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Abstract 

Chronic obstructive pulmonary disease (COPD) is caused by prolonged cigarette smoke (CS) 

exposure. Increased oxidative stress produced by elevated oxidants, derived from cells and CS, or 

reduced anti-oxidant response is reported in COPD patients. Chronic inflammation is another key 

characteristic of COPD which persists long after smoking cessation.  This suggests that oxidative 

stress may affect the course of inflammatory gene expression through changes in epigenetic 

modifications such as DNA and histone methylation and histone acetylation.  Hydrogen peroxide 

(H2O2) is one of many oxidants reported to be elevated in breath condensates of COPD patients and 

is associated with enhanced inflammation. Inhaled corticosteroids (ICS) are frequently used in the 

management of inflammation in COPD patients; however, they provide little or no benefits to COPD 

patients. Understanding the mechanisms underlying this enhanced inflammatory drive and the lack 

of ICS response may provide novel potential therapeutic targets.  Abnormal histone acetylation 

profiles have been linked to COPD and to relative steroid unresponsiveness.  In mononuclear cells, 

BET bromodomain inhibitors can block acetylation-induced inflammatory responses. 

H2O2, an oxidant, was used to establish both an acute (2 hours) and a Chronic (low concentration 

exposure for 5, 10 and 15 days) oxidative stress model.  In the acute model, H2O2 (100µM) enhanced 

TNF- induced IL-6 and CXCL8 expression in BEAS-2B cells whereas H2O2 alone had no effect on 

inflammatory gene expression.  This confirms that oxidative stress is involved in the enhanced 

induction of inflammation.  Continued exposure of cells to lower concentrations of H2O2 (50µM) for 

5 days results in a similar enhancement of TNF--induced IL-6 and CXCL8 expression but this effect 

was lost over 10 and 15 days due to induction of antioxidant genes. We extended the acute model 

with slight modification by using IL-1 instead of TNF- as it gave us better IL-6 and CXCL8 

induction. Intracellular studies showed that oxidative stress-driven cytokine induction is mediated 

via activation of the NF-B pathway and increasing NF-B p65 promoter binding. This was associated 

with increased histone H3 acetylation at B response elements in both the IL-6 and IL-8 promoter 
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regions. Chromatin immunoprecipitation assays also confirmed recruitment of bromodomain 

protein 4 (Brd4) to the same sites. Inhibition of Brd4 by JQ1 and PFI-1 significantly reduced the 

expression of IL-6 and CXCL8 cytokines.   

H2O2 enhanced IL-1-induced IL-6 and CXCL8 expression by activating the NF-B pathway. The 

induction of these cytokines was reduced by the BET bromodomain inhibitors JQ1 and PFI1. Our 

findings demonstrate that bromodomain inhibitors could potentially be used as new therapeutic 

agents in inflammatory diseases whereas ICS are ineffective. 
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1.1 Chronic Obstructive Pulmonary Disease (COPD) 

COPD is defined by the Global Initiative for Chronic Obstructive Lung Disease (GOLD) as “a common 

preventable and treatable disease, is characterized by persistent airflow limitation that is usually 

progressive and associated with an enhanced chronic inflammatory response in the airways and the 

lung to noxious particles and gases. Exacerbations and co-morbidities contribute to the overall 

severity in individual patients” (GOLD 2011).  This progressive worsening of the lung function is 

caused by narrowing of the small airways due to increased mucus production, proliferation of the 

smooth muscle cells and fibrosis. This is also accompanied by the destruction of alveoli structure 

(emphysema) and chronic bronchitis (Fig. 1.1)(Barnes 2007). Weight loss, nutritional abnormalities 

and skeletal muscle dysfunction are also recognised symptoms of COPD (Vogelmeier and Bals 2007). 

Physical manifestations of the disease include breathlessness (dyspnea), chronic cough with/without 

sputum, wheezing and intolerance to exercise (Qaseem, Wilt et al. 2011). 

 

Figure 1.1: Histopathology of COPD small airways (A) Normal airway with open lumen (B) Small 

airway lumen filled with mucus (C) Acute inflammation and mucus surrounded by thick airway wall 

(D) Chronic inflammation: fibrosis and hyperplasia of smooth muscle cells accompanied by fibrosis 

resulting in the obstruction of the airway. Adapted from Hogg (2004). 
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1.1.2 Epidemiology and prevalence 

COPD is ranked as the fifth most common cause of death globally and predicted to be the fourth 

leading killer by 2030. It is just below ischemic heart disease, cerebrovascular disease, and HIV/AIDS 

(Mathers and Loncar 2006). It is believed that the lifetime risk of developing COPD is 28% by age 80 

(Gershon, Warner et al. 2011). The World Health Organisation (WHO) projected that it could become 

the 3rd biggest cause of mortality by 2020 worldwide (Fig. 1.2) (Buist, McBurnie et al. 2007). The 

prevalence of COPD among the world population counts for about 10%. According to WHO, there 

are more than 64 million people affected by COPD (Mathers and Fat 2008). However, this is 

underestimated and the actual number is higher than 600 million (Sin and Vestbo 2009).  Most COPD 

patients are either misdiagnosed or unrecognised even long after severely disabled (Barnes 2007; 

WHO 2008). The rate of COPD has increased in the affluent countries in comparison with the 

developing countries mainly due to aging population and better management of other major 

illnesses such as cancer and cardiovascular diseases (Nowak, Berger et al. 2005). One quarter of 

general adult population age 40 or above have mild airflow obstruction (Buist, McBurnie et al. 2007; 

Mannino and Buist 2007; Menezes, Perez-Padilla et al. 2008). For example, there is  an estimated 

12.2 million (14.3%) people aged ≥ 40 suffers from mild airflow limitation in the five major cities of 

Latin American countries (Brazil, Mexico, Uruguay, Chile and Mexico) (Menezes, Perez-Padilla et al. 

2008). Epidemiological studies have shown that prevalence of COPD in USA has doubled between 

1979 and 2002 (Decramer, Janssens et al. 2012). It affects 5% of adult population and costs the 

economy $49.9 billion per annum (Qaseem, Wilt et al. 2011).  In Canada, a 2% increase in the 

numbers of females with COPD was observed between 1996 and 2007 and 9.5% of the Canadian 

population suffer from COPD (Gershon, Wang et al. 2010).  There are still many parts of the world, 

for example Africa and Asia, from which detailed epidemiological data are yet to be reported 

(Soriano and Rodriguez-Roisin 2011). 

According to Department of Health (DoH), 25,000 people die from COPD a year in England and 

Wales. COPD accounted for 4.8% of all deaths in England between 2007 and 2009. The DoH reveals 
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that around 835,000 people suffer from COPD in the UK and an estimate 2.2 million (13% of 

population of England) aged 35 and above remain undiagnosed (Department of Health 2011). COPD 

also places an enormous financial burden on health system and economy as a direct result of 

hospitalisation and time lost from work (Barnes 2007; Gruffydd-Jones 2008). It has been reported 

that GP consultation and hospitalisation has increased for COPD compared with cardiovascular 

diseases, resulting in a greater than 3-fold increase in healthcare costs (Barnes 2007). An estimated 

cost for COPD is over £800 million annually in addition to £2.7 billion in lost working days in the UK 

alone (Department of Health 2010). It is clear that COPD poses a serious problem socially and 

economically that needs to be addressed. 

 

Figure 1.2: World map of estimate mortality rate caused by COPD in male patients per 100,000 

(WHO updated 2004) (Mathers and Fat 2008; Bhome 2012). 

1.1.3 Aetiology 

Tobacco smoking is the primary risk factor linked to COPD in prosperous Westernised countries and 

environmental pollution, especially indoor biomass smoke, is associated in the developing world 

(Decramer, Janssens et al. 2012). Cigarette smoke (CS) is a complex mixture of noxious particles, 

chemicals and reactive oxidant species (ROS) (Rahman and Adcock 2006; Min, Bodas et al. 2011). 

Physical barriers and immune system protect the human lung from harmful environmental agents 
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such as pollution, bacteria, viruses and fungi (Nikota and Stampfli 2012). However, continuous 

cigarette smoking affects these barriers by increasing epithelial permeability and impairing 

mucociliary clearance (van der Vaart, Postma et al. 2004; Forteza, Casalino-Matsuda et al. 2012).  In 

addition, both COPD and smokers are susceptible to respiratory infection, which is the main cause of 

exacerbations in COPD patients especially during later stages of the disease (GOLD III-IV) (Arcavi and 

Benowitz 2004; Churg, Cosio et al. 2008). 

Not all smokers develop COPD and there have been reports of COPD in non-smokers.  A number of 

risk factors have been identified, other than cigarette smoking, such as age, occupational exposure 

to organic dust, asthma, respiratory infection, biomass fuel combustion and poor socioeconomic 

status (Fig. 1.3) (Salvi and Barnes 2009; Clancy and Nobes 2012; Forteza, Casalino-Matsuda et al. 

2012). In addition, susceptibility to COPD is also influenced by genetic risk factors. It is long known 

that deficiency in 1-antitrypsin due to mutation in the gene serpin peptidase inhibitor, clade A, 

member 1 (SERPINA1) leads to COPD and accounts for 1-2% of COPD cases (Kukkonen, Tiili et al. 

2011; Clancy and Nobes 2012).  

Recent studies of genomic-wide association (GWA), that examine association between common 

genetic variation and associated phenotype between group of individuals,  have identified a number 

of candidate genes which are associated with COPD (Berndt, Leme et al. 2012; Bosse 2012; Foreman, 

Campos et al. 2012). Among these, COPD patients show a correlation between lung function and 

single nucleotide polymorphisms (SNPs) in three loci (GSTCD, TNS1 and HTR4) (Soler Artigas, Wain et 

al. 2011). GSTCD gene encodes for glutathione s-transferase C-terminal domain-containing protein. 

GSTCD protein catalyses glutathione (GSH) binding to oxidative stress products and regulates lipid 

mediators (prostaglandins and leukotrienes); thereby prevents cellular damage (Hayes, Flanagan et 

al. 2005). GSH is antioxidant that donates an electron (H++e-) to unstable molecules such as ROS to 

become oxidised glutathione disulphide (GSSG) (Flohe 2012).  TNS1 gene encodes for tensin-1 

adhesion protein that show binding preference to actin with SH2 (Src homology 2) domain. Tensin-1 

is associated with cell signalling and migration (Hall, Balsbaugh et al. 2010). HTR4 gene encodes for 
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5-hydroxytryptamin 4 (5-HT) receptor which is a member of G-protein-coupled receptors (GPCRs) 

and expressed in neurones and epithelial type cells (Ghavami, Stark et al. 1999; Wilk, Shrine et al. 

2012). GPCRs are generally expressed in phagocytes for chemokines and chemoattractants (Sun and 

Ye 2012). Similarly, BICD1 (Bicaudal D homology 1) is another gene which has been studied in 

telomere shortening and cellular senescence (Savale, Chaouat et al. 2009). Leukocytes from COPD 

patients have reduced telomere lengths compared with healthy smokers and non-smokers (Savale, 

Chaouat et al. 2009). This premature reduction is associated with oxidative stress and inflammatory 

damage (Kawanishi and Oikawa 2004). SNP analysis of BICD1 reveals genetic variation between 

emphysematous patients and healthy control (Kong, Cho et al. 2011).  These loci may provide some 

explanation to the underlying cause of COPD but it is ultimately the interaction between nature 

(environmental risk factors) and nurture (genotype) that leads to COPD (phenotype) (Ober, Butte et 

al. 2010).  

 

Figure 1.3: Risk factors associated with COPD.  Tobacco smoking is the primary risk factor for COPD 

in about 90% of cases. However, susceptibility of an individual to COPD also depends on others 

environmental and genetic risk factors (Salvi and Barnes 2009; Berndt, Leme et al. 2012). Depiction 

obtained and modified from the Global Initiative for Chronic Obstructive Lung Disease (2011). 
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1.1.4 Pathophysiology of COPD  

COPD is a generic term to describe a number of diseased conditions including emphysema, chronic 

bronchitis and small airways disease. Each condition has its unique clinical features but they all 

contribute to the continuous restriction of airflow throughout respiratory airways (Barnes 2007; 

Vestbo, Hurd et al. 2012). The normal function of the lung is to provide continuous supply of oxygen 

and remove carbon dioxide. It is achieved through simple diffusion which occurs between alveoli and 

blood. This exchange mechanism is vital for survival (Clancy and Nobes 2012). Lung function 

decreases with age but it is accelerated in COPD patients due to cigarette smoke (CS) (Fig. 1.4) 

(Fletcher and Peto 1977; Bednarek, Gorecka et al. 2006). Noxious particles in CS cause irritation of 

the airways which results in enlargement of mucus gland, mucus hypersecretion, ciliary dysfunction 

and epithelial-cells hyperplasia in the early stage of the disease. This is accompanied by increased in 

goblet cells, smooth muscle cells mass, and fibrosis (Barnes 2004; Rogers 2005). 

 

Figure 1.4: The effect of cigarette smoking on lung function. Lung function decreases with 

senescence, however, this is rapidly decreased in in COPD patients. Adapted from Fletcher and Peto 

(1977) and Bednarek, Gorecka et al. (2006).  
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CS and other irritants trigger inflammatory reaction in the small airways, lung parenchyma and 

elsewhere in the body (systemic) (Barnes 2008; Voelkel, Gomez-Arroyo et al. 2011). Inflammation 

occurs not only in COPD patients but also in healthy smokers (Willemse, Postma et al. 2004). 

However, the degree of intensity varies depending on individual susceptibility, genetics and the 

magnitude of CS exposure (Dewar and Curry 2006). Persistent inflammation and on-going repair of 

the airways leads to remodelling involving decrease in airway lumen and increased in the 

surrounding tissues (Fig. 1.5). This remodelling is accompanied by excess mucus in the airways, 

causing airflow obstruction (Decramer, Janssens et al. 2012).  In addition, chronic inflammation and 

increase proteinases such as elastase and matrix metalloproteinases (MMPs) released from 

macrophages and neutrophils cause the disappearance of surrounding alveoli, leaving behind 

abnormal enlarged airspace-termed emphysema. This has an impact on the O2 and CO2 exchange 

mechanism (Min, Bodas et al. 2011; Voelkel, Gomez-Arroyo et al. 2011). 

 

Figure 1.5: Comparison between healthy and COPD airways.  (A) Normal airway: Large lumen and 

thin structural walls (B) COPD airway: Lumen is narrowed and surrounded by inflammed tissues 

(Decramer, Janssens et al. 2012).  

 

COPD and asthma share some similar clinical features but there are major differences. Both are 

inflammatory disorders of respiratory tract and cause narrowing of the airways. However, asthma 

often starts in childhood and inflammation is localised to larger airways, whereas, COPD develops in 

age above 40 and associated with inflammation of small airways (Barnes 2008; Barnes 2008). The 

inflammatory response in asthma is mainly triggered by allergen and mediated by dendritic cells, 

http://www.sciencedirect.com/science/article/pii/S0140673611609689


 
 

The role of NF-B p65 and Brd4 in oxidative stress driven inflammation PhD thesis 

 

26 

 

eosinophils, activated mast cells, CD+4 T cells (Th2 cells). In contrast, COPD is associated with CS and 

recruit macrophages and neutrophils and CD+ 8 T cells at site of inflammation (Fig. 1.6) (Barnes 2008; 

Zanini, Chetta et al. 2010).  Steroids are the most effective anti-inflammatory drugs and are 

frequently used in asthma. However, they are ineffective in most patients with COPD (Barnes 2006).  

 

Figure 1.6: The difference between asthma and COPD.  There are some similarities and differences 

between asthma and COPD including both histopathological and immunological changes which are 

highlighted above.  Adapted and modified from Barnes (2008). 
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1.1.5 Diagnosis 

COPD is diagnosed depending on signs, symptoms and medical history. However, a spirometry test is 

frequently used to assess lung function. Spirometry test shows an irreversible decrease in forced 

expiratory volume in 1 second (FEV1) and the ratio of FEV1 to forced vital capacity (FEV1/FVC) 

(Mannino and Buist 2007; 2011). The severity of the disease is classed into 4 categories depending 

on FEV1/FVC ratio (Table 1.). X-ray and quantitative computed tomography (CT) are also utilised to 

evaluate lung function and structure (Mets, de Jong et al. 2012).  The chest CT scans assess lung 

density, which is proportional to lung airspace enlargement otherwise known as emphysema 

(Berndt, Leme et al. 2012). 

 

Table 1: Spirometric classification of COPD severity.  Spirometry test is used to classify the severity 

of the disease. FEV1: Forced Expiratory Volume in one second; FVC: Forced Vital Capacity.  Adapted 

from Mannino and Buist (2007). 

 

1.1.6 Treatments 

The multifaceted nature of COPD has proved challenging to develop a treatment that can target all 

the components of the disease (Barnes 2010). Currently, combinations of pharmacological and non-

pharmacological strategies are used in the management of COPD. Pharmacological options include 

bronchodilators, inhaled corticosteroids (ICS), combination therapy and long-term oxygen therapy 

(LTOT). Non-pharmacological interventions are smoking cessation, pulmonary rehabilitations, 

Classification of COPD severity Classification based on post bronchodilator lung function 

GOLD 1 (mild) 
 

FEV1/FVC <0·70 and FEV1 ≥80% predicted 

GOLD 2 (moderate) 
 

FEV1/FVC <0·70 and 80% >FEV1 ≥ 50% predicted 

GOLD 3 (severe) 
 

FEV1/FVC <0·70 and 50% >FEV1 ≥ 30% predicted 

GOLD 4 (very severe) FEV1/FVC <0·70 and FEV1 <30% predicted or FEV1 <50% 
predicted plus chronic respiratory failure 
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mechanical ventilation and lung-volume-reduction surgery (LVRS) (Hanania, Ambrosino et al. 2005).  

Among these treatments, bronchodilators and ICS are frequently prescribed (Barnes and Stockley 

2005).  

Bronchodilators are used for symptomatic relief, which consists of short-acting 2-agonists 

(Salbutamol) and long-acting (Salmeterol and Formoterol) or anti-muscarinic drugs like Tiotropium. 

They improve FEV1 in some patients, but, the effect on lung function, reduction in inflammation and 

exacerbation remain poor (Hanania, Ambrosino et al. 2005; Barnes 2010; Bhome 2012).  ICS are also 

used either alone or in combination with bronchodilators in the management of inflammation in 

COPD patients.  However, they provide little or no benefits to COPD patients (Hakim, Adcock et al. 

2012).  It has minimal significant effects on some of the key inflammatory mediators such as 

CXCL8/IL-8, tumour necrosis factor-alpha (TNF-) and MMPs (Barnes 2007). ICS and antibiotics are 

recommended by GOLD for symptomatic treatments in patients with exacerbation and whose 

FEV1<50% of predicted (GOLD 2011; Mackay and Hurst 2012).  Glucocorticoids are the most effective 

and widely used therapy in many of inflammatory and immune diseases with exception of COPD 

(Barnes and Adcock 2009). This lack of response is partially explained by cigarette smoke and 

oxidative stress, reducing HDAC2 activity and expression as well as impairing GR translocation 

(Barnes and Adcock 2003; Barnes 2009). However, it may also be due to other epigenetic changes, 

including alteration in DNA and histones status, under oxidative stress (Adcock, Tsaprouni et al. 

2007; Adcock, Chou et al. 2009).   

 

1.2 Chronic Inflammation  

Inflammation is the core component of COPD and drives the pathogenesis of the disease, resulting in 

remodelling of small airways and destruction of lung parenchyma (Barnes 2008). Inflammation is a 

critical physiological response against infections, physical injuries, and irritants which is 

characterised by loss of function, redness, pain, swelling and heat (Fig. 1.7) (Lawrence, Willoughby et 
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al. 2002). Inflammation is vital for healing, pathogen removal and limiting harmful stimuli 

(Winkelman 2008).  Inflammation is usually a temporary process that entails increased blood flow, 

fluids, leukocytes and inflammatory mediators to the site of injury. This results in quarantining and 

elimination of the harmful entities along with repairing the affected tissue. This short-lived 

inflammation is described as acute inflammation (Feghali and Wright 1997). However, continuous 

and unchecked inflammation, known as chronic inflammation, can result in a number of conditions 

including septic shock, asthma, atopic rhinitis, atherosclerosis, rheumatoid arthritis and COPD 

(Pitchford 2007; Fox, Hegde et al. 2010). 

 

Figure 1.7: Characteristics of inflammation. Inflammation is a normal physiological response against 

infections, injuries and irritants which is chracterised by heat, redness, swelling, pain and loss of 

function  (Lawrence, Willoughby et al. 2002). 

 

1.2.1 Inflammatory Cells 

Chronic inflammation is a complex disorder that involves several types of cells in a COPD (Barnes 

2004). Irritants and chemicals, derived from cigarrete smoke (CS), activate a number of structural 

and immune cells that produce multiple inflammatory mediators, which orchestrate inflammation in 

COPD (Tamimi, Serdarevic et al. 2012). Structural cells maintain the integrity of bronchial wall and 

form a first line of defence against inhaled harmful agents. The inflammatory responses, initiated by 
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structural cells in the airways, are potentiated by immune cells, resulting in airway remodelling and 

obstruction (Panettieri 2004; Tamimi, Serdarevic et al. 2012). 

 

(A) Structural cells  

Structural cells play an important role in the induction of inflammation and airway remodelling in 

COPD. Some these cells are briefly described below.  

I) Epithelial cells  

Airway epithelial cells (AECs) line the airways and form a barrier against the pathogens and noxious 

particles (Wang, Bai et al. 2008). The main function of epithelium is to maintain the integrity and 

structure of the airways. Airway inflammation and injury may cause epithelial damage and abnormal 

activation of repair and/or activation process (Sacco, Silvestri et al. 2004; Wen, Reid et al. 2010).  

Following injury, the epithelium repairs and regenerates itself in order to restore its function 

through proliferation and differentiation (Fig. 1.8) (Di Stefano, Caramori et al. 2004). The epithelium 

consist of a number of specialised epithelial cells including ciliated epithelial and mucous (goblet) 

cells.  A layer of mucus covering the ciliated epithelial cells traps and removes the inhaled particles 

from the airways, a process termed mucociliary clearance (Rogers 2005).  In COPD, mucociliary 

function is impaired as a result of CS. This causes the production of excess mucus and its retention, 

leading to obstruction and infection of the airways (Koblizek, Tomsova et al. 2011; Liu and Di 2012). 

It has been shown that the airway epithelium is differentiated (squamous metaplasia) in chronic 

bronchitis and COPD due to increased proliferation (Barnes, Shapiro et al. 2003).  In addition, AECs 

are an integral part of the innate and adaptive immune response. They produce antimicrobial 

peptides such as mucins, defesins and antiprotease (SLPI: secretory leukoprotease inhibitor) (Barnes 

2004).  They also produce pro-inflammatory factors, which recruit and activate phagocytes to the 

site of infection (Li, Wang et al. 2012).  CS and other noxious particles may modify these beneficial 
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roles of AECs, making COPD patients more susceptible to respiratory infection and exacerbation 

(Dacydchenko and Bova 2007; Hurst, Vestbo et al. 2010). 

 

Figure 1.8:  The role of epithelial cells in aiways.  Epithelial cells protect  and maintain the integity of 

the aiways. The epithelium consists of speciliased cells such as ciliated epithlial and goblet cells, 

which together are involved in mucociliary clearance. Epithelial cells also have the ability to 

regenerate following injury.  Epithelial cells are an integral part of adaptive and innate immune 

response by secreting several antimicrobial peptides, proteases and inflammatory mediators.  

Adapted and modified from Puchelle, Zahm et al. (2006). 

II) Airway smooth muscle cells 

Airway smooth muscle cells (ASMCs) encircle the entire bronchial airways in the circular orientation 

below the epithelial basement membrane (Fig. 1.9) (Matthay and Clements 2004). Beside 

maintaining airway structure, their possible functions include controlling the size of airway lumen, 

expelling foreign materials through coughing or forced expiration and assisting in lung contraction 

(James and Carroll 2000). Evidence also suggests that in addition to their contractile abilities, they 

produce several inflammatory and growth factors which not only contribute to inflammation but 

also alter contractile properties and calcium homeostasis, resulting in airway wall remodelling 

(Panettieri 2004; Chang, Bhavsar et al. 2012). ASMCs account for bronchial hyper-responsiveness in 

asthma and COPD which is characterised by a heightened response to direct or indirect challenges 

and also the reduced bronchodilator response seen in COPD patients (Chung and Sterk 2000). The 

small airways in COPD patients become thicker and rigid due to increased ASMCs proliferation (Knox 



 
 

The role of NF-B p65 and Brd4 in oxidative stress driven inflammation PhD thesis 

 

32 

 

1994). The changes in airway smooth muscle are more prominent in the small airways than in large 

airways and correlate with airflow limitation in COPD (Chung 2005; Camoretti-Mercado 2009). 

 

Figure 1.9: The stucture of the bronchial airway. The figure illustates the structure of the aiway with 

smooth muscles cells encircling the airway underneathe the epithelial basmement membrane 

(Matthay and Clements 2004). 

 

III) Fibroblasts  

Airway fibroblasts are responsible for extracellular matrix (ECM) regeneration and maintenance. 

They are major producers of ECM proteins (laminin, fibronectin, and fibrinogen), collagens 

proteoglycans and inflammatory mediators (Ingram, Huggins et al. 2011; Zhang, Wu et al. 2011). 

Fibroblast are found in the extracellular matrix under the epithelial basement membrane, interacting 

with the sheath of smooth muscle cells (Fig. 1.10) (Knight 2001). The ability of epithelial cells to 

repair the damage in the airways is not only dependent on their own actions but also on 

inflammatory mediators, growth factors and ECM proteins, released by other cells in particular 

fibroblasts (Sacco, Silvestri et al. 2004). Fibrosis is a the key feature of airway remodelling, 

characterised by the excess deposition of collagen fibres and proteoglycans under the basement 

membrane, which is seen in COPD and asthmatic patients (Brightling, Gupta et al. 2011; Rennard and 
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Wachenfeldt 2011). Fibroblasts are an important source of transforming growth factor (TGF-), 

which is associated with the induction of local fibrosis (Huang, Sharma et al. 2002; Wells, Kruglov et 

al. 2004). TGF-, released from the fibroblast of COPD patients, modulates the production of 

proteoglycans and ECM proteins (Konigshoff, Kneidinger et al. 2009). It has been shown that 

proteoglycans are differentially expressed in COPD Lungs (Hallgren, Nihlberg et al. 2010). A study has 

also demonstrated that fibroblasts from COPD patients manifest diminished repair responses as 

compared to healthy controls and smokers, attributed to the development of emphysema (Togo, 

Holz et al. 2008). 

 

Figure 1.10: Fibroblasts in the lung airways. Fibroblast are found in the extracellular matrix beneath 

the epithelial basement membrane, interacting with the smooth muscle cells.  Fibroblasts are major 

producers of, growth factors, collagens and proteoglycans which contribute to fibrosis  and airway 

remodelling following inflammation and injury. Adapted and modified from Holgate (2007) 

 

B) Immune cells  

Chronic inflammation in COPD is associated with the accumulation of several immune cells in the 

small airways and the severity of the disease correlates with the degree of airway inflammation 

(Chung and Adcock 2008).  Some of these cells are discussed below. 
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I) Macrophages 

Macrophages are one of the most important effector and inflammatory regulatory cells in COPD and 

play a central role in the innate and acquired immune system (Barnes 2004). They are involved in the 

clearance of pathogens, necrotic cellular debris and apoptotic neutrophils from respiratory tract 

through phagocytosis (Donnelly and Barnes 2012). Macrophages are activated by CS and secrete 

several inflammatory proteins that orchestrate inflammation in COPD (Yao and Rahman 2009). 

Studies have shown that there is an increased presence of macrophages in the sputum, 

bronchoalveolar lavage fluid (BALF), and small airways of COPD patients which increases with 

disease severity (Tetley 2002; Barnes 2004; Frankenberger, Menzel et al. 2004). Macrophages are 

differentiated tissue monocytes that originate from stem cells in the bone marrow. They are 

considered as phagocytic cells that reside in lymphoid and non-lymphoid tissues (Geissmann, Manz 

et al. 2010). This higher numbers of macrophages in smokers and COPD patients may be due to 

increased recruitment of monocytes from circulation into the inflamed tissue or increased 

proliferation and survival in the lung (Rosseau, Selhorst et al. 2000; Barnes 2004). 

Activated macrophages produce a range of effector molecules including ROS, lipid mediators, 

cytokines, chemokines and proteases (Fig. 1. 11) (Wood and Stockley 2006; Chung and Adcock 

2008). Corticosteroids are ineffective in suppression of inflammation in COPD (Adcock, Ito et al. 

2004; Hayashi, Wada et al. 2004). In accordance, the release of inflammatory mediators (CXCL8, 

TNF- and MMP-9) from COPD macrophages failed to be suppressed by dexamethasone following 

stimulation with IL-1(Culpitt, Rogers et al. 2003).  There is a positive correlation between the 

numbers of macrophages in the alveolar space of patients with emphysema compared with normal 

smokers (Retamales, Elliott et al. 2001; Meshi, Vitalis et al. 2002). This may be due to increased 

production of elastolytic enzymes (MMPs, cathepsins, elastase) by macrophages and neutrophils 

that cause alveolar walls destruction (Abboud and Vimalanathan 2008; Betsuyaku, Fuke et al. 2012). 

Studies have shown that elastolytic activity of alveolar macrophages (AMs) from patients with 

emphysema is greater in comparison with patient with other lung diseases (Ofulue and Ko 1999; 
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Russell, Culpitt et al. 2002; Abboud and Vimalanathan 2008). This is supported by significantly 

greater AM cell counts in the BALF of emphysematous patients compared with healthy smokers 

(Abboud, Ofulue et al. 1998; Tetley 2002). Overall, COPD macrophages overexpress inflammatory 

proteins and proteases, are less mobile and have a reduced phagocytic capacity compared to those 

from control subjects (Donnelly and Barnes 2012). 

 

Figure 1.11:  The activation of a macrophage by cigarette smoke extract. Cigarette smoke activates 

macropahges to prudeuce a variety of inflammatory proteins and proteolytic enzymes that 

contribute to the pathophysilogy of COPD, including emphysema, fibrosis, hypermucus secretions, 

steroid resistence and activation of other inflammatoy cells (Barnes 2004). 

 

II) Neutrophils 

Neutrophils have been proposed as the primary effector cells in COPD and the major cellular sources 

of inflammatory mediators (Barnes 2008). Neutrophils develop from stem cells in the bone marrow 

into fully mature neutrophils before they are released into the blood circulation. Upon activation, 

neutrophils migrate from blood vessels into the connective tissues at the site of injury/infection. 

