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Abstract

In this work, tuned passive control is used to damp unstable combustion sys-

tems, with particular emphasis on systems which exhibit multiple unstable modes.

Helmholtz resonators are used as passive dampers. The frequency at which they

offer maximum damping is varied by altering their geometry; in this work, geome-

try changes are achieved by varying the area of the Helmholtz resonator neck. For

each unstable mode exhibited by the combustion system, a separate Helmholtz res-

onator has its neck area tuned. Two algorithms are developed, one for identifying

the characteristics of all modes present in real-time, and another for tuning the neck

areas of the Helmholtz resonators. These algorithms are successfully implemented in

numerical simulations of a longitudinal combustor exhibiting two unstable modes.

The algorithms result in both modes being stabilised as long as two Helmholtz res-

onators are used. Experiments are then conducted on a Rijke tube with its upper

part split into two branches of differing lengths, shaped like a ‘Y’. The differing

lengths give rise to two unstable modes at different frequencies. A Helmholtz res-



onator is attached to each branch; the neck area of both can be varied by means

of an ‘iris’ valve, which opens and closes like a camera lens. On implementing the

procedure for tuning the neck areas, both unstable modes are stabilised, and sta-

bility is maintained for large changes in operating condition. This confirms that

the procedure developed is sufficiently robust for use in real combustion systems

exhibiting multiple unstable modes.
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1 Introduction

The drive for low NOx emissions means that gas turbine combustors (in both

stationary power gas turbines and aero-engines) are being operated under

lean premixed conditions. This makes them particularly susceptible to dam-

aging combustion instabilities. Combustion instabilities are self-excited oscil-

lations generated by the interaction between acoustic waves and combustion.

Unsteady heat release generates acoustic waves; these propagate within the

combustor and reflect from boundaries to arrive back at the combustion zone,

where they cause more unsteady heat release. Under certain conditions, this

feedback can result in large and damaging self-excited oscillations [1].

Typically, combustion instabilities are attenuated using either active or passive

control by breaking the coupling between unsteady heat release and acoustic

waves [2, 3]. Active control techniques involve a control system and use a

dynamic actuator such as a loudspeaker or fuel supply valve. The actuator
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‘perturbs’ the state of the combustion system according to measurements to

interrupt the coupling between the pressure and the heat release. If the way in

which the actuator responds to the measurements has been designed correctly,

the system will be stabilized. Active controllers are fast responding, as actua-

tion occurs on the time scale of the instabilities. However, at industrial-scales,

fuel modulation is the most viable form of actuation, and the bandwidth of

the fuel valve becomes a limiting effect. Active control also has the potential

to make the system more unstable.

Passive control techniques generally add acoustic damping to the combustion

system. They are unlikely to make the system more unstable, but tend to

be effective only over a narrow frequency range and are unable to respond

to changes in operating conditions. Helmholtz resonators (HRs) have been

widely used as acoustic dampers [4]. Their damping mechanism is primarily

due to thermo-viscous and vortex shedding losses [5–7]. At resonance, a large

volume of fluid in the chamber compresses and expands periodically, while a

mass of the fluid in the neck vibrates. The resonant frequency of HRs is given

approximately by ω2 = c2S/V leff [8], where S and leff are the neck area and

effective length of the neck respectively, V is the cavity volume and c is the

ambient speed of sound. The fact that the resonant frequency depends on the

geometry allows it to be tuned via geometry changes [9–15].

Tuned passive control involves using a control system to tune passive devices,

such as Helmholtz resonators, in response to changes in the operating condi-

tions. The feature of tunability overcomes the main disadvantage of traditional

passive control. Moreover, actuation only needs to be on the time scale of the

changes in operating condition, which is typically much slower than the time

scale of the instability. The required actuator bandwidth is therefore small,
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representing a major advantage over active control. Tuned passive control

approaches therefore combine many of the advantages of active and passive

control.

