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A large-eddy-based methodology for the simulation of turbulent sprays is discussed.
The transport equations for the spatially filtered gas phase variables, in which
source terms accounting for the droplet effects are added, are solved together with a
probabilistic description of the liquid phase. The probabilistic approach for the liquid
phase is based on the transport equation for the spatially filtered joint probability
density function of the variables required in order to describe the state of the liquid
phase. In this equation, unclosed terms representing the filtered Lagrangian rates of
change of the variables describing the spray are present. General modelling ideas for
subgrid-scale (SGS) effects are proposed. The capabilities of the approach and the
validity of the closure models, with particular with respect to the SGS dispersion, are
investigated through application to a dilute particle-laden turbulent mixing layer. It
is demonstrated that the formulation is able to reproduce very closely the measured
properties of both the continuous and dispersed phases. The large-eddy simulation
(LES) results are also found to be entirely consistent with the experimentally
observed characteristics of droplet—gas turbulence interactions. Consistent with direct
numerical simulation (DNS) studies of isotropic turbulence laden with particles
where the entire turbulence spectrum is found to be modulated by the presence of
particles, the present investigation, which comprises the effects of particle transport
upon the large-scale vortical structures of a turbulent shear flow, highlights what
appears to be a selective behaviour; few large-scale frequencies gain energy whereas
the remaining modes are damped.

1. Introduction

The ability to model and numerically simulate droplet-laden turbulent flows would
lead to significant improvements in the design of a variety of engineering devices
such as combustion chambers, engines, furnaces and many other industrial processes
employing sprays. In a two-phase flow, a set of conservation equations can be written
for each of the two phases. If a deterministic treatment is attempted then one
major consequence is that the interface between the two phases would have to be
determined as a part of the solution. This approach is certainly not practicable for
a spray where a very large number of droplets is usually present. A more feasible
strategy is to assume that the motion of a single droplet does not create significant
additional turbulent fluctuations in the carrier gas (continuous phase) flow field. Such
an assumption is justified in the majority of sprays where droplet sizes are typically
in the range 1-100 um any new fluctuations induced in the gas phase by the droplet
motion, ie. the particle wakes, would then have length scales lying well within the
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viscous-dissipation-dominated scales of the continuous-phase turbulence spectrum.
Thus any fluctuations generated by droplet motion would be quickly dissipated.

The reasoning above suggests that droplets can be treated as if they are effectively
point sources and forces. This then implies the need for models which are able
to mimic the mutual exchanges and interactions between the two phases. Various
models are available in the literature for the determination of the mass and energy
exchanges between a single droplet and the surrounding gas (see i.e. Lefebvre 1989;
Sirignano 1999). These models represent, with varying degrees of complexity, the
phase interactions involving mass and energy transfer driven by the dominant
phenomenon of convection. The latter can be modelled accurately only when
the relative dynamics of the moving droplets — the dispersed phase — and the
gas or continuous phase are known. These dynamics are directly responsible for
the particulate phase accumulation, dispersion and transport. For this reason the
modelling of the momentum exchanges between the two phases can be identified as
a key factor to be captured if reliable spray simulations are to be achieved.

In sprays, the momentum exchange between the two phases includes the effects
of the turbulence upon the droplets motion as well as any turbulence modulation
arising from that motion. Experimental findings (e.g. see Kobayashi et al. 1988;
Lazaro & Lasheras 1989; 1992a, b; Longmire & Eaton 1992; Wen et al. 1992; Fessler,
Kulick & Eaton 1994) have confirmed the belief that the spectral characteristics of a
particle-laden flow may differ substantially from that of a single-phase turbulent flow.
Various studies have been dedicated to the investigation of the zones of preferential
particle concentration: Lazaro & Lasheras (1992a) and Longmire & Eaton (1992)
have shown that dense particles collect in the saddle regions between successive
vortex rings; Maxey (1987), Squires & Eaton (1990, 1991) and Wang & Maxey (1993)
found that selective particle concentration is strongly dependent on the ratio of the
particle inertial time to a turbulent characteristic time. Numerical studies concerning
accumulation and dispersion of heavy particles in forced plane mixing layers have
been carried out in a series of works: Martin & Meiburg (1994); Raju & Meiburg
(1995); Marcu & Meiburg (1996a,b); Marcu, Meiburg & Raju (1996); they all
reported the formation of highly concentrated particle streaks in the region between
two vortices. The behaviour of heavy particles in homogeneous isotropic turbulence
has been studied experimentally by Aliseda et al. (2002) and numerically by Bosse,
Kleiser & Meiburg (2006) where it is shown that the settling velocity is enhanced by
the turbulence and that large temporal and spatial inhomogeneities in the particle
concentration fields arise; the particles concentrate preferentially in certain regions of
the flow.