They attach to endothelial cells along the vessel wall using adhesion glycoproteins such as selectin 

and integrin (Fig. 1.12) (Borregaard 2010; Bugl, Wirths et al. 2012). Activated neutrophils kill and 

eliminate microorganisms or harmful stimuli through phagocytosis, respiratory burst (generation of 

http://pharmrev.aspetjournals.org/content/56/4/515/F6.expansion.html
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ROS) and the release of proteases from their granules. They also secrete several chemoattractants 

and inflammatory mediators to recruit other inflammatory cells at the damaged site (Pettersen and 

Adler 2002). As inflammation resolves, neutrophils undergo apoptosis and are removed by 

macrophages. Programmed cell death (apoptosis) reduces the leakage of the cytotoxic content into 

the extracellular space as supposed to necrosis (Milot and Filep 2011; Zhou, Dai et al. 2012).  

Sputum from COPD patients show increased neutrophilia which is correlated with the severity of 

peripheral airway dysfunction (O'Donnell, Peebles et al. 2004; Singh, Edwards et al. 2010).  

Neutrophil elastase and several MMPs are recognised as major proteinases released by neutrophils 

during inflammation (Shapiro 2002; Zhou, Dai et al. 2012). COPD patients, with deficient or low 

levels of 1-antitrypsin, inadequately inhibit these proteinases, leading to excess tissue damage seen 

as emphysema (Shapiro 2002; Kukkonen, Tiili et al. 2011).  Neutrophils from COPD patients show 

delayed apoptosis, increased chemotaxis and proteolytic activity when compared with healthy 

controls (Noguera, Batle et al. 2001; Milara, Juan et al. 2012; Zhang, He et al. 2012).  This is indicative 

of the persistent inflammation seen in COPD.  

 

Figure 1.12: The migration of neutrophils from bloodstream to the site of injury.  Under normal 

conditions, nueutrophils move along the blood vessel wall. Once activated by the stimuli, neutrophil 

attaches to the endothelial cells using adhesion moleucles (selectin, integrim, ICAM, PSGL-1) and 

migrate through the microvascular endothelial barrier to the site of injury. This allows it to 

phagocytose the microorganisms and release inflammatory cytokines and chemokines to attract 



 
 

The role of NF-B p65 and Brd4 in oxidative stress driven inflammation PhD thesis 

 

37 

 

other inflammtory cells.  Once the damged is limited, the neutrophil undergoes apoptosis and is 

removed by macrophages. PSGL-1: Neutrophil P-selectin glycoprotein ligand1; ICAM: intercellular 

adhesion molecule. Adapted and modified from Borregaard (2010). 

 

III) T Lymphocytes  

T cells (TCs) are group of lymphocytes that differ from other lymphocytes (Natural killer and B cells) 

by expressing T cell receptors (TCRs). They originate from stem cells in the bone marrow and mature 

in the thymus. TCs are important part of adaptive immune response and are involved in cell 

mediated immunity. They are generally divided into CD4+ cells (T-helper) and CD8+ cells (T cytotoxic) 

(Brusselle, Joos et al. 2011).  Both CD4+ and CD8+ cells are present in the peripheral airways and 

lung parenchyma of COPD patients. However, the prevalence is skewed towards CD8+ cells in COPD 

(Saetta, Di Stefano et al. 1998; Paats, Bergen et al. 2012). COPD patients have increased number of 

CD8+ T cells in the central and peripheral airways when compared with smokers and non-smokers 

with healthy lung functions. This accumulation is partially explained by reduced apoptosis of CD8+ T 

cells and existence of chemoattractants secreted by resident cells (Siena, Gjomarkaj et al. 2011; 

Borger, Oliver et al. 2012).  Using flow cytometry analysis, it has been shown that a significant 

proportion of both natural killer and CD8+ T cells are higher in COPD sputum than smokers and 

release higher levels of proteolytic enzymes such as perforin and granzyme-B than smokers 

(Urbanowicz, Lamb et al. 2010). Similarly, levels of perforin in the epithelial lining fluid, obtained 

from the peripheral airways of COPD patients, are significantly higher and correlate with lung 

dysfunction when compared with healthy smokers and non-smokers (Shiratsuchi, Asai et al. 2011).  

The ability of T lymphocytes to survive longer in the lung and release proteolytic enzymes may be 

contributing to tissue cytotoxicity and emphysema (Fig. 1.11) (Barnes 2004).  

IV) B cells 

B cells are group of lymphocytes that are primarily involved in the induction of humoral immune 

response (part of adaptive immune system). They are distinguished from other lymphocytes by 

expressing B cell receptors (BCRs) on their cell surface membrane. BCRs enable B cells to bind to 
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specific antigens and produce specific antibodies against that antigen (Brusselle, Joos et al. 2011; 

Almqvist and Martensson 2012). Bronchial biopsies of large airways from COPD patients have shown 

increased number of B cells (Gosman, Willemse et al. 2006; Polverino, Baraldo et al. 2010). 

Furthermore, they appear in small airways and lung parenchyma of COPD patients as a part of 

organised lymphoid follicles, consisting of B-cells, T lymphocytes and dendritic cells (Fig. 1.13) 

(Plumb, Smyth et al. 2009; Olloquequi, Montes et al. 2011). 

Accumulating evidence suggests that COPD, particularly in late stage disease (Gold stage III and IV), 

shares many clinical and pathological attributes of autoimmune disease.  All smokers have some 

degree of inflammation; however, it is amplified in COPD and persists long after smoking cessation, 

suggesting the presence of a similar self-perpetuating mechanism to that which occurs in other 

autoimmune diseases (Hogg 2006; Putova, Dostal et al. 2007; Tzouvelekis, Kostikas et al. 2012).  It 

has been postulated that perhaps CS down regulates immune suppressor cells and exposes 

intracellular hidden epitopes by damaging lung tissues (Agusti, MacNee et al. 2003; Taylor 2010). 

Our group has shown that oxidative stress induces unique post-translational modifications that 

make proteins highly immunogenic, thereby breaking the immune tolerance and inducing the 

presence of autoantibodies (Kirkham, Caramori et al. 2011). T-helper 17 cells, a subset of CD4+T 

cells, are elevated in COPD, which are important in autoimmune response and activation of B cells 

(Di Stefano, Caramori et al. 2009; Plumb, Smyth et al. 2009). Several studies have reported the 

prevalence of autoantibodies in COPD patients (Lee, Goswami et al. 2007; Feghali-Bostwick, Gadgil 

et al. 2008; Bonarius, Brandsma et al. 2011; ; Kirkham, Caramori et al. 2011; Rinaldi, Lehouck et al. 

2012). 
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Figure 1.13: The innate and adaptive immune responses in COPD.  Inflammation remains for years 

after smoking cessation in COPD. It is well documented that the innate immune system (Epithelial 

cells, macrophages, neutrophils, smooth musclses cells etc.)  are  pivatal in orchestrating 

inflammation in COPD. However, the involvement of the adaptive immune sytem (T lymphoctes, B 

cells, dentritic cells, autoantidodies etc.) has also been implicated in the pathophysiology of the 

disease, adding another dimension to the complexity of the disease (Brusselle, Joos et al. 2011). 

 

1.2.2 Inflammatory mediators 

Activated inflammatory cells secrete a cocktail of molecules that drive and maintain inflammation 

locally and systemically. These molecules include cytokines, chemokines, proteases and lipid 

mediators, which results in the disease pathophysiology, including fibrosis, emphysema, excess 

mucus production and chronic inflammation (Fig. 1.14) (Barnes 2009).  Some of these mediators are 

discussed in the following paragraphs.  

A) Cytokines 

Cytokines are regulatory proteins that are produce by structural and immune cells in response to 

infection, injury and inflammation (Dinarello 2000). Multiple proinflammatory genes are expressed 

http://www.sciencedirect.com/science/article/pii/S0140673611609884
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in COPD, leading to increased production of inflammatory cytokines, which is linked to disease 

severity (Barnes 2004).  

Increased levels of TNF-and  interleukin (IL)-6 are reported in the serum and sputum of COPD 

patients, which are secreted by inflammatory cells such as epithelial cells, macrophages, airway 

smooth muscle cells, and T lymphocytes (Tsoumakidou, Tzanakis et al. 2003; Sin and Man 2008; 

Grubek-Jaworska, Paplinska et al. 2012). TNF- is associated with cachexia (weight loss) in COPD and 

negatively correlates with FEV1 (Deveci, Deveci et al. 2010; Grubek-Jaworska, Paplinska et al. 2012). 

IL-6 is recognised as important pro-inflammatory cytokine, involved in the differentiation and 

activation of CD4+ T cells and regulatory T cells (T reg cells) (Neurath and Finotto 2011). Several 

inflammatory stimuli e.g. IL-1 and TNF- can trigger the expression of IL-6 in various cell types 

including macrophages, epithelial cells and T lymphocytes (Thorley and Tetley 2007). There is an 

increased level of IL-6 in COPD serum and lung (Chaouat, Savale et al. 2009). SNP analysis of IL-6 

gene shows variation in COPD patients when compared to control subjects and decline in lung 

function (He, Foreman et al. 2009). There is marked elevation of IL-1 and reduced levels of 

endogenous IL-1 antagonists in the sputum of COPD patients (Sapey, Ahmad et al. 2009). IL-1 is an 

endogenous pyrogen, secreted by a variety of cells in particular macrophages.  It promotes 

leucocytosis especially the release of neutrophils from bone marrow and the induction of other 

inflammatory cytokines and adhesion molecules (Chung 2001). IL-17 is another potent inflammatory 

cytokine, strongly associated with Th-17, CD4+ and CD8+ lymphocytes and recruits macrophages and 

neutrophils to the site of inflammation (Eustace, Smyth et al. 2011; Vanaudenaerde, Verleden et al. 

2011). Sputum and peripheral lung tissues from COPD show up regulation of IL-17 expression 

(Zhang, Lao et al. 2010; Vargas-Rojas, Ramirez-Venegas et al. 2011; Cazzola and Matera 2012).  There 

are other cytokines that are also considered to be important drivers of inflammation in COPD such as 

thymic stromal lymphopoietin (TSLP), IL-18 and IL-32 (Barnes 2009; Vargas-Rojas, Ramirez-Venegas 

et al. 2011). 
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B)  Chemokines 

Chemokines are proteins that act as chemoattractants to recruit and guide the migration of 

inflammatory cells to the site of inflammation such as airways in COPD (Barnes 2008). Chemokines 

are generally divided into four groups, C, CC, CXC and CX3C chemokines. This classification is based 

on the disulfide bond between first two cysteine residues, for example, if the first two cysteine 

residues are adjacent to each other then it is grouped as CC chemokine (-chemokine) or if there is 

intervening amino acid between these two cysteine residues then it is classed as CXC chemokine (-

chemokine) (Fernandez and Lolis 2002). CCL2, which is also known as monocyte chemoattractant 

protein-1 (MCP-1), attracts monocytes from bloodstream to affected tissue to become macrophages 

(Barnes 2003).  CCL2 levels are elevated in the sputum of COPD and correlates with decreased in 

FEV1 (Traves, Culpitt et al. 2002).  Patients with chronic bronchitis exhibit increased concentrations 

of CCL3 (or macrophage inflammatory protein-1; MIP-1), which is one of main chemoattractants of 

macrophages (Capelli, Di Stefano et al. 1999). There are other inflammatory cells which also express 

the receptor (CCR5) for CCL3 chemokine including, T lymphocytes, epithelial cells and eosinophils 

(Barnes 2008; Barnes 2009). CCL5 (or RANTES) is a chemotactic for a number of inflammatory cells 

including T cells and blood monocytes. It is responsible for increased number of macrophages and 

CD8+ T cells in the lung of COPD patients (Conti and DiGioacchino 2001; Di Stefano, Caramori et al. 

2009). CXCL8 (or IL-8), also known as neutrophil chemotactic factor, induces chemotaxis of 

neutrophils and phagocytosis (Broaddus, Hebert et al. 1992; Williams and Jose 2001). It is released 

by a number of cells including macrophages and airway epithelial cells (Williams and Jose 2001). 

CXCL8 is significantly increased in the sputum of COPD patients and correlates with increased 

numbers of neutrophils (Keatings, Collins et al. 1996; Malerba, Ricciardolo et al. 2006). The 

concentrations of CXCL8 and number of neutrophils are further increased in the sputum of COPD 

patients during acute exacerbated (Crooks, Bayley et al. 2000; Aaron, Angel et al. 2001; Fujimoto, 

Yasuo et al. 2005). High expression of CXCL8 plays a key role in COPD pathogenesis and has led to 

the development of CCR1/2 agonist strategies for COPD (Mukaida 2003; Donnelly and Barnes 2006; 
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Struthers and Pasternak 2010). Clinical trials have shown a mixture of both disappointing and 

positive results so far (Lazaar, Sweeney et al. 2011; Lebre, Vergunst et al. 2011). 

C)  Lipid mediators 

There is increased evidence that lipid mediators, derived from polyunsaturated fatty acids, promote 

and regulate inflammation (Calder 2009). Increased prostaglandins have been measured in the 

exhaled breath condensate of COPD patients and this correlates with airflow limitation and disease 

severity (Montuschi, Kharitonov et al. 2003; Chen, Chen et al. 2008). Prostaglandins are 

bronchoconstrictors and induce coughing in COPD by activating airway sensory nerves (Maher, 

Birrell et al. 2009).  Leukotrienes B4 (LTB4) is another lipid mediator released by macrophages and 

neutrophils. It is a potent chemoattractant of neutrophils in the airways. It is elevated in the exhaled 

breath condensate and sputum of COPD patients (Montuschi, Kharitonov et al. 2003; Montuschi 

2005). Several other lipid mediators have been reported to be important in the induction of 

inflammation in COPD, including thromboxane, cysteinyl-leukotrienes and platelet-activating factors 

(PAFs) (Barnes 2009; Calder 2009). However, not all lipid mediators are associated with 

inflammation, for example, lipoxins, resolvins and protectins are believed to be protective and help 

resolving inflammation (Kohli and Levy 2009). It seems that there is a balance between pro and anti-

inflammatory lipid mediators to maintain homeostasis. 

D)  Protease/anti-protease 

Proteases (also referred as proteinase) are enzymes that are important in the killing of microbial 

pathogens; however, their deregulation can lead to undesirable effects such as inflammation and 

tissue destructions (emphysema). The existence of endogenous anti-proteinases can halt and 

dampen the unwanted properties of these enzymes (Abboud and Vimalanathan 2008). In COPD, 

there is an increased level of proteases over anti-proteases (Gadek, Fells et al. 1981). This could have 

a potentially positive impact on infection, however, unless a perfect balance is achieved, the effect 

can be damaging (Inoue, Takano et al. 2005). A number of proteases are implicating in the 
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pathophysiology of the COPD including neutrophil elastase (NE) and MMPs (Inoue, Takano et al. 

2005).  For example, there is a 3-12-fold increase in MMP-1, -8 and -9  levels in the sputum of COPD 

patients, which negatively correlates with FEV1 (Calder 2009).  Pro-inflammatory mediators such as 

IL-1 activate macrophages and neutrophils to secrete MMP-9 and NE, respectively (Chung 2001; 

Culpitt, Rogers et al. 2003).  Neutrophils derived NE has pluripotent properties. It can regulate the 

expression of cathpsin B and MMP2 in macrophages and it can also activate pro-MMP-2, -7 (Greene 

and McElvaney 2009). It is also regarded as proinflammtory mediator (Carroll, Greene et al. 2005). 

There are increased number of neutrophils in the sputum and peripheral lung airways of COPD 

patients which is associated with increased NE and impaired lung airways (O'Donnell, Peebles et al. 

2004; Singh, Edwards et al. 2010). 1-antitrypsin is a protease inhibitor, synthesised in liver and 

secreted into blood, where it diffuses into lung interstitium (supporting tissues) and alveolar lining 

fluid. It inactivates NE and prevents lung damage from proteases (Brode, Ling et al. 2012).  Its 

deficiency is linked to emphysema in COPD patients (Shapiro 2002; Kukkonen, Tiili et al. 2011). 
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Figure 1.14:The role of inflamamtory cells and mediators in the pathophysiology of COPD.  

Inflammation is the core component of COPD. Cigarette smoke activates  several structural and 

immune cells to produce a plethora of cytokines, chemokines, lipid mediators and proteases, 

resulting in the pathophysiological features of the disease such as fibrosis, emphysema, excess 

mucus production and airway limitation (Barnes 2009). 

 

1.3 The NF-B inflammatory pathway 

The nuclear factor-kappa B (NF-B) inflammatory pathway is one of the main signalling pathways 

activated in inflammatory cells and is the master transcription regulator of several inflammatory 

mediators including cytokines, chemokines, growth factors and proteases (Schreck and Baeuerle 

1990; Salminen, Huuskonen et al. 2008). NF-B is activated in COPD and its activity increases 

furthermore during exacerbation (Kersul, Iglesias et al. 2011). It is also involved in the innate and 

adaptive immune system (Watters, Kenny et al. 2007). The NF-B transcription complex comprises 

of two families of proteins, the Rel family (RelA/p65, c-Rel and RelB) and NF-B family (p100 and 

p105) (Li and Verma 2002). The NF-B proteins are cleaved upon activation (p100 → p52 and p105 
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→ p50), following post-translational modifications (PTMs), through proteolysis in order to become 

active DNA-binding proteins (Gilmore 2006). The Rel family proteins contain C-terminal transcription 

activation domains (TADs) that enable gene transcription, in contrast, NF-B proteins do not have a 

TAD and form a heterodimer with Rel proteins to act as transcriptional activators (Hayden, West et 

al. 2006). The NF-B heterodimer binds to a 9-10 base pair of DNA site called the B response 

element that has great variability in sequence. This variability contributes to the regulation of 

diverse sets of genes in a cell and context-dependent manner (Gilmore 2006; Morgan and Liu 2011). 

The NF-B transcription factor is found as an inactive complex in the cytoplasm of most cells and can 

be activated by two pathways, the classical (canonical) or the alternative (non-canonical) (Cai, Jiang 

et al. 2011). These two pathways, alone or together, can be activated by specific set of stimuli to 

target the expression of a distinct spectrum of genes (Adcock 1997; Brown, Claudio et al. 2008).  In 

the following, I discuss each pathway briefly. 

1.3.1 The classical pathway  

In non-stimulated cells, the NF-B heterodimer (p65/RelA and p50 subunits) reside in the cytoplasm, 

bound to the inhibitory IB protein. The binding of an inflammatory stimulus such as TNF-α, IL-1β 

or LPS to its respective receptor leads to a phosphorylation cascade resulting in activation of the IB 

kinase (IKK) complex. This consists of three subunits, IKK, IKKand IKKγ/Nemo (regulatory 

molecule) (Liu, Yang et al. 2005; Hayden, West et al. 2006). The IKK complex phosphorylates IB 

(on Ser32 and Ser36) which is targeted for ubiquination and degradation by the E3 ubiquitin-ligase 

(E3RS IB) and 26S proteasome, respectively (Edwards, Bartlett et al. 2009). The degradation of IB 

allows the translocation of the NF-B p65/p50 dimer into the nucleus where it binds to promoter 

regions of inflammatory genes and also to co-activators such as p300, cyclic AMP response element 

binding protein (CBP), p300/CBP-associated protine (PCAF), and TATA-binding protein(TBP)-

associated factor 2 (TAF-2). Co-activator molecules have intrinsic histone acetyltransferase (HAT) 

activity and subsequently acetylate core histones (Barnes, Adcock et al. 2005; Barnes and Adcock 
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2009). Classically, this results in disruption of the electro-static attraction between histones and 

DNA. Acetylated histones signal the recruitment of DNA remodelling factors (SW1/SNF), 

bromodomain-containing proteins and transcriptional co-activators, leading to local unwinding of 

DNA (Adcock, Ito et al. 2004; Yang, Yik et al. 2005). This confers access to RNA polymerase II to the 

transcriptional start site, leading to the expression of several inflammatory mediators (Fig. 1.15) 

(Rahman and Adcock 2006). However, recent findings suggest that the binding of all transcription 

factors is associated with open chromatin and that the ligand-induced active chromatin remodelling 

process is linked to about 10% regulated genes. For example, AP-1 transcription factor maintain 

accessibility of glucocorticoid receptor (GR) to GR binding site (Biddie, John et al. 2011). The classical 

pathway is generally activated when a ligand binds to TCR, BCR, Toll-like receptor (TLR), and IL-1 

receptor family (Hayden and Ghosh 2004).  

 

Figure 1.15: The activation of NF-B classical pathway. The binding of inflammatory (TNF-/IL-1) 

stimuli to their respective receptors, induces the IKK complex to phosphorylate the NF-B IB 

subunit. The IB protein is subsequently degraded by the proteasome, allowing the translocation 

of p65/p50 heterodimer into the nucleus and thereby activation of inflammatory genes (Barnes and 

Adcock 2009). 
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1.3.2 The alternative pathway 

The alternative pathway is activated in the development of lymphoid organs and the adaptive 

immune system (Gerondakis and Siebenlist 2010). Following stimuli, the NF-B-inducing kinase (NIK) 

phosphorylates the IKK complex which consists of two IKK proteins and does not require the 

regulatory IKK/NEMO protein (Dejardin 2006).  The IKK homodimer phosphorylates the C-terminal 

domain of p100 protein, which is found in complex with RelB protein in the cytoplasm. The 

phosphorylated p100 protein undergoes proteolysis and becomes active p52 protein in this process 

(Fig. 1.16). The newly formed p52 and RelB heterodimer translocate into the nucleus, activating 

target genes (Dejardin 2006; Gilmore 2006).  The alternative pathway can be activated in cells 

expressing lymphotoxin B recepotors (LTR), B-cell activating factor receptors (BCAFRs) and CD40 

receptors. These stimuli (LT, BCAF and CD40) can also activate the classical pathway (Hayden and 

Ghosh 2004).  

 



 
 

The role of NF-B p65 and Brd4 in oxidative stress driven inflammation PhD thesis 

 

48 

 

 

Figure 1.16: The activation of the alternative NF-B pathway. Following stimuli, NIK induces 

phosphorylation of IKKhomodimers which in turn phosphorylates the p100/RelB complex. The 

precursor p100 undergoes proteolysis following phosphorylation to become active p52 protein. This 

enables the p52/RelB complex to translocate into the nucleus, inducing specific sets of target genes 

(Hayden and Ghosh 2004). 

 

1.3.3 The regulation of the NF-B pathway 

The NF-B transcription factor modulates the transcription of several genes that are entailed in 

immune response, development, cancer and inflammation. Therefore, its biological activity has to be 

tightly regulated in order to maintain a cellular homeostasis (Liu, Yang et al. 2005). This balance is 

achieved though several negative regulatory mechanisms. During transcription, NF-B also 

transcribes its negative regulatory proteins IB and A20 (Vereecke, Beyaert et al. 2009). The newly 

synthesised IBprotein moves into the nucleus where it binds to the NF-B heterodimer, inhibiting 

its function and shuttling it back into the cytosol (Ruland 2011).  A20 is an ubiquitin modifying 

enzyme that is directly induced by NF-B. A20 deubiquitinates the IKK complex resulting in its 
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destabilisation and thereby, preventing phosphorylation and degradation of IB protein and NF-B 

activation (Boone, Turer et al. 2004; Enesa, Ito et al. 2008).  Studies have shown that PTMs such as 

acetylation and phosphorylation of p65/RelA is essential for its optimal transcription activity (Huang, 

Yang et al. 2009; Huang, Yang et al. 2010; Zhang, Liu et al. 2012; Zhang, Liu et al. 2012). Several 

lysine residues on p65 have been identified to be acetylated by CBP/p300 acetyltransferase 

(Oeckinghaus and Ghosh 2009). CBP/p300-interacting transactivator-2 (CITED2) protein has been 

shown to inhibit p65 acetylation and interaction with CBP/p300 acetyltransferase, leading to 

reduced DNA binding affinity (Fig. 1.17) (Lou, Sun et al. 2011). 

 

Figure 1.17: The negative feedback mechanisms in the NF-B pathway. Following activation, NF-B 

also transcribes negative regulatory proteins such as IB and A20. (1) The A20 enzyme 

ubiquitinates IKK complex, causing disintegration of the complex and prevents it from 

phosphorylating IB protein. (2) The newly synthesised IB translocates into nucleus, where it 

binds to the NF-B transcription factor. This inhibits its transcription function and shuttles p65/p50 

complex back into cytoplasm. (3) Acetylation of p65 is inhibited by CITED2 protein, affecting its DNA 

binding activity (Ruland 2011). 
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1.3.4 The suppression of NF-B by glucocorticoids 

Glucocorticoids (also called glucocorticosteroids: GC) are the most effective anti-inflammatory drugs 

used in the treatment of various inflammatory disorders. They exert many of their anti-inflammatory 

effects through inhibition of NF-B (trans-suppression) and also by induction of anti-inflammatory 

genes (trans-activation) (Barnes and Adcock 2009). GCs diffuse across the cell membrane and bind to 

the glucocorticoid receptor (GR) localised within the cytosol (Barnes 2006). GR is usually found in an 

inactive form associated with molecular chaperone proteins such as heat shock protein 90/HSP90. 

Once GC is bound to GR, the GC-GR complex dissociates from its chaperon proteins and translocates 

into the nucleus (Fig. 1.18) (Barnes and Adcock 2009). The activated nuclear GR can bind as a 

homodimer to the glucocorticoid response elements (GREs) which often reside in the promoter 

regions of GC-responsive anti-inflammatory genes  but can also occur very distal to the transcription 

start site (TSS), inducing their transcription (So, Cooper et al. 2008; John, Sabo et al. 2011).  Anti-

inflammatory genes that are induced by GR includes mitogen activated kinase phosphatase- (MPK-1) 

and IL-10 (Durham, Adcock et al. 2011). Corticosteroids also suppress inflammatory genes by binding 

to pro-inflammatory transcription factors and reversing their effect on the local chromatin structure 

mediated by NF-B and recruited HAT-containing coactivator proteins such as CBP (Ito, Yamamura et 

al. 2006). For a subset of genes this involves recruitment of histone deacetylase 2 (HDAC2), resulting 

in the deacetylation of histone at specific promoter regions, thereby, restricting the access of 

transcription machinery to the TSS (Barnes and Adcock 2003; Barnes 2006; Barnes and Adcock 

2009).  

Classically, the binding of GCs to GR lead to ligand-induced remodelling of DNA-histone interaction in 

conjunction with chromatin remodelling proteins. This also allows the recruitment of transcription 

apparatus which was previously occluded (Barnes 2006; Barnes 2011).  However, recently an 

alternative model for GR binding to GREs has been proposed. It involves targeting of GC-GR complex 

to pre-opened chromatin structure (John, Sabo et al. 2011).  For example, transcription factors such 

as activator protein (AP)-1 can make the GRE accessible to GR by maintaining open chromatin 
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structure (Biddie, John et al. 2011; Voss, Schiltz et al. 2011). NF-B may be facilitating the 

accessibility of GC-GR and enabling the immediate inhibition of its response genes. 

Although, GCs are widely used in the treatment of numerous inflammatory disorders, there are a 

number of inflammatory conditions including severe asthma and COPD that respond poorly to GCs, 

even with high doses (Barnes 2012). This lack of response is partially explained by impaired 

translocation of GR into the nucleus and reduced HDAC2 activity (Barnes 2011). Oxidative stress is 

associated with impairment of most aspects of GR function (Adcock and Ito 2005). 

 

 

Figure 1.18: The suppression of inflammatory genes by glucocorticoids. The binding of 

inflammatory (TNF-/IL-1) cytokines to their respective receptors, induces activation of a 

phosphorylation cascade leading to activation of the IKK complex which subsequently 

phosphorylates the NF-B IB subunit. This triggers its degradation by the proteasome, allowing 

the translocation of the p65/p50 heterodimer into the nucleus and activating inflammatory genes.  

This can be reversed by glucocorticoids acting via the GR.  Activated GR seeks out and binds to the 

activated NF-B complex and inhibits the associated-CBP/HAT activity via recruitment of repressor 

molecules including HDAC2 to reversed localised histone acetylation (Barnes and Adcock 2009). 
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1.5 Oxidative and carbonyl stress 

The majority of COPD patients are either current or ex-smokers. Cigarrete smoke (CS) is a complex 

combination of noxious particles, chemicals and reactive oxygen species (ROS) (Rahman and Adcock 

2006; Min, Bodas et al. 2011; Biswas, Hwang et al. 2012). ROS are important in cell signalling and are 

regulated by antioxidant defence mechanisms. However, excessive ROS production or defective 

antioxidant systems can lead to an imbalance between oxidants and antioxidants, favouring 

oxidants, leading to oxidative stress (Finkel and Holbrook 2000). Oxidative stress is elevated in COPD 

and known to be involved in the pathophysiology of the disease. In addition, redox-sensitive 

transcription factors such as NF-B and AP-1 are regulated by ROS (Kirkham and Rahman 2006). 

Beside CS, there are other environmental sources of ROS, including, pollution, UV and xenobiotics. 

ROS are also produced endogenously by various inflammatory cells such as macrophages and 

neutrophils though the “respiratory burst” which involves mitochondrial respiration (Pettersen and 

Adler 2002; Merry 2004). ROS include free radicals such as superoxide anion radical (O2·
–), singlet 

oxygen (1O2), hydroxyl radical (·OH) and perhydroxyl radical (HO2·) and non-radicals such as 

hydrogen peroxide (H2O2) and hypochlorous acid (HOCl) (Pryor and Stone 1993; Negre-Salvayre, 

Coatrieux et al. 2008). The unpaired free electron radicals are highly unstable and can cause 

oxidation of proteins, DNA and lipids (Fig. 1.19). It can also generate a highly reactive metabolic 

species such as reactive aldehydes through a process of lipid peroxidation (Ahsan, Ali et al. 2003; 

Rahman and Adcock 2006).  
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Figure 1.19: ROS induced molecular damage. ROS in cigarette smoke can inflict oxidative damage to 

cell lipid membranes, DNA and proteins.  

 

The accumulation of these reactive aldehydes is known as carbonyl stress. Elevated hydroxynonenal 

(4-HNE) modified-proteins have been observed in airways cells and neurodegenerative diseases 

(Agusti, MacNee et al. 2003).  4-HNE has been reported in the lung of smokers and COPD patients. It 

can stimulate the release of CXCL8 and transforming growth factor (TGF)-β in the lung (MacNee 

2005). Oxidative and carbonyl stress can potentially target any cellular protein including cytoplasmic 

(e.g. NF-B) and nuclear (e.g. histone) proteins. Proteins such as histones, which are rich in lysine, 

cysteine, histidine, arginine and proline amino acids content, are susceptible to oxidation (Daly, 

Mirsky et al. 1951). Recently, it has been shown that histone carbonylation occurs during cell 

proliferation and may represent a specific post-translational modification (PTM) during cell cycle 

(Garcia-Gimenez, Ledesma et al. 2012).  HDAC2 carbonylation and its reduced activity have been 

documented after CS exposure in cells, indicating that carbonylation can affect protein function 

(Marwick, Ito et al. 2007; Barnes 2008; Meja, Rajendrasozhan et al. 2008). Reactive aldehydes can 

also react with 2, 4-dinitorphenylhdrazine (DNPH) to form hydrazones (DNP), enabling their 

detection through the DNP tag with suitable antibodies. DNA damage is also reported under 
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oxidative stress following several months of cell exposure to cigarette smoke extract in vitro (Liu, 

Killian et al.).  Deoxyguanosine residues in DNA produce 8-hydroxy-deoxyguanosine (8-OHdG), a DNA 

oxidation marker, when subjected to hydroxyl free radicals. Elevated levels of 8-OHdG in lung tissue 

is associated with exposure to diesel exhaust particles (Tokiwa, Sera et al. 1999). Therefore, genomic 

and proteomic changes under oxidative stress reinforces the evidence that epigenetic modifications 

may be involved in the underlying mechanisms of chronic inflammatory diseases including COPD. 

