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Abstract

This article addresses the detection of oscillations in measurements from chemical processes including the case when two or more
oscillations of different frequency are present simultaneously. The presence of oscillations in selected frequency ranges is determined

using a new method based on the regularity of the zero crossings of filtered autocovariance functions. The work is motivated by and
illustrated with industrial data that exhibit multiple plant-wide oscillations. Issues of practical implementation in an automated tool
are discussed. # 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Recent reviews [1,2] highlight the detection and diag-
nosis of plant-wide disturbances as a key issue facing the
process industries. Oscillations are a common type of
plant wide disturbance and the detection and diagnosis of
oscillatory behavior in a chemical process is of importance
because process variability has an impact on profit [3,4].
For industrial control consultants and engineers the

detection of oscillating control loops is a basic activity.
Features of interest are:

� Detection of the presence of one or more oscil-
lations indicated by a regular pattern in the data;

� Determination of the periods of the oscillations,
which can be used to infer the presence of a
plant-wide oscillation;

� Determination of the magnitudes of the oscilla-
tions. A large magnitude oscillation needs to be
addressed because it increases process variability
while an oscillation of small magnitude may not
be a cause for concern.

A tool to help the engineer should therefore auto-
matically bring oscillatory loops to his or her attention,
characterize them and highlight the presence of plant-
wide oscillations.
The contribution of this paper is the detection of

distributed oscillatory disturbances where the oscilla-
tion appears in several measurements. It utilizes zero-
crossings of the autocovariance function (ACF) to
detect multiple plant-wide oscillations and is illu-
strated using a case study in which many measure-
ments in a plant participated in a plant-wide
oscillation. It also deals with the case when oscilla-
tions at more than one frequency are present simulta-
neously in one measurement.
The following features of an oscillation were assessed

from the autocovariance function:

� Tp, the period of oscillation;
� r, the regularity of the oscillation;
� P%, the power of the oscillation.

The insights achieved were:

� detection of an oscillation if r > 1;
� determination of the number of independent

oscillations present in a plant;
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� detection of a plant-wide disturbance when many
measurements in the plant have an oscillation of
the same period;

� detection of two or more oscillations with differ-
ent periods present simultaneously in one
measurement.

The paper is laid out as follows. Section 2 describes
detection and characterization of multiple oscillations.
Section 3 introduces two case studies, one using experi-
mental pilot plant data and the other using an industrial
data set. Section 4 presents the results with a focus upon
detection of multiple plant-wide oscillations. Section 5
addresses issues of practical implementation in an auto-
mated tool. The paper ends with a conclusions section.

2. Detection and characterization of oscillations

2.1. Background and context

2.1.1. Oscillation detection and diagnosis
Kedam [5] formulated a theory for the determination

of oscillatory behavior from the zero crossings of a time
series. Several authors have addressed the detection of
oscillatory measurements in process data. Hägglund [6]
detected zero crossings of the error signal in a control
loop and calculated the integrated absolute error (IAE)
between successive zero crossings. An oscillatory time
trend has larger IAE values than a random one. Thorn-
hill and Hägglund [7] inspected the regularity of the zero
crossings of a time trend. The presence of an oscillation
was inferred when the regularity was high and an esti-
mate given of the signal to noise ratio of the oscillation.
The method of Forsman and Statin [8] also used zero
crossings and IAE. By distinguishing between positive
and negative deviations they were able to detect asym-
metrical oscillations.
The autocovariance function (ACF) can be used for

oscillation detection. For example, if the absolute value
of the ACF at the first minimum exceeds a threshold
then the possibility of an oscillation is inferred. The
patented method of Miao and Seborg [9] utilized addi-
tional cycles of the oscillatory autocovariance function.
The authors demonstrated that the method could distin-
guish a decaying oscillation from a sustained oscillation.
Ettaleb et al. [10] considered diagnosis of oscillations

in a cascade control loop and showed that the origin of
an oscillation could be isolated to either the master or
slave loop using a describing function analysis. Taha et
al. [11] gave a diagnostic procedure based on valve
characteristics while [7] distinguished limit cycle oscilla-
tion caused by non-linearity in a control loop from lin-
ear effects such as oscillatory tuning. Horch [12] showed
that the covariance of the controller input and the pro-
cess input would be an odd function in the presence of a

