
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FIGURE 15. Spectra of spatially averaged base pressure (sensor signal) for harmonic forcing
at (a,c) Sth = 0.08, and (b,d) Sth = 0.2. (a,b) Actuator 1, (c,d) actuator 2. The convective
shear layer instability present in the baseline flow is denoted by fs.

base pressure obtained for Sth = 4, as evidenced by figure 14(b). The coarse grid
predicts that CP is not affected by the harmonic perturbations with Aj = 0.2 for Sth > 3
whilst the fine grid shows a pressure increase of almost 30 % for Sth = 4. This means
that the coarse grid is not able to fully resolve the small-scale structures produced
by high-frequency perturbations (an order of magnitude above the dominant unstable
modes of the flow). Interestingly, one might hence suggest that actuation via these
small-scale perturbations provides a promising mechanism for base pressure increase.

For all three forcing amplitudes, global minima are obtained for both Xr and CP

around the same frequency Sth ≈ 0.25. A number of studies on reattaching shear layers
have proposed that the frequency for a maximum reduction of Xr is associated with
the shedding mode (see e.g. Dandois, Garnier & Sagaut 2007). In other words, the
frequency for maximum reduction of Xr and CP is dictated by the rate of vortex
shedding from the reattachment region. As shown in figure 14(a), Chun & Sung
(1996) obtained a global minimum at Sth ≈ 0.27, and they associated this extremum
with the shedding mode. Also, they observed the existence of a local minimum
at Sth = 0.4 for lower forcing amplitudes, which they identify as the shear layer
instability. A pronounced dip is visible in figure 14(a) at Sth = 0.4 for the lowest
amplitude Aj = 0.1. This supports the hypothesis that the forcing frequency Sth ≈ 0.25
corresponding to the trough in the Xr and CP bucket is in fact linked to the shedding
mode.

Figure 15 illustrates base pressure spectra for the flows perturbed with two
open-loop harmonic signals Uj = 0.2 sin(2π 0.08t) and Uj = 0.2 sin(2π 0.2t). We will
henceforth term those two signals the low-frequency (LF) and the medium-frequency
(MF) forcing. Both actuators are considered and compared to the baseline case.
Comparison of the two actuators leads to an observation already mentioned: open-loop
control with actuator 1 has a stronger impact on the flow. Large peaks associated with
the forcing are visible for actuator 2 for both the LF and MF perturbations. These
peaks, however, are smaller than those produced by actuator 1 and other wavelengths
are not sensibly disturbed compared to the baseline flow. Actuator 1 amplifies the level
of pressure fluctuations on the base over a broad range of scales around the forcing
frequency. In addition, it can be observed that the MF control with actuator 1 tends to
suppress the shear layer instability.
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FIGURE 16. (Colour online) Flow characteristics downstream of separation for forcing
with (a,c,e) Sth = 0.08, and (b,d,f ) Sth = 0.2 for Aj = 0.2. (a,b) Time-averaged streamwise
velocity profiles U. (c,d) Time-averaged transverse velocity V . (e,f ) Turbulent kinetic energy
k = 0.5(u′u′ + v′v′ + w′w′). Lines: —–, unforced flow; , actuator 1; , actuator 2.
The magnitudes of the profiles have been scaled for clarity.

Figure 16 shows some features of the flow perturbed with the LF and MF signals.
Again it is obvious that the second actuator has a lesser impact on statistical flow
features compared to the first one. However, careful observation of profiles of U and V
in figure 16 reveals that the mean flow velocity profiles in the near-separation region
are altered by actuator 2. Considering actuator 1, it was previously observed that the
LF forcing increases the mean base pressure CP, whilst the MF forcing reduces it. As
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FIGURE 17. (Colour online) Bode plots of frequency responses G(iω) obtained using
harmonic inputs with three forcing amplitudes: , Aj = 0.1; , Aj = 0.2; , Aj = 0.3.
(a) Actuator 1, (b) actuator 2.

evidenced by figure 16(a,c), the mean velocity profiles are only weakly affected by the
LF forcing. On the other hand, the MF forcing reduces the reattachment length more
significantly and hence affects the velocity field. The turbulent kinetic energy profiles
shown in figure 16(e) reveal an interesting perspective: the LF actuation dramatically
changes the profile of turbulent fluctuations downstream of reattachment, where the
influence of the MF forcing is comparatively small. The turbulent kinetic energy is
pulled towards the lower wall by the LF forcing. As is well known, the forcing
at Sth = 0.2 increases the peak turbulent fluctuations in the separated region, with a
maximum reached around x/h= 2.