Oxidative stress is thought to be contributing to the development of many other diseases including 

heart, immune, neurodegenerative and cancer (Dalle-Donne, Aldini et al. 2006; Kurien and Scofield 

2008; Kirkham, Caramori et al. 2011).  As a result, a number of animals and cell/tissue culture 

models have been developed to study the impact of oxidative stress (Yatin, Varadarajan et al. 1999; 

Aksenova, Aksenov et al. 2005; Wijeratne, Cuppett et al. 2005). However, most of these models are 

based on acute ROS exposures which fail to reproduce the disease pathology including that of COPD 

where chronic oxidative stress is central (Yatin, Varadarajan et al. 1999; Aksenova, Aksenov et al. 

2005; Wijeratne, Cuppett et al. 2005). 

 

1.6 Epigenetics and gene regulation 

DNA is tightly packed together with histones into structural units called nucleosomes. Each 

nucleosome is an octomer of four core histone proteins; H2A, H2B, H3 and H4 proteins with 146-

base pair of DNA wrapped around and linked to H1 protein (Adcock, Cosio et al. 2005). Nucleosomes 

are folded into compact chromatin structure. In transcriptionally active chromosomal regions, the 

chromatin unwinds to form euchromatin allowing accessibility of transcription machinery. In 

contrast, the condense chromatin state (heterochromtin) promotes gene suppression (Fig. 1.20). 

Such transitions are achieved through reversible or possibly permanent post-translational or 

epigenetic changes (Adcock, Ford et al. 2006). 
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Figure 1.20: Chromatin structure. In heterochromatin histones and DNA are packed together and 

gene expression is suppressed. Post translational modifications (PTMs) such as acetylation of 

histones result in activation (euchromatin) of genes. The acetylation and deacetylation of histones 

are carried out by HAT and HDAC enzymes, respectively.  Other PTMs such as methylation and 

phosphorylation along with DNA methylation also play a similar role (Barnes and Adcock 2009). 

 

Epigenetics is referred as alterations in the DNA and histone status without the actual change in DNA 

nucleotide sequence (Waddinton 1942). Epigenetics is important for cell diversity and differentiation 

during development but also critical for multiple cellular functions including genome integrity, 

proliferation and gene expression. Epigenetic modifications are heritable and although originally 

believed to be stable it is now clear that they are also reversible under various environmental 

conditions.  Epigenetic mechanisms involved PTMs of histones, DNA methylation either directly or 

indirectly through the actions of enzymes and non-coding microRNAs (Li 2008). Environmental 

factors (CS, allergies and infection) may lead to permanent epigenetic changes and thus contributing 

to disease phenotype (Kabesch and Adcock 2012; Lovinsky-Desir and Miller 2012). Parental exposure 

to CS may increase the risk of diseases in child`s later life as a result of epigenetic changes in utero 

(Breton, Byun et al. 2009). This may be true for some smokers who are predisposed to COPD 

(Kalsheker and Chappell 2008). PTMs of histones such as ubiquitination, sumoylation, acetylation, 

methylation and phosphorylation generally occur on histone tails which protrude from the 

nucleosome although some modifications occur within the nucleosomal nexus.  In contrast, DNA 

methylation is associated with CpG islands founded in the proximity of promoter regions of genes 

(Adcock, Tsaprouni et al. 2007).  Generally, these islands are unmethylated and methylation is linked 

to loss of gene function (Jones and Baylin 2002) although this is not seen in all cases (Guilleret and 
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Benhattar 2003). In addition, the advent of deep sequencing of bisulphite modified DNA emphasises 

that DNA methylation can occur in regions away from CpG islands known as CpG shores (Ji, Ehrlich et 

al.). 

The cell-type specific induction of inflammatory genes is regulated, at least in part, by epigenetics. 

This suggests that this differential activation may be attributed to cell surface receptors, intracellular 

signalling and local chromatin changes within the nucleus that allow the biding of transcription 

factors to the promoters of specific genes (Kabesch and Adcock 2012). NF-B and glucocorticoids 

work, at least in part, through epigenetic changes in acetylation and deacetylation of histones as 

elucidated previously (section 1.3.4). DNA methylation and chromatin remodelling are interlinked 

mechanisms in which DNA methyltransferases (DNMTs) bring together methylation machinery to 

the promoter region by recruiting HDACs and other chromatin proteins (Franco, Schoneveld et al. 

2008). Therefore, a deficit in either DNA methylatransferases or HDACs could result in elevated 

inflammatory gene expression. Pro-inflammatory mediators can also play important role in the 

epigenetic regulation of genes.  It has been shown that the pro-inflammatory mediator such as IL-6 

induce the expression of DNMT1 which is upregulated in inflammatory bowel disease (Foran, 

Garrity-Park et al. ; Hodge, Xiao et al. 2001). Although, epigenetics is extensively studied in a variety 

of cancers, little is known about its role in respiratory diseases such as COPD. 

 

1.7 The bromodomain proteins and gene transcription 

Bromodomains are a conserved 120 residue peptide motif which are found in chromatin-associated 

proteins and HATs, included PCAF, p300, CBP, TAF2 and in remodelling proteins such as SW1/SNF 

(Sanchez and Zhou 2009).The human genome encodes 46 bromodomain proteins that contain a 

total of 61 domains and are classified into 9 groups.  The bromodomain and extra terminal domain 

(BET) proteins are sub-group of bromodomain proteins that contain two bromodomains at the N-

terminal and the extra terminal domain within the C-terminal domain (CTD). The group consists of 
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four proteins, Brd2, Brd3, Brd4 and Brdt (Fig. 1.20) (Filippakopoulos and Knapp 2012). The 

acetylation of lysine (K) residues on histone tails is associated with open structure and central to 

gene regulation and transcription as discussed above (section 1.6) (Adcock, Ford et al. 2006). The 

bromodomain region of the protein binds to acetylated lysine (AcK) on histone whereas extra-

terminal domain recruits chromatin regulatory proteins. Regulatory proteins, transcription factors 

and histone modifying enzymes (HATs and HDACs), are recruited to the targeted promoters and 

regulate gene expression (Belkina and Denis 2012). The BET proteins exhibit high binding affinity to 

acetylated H3 and H4 (Dey, Chitsaz et al. 2003). The acetylation of H3 and H4 is highly specific  and 

encodes for a diverse sets of cellular instructions, for example, cell differentiation, proliferation, 

growth and gene regulation (Turner 2000; Agalioti, Chen et al. 2002; An, Palhan et al. 2002). 

 

 

Figure 1.21: The BET family proteins.  The BET protein contains two bromodomains (BDs) at N-

terminal region, which recognise lysine-acetylated histone and extra terminal region at C-terminal 

which interacts with chromatin modifying proteins such transcription factors, regulatory proteins 

and enzymes. The Brd4 protein has two isomers the short and long. Adapted and modified from 

Belkina and Denis (2012). 
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The most notable member of the BET family is Brd4. It has two isomers, the short and long forms. 

The CTD of Brd4 is identical to that of RNA polymerase II (RNA pol II) and interacts with the positive 

transcription elongation factor b (p-TEFb).  p-TEFb is recruited to the promoters of targeted genes 

and phosphorylates the CTD of RNA pol II, resulting in  transcription elongation (Jang, Mochizuki et 

al. 2005; Yang, Yik et al. 2005).  p-TEFb is associated with NF-B and induces RNA pol II dependent 

elongation of IL-8 gene (Barboric, Nissen et al. 2001; Amir-Zilberstein, Ainbinder et al. 2007). 

Recently, it has been shown that Brd4 forms a complex with acetylated RelA/p65 and enhances NF-

B-responsive inflammatory genes (Huang, Yang et al. 2009). Therefore, Brd4 plays a critical role in 

gene regulation and forming a complex with key transcriptional activator proteins (Fig. 1.22).  Brd4 

has been extensively studied in different types of cancers where it is limited to c-Myc driven cell 

proliferation (Filippakopoulos, Qi et al. 2010; Delmore, Issa et al. 2011; Mertz, Conery et al. 2011; 

Rodriguez, Huidobro et al. 2012). It is implicated in a rare but lethal form of squamous carcinoma 

(epithelial cell), known as NUT midline carcinoma. The NUT (Nuclear protein in testis) midline 

carcinoma (NMC) arises from fusion between Brd4 and NUT genes. This chimeric Brd4-NUT gene 

encodes Brd4-NUT protein which promotes uncontrollable cell proliferation (French 2010; Yan, Diaz 

et al. 2011; Thompson-Wicking, Francis et al. 2012). HAT proteins were an obvious target for anti-

proliferative and anti-proinflammatory drugs but selective agents proved difficult to produce the 

desire effects (Stimson, Rowlands et al. 2005). However, a number of groups have recently 

generated small-molecules, such as JQ-1 and I-BET, that inhibits Brd4 by acting as binding site 

inhibitors (Filippakopoulos, Qi et al. 2010; Nicodeme, Jeffrey et al. 2010). Nicodeme and colleagues 

reported that LPS-induced inflammation in macrophages is inhibited by the bromodomain mimic (I-

BET) and that therapeutic intervention could lead to prevention of septic shock death by down 

regulating inflammatory gene expression (Nicodeme, Jeffrey et al. 2010). Fillippakopoulos et al. 

demonstrated that another bromodomain inhibitor JQ-1 inhibited tumour growth in an NMC murine 

model and could transformed malignant cells into non-cancerous cells (Filippakopoulos, Qi et al. 

2010). JQ-1 and related drugs are now in the late stage development for acute myeloid leukaemia 
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(Delmore, Issa et al. 2011; Zuber, Shi et al. 2011). However, there is very little known about the role 

of Brd4 in the oxidative stress driven inflammation. In addition, to our knowledge, the effect of JQ-1 

in oxidative stress induced inflammation is yet to be reported. 

 

 

 

Figure 1.22: The role of Brd4 in gene transcription.  Acetylated histones provide a docking site for 

Brd4 proteins that form a complex with transcription regulatory proteins in order to facilitate 

transcription. Brd4: Bromodomain protein 4; Ac: Acetylation; CBP; CREB binding protein, p-TEFb: 

positive transcription elongation factor b; RNA pol II; RNA polymerase II; p65/p50: NF-B 

transcription factor. 
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1.8. Hypothesis 

Oxidative stress, a key component of COPD inflammation, is linked to enhanced inflammatory gene 

expression. Oxidative stress can induce post-translational modifications (PTMs) of intracellular 

signalling molecules modulating their function and altering the cellular phonotype. It was 

hypothesised, therefore, that oxidative and carbonyl stress can modulate PTM of p65 and histones 

enabling enhanced inflammatory gene expression. These changes are generally transient but 

prolong exposure to ROS will result in fixed PTM which will modify inflammatory responses 

 

1.9. Aims 

1) Establish acute and chronic oxidative stress models in vitro using hydrogen peroxide 

2) Investigate the effect of acute versus chronic exposure on PTMs including acetylation, and 

carbonylation of histones. 

3) Assess  the effect of ROS-induced  histone acetylation in IL-6 and IL-8 promoter regions   

4)  Explore the  role of Brd4 in oxidative stress-driven inflammation 

5) Study the  recruitment of Brd4 to IL-6 and IL-8 promoters   

6)  Investigate the effect of Brd4 inhibitors such as JQ-1 and PFI-1 on oxidative stress induced 

inflammation. 
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Chapter 2  

Materials and Methods 
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2.1 Materials  

Materials and kits were purchased from the following companies. All other chemicals and reagents 

were purchased from Sigma unless otherwise stated. 

Companies:  Product: 

AbD Serotec, Oxford, UK Anti-Ace-Histone 4 

Active motif, Carlsbad, CA, USA TransAM p65 activity assay, HAT activity assay, 

Nuclear Extract kit 

Amersham Biosciences, Bukingham, UK Enhanced chemiluminescent (ECL) developing 

solution 

Bio-Rad Laboratories, Hempstead,UK Bradford assay kit 

Cell Biolabs, San Diago, USA OxiSelect Protein Carbonyl Kit 

DakoCytomation, Cambridge, UK Secondary HRP-conjugated anti-mouse, rabbit 

Invitrogen Ltd, Paisley, UK MES-running buffer, MOPS running buffer, dry 

iBlot transfer, Keratinocyte-serum free media, 

rEGF, BPE, Phenol:Chloroform:Isoamyl Alcohol, 

SDS, Tris-HCl pH 8                   

Millipore Ltd, Watford, UK  Anti-Acetylated-Histone 3, Oxyblot Protein 

oxidation kit, Protein A agarose/Salmon Sperm 

DNA 

Nunc, Roskilde, Norway ELISA 96-well plate 

Promega, Southampton, UK RNase-free water, Reverse Transcriptase, random 

hexamer, RNase inhibitor, EDTA 

Qiagen, Crawley, UK QuantiTech SYBR Green, RNeasy Kit, Primers 

R&D Systems, Abingdon, UK CXCL8, IL6 Duo Set ELISA, TNF-, IL-1 

Roche, Basel, Switzerland  Mini complete protease inhibitors 

Santa Cruze Biotech Ltd, CA, USA Anti-Brd4, p65, SUV39H1/2, JMJD3, TBP, CBP 

Protein A/G beads 

Sarstedt, Nurnbrecht, Germany  150cm3 flask, 6-well plate, Cell culture 96-well 

plate 



 
 

The role of NF-B p65 and Brd4 in oxidative stress driven inflammation PhD thesis 

 

63 

 

Sigma Ltd, Poole, UK Dulbecco’s Modified Eagle’s Medium (DMEM), 

Glycerol, Sodium deoxycholate, NP40, Bovine 

serum albumin (BSA), LiCl, NaCl, Formaldehyde, 

hydrogen peroxide, Proteinase K, 2′,7′-

Dichlorofluorescin diacetate 

Thermo Scientific, Chicago, USA Brd2, Brd4 and Control siRNA 

 

Table 2: Materials and kits purchased from commercial sources  

  
   

2.2 Cell Culture 

2.2.1 BEAS-2B Cells 

SV-40 transformed human bronchial epithelial cells (BEAS-2B) were obtained from the American 

Type Culture Collection (ATCC, VA, USA).  Cells were cultured until 80% confluent at 37°C and 5% CO2 

in keratinocyte-serum free media supplemented with recombinant epithelial growth factor (rEGF) 

0.2ng/ml and 20g/ml bovine pituitary extract (BPE, all Gibco, Paisley, UK) in 150 cm3 flasks (Sarstedt, 

Nurnbrecht, Germany). Cells were left in basal media (without rEGF and BPE) for 24hours prior to 

experiments in order to achieve cell cycle synchronisation (Jee, Gilmour et al. 2005). 

 

2.2.2 Cell counting and seeding 

BEAS-2B cells are adherent cells and were resuspended using 0.25% trypsin. Cells were counted by 

removing 10µl of cell suspension and placing it on haemocytometer with cover slip on the top. 

Trypan blue solution (Sigma-Aldrich) was used to exclude dead cells from viable cells. The 

haemocytometer was viewed at 10x magnification Olympus CH30 microscopes (Olympus UK Ltd., 

Watford, UK). All the cells in the haemocytometer grid were counted and average numbers of cells 

were determined.  Cells were seeded at 9x106 cells/flask (75 cm3) in 9ml basal media. Alternatively, 

3x104 cells in 200μl of media/well for 96-well plate or 1x106 cells in 1ml of media in 6-well plate 

(Nunc, Roskilde, Norway) were also used. 
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2.3 Cell viability 

2.3.1 MTT assay 

Cell viability was assessed using methylthiazolyldiphenyl-tetrazolium bromide (MMT) assay. Cells 

were incubated with 1 mg/ml MMT solution at 37°C and 5% CO2 for 30 minutes. MTT solution was 

then removed and dimethyl sulfoxide (DMSO) was added to dissolve the formazan product to 

produce a purple solution. The absorbance was measured at 550 nm. The colour intensity was 

correlated with cell viability. 

 

2.3.2 Fluorescent activated cell sorting (FACS) 

The Aqua LIVE/DEAD® Fixable dead cell stain kit was used to assess cell viability following 

treatments. The assay is based on the reaction of fluorescent reactive dye with cellular amines. In 

viable cells, the dye reacts with outer cell surface amines resulting in relatively dim fluorescence. In 

contrast, the dye can permeate the compromised cell membrane of necrotic cells and reacts with 

both inner and outer amines resulting in intense fluorescent staining (Fig. 2.1) (Invitrogen 2012). 

Cells were collected by trypsinisation and neutralized with medium, washed and resuspended in 1ml 

PBS.  1µl of Aqua LIVE/DEAD® Fixable dead cell stain was added per sample and left on ice for 

30mins in dark. Cells were washed twice with cold PBS and resuspended in 1% BSA and PBS followed 

by flow cytometric analysis. Parameters were set as such to distinguish between positive cells (heat-

treated dead cells) and negative cells (alive), which gave us distinct population of cells (Fig. 2.2). The 

effect of compounds such as JQ1 and PFI-1 on cell toxicity was subsequently examined using these 

parameters. 
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Figure 2.1: Principle of the LIVE/DEAD® Fixable staining. Live cells (left) react with the fluorescent 

reactive dye only on their surface to yield weakly fluorescent cells. Necrotic Cells show greater 

intensity as dye reacts with both inner and outer membrane amines (right). Adapted from Invitrogen 

(Invitrogen 2012). 
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Figure 2.2: Flow cytometric analysis of BEAS-2B cells labelled with LIVE⁄DEAD® Fixable Aqua stain. 

Cells were heat treated at 90°C or left untreated, mixed together and stained with LIVE⁄DEAD® 

Fixable Aqua stain then analysed by flow cytometry. (A) Cells were checked with forward scatter 

detector (FSC) and side scatter detector (SSC) and analysed by density graph to check cell size and 

granularity. Fragmented cells were excluded from the study. (B) Histogram shows separation of live 

cells (left) and dead cells (right). These parameters were used to assess cell viability following 

treatment with chemical compounds (JQ1 and PFI-1). 

 

2.4 CXCL-8 and IL-6 ELISA 

BEAS-2B cells were stimulated for 4 hours (acute exposure) and 2 hours/day for 5, 10 and 15 days 

(chronic exposure) with 100 µM and 50 µM of H2O2, respectively, followed by stimulation with 

1ng/ml TNF-. In some experiments cells were also treated with ammonium iron sulphate (100µM) 

with H2O2 followed by IL-1 stimulation. In addition, BEAS-2B cells were also exposed to 100µM H2O2 
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for 2 hours in the presence or absence of 1 ng/ml IL-1. Culture supernatants were assayed for 

CXCL8 and IL-6 using commercially available enzyme-linked immunosorbent assay (ELISA), following 

manufacturer`s instructions (Human IL-8 and IL-6 Duoset, R&D Systems, Abingdon, UK). Absorbance 

(Optical density, OD) was measured at 450nm and 550nm on microtitre plate reader (Synergy HT, 

Biotek, Winooski, VT, USA). Final concentrations in each sample were calculated as the mean of the 

results at the proper sample dilution yielding ODs in the linear parts of the calibration curves. 

 

2.5 Dichlorofluorescein (DCF) assay 

Intracellular ROS was detected using 2`,7`-Dichlorofluorescein diacetate (DCF-DA; Sigma-Aldrich). 

Viable cells were plated onto 96-well culture plates for 24 hours in basal media prior to experiments. 

On the day of the experiment, after removing the media, the cells in the plates were washed with 

Krebs-Ringer-Hepes-glucose-glutamine buffer (KRH buffer) and then incubated with 100µM of DCF-

DA in the loading media in 5% CO2 at 37°C for 30 minutes. After DCF-DA was removed, the cells were 

washed and incubated in KRH buffer with H2O2 or ammonium Iron sulphate at different 

concentrations and the fluorescence of the cells from each well was measured and recorded using 

microtitre plate reader. The excitation filter was set at 485 nm and the emission filter was set at 

530nm. 

 

2.6 Whole cell protein extraction 

 Cell pellets were lysed with RIPA lysis buffer (Santa Cruz, CA, USA) including complete mini protease 

inhibitors [1 tablet/10ml] (Roche, IN, USA). Samples were agitated and vortexed (10 seconds) twice 

before incubating on ice for 30 minutes followed by centrifugation at 19,000g for 20 minutes at 4°C. 

The supernatant was transferred to a fresh eppendorf (1.5 ml) and cell debris was discarded.  The 

protein concentration was measured by Bradford Bio-Rad Protein Assay® kit using bovine serum 

albumin as a standard (Biorad) [section: 2.15.1]. 
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2.7 Nuclear protein extraction 

After stimulation, cells (9X106 per treatment) were washed with 5ml ice-cold PBS/phosphatise 

inhibitors and scrapped with cell lifter. Cell pellets were collected and nuclear proteins were 

extracted according to instruction manual provided by manufacturers (Nuclear Extract kit, Active 

motif, Carlsbad, CA, USA). Briefly, cell pellets were gently re-suspended in 500µl of hypotonic buffer 

and incubate on ice for 15mins.  Cytoplasmic fraction was obtained by addition of 25µl of detergent 

followed by centrifugation at 14,000 g for 30 secs.  The remaining nuclear pellets were re-suspended 

in 50µl of complete lysis buffer containing 1mM DTT, lysis buffer AM1 and cocktail of protease 

inhibitors. The suspension was incubated for 30mins on ice and scraped at intervals to lyse nuclei 

completely. The nuclear fraction was collected after centrifugation at 14000g for 10mins.  The 

protein concentration was determined using the Bradford assay [section 2.15.1] 

 

2.8 Immunoprecipitation (IP) 

The protein of interest (p65) was immunoprecipitated out of whole protein extracts from BEAS-2B 

cells by adding 5µg of rabbit polyclonal NF-B p65 antibodies (Santa Cruz, CA, USA). The immune 

complex was incubated overnight on a rotator at 4°C. Protein A/G-plus agarose beads (20µl 50% 

slurry; Santa Cruz , CA, USA) were added to the complex  and left on the rotator at 4°C for 2 hours. 

The immune complex was then washed using RIPA solution (50 mM Tris-HCl pH 7.4, 2 % (v/v) NP40, 

150 mM NaCl) three times. Proteins were eluted from complex using 35 µl of elution buffer (50 mM 

Glycine, HCl pH 2.4) for 20 seconds immediately followed by 3.5 µl of neutralising solution (2 M Tris 

pH 8, 1.5 M NaCl, 1mM EDTA).  Samples were stored at -20°C for subsequent analysis. 
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Figure 2.3: Diagrammatic illustration of immunoprecipitation. Whole cell lysates were incubated 

with anti-p65 antibody overnight followed by the addition of beads to pull out the protein of interest 

p65. 

 

2.9 Co-Immunoprecipitation (Co-IP) 

Whole cell lysates were prepared by incubating cells with IP buffer (150mM NaCl, 50mM Tris-HCl pH 

8, 0.5% Sodium deoxycholate, 0.5% NP40, protease inhibitors cocktail/Roche Applied Science) for 

30mins on ice and centrifuged at 14000rpm for 10mins. 500µg of protein extract was incubated with 

5µg of antibody (Table 3).  The immune complex was incubated overnight on rotator at 4°C. Protein 

A/G-plus agrose beads (20µl 50% slurry; Santa Cruz, CA, USA) were added to the complex and left on 

the rotator at 4°C for 2 hours. The complex was then washed using IP wash buffer (50mM Tris-HCl 

pH 7.4, 0.5% (v/v) NP40, 150mM NaCl) three times. Proteins were eluted from complex using 35µl of 

elution buffer (50mM Glycine, HCl pH2.4) for 20 seconds immediately followed by 3.5µl of 

neutralising solution (2M Tris pH 8, 1.5M NaCl, 1mM EDTA). Samples were stored at -20°C for 

subsequent analysis. 
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Table 3: Antibodies used for Co-IP 

 

2.10 Chromatin Immunoprecipitation (ChIP) 

Beas-2Bs cells (2 million/sample) were treated with H2O2 (100M) alone or in the presence of IL-1β 

(1g/ml) for 2 hours. Some cells were treated with IL-1alone. Proteins were cross-linked to DNA 

with formaldehyde (1% final of concentration) for 10 mins at 37°C. Formaldehyde was neutralized 

with 1M glycine (0.125M final concentration) for 5 mins at 37°C. Cells were scraped on ice cold 

phosphate buffered saline (PBS) containing protease inhibitors (1 tablet of mini complete protease 

inhibitor in 7ml PBS). Samples were microcentrifuged at 4,000 rpm for 5 mins. Cells were re-

suspended in 250μl SDS lysis buffer (50mM Tris pH 8.1, 1% SDS, 5mM EDTA, complete protease 

inhibitor) and subjected to six cycles of sonication (Figure 2.5) on ice with 15 seconds pulses and 

microcentrifuged at 13,000rpm for 10 mins. Cell debris was discarded and soluble chromatin was 

immunoprecipitated by using 1g of rabbit anti-NF-B p65, Brd4 (Santa Cruz CA, USA),  Acetylated 

Histone 3 (Milipore Watford UK) or Acetylated Histone 4 (Abd Serotec, Oxford, UK) antibody. The 

protein bound immunocomplex was washed with NaCl buffer (0.1% SDS, 1% Triton X-100, 2mM 

EDTA, 20mM Tris-HCl, pH8.1, 150mM NaCl), LiCl buffer (0.25M LiCl, 1% Igepal (NP40), 1% sodium 

deoxycholate 1mM EDTA, 10mM Tris pH 8.1) and TE buffer (10mM Tris, 1mM EDTA, pH 8). 

Complexes were then eluted by adding 250μl fresh elution buffer (1% SDS, 0.1M NaHCO3) twice 

followed by incubation for 4 hours at 65°C in 200mM NaCl to reverse cross-links between proteins 

and DNA. The solution was subsequently incubated with 70μg/ml proteinase K (Sigma-Aldrich) for 1 

hour at 45°C to digest proteins. DNA was extracted with an equal volume (500μl) of 

phenol/chloroform/isoamyl alcohol (25:24:1; Invitrogen), precipitated with 1ml ethanol, 0.3M 

Primary antibody 
(Dilution/Concentration) 

Company 
(Catalogue number) 

Molecular weight (kDa) 

Rabbit p65 (5g/sample) Santa Cruz  (sc-8008) 65 

Rabbit BRD4 (5g/sample) Sant Cruz (sc-48772) 152/80 
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CH3COONa and 20μg glycogen followed by re-suspension in 50μl of nuclease free water. QPCR was 

performed with 5μl of DNA sample and the primer sets listed in Table 4 for quantification. Examples 

of DNA sonication and qPCR of ChIP DNA are shown in figures 2.5 and 2.6 respectively. Data were 

normalized to input control samples. A rabbit IgG antibody control was also used as negative control.

  

 

Figure 2.4: Schematic diagram of ChIP. Cells were treated with formaldehyde to cross-link protein 

with DNA followed by sonication. Antibody of interest (p65) was added and incubated overnight. 

Beads were added to pull-out the DNA/protein-antibody complex. Cross-linking was reversed and 

QPCR was performed. 

 

 

 

 

 
 

 

CXCL8 
Promoter

Cells

Formaldehyde

Anti-p65

Overnight

Beads

Reverse 
Cross-linking

Treatment (H2O2/IL-1β)

p65p65

p65

p65

Bead

p65

PCR

Sonication

IP DNA

Optimisation

Key:

Step



 
 

The role of NF-B p65 and Brd4 in oxidative stress driven inflammation PhD thesis 

 

72 

 

Gene promoter Primers Primers Sequence 

ChIP: IL8 Forward 5’-GGG CCA TCA GTT GCA AAT C-3’  

ChIP: IL-8 Reverse 5’-TTC CTT CCG GTG GTT TCT TC-3’ 

ChIP: IL6 Forward 5’-AGC ACT GGC AGC ACA AGG CAA AC-3’ 

ChIP: IL6 Reverse 5’-CAA GCC TGG GAT TAT GAA GAA GG-3’ 

Note: IL-8 ChIP primers  (Ho, Lee et al. 2009; Tsuchiya, Imai et al. 2010) and IL-6 ChIP primers are 

previously published (Goransson, Elias et al. 2005; Hollingshead, Beischlag et al. 2008; Nettles, Gil 

et al. 2008) 

 
Table 4: Primers used for ChIP 

 

 

 

 

 
 

Figure 2.5: Optimisation of ChIP sonication.  BEAS-2B cells were fixed with 1% formaldehyde. DNA 

was sheared between 600-200bp using sonication cycles (3, 6, 9 and 12) at 40% power for 15 

seconds each cycle. DNA was purified and separated by 2% agrose gel electrophoresis.  Sonication 

cycle 6 was chosen in subsequent experiments.  
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Figure 2.6: Specificity and quantification of QPCR in ChIP. (A) Raw channel data for QPCR shows 

input (Red) IP (Green) and IgG negative DNA (blue). The CT values were used to calculate fold change 

in treated samples relative to IgG. (B) Single melting curve demonstrates good specificity of final 

product. 

 

2.11 RNA extraction, cDNA preparation and real-time PCR 

After cell treatment, total RNA was isolated using RNeasy mini kit (Qiagen, Crawley, UK). A 

NanoDrop 2000c spectrophotometer (Thermo Fisher Scientific, DE, USA) was used to determine the 

concentration of RNA using absorbance ratio of 260nm/280nm. A ratio of 2.0 is considered pure 

RNA.  Single stranded cDNA was synthesized by incubating the RNA with reverse transcription 

mixture (AMV-reverese transcriptase, RT buffer, dNTP mix, random hexamer primers and 

ribonuclease inhibitor, all Promega, Southampton, UK) at 42°C for 1 hour, followed by termination of 

the reaction at 90°C for 4min. QPCR was performed in a Rotor-Gene 3000TM PCR machine (Corbett, 
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Negative control 

Melting Curve 

  

  



 
 

The role of NF-B p65 and Brd4 in oxidative stress driven inflammation PhD thesis 

 

74 

 

Research, Cambridge, UK) using a QuantiTect SYBR Green PCR Kit (Qiagen) to quantify the gene of 

interest (Table 5). The PCR data for each gene of interest was normalized to GNB2L1 mRNA. The 

thermocycle parameters were 95°C for 10mins in order to activate HotStarTaq DNA® Polymerase in 

master mix, followed by annealing and extension for 55 cycles at 94°C for 15s, 60°C for 25s and 72°C 

for 25s. DNA was quantified by using delta-delta CT method. 