valve with hysteresis. Xia and Howell [13,14] gave an
analysis of loop status that determined if an individual
loop was affected by long or short term transients or a
slow or fast oscillatory disturbance. Fast oscillatory
disturbances were attributed to tuning or non-linearity.
Thornhill et al [15] gave a non-linearity test capable of
identifying the source of a plant-wide oscillation due to
limit cycling and demonstrated its application in an
industrial example.
It is necessary to find all the measurements or control

loops in a plant having the same disturbance because
the root cause will be among that group. Pryor [16]
highlighted the usefulness of autocovariance functions
and spectra for such a purpose. Harris et al. [17] repor-
ted plant-wide control loop assessment in which spectral
analysis was useful.

2.2. Techniques

2.2.1. Use of zero crossings of the autocovariance
function
The intervals between zero crossings of an oscillatory

time trend are regular and can be exploited for off-line
detection of oscillations. In earlier work it was found,
however, that noise in the time trend caused spurious
zero crossings [7].
The squares of the magnitudes of the discrete Fourier

transform DFT give an estimate of the two-sided power
spectrum (numerical issues related to the method are
discussed in [18]). The autocovariance function (ACF) is
the inverse Fourier transform of the two-sided power
spectrum (the Wiener-Khinchin Theorem, [18]). The
ACF of an oscillating signal is itself oscillatory with the
same period as the oscillation in the time trend. The
benefit the ACF for oscillation detection is that the
impact of noise is reduced because white noise has an
ACF that is theoretically zero for lags greater than zero.
The pattern of zero crossings of the ACF therefore
reveals the presence of an oscillation more clearly than
the zero crossings of the time trend.
Oscillations may be present in the measurements from

indicators, controlled variables (process variables), con-
troller errors, controller outputs or in the set point. The
proposed method can be used with any of these time
trends. The case studies in this paper used process vari-
ables and measurements from indicators.

2.2.2. Data sets with more than one oscillation
The zero crossings of the ACF may not be regular if

more than one oscillation is present. Fig. 1 shows the
time trend and ACF from an industrial plant measure-
ment having two superimposed oscillation of different
periods. The bottom panel in the figure marks the posi-
tions of the zero crossings. The intervals between zero
crossings of the autocovariance function reflect neither
oscillation accurately because the zero crossings of the
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fast and slow oscillations each destroy the regularity of
the other’s pattern.
The problem is addressed by frequency domain filter-

ing. A filtered ACF is calculated from the inverse Four-
ier transform of the filtered power spectrum. Frequency
domain filtering is preferred to a wavelet filter bank [19]
because oscillatory time trends are global. There is thus
no requirement for localization in the time domain
while there is a need for precise location of the filter in
the frequency domain.
The frequency-domain filter sets the power in unwan-

ted frequency channels to zero. Because of the Nyquist
sampling theorem, the upper half of the power spec-
trum is an aliased mirror image of the lower half. The
alias of the m’th channel is channel N�mþ 2, where
N is the number of samples in the time trend (N is even
in this formulation). The frequency domain filter oper-
ates on the required channels and also on the aliased
channels.
The filter is an approximate realization of a Wiener

filter [18]. A true Wiener filter also requires an estimate
of the noise power within the wanted frequency chan-
nels which would then be subtracted from those chan-
nels. The trade-off for the simplification is that the
power present in the wanted frequency band cannot be
attributed solely to any oscillation present. The impli-
cations of this point are discussed later.

2.2.3. Assessment of period and regularity of oscillation
Each oscillation has two zero crossings and hence the

intervals between zero crossings are:

interval ¼
1

2
Tp � DTp

� �

where Tp is the mean period and 	Tp a random varia-
tion in the period. Thus Tp is twice the mean value of
the intervals and the standard deviation of the period is
�Tp