Several works (e.g. Crowe 1982; Lazaro & Lasheras 1989, 1992a) have demon-
strated that the effect of the particle motions on the gas phase turbulence is significant
only in the case of high particle to gas volume ratios and high mass loadings, typically
at particle to gas volume ratios of the order of or greater than between 10~ and
10~4. For flows characterized by small particle mass loading, the momentum loss or
gain to turbulence is negligible. However, because of the preferential concentration
of particles at the ‘edge’ of eddies, it is necessary to be aware that globally low
mass loadings can lead to highly discontinuous and inhomogeneous fields of particle
concentration (Squires & Eaton 1990).

The effect of particles on turbulent flow structures is poorly understood. A common
view is that the presence of particles provides extra dissipation, thus damping vortical
structures. Gore & Crowe (1989) suggested that turbulence will be augmented or
suppressed depending on the ratio of particle dimension to a turbulent length scale.
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Elghobashi & Truesdell (1993) concluded that ‘the particles, due to their inertia impart
their energy to the turbulent motion at high wavenumbers with a corresponding
increase in the dissipation. The enhanced dissipation signals the smaller wavenumbers
(larger scales), to supply more energy to the highly active small scales, at a rate higher
than that of the particle-free case’. The overall energy spectrum is thus reduced at small
wavenumbers and increased at high wavenumbers. These observations lead to the
conclusion that, in the absence of energy sources such as shear in the mean flow, the
energy of turbulent fluctuations will decay at a faster rate than in the particle-free flow.
Boivin, Simonin & Squires (1998) point out that DNS of isotropic decaying turbulence
is not the appropriate framework for studying two-way coupling effects: the restriction
to low Reynolds numbers and the limited range of scales limits a determination of
whether two-way coupling is best described in terms of large- or small-scale variables.
Ahmed & Elghobashi (2000) showed how particles, by increasing the local velocity
gradients, act to augment the local strain rate, which increases the turbulence energy
dissipation rate. A preferential accumulation of particles in low-vorticity regions
further increases the local velocity gradients, thus modifying the vorticity dynamics.
Druzhinin (2001) analysed the modulation of isotropic turbulence by solid particles
and found that micro-particles, for which the particle response time, 7, was much less
than the Kolmogorov time scale, tx, resulted in an increase in the turbulence kinetic
energy. In the case of particles with higher inertia, on the other hand, the net effect
is a reduction of the turbulence kinetic energy. Ferrante & Elghobashi (2003) have
shown how micro-particles reduce the decay rate of turbulence kinetic energy whereas
large particles enhance it compared to particle-free turbulence. In the transition zone,
1,/tx =0.25, Ferrante & Elghobashi introduced the term ghost particles. Ghost
particles kept the decay rate of the turbulent kinetic energy nearly identical to
that of particle-free turbulence by modifying the energy spectrum in a unique way;
the energy gained at high wavenumbers exactly balances the energy lost at small
wavenumbers. The explanation offered was: ‘micro-particles remain in their initial
surrounding vortices with their trajectories almost aligned with those of the initial
fluid points, but with higher inertia. Thus, they allow the vortical structures to retain
their initial vorticity and strain rate for longer. As a result, both turbulence kinetic
energy and viscous dissipation rate are larger than that of the particle-free turbulence
at all times. Large particles cross the trajectories of fluid elements, enter new eddies,
bringing an overall disorganization and thus enhancing the decay rate in comparison
to the particle-free flow. Accordingly, the turbulence length- and time scales grow
faster, and the turbulence kinetic energy and the strain rate decay faster than
those in particle-free turbulence’.

The numerical modelling of a droplet-laden flow should ideally treat both the
above-mentioned effects, modification of the turbulence characteristics due to the
particles motion and particle dispersion due to the entire spectrum of turbulent
fluctuations. In the context of large-eddy simulation (LES) two problems arise:
(a) the droplet motions interact with and modify the smallest scales of the turbulence;
and (b) the turbulent fluctuations are not completely known and as a consequence a
model is required in order to reproduce the effects of the unresolved turbulent scales
on the particle dynamics. From the LES literature it is well known that in single-phase
flows the main role of the model for the subgrid scale stress is to mimic the effect of
the unresolved scales upon the resolved ones and thereby provide the correct amount
of dissipation. The question of how the subgrid scale (SGS) models developed for
single-phase flows may be adapted to droplet-laden flows has been addressed in the
direct numerical simulation (DNS) studies of Bellan (2000), Okong’o & Bellan (2000)
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and Miller & Bellan (2000). An aspect of primary importance in dense spray flows is
the influence of the droplet dynamics on the dissipation rate. Apart for the a priori
analysis of Okong’o & Bellan (2004), it appears that there has been only one LES
(Yuu, Ueno & Umekage 2001) in which the modelled SGS stress tensor has been
modified to account for dispersed phase effects on the subgrid scale turbulence.