The resonant frequency of a Helmholtz resonator can be varied by adjusting

the cavity volume, the neck area or the neck length. Several authors [9,12,14]

have developed Helmholtz resonators with a variable cavity volume. A volume-

variable resonator may be the easiest to implement in practice, but at low

frequencies becomes unnecessary bulky [16]. In addition, serious sealing issues

can arise. Helmholtz resonators with adjustable neck areas have also been

considered, although not widely [11, 13].

In this paper, Helmholtz resonators are used for passive control. They are

tuned to the measured modal frequencies by varying their neck areas. This

avoids the sealing issues that occur when the volume or neck length is varied

and also allows for more compact system. Special attention is paid to systems

which exhibit multiple unstable modes and therefore need multiple Helmholtz

resonators to be tuned in order to achieve stability. An algorithm for char-

acterizing multiple unstable modes online is firstly developed, as described in

section 2; this presents a particular challenge as FFT-based approaches do not

promote fast-tracking of frequency shifts at low frequencies. A two-stage algo-

rithm for tuning the HR neck areas online according to the characterization

of the modes is developed in section 3. The performance of these algorithms

is evaluated using a numerical model of an unstable combustion system with

attached Helmholtz resonators in section 4. Finally, in section 5, we experi-

mentally demonstrate that a simple combustion system with multiple unstable

modes can be stabilized by tuning the neck areas of multiple Helmholtz res-

onators.
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2 The online algorithm for characterizing modes

The frequencies of combustion instabilities tend to be close to the acoustic

resonance frequencies of the combustion system, with the pressure oscillations

occurring in the corresponding mode shape [17]. To effectively control combus-

tion instabilities, the characteristics of the unstable modes (such as frequency

and amplitude) need to be known. To identify these in real-time, as is needed

for tuned passive control, an online mode-identification algorithm has been

developed. It is performed in the time domain and allows faster tracking of

changes due to changes in operating condition than would be possible using

an FFT, particularly at low frequencies. Zinn and Neumeier [18,19] developed

a similar algorithm and applied it with considerable success to active control

of combustion instabilities. We now develop an algorithm for tuned passive

control, which utilizes increases in computing speeds over the last decade.

2.1 Theory for the mode-identification algorithm

The mode-identification algorithm is based on the principle that integrating

the product of a signal and a sinusoid over a period of the sinusoid extracts

the component of the signal at the frequency of the sinusoid. Following the

approach of Neumeier and Zinn [19], the measured pressure signal P (t) is

assumed to consist of N modes at frequencies Ωn. It is then assumed that

there is a dominant mode at frequency Ωd. The pressure variation due to this

dominant mode is denoted by Pd(t). Since this mode dominates the measured

pressure, it is initially assumed that P (t) ≈ Pd(t), which gives that P (t) and

its first derivative, ˙P (t) can be expressed as,
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P (t)=
N∑

n=1

(An sin Ωnt + Bn cos Ωnt) ≈ Ad(t) sin Ωdt + Bd(t) cos Ωdt (1)

Ṗ (t)=
N∑

n=1

Ωn(An cos Ωnt − Bn sin Ωnt) ≈ Ωd(Ad(t) cos Ωdt − Bd(t) sin Ωdt)

(2)

If the frequency of this mode, Ωd, was known then the amplitude components

of the dominant mode Ad(t) and Bd(t) could be determined by the short-time

Fourier-like integrals shown in Eq. (3), where Td = 2π/Ωd and j =
√−1.

H(jΩd, t) =
2

Td

∫ t

t−Td

P (θ)e−jΩdθ dθ = Bd(t) − jAd(t) (3)

Because the dominant frequency is not known, an estimation of it, denoted by

ωd (with corresponding period τd) is used to perform the short-time Fourier-

like integrations. The integration components, sd(t) and cd(t), are then taken

to be approximations to Ad(t) and Bd(t).