¼ 2� �intervals.
The 10 intervals between the first eleven zero crossings

are used for calculation of T� p and �Tp
. The interval from

lag zero up to the first zero crossing is excluded from the
calculation because it corresponds to only one half of a
completed deviation. Ten intervals are used because
except in the case of a very persistent oscillation, the
magnitudes of the autocovariance functions have
decaying profiles and some spurious zero crossings may
be found at large lags. Fewer intervals (e.g. eight) can be
used for the regularity assessment when the period of
oscillation is long but it is not recommended to use
fewer than four intervals because the estimates of T� p
and �Tp

become unreliable.
An oscillation is considered to be regular if the stan-

dard deviation of the period is less than one third of the
mean value. The statistic used is:

r ¼
1

3
�

Tp

�Tp

Values of r > 1 are taken to indicate a regular oscil-
lation with a well defined period. The threshold value
for r has a basis in statistics. If the zero crossings were
random with an equal probability of arrival in each
sampling interval then the intervals between zero cross-
ings would have an exponential distribution [20]:

f Tp

� �
¼ �e��Tp

The standard deviation of an exponential distribution
is equal to its mean. Therefore the null hypothesis of
random arrivals would be Tp ¼ �Tp

.The condition r > 1
rejects the hypothesis of random intervals when the
observed value of the standard deviation is less than one
third of its expected value under the null hypothesis, i.e:

�Tp
<

1

3
Tp

2.2.4. Assessment of the strength of an oscillation
The power spectrum is normalized before filtering,

therefore
P

Pi ¼ 1, where Pi is the power in the i’th
frequency channel. Thus, when the spectrum is filtered it
follows that the summed spectral power in the selected
frequency channels gives the power as a fraction of the
total. These power values include both oscillatory compo-
nents and noise because the simplified Wiener filter does
not subtract noise from the wanted frequency band. How-
ever, if there is a regular oscillation having r > 1 the sum-
med power in the filtered spectrum would be dominated by
the power of the oscillatory signal andmay be utilized as an
approximation to the power of the oscillation.

2.2.5. Comment—oscillation detection from power
spectra
An oscillatory ACF with a period Tp has a spectral

peak at 1 =Tp on the frequency axis. Visual inspection

Fig. 1. An example of multiple oscillations present simultaneously

(industrial tag 20).
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of spectra is helpful because strong peaks can be easily
seen, but determination of period and regularity from
the spectrum is not recommended. The ratio between
the position of a peak and its bandwidth (known as the
Q-factor) gives a measure of the regularity of the oscil-
lation, but the presence of noise in the same frequency
channels as are occupied by the spectral peak causes
difficulties with the determination of bandwidth. The
additional steps required to derive filtered ACFs are
worthwhile because regular oscillations can be char-
acterized even in the presence of noise.

3. Case studies

3.1. Data sets

3.1.1. Pilot plant data
Three time trends from a level control loop and one

from a temperature loop in a university pilot plant were
studied. The level loop had various tuning settings giv-
ing the step responses shown as tags 1–3 of Fig. 2. Tag 1
had a rapid response and a slight overshoot while tags 2
and 3 were slower and oscillatory with periods of about
90 and 130 s. Tag 4 was a temperature control loop. It
was tuned for fast set point response and no overshoot.
Fig. 2 also shows a magnified plot of mean centered
data from normal running. The measurements were on
a 4–20 mA scale and the sampling interval was 1 s.
The manipulated variable in the level control loop

was a cold water flow which was subject to an oscilla-
tory disturbance with a period of about 40 s that origi-
nated elsewhere in the building. The only disturbance to
the temperature loop was random noise. Samples of
these disturbances were captured during tests in which
the cold water flow and the temperature were monitored
at constant settings with no feedback control (Fig. 3).

3.1.2. Industrial data
Industrial data tags 1–30 were from a data set pro-

vided courtesy of the Eastman Chemical Company,
Kingsport, Tennessee. The time trends, autocovariances
and power spectra are shown in Fig. 4(a) and (b). The
sampling interval was 20 s and the total data record of
8192 samples represented 45.5 h of operation. The time
trend plot shows just part of the data for better visuali-
zation. The frequency axis in the right hand panel of
Fig. 4(b) is normalized to the sampling frequency. For
example, 0.01 on the frequency axis represents 100
samples per cycle. The spectra stop at 0.5 on the fre-
quency axis because oscillations must be sampled at
least twice per cycle (i.e. the aliased part of the spectrum
from 0.5 to 1.0 on the frequency axis is not shown).
Many time trends in Fig. 4(a) were oscillatory and the

spectra in Fig. 4(b) display spectral peaks corresponding

Fig. 2. Step responses and normal operation of pilot plant tags 1–4.