On the other hand, the modelling of the transport and dispersion of the particulate
phase consists of formulating a suitable expression for the force felt by a travelling
droplet as a function of the continuous phase velocity at the droplet position and the
particle velocity. It must be noted here that no exact relation for such forces exists. The
best known expression is that given by Maxey & Riley (1983) for an isolated particle
in a Stokes flow. This is the expression invariably adopted in deterministic DNS
studies in which the entire gas-phase turbulent fluctuations are resolved and various
interpolation schemes are used for the calculation of the gas velocity at the particle
positions (Ferrante & Elghobashi 2003; Okong’o & Bellan 2004). In the context
of LES, the gas-phase velocity is not completely known and if the force were to be
evaluated solely in terms of the resolved velocity field, the effect of the unresolved
fluctuations upon the particle motion would be omitted. In an LES of a dilute spray,
the magnitude of any error associated with the use of an unmodified single phase SGS
model is likely to be much smaller than that due to an inadequate representation of
the dispersion effects of the unresolved gas fluctuations on the liquid dispersed phase,
as is shown by Okong’o & Bellan (2004). However, quoting Mashayek & Pandya
(2003), ‘the above conclusion is despite the fact that the majority of the LES studies
tend to (conveniently) neglect the subgrid velocity fluctuations’.

In fully developed turbulence, the effects of small scales upon particle acceleration
should be treated with particular care. Measurements, by mean of optical devices,
of the acceleration experienced by particles in a turbulent flow (e.g. Mordant et al.
2001; La Porta et al. 2002; Voth et al. 2002), provide evidence that particles are
likely to experience accelerations which are many times higher than the acceleration
standard deviation with a probability significantly larger than that corresponding to
a Gaussian distribution. The problem of modelling sub-filter particle accelerations
has been addressed by Bini & Jones (2007) where a stochastic model, capable of
reproducing the observed far from Gaussian behaviour, has been constructed.

1.1. Scope and structure of the present work

The main aim of the present work is to assess the capabilities of large-eddy simulation
in representing a droplet-laden shear flow which is spatially developing. The approach
followed involves a two-way coupling in which a probabilistic approach, adopted for
the dispersed phase, explicitly accounts for subgrid-scale dispersion effects on the
droplets. In Bini & Jones (2007), a model for the LES unresolved fluctuations
upon particle dynamics is formulated and it is shown how the model is capable
of reproducing the experimentally observed heavy-tailed probability distribution of
particle acceleration. In the present work, this model is applied in LES and the
applicability of various alternative formulations, such as those of Miller & Bellan
(2000) and Okong’o & Bellan (2004), are also reviewed and discussed. The structure of
the paper is as follow: first, it will be shown how the separate probabilistic treatment
of the dispersed phase, when coupled with the LES of the gas phase, can be viewed in
the frame of a spatially filtered probability density function (PDF) transport equation.
Secondly, the closure models required in the filtered PDF equation will be discussed
with particular attention paid to the dispersion effects of the unresolved SGS scales.
Thirdly, we will show how such an approach can reproduce the main features of the
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spatially developing mixing layer studied experimentally by Lazaro & Lasheras (1989,
1992a,b). In doing so, we will try to highlight the influence of LES inflow conditions
on downstream development, showing how they can be treated and what their relative
effects are, recalling that such dependencies have often constituted the reasons for
switching the attention to the study of temporally evolving model flows. The LES
results for the mixing layer are found to reproduce practically all the measured
properties, and identical conclusions on particle transport, with respect to size and
distribution, can be drawn from the LES and the experiments. Given this consistency,
a further detailed analysis of the LES results is conducted using conventional and
non-stationary spectral analysis with the aim of elucidating the physics underlying
particle and turbulence interactions.