G(jωd, t) =
2

τd

∫ t

t−τd

P (θ)e−jωdθ dθ = cd(t) − jsd(t) (4a)

cd(t) =
ωd

[(
Ṗ (t) − Ṗ (t − τd)

)
sin ωdt + ωd

(
P (t) − P (t − τd)

)
cos ωdt

]

π(ω2
d − Ω2

d)

(4b)

sd(t) =
ωd

[(
Ṗ (t) − Ṗ (t − τd)

)
sin ωdt − ωd

(
P (t) − P (t − τd)

)
cos ωdt

]

π(ω2
d − Ω2

d)

(4c)

If ωd converges to Ωd, it can be seen from Eqs. (3) and (4a) that the ampli-

tude components of cd(t) and sd(t) will converge to Bd(t) and Ad(t) respec-

tively. Therefore, the signal defined as ps
d(t) = sd(t) sin ωdt+ cd(t) cos ωdt is an

approximation to the signal of the dominant mode, Pd(t) = Ad(t) sin Ωdt +

Bd(t) cos Ωdt . Note that we perform the numerical integrations fully for sd(t)

and cd(t) at each time step, unlike the approach used by Neumeier and Zinn
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[19].

Eliminating Ṗ (t)− Ṗ (t− τd) from Eqs. (4b) and (4c) gives Ωd in terms of ωd,

Ω2
d =

⎛
⎝ω2

d +
ω2

d

π

[
P (t) − P (t − τd)

]

[sd(t) cos ωdt − cd(t) sin ωdt]

⎞
⎠ (5)

Eq. (5) can be iteratively used to determine the frequency of the dominant

mode of P (t). A relaxation coefficient is used in practice to ensure smoother

convergence. Eq. (4) then allows the amplitude and the phase of this mode to

be iteratively deduced. Once the characteristics of the dominant mode have

converged, the dominant mode is subtracted from the pressure signal P (t).

The remaining signal, P (t)−Pd(t), is then used to characterise the next most

dominant mode, following the same procedure as above. This modal identifi-

cation and subtraction procedure can be repeated several times so that many

modes are characterised.

2.2 Performance of the mode-identification algorithm

The mode identification algorithm was applied to a pressure signal measured

on the experimental unstable combustion rig at the University of Cambridge

[20]. Because the rig was undergoing limit cycle oscillations, the non-linearity

limiting the amplitude meant that both the instability frequency and its first

harmonic were strongly present. A sample rate of 5000 Hz was used and the

algorithm was switched on at time 3.1 s. The results are shown in Fig. 1.

Both modes are characterised with channel 1 representing the dominant mode

and channel 2 the first harmonic. The frequencies and amplitudes of these

two modes are time-dependent and shown in Fig. 1(a) and (b) respectively,

with FFT results shown in Fig. 1(c) for comparison. The dominant mode is

7



characterised within 5 milliseconds and the first harmonic component within

50 milliseconds. The online algorithm is seen to reliably characterise both

modes in terms of their frequencies and amplitudes.

A key feature of the algorithm is that it can rapidly track large changes in

operating condition. This was demonstrated using a pressure signal measured

in a cuboid-shaped tube with one end closed and one end open. The tube con-

tained a loudspeaker, whose forcing frequency varied significantly with time.

The mode-identification algorithm was applied to the pressure measurement.

The actual forcing frequency and the predicted dominant frequency are shown

in Fig. 2. The frequency predicted by the online algorithm closely tracks the

changes in the forcing frequency with a very small time delay.

Thus it has been shown that the mode-identification algorithm can both iden-

tify the essential features of multiple modes, and track their changes in real

time.

3 Two-stage tuning algorithm

In order to use the information obtained about the modes present to rapidly

tune the neck areas of the Helmholtz resonators, a two-stage control algorithm

was developed. The idea is that a separate HR is tuned for each separate

mode, although this could be extended to tuning a set of HRs for each mode.

The algorithm consists of an initial tuning stage and a fine-tuning stage, as

shown schematically in Fig. 3. In the initial tuning stage, the modal frequency,

as predicted by the mode-identification algorithm, is used to obtain a fast

estimate of the optimum neck radius. The fine-tuning stage then involves
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performing an online search to find the neck radius that minimises the modal

amplitude. Fine-tuning is needed because the presence of a HR results in

a shift in the mode frequency and hence the mode shape which is difficult

to predict; amplitude minimisation is the most reliable way of obtaining the

optimum neck radius.

The initial tuning stage is designed to give a quick response to variations in the

frequency of the combustion instabilities as the operating conditions change.