Fig. 4. (a) Time trends of 30 tags from an industrial data set normal-

ised to the same standard deviation. (b) Autocovariance and power

spectra of 30 tags from an industrial data set. Autocovariances are all

unity at zero lag. Spectra show absolute magnitudes on a linear axis

scaled to the same maximum peak height.

Fig. 3. Time trends of pilot plant disturbances.
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to those oscillations. Some had more than one oscilla-
tion present. Therefore the challenge was the detection
and accurate characterization of these oscillations and
discovery of other oscillations not discernible by visual
examination.

3.2. Design of the filters

3.2.1. Selection of the filters
The frequency ranges for the filters were selected by

inspection of the power spectra. Automation of the filter
will be discussed in Section 5.
Filters for the pilot plant data were designed to sepa-

rate the oscillatory disturbance in the cold water flow
with a period of 40 s from the oscillations due to tuning
at 90–130 s. Their specifications were:

� 2–75 samples per cycle (0.0133–0.5 on the fre-
quency axis);

� 75 samples per cycle and longer (d.c. to 0.0133
on the frequency axis).

The spectra of the industrial data showed one
group of spectral peaks at about 0.003 on the fre-
quency axis, another at about 0.015 to 0.016 and
some others at higher frequencies. Therefore three fil-
ters were specified:

� 2–35 samples per cycle (0.0286–0.5 on the fre-
quency axis);

� 35–100 samples per cycle (0.01–0.0286 on the
frequency axis);

� 100–1000 samples per cycle (0.001–0.01 on the
frequency axis).

The third filter excluded disturbances having 1000
samples or more per cycle. Thus non-stationery and
long term deviations were removed. For instance, a
temperature indicator may detect daily temperature
variations. If these were not removed then a situation
like that shown in Fig. 1 could arise in which a non-
stationery trend would interfere with the detection of
oscillations superimposed upon the trend.

3.2.2. Spurious results
Oscillation detection can generate spurious results

when the filter boundaries are placed on the frequency
axis such that they split a broad spectral feature across
two ranges. The remedy for false detection is to ignore
detected oscillations having periods that are close to the
filter boundary.
Spurious results also arise if the filter width is too

small. For instance, a filter with a width of just one fre-
quency channel would give a pure sinusoidal output
even if the input signal were random noise. Guidelines
for the minimum filter width are given in Appendix A.

4. Results

4.1. Pilot plant data

4.1.1. Oscillation characterization
Fig. 5 shows the autocovariances of the filtered pilot

plant data, the positions of the zero crossings and the
filtered spectra. Features of interest are the intervals
between the zero crossings and their regularity.
Table 1 lists the oscillation statistics. Results with r >

1 are regular oscillations and are highlighted in the
table. Thus the diagnosis detected a fast oscillation in
tag 1, fast and slow oscillations present in tags 2 and 3
and no oscillations present in tag 4.

4.1.2. Discussion
The period of the slow oscillations detected in the

level loop (tags 2 and 3) changed when the tuning
changed. For loop 2 the period was 88 s and for loop 3
it was 134 s. These results match the periods of oscilla-
tion determined from the step responses in Fig. 2 (90
and 130 s). An oscillatory step response means that the
closed loop has a resonant peak in its frequency
response. Therefore, the loop responds at that frequency
when excited by random noise such as is always present,
for example in the signal from the level sensor or random
fluctuations in the cold water flow. The higher oscillation

Fig. 5. Oscillation analysis of pilot plant tags: (a) low frequency

(b) high frequency.

Table 1

Oscillation analysis for pilot plant tags

Tag Period r Power (%)

Slow: 575 samples/cycle

1 – 0.80 –

2 88�15 1.95 13

3 134�13 3.55 52

4 – 0.59 –

Fast: 2–75 samples/cycle

1 39�1 9.27 94

2 41�2 6.16 87

3 40�6 2.27 48

4 – 0.44 –
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index r in tag 3 shows the regularity was higher in tag 3
which also had the most oscillatory step response.
The fast oscillations detected in tags 1–3 all had periods

within one standard deviation of 40 s and therefore the
disturbance was successfully detected in all three cases.
The period of the 40 s oscillation did not change when

the loop tuning settings changed. However, the power in
the oscillation altered with tuning settings. For example,
for tag 2, 87% was associated with the disturbance and
13% with the slow oscillation while for tag 3, 48% was
associated with the disturbance and 52% with the slow
oscillation. A control loop like tag 2 tuned for a faster
set point response has a larger closed loop bandwidth
than one with a slower settling time such as tag 3.
Therefore, tag 2 responded more to the fast disturbance
than did tag 3.
The conclusion from the pilot plant data was that the

new procedure was able to detect multiple oscillations in
tags 2 and 3 and correctly reported that no oscillations
were present in the non-oscillatory tag 4.