 

CT=   (2 target gene) 
CT (Control – Sample) / (2Reference gene) 

CT (Control – Sample) 

 

 

RT gene Primers Primers Sequence 

Brd2 Forward (NCBI: NM_005104.3) 5`-GGG GTG GCA GTG CTG CTT TA-3` 

Brd2 Reverse 5’- GCT CAG CTG CCG CTT CTC AT  -3’ 

Brd4 Forward (NCBI: NM_014299.2) 5’- CCA CAC TGC GTG AGC TGG AG -3’ 

Brd4 Reverse 5’- ATC TTG GAG GAG CCG GCA AT -3’ 

GNB2L1 Forward (NCBI: 006098.4) 5’-CTC CGC CTC TCG AGA TAA GAC C-3’ 

GNB2L1 Reverse 5’-GCA AAC TGG CCA TCT GAG GA-3’ 

IL6 Forward  (NCBI: NM_000600.3) 5’-AGG AGA CTT GCC TGG TGA AA-3’ 

IL6 Reverse 5’-GCT CTG GCT TGT TCC TCA CT-3’ 

IL8 Forward  (NCBI:  NM_000584.3) 5’-AGA CAG CAG AGC ACA CAA GC-3’ 

IL8 Reverse 5’-ATG GTT CCT TCC GGT GGT-3’ 

 
Table 5:  PCR primers for real-time RT-PCR 

 

2.12 TransAM NF-B p65 activity assay 

Nuclear proteins were extracted as previously described using Nuclear Extraction Kit (Active Motif). 

p65 activity was measured using a TranAM® Kit (Active Motif). Each well of a 96-well plate is 

immoblised with an olignonucleotide containing an NF-B p65 consensus site (5 -GGGACTTTCC-3’) to 
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which an activated p65 binds. Following manufacturer’s instructions, 30μl of complete binding 

buffer (2μM DTT, 10ng/μl Salmon sperm DNA in binding buffer AM3) was added to each well 

followed by 20l of nuclear proteins (15g) diluted in complete lysis buffer (0.2l protease inhibitor 

cocktail in lysis buffer AM1, 1mM DTT) and incubated for an hour with mild agitation. The plate was 

then incubated with 100l/well anti-p65 primary antibody and HRP-conjugated secondary antibody 

for an hour at RT. The plate was washed with washing buffer after each incubation. Developing 

solution was added and left until a blue colour developed. Stop solution was then added to each well 

to stop the reaction. Chemiluminescence absorbance was read at 450nm and with the reference 

wavelength of 655 within 5min.  

 

2.13 Histone Isolation and Purification.  

Histones were isolated and purified using a commercially available kit, following manufacturer’s 

guidelines (Histone Purification kit. Active motif, Rixensart, Belgium).  Briefly, 10-15 million cells 

were incubated overnight at 4°C on a rotating platform in 500µl of acid extraction buffer, followed 

by microcentrifugation at 19,000 RCF for 4°C. Crude histones (supernatant) were saved and pellets 

were discarded. The supernatant was neutralised and equilibrated using the specific neutralising 

solution. Histones were purified from crude histones using a fractionating column and precipitated 

with 70% perchloric acid.  Histone pellets were resuspended in sterile water and the protein 

concentration was determined using the Bradford assay. 

 

2.14 Protein Carbonylation detection 

2.14.1 OxyBlotTM Protein Oxidation (Western blot)  

Protein oxidation was quantified using a commercially available kit OxyBlotTM from 

Millipore/Chemicon (Chandlers Ford, Southampton, UK). Briefly, samples were denatured with 12% 

sodium dodecyl sulphate (SDS) followed by derivatisation with 2,4-dinitrophenylhdrazine (DNPH) for 
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15 minutes at room temperature. The DNP-derivatised protein samples were separated by 

polyacrylamide gel electrophoresis followed by Western blotting (section: 2.15). A nitrocellulose 

membrane was blocked in 1% BSA in Tween-20 1% v/v PBS (PBST) and incubated with primary 

antibodies specific to DNP moiety of the proteins. Alternatively, proteins were derivatised with 2,4-

DNPH for 5 minutes at room temperature on the nitrocellulose membrane (post-Western blot) 

followed by blocking with 1% BSA /PBST and incubated with primary antibodies against specific DNP-

proteins. This step was followed by incubation with a horseradish peroxidase-antibody conjugate 

directed against the primary antibody (HRP-2° antibody --> 1° antibody: DNP). Chemiluminescent 

reagent (ECL; Amersham Biosciences, Amersham, UK) was added to the membrane and exposed to 

X-Ray films. Finally, quantitative assessment of band density was performed.  

 

2.14.2 OxiSelectTM Protein Carbonyl ELISA  

Protein carbonylation was examined using an ELISA-based assay kit from Cell Biiolabs (San Diago, 

USA). Briefly, standards and samples (10g/ml) were added to 96-well plate (100l/well) and 

incubated for 2 hours at 37C.  Plate was wahed and 100l/well of DNPH solution was added to each 

and left in dark for 45mins.  Plate was washed with ethanol/PBS (1:1 v/v) followed by blocking 

reagent and anti-DNP antibodies for 1 hour each. An HRP-conjugated secondary antibody was added 

for 1 hour with a washing step after each incubation period. The ECL substrate solution was added 

and allowed the colour  to develop. The stop solution was then added and the plate was finally read 

at 450nm. The protein carbonyl content in unknown samples was determined by comparing with a 

standard curve (Figure 2.7). 
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Figure 2.7: Diagram depicting protein-carbonyl assay. Proteins (Histone) 10µg/ml was coated on 

ELISA plate (2hrs at 37°C) followed by addition of DNP. Primary antibodies (Anti-DNP) were added. 

After washing, HRP-conjugated secondary antibodies were added and the plate was developed with 

substrate solution. The OD values were then measured. 

 

2.15 Western Blot 

2.15.1 Bradford assay 

Histones and protein concentrations were calculated using the Bradford Bio-Rad protein Assay® kit 

(Bio-Rad Laboratories, Hemel Hempstead, UK). Bovine serum albumin (BSA) was used as a standard. 

Serial dilution of BSA (0, 0.5, 1.0, 2.0, 4.0, 6.0, 8.0, 10.0µg/ml) were used in duplicates on 96-well 

plate. Bradford Bio-Rad solution was diluted to 1:5 and 200µl was added/well. The plate was read at 

600nm wavelength using microtitre plate reader.  A graph of the optical densities (ODs) values of the 

standards against the BSA concentration was plotted and the concentrations of the unknown values 

were calculated. 

 

2.15.2 Polyacrylamide gel electrophoresis 

Protein samples were size-fractionated electrophoretically using sodium dodecylsulphate-

polyacrylamide gel electrophoresis (SDS-PAGE). Precast NuPage® 4-12% Bis-Tris gel (Invitrogen, 

Paisley, UK) were rinsed with deionised water and set up in the Xcell SuperLock Mini-Cell tank 

(Invitrogen, CA, USA). Reservoirs in the tank were filled with NuPage® MES SDS running buffer 
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(Invitrogen, Paisley, UK). Protein samples (10-20µg) were loaded onto the gels and run at 200 Volts, 

120mA, 25 Watts for 35 and 60 minutes for p65 and histones, respectively. 

 

2.15.3 Immunodetection of specific proteins 

Proteins were transferred and immobilised on to nitrocellulose membrane using an iBlot® system 

per manufacturing instructions. The nitrocellulose membrane was blocked in either 1% BSA in 

Tween-20 1% v/v PBS (PBST) or 5% semi skimmed milk/PBST for 1 hour at room temperature on the 

rocking platform. The membrane was then incubated with primary antibodies diluted in 10ml 

blocking solution. The details of antibodies used for Western blotting are shown in Table 6. 

Membranes were rinsed and washed three times with PBS/Tween 20 for 10 minutes. After washing, 

the membrane was incubated with horseradish peroxidase (HRP)-conjugated secondary antibodies 

raised against the host primary antibodies, diluted in blocking solution for 1 hour at room 

temperature on rocking platform. The washing step was again repeated.  Finally, immunoreactive 

bands were detected using a chemiluminescence detection kit (ECL; Amersham Biosciences, 

Amersham, UK) followed by quantification of band density. 
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Table 6: Antibodies used for Western blotting 

 

2.16 siRNA transfection 

BEAS-2Bs cells were seeded in 6-well plates at 0.3 x 106 cells/well and transfected with ON-Target 

plus SMART pool Brd2 (L-004935-00-0005) or Brd4 (L-004937-00-0010) or control (D-001810-10-05) 

small interfering RNAs (siRNA) at 12nM concentration (All from Dharmacon Thermo Scientific, 

Chicago, USA) using HyperFect transfection reagent (Qiagen, Crawly, UK) as described by the 

manufacturer. After 72 hours, cells were harvested and nuclear extracts were examined for Brd2 and 

Brd4 protein expression levels using Western blotting with anti-Brd2 and -Brd4 antibody. Total 

mRNA was extracted and converted to cDNA and assessed for Brd2 and Brd4 expression using Q-

PCR.  

Primary antibody 
(Dilution/Concentration) 

Company 
(Catalogue number) 

Secondary antibody 
(Dilution) 

Molecular weight 
(kDa) 

p65 

(1:1000) 

Santa Cruz  

(sc-8008) 

Goat anti-mouse  

(1:2000) 

65 

p65 

(1:1000) 

Santa Cruz 

(sc-372) 

Goat anti-rabbit  

(1:2000) 

65 

Histone core 

(1:500) 

Abcam 

(7832) 

Rabbit anti-sheep 

(1:1000) 

14-17 

Anti-acetyl-Histone 3 

(0.05 µg/ml) 

Millipore  

(06-599) 

Goat-anti-rabbit  

(1:2000) 

17 

Anti-acetyl-Histone 4 

(1:800) 

AbD serotec  

(AHP418) 

Goat-anti-rabbit  

(1:2000) 

10 

BRD4 

(1:500) 

Sant Cruz 

(sc-48772) 

Goat-anti-rabbit  

(1:2000) 

152/80 

isomers 

Histone H4 

(1µg/ml) 

Abcam 

(ab10158) 

Goat-anti-rabbit  

(1:2000) 

14 

Anti-acetyl K310 p65 

(2.5µg/ml) 

Abcam 

(ab19870) 

Goat-anti-rabbit  

(1:2000) 

65 

Tata binding Protein 

(1:1000) 

Santa Cruz 

(sc-273) 

Goat-anti-rabbit 

(1:2000) 

38 

Brd2 

1:1000 

Bethyl Lab 

(A302-582A) 

Rabbit anti-sheep 

(1:1000) 

110 
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2.3 Statistical analysis 

All data are presented as means ± standard error of the mean (SEM) with at least n = 3 independent 

observations per experiment. In experiments that contained only two means (Unstimulated versus 

Stimulated), statistical differences were determined by an unpaired Student's t-test. When 

comparing more than two means (Control, H2O2 and H2O2+IL-1) One-way ANOVA was performed 

followed by Bonferroni’s Multiple Comparison Test.  Two-way ANOVA followed by post hoc analysis 

was performed using the Newman-Keuls test for experiments contain more than two means in each 

set of data (comparison between drugs with various stimulations). GraphPad Prism (La Jolla, CA) was 

used to evaluate the data. Differences were considered significant for P values of <0.05. 
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Chapter 3  

The effect of Acute and Chronic Oxidative stress on 

pro-inflammatory mediators, p65 and Histone 

modifications. 
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3.1 Rationale 

There is accumulating evidence that oxidative stress is an important feature of COPD and involved in 

the pathophysiology of the disease (Barnes 2007).  Oxidtive stress occurs when there is an imbalance 

between reactive oxygen species (ROS) and antioxidants, favouring ROS, which results in detrimental 

effects including damage to proteins, DNA and Lipids (Ahsan, Ali et al. 2003; Rahman and Adcock 

2006). Oxidative stress is also linked to protein oxidation that leads to carbonylation. Carbonyl 

groups (C=O) can be introduced into proteins by oxidation of side chains of amino acids or by 

addition of reactive aldehydes generated from lipid peroxidations (Dalle-Donne, Rossi et al. 2003).  A 

specific carbonyl marker, 4-hydroxy-2-nonenal, has been detected in the lung of COPD patients using 

immunocytochemistry (Rahman, van Schadewijk et al. 2002). There is increasing evidence for 

autoantibodies against carbonyl-modified proteins in sera of COPD patients (Kirkham, Caramori et al. 

2011).  It has been shown that cigarette smoke (CS) alters iron homeostasis following lung injury and 

that this accumulation of iron may also result in oxidative stress (Ghio, Hilborn et al. 2008). 

Chronic inflammation in COPD is driven by a plethora of pro-inflammatory cytokines (IL1 TNF-

CXCL8, and IL-6) and oxidative stress (H2O2) (Chung 2001). Sputum from COPD patients show 

increased levels of IL- CXCL8 and TNF-levels which correlates with disease severity. Similarly IL-6 

concentrations are increased in plasma, sputum and bronchalveolar lavage from COPD patients 

(Sinden and Stockley ; Keatings, Collins et al. 1996; Barnes 2004; Daldegan, Teixeira et al. 2005; Galli, 

Tsai et al. 2008). Bronchial epithelial cells from COPD patients release more IL-1 than healthy 

individuals suggesting that cells are pre-programmed to release IL-1 (Rusznak, Mills et al. 2000; 

Barnes 2004; Singh, Arora et al. 2010). Airway epithelial cells are the first line of defence against 

noxious particles and gases from smoke and pollutants. They are involved in tissue repair as well as 

secreting antimicrobial peptides such as defensins to further enhance the innate immune system 

(Menendez and Brett Finlay 2007). Cigarette smoke may compromise the defence function of 

epithelial cells, thereby making the host more susceptible to infections (van der Vaart, Postma et al. 
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2004; Yaghi, Zaman et al. 2012). Smokers and COPD patients have high incidences of lower tract 

respiratory infection (Arcavi and Benowitz 2004; Sapey and Stockley 2006). Elevated H2O2 is also 

reported in the breath condensates of COPD patients, indicative of oxidative stress (Montuschi 

2005). Many inflammatory genes are regulated by the NF-B transcription factor.  These genes are 

activated by oxidative stress and their expression is increased in smokers and COPD patients (Di 

Stefano, Caramori et al. 2002; Edwards, Bartlett et al. 2009). NF-B binds to the promoter regions of 

inflammatory genes upon activation leading to local histones hyper-acetylation. This allows the local 

unwinding of DNA and binding of other transcription factors and transcriptional regulatory 

complexes (Gloire, Legrand-Poels et al. 2006; Watters, Kenny et al. 2007; Franco, Schoneveld et al. 

2008). Cigarette smoke has been shown to increase histone acetylation and enhances NF-B activity 

via reduced IB protein in COPD and smokers (Szulakowski, Crowther et al. 2006). 

In the developed world, COPD is caused by long-term exposure to oxidative stress derived from 

cigarette smoke and about 90% of COPD patients are either smokers or ex-smokers (Young, Hopkins 

et al. 2006; Barnes 2007). Evidence for continued oxidative stress even many years after smoking 

cessation has been reported (Donohue 2006; Louhelainen, Rytila et al. 2009). Therefore, in order to 

understand the disease on a cellular level we need to explore the role of both acute and chronic 

oxidative stress and its effect on inflammatory genes.  A number of cell-based systems of oxidative 

stress have been reported (Kirkham, Spooner et al. 2004; Merry 2004; Rahman and Adcock 2006). 

However, all these models fail to address the accumulative and chronic effect of oxidants resulting in 

the disease state. Although, numerous oxidative stress models (in vivo and in vitro) have been 

reported (Ito, Hanazawa et al. 2004; Marwick, Kirkham et al. 2004; Ito 2007; Churg, Cosio et al. 2008; 

Wright, Cosio et al. 2008), acute (2 hours) ROS exposure remains the basis of most experimental 

models. Therefore, it’s important to establish both acute and chronic oxidative stress models in vitro 

using H2O2 (oxidant) and bronchial epithelial cells.  The NF-B pathway is activated during 

inflammation (Rahman and Adcock 2006). In addition, epigenetic changes such as changes in histone 
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acetylation profile have been linked with inflammation (Eberharter and Becker 2002). However, It’s 

not clear whether oxidative stress derived from cellular or/and exogenous sources (H2O2) can 

modify, through oxidisation, histones and NF-B p65 that results in carbonylation. The effect of such 

modification on pro-inflammatory mediators (CXCL8 and IL-6) is also not well understood. In a 

transcriptionally inactive cell, DNA and histones are densely packed together to prevent the binding 

of transcription factors such as NF-B to its targeted inflammatory genes (Adcock, Cosio et al. 2005). 

There is mounting evidence that increased gene transcription is associated with an increase histone 

acetylation whereas hypo-acetylation is correlated with gene suppression (Adcock, Ford et al. 2006; 

Ito 2007).  The N-terminal tails, protruding from the subunits of core histones such as H3 and H4, are 

sites for post-transcriptional acetylation that consists of highly conserved lysine residues. These sites 

play important roles in gene expression and regulation (Ito, Barnes et al. 2000).  Therefore, it’s 

imperative to examine the effect of oxidative stress and inflammatory stimulus (TNF-) on histone 

acetylation, particularly H3 and H4. 

It has been reported that the iron content is increased in COPD patients in comparison with smokers 

and healthy non-smokers (Ghio, Hilborn et al. 2008). Iron is usually found as complex with other 

proteins such as haem, ferritin, transferrin and lactoferrin (Ghio, Stonehuerner et al. 2008). In COPD, 

inflammation is accompanied by an influx of inflammatory cells including macrophages and 

neutrophils. Neutrophil elastase, released by neutrophils, degrades iron-bound proteins and thereby 

increases the free iron burden (Vlahos, Wark et al. 2012). Iron can convert (via the Haber-

Weiss/Fenton reaction) superoxide (.O2
–) and/or hydrogen peroxide (H2O2) into highly toxic hydroxyl 

radicals (
.
OH) (Barnes 2004; Fischer, Pavlisko et al. 2011). Therefore, it’s important to study the 

effect of both iron and hydrogen peroxide on the expression of inflammatory mediators and 

intracellular ROS in vitro. 

 



 
 

The role of NF-B p65 and Brd4 in oxidative stress driven inflammation PhD thesis 

 

85 

 

3.2 Experimental protocol 

3.2.1 Optimisation of BEAS-2Bs cell seeding density 

BEAS-2B cells were cultured in complete media (growth factors) and minimum media (1% growth 

factors).  Both media conditions had cells with a seeding density of 3x105 cells/150cm2 in 8 separate 

culture flasks (150 cm2).  Cells from each flask were split each day using 0.25% trypsin. Viable cells 

were counted by Trypan blue exclusion. A 10μl of cell suspension was added to 90µl of trypan blue 

dye (Sigma, Poole, UK) and 10µl of this mixture (trypan blue/cells) was applied to haemocytometer 

with glass cover slip on the top. The haemocytometer was viewed at 10X magnification Olympus 

CH30 microscope (Olympus UK Ltd., Watford, UK). All the cells in the haemocytometer grids were 

counted and average numbers of cells were determined per flask.  

Total cells/ml = total cells within all 4 grids x 104 cm3 (volume of groves) x 10 (dilution factor/dye) 

 

 

Figure 3.1: Schematic representation of the cells count.  8 flasks were seeded with 3x105 cells and 

each day a flask was split and cell number was determined by trypan blue exclusion. 
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3.2.2 Acute and Chronic H2O2 treatment 

Following overnight starvation, cells (1x106 cells/well in 2ml) seeded in 6-well plates were exposed 

to 100μM of H2O2 for 4 hours (acute). Alternatively, cells ( seeded at 2x106 cells/flask 75 cm3 in 8ml) 

were exposed to 50µM of H2O2 each day for 5, 10 and 15 days in a chronic model for 2 hours daily. 

Following exposure, media was removed and minimum media (1% growth factors) was added. Cells 

were stimulated in the presence or absence of 1ng/ml TNF- for 20 hours at last day (5th, 10th and 

15th). I have also used IL-1 as inflammatory stimulus as alternative to TNF- in acute model. 

Supernatants were saved for ELISA and cells were used for proteins extractions (NF-B p65 and 

histones). 

 

Figure 3.2: A diagrammatic representation of acute and chronic oxidative stress models. BEAS-2B 

cells were exposed to 100µM of H2O2 for 4 hours acutely and 50µM for 2 hours each day for 5 days 

chronically, followed by p65 and histone isolation. 
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3.2.3 Effect of H2O2 and ammonium iron sulphate on cell viability  

After treating cells with H2O2 or ammonium iron sulphate, cell viability was assessed using 

methylthiazolyldiphenyl-tetrazolium bromide (MMT) assay. Cells were incubated with 1mg/ml MMT 

solution at 37°C and 5% CO2 for 30 minutes. MTT solution was then removed and dimethyl sulfoxide 

(DMSO) was added to dissolve the formazan product to produce a purple solution. The absorbance 

was measured at 550 nm. The colour intensity was correlated with cell viability. 

3.2.4 Measurement of intracellular oxidative stress using Dichlorofluorescein assay 

Cells were cultured in serum-free media for 24 hours. Prior to treatments, cells were incubated with 

dichlorofluorescine diacetate (DCFH-DA) for 30mins in media.  After removing the media, cell were 

washed with KRH buffer followed by treatment with various concentrations of H2O2/ammonium iron 

sulphate or left untreated. Fluorescein from cells was measured using fluorescein plate reader. 

Fluorescein intensity was correlated to intracellular ROS (See section 2.5 of Chapter 2).  

3.2.5 Release of IL-6 and CXCL8 from stimulated cells 

BEAS-2B cells, 80-95% confluent, were cultured in serumfree medium for 24 hours. Cells were 

treated with H2O2 or/both ammonium iron sulphate followed by IL-1 stimulation for 16 hours or 

left untreated. Supernatant was collected and IL-6 and CXCL8 was determined by ELISA (section 2.4 

of Chapter 2).  

3.2.6 IL-6 and IL-8 mRNA expression 

BEAS-2B cells were cultured in keratinocyte serum free media for 24hours before treatment. Cells 

were treated with H2O2 (100µM) with/without IL-1β (1ng/ml) for 2 hours. Total RNA was extracted 

using RNeasy kit (Qiagen, Hilden, Germany) according to manufacturer’s instructions.  RNA was 

converted to cDNA and subjected to qPCR analysis. The amount of IL-6 and IL-8 mRNA was 

determined using delta delta CT values of gene of interest (IL-6 and IL-8) and a housekeeping gene 

(Guanine nucleotide binding protein beta polypeptide 2-like 1: GNB2L1B1). Refer to section 2.10 

Chapter 2. 
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3.2.7 Immunoprecipitation of p65 (IP p65) 

Whole cell protein extract (500µg) was incubated overnight with 5µg rabbit polyclonal anti-p65 

antibodies (Santa Cruz, CA, USA) on rotator at 4°C. Protein A/G-plus agrose beads (20µl 50% slurry; 

Santa Cruz , CA, USA) were added to the complex and left on the rotator at 4°C for 2 hours. The 

immune complex was then washed using RIPA solution (50mM Tris-HCl pH 7.4, 2% (v/v) NP40, 

150mM NaCl) three times. Proteins were eluted from complex using 35µl of elution buffer (50mM 

Glycine, HCl pH2.4) for 20 seconds immediately followed by 3.5µl of neutralising solution (2M Tris 

pH 8, 1.5M NaCl, 1mM EDTA). See section 2.8 of Methods and Materials for more details. 

3.2.8 Histone isolation and purification 

Cells were treated or left untreated with either 50µM or 100µM H2O2 in the presence or absence of 

1ng/µl of TNF-. Histones were isolated and purified using a commercially available kit, 

manufacturer`s instructions (Histone Purification kit. Active motif, Rixensart, Belgium).   

3.2.9 Carbonylation assay 

Protein oxidation was quantified using a commercially available kit OxyBlotTM from 

Millipore/Chemicon (Chandlers Ford, Southampton, UK) and ELISA based assay kit from Cell Biiolabs 

(San Diago, USA).  The manufactures’ provided instructions were followed (Section 2.14). 

 

 

 

 

 

 

 



 
 

The role of NF-B p65 and Brd4 in oxidative stress driven inflammation PhD thesis 

 

89 

 

3.3 Results 

3.3.1 BEAS-2B cells proliferation in a media  

In order to quantify BEAS-2B cells proliferation in supplemented medium (containing growth factors) 

and supplement free medium, cells were allowed to proliferate in media with/without the growth 

factors for 8 days. BEAS-2B cells were seeded at a density of 3x104 cells/flask (150cm2 Cornning®, NY, 

USA) in 8 different flasks on day 1 and allowed to proliferate until 8th day. Culture media was 

changed every two days. Each day a flask was split and cell number was determined by trypan blue 

exclusion. BEAS-2B cells stopped dividing exponentially after the 6th day, having reaching a density of 

15 million cells in a media supplemented with growth factors. The cells number started to decline by 

7th and 8th day (Fig. 3.3A). In contrast, 3 million cells were recorded at 6th day in media lacking 

growth factors (Fig.3.3B). Based on this result, cells were starved 24 hours prior to experiments in 

order to achieve cell cycle snychronisation and maintain the same number cells in all experiments. 

 

Figure 3.3: BEAS-2B cells proliferation in media. BEAS-2B cells were seeded at 3x104 cells/flask 

(150cm3) supplemented with or without growth factors at day 1. (A) Cells reached 15 million at day 6 

followed by decline in cell number. (B) Cells grew very slow in media without growth factors 

reaching 3 million at day 6.  Subsequent experiments were done in media without growth factors to 

maintain the same cell number. Mean ± SEM of 5 independent experiments. 
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3.3.2 The effect of acute and chronic H2O2 on cell viability 

Metabolic activity assay (MTT-tetrazolium salt) was used to examine the effect of acute and chronic 

H2O2 treatments on cell viability in order to define appropriate concentration conditions for 

subsequent studies. Cells were exposed to different concentrations of H2O2 ranging from 0-800µM 

for 4 hours (acute) and 2 hours/day for 5 days (chronic). MTT assay was performed at the end of 

each experiment. MTT is reduced to purple formazan in living cells. A violet colour solution is 

developed upon dimethyl sulfoxide (DMSO) addition. The absorbance of this colour corresponds to 

cell viability.  The cell viability was reduced to 70% with 150µM, 50% with 200µM and below 40% in 

subsequent higher concentrations in acute treatments whereas 50µM and 100µM had no significant 

effect (Fig. 3.4A). In comparison with acute experiments, cell viability was reduced to 25% in 

repeated exposure to 100µM of H2O2 and below 25% with higher concentrations with chronic 

treatment (Fig. 3.4B). However, there was no significant change in cell viability with 25µM or 50µM. 

The chronic treatment was extended to 10 and 15 days using 50µM of H2O2. Cells remained viable 

after 5, 10 and 15 days treatment (Fig. 3.4C-D).  Hydrogen peroxide had no obvious effects on cell 

morphology when examined under the microscope after chronic H2O2 treatment (Fig. 3.5).  Taking 

these results into account, 100µM of H2O2 was used for acute and 50µM for chronic treatment in 

subsequent experiments. All the experiments were carried out on the viable cells after exposure to 

H2O2. 
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Figure 3.4: The effect of H2O2 on cell viability. (A) Cells were exposed to a range of concentrations of 

H2O2 for 4 hours acutely. Cell viability significantly reduced above 100µM concentrations. (B) Cells 

showed significant reduction in cell viability above [50µM] when treated chronically for 2 hours daily 

for 5 days with range of [H2O2]. (C-E)  Cell remained viable after treatment with [50µM] daily for 2 

hours after 5, 10 and 15 days.  Results represent the mean ± SEM of 4 independent experiments. 

**p<0.01, ***p<0.001 (Control vs treated) 
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Figure 3.5: Chronically treated cells` morphology. Hydrogen peroxide did not have any obvious 

effect either on the size or shape of cells when treated chronically for 2 hours daily for 5 days. Cells 

were examined at x10 and x20 magnifications and photographed. Results are representative of 3 

independent experiments. 

 

3.3.3 The effect of H2O2 on intracellular ROS 

To examine whether H2O2 is able to induce intracellular ROS (oxidative stress), cells were seeded 

(3x104/well) in 96-well plate and incubated with DCFH-DA fluorescent probe for 30 minutes, 

followed by treatment with H2O2 (0, 25, 50, 100, 200, 400 and 800μM) for 4 hours.  Intracellular ROS 

elevated in concentration-dependant manner (Fig. 3.6). There was a significant increase in 

intracellular ROS after treating cells with concentrations of H2O2 at 100µM or above in comparison 

with untreated cells. This data in conjunction with cell viability data above, indicate that 100μM and 

50μM were optimal H2O2 concentrations for use in future chronic and acute exposure experiments, 

respectively.  
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Figure 3.6: The effect of H2O2 on intracellular ROS in BEAS-2B cells. Cells were pre-incubated with 

DCFH-DA for 30 minutes in loading media followed by wash with KRH buffer. Cells were then treated 

with H2O2 in KRH buffer for 4 hours. Mean ± SEM. N=4. *p<0.05; **p<0.01 when compared to basal 

level (control). 

 

3.3.4 TNF- induced CXCL8 and IL-6 release in acute and chronic oxidative stress   

The effect of H2O2 derived oxidative stress on pro-inflammatory mediator (IL-6 and CXCL8) release 

from BEAS-2B cells, either alone or in combination with TNF-was investigated.  Cells were exposed 

to acute (100µM for 4hrs) and low chronic (5, 10 and 15 days) H2O2 (50µM for 2hrs) followed by 

1ng/ml TNF-challenge at the last day of H2O2 exposure.  Acute exposure to 50µM of H2O2 did not 

enhanced TNF- induced IL-6 or CXCL8 expression (Fig. 3.7A and 3.8A). In contrast, acute 100M 

H2O2 significantly increases in CXCL8 and IL-6 release together with TNF- (Figs. 3.7B and 3.8B).  

Furthermore, repeated exposure to low (50µM) of [H2O2] for 5 days enhanced TNF- induced IL-6 

and CXCL8 release  although there was no effect of a one-off acute exposure with the same H2O2 

concentration 50µM (Figs. 3.7C and 3.8C). This suggests that chronic exposure affects signalling 

and/or epigenetics.  Interestingly, when chronic treatment of hydrogen peroxide (50µM/day) was 

extended to 10 and 15 days, it resulted it  in the loss of the effect that was seen in 5 days treatment, 

suggesting that perhaps cells can induce a resistance to hydrogen peroxide and there are no longer 
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sensitive as reported by several groups (Fig. 3.7D-E and 3.8D-E) (Flattery-O'Brien and Dawes 1998; 

Bose, Bhaumik et al. 2003; Sen, Mukherjee et al. 2003; Bose Girigoswami, Bhaumik et al. 2005; Ho, 

Asagiri et al. 2011). 

 

Figure 3.7: TNF-induced IL-6 release under acute and chronic oxidative stress. The effect of TNF-

 induced IL-6 release in acute and chronic oxidative stress in vitro models. The bar graphs show 

quantitative analysis of IL-6 release in (A-B) acute and (C-E) chronic H2O2 treated cells in the absence 

and presence of TNF-. Results are expressed as mean ± SEM (n≥3 or n=2). *p<0.05; **p<0.01 when 

compared to control.  