It uses the modal frequency provided by the mode-identification algorithm to

estimate the optimum neck radius via the linear Helmholtz resonator equa-

tion ω2 = c2S/V leff . At each time step, the ‘initial guess’ is used only if the

predicted frequency differs from the previously stored resonant frequency by

more than a specified value.

The fine-tuning stage involves minimising the modal amplitude. The modal

amplitude is provided by the mode identification algorithm and a revised

Newton-Raphson algorithm is used to perform the minimisation, as shown in

Eq. (6).

rn+1 = rn − α

∂p̂(rn)

∂r

|∂2p̂(rn)

∂r2 |
(6)

Here, r is the neck radius of the resonator, α is a relaxation coefficient and p̂

is the pressure modal amplitude. The relaxation coefficient avoids divergence.

The full forms of ∂p̂
∂r

and ∂2p̂
∂r2 can be found in [12]. Note in Eq. (6) the condition

of
∂2p̂(rn)

∂r2 > 0 is necessary to guarantee finding a pressure amplitude minima

other than maxima.
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4 Numerical model with two unstable modes

The online mode-identification algorithm and two-stage tuning algorithm are

now used to demonstrate tuned passive control in a numerical model. An axial

combustion system with a choked upstream end and open downstream end is

simulated as shown in Fig. 4. The combustor has two Helmholtz resonators,

HR1 and HR2, attached; the neck areas of both can be varied.

The mean flow is assumed to be steady and one-dimensional, undergoing a

change only across the flame. The flow fluctuations are modelled as being due

to plane acoustic waves travelling in opposite directions. The wave strengths

are denoted by Ra(t), La(t), Rb1(t), Lb1(t), Rb2(t), Lb2(t), Rb3(t) and Lb3(t)

in the different combustion regions, as shown in Fig. 4. Entropy and vorticity

contributions are neglected, and the acoustic waves are assumed to behave

linearly with respect to the mean flow. The equations for the flow fluctuations

upstream and downstream of the flame are given by

p′a(x, t) = Ra

(
t − x

c̄a + ūa

)
+ La

(
t +

x

c̄a − ūa

)
(7a)

u′

a(x, t) =
1

ρ̄ac̄a

[
Ra

(
t − x

c̄a + ūa

)
− La

(
t +

x

c̄a − ūa

) ]
(7b)

p′bi(x, t) = Rbi

(
t − x

c̄b + ūb

)
+ Lbi

(
t +

x

c̄b − ūb

)
(7c)

u′

bi(x, t) =
1

ρ̄bc̄b

[
Rbi

(
t − x

c̄b + ūb

)
− Lbi

(
t +

x

c̄b − ūb

) ]
(7d)

where p denotes the pressure, u is the flow velocity, ρ is the density, c the

speed of sound and subscript i denotes the zone downstream of the flame. An

over-bar denotes a mean value and a prime denotes a perturbation.

The combustor boundaries are modelled using pressure reflection coefficients.

The Marble and Candel [21] expression is used for the choked upstream end

10



and the value -0.98 is used at the open downstream end. The flame is assumed

to be sufficiently short compared to the acoustic wavelength that it can be

modelled as a thin sheet. The acoustic wave strengths either side of the flame

and the heat release fluctuation are related by applying the linearised flow

conservation equations across the flame and assuming a form for the flame

transfer function, H(ω) = Q(ω)/u(ω), where Q(ω) is the Fourier transform

of the heat release fluctuation Q′(t) and u(ω) is the Fourier transform of the

velocity fluctuation u′(t) just upstream of the flame. It is assumed that the

heat release fluctuation can not exceed 20% of mean heat release i.e. a capping

is imposed. This heat release saturation provides a non-linear mechanism by

which a limit cycle occurs in the case of a combustion instability.

The acoustic wave strengths either side of each Helmholtz resonator are related

by combining the flow conservation equations and a non-linear model of the

HR damping. Mass and pressure continuity across each HR hold. The pressure

loss across the neck of each HR is due to the non-linear effect of the ‘jets’

formed. This loss can be expressed in terms of a dynamic head loss, as shown

in Eq. (8), where Δp′ is the pressure difference across the neck, u′

h(t) is the

acoustic flow velocity moving across the neck and K is the discharge coefficient

taking account of the non-linear loss. This model has been used in several

previous studies [5, 7, 12, 22].