4.2. Industrial data

4.2.1. Autocovariances and zero crossings
Fig. 6 illustrates the analysis of industrial data in the

range 100–1000 samples per cycle (0.001–0.01 on the

frequency axis). The spectra in the right hand panel of
Fig. 6 were zero outside of that frequency range. The
figure shows that tags with well defined spectral peaks
have oscillatory autocovariance functions and a regular
pattern of zero crossings. Analyses were also conducted
in the range 35–100 and 2–35 samples per cycle. Table 2
lists the calculated oscillation statistics and highlights
loops having significant oscillation with r > 1 and
power in the oscillation above 1%.
The table of results shows, for instance, that the

method detected slow and medium regular oscillations
with periods of 312 and 64 samples per cycle in tag 20.
Visual inspection of the spectrum [Fig. 4(b)] shows these
oscillations as peaks at about 0.003 and just above 0.01
on the frequency axis. By contrast, when no filtering
was used (Fig. 1) the analysis for tag 20 gave r ¼ 0:46
and thus suggested no oscillation was present because
the zero crossings for the medium oscillations inter-
rupted the regularity of the zero crossings from the slow
oscillation, and vice versa.

4.2.2. Oscillation characterization
Fig. 7 summarizes all the detected oscillations show-

ing the oscillation index, r, on the horizontal axis and
the period of the oscillation in samples per cycle on the
vertical axis. The open circles near 35 and 100 samples

Fig. 6. Analysis of oscillations in the range 100–1000 samples per cycle in industrial data.
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per cycle were on the filter boundaries and were dis-
regarded, as discussed below. There were three plant-
wide oscillations, as follows:

� Slow oscillation: tags {3, 5–8, 11–13, 15, 16, 18–20,
22–29}, average period 337 samples (112 min);

� Medium oscillation: tags {1, 2, 4, 5, 7–9, 11–20,
27, 28}, average period 64 samples or 21.3 min;

� Fast oscillation: tags {11–13, 15, 16}, average
period 17.6 samples per cycle or 5.87 min.

� Tags {5, 7, 8, 18–20, 27, 28} had slow and med-
ium oscillations simultaneously present and tags
{11–13, 15 and 16} had simultaneous slow, med-
ium and fast oscillations. Therefore the proce-
dure successfully identified the presence of
multiple oscillation, both plant-wide cases where
the same oscillation was present in more than
one tag and simultaneous oscillations where
some tags had more than one oscillation.

4.2.3. False detection
An oscillation in tag 29 with a period of 102 samples

per cycle was disregarded because it was near the filter
boundary of 100 samples per cycle. Likewise, fast oscil-

lations in tags {7–9, 23–26} with periods of 33 and 34
samples per cycle were ignored because they were close
to the filter boundary of 35 samples per cycle. Such false
oscillations arise when a tag has a broad spectral feature
which falls away from the filter boundary. The trun-

Table 2

Oscillation analysis for industrial data

Slow: 100–1000 sample/cycle Medium: 35–100 sample/cycle Fast: 2–35 sample/cycle

Tag Period r Power (%) Tag Period r Power (%) Tag Period r Power (%)