Acute 50µM H2O2 exposure 4Hrs

0

500

1000

1500

[H2O2] 50µM- +

[TNF-] 1ng/ml--

+ -

++

A)

** **

[I
L-

6
] 

p
g/

m
l

Acute 100µM H2O2 exposure 4Hrs

0

500

1000

1500

[H2O2] 100µM- +

[TNF-] 1ng/ml--

+ -

++

B)

**

[I
L-

6
] 

p
g/

m
l

Chronic 5 days H2O2 exposure

  2Hrs/day

0

500

1000

1500

[H2O2] 50µM- +

[TNF-] 1ng/ml--

+ -

++

C)

*

[I
L-

6
] 

p
g/

m
l

Chronic 10 days H2O2 exposure

     2Hrs/day

0

500

1000

1500

[H2O2]  50µM- +

[TNF-] 1 ng/ml--

+ -

++

D)

**
*

[I
L-

6
] 

p
g/

m
l

Chronic 15 days H2O2 exposure

     2Hrs/day

0

500

1000

1500

[H2O2] 50µM- +

[TNF-] 1ng/ml--

+ -

++

E)

[I
L-

6
] 

p
g/

m
l



 
 

The role of NF-B p65 and Brd4 in oxidative stress driven inflammation PhD thesis 

 

95 

 

 

Figure 3.8: TNF-induced CXCL8 release under acute and chronic oxidative stress.  The effect of 

TNF- induced CXCL8 release in (A-B) acute and (C-E) chronic (5-10 days) oxidative stress in vitro 

models. (C) Chronic (50µM) exposure has altered the release of CXCL8 release compare with (A) 

acute (50µM) exposure. Similarly, increasing the H2O2 concentration from 50µM to 100µM acutely 

resulted in increased release of CXCL8 (B). However, extending chronic treatment to 10-15 days did 

not enhance CXCL8 release, indicating that cells have adapted to oxidative stress (D-E). Results are 

represented as mean ± SEM. (n≥4 or n=2).  *p<0.05; **p<0.01; ***p<0.001 (con vs stimulated). 
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3.3.5 NF-B p65 and histone carbonylation in acute and chronic oxidative stress  

Having established acute and chronic oxidative stress models, I decide to investigate the impact of 

oxidative stress on intracellular protein oxidation (carbonylation) including NF-B p65 and histones.  

A Western blot based protein carbonylation assay (OxyBlot™) was used to assess protein oxidation 

following p65 immunoprecipitation. The results demonstrated a trend towards increased p65 

carbonylation under acute (Fig.3.9A) and chronic oxidative stress (Fig.3.9B) although this did not 

reach statistical significance.  Following similar treatments, total histones were extracts and 

fractionated by 4-12% SDS-PAGE gel using NuPAGE MES running buffer in order to resolve smaller 

proteins such as histones.  After separation, histones were visualised with Coomassie blue, 

confirming core histone proteins (Fig. 3.9E).  Histone carbonylation was also investigated with ELISA 

based assay (OxiSelectTM Carbonyl ELISA). There was no change in histone carbonylation profile 

following exposure to acute or chronic H2O2 (Fig. 3.9C-D). 
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Figure 3.9: p65 and histone carbonylation under acute and chronic oxidative stress.  

Immunoprecipated p65 proteins were derivatised with DNPH and detected with anti-DNP antibody. 

The blot was striped and re-blotted with total p65 antibodies. The red line represents average 

carbonylation in all samples. There was no significant increase in p65 carbonylation following either 

(A) acute or (B) chronic H2O2 treatment. Histones were purified and 10µg/ml was plated on 96-well 

plate (100µl/well) followed by DNPH derivatisation. 1° anti-DNP followed by 2° HRP-conjugated 

antibody was added. Plate was developed and read at 450nm.  There was no change detected in 

carbonylation in either acute or chronic (C-D).  Core histone proteins were visualised with Coomassie 

blue dye (E). Results are expressed as mean ± SEM (n=3). 
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3.3.6 NF-B p65 carbonylation under increasing concentrations of H2O2 

Initial experiments revealed a trend in p65 carbonylation following treatment with 100µM H2O2 

(above section 3.5). Therefore, I examined p65 carbonylation in response to increasing 

concentrations of H2O2 (100, 150 and 200µM). It was hypothesised that if H2O2 does target p65 by 

inducing carbonylation then use of higher H2O2 concentrations that gave a greater increase in 

intracellular ROS (Fig. 3.4) should give greater p65 carbonylation. Cells were treated for 4 hours with 

different concentrations of H2O2 and p65 was immunoprecipitated and carbonylation was measured. 

Increasing the concentration of H2O2 had no effect on p65 carbonylation after 4 hours treatment 

(Fig. 3.10A).  H2O2 has a short half-life and degradation varies in different cell types and models. It 

has been reported that H2O2 disappears in most cell culture medium less than an hour (Song, 

Driessens et al. 2007).  Studies have also shown that oxidised proteins are rapidly eliminated by 

proteasomal degradation following treatment with H2O2 (Davies 2001). Therefore, p65 carbonylation 

was examined at 30mins and 60mins following treatment with H2O2. Cells were also pretreated with 

the proteasome inhibitor MG-132 in order to inhibit potential degradation of carbonylated p65.  

Again, there was no significant effect of different concentrations of H2O2 on p65 carbonylation after 

30mins (Fig. 3.10B) and 60mins (Fig.3.10C). Pre-treatment of cells with MG-132 (10µM for 30mins) 

significantly increased the p65 carbonylation level at 200µM, suggesting that oxidised p65 might be 

undergoing proteosomal degradation (Fig. 3.10D).  
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Figure 3.10: The effect of high concentrations of H2O2 on p65 carbonylation. (A)  BEAS-2B cells were 

treated with H2O2 for 4 hours. p65 was immunoprecipitated (IP) from whole-cell extract 

(500µg/sample). Equal amounts of IP p65 protein was used for immunoblotting (IB). Carbonylation 

was detected by derivitising the samples with DNPH and immunoblotting with an anti-DNP antibody. 

(B-C) Similarly, carbonylation was detected after 30mins and 60mins of treatment with H2O2. (D) 

BEAS-2B cells were pre-treated with proteasome inhibitor MG-132 (10µM) for 30mins prior to 4 

hour H2O2 treatment. Blots are representative of n=4 independent experiments. Data is presented as 

mean ± SEM relative to control. Control samples were set to 100%, * P < 0.05. 
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3.3.7 The effect of H2O2 and TNF- on histone acetylation 

Histone acetylation is associated with gene expression. Stimulating human epithelial cell line (A549) 

with inflammatory stimuli such as IL-1 and TNF- results in acetylation of specific lysine residues on 

histone 4 (H4) which correlates with increased inflammatory proteins such as granulocyte-

macrophage colony stimulating factor (GM-CSF) (Ito, Barnes et al. 2000). Acetylation of H3 and H4 

lysine residues is also thought to be linked directly to gene transcription (Rahman and Adcock 2006). 

Liu et al have shown that histone acetylation is completely abrogated in epithelial cells following 

chronic treatments with cigarette smoke condensate (CSC) (Liu, Killian et al. 2010). It is not clear 

whether oxidative stress or other chemicals within CSC have caused this phenomenon.  It is also 

unknown whether H2O2 or TNF-alone or together has any effect on global acetylation of H3 and H4 

histone in BEAS-2B cells. Therefore, in order to examine the effect of H2O2 and TNF-, BEAS-2B cells 

were co-treated with H2O2 (100µM) and TNF- for 4 hours acutely or left untreated. Cells were also 

treated  chronically for  5, 10 and 15 days daily for 2 hours with H2O2 (50µM) and at last day (5th, 10th 

and 15th day) of each chronic treatment cells were stimulated with TNF- in combination with H2O2. 

Following treatment, histones were isolated immunoblotted for H3 and H4 pan-acetylation as well 

as total H3 and H4. There was no effect of H2O2 alone or together with TNF- in acutely or 

chronically treated cells suggested that local changes associated with specific promoters e.g. IL-6 and 

IL-8 rather than global changes are functionally important (Figure 3.11). Alternatively, acetylation of 

specific lysine residues linked to gene activation may have been more informative (Bannister and 

Miska 2000; Fukuda, Sano et al. 2006). 
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Figure 3.11:  The effect of acute and chronic treatments of H2O2 on histone acetylation. (A)  BEAS-

2B cells were treated with H2O2 (100µm) for 4 hours together with TNF- (1ng/ml) or left untreated. 

Histones (H) were isolated and immnoblotted for global acetylation (Ac) of H3 and H4 preceded by 

stripping and re-blotting for total H4 and H3. (B-D) similarly, the effect of chronic treatment (5, 10, 

and 15 days) of H2O2 was examined in BEAS-2B cells and no noticeable changes were observed in 

acetylation profile.   Western blots are representative of at least 3 independent experiments. 

(C): Chronic 10 days 

H4 pan-Ac 

Total H4  

-actin 

H3 pan-Ac 

Total H3  

-actin 

H4 pan-Ac 

-actin 

Total H4 

H3 pan-Ac 

H3 total 

-actin 

(A): Acute (4 hours) 
(i)           (ii) 

(B): Chronic 5 days 

H4 pan-Ac 

Total H4  

-actin 

H3 pan-Ac 

Total H3  

-actin 

(i) 
(ii) 

(i) 
(ii) 

(D): Chronic 15 days 

H4 pan-Ac 

Total H4  

-actin 

H3 pan-Ac 

Total H3  

-actin 

(i) (ii) 

-
                 

 -             +             +            H
2
O

2 
 

-            +             -             +            TNF-  

-
                 

 -             +             +            H
2
O

2 
 

-            +             -             +            TNF-  

-
                 

 -             +             +            H
2
O

2 
 

-            +             -             +            TNF-  

-
                 

 -             +             +            H
2
O

2 
 

-            +             -             +            TNF-  

-
                 

 -             +             +            H
2
O

2 
 

-            +             -             +            TNF-  

-
                 

 -             +             +            H
2
O

2 
 

-            +             -             +            TNF-  

-
                 

 -             +             +            H
2
O

2 
 

-            +             -             +            TNF-  
-

                 
 -             +             +            H

2
O

2 
 

-            +             -             +            TNF-  



 
 

The role of NF-B p65 and Brd4 in oxidative stress driven inflammation PhD thesis 

 

102 

 

3.3.8 H2O2 enhanced IL-6 and IL-8 expression in response to IL-1 

To determine the universality of the enhancing effect of H2O2 on TNF--induced CXCL8 and IL-6 

expression in the acute model, it was decided to examin whether IL-1 could replace TNF- in this 

model (Fig. 3.7B). The H2O2 pre-exposure time was also reduced from 4 hours to 2 hours as H2O2 

disappears from most systems within an hour (Song, Driessens et al. 2007). H2O2 alone had little or 

no effect on IL-6 or CXCL8 protein production, however, it significantly enhanced the production of 

IL-6 and CXCL8 release from co-treated with IL-1 (Fig. 3.12A and 3.12B). This effect was parellelled 

by changes in IL-6 and IL-8 mRNA transcripts (Fig. 3.12C and 3.12D). Based on these findings, in all 

subsequent experiments, H2O2 (100µM) and IL-1 (1ng/ml) was used to study molecular mechanism. 

 

Figure 3.12: H2O2 enhanced induction of CXCL8 and IL-6 in response to IL-1. (A-B)  BEAS-2B cells 

were treated with H2O2 for 2 hours in the absence or presence of IL-stimulation overnight) or left 

untreated as a control. CXCL8 and IL-6 protein levels in cell culture supernatants were quantified by 

ELISA. (C-D) IL-8 and IL-6 transcript levels were quantified by comparative real-time PCR and were 

normalised by measuring GNB2L1 transcript levels.  Results are expressed as mean ± sem of at least 

4 independent experiments. * P < 0.05, ** P < 0.01, ***P < 0.001 versus controls. 
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3.3.9 The effect of iron on cell viability, intracellular ROS and inflammation 

Free iron is reported to be elevated in COPD patients in compared with smokers and healthy non-

smokers (Ghio, Hilborn et al. 2008). Iron produces highly reactive hydroxyl radicals (
.
OH) and 

superoxide (
.
O2

–) by reacting with H2O2.  Free radicals contribute further to oxidative stress as well as 

instigate lipid peroxidation in cells (Barnes 2004; Fischer, Pavlisko et al. 2011).Thereby, ammonium 

iron sulphate [(NH4)2Fe (SO4)2] was used to investigate the effect of iron on cell viability, intracellular 

ROS and pro-inflammatory gene expression.  Firstly, BEAS-2B cells were exposed to different 

concentrations of (NH4)2Fe(SO4)2 for 2 hours and MTT assays were performed. There was no 

reduction in cell viability following any treatment (3.13A).  Secondly, the impact of (NH4)2Fe (SO4)2 on 

intracellular was studied by incubated cells with DCFH-DA florescent probe for half an hour followed 

by treatment with different concentrations of (NH4)2Fe(SO4)2 (0-1600µM).  Intracellular ROS was 

elevated at low concentrations (0-200µM) but reduced at higher concentrations (400-1600µM) of 

(NH4)2Fe(SO4)2 (Fig. 3.13B). Intracellular ROS was significantly increased at 100µM and 200µM 

relative to untreated cells and in subsequent experiments 100µM of (NH4)2Fe(SO4)2 was used. 

To investigate whether (NH4)2Fe(SO4)2 could further potentiate the effect of H2O2 and IL-1 on IL-6 

and CXCL8 production, cells were treated with (NH4)2Fe(SO4)2 (100µM) for 2 hours followed by 

treatment with H2O2 and IL-1 either alone or in combination.  Cell culture supernatants were 

analysed for CXCL8 and IL-6 levels by ELISA.  The presence or absence of (NH4)2Fe(SO4)2 did not 

modulate the induction of CXCL8 or IL-6 production by either H2O2 or IL-1 alone or when used 

together (Figure 3.13C and 3.13D). 
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Figure 3.13: The effect of iron on the expression of CXCL8 and IL-6.  (A) BEAS-2B cells were treated 

with a range of ammonium iron sulphate (NH4)2Fe(SO4)2 concentration (0-1600µM) and cell viability 

was assessed using an MTT assay. (B) Intracellular ROS was quantified using DCF-H assay following 

treatment with different concentration of (NH4)2Fe (SO4)2. ROS peaked at 100-200µM. (C-D) Cells 

were pre-incubated for 2 hours with or without (NH4)2Fe(SO4)2 prior to washing with PBS and 

treatment with H2O2 or IL-1 alone or in combination. Results are expressed as mean ± SEM of 3 

independent experiments. *p<0.05 vs control. 
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3.4. Discussion   

COPD is caused by long-term exposure to cigarette smoke (CS) and about 90% of COPD patients are 

either smokers or ex-smokers (Young, Hopkins et al. 2006; Barnes 2007). Cigarette smoke is a 

complex mixture of over 5000 chemicals, including ROS (1017 per puff) (Church and Pryor 1985; Pryor 

and Stone 1993). It is involved in the activation and recruitment of inflammatory cells, producing not 

only inflammatory mediators but also generating oxidants (Kirkham, Spooner et al. 2003; Kirkham, 

Spooner et al. 2004). Elevated oxidants, derived from cells and CS, result in oxidative stress which is 

frequently found in the lung of COPD patients (Chung and Marwick ; Dekhuijzen, Aben et al. 1996; 

Mortaz, Rad et al. 2008). Oxidative stress and inflammation are inseparably intertwined processes.  

Chronic inflammation is associated with elevated ROS and diminished or compromised antioxidant 

systems (Terlecky, Terlecky et al. 2012).  There is also a considerable evidence of oxidative stress 

entailed in the pathology of many disorders, including aging, cancer, neurodegenerative and 

cardiovascular diseases (Dalle-Donne, Aldini et al. 2006; Kurien and Scofield 2008). Therefore, it’s 

vitally imperative to understand the effect of oxidative stress in a cell-base system and its 

subsequent effect on modulating inflammatory pathways before extending it to more complex 

systems.   

Thus, numerous  cell-based systems of oxidative stress have been devised (Yatin, Varadarajan et al. 

1999; Aksenova, Aksenov et al. 2005; Wijeratne, Cuppett et al. 2005) to study the impact of 

oxidative stress on cell-signalling, mitochondrial function, cell differentiation and apoptosis 

(Kirkham, Spooner et al. 2004; Merry 2004; Rahman and Adcock 2006). However, all these models 

fail to address the accumulative and chronic effect of oxidants resulting in the disease state. Despite 

a number of oxidative stress models (in vivo and in vitro) (Ito, Hanazawa et al. 2004; Marwick, 

Kirkham et al. 2004; Ito 2007; Churg, Cosio et al. 2008; Wright, Cosio et al. 2008), acute ROS 

exposure remains the basis of most experimental models. Therefore, our initial aim was to establish 

both acute and chronic in vitro oxidative stress models using H2O2 (oxidant) and epithelial cells. H2O2 

is one of many ROS reported in the breath condensates of COPD patients (Nowak, Kasielski et al. 
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1998; Montuschi 2005). Epithelial cells constitute the inner surface of the airways lumen and are 

part of the first line of defence against xenobiotics and irritants such as CS (Kirkham, Spooner et al. 

2004; Galli, Tsai et al. 2008).  We have used H2O2 in our  models with the knowledge that it does not 

reflect the complex mixture of stimulants seen in tobacco smoke (Young, Hopkins et al. 2006; Barnes 

2007) but it was hypothesised that the major effect of CS are due to ROS. This made the model 

simpler and allowed us to focus on the ROS. 

In our preliminary work, we determined the optimal cell density of human bronchial epithelial 

(BEAS-2B) cells and correct concentrations of H2O2 for acute and chronic treatments.  It showed that 

BEAS-2B cells have the capacity to survive in minimal media (1% growth factor) and can also 

withstand the continuous insult of low concentration of H2O2 (50μM) for 15 days. However, 

increasing concentrations (>100μM) of H2O2 resulted in cell death. Both models of oxidative stress 

were validated by confirming the release of inflammatory mediators CXCL8 and IL-6.  Initially, I used 

50µM of H2O2 for acute exposure but did not observe any significant change in either IL-6 or CXCL8 

release nor did this concentration modify the expression of TNF-induced IL-6 or CXCL8. These 

findings may be attributable to the induction of antioxidants genes under low oxidative stress 

(Gloire, Legrand-Poels et al. 2006).  Subsequently, H2O2 concentration was increased to 100µM for 

acute exposure and the 50µM concentration was maintained for the chronic exposures. 

Interestingly, 50µM of H2O2 in chronic system did not have any effect alone but together with TNF- 

amplified the production of CXCL8 and IL-6 protein, suggesting that chronic low exposure alters the 

cell sensitivity to oxidative stress and subsequent inflammatory stress resulting in a different pattern 

of inflammatory/immune gene expression.  

However, when the chronic model was extended to 10 and 15 days exposure to ROS this effect was 

diminished. This may be explained by the resistance developed by the cells over continuous 

exposure to H2O2. Bose and colleagues have shown that lung fibroblasts (Chinese hamster V79 cells) 

exhibit stable resistance to high doses of H2O2 (200-1000µM) after challenged with low doses of 
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H2O2 (30µM) for 7 days. This enhanced survival was due to increased glutathione content (GSH) and 

enzymatic activities of antioxidants catalase (CAT), superoxide dismutase (SOD) and glutathione 

peroxidase (GPx) (Bose Girigoswami, Bhaumik et al. 2005). Similarly, yeast exposed to low 

concentrations of H2O2 subsequently become more resistant to high concentrations of H2O2 

(Collinson and Dawes 1992). Furthermore, cells can acquire resistance to the ROS-inducing drug (2-

methoxyestradiol: a metabolite of estrogen) when exposed to the same drug over 3 months of time 

by enhancing the expression of antioxidant enzyme SOD2 (Zhou and Du 2012). H2O2 also has a short-

life and degrades less than within an hour in all type of cell-culture media (Song, Driessens et al. 

2007). Therefore, using H2O2 may not be an ideal for chronic treatment though it has been used as a 

chronic treatment in other studies (Bose, Bhaumik et al. 2003).  Alternatively, continuously 

generated H2O2 agents such as 6-formylpterin, menadione, KO2 or glucose oxidase could be used to 

supply constant but moderate levels of H2O2 (For future work see the end of thesis) (Arai, Endo et al. 

2001; Loor, Kondapalli et al. 2010; Ho, Asagiri et al. 2011; Choe, Yu et al. 2012).   

The acute model was extended with slight modifications by using 100µM H2O2 and IL-1 instead of 

TNF-. Interestingly, it was observed by ELISA and PCR analysis that the application of H2O2 had little 

or no effect on IL-6 or CXCL8 protein production. As with the TNF- model, H2O2 significantly 

enhanced the production of IL-6 and CXCL8 protein in cells that were co-treated with IL-

1confirming that ROS plays a vital role in the induction of inflammatory mediators. We also used 

ammonium iron sulphate [(NH4)2Fe (SO4)2] to enhance intracellular ROS and mimic the effect of free 

iron, reported to be elevated in COPD (Barnes 2004; Ito, Hanazawa et al. 2004). Iron can decompose 

H2O2 through the Fenton reaction leading to the formation of superoxide and hydroxyl radicals which 

are capable of causing biological damage (Jomova and Valko 2011).  However, despite (NH4)2Fe(SO4)2 

enhancing intracellular ROS at 200 µM, I did not observe any effect of (NH4)2Fe(SO4)2 alone or 

together with H2O2 on IL-6 or CXCL8 production.  
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Oxidative stress (H2O2) mediated induction of inflammation (IL-6 and CXCL8) by IL-1or TNF- is 

reported to be due to activation of NF-B pathway (Awane, Andres et al. 1999; Zhang, Johnston et 

al. 2001; Li and Engelhardt 2006). The NF-B pathway is one of the important inflammatory 

pathways involved in chronic inflammatory diseases including COPD.  NF-B p65 transcription factor 

is activated by oxidative stress and its expression is increased in smokers and COPD patients (Di 

Stefano, Caramori et al. 2002). The NF-B is a master regulator which is not only involved in the 

induction of several inflammatory genes but also immunity, apoptosis and cell proliferation (Ito 

2007). It consists of a homo or hetrodimer of five proteins (p50, p52, p65/RelB, p100 and RelB), 

sequestered by an inhibitory protein called IB. Upon cell stimulation, IB protein is 

phosphorylated by IKK complex (IKK, IKK and NEMO) and degraded by proteasome. This enables 

the translocation of NF-B into the nucleus and transcription of targeted genes such as IL-6 and IL-8. 

Both TNF-and IL-1 activates NF-B through phosphorylation (serine 32 and 36) and degradation 

of IB (Awane, Andres et al. 1999; Barnes 2004; Gloire, Legrand-Poels et al. 2006; Edwards, Bartlett 

et al. 2009). However, research has shown that NF-B activation by H2O2 is highly cell-type specific. 

For example in human myeloid KBM-5 cells, H2O2 triggers phosphorylation of tyrosine 42 on IB via 

Syk tyrosine kinase (Takada, Mukhopadhyay et al. 2003). Whereas in Hela cells, H2O2 triggers IKK 

complex activation through protein kinase D (PKD) mediated activation (Storz, Doppler et al. 2004).  

However, in our models, H2O2 by itself had no effect on the expression of IL-6 or IL-8 genes. Its effect 

was only noticeable in combination with IL-1 or TNF-.  One possible explanation accountable for 

this difference is that H2O2 could “prime” p65 to respond greatly to IL-1 or TNF- signals, involve 

post-translational modifications such as phosphorylation or acetylation.  It has been shown that 

H2O2 can induce p65 phosphorylation by phosphorylating tyrosine residue on IB- kinase. However, 

Syk protein is essential for H2O2 mediated activation of IB- kinase (Takada, Mukhopadhyay et al. 

2003). Similarly, acetylation of p65 is associated with NF-B dependant gene expression 

(Rothgiesser, Fey et al. 2010).  Alternatively, H2O2 may reduce the HDAC2 (Histone deacetylation 2) 
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activity, leading to enhanced histone acetylation and increased NF-B-mediated gene transcription 

(Ito, Hanazawa et al. 2004). 

In addition, histones are critical in epigenetic regulation of inflammatory genes through post-

translational modifications (“histone code”), such as phosphorylation, acetylation and methylation. 

All of which have been extensively recorded in the literature (Margueron and Reinberg ; Ito 2007; 

Kouzarides 2007).  However, little is known about histone modification by carbonylation/oxidation. 

Therefore, it was investigated whether H2O2 can induce either histone or p65 carbonylation and 

subsequently affect gene expression. There is accumulating evidence associating oxidative stress 

with the induction of protein carbonylation (England and Cotter 2004; Dalle-Donne, Aldini et al. 

2006; Giustarini, Dalle-Donne et al. 2009) either by direct introduction of carbonyl groups (R-C=O-R`) 

into the side chain of amino acids (Pro, Arg, Lys and Thro) or by addition of reactive aldehydes (MDA, 

4HNE) released from lipid peroxidation process (Wong, Marcocci et al. 2010). Marrin-Coral et al. 

have reported carbonylation of actin and myosin proteins from diaphragm of COPD patients (Marin-

Corral, Minguella et al. 2009). Our group has also shown cigarette smoke induced carbonyl 

modification of HDAC2 (Marwick, Kirkham et al. 2004). Similarly, carbonyls are implicated in the 

pathogenesis of a number diseases including systemic lupus erythematosus (SLE), Type I diabetes 

mellitus, Bechet`s disease, atherosclerosis and rheumatoid arthritis (Kurien and Scofield 2008).  

Our initial data indicated a trend towards carbonyl modification of p65 which was more prevalent in 

the acutely (100µM for 4 hours) treated cell. However, after further study no effect of H2O2 was seen 

on histone or p65 carbonylation between treated and untreated cells.  To clarify the role of H2O2 in 

p65 carbonlylation, we used higher concentrations of H2O2 (100, 150 and 200µM) and noticed a 

small but insignificant increase in p65 carbonylation with increasing concentrations.  Studies have 

shown that H2O2 is unstable and disappears from the medium quickly once added (Song, Driessens 

et al. 2007). It has been reported that various forms of both short and long lived intracellular 

proteins are degraded followed oxidation (Grune, Reinheckel et al. 1996; Davies 2001). For example, 
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Osoata et al. have shown that nitration of HDAC2 is flagged for proteosomal degradation once 

nitrated (Osoata, Yamamura et al. 2009).  In line with this notion, p65 carbonylation was examined 

at earlier time points (30mins and 60mins). We also pre-treated cells with MG-132 proteasome 

inhibitor to block degradation of potential carbonylated p65. Under these conditions, we observed a 

4-fold-increased in p65 carbonylation followed by challenge with 200µM of H2O2.  These results 

suggest that carbonylation occurs when cells are challenged with high concentrations of H2O2 which 

is quickly degraded by proteasome 20s as it might be detrimental for cells function. Indeed, H2O2 

induced oxidation of RNase A is selectively recognised and degraded by the proteasome 20s (Lasch, 

Petras et al. 2001; Pickering, Koop et al. 2010).  

In contrast, histones are considered to be highly conserved proteins and may not be subjected to ad 

hoc enzymatic or proteosomal degradation (Sandman and Reeve 2000). Recently, it has been shown 

that ROS induce histone carbonylation during cell proliferation and decreases with activated 

proteasome (Garcia-Gimenez, Ledesma et al. 2012). This also suggests that histone carbonylation 

may be an important post-translation modification that represents a specific event during cell cycle. 

Furthermore, the rapid replacement of histones H3 can occur during transcriptional activation and 

the fate of the replaced histone are unclear (Schwartz and Ahmad 2005; Workman 2006). Besides, 

histone oxidation (carbonylation) may be time-dependant and thus require longer exposure to 

oxidative stress i.e. greater than 5 days. In fact, in many age related diseases such as Alzheimer’s, 

Parkinson’s and cancer, carbonyl-modified protein aggregates have been reported (Davies 2001; 

Rahman, van Schadewijk et al. 2002; Dalle-Donne, Rossi et al. 2003; Dalle-Donne, Aldini et al. 2006; 

Rahman and Adcock 2006). Liu and colleagues have observed epigenetic changes after 5 months 

cigarette smoke condensate (CSC) exposure. They have shown that H4K16Ac and H4K20Me3 are 

completely abrogated in human small airway epithelial cells (SAEC) after 5 month exposure to 

cigarette CSC in comparison with 72 hour (Gloire, Legrand-Poels et al. 2006; Liu, Killian et al. 2010). 

Similarly, it has been shown that DNA oxidation increases significantly in mice fibroblast exposed to 

CS for 6 months compare to acute exposure (3 days and 1 month) (Deslee, Adair-Kirk et al. 2010).  
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Of concern in these studies is a recent report by Wong and Powell who have shown that Oxyblot™ 

kit (Chemicon/Millipore) does not yield reproducible results due to loss of sensitivity (Wang and 

Powell. 2010). There is no standard assay to detect carbonylation, which is reflected in the wide-

variations in basal levels of protein carbonylation in different tissues (Dalle-Donne, Rossi et al. 2003). 

Our results also show variations in carbonylation from sample to sample. One possible explanation 

for this is that nucleic acids also contain carbonyl groups (C=O) will react with DNPH. Any 

contamination of samples during protein extraction could cause an over estimate of protein-bound 

carbonyls (Levine, Garland et al. 1990).  Alternatively solution may be the deployment of different 

techniques for different proteins under investigation. For example, spectrophotometer DNPH assay 

is recommended for large purified proteins.  Slot blot, immunoassay, is also recommended for small 

samples and cell extracts (Dalle-Donne, Rossi et al. 2003). 

In addition to histone carbonylation, we also looked at global acetylation of H3 and H4.  Acetylation 

of H3 and H4 lysine residues are associated with gene expression (Rahman and Adcock 2006). 

However, little has been reported on the impact of acute or chronic H2O2 treatment in epithelial cells 

or on global histone acetylation. There was no change in global histone acetylation in either acute (4 

hours) or chronic (5, 10 and 15 days) H2O2 treated cells alone or in combination with TNF-.  

However, Ito and colleagues have shown that H4 acetylation occurs at specific gene loci. They have 

shown that treating epithelial cells with H2O2 and IL-1 induced H4 acetylation at the NF-B response 

element within the IL-8 promoter (Ito, Hanazawa et al. 2004). Therefore, it is possible that H3 and H4 

are acetylated at specific promoter regions. In addition, Western blot analysis is a very crude way of 

assessing acetylation and more sensitive methods such as immunofluorescence labelling may be a 

better indicator of histone acetylation. 

In summary, epithelial cells (BEAS-2B) were used to establish both acute and chronic oxidative stress 

models using H2O2. It was found that the chronic effect of exposure to H2O2 was lost over 10 and 15 

days of consecutive treatment with low concentration of H2O2. This can be explained by the cells 
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acquiring resistance to oxidative stress following repeated treatment with H2O2 through induction of 

antioxidant gene expression.  Therefore, it was decided to focus and use acute oxidative stress 

model in our subsequent investigation.  We have also shown that p65 can be oxidised/carbonylated 

by H2O2 but its effect is only noticeable at high concentrations following treatment with MG-132 

(proteasome inhibitor). We did not observe any change in pan-acetylation of either H3 or H4 or 

carbonylation of histones.  Acetylation has been shown to be more gene specific than global.  We 

have also explored the role of ammonium iron sulphate on IL-6 and IL-8 genes in our acute model 

but did not report any significant effect.  In the next chapter, we will address some of the key 

questions that have risen in this chapter including: 

1. Whether NF-B pathway is activated in our oxidative stress model which leads to the 

induction of IL-6 and IL-8 genes? 