Δp′ = ρ̄ileff
∂u′

h(t)

∂t
+ Kρ̄iu

′

h(t)|u′

h(t)| (8)

Thus the end boundary conditions and the flow conservation equations across

the flame and the HRs provide enough information to solve for each of the eight

wave strengths in Fig. 4. The resulting matrix equation is shown in Eq. (9),

where A denotes the cross section area of the combustor, M̄ the mean mach
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number, S the neck area of Helmholtz resonator, u′

HR the velocity perturbation

at the resonator neck and the X ands Y coefficient matrixes are shown in the

Appendix.

X ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

La(t)

Rb1(t)

Lb1(t)

Rb2(t)

Lb2(t)

Rb3(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= Y ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

La

(
t − 2xu

c̄1(1−M̄2
1 )

)

Lb1

(
t − x1

(c̄2−ū2)

)

Rb1

(
t − x1

(c̄2+ū2)

)

Lb2

(
t − (x2−x1)

(c̄2−ū2)

)

Rb3

(
t − 2(xd−x2)

c̄2(1−M̄2
2 )

)

Rb2

(
t − (x2−x1)

(c̄2+ū2)

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

Q′

Ac̄1

0

−ρ̄2c̄2S1u′

HR1(t)

A

0

−ρ̄2c̄2S2u′

HR2(t)

A

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9)

The geometry of the combustor and the form of the flame transfer function [20]

can be varied to give a combustion system which is either stable or unstable

(with either one unstable mode or multiple unstable modes). For unstable

systems, fluctuations grow exponentially in time until the heat release capping

results in saturation into a limit cycle.

Before investigating the effectiveness of tuning the resonator neck areas for

damping combustion instabilities, it is insightful to study how the variation

of the resonator neck areas influences the acoustic response of the combustor.

Fig. 5 demonstrates how the mode normalised amplitude, p′/p0, and frequency,

ω/ω0, vary with the normalised radius of HR1 r1/r1max, with the neck area

of HR2 set to zero. Here, p0 denotes the ambient pressure and ω0 denotes

the modal frequency in the absence of any HRs. The flame transfer function

H(ω/ω0) is chosen to generate only one unstable mode at a normalised fre-
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quency of 1.0. It is clear that the system is stabilised at some resonator neck

areas. The shift in the modal frequency due to the presence of the HR is shown

in Fig. 5(b), and depends on the resonator cavity volume and neck area. It is

also apparent that a bad choice of neck area may result in a limit cycle with

a larger amplitude.

In our work, the combustor lengths were chosen to be xu=1.8 m and xd=1.0 m,

and the flame transfer function was chosen to be H(jω) = 3.21384× 108(jω +

10)/
(
− ω2 + 5000jω + 25002

)
. It is worth noting that the form of H(jω) is

specifically chosen to given two unstable modes. It is not intend to be a fully

accurate representation of a real flame transfer function, although several of

the features such as the high frequency roll-off beginning at 400 Hz are fairly

realistic. The system exhibits two unstable modes, one at 239 Hz and one at

590 Hz. The frequency response plot of the transfer function from the unsteady

heat release, Q(ω) to the measured pressure, pref(ω) is shown in Fig. 6. An

unstable mode is characterised by a phase increase of 180 degrees rather than

a phase decrease [20]; the two unstable modes can clearly be seen.

The pressure 50 cm downstream of the flame provides the sensor signal for

the online mode-identification algorithm. The predicted frequencies are used

in the initial tuning of the two HR neck radii. HR1 is set to damp the mode

with a frequency of less than 500 Hz and HR2 is set to the mode with a

frequency higher than 500 Hz. The predicted amplitudes are used in fine-

tuning to minimise the pressure amplitude.