1 – 0.61 – 1 64�5.0 4.26 26 1 – 0.85 –

2 – 0.71 – 2 64�5.1 4.17 2 2 – 0.75 –

3 326�10 11.27 5 3 – 2.02 0 3 – 3.41 0

4 – 0.98 – 4 64�4.5 4.77 3 4 – 0.75 –

5 320�24 4.36 82 5 63�9.4 2.24 4 5 – 0.28 –

6 322�29 3.68 6 6 – 0.84 – 6 – 0.66 –

7 319�30 3.53 87 7 64�12 1.75 6 7 32.9�2.3 4.85 3

8 319�31 3.39 87 8 64�12 1.73 7 8 34.2�2.9 3.93 2

9 – 0.83 – 9 62�10 2.04 1 9 32.9�8.5 1.29 1

10 – 0.80 – 10 – 0.83 – 10 – 0.33 –

11 315�53 1.97 56 11 63�3.0 7.04 8 11 17.6�3.1 1.87 24

12 374�69 1.79 90 12 64�3.1 6.78 2 12 17.6�3.1 1.87 6

13 373�68 1.84 90 13 64�2.8 7.60 2 13 17.6�3.1 1.87 6

14 – 0.43 – 14 64�1.9 10.90 10 14 – 0.68 –

15 320�40 2.66 3 15 64�1.6 13.60 13 15 17.6�3.1 1.87 77

16 300�93 1.07 2 16 64�2.5 8.71 12 16 17.8�3.8 1.56 87

17 – 0.47 – 17 63�2.2 9.44 19 17 – 0.72 –

18 321�39 2.77 3 18 64�3.4 6.28 3 18 – 0.62 –

19 372�51 2.43 87 19 63�2.7 7.89 3 19 – 0.79 –

20 312�102 1.02 15 20 64�2.7 7.85 16 20 – 0.26 –

21 942�301 1.04 1 21 – 1.59 0 21 – 0.63 –

22 362�36 3.38 97 22 – 0.71 – 22 – 0.34 –

23 347�31 3.69 80 23 – 0.66 – 23 34.0�3.0 3.78 9

24 361�66 1.83 43 24 – 0.77 – 24 33.8�4.2 2.70 18

25 342�21 5.51 71 25 – 0.68 – 25 34.4�6.3 1.82 16

26 362�54 2.22 76 26 – 0.65 – 26 32.9�6.4 1.71 9

27 322�22 4.82 29 27 64�11 1.90 13 27 – 0.75 –

28 324�26 4.21 22 28 64�11 2.02 20 28 – 0.72 –

29 369�72 1.71 67 29 102�15 2.30 2 29 – 0.23 –

30 – 0.76 – 30 – 0.73 – 30 – 0.31 –

Fig. 7. Oscillations detected in the industrial data set. Open symbols

are spurious oscillations lying on filter boundaries.
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cated feature resembles a spectral peak at the boundary
and gives rise to an oscillatory autocovariance function.
A further oscillation analysis was run for the range

2–100 samples per cycle. No oscillations were detected
at 33 or 34 samples per cycle, thus confirming that those
were false oscillations. In tags 7 and 8, only the oscilla-
tions at 64 samples per cycle were detected which was
the correct result. However, no oscillations were detec-
ted in tags {11–13, 15, 16} because the genuine oscilla-
tions at 64 samples per cycle and 17.6 samples per cycle
interfered with one another in the manner illustrated by
Fig. 1. It was concluded that in the presence of multiple
oscillations it is better to use two filter ranges and to
disregard oscillations with periods close to the filter
boundary than to broaden the filter range.

4.2.4. Discussion
Tags {3, 5–8, 11–13, 15, 16, 18–20, 22–29} shared a

common slow oscillation at 337 samples per cycle. The
disturbance was a serious one because the signal power
associated with that oscillation was high, more than 70%
in 10 of the tags and 90% or more in three of them.
The plant-wide oscillation at 64 samples per cycle also

affected many tags but the signal power was smaller, the
highest being 26% in tag 1. The fast oscillation at 17.6
samples per cycle spread to five tags and the associated
power was high in two of the five. The majority of the
variability in the plant was therefore due to the slow
oscillation at 337 samples per cycle and priority should
be given to its analysis. The fast oscillation at 17.6
samples per cycle would be the second target.

4.2.5. Diagnosis
The methods described in this paper achieve the

detection of tags affected by a plant-wide oscillation.
Diagnosis of the root cause may be achieved using
techniques described elsewhere [7,10–12,15]. A diagnosis
reached on the basis of plant data can direct main-
tenance effort towards the likely root cause so that a
definitive diagnosis using, for instance, a manual valve
test can be reached promptly.
The first author together with staff of the Eastman

Chemical Company identified tag 22 as the root cause
of the oscillation at 337 samples per cycle using mini-
mum variance controller performance benchmarking
[21], op-pv maps (plots of controller output versus pro-
cess variable), and non-linearity analysis [15].