As for the 2D flow, the information obtained from the harmonic open-loop forcing
also serves to identify the flow response G(iω). The validity of the dynamic linearity
assumption is checked by examining figure 17, which shows the frequency responses
G1, G2 and G3 obtained with forcing at three different amplitudes Aj = 0.1, 0.2
and 0.3, with each actuator independently. For both actuators, the slight mismatch
between the three curves reveals that weak nonlinearities are present in both gain and
phase. However, approximating the flow response as a dynamically linear process is a
reasonable approximation here, as long as the magnitude of the actuator signal remains
within the range considered.

For each actuator, a frequency response model G is constructed as the average of
G1, G2 and G3, illustrated by the square dots in figure 18. The solid line represents a
model fitted to the data. The models fitted for actuators 1 and 2 are given by

Gactu1(s)= −1440s− 9312
s2 + 11740s+ 28560

, (4.2)

Gactu2(s)= 62.88s2 + 1404s+ 98.85
s2 + 1148s+ 26427

. (4.3)

Both fitted transfer functions Gactu1 and Gactu2 are stable and minimum phase. The
dashed line in figure 18 is a model obtained by performing the eigensystem realization
algorithm (ERA) on input–output data from the LES. The input selected for the ERA
is a sum-of-sines signal of the form (4.4). The lower and upper limits of the passband
are ωmin = 0.3 and ωmax = 31, K = 24 is the number of sinusoids spread evenly within
the passband, and ωk = ωmin + (k − 1)(ωmax − ωmin)/(K − 1), k = 1, . . . ,K. To ensure a
sensible time variation of the signal amplitude, the phase of the kth sinusoid at t = 0
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FIGURE 18. (Colour online) Bode plots of frequency responses G(iω) for (a) actuator 1, and
(b) actuator 2. The average over the three amplitudes shown in figure 17 is denoted by �. The
solid line denotes second-order models fitted to the data via fitfrd. The dashed lines represent
models obtained via the eigensystem realization algorithm with a sum-of-sines input.

is 2πφk, where φk is a random number taken from a uniform distribution on the
interval [0, 1]:

Uj(t)= Aj

K∑
k=1

sin(ωkt + 2πφk). (4.4)

The ERA is a system identification and model reduction technique proposed by
Juang & Pappa (1985) which generates reduced-order models theoretically identical to
those obtained from balanced POD (Ma, Ahuja & Rowley 2009). The balancing refers
to the observability and controllability Gramians of the reduced model being equal
and diagonal (balanced), which ensures that the dynamics of the system are properly
accounted for (by selecting the modes of the system which are both observable and
controllable to reduce the system to a low-order model). An important feature of
the ERA is that it does not require the solution of an adjoint system and hence
is suitable for use with both computational and experimental data. For more details
on the notions of observability and controllability and on the ERA, see Illingworth
(2009). Figure 18 demonstrates good agreement in the transfer functions obtained by
spectral analysis with harmonic forcing and those obtained with the ERA using a more
sophisticated input signal. We conclude that both methods are suitable. The ERA is
less computationally expensive but care must be taken to design an input signal with
smooth time variations so as to avoid numerical instabilities.

Although the dynamics of G here are different than in the 2D laminar case, some
similarities are evident from comparison of figures 8 and 18. In particular, actuator 2
exhibits a gain increasing monotonically with frequency, within the frequency band
examined, and a constant phase lag at high frequencies. On the other hand, the transfer
function from the first actuator to the base pressure is highly sensitive to the shear
layer development and hence has different dynamics in the laminar and turbulent flows.
Indeed, the low-frequency gain is higher and there is no high-frequency roll-off in 3D.

It is important to keep in mind some of the limitations of the low-order models built
herein; in particular that they apply only specifically to the actuation-sensing couple
selected. As observed above, if the actuator is displaced to a different location, its
impact on the wake is altered and different dynamics arise.
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4.3. Feedback control
After obtaining a low-order model for G(s), a controller K(s) can be designed using
the fluctuation attenuation approach described in § 3.3. Once again, the controller aims
to reduce the fluctuations in the sensor signal, by constraining the sensitivity function
to have a gain below unity within a specific frequency range. Achieving this over a
large frequency band is not always possible. Bode’s integral formula (4.5) relates the
integral of the sensitivity gain over all frequencies to the unstable open-loop poles pk:∫ ∞

0
ln |S(iω)| dω = π

∑
Re(pk)− π2 lim

s→∞
sL(s). (4.5)