The damping effect of the two HRs is presented in Fig. 7; this shows the effect

of turning the HRs on one at a time, then deactivating them and turning

them both on simultaneously. Both unstable modes at 239 Hz and 590 Hz are
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initially present. The 239 Hz mode has the larger growth rate, and when the

amplitude of this mode has grown large enough to cause saturation, nonlinear

effects mean that the 590 Hz mode no long grows and the 239 Hz mode

dominates completely in the first limit cycle. When tuning of HR1 is activated

at t=1 s, the dominant mode at 239 Hz is quickly eliminated. The 590 Hz mode

is shifted slightly in frequency and begins to grow until saturation occurs and

a larger amplitude limit cycle is established. Tuning the neck area of HR2

begins at t=2 s; the recently established mode at 605 Hz disappears. At t=3 s,

both HR1 and HR2 are turned off so that the original unstable mode at 239 Hz

grows and re-dominates in the new limit cycle. At t=4 s, both HR1 and HR2

are turned on simultaneously. Both neck areas are simultaneously tuned and

both the instabilities are sufficiently damped. It is noted that the optimum

radius for the dominant mode is slightly different to that previously obtained;

this is likely to be due to the different mode shape shifts that occur when

both resonators are tuned simultaneously. It is apparent that with multiple

unstable modes, multiple Helmholtz resonators are needed, especially when

the modal frequencies are widely spaced.

This numerical simulation demonstrates that multiple unstable modes in com-

bustion system can be attenuated by tuning neck areas of multiple Helmholtz

resonators. This confirms that the online mode-identification algorithm and

the two-stage tuning algorithm provide an effective and reliable combination

for tuned passive control of combustion instabilities.
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5 Experimental implementation

We now seek to apply our tuned passive control strategy experimentally in a

self-excited combustion system. The Rijke tube [23,24] is a simple and widely

studied example of self-excited combustion system. It is typically a straight

open-ended tube, with heat source, such as a flame inside. The requirements

for instability are that there must be an air flow through the tube (e.g. due

to natural convection), the heat source has to be in the upstream half of the

tube, and the boundary losses must not be excessive.

In our work, in order to generate multiple modes, a novel Rijke tube which

splits into two upper branches, shaped like a ‘Y’, was used, as shown in Fig. 8.

The two upper branches had different lengths, and these provided a mechanism

by which two instability frequencies (which were non-harmonic) could be ob-

tained. The dimensions of the upper branches are 12×6×50 cm and 12×6×90

cm respectively, with the bottom ‘stem’ being 12 × 8 × 30 cm. Attached to

each upper branch was a Helmholtz resonator with an adjustable neck. The

volumes and neck lengths of both HRs were 1.6 × 10−3 m3 and 1.0 × 10−3 m

respectively. The end correction used for the effective neck length, leff was 1.7

times of the neck radius.

The neck areas of the two Helmholtz resonators were both varied using ‘iris’

valves. The neck areas of both resonators can be approximately varied from

2.0 × 10−4 to 1.33 × 10−2 and from 1.0 × 10−4 to 5.0 × 10−3 m2 respectively.

Iris valves operate much like a camera lens, achieving a variable opening via

rotating overlapping leaves. The ‘iris’ valves were driven by stepper motors,

as shown in Fig. 8. Each stepper motor is controlled by three square waves
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output from a computer. As the stepper motor rotates, the iris valves open

or close. The iris valve blades are made from graphite coated stainless steel

so that they can withstand relatively high temperatures. A methane-fueled

Bunsen burner is used to provide a laminar flame, which heats a fine gauze of

10 × 5 cm. The flame and gauze both lie in the lower half of the tube, with

the flame 7.0 cm from the lower tube end. With heating in place, the unstable

modes are generated, with wavelengths corresponding to modeshapes within

each branch. The pressure at 33 cm from the bottom ‘stem’ end was fed into

the mode-identification algorithm. The online mode-identification algorithm

and the two-stage neck area tuning algorithm were implemented in LabVIEW

8.0, with the data acquisition system consisting of a NI PCI-6229 card and

two BNC 2090 connectors.