4.2.6. Interpretation of the regularity, r
The regularity r of the 337 sample per cycle oscillation

was highest in tags 3, 25 and 27. This does not imply,
however, that one of these tags was the root cause of the
disturbance because an oscillatory disturbance tends to
become even more regular as it propagates through the
process dynamics. For instance, a limit cycle oscillation
generated by a non-linearity is periodic but not sinusoidal

and therefore contains harmonics of the fundamental
frequency. The harmonics disappear as the limit cycle
disturbance propagates through the plant because the
plant provides low-pass mechanical filtering. Harmonics
tend to reduce regularity because they slightly alter the
positions of the zero crossings so an oscillation without
harmonics is more regular than one with harmonics.
Thus in the case when a limit cycle is the root cause the
downstream tags may have oscillations with higher reg-
ularity than the root cause tag.

5. Automation

5.1. Automated filter selection

The filter ranges may be designed using the following
algorithmic approach which can be automated. The
concept is that if an oscillation is found in any tag then
all tags are inspected in a narrower frequency range
around the detected oscillation.
Step 1: pre-process data by filtering out non-station-

ery trends having fewer than eight complete cycles in the
data set.
Step 2: apply oscillation detection to the pre-processed

data. Record the periods of any oscillations detected.
Step 3: place filter boundaries mid way on the frequency

axis between any detected oscillations, and mid way
between the highest (lowest) frequency oscillation and the
highest (lowest) frequency in the pre-processing filter.
Step 4: re-do the oscillation analysis for each new fre-

quency range. Repeat step 3 for any frequency ranges
where an oscillation at more than one frequency is present
to uncover cases of multiple oscillations in the same tag.
Stop sub-dividing when the range contains no multiple
oscillations, or when the filters become too narrow.

5.2. Worked example using industrial data

Step 1: the filter used at step 1 for the 20 s industrial
data was 2–1024 samples per cycle. Any oscillations up
to 1024 samples per cycle would have at least eight zero
crossings in the unaliased part (i.e. lags 0–4196) of the
autocovariance function. The lower bound on the filter
was 2 samples per cycle (the Nyquist criterion).
Step 2: the method for counting and grouping the

detected oscillations given in appendix B counted the
following oscillations:

� two tags, average T� p of 17.7 samples per cycle;
� 10 tags, average T� p of 343 samples per cycle;

Step 3: two oscillations were detected so the algorithm
generated two new filters to refine the search:

� 4–34 samples per cycle;
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� 34–514 samples per cycle.
The following oscillations were detected:

� seven tags, average T� p of 17.7 in filter 1;
� four tags, average T� p of 63 in filter 2;
� 17 tags, average T� p of 339 in filter 2.

Step 3: the above result for filter 1 was final because
only one oscillation was detected in its range. Step 2
was repeated for filter 2 because there were two oscil-
lations in its range. The final result for the sub-divided
filter 2 was:

� 19 tags, average T� p of 64;
� 21 tags, average T� p of 337.

Therefore the automated approach detected the same
oscillations as the manual approach adopted earlier plus
two additional oscillations in tags 18 and 1 in the 17.7
samples per cycle group. An inspection of Fig. 4(b)
shows that tags 18 and 1 do indeed have sharp peaks at
17.7 samples per cycle (0.056 on the frequency axis).
The automated method detected them because the range
of the filter was narrower (4–34 samples per cycle) than
in the manual analysis (2–35 samples per cycle).
Visual inspection shows that tags 17 and 10 also have

a spectral feature in the same location but the auto-
mated analysis shows that they are not sharp enough to
be oscillatory.

6. Conclusions

The work reported in this paper has introduced a
procedure for oscillation detection based on the zero
crossings of the autocovariance function (ACF). The
benefit of the use of the ACF is the reduction of spur-
ious zero crossings caused by noise because random
noise is much reduced in the ACF at lags greater than 0.
The method can be automated.
The autocovariance functions were computed from

the inverse Fourier transform of the power spectrum of
normal operating data. That route to the ACF allowed
a computationally simple method to determine the
ACF of components of the time trend in selected fre-
quency ranges. Therefore fast and slow oscillations
were detected independently even when they were
present simultaneously.
Oscillations were characterized by their period and

regularity. The magnitude was estimated approximately
from the power in the selected frequency range.
Experimental data from a university pilot plant were

analyzed using the new methods. Simultaneous oscilla-
tions were correctly detected in measurements from
control loops that had oscillatory tuning settings and an
oscillatory disturbance. No oscillation was detected for

another tag that had non-oscillatory tuning and a ran-
dom disturbance.
Analysis of an industrial data set found tags where more

than one oscillation was present simultaneously. Also, it
detected plant-wide oscillations with the same period that
were simultaneously present on several measurements. It
was concluded that a slow plant-wide oscillation at 337
samples per cycle was responsible for the majority of the
variability in the affected measurements because the
spectral power associated with that oscillation was large.
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Appendix A. Minimum width for a frequency domain filter