2. Formulation
2.1. Spatially filtered balances for the gas phase

As discussed in §1, the assumption of a particulate phase whose characteristic
dimensions are smaller than the smallest turbulent length scales enables particles
to be viewed, in respect of their influence on the gas phase, as a point source. This
means that source terms will appear in the differential form of the conservation
equations for the gas phase; these will represent the effects played by all the particles
contained within the incremental fluid element for which the balances are written:

3£ d(pu;) _
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where p, p, e and u; are the gas phase density, pressure, total energy and Eulerian
velocity, respectively, and where Y is the mass fraction of the evaporated dispersed
phase. The heat and species mass diffusive flux vectors, ¢g; and J; are give by
Fourier’s and Fick’s law with & and D being the thermal conductivity and diffusivity,
respectively. p is the viscosity and f' stands for an external body force field.

The LES equations can be obtained by applying a spatial filter to the governing
equations (2.1) to (2.4). The spatially filtered value of a function v = (x, t) is defined
as its convolution with a filter function, G, according to:

F(x) = /Q V(»G(x — y; Ax)dy, (2.5)
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where the integration is carried out over the entire domain, §2. The filter function, G,
has a width A which may vary with position. In many problems, including the present
case, it is desirable that G be positive definite so that a subgrid probability density
function may be defined. In situations where fluid density variations arise, the most
straightforward method of accounting for these variations is through the introduction
of density weighted (or Favre) filtering: ¥ = pv/ /4. For the properties and limitations
of the filtering approach see Germano (1986, 1992) and Piomelli (1999).
Applying density, weighted filtering to the governing equations then gives:
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As a result of the filtering process, the quantities pu;u;, pYu; and peu; are unknown,
and modelling — to account for subgrid scale contributions — is thus required. The
filtered source terms can be interpreted as follows: if a particle, p, located at position
£() provides a contribution S to the sources for mass, momentum or energy then
the total contribution of the particles within a filtering ‘volume’ to the source is just
the volume average of the individual contributions, namely,

S() = 3 3 [ S = 9G(x = yi ) d, (210)

where the summation is extended over all the particles present in the domain £2. In
writing (2.6-2.9), it is has been assumed that the filter width is invariant in space.
However, this is not the case in practical applications, where the need for different
levels of spatial resolution across the solution domain requires the use of variable
grid spacings and this results in a commutation error. This commutation error can
be shown to be almost entirely dissipative in nature and negligible compared with
dissipation of the SGS model.

2.1.1. Subgrid models

LES of inert flows have been studied extensively and the simplest model for the
subgrid stress tensor,

Ty = puuy; — pilil j,
is the eddy viscosity model of Smagorinsky (1963)
T8 =~ Sij, (2.11)

ij
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which linearly relates the anisotropic part of the subgrid stress tensor 7j to the

where

filtered rate of strain tensor S;; via an eddy viscosity coefficient p,, with a length
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scale A proportional to a measure of the grid spacing. For low-speed flows, such as
considered here, the isotropic part of the stress can be adsorbed into the definition of
the pressure to yield a pseudopressure, and modelling of this is not then required.

The length scale A is related to the filter width that, in LES practice, is invariably
assumed proportional to some local measure of the mesh spacing. A commonly used
measure is A= (A, A,,A,,)"? where A, A,, and A,, are the physical grid spacings
in the three coordinate directions, and this approach is employed in the present
study. The model contains an adjustable parameter C,;, which must be specified.
However, as many previous studies have demonstrated and, consistent with the ideas
of Kolmogorov, results are found to be relatively insensitive to the value of Ci,
providing, of course, that the turbulence Reynolds numbers are high and the large-
scale turbulent motions are adequately resolved. In circumstances where this is not the
case, for example in transitional flows or in near-wall regions, viscous sublayer regions
where adequate mesh resolution is often not possible, various dynamic calibration
procedures offer some advantage (e.g. Germano 1992; Piomelli & Liu 1995), and
increase the generality of the model. In the present case, however, a single vale,
C,=0.1 has been selected. For the subgrid scalar flux J,, it is usual to adopt a
gradient model (see Schmidt & Schumann 1989), of the form:

— N aY
I = puY — pi ¥ = P L
Osgs axk

where oy, is the subgrid Schmidt number.

2.2. Probabilistic treatment of the dispersed phase

The spray equation developed by Williams (1958, 1985) represents one of the earliest
attempts at a probabilistic description of sprays. Williams considered an ensemble of
particles that could be characterized in terms of particle position, radius, velocity and
temperature and derived a conservation equation for the particle distribution function.
Further developments of the PDF approach to sprays includes the pioneering works of
Buyevich (1971, 1972a, b) and Reeks (1980, 1991, 1992, 1993). The general application
of the mathematical concepts developed in statistical physics to obtain a probabilistic
description for particle-laden flows has been reviewed by Minier & Peirano (2001)
and Subramaniam (2000, 2001a,b) have described the way in which Klimontovich
and Liouville probability density definitions (Liboff 1998) can be re-adapted to the
study of spray.