This means that if the sensitivity gain is reduced in a particular frequency range, it will
increase in another. Whilst this was of little concern in the 2D case, where the baseline
flow is dominated by a single wavelength, the 3D turbulent flow requires the shaping
of |S(iω)| over a large range of scales. Therefore, the H∞ loop-shaping method is
chosen here (McFarlane & Glover 1989). The loop-shaping technique, used in 2D, is
a well-known approach in control theory, whereby one specifies closed-loop objectives
in terms of requirements on the open-loop transfer function L (or its singular values
in the case of multi-input/multi-output systems). This approach however suffers from
the need to ensure stability of the closed-loop system. Another approach to controller
design is H∞ synthesis in which the closed-loop objectives are expressed in terms
of weighted closed-loop transfer functions. H∞ synthesis guarantees stability and
robustness, although the selection of the closed-loop weights is not straightforward
and may be disconnected from the properties of the controlled process. H∞ loop-
shaping combines the advantages of these two methods. The open-loop properties
of L are specified first by adding a pre- and post-compensator to the process G,
and the H∞ method is then used to robustly stabilize this shaped plant. Hence,
this method returns a robust controller K(s) to satisfy a desired open-loop transfer
function L(s)= G(s)K(s) whilst the closed-loop system is guaranteed to be stable. The
characteristics of the resulting controllers for both actuator locations are as follows:

K1(s)= −1.26× 108

s4 + 196s3 + 16660s2 + 504000s+ 9× 106
, (4.6)

K2(s)= 3000
s2 + 20s+ 100

. (4.7)

Figure 19 shows the frequency responses of the controllers and the corresponding
sensitivity functions S(iω) obtained from the control synthesis. The main features to
note are that the first actuator location has lower stability margins, as well as a small
positive hump in the sensitivity gain centred around Sth = 7 which implies that noise is
amplified near this frequency.

Figure 20 illustrates the results obtained from implementing the feedback controller
K1 into the LES. The pressure fluctuations are reduced in amplitude and the actuation
levels required are relatively low. The amplitude spectrum of the sensor signal given
in figure 20(c) highlights an attenuation of the fluctuations over a large bandwidth,
although high frequencies are amplified. The mean base pressure is also increased by
20 % compared to the baseline flow. The control results for the controller K2, operating
via the second actuator location, are shown in figure 21. In this case, the attenuation of
the pressure fluctuations and the high-frequency rejection are more effective than with
K1. However, very low frequencies are amplified, as evidenced by figure 21(c). The
actuation signal Uj output by the controller K2 operates at low frequencies, in contrast
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FIGURE 20. (Colour online) Input and output for controller K1, with the first actuator
location. Time-series of (a) the base pressure signal and (b) the actuation signal. Amplitude
spectrum of (c) the sensor signal and (d) the actuation signal. Lines: ---- baseline; ,
control.

to the previous controller. A mean base pressure increase of 10 % is recorded with
K2, which is less than with K1. This suggests that the link between the base pressure
fluctuations and the time-averaged value is complex and further investigation into this
relationship would need to be performed in order to exploit it for optimization.

Figure 22 shows some characteristics of the controlled flows downstream of
separation compared to the baseline flow. The controllers K1 and K2 only mildly
affect the time-averaged velocity fields U and V . Nevertheless, the turbulent kinetic
energy k is significantly reduced over a large region of the domain. Actuator 2 leads to
a more important reduction of k in the separated shear layer.

Line contours of the time-averaged streamfunction for the baseline and controlled
flows are plotted in figure 23. As discussed above, the time-averaged streamwise
velocity field is globally only weakly modified by the feedback controllers for
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FIGURE 22. (Colour online) Flow characteristics downstream of separation for closed-loop
forcing. (a) Time-averaged streamwise velocity profiles U. (b) Time-averaged transverse
velocity V . (c) Turbulent kinetic energy k = 0.5(u′u′ + v′v′ + w′w′). Lines: —–, unforced
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both actuator locations. The reattachment lengths of the controlled flows are mildly
increased compared to the baseline flow. For actuator 1, Xr/h = 6.8 while for actuator
2, Xr/h = 6.9, compared to Xr/h = 6.2 in the baseline case. This represents an
increase of roughly 10 % in Xr for the controlled flows. It appears therefore that
the recirculation length is not a useful indicator of the base pressure. In the laminar
case it was shown that the base pressure can be increased via control leading to
a stabilized near-wake and delayed reattachment. For the turbulent flow, open-loop
forcing frequencies below Sth = 0.1 lead to a decrease in Xr and an increase in CP

on the base, whereas the present feedback control strategy leads to a mild increase in
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FIGURE 23. Line contours of the time-averaged streamfunction on colour contours of
turbulent kinetic energy k. (a) Baseline flow, (b) controller K1, and (c) controller K2. The
right part of the figure shows a close-up on the base foot region.

Xr and an increase in CP. Figure 23 also shows a magnified view of the secondary
recirculation eddy sitting near the base foot. Both controllers reduce the size of this
structure. This secondary recirculation bubble is the time-averaged view of bursts of
high-momentum fluid, brought in from the reattachment region, impinging onto the
base. It has been associated with the flapping mode (Spazzini et al. 2001), forming
a feedback mechanism between the reattachment zone and the near-separation region.
The reduction in pressure fluctuations attenuates this mechanism, which may be one of
the causes of the increase in base pressure observed with the closed-loop control.