Consider a flat power spectrum of unit magnitude fil-
tered by a two-sided filter of width 	f centered at � fo.
The ACF is the inverse transform of the filtered two-
sided power spectrum P fð Þ:

ACF �ð Þ ¼

ð1
�1

P fð Þ e 2� j f� df

¼

ð�foþ	f=2

�fo�	f=2

e 2� j f� df þ

ðfoþ	f=2

fo�	f=2

e 2� j f� df

� �

¼ 2� cos 2�fo�ð Þ �
sin 2��	f=2ð Þ

��
ðA1Þ

If the filter is narrow then 	f is small and
ACF �ð Þ 
 2	fcos 2�fo�ð Þ. This ACF is oscillatory even
through the power spectrum before filtering was flat
with no spectral peaks. It has zero crossings when � ¼
2k� 1ð Þ=4fo where k is a positive integer. The interval
between the first and eleventh zero crossing is 5=fo. Ele-
ven is the key number because regularity of the oscilla-
tion was determined in this paper from the ten intervals
between the first eleven zero crossings.
It is required that the ACF of the filtered flat spectrum

not be oscillatory. Therefore the filter must be wide
enough that the zero crossings of the sin 2��	f=2ð Þ term
in (A1) interfere with the regularity of the first eleven
zero crossings of the cos 2�fo�ð Þ term. The sin 2��	f=2ð Þ

term has zero crossings when � ¼ k=Df.
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Let the requirement be for at least two zero crossings
of the sin 2��	f=2ð Þ function before � ¼ 5=fo. Therefore,
the condition for the width of the filter is:

2

	f
4

5

fo
or 	f5

fo
2:5

Appendix B. Grouping of detected oscillations

This Appendix shows the method used for automated
counting and grouping of detected oscillations. It was
adapted from a classification procedure by Chatfield
and Collins [22].
Step 1: the periods of the significant oscillations (for

instance, those with r51.0 and power above 1%) are
arranged in a vector. Their standard deviations � are
arranged in another vector and their oscillation indexes,
r, in a third. A fourth vector, w, of the same length as
the others is initialized to all ones.
Step 2: scaled distances between the periods of oscil-

lation are calculated. The scaled distances are:

di;j ¼
Tpi � Tpj

�� ��
max �i; �j

� �

The condition di;j < 1 indicates that two oscillations
belong together because the difference between the per-
iods of two oscillations is less than the larger of the two
standard deviations.
The di;j are arranged into a symmetric matrix. The

row and column indexes (i and j) for the smallest of any
di;j < 1 are determined. Only the upper off-diagonal
elements are considered because the diagonal elements
are zero and the lower off-diagonal elements are the
same as the upper elements.
Step 3: the vectors are revised. Tpj is deleted from the

vector and the more regular of the two oscillations is
recorded, i.e. Tpi is kept if ri > rj or replaced by Tpj if
rj > ri. Likewise, �j is deleted and �i is kept if ri > rj or
replaced by �j if rj > ri. In the r-vector, ri is replaced by
max ri; rj

� �
and rj is deleted. In the w vector, wi is

replaced by wi þ wj and wj is deleted. Thus the w vector
keeps track of how many oscillations have been
grouped.
Step 4: steps 2 and 3 are repeated until there are no

more changes in the vector of Tp values (i.e. the di;j are
all greater than one). The final result is a short Tp vector
giving the period of the most regular oscillation in each
group of oscillations and a corresponding w vector giv-
ing the number of oscillations in the group.

An oscillation belongs to a group if its period is different
from the period of the most regular oscillation in the
group by less than one standard deviation. For instance,
tag 25 with an oscillation period of 342�21 belongs
with tag 3, the most regular oscillation in the group with
a period of 326 because 21 is greater than 342–326.
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