In Fig. 9, we show a sequence in which combustion instabilities establish them-

selves, occurring with a dominant modal peak at a frequency of 496 Hz and

a secondary peak at a frequency of 328 Hz. The online mode-identification

algorithm is switched on, followed by the passive tuning algorithm for both

Helmholtz resonators at t = 7.5 s. HR1 is attached to the short branch and

set to damp the dominant mode, while HR2 is attached to the long branch

and is set to damp the secondary mode. The neck areas of HR1 and HR2 are

quickly tuned, and the instabilities die away. Both Helmholtz resonators are

deactivated at t = 12 s. By altering the fuel flow rate, two new modes at 355

Hz and 1020 Hz grow and the mode at 355 Hz becomes the new dominant

mode. At time t = 19.5 s, the two resonators are switched on again. They

retune their neck areas to the new modes so that these modes are quickly

eliminated. The damping results in a sound pressure level reduction of more

than 50 dB, as shown in Fig. 10.
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The modeshapes within the two branches were measured during each of the

two limit cycles, using the two microphone technique [25]. Six G.R.A.S. 1/4

inch Free field Microphones (Type 40BF) were used to measure pressure per-

turbations at different locations along both branches. They were attached to

side arms along the branches, with the semi-infinite line technique used to ob-

tain thermal insulation without distortion from acoustic reflections. The sound

speed was obtained using local temperature measurements, and the mean flow

speed was neglected. The mode shapes are shown in Fig. 11 (for the first limit

cycle) and Fig. 12 (for the second). As expected, both mode shapes exhibit a

pressure node near the open end. Note that the pressure mismatch between

the two branches at the lower end is probably caused by the rapid area change

at the join making the straight duct assumption invalid.

6 Discussion and conclusions

It has been shown that tuned passive control of combustion instabilities can

be achieved by tuning the neck areas of Helmholtz resonators. The technique

developed in this work placed emphasis on the ability to tune in real-time mul-

tiple Helmholtz resonators to damp multiple instability modes in the presence

of varying operating conditions.

To identify the frequencies and amplitudes characterising the unstable modes

present in a given combustion system, an online mode-identification algorithm

was developed. This is a time-domain approach to identify and track modes

online, faster than would be possible using an FFT. The frequencies and am-

plitudes for each separate mode are fed into a two-stage control algorithm for

tuning the Helmholtz resonator neck areas (a separate resonator is currently
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tuned for each mode). This algorithm consists of two stages, an initial tuning

and a fine-tuning stage. The initial tuning stage gives a fast response to oper-

ating condition changes, while the fine-tuning performs an online minimisation

of the modal amplitude.

The tuned passive control approach was firstly demonstrated on a numerical

simulation of a longitudinal combustor with two unstable modes. It success-

fully damped both modes, confirming that the approach was numerically vi-

able. It was then applied to a novel Rijke tube with two upper branches (a

Y-shape), which exhibited multiple unstable modes. The Helmholtz resonator

neck areas were varied by means of ‘iris’ valves, which operate like camera

lenses. Again, the tuned passive control approach successfully eliminated both

of the unstable modes.

In all, the tuned passive control approach developed by the authors was able

to rapidly track the changes in the frequencies and modal amplitudes of com-

bustion instabilities in real-time. It was thus able to damp these instabilities

by varying Helmholtz resonator neck areas on the time scale of operating

condition variations.

It is acknowledged that the temperature in real combustion systems, particu-

larly in gas turbines, would make use of actuators such as the iris valve more

of a technical challenge. Moreover, a mean flow through the resonators would

be required for cooling purposes. This effect has not been included in the cur-

rent work. Nonetheless, the mode identification algorithm and the principle of

tuned passive control has been shown to be robust and effective, and it would

now be interesting to adapt it for real industrial applications.
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Appendix. Matrices X and Y

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 + M̄1(2 − ū2

ū1
) − M̄2

1 1 + M̄1
ρ̄1c̄1
ρ̄2c̄2

0 0 0 0

1−γM̄1

γ−1
+ M̄2

1 − M̄2
1 (1 − M̄1)