2. Is there post-translation modification of p65 such as phosphorylation and acetylation, which 

are important for NF-B dependant gene activation? 

3. If there is no difference in global acetylation of H3 and H4 following simulation is it gene 

specific, for example occurs at IL-6 and IL-8 promoter sites?  

4. Do transcriptional co-regulatory proteins such Brd4 play a role in gene activation? 
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Chapter 4  

The role of NF-B p65 and Brd4 protein in oxidative 

stress-induced inflammation 
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4.1 Rationale 

NF-B is a master regulator of many response genes including immune and inflammatory mediators. 

NF-B-mediated inflammation in COPD is believed to drive the pathogenesis of disease resulting in 

remodelling of small airways and destruction of lung parenchyma (Barnes 2008).  This is a feed 

forward process since inflammatory stimuli induce NF-B activation, leading to the expression of 

pro-inflammatory cytokines (IL-6), adhesion molecules and chemokines (CXCL8/IL-8) (Watters, Kenny 

et al. 2007). NF-B is usually found as an inactive heterodimer (p65/RelA and p50 subunits) in the 

cytosol of cells and concealed by the inhibitory IB protein. The binding of an inflammatory 

stimulus such as TNF-α, IL-1β or LPS to its respective receptor activates the IB kinase 2 (IKK2) 

complex. The majority of diverse inflammatory signalling pathways that leads to the activation of NF-

B converge on the IKK complex which phosphorylates IB. This is known as the classical or 

canonical pathway (Fig 4.8). Oxidative stress (H2O2) has also been shown to phosphorylate IB 

directly (Morgan and Liu 2011). Phosphorylation of IB (at Ser32 and Ser36) results in it being 

targeted for ubiquination and subsequent degradation by the proteasome (Edwards, Bartlett et al. 

2009). The degradation of IB allows the translocation of the NF-B p65/p50 dimer into the 

nucleus where it binds to the promoter regions of inflammatory genes (IL-6, IL-8 etc.) and recruits 

coactivator molecules such as p300/CBP, pCAF and ATF-2.  

Coactivator molecules have intrinsic histone acetyltransferase (HAT) activity and subsequently 

acetylate core histones (Histones H3 and H4) (Barnes and Adcock 2009). This results in disruption of 

the electro-static attraction between histones and DNA. In addition, these epigenetic markers 

(acetylated histones) are recognised by transcriptional co-regulatory proteins such as Brd4 and 

SW1/SNF DNA remodelling factors. The local unwinding of DNA, which results from the actions of 

the protein complexes, confers access to transcriptional machinery with p-TEFb (positive 

transcription elongation factor b) and RNA polymerase II at the transcription starting site (Fig. 4.1)  

(Rahman and Adcock 2006; Huang, Yang et al. 2009).   
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Additional NF-B regulatory activity is achieved through post-translation modifications (PTMs) of the 

core component of NF-B.  Acetylation (Lysine 310) and phosphorylation (serine 276 and 536) of NF-

B are important for its transcriptional activation (Chen, Mu et al. 2002; Sasaki, Barberi et al. 2005; 

Nowak, Tian et al. 2008; Huang, Yang et al. 2009). In addition, oxidative stress is shown to affect NF-

B activity via several mechanisms including p65 PTMs (Rothgiesser, Fey et al. 2010). Acetylated NF-

B recruits bromodomain and extra-terminal (BET) protein Brd4 (discussed in details in next chapter) 

which also interacts with acetylated histones H3 and H4 by forming a complex with RNA Pol II and 

pTEFb at the site of transcription (Chiang 2009). Recently, Zhang and colleagues have confirmed that 

Brd4 inhibition results in down-regulation of a subset of NF-B targeted genes in Th2 cells suggesting 

its role in gene transcription and regulation (Zhang, Liu et al. 2012). 

Therefore, we have investigated NF-B activation, phosphorylation and acetylation in our acute 

oxidative stress model (H2O2). In the previous chapter, It has been shown that IL-1 in combination 

with H2O2 enhanced the expression of IL-6 and IL-8 genes (Chapter 3, Figure 3.10), thereby, we 

sought to determine whether these genes are under transcriptional control of NF-B.  We also have 

delineated the role of Brd4 in regulation of IL-6 and IL-8 transcription which has never been 

addressed before. Finally, we have looked at H3 and H4 acetylation at the IL-6 and IL-8 promoter B 

sites to confirm that gene specific induction is dependent on local alteration of histone acetylation 

profile.   
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Figure 4.1: Histone acetylation and remodelling of chromatin during transcription.  The depiction 

illustrates that following inflammatory stimuli, heterochromatin is acetylated (Ac) and becomes less 

condensed, making it accessible to transcription factor NF-B (p65/p50) and transcription machinery 

(CBP/p-TEFP and RNA Pol II). Acetylated histones are also recognised by co-regulatory protein Brd4, 

leading to the transcription of pro-inflammatory genes such as IL-6 and IL-8. Ac: Acetyl group; NF: 

Nuclear factor; CBP: CREB binding protein; TBP: TATA binding protein; p-TEFb: positive transcription 

elongation factor b. 
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4.2 Experimental protocol 

4.2.1 Effect of the IKK2 inbibitor (AS602868) on CXCL8 and IL-6 release (ELISA assay) 

BEAS-2B cells were pre-treated with AS602868 (5µM, IKK2 inhibitor) for 1 hours, followed by 

treatment with IL-11ng/ml) and H2O2 (100µM) for 16 hours.  Supernatants were  collected and 

assayed for CXCL8 and IL-6 using commercially available enzyme-linked immunosorbent assay 

(ELISA), following manufacturer`s instructions (Human IL-8 and IL-6 Duoset, R&D Systems, Abingdon, 

UK).  

 

4.2.2 NF-B p65 DNA binding activity (TransAM assay) 

Cells were stimulated with IL-1 (1ng/ml) with or without H2O2 (100µM) left untreated for 2 hours.  

Nuclear proteins were extracted and NF-B binding activity was determined by TransAM NF-B p65 

activity assay kit (Active motif, Belgium) according to manufacturer `s instructions.  

 

4.2.3 NF-B p65 phosphorylation, acetylation and translocation into nucleus (Western 
blot)  

Nuclear extracts were fractionated by SDS-PAGE. Proteins were transferred and immobalised on 

nitrocellulose membranes.  Membranes were incubated with specific antibodies directed against NF-

B p65, Acetylated p65 or phosphorylated p65 (All Santa Cruz Biotechnology). Rabbit HRP-

conjugated 2° antibody was added and immunoreactive bands were detected with 

chemiluminescence detection kit. 

 

4.2.4 The association between Brd4 protein and NF-B p65 (Co-IP assay) 

 Cells were incubated with medium alone or H2O2 (100µM), with or without IL-1 (1ng/ml) for 2 

hours.  Whole cell lysates were immunoprecipitated with Brd4 specific antibody (section 2.15.3). The 

associated NF-B p65 was determined with Western blotting using p65 specific antibodies.  
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4.2.5 The binding of Brd4 and p65 to IL-6 and IL-8 promoter regions (ChIP assay)  

BEAS-2B cells were treated with H2O2 (100µM) in the presence or absence of IL-1 (1ng/ml) or left 

untreated for 2 hours. After incubation, protein-DNA complex were fixed by formaldehyde (1% final 

concentration) and immunoprecipitated with p65 and Brd4 antibody (section 2.15.3). NF-B p65 and 

Brd4 binding to the IL-8 (-121 to +61) and the IL-6 promoter (-852 to -563) were quantified by real-

time QPCR using a QantiTech SYBR green PCR kit (Qiagen) on Rotor gene 3000 (Corbett Research, 

NSW, Australia). 

 

4.2.6 Acetylation of H3 and H4 at IL-6 and IL-8 promoter regions (ChIP assay)  

ChIP was performed as previously described. Anti-acetylated H3 and H4 antibodies were used to 

determine histone acetylation status at the IL-6 and IL-8 promoters and amounts were quantified by 

RT-QPCR. 
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4.3 Results 

4.3.1 IL-6 and IL-8 expression is mediated via NF-B signalling pathway 

To determine whether NF-B mediated the expression of IL-8 and IL-6, an IKK2 selective inhibitor 

AS602868 (5µM) was added for an hour prior to treatment with H2O2 (100µM) and IL-1 (1ng/ml) for 

20 hours. IL-6 and CXCL8 proteins were assayed in cell supernatant using ELISA and mRNA transcripts 

were quantified by real-time RT-QPCR. Co-stimulation with H2O2 and IL-1 induced the release of 

both IL-6 and CXCL8 proteins which were completely suppressed by AS602868 (Fig. 4.2A and 4.2B). 

Consistent with ELISA data, pre-treatment with AS602868 completely prevented the IL-6 and IL-8 

mRNA induction by IL-1 and H2O2, confirming transcriptional regulation (Fig. 4.1C and 4.1D). The 

MTT assay showed that cell viability was not compromised at 5µM concentration of AS602868 (Fig. 

4.1E). This data confirmed that expression of IL-6 and IL-8 genes are mediated by the NF-B 

signalling pathway in our oxidative stress model. 



 
 

The role of NF-B p65 and Brd4 in oxidative stress driven inflammation PhD thesis 

 

120 

 

 

Figure 4.2: The effect of the IKK2 inhibitor AS602868 on IL-6 and CXCL8/IL-8 release. Cells were pre-

treated with AS602868 (5μM, IKK2 inhibitor) followed by the treatment with H2O2 with or without IL-

1 (1ng/ml) for 20 hrs. IL-6 and CXCL8 proteins were assayed by ELISA. (A-B) The release of IL-6 and 

CXCL8 was completely inhibited in cells pre-treated with AS602868. (C-D) Levels of IL-6 and IL-8 

mRNA were quantified by real-time RT-QPCR and were normalised with respective to GNB2LI mRNA 

levels.  The RT-QPCR findings are consistent with the ELISA data (E) AS602868 (5µM) did not affect 

cell viability using MTT assay. Results are expressed as mean ± SEM control. n=4.  Significant if 

p<0.05 
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4.3.2 The effect of H2O2 and IL-1 on NF-B p65 activation and nuclear translocation 

In unstimulated cells, the NF-B transcription factor is localized in the cytosol and sequestered by 

IB protein. Upon activation, IB is degraded and NF-B is translocated into the nucleus (Adcock, 

Tsaprouni et al. 2007). Thus, the amount of NF-B p65 protein translocated into the nucleus was 

examined, following treatments with either IL-1β (1ng/ml), or H2O2 (100μM) alone or in combination 

(IL-1β+H2O2) or left untreated. Nuclear proteins were extracted and the amount of NF-B p65 

protein was detected by Western blotting with a specific p65 antibody. H2O2 (100µM) alone induced 

some p65 nuclear translocation but this was minimal compared to the significant increase with IL-

1or in combination with H2O2 (Fig. 4.3A). The nuclear translocation of NF-B p65 does not 

necessarily mean that the transcription factor will be active. To address this, we used the ELISA 

based TransAM NF-B p65 kit to measure the DNA binding activity of NF-B p65 in these nuclear 

extracts. Consistent with Western blot data, IL-1 markedly increased NF-B p65 DNA binding 

activity by 7-fold compared with untreated cells. H2O2 alone didn’t have a significant effect on NF-B 

p65 binding activity; however, when used together with IL-1, the binding activity was enhanced 9-

fold (Fig. 4.3B). The data demonstrates that although H2O2 per se cannot enhance p65 nuclear 

translocation or a functional response (DNA binding), it manifests its importance by amplifying the 

effect of IL-1










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Figure 4.3: NF-B p65 activation and nuclear translocation. (A) Cells were harvested and nuclear 

proteins were extracted from BEAS-2B cells after treatment with H2O2 (100µM) in the presence (+) or 

absence (-) of IL-1 (1ng/ml) for 2 hours.  Using Western blot analysis, NF-B p65 nuclear protein 

was quantified. Densitometric analysis of each band is plotted above. (B) NF-B p65 DNA binding 

activity was measured using TransAM kit. Results are expressed as means ± SEM as ratio of NF-B 

p65/TBP or relative to untreated cells. n=4 independent experiments. .*p<0.05, **p<0.01 compared 

with control (unstimulated).  

 

4.3.3 NF-B p65 phosphorylation, acetylation and association with Brd4 protein  

NF-B p65 is subjected to post-translational modifications (e.g. acetylation, phosphorylation and 

ubiquitination) that modulate its activity (Rothgiesser, Fey et al. 2010). Acetylation of NF-B p65 is 

important for NF-B-dependent activation of inflammatory genes. NF-B p65 acetylation has been 

shown to play an important role in oxidative stress induced inflammation in COPD (Ito, Charron et al. 

2007).  Therefore, it was investigated whether NF-B p65 is acetylated in our oxidative stress model. 

Furthermore, Brd4, a transcriptional cofactor, can be associated with NF-B p65 by binding to 

acetylated NF-B p65 at lysine-310 in a complex with p-TEFb (positive transcription elongation factor 

b) and RNA polymerase II (Huang, Yang et al. 2009; Zhang, Liu et al. 2012). In order to identify the 

localisation of acetylated NF-B p65 in the cell, cytoplasmic and nuclear proteins were extracted 

from cells treated with either IL-1β (1ng/ml), or H2O2 (100μM) alone or in combination (IL-1β+H2O2) 

or left untreated for 2 hours.  Proteins were fractionated by SDS-PAGE gel and electro-transferred 
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onto nitrocellulose membranes. The membranes were probed with an anti-acetylated Lysine-310 

NF-B p65 antibody. Western blot analysis revealed that acetylated NF-B p65 is predominantly 

found in the nuclear compartment whereas no acetylated NF-B p65 was detected in the cytoplasm 

(Fig. 4.4A). This suggests that acetylation of NF-B at lysine-310 is associated with activation and/or 

translocation into the nucleus. Indeed, it has been shown that acetylation of lysine-310 is required 

for full transcriptional activity of NF-B p65 (Chen, Mu et al. 2002). Although, H2O2 did not induce 

p65 acetylation when compared with IL-1, acetylation was enhanced when co-stimulated with IL-

1and H2O2 (Fig.4Aii).  

 

A number of groups have reported that Brd4 interacts with NF-B p65 (Chiang 2009; Huang, Yang et 

al. 2009; Zhang, Liu et al. 2012). To test the possibility of Brd4 association with NF-B p65, BEAS-2B 

cells were stimulated with H2O2 in the presence or absence of IL-1 or left untreated for 2 hours. 

Whole cell extracts from stimulated and unstimulated cells were immunoprecipitated with an anti-

Brd4 antibody, and co-immunoprecipitated NF-B p65 was detected with an anti-NF-B p65 

antibody.  Our results show that Brd4 interacts with NF-B p65. However, the treatment (H2O2 or IL-

1) did not affect this association, suggesting that although Brd4 is an integral part of the NF-B 

transcriptional complex and both (Brd4 and NF-B p65) are found at site of transcription. Brd4 

association with p65 is not linked to ROS-induced enhancement of NF-B function. Serine 

phosphorylation at various sites of the NF-B p65 subunit has been shown to be important for its 

transcriptional activity (Sasaki, Barberi et al. 2005; Nowak, Tian et al. 2008). We were unable to show 

consistent changes in phosphorylation of p65 at serines 276 and 536 (Fig.4.4C) after H2O2 alone or in 

the presence of IL-1. 
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Figure 4.4: NF-B p65 acetylation, phosphorylation and association with Brd4 protein. (A) BEAS-2B 

cells were stimulated with H2O2 with presence (+) or absence (-) of IL-1 (1ng/ml) for 2 hours, 

cytoplasmic and nuclear extracts were fractioned by Western blot and membranes were probed 

with anti-acetylated NF-B p65 antibody. The blots show that acetylated-310 (Ac310) NF-B p65 is 

predominantly found in the nucleus when compared with the cytoplasm. (B) Brd4 protein was 

immunoprecipitated from whole cell extracts following treatments and separated by SDS-PAGE and 

subsequently analyzed by Western blotting using an anti-NF-B p65 antibody. (C) The effect of H2O2 

and IL-1 on p65 phosphorylation at serine 536 and 276.  Each blot is representative of 3 

independent experiments and densitometric analysis of each band is plotted as bargraph above it. 

*p<0.05 compared with control (unstimulated). Ac: acetylation, TBP: TATA-Binding protein, 

s276/536: Serine phosphorylation at 276/536 

 

4.3.4 The recruitment of NF-B p65 to IL-6 and IL-8 promoters 

Previously, we demonstrated that NF-B p65 activity and translocation into the nucleus is elevated 

in our oxidative stress model which then leads to increased expression of IL-6 and IL-8 cytokines. We 

used ChIP analysis to investigate the recruitment of the NF-B p65 to the IL-6 and IL-8 promoters B 

sites. Following IL-1 treatment, p65 ChIP showed a marked enhancement in binding to the IL-6 (-

852 to -563) and IL-8 (-121 to +61) promoters which was amplified by co-stimulation with H2O27- 

and 20-fold respectively. H2O2 alone had no effect on p65 binding to either the IL-6 or IL-8 promoter 

B regions (Fig. 4.5A and Fig 4.5B), but it enhanced IL-1-induced association, implying a priming 

role for H2O2 in NF-B p65 activation. 
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Figure 4.5: The effect of IL-1 and H2O2 on p65 binding to IL-6 and IL-8 promoter B sites. 

Chromatin immunoprecipitation assay shows that IL-1 induces p65 DNA binding to both IL-6 (A) 

and IL-8 (B) promoter regions. H2O2 by itself does not affect p65 DNA binding activity; however, 

when accompanied by IL-1, the affinity is enhanced 7-fold at IL-6 promoter site and 20-fold at IL-8 

promoters. IgG is non-specific antibody used as a negative control.  Results are representative of 

three (IL-6 promoter) and six (IL-8 promoter) independent experiments.*p<0.05, **p<0.01 

compared with control (unstimulated).  

 

4.3.5 The recruitment of Brd4 to IL-6 and IL-8 promoters  

Recent studies have shown that Brd4 is necessary for the p65 associated transcriptional complex to 

recruit RNA polymerase II and p-TEFb to a promoter. In addition, p-TEFb has been shown to interact 

with NF-B (Chiang 2009; Huang, Yang et al. 2009; Li, Hu et al. 2010; Zhang, Liu et al. 2012).  The 
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binding of Brd4 to IL-6 (-852 to -563) and IL-8 (-121 to +61) promoter B sites were studied using 

ChIP.  IL-1 significantly increased binding of Brd4 to the IL-6 and IL-8 promoters.  This effect was 

augmented by co-stimulation with H2O2 and IL-1at the IL-6 (6-fold) and IL-8 (8-fold) promoters 

compared to unstimulated cells (Fig. 4.6A and Fig. 4.6B). 

 

Figure 4.6: Brd4 binding affinity to IL-6 and IL-8 promoter sites. ChIP experiments reveal that Brd4 

is recruited to IL-6 promoter (A) and the IL-8 promoter (B) upon stimulation with IL-1 (1ng/ml), 

whereas H2O2 (100µM) alone had no effect. H2O2 enhanced IL-1-induced Brd4 binding to IL-6 and IL-

8 promoter. Results are representative of 5 independent experiments. *p<0.05, **p< 0.01 compared 

with control. 
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4.3.6 Histone 3 and 4 acetylation at IL-6 and IL-8 promoters 

We next sought to determine whether H3 and H4 are acetylated at the IL-6 and IL-8 promoters using 

ChIP analysis. This would clarify the role of histone acetylation and subsequent recruitment of Brd4 

and p65 to the respective promoters. Following IL-1 treatment H3 acetylation was induced both at 

the IL-6 and IL-8 promoter B sites. Similar findings were recorded when cells were co-treated with 

H2O2 and IL-1 (Fig. 4.7A and Fig.4.7B). However, in contrast H2O2 did not affect IL-1-induced 

acetylation of H4 at either the IL-6 or IL-8 promoters at the time point studied (2 hours) (Fig. 4.7C 

and Fig.4.7D). These results suggest that acetylation of H3 and H4 are gene selective 2 hours after 

cell stimulation. The lack of H4 acetylation may reflect the use of a single time point to study this 

dynamic process. 
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Figure 4.7: H3 and H4 acetylation at IL-6 and IL-8 promoter sites. BEAS-2B cells were treated with 

H2O2 (100µM) for 2 hours in the presence (+) and absence (-) of IL-1 (1ng/ml).  Proteins and DNA 

were crossed-linked by formaldehyde treatment and chromatin pellets were extracted. Following 

sonication, acetylated-H3 and-H4 were immunoprecipitated and the associated DNA amplified by 

QPCR. (A-B) Histone 3 is associated with both IL-6 and IL-8 promoter B sites following treatments. 

(C-D) However, there is no significant acetylation of H4 at either at the IL-6 or IL-8 promoters. 

Results are representative of n > 3 independent experiments. 
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4.4 Discussion 

In this chapter, we have demonstrated that p65 activity is elevated in our oxidative stress model.  

The Western blot data showed that p65 is acetylated at lysine-310 and translocates into the nucleus 

upon stimulation with IL-1 alone or in combination with H2O2. This confirms that the NF-B 

pathway is activated. In addition, both p65 and Brd4 are recruited to the IL-6 and IL-8 promoter B 

sites. However, we did not see p65 phosphorylation at either serine-276 or -536.  ChIP analysis of H3 

and H4 revealed that only H3 is acetylated, but not H4, 2 hours after cell stimulation. 

The expression of inflammatory genes is regulated through a number of signalling pathways that 

involves the activation of stress kinases (JNK, MAPK, p38, phosphoinositide 3 (PI-3)-kinase/PI-3K-

activated serine-threonine kinase Akt) and redox sensitive transcription factors such as NF-B and 

activator protein 1 (AP-1) (Rahman and Adcock 2006). However, Inflammation in COPD appears to 

be mainly driven through the activation of NF-B signalling pathway as it is activated by numerous 

inflammatory stimuli (Barnes 2009; Yao and Rahman 2009). Reactive oxygen species (ROS) and its 

intermediate (H2O2), together known as oxidative stress  is found in COPD and contribute to the 

pathophysiology of the disease as well as driving chronic inflammation in COPD (Ahsan, Ali et al. 

2003; Rahman and Adcock 2006; Barnes and Adcock 2009). Therefore, we firstly demonstrated that 

the NF-B is activated in our acute oxidative stress model following treatment with IL-1 and H2O2. 

H2O2 alone did not have any significant effect either on NF-B translocation or activation but when 

used in combination with IL-1 the effect of IL-1 was potentiated, suggesting that oxidative stress 

plays a vital role in enhancing inflammation in COPD. In COPD patients, inflammation persists long 

after smoking cessation (exogenous source of ROS) and its partly due to ROS produced by several 

structural and immune cells, providing a steady influx of oxidative stress (Agusti, MacNee et al. 2003; 

Kirkham, Caramori et al. 2011). 

H2O2 alone does not activate NF-B directly in many cell types. However, its response is cell-type 

specific and in part dependent upon the experimental setup (Oliveira-Marques, Marinho et al. 2009). 
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There is somewhat conflicting data on NF-B activation and translocation by H2O2.  NF-B activation 

by ROS has been extensively studied in T-cells as they are often exposed to high levels of ROS during 

inflammation (Antunes and Cadenas 2001; Kraaij, van der Kooij et al. 2011). It has been shown that 

ROS, in the absence of SHIP-1 kinase, activates NF-B through the atypical pathway, which is distinct 

from the  classical pathway investigated here, that involves IB phosphorylation at serine 32 and 

36 following activation of the IKK complex by pro-inflammatory cytokines such as TNF- and IL-1 

(Gloire, Charlier et al. 2006).  In the atypical pathway, ROS induced Syk protein kinase activation 

phosphorylates IB at tyrosine 42 (Tyr42).  Phosphorylation at Tyr42 allows Calpain (a protease) to 

digest IB in a proteasome-independent manner, releasing NF-B into the nucleus (Takada, 

Mukhopadhyay et al. 2003). Others have shown that in Hela cells; H2O2 induces NF-B 

transcriptional activity via activation of protein kinase D (PKD). H2O2-induced mediated 

phosphorylation of PKD in return phosphorylates IKK (a subunit of the IKK complex) thereby 

activating the classical pathway (Storz and Toker 2003; Chan, Chou et al. 2010). All these studies 

imply that NF-B activation by H2O2 is highly cell-type specific and involves different activation 

mechanisms (Fig. 4.8).   
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Figure 4.8: Cell-type specific activation of NF-B by ROS/H2O2. H2O2 exerts its modulatory effects on 

NF-B activation in cell-type specific manner. In T-cells, the classical pathway is activated (via IKK 

complex) in the presence of SHIP-1 kinase whereas in its absence, activation is switched to the 

atypical pathway involving phosphorylation of IB at tyrosine 42 (Y42). However, in HeLa cells, 

H2O2 induces phosphorylation of IKK complex at serine 32 and 36 via protein kinase D (PKD), leading 

to the induction of the classical pathway. Modified from Gloire, Legrand-Poels et al. (2006). 

 

Inflammatory stimuli, including IL-1, generate intracellular ROS which is required for NF-B 

activation (Gloire, Legrand-Poels et al. 2006). We propose the following mechanism of NF-B 

activation in our oxidative stress model. The initial challenge with H2O2 (100µM) most likely evokes a 

change in the intracellular redox status (chapter 3, Fig. 3.4). This allows enhanced activation of NF-

B by IL-1 in the presence of ROS compared with that seen with IL-1 alone. In addition, it has 

previously been demonstrated that H2O2 (100µM) prolongs NF-B nuclear retention following 

inflammatory stimuli (IL-1 and TNF-) in epithelial cells (A549 and HeLa cells) by inhibiting the 
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negative regulator of IB(Cezanne), leading to poly-ubiquitination and degradation of newly 

synthesized IB molecules (Enesa, Ito et al. 2008).  However, the exact signaling pathway that 

converges on induction of IKK complex-mediated phosphorylation of IB by H2O2 is yet to be fully 

defined in our model.  

Optimal induction of NF-B activity also requires post-translation modification (phosphorylation, 

acetylation and ubiquitination) of p65, following activation, which regualtes DNA binding and 

transcriptional activity (Huang, Yang et al. 2010).  Phosphorylation of NF-B p65 at serines 276 and 

536 has been suggested to facilitate the recruitment of p300/CBP and enhance the acetylation of 

p65 (Chen, Williams et al. 2005; Hoberg, Popko et al. 2006; Nowak, Tian et al. 2008). However, I did 

not observe consistent phosphorylation at either residue following analysis by Western blot.  This 

may reflect the quality of the antibodies that are commercially available or the time-point studied. 

There is growing evidence that acetylation of p65/RelA at Lysine-310 (K310) is essential for optimal 

NF-B transcriptional activity (Huang, Yang et al. 2009; Huang, Yang et al. 2010; Zhang, Liu et al. 

2012). In the present study, I have demonstrated that following stimulation with IL-1 and H2O2, p65 

is acetylated. Acetylated K310 on p65 was found predominantly in the nucleus rather than in the 

cytoplasm following stimulation. Seven lysine sites have been identified as being acetylated mainly 

by p300/CPB acetyltransferase with each modification conferring a specific NF-B function.  For 

example, acetylation at K221 promotes DNA-binding activity whereas acetylated K218 impedes p65 

and IBa assembly (Oeckinghaus and Ghosh 2009). 

Huang and colleagues have reported that p65 acetylation on K310 is recognized by the 

bromodomain and extra-terminal (BET) protein Brd4 and that this provides a docking site for Brd4 

(Huang, Yang et al. 2009). This observation led us to investigate the association between Brd4 and 

NF-B p65. Co-immunoprecipitation studies revealed that Brd4 is associated with p65 in the resting 

cells, although, we did not observe greater binding between Brd4 and p65 with any treatments 

studied despite H2O2 and IL-1co-stimulation enhancing p65 acetylationThe association between 
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these proteins also implies that they might be recruited together as a complex to the same site 

during transcriptional activation. In fact, the same authors have also shown Brd4 recruitment to the 

promoter regions of the p65 targeted genes TNF-and E-selectin (Huang, Yang et al. 2009).  The 

binding of Brd4 to the IL-6 and IL-8 B-responsive promoter sites has not been previously reported 

to our knowledge.  We have shown that Brd4 is recruited to the same promoter region of IL-6 and IL-

8 as p65 using ChIP. In addition to HDACs (Erasers) and HATs (writers), Brd4 (reader) adds another 

level of transcriptional regulation and has been proposed as a potential therapeutic target for COPD 

and other inflammatory diseases (Kabesch and Adcock 2012).   

Gene activation is marked by histone acetylation whereas de-acetylation causes gene suppression. 

Acetylated histone results in unwinding of DNA, providing accessibility to the transcription 

machinery (RNA polymerase II, basal and transcription factors) (Rahman and Adcock 2006). The 

addition and removal of acetyl groups to histones are carried out by HATs and HDACs, respectively 

(Eberharter and Becker 2002; Rahman and Adcock 2006).  NF-B-dependent transcriptional 

regulation of pro-inflammatory cytokines IL-6 and IL-8 is directly related to hyper-acetylation of H3 

and H4 residues at promoter associated sites (Szulakowski, Crowther et al. 2006; Yang, Valvo et al. 

2008; Tsaprouni, Ito et al. 2011; Zhang, Cai et al. 2011). However, we report here that H3 pan-

acetylation, but not H4 pan-acetylation, occurs at the IL-6 and IL-8 promoters following stimulation 

with H2O2 and IL-1. It does not mean that H4 is not acetylated during gene expression.  We 

analysed H4 acetylation at 2 hours post-stimulation and it will require further analysis at different 

time points to understand this dynamic process. Although, H2O2 was unable to induce H3 or H4 

acetylation directly in BEAS-2B cells, it has been shown by our group that H2O2 (100µM) exerts its 

effect by reducing HDAC2 activity in BEAS-2B cells (Ito, Hanazawa et al. 2004). This causes a shift in 

the balance towards HATs (CBP/p300) and delaying the removal of attached acetyl-groups on 

histones (Fig. 4.9).  The overall result is greater expression of IL-6 and IL-8 in cells co-stimulated with 

H2O2 and IL-1.  
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Figure 4.9: The role of H2O2 in protein acetylation and gene induction. (1) H2O2 (100µM) reduces 

HDAC2 activity in BEAS-2B cells (Ito, Hanazawa et al. 2004) allowing CPB/p300 (HAT) to acetylate (2) 

NF-B p65 and (3) histones 3. (4) These acetylated proteins are recognised by Brd4 protein, forming 

a complex with NF-B at site of transcription leading to the expression of IL-6 and IL-8 genes. 
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In summary, we have shown that following treatment of BEAS-2B cells, with H2O2 and IL-1, NF-B 

p65 is activated. We have also shown that p65 and H3 are acetylated in our model. These acetylated 

proteins are recognised by Brd4, forming a complex that is present at the IL-6 and IL-8 promoter B 

sites leading to expression of IL-6 and IL-8. This makes the Brd4 a potential therapeutic target for 

attenuating inflammation. Drugs such as JQ1, I-BET and PFI-1 can inhibit the binding of Brd4 to 

acetylated proteins such as histones. Therefore, in the next chapter we will investigate the effect of 

these drugs on: 

1. Oxidative stress-induced expression of IL-6 and IL-8 mRNA and protein,  

2. The binding of Brd4 and p65 to IL-6 and IL-8 promoters and 

3. Compare the effect of these drugs versus knockdown of Brd4 on inflammatory gene 

expression. 
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Chapter 5  

Bromodomain inhibitors attenuate oxidative stress-

induced inflammation 
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5.1 Rationale 

Chronic inflammation in COPD is mediated through the activation of NF-B pathway (Barnes 2008).  