Instantaneous pressure contours in the plane y = 0 are presented in figure 24 with
and without control. Alternating spanwise structures of high and low pressure can
be identified for the baseline and both controlled flows, but K1 produces tighter and
more 2D structures in the initial stage of the shear layer, before successive structures
appear to merge. K2 on the contrary leads to higher three-dimensionality and localized
high-pressure spots are apparent.

A measure of the actuation cost is needed to compare the performance of the
feedback control to the highest efficiency obtained with the open-loop forcing. We
quantify the actuation cost with the momentum coefficient, cµ = sU2

j,rms/(hU2
0), where s

is the actuator width. We define the efficiency of an open-loop or closed-loop control
scheme with the merit function J = (CP−CP0)/(cµCP0). Table 1 gives the momentum
coefficients and associated merit functions obtained with the best open-loop control
(the one with the highest merit function) and with feedback control, for the two
actuator locations considered. Considering actuator 1, the highest merit function with
open-loop forcing is achieved with an amplitude Aj = 0.1 and forcing frequency
Sth = 0.05. The corresponding momentum coefficient and mean pressure increase are
cµ = 1.5 × 10−4 and 24 % respectively, which yields J = 0.24/(1.5 × 10−4) = 1600.
The controller K1 costs cµ = 1.2 × 10−4 for a 20 % increase in CP. Hence, its
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FIGURE 24. Instantaneous contours of pressure, CP, in the plane y = 0 downstream of
separation. (a) Baseline flow, and (b,c) the controlled flows for the first and second controllers
K1 and K2, respectively.

Actuator 1 Actuator 2
Open-loop Closed-loop Open-loop Closed-loop

Configuration Aj = 0.1, Sth = 0.05 K1 — K2

cµ 1.5× 10−4 1.2× 10−4 — 1.44× 10−4

J 1600 1667 0 694

TABLE 1. Momentum coefficients cµ and merit functions J for open-loop and closed-
loop control. For open-loop, the numbers shown correspond to the harmonic input with the
highest merit function obtained.

merit function is J = 1CP/cµ = 0.2/1.2 × 10−4 ≈ 1667. Therefore, the feedback
controller K1 is more efficient than the corresponding open-loop forcing. Regarding the
secondary actuator, no sensible pressure increase was measured in open-loop whilst the
controller K2 has a merit function J = 694, which leads us to conclude that the first
actuation location is a more appropriate choice to increase the base pressure and hence
reduce form drag. Furthermore, the closed-loop results above were obtained with
little consideration for actuation cost. Investigations with optimal control tools will
be considered in future work and are expected to reduce the momentum coefficient
required in the closed-loop case.

5. Conclusions
This paper showed that linear feedback control can be used to increase the base

pressure on a backward-facing step, and hence reduce the form drag of a body whose
downstream end resembles a BFS flow.
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The method involved deriving a low-order model of the flow response via system
identification using harmonic forcing. This forcing provided some physical insight
into the flow dynamics. Notably it was observed that perturbing the flow close to
the shedding frequency leads to a large decrease in base pressure, concomitant with
increased turbulent kinetic energy in the near-separation region, while low-frequency
forcing increases the mean pressure. The design of the feedback controller was based
on the premise that reducing the magnitude of the base pressure fluctuations results
in an increase in the time-averaged base pressure. Thus a simple linear controller was
designed, based on the low-order model of the flow response, to reduce the amplitude
of the fluctuations. In both the 2D laminar and 3D turbulent flow cases, the feedback
controller achieved both a decrease in fluctuations and an increase in mean base
pressure, using actuation velocities substantially lower than the free-stream velocity.
In 2D, the controllers stabilized the near-wake by pushing the unsteady reattachment
region further downstream. After a transient period, the controllers were able to reduce
their effort to the minimum required to prevent the redevelopment of the instability.
In 3D, the feedback control extended the reattachment length by roughly 10 % and
reduced the turbulent kinetic energy in the shear layer. Both actuators were effective
although actuator 1 outperformed actuator 2 with regard to the mean pressure increase
in Ω3D.

Comparison between two actuation locations and controllers in the 3D case revealed
that the link between the base pressure fluctuations and the time-averaged base
pressure is complex. Optimization using this approach may therefore present some
difficulties, since a larger attenuation of the pressure fluctuations is not necessarily
associated with a larger mean pressure increase. Future work will attempt to shed more
light on this point. In addition, it was shown that there is no direct link between the
reattachment length and the base pressure.

The closed-loop performance inherently depends on the open-loop system. The
actuator location was notably observed to be a significant parameter. It was seen that
the flow can be significantly modified by feedback with an actuator in an unusual
location, near the base foot, even though the open-loop harmonic forcing does not
show strong effects on the mean flow.
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