1
2
(

ū2
2

ū2
1
− 1) c̄2

c̄1

1+γM̄2

γ−1
+ M̄1M̄2

ρ̄1

ρ̄2
0 0 0 0

0 0 1 −1 0 0

0 0 1 1 0 0

0 0 0 0 1 −1

0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1−M̄1

1+M̄1

(
1 + M̄1(2 − ū2

ū1
) + M̄2

1

)
−

(
1 − M̄1

ρ̄1c̄1
ρ̄2c̄2

)
0 0 0 0

1−M̄1

1+M̄1

(
1+γM̄1

γ−1
+ M̄2

1

−M̄2
1 (1 + M̄1)

1
2
(

ū2
2

ū2
1
− 1)

)
c̄2
c̄1

1−γM̄2

γ−1
+ M̄1M̄2

ρ̄1

ρ̄2
0 0 0 0

0 0 −1 1 0 0

0 0 1 1 0 0

0 0 0 0 0.98 −1

0 0 0 0 0.98 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Figure Captions

• Fig. 1(a) Modal frequencies predicted by the algorithm, (b) Modal ampli-

tudes predicted by the algorithm, (c) FFT analysis of the pressure signal.

The pressure signal was measured on the unstable combustion rig at the

University of Cambridge: — Dominant mode, - - - Secondary mode.

• Fig. 2, Comparison between the loudspeaker forcing frequency and pre-

dicted frequency by the online mode-identification algorithm: - - - Forcing

frequency, — predicted frequency by the algorithm.

• Fig. 3, Two-stage control scheme to tune HR neck radius.

• Fig. 4, A schematic of the combustor used in the numerical model.

• Fig. 5, The variations of the mode normalised amplitude and frequency with

the resonator neck radius.

• Fig. 6, The open loop transfer function, pref(ω)/ Q(ω), analysis of a com-

bustion system.

• Fig. 7, Numerical demonstration of the effect of tuned passive control on

the numerical model: — Dominant mode in CH1, - - - Secondary mode in

CH2.

• Fig. 8, The experimental apparatus in the Y-shape Rijke tube test: (a) the

experimental Y shaped Rijke tube with two HRs attached, (b) the ‘iris’

valve used to vary the neck area.

• Fig. 9, The effect of tuned passive control on the Y-shape Rijke tube: −◦−,

HR1, −×−, HR2.

• Fig. 10, Pressure spectra showing the typical damping effect of tuned passive

control in the Y-shape Rijke tube test: —, 1st limit cycle, - - -, 2nd limit

cycle, · · ·, after control.

• Fig. 11, Mode shape along each branch at the 1st limit cycle.
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• Fig. 12, Mode shape along each branch at the 2nd limit cycle.

25



Figures

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

Frequency(Hz)

A
m

p
li

tu
d

e

 

 

3.1 3.2 3.3 3.4 3.5
100

200

300

400

500
F

re
q

u
en

cy
 (

H
z)

Time(s)

 

 

3.1 3.2 3.3 3.4 3.5
0

0.25

0.5

0.75

1

A
m

p
li

tu
d

e 
(V

o
lt

s)

Time(s)

 

 

(b)

(c)

(a)

Fig. 1. (a) Modal frequencies predicted by the algorithm, (b) Modal amplitudes

predicted by the algorithm, (c) FFT analysis of the pressure signal. The pressure

signal was measured on the unstable combustion rig at the University of Cambridge:

— Dominant mode, - - - Secondary mode.
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Fig. 3. Two-stage control scheme to tune HR neck radius.

28



Fig. 4. A schematic of the combustor used in the numerical model.
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Fig. 5. The variations of the mode normalised amplitude and frequency with the

resonator neck radius.
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Fig. 8. The experimental apparatus in the Y-shape Rijke tube test: (a) the experi-

mental Y shaped Rijke tube with two HRs attached, (b) the ‘iris’ valve used to vary

the neck area.
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Fig. 10. Pressure spectra showing the typical damping effect of tuned passive control

in the Y-shape Rijke tube test: —, 1st limit cycle, - - -, 2nd limit cycle, · · ·, after

control.
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Fig. 11. Mode shape along each branch at the 1st limit cycle.
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Fig. 12. Mode shape along each branch at the 2nd limit cycle.
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