Inhaled corticosteroids (ICS) are frequently used in the management of inflammation in COPD 

patients; however, they provide little or no benefits to COPD patients (Adcock, Chou et al. 2009). 

Complete suppression of NF-B activity could lead to adverse side effects as it is involved in the 

activation of immune response against invading pathogens (Hayden, West et al. 2006; Salminen, 

Huuskonen et al. 2008). However, a selective and temporal inhibition of its activity may prove to be 

beneficial in the course of inflammation. During gene expression, NF-B is incorporated into the 

basal transcription machinery at the site of transcription that consists of a number of co-regulatory 

proteins including Brd4 (Reese 2003; Rahman and Adcock 2006). Brd4 is part of bromomodmain and 

extra-terminal (BET) family proteins that includes Brd2, Brd3 and Brdt proteins (Filippakopoulos, Qi 

et al. 2010). BET proteins contain two conserved bromo-domains that recognise acetylated 

chromatin and a carboxyl extra-terminal domain (CTD) which interacts with the positive 

transcription elongation factor b (p-TEFb). p-TEFb is involved in transcription elongation and 

phosphorylation of the CTD of RNA polymerase II (Rahman, Sowa et al. 2011).  

Once bound to acetylated histones, bromodomain proteins recruit enzymes (HATs, and HDACs) and 

chromatin remodelling proteins (SW1/SNF) to the targeted promoter sites and function as either co-

activators or co-suppressors (Belkina and Denis 2012). We have demonstrated in our previous 

chapter that acetylated-p65 forms a complex with Brd4. In addition, we have shown that both Brd4 

and p65 are recruited to the promoter site of IL-6 and IL-8 genes following H3 acetylation, 

confirming that Brd4 is one of the NF-B-associated proteins that regulate gene transcription by 

recruiting proteins to form a complex and initiating gene expression (Chapter 4, Fig. 4.4 and 4.5 to 

4.7).  Therefore, targeting Brd4 could provide a potential therapeutic strategy for treating 

inflammation in COPD. 
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JQ-1 is a small synthetic molecule which exists as 2 enantiomers (+)-JQ1 (active) and (-)-JQ1 

(inactive).  JQ-1 prevents Brd4 binding to acetylated chromatin by acting as a molecular inhibitor and 

is contained within many transcriptional regulator proteins and act by binding to bromodomains, 

recognising acetylated-lysine residues (Fig. 5.1).  In contrast, (-)-JQ1 enantiomer does not exhibit 

significant binding affinity to BET bromodomains (Filippakopoulos, Qi et al. 2010; Filippakopoulos 

and Knapp 2012). JQ-1 has been studied in NUT (Nuclear protein in testis) midline carcinoma (NMC) 

mouse model and various cancer cell lines, showing inhibition of cell proliferation and differentiation 

(Filippakopoulos, Qi et al. 2010; Mertz, Conery et al. 2011). However, its role in inflammation is yet 

to be reported.  Recently, It has been reported that BET protein inhibitor, I-BET, reduces 

inflammation in vivo and in vitro following LPS challenge (Nicodeme, Jeffrey et al. 2010).  

In an effort to understand the role and function of bromodomain proteins, in particular Brd4, in 

inflammation, we have investigated the effect of JQ1 and another chemically distinct BET-domain 

inhibitor PFI-1 in oxidative stress (H2O2) and IL-1-induced inflammation. We have investigated the 

binding affinity of Brd4 and p65 to these promoters in JQ-1 post-treated cells. Finally, we have 

looked at the IL-6 and CXCL8 expression in Brd2 and Brd4 knocked down cells following stimulation.  

 

Figure 5.1: Bromodomain binding and inhibition by JQ1.  Histone tails are subjected to post-

translation modifications including acetylation of lysine residues. These acetylated lysines provide a 

docking site for bromodomain proteins. Bromodomain inhibitors such as JQ-1 bind competitively to 

the acetyl-lysine recognition pocket thus disrupting the association between acetylated H3 lysine 

and bromodomain containing proteins. Adapted from Hewings, Rooney et al. (2012). 
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5.2 Experimental protocols 

5.2.1 The quantification of IL-6 and CXCL8 cytokines (ELISA)  

BEAS-2B cells were pre-treated with JQ1 (500nM) or PFI-1 (1µM) followed by stimulation with IL-

11ng/ml) and H2O2 (100µM) for 16 hours.  Supernatants were collected and assayed for CXCL8 

and IL-6 using commercially available ELISA kits, according to manufacturer`s instructions (Human 

CXCL8 and IL-6 Duoset, R&D Systems, Abingdon, UK).   

 

5.2.2: IL-6 and IL-8 mRNA expression (RT-QPCR) 

After treatments, total RNA was extracted using an RNeasy kit following the manufacturer’s 

instructions (Qiagen, Hilden, Germany).  RNA was converted to cDNA and subjected to qPCR 

analysis. The amount of IL-6 and IL-8 mRNA was determined using the delta delta CT values of gene 

of interest (IL-6 and IL-8) and normalised to a housekeeping gene (GNB2L1B1). 

 

5.2.3 The effect of JQ1 and PFI on cell viability using (MTT assay and FACS analysis) 

5.2.3.1 MTT 

The MMT assay was used to assess cell viability following treatments with different concentrations 

of JQ-1 (0-1000nM) and PFI-1 (0-4µM) for 16 hours. Cells were incubated with 1mg/ml MMT solution 

at 37°C and 5% CO2 for 30 minutes. MTT solution was then removed and DMSO was added to 

dissolve the formazan product to produce a purple solution. The absorbance was measured at 550 

nm. The colour intensity was correlated with cell viability. 

5.2.3.2 FACS analysis 

Cells were collected by trypsinisation and neutralized with medium, washed and resuspended in in 

1ml PBS. Aqua LIVE/DEAD® stain was added (1µl/sample) for 30mins in dark. Cells were washed with 

cold PBS and resuspended in 1% BSA and PBS followed by flow cytometric analysis. Parameters were 

set as such to distinguish between positive cells (heat treated-dead cells) and negative cells (alive), 
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which gave us distinct population of cells. The effect of JQ1 (500nM) and PFI-1 (1µM) on cell toxicity 

was subsequently examined using these parameters (Refer to Chapter 2 page 64 for more details). 

 

5.2.4 siRNA transfection 

BEAS-2Bs cells were seeded in 6-well plates at 0.3 x 106 cells/well and transfected with ON-Target 

plus SMART pool Brd2 or Brd4 or control  small interfering RNAs (siRNA) at 12nM concentration (All 

from Dharmacon Thermo Scientific, Chicago, USA) using HyperFect transfection reagent (Qiagen, 

Crawly, UK) as described by the manufacturer. After 72 hours, cells were harvested and nuclear 

extracts were examined for Brd2 and Brd4 protein expression levels using Western blotting. Total 

mRNA was extracted and converted to cDNA and assessed for Brd2 and Brd4 expression using Q-

PCR. Cells were serum starved post-transfection overnight and treated with H2O2 (100µM) and 

stimulated with/out IL-1 (1ng/ml) for 16 hours. Supernatant was analysed for IL-6 and CXCL8 

protein using ELISA as described above. 

 

5.2.5 Western blot analysis of Brd2 and Brd4 KD 

Cells were harvested at 72 hours post-transfection and nuclear extracts were prepared as described 

in chapter 2 (page 77). Forty micrograms of nuclear extract was resolved on 10% SDS gels. Proteins 

were transferred to a nitrocellulose membrane using iblot (Invitrogen) and immunoblotted with 

anti-Brd2 and Brd4 antibody. TATA-binding protein (TBP) was used as loading control. (Further 

details are provided in chapter 2 page 68). 

 

5.2.6 The binding of Brd4 and p65 to IL-6 and IL-8 promoter regions (ChIP assay)  

BEAS-2B cells were pre-treated with either (-)-JQ1 or (+)-JQ1 both at 500nM for 4 hours followed by 

co-stimulation with H2O2 (100µM) and IL-1 (1ng/ml) or left untreated for 2 hours. After incubation, 

protein-DNA complexes were fixed by formaldehyde (1% final concentration). NF-B p65 and Brd4 



 
 

The role of NF-B p65 and Brd4 in oxidative stress driven inflammation PhD thesis 

 

142 

 

binding to the IL-8 promoter (-121 to +61) and the IL-6 promoter (-852 to -563) were quantified by 

real-time QPCR using a QantiTech SYBR green PCR kit (Qiagen) on Rotor-gene 3000 (Corbett 

Research, NSW, Australia). These sites were chosen as they have been previously been shown to 

contain function of B response elements (Goransson, Elias et al. 2005; Hollingshead, Beischlag et al. 

2008; Nettles, Gil et al. 2008; Ho, Lee et al. 2009; Tsuchiya, Imai et al. 2010). 
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5.3 Results 

5.3.1 Comparison of the suppressive effect of JQ1 on IL-6 and CXCL8 release 

Glucocorticoids (GCs) are frequently used in the management of several inflammatory conditions. 

However, they provide little or no benefits to COPD patients (Barnes 2011). Abnormal histone 

acetylation profiles have been linked to COPD and steroid unresponsive (Barnes and Adcock 2009). 

Bromodomain and extra terminal domain (BET) proteins such as Brd4 recognise the acetylated 

histones and recruit transcriptional regulators to specific gene site (Mertz, Conery et al. 2011).  

Compounds such as I-BET recognise and target acetylated modified histones in macrophages leading 

to reduction in LPS-induced inflammation (Nicodeme, Jeffrey et al. 2010). Therefore, we assessed 

the effect of the recently described (Filippakopoulos, Qi et al. 2010) BET inhibitor (+)-JQ1 (a Brd4 

inhibitor) on IL-6 and CXCL8 expression in IL-1-stimulated cells.  BEAS-2Bs cells were treated with 

range of concentrations (5x10-9-10-6 M) of (+)-JQ1 and its inactive enantiomer (-)-JQ1 (Fig. 5.2), which 

has no appreciable binding affinity to BET bromodomains (Filippakopoulos, Qi et al. 2010), for 4 

hours, followed by IL-1 (1ng/ml) stimulation for 16 hours. IL-6 and CXCL8 were measured by ELISA. 

(+)-JQ1 inhibited IL-1-induced IL-6 and CXCL8 release in a concentration-dependent manner with 

maximal suppression of 80% (IL-6) and 70% (CXCL8) at 5x10-7 M (Fig. 5.3A and 5.3B). Cell viability was 

significantly reduced at the highest concentration tested (10-6 M, Fig. 5.2C).  

In contrast, (-)-JQ1 (5x10-7 M) had little effect on suppressing IL-1-stimulated IL-6 (35 ± 5.9%) and 

CXCL8 (34 ± 3.4%) release. Therefore, we used 5x10-7 M of (+)-JQ1 in our subsequent investigations. 

The results showed a significant difference in the effect of (-)-JQ1 versus (+)-JQ1 at 1x10-7 M for IL-6 

(35.2 ± 3.3%) and CXCL8 (22.5 ± 2.8%) and at 5x10-7 M for IL-6 (51.7 ± 6.2%) and CXCL8 (38.4 ± 4.6%). 
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Figure 5.2: JQ1 stereoisomers ‘structure. (+)-JQ1 is an active isomer which has a high binding affinity 

to Brd4, whereas (-)-JQ1 enantiomer has no significant binding affinity (Filippakopoulos, Qi et al. 

2010). 

 

Figure 5.3: The effect of JQ1 on IL-6, CXCL8 release and cell viability. Cells were pre-treated with 

(+)-JQ1 and (-)-JQ1 enantiomer for 4 hours followed by IL-1 (1ng/ml) for 16hrs. IL-6 and CXCL8 

proteins were assayed by ELISA (A-B). Cell viability was assessed by MTT assay release (C). n=3 

independent experiments. Points represent mean ± SEM **p<0.01***P<0.001 (-)-JQ1 versus (+)-JQ1.  
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5.3.2 Comparison of the suppressive effect of PFI-1 on IL-6 and CXCL8 release 

PFI-1 is of BET bromodomain probe which is structurally distinct from JQ1 (Fig. 5.4). PFI-1 also 

inhibits the BET protein from binding to acetylated histones (Structural Genomics Consortium 2012). 

Therefore, we sought to examine the effect of PFI-1 compound on IL-1-induced expression of IL-6 

and CXCL8. Cells were pre-treated with variable concentrations of PFI-1 (1x10-7- 4x10-6 M) for 4 hours 

prior to stimulation with IL-1 (1ng/ml) for 16 hours. IL-6 and CXCL8/IL-8 proteins were quantified 

using ELISA. The results showed that PFI-1 reduced IL-1-induced IL-6 and CXCL8 proteins levels in 

concentration-dependent manner (Fig. 5.5A).  The IC50 (half-maximal inhibition) for PFI-1 inhibition 

of IL-1-induced IL-6 protein levels was 7.26x10-7 M.  A similar IC50 for PFI-1 was seen for inhibition of 

IL-1-induced CXCL8 release (7.39x10-7 M). PFI-1 inhibited IL-1-induced IL-6 and CXCL8 release with 

maximal suppression of (80.7 ± 2.05%) and (63.6 ± 3.8%), respectively. High concentrations of PFI-1 

(4x10-6 M) reduced cell viability significantly and were excluded from subsequent experiments (Fig. 

5.5B). These results confirmed that PFI-1 is about 10% less potent than the JQ-1. Therefore, we used 

PFI-1 at 1x10-6 M in our subsequent experiments. 

 

 

Figure 5.4: PFI-1 structure. PFI-1 is structurally different than JQ-1 and less potent (Courtesy of 

Structural Genomics Consortium (SGC) (Structural Genomics Consortium 2012).  
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Figure 5.5: The effect of PFI-1 on IL-6, CXCL8 release and cell viability. Cells were pre-treated with 

different concentrations of PFI-1 for 4hrs before stimulating with IL-1 (1ng/ml) for 16hrs. IL-6 and 

CXCL8 proteins were assayed by ELISA (A). Cell viability was assessed by MTT assay (B). n=3 

independent experiments. Points represent mean ± SEM *p<0.05 ***P<0.001 versus stimulated only 

(IL-1). 

 

5.3.3 The effect of JQ-1 and PFI-1 on cell viability using FACS analysis 

It has been demonstrated above that JQ1 and PFI-1 significantly suppressed IL-1-induced 

expression of IL-6 and CXCL8 at 0.5µM and 1µM concentrations, respectively. We have also shown 

that neither JQ1 nor PFI-1 compromised cell viability at these concentrations using an MTT assay. 

However, we wanted to confirm this by flow cytometry analysis which is more stringent. Cells were 

treated with either (+)-JQ1 or its isomer (-)-JQ1 or PFI-1 or left untreated for 16 hours. Cells were 

also heat treated or mix with live cells to setup appropriate parameters for analysis. Cells were 

analysed by flow cytometry following the Live/Dead® Aqua blue staining reaction. Heat treated cells 

(Dead cells) gave us a single distinct peak shifted towards right and represented by red colour. Heat 

(80°C) ruptured about 95% of cells` membrane (Fig. 5.6A). In contrast, we observed two peaks with 

the live and dead cells mixture, with the right peak representing dead cells and the left turquoise 

peak representing intact cell membranes (Fig. 5.6B). The effect of JQ1 and PFI1 on cell viability was 

analysed based on these parameters.  Cells treated with DMSO (<1%) alone or with PFI-1 (1µM) 
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resulted in only 5% overall cell death with 95% cells being viable (Fig. 5.6C-D). Similarly, both (-)-JQ1 

and (+)-JQ1 at 0.5µM concentration hand no significant effect on cell viability (Fig. 5.6E-F).  

 

 

 

Figure 5.6: Cell viability post JQ1 and PFI-1 treatments. LIVE⁄DEAD® Fixable Aqua staining of cells 

treated with heat (80°C), JQ-1 (0.5µM) and PFI-1 (1µM) for 16 hours, followed by flow cytometry 

analysis. The blue histogram represents percentage viable cells whereas red indicates % dead cells. 

Heat treated cells alone (A) or mixed with live cells (B) were used as negative control and to set the 

parameters for analysis (C). DMSO/Control (<1%) alone (D) PFI-1, (E) (-)-JQ1 and (F) (+)-JQ1 did not 

affect cell viability. The data is representative of 3 independent experiments. 
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5.3.4 The effect of JQ-1 on IL-6 and CXCL8 expression  

Previously (Chapter 3, section 3.3.8), we demonstrated that H2O2 (100µM) alone has minimal effect 

on IL-6 and CXCL8 expression; however, it enhanced the expression of both cytokines in IL-1-

induced cells. Therefore, we investigated the effect of JQ-1 on IL-6 and CXCL8/IL-8 expression under 

such conditions. BEAS-2B cells were serum-starved overnight and treated with (+)-JQ1 or (-)-JQ1 

enantiomer both at 500nM for 4 hours followed by treatment with H2O2 (100µM) and IL-1 (1ng/ml) 

alone or in combination or left untreated for 16 hours. IL-6 and CXCL8 proteins were assayed in cell 

supernatant using ELISA and mRNA transcripts were quantified by real-time RT-QPCR.  H2O2 alone 

had little or no effect on IL-6 or CXCL8 protein production, however, co-stimulation with H2O2 and IL-

1- significantly induced the release of both IL-6 and CXCL8 proteins in comparison with 

unstimulated cells (Fig. 5.7A and 5.7B). Similarly we observed significant increase in IL-6 and IL-8 

transcripts (Fig. 5.7C and 5.7D). However, the release of IL-6 and CXCL8 proteins was significantly 

suppressed in (+)-JQ1 but not (-)-JQ1 treated cells (Fig. 5.7A and 5.7B). Consistent with the ELISA 

data, cells pre-treated with (+)-JQ1 significantly reduced the expression of both IL-6 and IL-8 mRNA 

induced by IL-1 and H2O2 (Fig. 5.7C and 5.7D). The data showed that the expression of IL-6 and IL-8 

genes can be repressed by JQ-1 but not down to control resting levels. 
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Figure 5.7: The effect of JQ-1 on IL-6 and CXCL8 expression. Cells were pre-treated with either (+)-

JQ-1 or (-)-JQ1 both at 500nM for 4 hours followed by stimulating with IL-1 (1ng/ml) H2O2 (100µM) 

or IL-1 (1ng/ml) or both for 16 hours or left unstimulated. IL-6 and CXCL8 proteins were assayed by 

ELISA (A-B). IL-6 and IL-8 transcripts were quantified by RT-PCR (C-D). n=4 independent experiments. 

Bar graph represent mean ± SEM *p<0.05, **p<0.01, (-)-JQ1 versus (+)-JQ1 treated. 

 

5.3.5 The effect of PFI-1 on IL-6 and CXCL8 expression  

Next we examined the inhibitory effect of PFI-1 on IL-6 and CXL8 expression.  Cells were treated with 

PFI-1 (1µM) for 4 hours prior to co-stimulation with IL-1 (1ng/ml) or H2O2 (100µM) alone or in 

combination for 16 hours or left unstimulated. IL-6 and CXCL8 proteins were assayed in cell 

supernatant using ELISA and mRNA transcripts were quantified by RT-QPCR.  We observed similar 

findings with PFI-1 as with JQ-1. The release of IL-6 and CXCL8 proteins was significantly suppressed 

with PFI-1 when compared untreated cells (Fig. 5.8A and 5.8B). In accord with ELISA data, pre-

treated cells with PFI-1 significantly reduced the expression of IL-6 and IL-8 mRNA in IL-1 and H2O2 

induced cells (Fig. 5.8C and 5.8D).  However, the level did not return to baseline. 
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Figure 5.8: The effect of PFI-1 on IL-6 and CXCL8 expression. Cells were pre-treated with PFI-1 

(1µM) or without drug for 4 hours before stimulating with IL-1 (1ng/ml) or H2O2 (100µM) alone or 

both for 16 hours or left unstimulated. IL-6 and CXCL8 proteins were assayed by ELISA (A-B). IL-6 and 

IL-8 mRNA was amplified by RT-QPCR (C-D). n=4 independent experiments. Bar graph represent 

mean ± SEM *p<0.05, **p<0.01, no drug versus PFI-1 treated. 

 

5.3.6 Brd4 knockdown in BEAS-2B cells reduces IL-1 and H2O2-induced IL-6 and CXCL8

We demonstrated that (+)-JQ1 significantly reduced H2O2 enhanced expression of IL-6 and CXCL8 

cytokines in IL-1-induced cells.  (+)JQ1 shows a greater binding affinity to Brd4 than any other BET 

proteins (Filippakopoulos, Qi et al. 2010). Therefore, we postulated that knocking down Brd4 would 

reduce IL-6 and CXCL8 release in H2O2 and IL-1 stimulated cells. To test this hypothesis, cells were 

transfected with Brd4 or non-specific small interfering RNAs for 72 hours. Nuclear extracts were 

examined for Brd4 protein expression levels using Western blotting and Brd4 mRNA was quantified 

by RT-QPCR. Brd4 mRNA expression and protein was significantly decreased by 71.8 ± 3.2% and 

63.26 ± 7.5%, respectively (Fig 5.9A and 5.9B) 
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Cells were serum starved overnight post-transfection and co-treated with H2O2 (100µM) and IL-1 

(1ng/ml) for 16 hours. Supernatants were analysed for IL-6 and CXCL8 proteins using ELISA.  Cells co-

stimulated with H2O2 and IL-1- induced the release of IL-6 and CXCL8 proteins in contrast to 

unstimulated cells. The release of IL-6 and CXCL8 proteins was significantly suppressed in Brd4-

depleted cells in comparison with non-specific siRNA transfected cells (Fig. 5.9C and 5.9D). 

Intriguingly, the suppression of IL-6 (1000pg/ml) and CXCL8 (4000pg/ml) levels were the same as (+)-

JQ-1 treated cells (Fig. 5.7A and Fig. 5.7B). These data confirms that Brd4 plays an important role in 

the expression of IL-6 and IL-8 genes.  
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Figure 5.9: The effects of Brd4 knockdown on IL-6 and CXCL8 expression. Cells were transfected 

with either pooled Brd4 siRNAs (12nM) or a non-specific siRNAs (12nM). (A-B) At 72 hours post-

trasfection Brd4 mRNA was quantified by RT-QPCR and nuclear extracts were analysed by 

immunoblotting using anti-Brd4 and -TATA-binding protein (TBP). IL-6 and CXCL8 proteins were 

measured by ELISA in post-transfected cells following stimulation with H2O2 and IL-1 together (C-D). 

n=4 independent experiments. Results represent mean ± SEM *p<0.05, **p<0.01, ***p<0.001, non-

specific siRNA versus Brd4 siRNA. 

 

5.3.7 The effect of Brd2 knockdown in BEAS-2B cells on IL-6 and CXCL8 release

Having shown that Brd4 depletion led to a reduction of IL-6 and CXCL8 release, we wanted to 

confirm that this reduction is exclusively through Brd4 and not any other BET protein. Since there is 

80% structural homology between Brd2 and Brd4 (Belkina and Denis 2012), we wished to assess 

whether Brd2 knockdown could account for some of the effect seen with (+)-JQ1 and Br4 knock 
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down on IL-6 and CXCL8 release. Following brd2 knock down, Brd2 mRNA and protein expression 

was significantly reduced (Fig. 5.10A and 5.10B).  Brd2 knockdown had no effect on either IL-6 or 

CXCL8 release in IL-1 and H2O2 co-treated cells (Fig. 5.10C and 5.10D). These data reconfirms that 

Brd4 is pivotal in regulation of IL-6 and IL-8 expression. It also clarifies that JQ1 targets Brd4 and not 

Brd2 protein. 

 

 

 

 

Figure 5.10: The effect of Brd2 knockdown on IL-6 and CXCL8 expression. Cells were transfected 

with either pooled Brd2 siRNAs (12nM) or a non-specific siRNAs (12nM). (A-B) At 72 hours post-

trasfection Brd2 mRNA was quantified by RT-QPCR and nuclear extracts were analysed by 

immunoblotting using anti-Brd2 and -TATA-binding protein (TBP). IL-6 and CXCL8 proteins were 

measured by ELISA in post-transfected cells following stimulation with H2O2 and IL-1 together (C-D). 

n=4 independent experiments. Results represent mean ± SEM *p<0.05, **p<0.01, ***p<0.001, non-

specific siRNA versus Brd2 siRNA. 
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5.3.8 Brd4 and p65 binding to IL-6 and IL-8 promoters post-JQ-1

In previous the chapter, we have shown that p65 and Brd4 are recruited to the B sites in the IL-6 

and IL-8 promoters following stimulation with H2O2 and IL-1. Nicodeme and colleagues have also 

shown that Brd4 occupies IL-6 and TNF promoter sites following LPS stimulation. Interestingly, this 

recruitment is abolished following treatment with I-BET (Nicodeme, Jeffrey et al. 2010).  Brd4 

enrichment at the Myc promoter is also suppressed following JQ-1 treatment (Mertz, Conery et al. 

2011). Therefore, we investigated the effect of JQ-1 on the binding of Brd4 and p65 to the IL-6 and 

IL-8 promoters.  

BEAS-2B cells were pre-treated with either (-)-JQ1 or (+)-JQ1 both at 500nM for 4 hours followed by 

co-stimulation with H2O2 (100µM) and IL-1 (1ng/ml) or left untreated for 2 hours.  ChIP analysis was 

used to investigate the recruitment of the Brd4 and p65 to the IL-6 and IL-8 promoter sites. We 

observed a significant enrichment of Brd4 and p65 at the IL-6 promoter following co-stimulation 

with IL-1 and H2O2. The inactive enantiomer (-)-JQ1 had no effect on the binding activity. However, 

the active form (+)-JQ1 significantly reduced p65 and Brd4 binding (Fig. 5.11A and 5.11B). Similarly, 

Brd4 and p65 binding increased by 4-fold and 10-fold respectively at IL-8 promoters in stimulated 

cells (H2O2+IL-1), when compared with unstimulated cells. This effect was abolished by (+)-JQ1 (Fig. 

5.11C and 5.11D). These findings re-affirm the findings of others and signify the importance of Brd4 

in the gene transcription of subsets of inflammatory genes. It also shows that although the 

recruitment of p65 and Brd4 is completely abrogated at both the IL-6 and IL-8 promoters the 

expression of both IL-6 and IL-8 did not returned to baseline levels in (+)-JQ1 pre-treated cells.  This 

suggests that either other inflammatory signalling pathways such as p38 MAPK and JAK-STAT may be 

driving the expression of cytokines in addition to NF-B pathway in the presence of (+)-JQ1 (Ono and 

Han 2000; Tron, Samoylenko et al. 2006; Sansone and Bromberg 2012) or that other B binding sites 

may recruit Brd4.  ChIP-Seq analysis may resolve this latter point.   

 



 
 

The role of NF-B p65 and Brd4 in oxidative stress driven inflammation PhD thesis 

 

155 

 

 

Figure 5.11: The effect of JQ1 (500nM) on Brd4 and p65 binding to IL-6 and IL-8 promoters. 

Chromatin immunoprecipitation assay shows that IL-1 (1ng/ml) and H2O2 (100µM) induces p65 

and Brd4 DNA binding to the IL-6 promoter by 5-fold which is abolished by (+)-JQ1 (500nM) (A-B). 

Similarly, p65 and Brd4 DNA binding at the IL-8 promoter are increased following H2O2 and IL-1 

after stimulation in (-)-JQ1 (500nM) pre-treated cells by 10- and 4-fold (C-D). This binding is 

abolished by the active (+)-JQ1 (500nM). Results are representative n≥ 3 independent 

experiments.*p<0.05, **p<0.01, ***p<0.001 compared with unstimulated cells.  
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5.4 Discussion 

NF-B signalling pathway orchestrates the cellular immune response, apoptosis, differentiation and 

inflammation (Barnes 2006; Watters, Kenny et al. 2007). Selective inhibition of its activity without 

compromising its protective role through therapeutic intervention is essential in treating 

inflammation. These results provide evidence that IL-1-induced NF-B-mediated expression of IL-6 

and CXCL8/IL-8 can be abrogated by the bromodomain inhibitors JQ-1 and PFI-1 in a concentration-

dependent manner. We have also demonstrated that these compounds significantly suppressed 

H2O2 enhanced IL-1-induced expression of these cytokines. This finding confirms that Brd4 plays an 

important role in the induction of IL-6 and IL-8 genes. Knockdown studies revealed that IL-6 and 

CXCL8 release is significantly reduced in Brd4 depleted cells. Whereas Brd2 has no effect on IL-6 and 

CXCL8 release. Furthermore, oxidative stress (H2O2) enhanced IL-1-induced recruitment to p65 and 

Brd4 at IL-6 and IL-8 promoters is markedly reduced in (+)-JQ-1 but not (-)-JQ1 pre-treated cells.  

Therefore, this data strongly suggest that BET bomodomin protein (Brd4) inhibition, also suppresses 

NF-B pro-inflammatory activity, providing a potential therapeutic target for treating inflammation 

in COPD. 

DNA and histones are tightly packed together into stable heterochromatin structures in an 

unstimulated cell (Adcock, Cosio et al. 2005; Adcock, Ford et al. 2006). Cell can employ different 

strategies to overcome this suppression upon stimulation, one such strategy is a post-translation 

modification of histones through the addition of an acetyl group to lysine residues on the N-terminal 

tails of histones (Eberharter and Becker 2002; Ito, Ito et al. 2005; Adcock, Tsaprouni et al. 2007). 

Acetylation of histones leads to the unwiding of DNA and histones at the transcription site paving 

the way for transcriptions factors (NF-B) and co-activator proteins (Brd4) leading to gene 

expression (Rahman and Adcock 2006; Chiang 2009; Huang, Yang et al. 2009). Hyper-acetylation of 

H3 and H4 at the promoter regions of inflammatory gene is linked to gene activation (Yang, Valvo et 

al. 2008; Tsaprouni, Ito et al. 2011; Zhang, Cai et al. 2011). We have also demonstrated in the 
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previous chapter that H3 is acetylated in cells stimulated with IL-1 alone and in combination with 

H2O2 at both IL-6 and IL-8 promoters. Furthermore, BET family proteins such as Brd4 are essential 

regulatory proteins in the recognition of acetylated histones and p65 (Chiang 2009; Huang, Yang et 

al. 2009). It has been reported that Brd4 inhibition results in down-regulation of NF-B targeted 

genes, suggesting its role in the induction and regulation of gene expression (Zhang, Liu et al. 2012). 

Indeed, we reported in a previous chapter that both Brd4 and p65 are recruited to both the IL-6 and 

IL-8 promoters.  NF-B activation is central to the induction of pro-inflammatory genes and 

inhibiting its activity will reduce inflammation. However, complete inhibition of several NF-B  

components could potentially cause  severe side effects as it is involved in many cellular processes 

including immune responses and aging (Yamamoto and Gaynor 2001; Hayden, West et al. 2006) 

Alternatively, manipulating NF-B function through specific and short-term inhibition of its signalling 

component or associated proteins during an exacerbation when inflammation is acutely elevated 

may prove effective (Lounnas, Frelin et al. 2009; Tagoug, Sauty De Chalon et al. 2011).  Therefore, 

bromodomain proteins could represent a viable therapeutic target for limiting the impact of an 

exacerbation. Consequently, we investigated the effect of bromodomain inhibitors on NF-B 

mediated expression on IL-6 and CXCL8 in our oxidative stress model, as oxidative stress is known to 

be a major component of an exacerbatory attack. 

The chemically distinct bromodomain inhibitors, both JQ-1 and PFI-1, significantly suppressed IL-6 

and CXCL8 expression in IL-1alone and in combination with H2O2 treated cells in comparison to 

untreated cells. Importantly, this was associated with the decreased recruitment of both Brd4 and 

p65 to IL-6 and IL-8 promoters in cells pre-treated with (+)-JQ-1. Similar to our findings, Nicodeme 

and colleagues have shown that I-BET disrupts the interaction of bromodmoain proteins and 

acetylated histones at the IL-6 and TNF promoters leading to a reduction in the expression of these 

cytokines in LPS-stimulated macrophages. JQ-1 is extensively studied in cancer where it targets c-

Myc-induced proliferation (Filippakopoulos, Qi et al. 2010; Delmore, Issa et al. 2011; Mertz, Conery 
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et al. 2011; Ott, Kopp et al. 2012) though its anti-inflammatory activity is yet to be reported.  A novel 

finding of our study is that we have elucidated the anti-inflammatory properties of JQ-1 and it’s 

mode of action in BEAS-2B cells.  JQ-1 exhibits its anti-inflammatory action through disrupting the 

interaction between Brd4 and acetylated histones and p65 at the IL-6 and IL-8 promoters (Fig. 5.12). 

This interaction is a vital step for facilitating the recruitment of RNA Pol II, p-TEFb and additional p65 

during transcription initiation and elongation (Huang, Yang et al. 2009; Zhang, Liu et al. 2012).  

Recently, Zhang and colleagues have shown in primary human CD4+ T cells, using genome-wide 

chromatin immunoprecipitation sequencing analysis that Brd4 co-localizes with RNA pol II at both 

enhancers and promoters of all active genes (Zhang, Prakash et al. 2012). This interaction is 

disrupted upon JQ-1 treatment leading to reduced lineage-specific genes expression and acetylated 

histone-bromodomain association (Zhang, Prakash et al. 2012). The study implies that Brd4 could be 

used as a tool to identify active promoters and enhancers in a genome-wide manner in human 

epithelial cells.  

These findings also raise questions about the role of other bromodomain proteins such as Brd2, Brd3 

and Brtd in inflammatory gene regulation and expression. We have shown that Brd2 depletion in 

BEAS-2B cells has no effect on IL-6 and IL-8 expression following stimulation with IL-1 and H2O2.  

However, in depth analysis and understanding of these proteins are required in order to fully exploit 

them as potential therapeutic targets in inflammation and cancer. More importantly, inhibition of 

Brd4 either by (+)-JQ1 or knockdown did not reduced inflammation completely whereas (+)-JQ-1 

blocks p65 DNA binding and subsequent Brd4 recruitment, suggesting that other inflammatory 

signaling pathways such as p38 MAPK and JAK-STAT are equally important in the suppression of 

inflammation (Ono and Han 2000; Tron, Samoylenko et al. 2006; Sansone and Bromberg 2012). 

Therefore, the inhibition of several signalling pathways may be necessary as compare to the 

suppression of a single inflammatory pathway. 
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In addition, the specificity and side effects of bromodomain inhibitors need to be evaluated 

extensively as epigenetics play a cardinal role in several cellular function including proliferation, 

differentiation, self-renewal and development (Dawson, Kouzarides et al. 2012). In this study, we 

have shown that JQ-1 targets Brd4 in human BEAS-2B cells whereas other investigators have shown 

that it can inhibit Brdt in mice testes, causing severe defects in germ-line cells (Matzuk, McKeown et 

al. 2012). 

 

 

Figure 5.12: The role of JQ-1 in the inhibition of gene expression. (1) Upon stimulation, histones 

and p65 are acetylated in BEAS-2B cells. These acetylated sites are recognised by Brd4. 

Subsequently, Brd4 recruits p-TEFb and RNA polymerase to the IL-6 and IL-8 promoters forming part 

of a large transcription complex that results in gene transcription. (2) The introduction of JQ-1 

disrupts the binding between Brd4 and acetylated proteins (histones and p65), resulting in the 

dissolution of the transcription complex and reduced gene suppression.  
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In summary, we have shown that the chemically distinct bromodomain inhibitors, JQ-1 and PFI-1, 

significantly reduced oxidative stress (H2O2) enhanced IL-1-induced inflammation in BEAS-2B cells. 

JQ-1 has high binding affinity to Brd4 but not Brd2. This was confirmed by Brd4 knock down studies 

which lead to a similar significant decrease in IL-6 and CXCL8 release. Furthermore, JQ-1 ablated the 

occupancy of Brd4 and p65 at both the IL-6 and IL-8 promoters. The ability of bromodomain 

inhibitors to reduce inflammation makes bromodomain proteins an attractive therapeutic target for 

inflammatory disorders including COPD particularly during an exarcerbation when inflammation is 

enhanced. However, whilst the development of highly specific pharmacological inhibitors of 

bromodomain proteins (BET family) will facilitate a better understanding of how these proteins 

contribute to gene activation and regulation, questions still remain.  We still need to understand and 

address: 

1.   Why levels of IL-6 and CXCL8 release are still above control levels despite complete ablation 

of p65 and Brd4 promoter binding?  

2. The role of individual bromodomain proteins in cell function, for example, cell proliferation, 

differentiation etc. 

3. Identify bromodomain inhibitors/mimics that can provide the desired anti-inflammatory 

outcomes upon inhibition with minimum side effects as it has been recently shown that Brd4 

is recruited to both promoters and enhancers of all active genes including house-keeping 

genes (Zhang, Prakash et al. 2012). 

4. To developed better and specific inhibitors with high binding specificity towards individual 

bromodomains. 
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Chapter 6  

General Discussion & Future Directions 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

The role of NF-B p65 and Brd4 in oxidative stress driven inflammation PhD thesis 

 

162 

 

6.1 General discussion 

Chronic obstructive pulmonary disease (COPD) is caused by chronic exposure to oxidative stress of 

which prolonged cigarette smoke (CS) exposure is a major aetiological factor. Increased oxidative 

stress produced by elevated oxidants, derived from cells and CS, or reduced anti-oxidant response is 

reported in COPD patients (Finkel and Holbrook 2000; GOLD 2011). Oxidative stress is also thought 

to contribute to the development of many other diseases including those of heart, immune system, 

brain and cancer (Dalle-Donne, Aldini et al. 2006; Kurien and Scofield 2008).  As a result, a number of 

animals and cell/tissue culture models have been developed to study the impact of oxidative stress 

(Yatin, Varadarajan et al. 1999; Aksenova, Aksenov et al. 2005; Wijeratne, Cuppett et al. 2005). 

However, most of these models are based on one off acute ROS exposure which fails to reproduce 

the disease pathology (Yatin, Varadarajan et al. 1999; Aksenova, Aksenov et al. 2005; Wijeratne, 

Cuppett et al. 2005) whereas chronic oxidative stress is central in the pathogenesis of these diseases 

including COPD.  Structural cells, such as airway bronchial epithelial cells (ABECs), form a first line of 

defence against inhaled harmful mixtures such as CS. The inflammatory response, initiated by 

epithelial cells in the airways, is potentiated by immune cells, resulting in the amplification of the 

inflammation in airways (Panettieri 2004; Tamimi, Serdarevic et al. 2012). Chronic inflammation is a 

key characteristic of COPD that drives the pathophysiology of the disease and persists long after 

smoking cessation (Willemse, Postma et al. 2004). This suggests that oxidative stress could affect the 

course of gene expression through changes in epigenetic modifications such as DNA methylation and 

histone acetylation (Adcock, Cosio et al. 2005; Gu, Sun et al. 2012).  

The NF-B inflammatory pathway is one of the main signalling pathways activated in inflammatory 

cells and a master regulator of the transcription of inflammatory mediators including cytokines, 

chemokines, growth factors and proteases (Schreck and Baeuerle 1990; Salminen, Huuskonen et al. 

2008). In addition, NF-B is redox-sensitive and regulated by oxidants (Kirkham and Rahman 2006). 

Hydrogen peroxide (H2O2) is one of the many oxidants reported to be elevated in breath 

condensates of COPD patients and is associated with enhanced inflammation (Montuschi, 
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Kharitonov et al. 2003; Montuschi 2005). H2O2 is a product of the dismutation of superoxide, 

catalysed by the enzyme superoxide dismutase (SOD) (Imlay 2008). Superoxide is continuously 

produced as a by-product of mitochondrial respiration, but can also be produced from enzymes such 

as the NAD oxidases or xanthine oxidase (Elahi, Kong et al. 2009). H2O2 exerts its toxic effects 

through generation of highly reactive hydroxyl radical (.OH) that can react and modify 

macromolecules (DNA, proteins and lipids) (Ahsan, Ali et al. 2003; Negre-Salvayre, Coatrieux et al. 

2008) and in doing so enhances an on-going inflammatory response. Inhaled corticosteroids (ICS) are 

frequently used in the management of inflammation in COPD patients; however, they provide little 

or no benefits to COPD patients and do not reduce inflammation in these patients due mainly to the 

continued presence of oxidative stress (Barnes 2011). Understanding the mechanisms underlying 

this enhanced inflammatory response and the lack of ICS response may provide novel potential 

therapeutic targets (Barnes 2011; Barnes 2012).   

Abnormal histone acetylation profiles have been linked to smoke exposure (Liu, Killian et al. 2010) 

and to relative steroid unresponsiveness in COPD (Barnes, Adcock et al. 2005; Barnes 2011).  The 

bromodomain and extra terminal domain (BET) protein Brd4 forms a complex with transcription 

initiation and elongation machinery that includes p-TEFb, RNA pol II and NF-B transcription factor 

(Jang, Mochizuki et al. 2005; Yang, Yik et al. 2005). Acetylated histones provide a docking site for 

Brd4 which subsequently recruits other regulatory proteins to the promoter site of the targeted 

genes (Belkina and Denis 2012). Brd4 has high binding affinity for acetylated H3 and H4 that direct a 

diverse set of cellular instructions including the induction of inflammatory genes such as IL-6 and IL-8 

(Turner 2000; Agalioti, Chen et al. 2002; An, Palhan et al. 2002). Therefore, inhibiting the formation 

of Brd4 and downstream regulatory complex through the inhibitors JQ-1 and PFI-1 could prevent 

inflammatory gene transcription. 

Airway epithelial cells constitute the inner surface of the airways lumen and protect the airways 

against irritants such as oxidants (Kirkham, Spooner et al. 2004; Galli, Tsai et al. 2008). We have used 
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H2O2 in our in vitro models with the knowledge that it does not reflect the complex mixture of the 

stimulants seen in CS (Young, Hopkins et al. 2006; Barnes 2007). We hypothesised that the major 

effect of cigarette smoke is due to ROS thereby allowing use to use a simplifed model.  We 

demonstrated the H2O2 (oxidant) significantly induced intracellular oxidative stress in BEAS-2Bs cells 

in concentration dependent-manner (Fig. 3.6). Therefore, BEAS-2B cells were used to establish both 

acute and chronic oxidative stress models using H2O2. 

Acute high concentrations of H2O2 significantly exaggerated the response of inflammatory stimuli 

(TNF- and IL-1) on the expression of IL-6 and IL-8 mRNA and protein (Fig. 3.7B, 3.8B and 3.12). 

H2O2 alone had a minimal effect on either IL-6 or IL-8 expression.  Interestingly, we observed that 

repeated exposure of low concentrations of H2O2 together with TNF- amplified the production of 

CXCL8 and IL-6 cytokines to a similar extend as that seen with acute high H2O2 exposure (Fig. 3.7C 

and 3.8C). This implies that chronic low oxidative exposure alters the cell sensitivity and subsequent 

exposure to inflammatory stress resulting in a different pattern of inflammatory/immune gene 

expression. Oxidants in CS may be modifying the ability of airway epithelial cells to produce 

antimicrobial peptides such as mucins, defesins and antiproteases (Barnes 2004), making COPD 

patients and smokers more susceptible to respiratory infection and exacerbation (Dacydchenko and 

Bova 2007; Hurst, Vestbo et al. 2010). However, this sensitivity was diminished in cells exposed to 10 

and 15 days of low concentration of H2O2 (Fig.3.7D/E and 3.8D/E).  

This may be explained by the resistance developed by the cells over continuous exposure to 

oxidative stress.  It has been reported by several groups that low oxidative stress enhances cell 

survival through induction of antioxidants systems (Collinson and Dawes 1992; Bose Girigoswami, 

Bhaumik et al. 2005).  It is also possible that oxidative stress sensitive cells went under either 

necrosis or apoptosis following longer oxidative stress challenges.  Others groups have used cell 

culture media supplemented with sodium pyruvate (110µg/ml) and uridine (100µg/ml), which allow 

cells to survive through an alternative anaerobic ATP generating source (Wang, Perez et al. 2007; Liu, 
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Geng et al. 2009) and protect cells against H2O2 (Giandomenico, Cerniglia et al. 1997; Jagtap, 

Chandele et al. 2003). It is also possible that chronic oxidative stress may have affected cell signalling 

or epigenetics events.  Stable isotope labelling by amino acid (SILAC) and genome-wide DNAse 1 

hypersensitivity assay might be used to examine cell signalling and epigenetics changes, respectively 

(Crawford, Holt et al. 2006).  

An IKK selective inhibitor (AS602868) was used to confirm that NF-B mediated the expression of IL-

8 and IL-6 genes.  AS602868 inhibitor completely suppressed the expression of both IL-6 and IL-8 

cytokines in BEAS-B cells co-treated with IL-1 and H2O2 (Fig. 4.2). This was further confirmed by 

increased nuclear p65 translocation into the nucleus, acetylation and activation following co-

stimulation with IL-1 and H2O2 (Fig. 4.3 and 4.4A).  Post-translation modification (PTM) of histones 

such as acetylation is important in the regulation of inflammatory genes by the NF-B pathway 

(Margueron and Reinberg ; Ito 2007; Kouzarides 2007).  However, little is known about either p65 or 

histone modification by carbonylation/ protein oxidation. Therefore, we postulated that H2O2 may 

modulate gene expression through histone or p65 carbonylation.   

There is accumulating evidence associating oxidative stress with the induction of protein 

carbonylation (England and Cotter 2004; Dalle-Donne, Aldini et al. 2006; Giustarini, Dalle-Donne et 

al. 2009) either by direct introduction of carbonyl groups (R-C=O-R`) into the side chain of amino 

acids or by addition of reactive aldehydes (MDA, 4HNE) released from lipid peroxidation process 

(Wong, Marcocci et al. 2010). The preliminary data showed a trend towards enhancing carbonyl-

modified p65 carbonylation which was more prevalent in acute treated cells in comparison to 

chronic treatment (Fig. 3.9A). Again, we had similar issue as above. Therefore, to clarify the role of 

acute H2O2 in p65 carbonylation, we used higher concentrations of H2O2 and noticed a small increase 

in p65 carbonylation with increasing concentration of H2O2 (Fig. 3.10A/B). Intracellular oxidised 

proteins are constantly subjected to degradation (Grune, Reinheckel et al. 1996; Davies 2001).  For 

example, HDAC2 is flagged for proteosomal degradation once nitrated (Meja, Rajendrasozhan et al. 
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2008; Osoata, Yamamura et al. 2009).  Therefore, cells pre-treated with proteasome inhibitor (MG-

132), showed a significant increase in p65-carbonylation (Fig. 3.10D). These findings suggest that 

carbonylation may be occurring during the “respiratory burst” that leads to excess ROS production 

during lung inflammation and further contributing to pathophysiology of COPD (Pettersen and Adler 

2002; Merry 2004).  Indeed, actin and myosin proteins from diaphragm of COPD patients have been 

reported to be carbonylated (Marin-Corral, Minguella et al. 2009). 

In contrast, we did not observe histone carbonylation (3.9C/D). Histones are considered to be highly 

conserved proteins (Sandman and Reeve 2000) and may not be subjected to ad hoc enzymatic or 

proteosomal degradation. Alternatively, histone modification may require longer exposure to 

oxidative stress or any carbonylated histones are rapidly degraded but this could reflect itself an 

altered acetylation/methylation profile as the histone has been replaced de nova and is now 

reflecting the current environment.  Indeed, Liu and colleagues have reported that histone 

acetylation of H4 at lysine 16 and methylation at lysine 20 is completely abrogated following 5 

month exposure to CS in human small airway epithelial cells (SAEC) compared with 72 hours 

exposure (Gloire, Legrand-Poels et al. 2006; Liu, Killian et al. 2010). Similarly, DNA oxidation 

increases significantly in mice fibroblast exposed to CS for 6 months compare to acute exposure (3 

days and 1 month) (Deslee, Adair-Kirk et al. 2010).  

In addition, we also examined the effect of oxidative stress (H2O2) alone or in combination with an 

inflammatory stimulus (TNF-) on H3 and H4 acetylation.  In non-stimulated cells, DNA and histones 

are tightly packed together into stable heterochromatin structures (Adcock, Cosio et al. 2005; 

Adcock, Ford et al. 2006).  Following stimulation, histones are acetylated, leading to the unwinding 

of DNA and histones (Eberharter and Becker 2002; Ito, Ito et al. 2005; Adcock, Tsaprouni et al. 2007). 

This open DNA-histone structure allows transcription factors (NF-B) and co-regulatory proteins 

(Brd4) recruitment to the transcription site (Rahman and Adcock 2006; Chiang 2009; Huang, Yang et 

al. 2009).  There was no change in global histone acetylation in either acutely or chronically treated 
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cells (Fig. 3.11). This wasn’t a surprise as acetylation should be only associated with subset of 

actively transcribed genes (Ito, Hanazawa et al. 2004).  Therefore, a gene specific approached (ChIP) 

was used to examine H3 and H4 acetylation at IL-6 and IL-8 promoters. 

ChIP analysis revealed that H3 and not H4 is acetylated at the B sites at both the IL-6 and IL-8 

promoters following stimulation with H2O2 and IL-1 (Fig.4.7)This does not rule out a role for H4 

acetylation during IL-6 and IL-8 expression. However, we only analyzed H4 acetylation at 2 hours 

post-stimulation and therefore; further analysis would be required at different time points to show 

whether H4 acetylation at the B sites at the IL-6 and IL-8 promoters varied temporally. Although, 

H2O2 alone was unable to induce H3 or H4 acetylation directly in BEAS-2B cells, it has been 

previously shown that H2O2 exerts some of its effects by reducing HDAC2 activity in BEAS-2B cells 

(Ito, Hanazawa et al. 2004). This causes a shift in the balance towards HATs (CBP/p300) and delaying 

the removal of attached acetyl-groups on histones. The overall result is greater expression of IL-6 

and IL-8 in cells co-stimulated with H2O2 and IL-1.  Hyper-acetylation of H3 and H4 at promoter 

regions of inflammatory gene is linked to gene activation (Yang, Valvo et al. 2008; Tsaprouni, Ito et 

al. 2011; Zhang, Cai et al. 2011). ChIP analysis also confirmed that both Brd4 and p65 are recruited to 

the B site at the IL-6 and IL-8  promoters following combined IL-1 and H2O2 stimulation (Fig. 4.5 

and 4.6). It has been shown that Brd4 is recruited to the promoter regions of the p65-induced genes 

TNF-and E-selectin (Huang, Yang et al. 2009), however, the binding of Brd4 to the IL-6 and IL-8 B-

responsive sites in the promoters has not been previously reported to our knowledge. Furthermore, 

we have shown that acetylated p65 forms a complex with Brd4 (Fig. 4.4B).  

BET family proteins such as Brd4 are essential regulatory proteins in the recognition of acetylated 

histones and p65 (Chiang 2009; Huang, Yang et al. 2009). It has been reported that Brd4 inhibition 

results in down-regulation of NF-B targeted genes, suggesting its role in the induction and 

regulation of gene expression (Zhang, Liu et al. 2012). Bromodomain inhibitors, JQ-1 and PFI-1, 

significantly suppressed IL-6 and IL-8 expression in IL-1 and H2O2 treated cells in comparison to 
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untreated cells (Fig. 5.7 and 5.8). Intriguingly, although the occupancy of both p65 and Brd4 was 

completely ablated at both the IL-6 and IL-8 promoters the expression of neither IL-6 nor IL-8 

returned to baseline levels in (+)-JQ1 pre-treated cells (Fig. 5.11). This discrepancy may be partly 

explained by the activation of other inflammatory pathways including p38 MAPK and JAK-STAT 

signalling pathways (Ono and Han 2000; Tron, Samoylenko et al. 2006; Sansone and Bromberg 

2012). For example, the induction of IL-6 involves the activation of both p38 and NF-B pathways in 

BEAS-2B cells (Craig, Larkin et al. 2000; Wang, Wong et al. 2005). A time-course ChIP analysis should 

be performed to confirm the p65 and Brd4 binding duration in pre- and post- (+)-JQ-1 treatment. 

Furthermore, a more precise technique such as protein-binding microarray could be used to identify 

other binding B sites that might be important (Bulyk 2007). Alternatively, a time course using Brd4-

ChIP-Seq could be utilised to see whether all Brd4 DNA association is lost in the presence of (+)-JQ1. 

Similar to our results, it has been shown that I-BET (a bromodamain inhibitor) interrupts the 

association between bromodomain proteins and acetylated histones at the IL-6 and TNF- 

promoters in LPS-stimulated macrophages leading to reduced IL-6 and TNF-expression. A novel 

finding of this study is that we have reported for the first time the anti-inflammatory properties of 

JQ-1 in airway epithelial cells. These findings have been confirmed in a number of other cells 

including smooth muscles cells, A549 and macrophages by other groups in our department. JQ-1 

exhibits its anti-inflammatory properties by disrupting the interaction between Brd4 and acetylated 

histones and p65 on the IL-6 and IL-8 promoters. This interaction is vital step for facilitating the 

recruitment of RNA Pol II, p-TEFb and p65 during transcription initiation and elongation (Huang, Yang 

et al. 2009; Zhang, Liu et al. 2012). The knockdown studies reported here confirmed that Brd4 is 

required for maximal induction of IL-6 and IL-8 genes. There was significant reduction in both IL-6 

and CXCL8 release in Brd4 deficient cells (Fig. 5.9). Furthermore, Brd2 knockdown had no effect on 

the expression of either cytokine, confirming that Brd4 rather than Brd2 is instrumental in the 

induction of inflammatory genes in these cells (Fig. 5.10). These findings are reinforced by a recent 

publication showing the co-localization of Brd4 and RNA pol II at the promoters and enhancer 
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regions of all active genes could be disrupted by JQ-1 treatment. This study also supported the 

notion that Brd4 could be used as tool to identify active genes in a genome-wide screen (Zhang, 

Prakash et al. 2012). 

In conclusion (Fig. 6.1), I have shown in this thesis, that H2O2 enhances IL-1- and TNF--induced 

expression of the inflammatory cytokines IL-6 and CXCL8.  I have also demonstrated that whilst 

persistent exposure to low concentrations of H2O2 alone has no effect on IL-6 and CXCL8 release, it 

does however enhance the effect of TNF--induced IL-6 and CXCL8 expression.This data may explain 

the key role of long-term ROS stress on enhancing inflammation in COPD.  I have shown that the 

induction of these cytokines is mediated through activation of the NF-B pathway.  The activation of 

these genes is associated with p65 and H3 acetylation and subsequent recruitment of both Brd4 and 

p65 to the appropriate B sties in the IL-6 and IL-8 promoters.  I have also shown that this induction 

can be reversed through either knockdown of Brd4 or by using synthetic Brd4 inhibitors JQ-1 and 

PFI-1. Brd4 provides a potential therapeutic target for the reduction of inflammation and synthetic 

compounds such as JQ-1 and PFI-1 may be used in treatment of inflammation where steroids show 

little benefit. The novel findings of this thesis are: 

1. Repeated stimulation with low concentration of H2O2 is as potent as acute high 

concentration of H2O2  

2. Brd4-p65 association  is an integral part of inflammatory gene expression in BEAS-2B cells 

3. Brd4 but not Brd2  is involved in the induction of IL-6 and IL-8 genes 

4. JQ-1 and PFI-1 have anti-inflammatory properties  
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Figure 6.1: A summary of some of the findings in this thesis. (1) H2O2 reduces HDAC2 activity in 

Beas-2B cells (Ito, Hanazawa et al. 2004) allowing CPB/p300 (HAT) to acetylate (2) NF-B p65 and (3) 

histones 3. (4) These acetylated proteins are recognised by Brd4 proteins. (5) Subsequently, Brd4 

recruits p-TEFb and RNA pol II at the IL-6 and IL-8 promoters forming a part of transcription 

apparatus that leads to gene transcription (Jang, Mochizuki et al. 2005; Yang, Yik et al. 2005). (6) The 

introduction of JQ-1 disrupts the binding between Brd4 and acetylated proteins (Histones and p65) 

and (7) resulting in the disintegration of the transcription apparatus and gene suppression.  
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6.2 Future directions 

Due to time constraints, we could not show a statistically significant difference in some experiments 

despite observing an obvious trend. The “n” numbers would need to be increased in order to 

perform a valid statistical analysis in these experiments. 

We have used BEAS-2B cell lines in throughout this investigation and all findings are based on these 

cells. However, ideally these findings need to be replicated in primary cells from healthy and COPD 

patients. This may also establish a differing role/expression of brd4 protein in primary human 

bronchial epithelial cells (HBECs) in disease patients. In addition; we have used H2O2 as the source of 

oxidant to establish acute and chronic in vitro models of oxidative stress. Although, the presence of 

H2O2 in exhaled breath of COPD patients reflects the importance of H2O2 as an oxidant (Boots, 

Haenen et al. 2003), it is but one species observed in vivo.  A plethora of other oxidants (HO2·, ·OH, 

HOCl), nitrites/nitrates (NOx) and carbonyls (4-HNE, MDA) are also generated in the lung of COPD 

patients (Pryor and Stone 1993; MacNee 2005; Negre-Salvayre, Coatrieux et al. 2008). Together, 

these harmful mediators may be more likely to drive the pathophysiology of the disease rather than 

a single oxidant by itself. Furthermore, H2O2 has a short-life and degrades quickly in most cell-culture 

media (Song, Driessens et al. 2007). Therefore, using H2O2 to establish a chronic model of oxidative 

stress may be not an ideal despite being used for chronic treatment previously (Bose, Bhaumik et al. 

2003).  A number of other H2O2 generated agents, for example glucose oxidase, KO2, or menadione, 

could be used to maintain the continuous supply of H2O2 (Arai, Endo et al. 2001; Loor, Kondapalli et 

al. 2010; Ho, Asagiri et al. 2011; Choe, Yu et al. 2012).  Alternatively, chronic exposure to ozone may 

provide a good model (Triantaphyllopoulos, Hussain et al. 2011) 

It is important to investigate whether JQ-1 and PFI-1 can modulate the expression of other 

inflammatory genes in addition to IL-6 and IL-8. Microarray analysis or deep sequencing ideally in 

primary HBECs can be applied to RNA samples isolated from cells pre-treated with bromodomain 

inhibitors under various experimental conditions.  In the experiments described here, we examined 
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the association between p65 and Brd4 only.  However, transcription factors such as AP-1 and Nrf2 

may also be examined using Co-IP.  Similarly, the role of other BET family proteins as such Brd2, Brd3 

and Brtd should be investigated. This will further enhance our understanding of their role in gene 

regulation.  Importantly, the apparent discrepancy between the effects of JQ-1 and PFI-1 and Brd4 

knockdown on IL-6 and CXCL8 protein expression and the complete loss of Brd4 and p65 from their 

respective promoters need to be investigated. It is also important to establish whether another 

pathway such as p38 MAPK takes over when JQ-1 is present. 

The present findings suggest that only H3 is acetylated. However, other studies have shown that 

individual acetylated-lysine residues (H3K14, H4K5, 12, 18) are crucial for Brd4 binding (Dey, Chitsaz 

et al. 2003). The diverse acetylated-lysine residues in H3 and H4 are more likely to reflect both gene 

specific acetylation and regulation at specific time point analysed. Therefore, it would be invaluable 

to examine in concert a number of individual acetylated lysine residues both on H3 or H4 to give an 

insight into gene specific activation in relation to acetylation of individual lysine residue. In addition, 

DNA and histone methylation has been shown to be involved in epigenetic regulation of gene 

expression (Siegfried and Simon 2010). The use of H3K27me3 mimics, for example GSK05, to block 

this repressive tag of specific histone methyltrasferases may provide useful data. Increased histone 

acetylation, modulation of histone methylation and decreased DNA methylation of CpG islands at 

the promoter regions of inflammatory gene is correlated with elevated gene expression (Kabesch 

and Adcock 2012).  

Parental cigarette smoke exposure has been associated with global and gene-specific DNA 

methylation changes in children (Breton, Byun et al. 2009). Oxidative stress (H2O2) is reported to 

recruit DNMT1 at the promoters, resulting in changes in DNA methylation patterns and gene 

expression (O'Hagan, Wang et al. 2011). Similar experiments could be conducted using direct 

sequencing after bisulphite treatment or by methylation dependent immuneprecipitation (MeDIP) 

to investigate the effect of H2O2 on DNA methylation in the CpG islands and shores across the IL-6 
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and IL-8 promoters and coding regions.  Genome-wide changes in hydroxymethylated cytosines may 

also provise additional information concern the regulation of inflammatory genes in the presence of 

oxidative stress. 

Steroids are widely used as an anti-inflammatory drug. However, they fail to exert their anti-

inflammatory effects in severe asthmatics and COPD patients (Barnes 2012) which has been 

attributed to the impact of oxidative stress. It would therefore be important to identify the role of 

oxidative stress in steroid unresponsiveness in our model and to ascertain whether corticosteroids 

predominantly target the epigenome or rewire/modify intracellular signalling processes. A 

comparison of ChIP-Seq, transcriptomic and proteomic (SILAC) analysis may help clarify this. 
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