2.2.1. Probabilistic treatment of a physical system

A rigorous derivation of the probabilistic description of a physical system should be
based on all the relevant microscopic variables, the values of which are given by the
appropriate conservation equations. However, this is often difficult if not impossible
and as an alternative a heuristic derivation can be pursued. Such an approach involves
the selection of a restricted number of macroscopic variables, which are presumed
sufficient to determine the physical state of the system. An evolution or transport
equation for the joint probability density function of the variables selected can then
be derived. In the heuristic philosophy, the effects of the microscopic interactions are
replicated in the transport equation for the joint PDF of the macroscopic variables
by the addition of stochastic terms, or generalized ‘Langevin forces’ (Risken 1984) to
the Lagrangian deterministic differential equation governing each of the macroscopic
variables.
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Let us suppose that the instantaneous state of a partlcle j can be described by a set
of M independent macroscopic variables, ®\/)(¢) = {qb(’ (2), . ¢M (t)}. A population
of N particles can be characterized in state space using the fine-grained density
function of the ensemble, which can be defined (see Lundgren 1967; Klimontovich
1969; Dopazo 1994), as:

FW;n=> T[s[wi—¢"], (2.12)

where ; represents the phase or composition space for the quantity ¢; and where §
is the Dirac delta function.

From % (W¥;t), it is possible to obtain a fine-grained probability density function,
P(¥;t). In order to use the term probability properly, its integration to unity and
the concept of limiting value, which is approached as the number of realizations
increases, must be ensured. The fine-grained probability density function is defined as
the expectation of the fine-grained density. Expectation which, thanks to the central
limit theorem, can be expressed as the limiting average over independent realizations
of &. If particles of the ensemble are also assumed to be independently distributed,
the definition reduces to

M
2w = lim S T[s[v— 0] .13)

The hypothesis of independently distributed particles need not hold in order to be
able to define a probability density function for the population, as demonstrated in
Subramaniam (2000), however, such an assumption simplifies the definition.

By differentiating £ with respect to time, following the motion in the state space
(W;t) of a finite portion of the system, which is sufficiently small to be consi-
dered infinitesimal for the macroscopic variable gradients but large enough for the
macroscopic variables to be defined, it is possible to obtain the conservation equation
for the fine-grained probability density (for a complete derivation see Bini 2006):

M

0 d
5 P =— ZW Elyilo—e]?(¥:1)}, (2.14)

where E[;|w—s] represents the conditional rate of change of state space coordinate
Y¥; conditioned upon the particles being found at state ¥ = @. In deriving (2.14), the
differentiation of the generalized function P must be considered in an integral manner,
as the derivative of delta functions can only be defined when these are integrated, over
a state space volume 2, taking their product with functions which are sufficiently
regular on £2. The indicator function of the state space volume considered, I, can
be taken as such a function. This procedure is useful because it allows the use of the
following identity: E[X8(Z —Y)|=E(X|Y =Z)E[8(Z —Y)] = E(X|Y = Z)P(Z) which
justifies (2.14). Equation (2.14) can be thought of as an exact, i.e. model free, but
unclosed transport equation governing the probability density where the cause of the
indetermination resides in the conditional rate of change of each state coordinate as
functions of the state itself.

2.2.2. The filtered PDF transport equation

The solutions of any accurately modelled form of (2.14) for a population of particles
transported in a turbulent flow provide information on the particle properties, e.g.
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velocity, over length and time scales ranging down to those comparable with and
smaller than the Kolmogorov scales of the turbulent continuous phase. Because
of the dependence of the particle properties on the velocity of the continuous
phase, any moments derived from 2(¥;r) will be smooth on the scale of the
Kolmogorov lengths and times, Ijzermans, Hagmeijer & van Langen (2007). The
computational requirements for solving a suitably modelled form of (2.14) are thus
likely to be comparable with those of a DNS of the continuous phase. Furthermore,
the Lagrangian rates of change also depend on the full velocity spectrum of the
continuous phase. Because in an LES of the continuous phase, no information is
available concerning the flow variations on a scale smaller than the filter width, the
knowledge of the spatial and temporal variations of the joint PDF of the variables
describing the dispersed phase can be reliably obtained only to within the same range
of scales, i.e. scales which are larger than the local filter kernel width. For this reason,
a filtered PDF is defined. The filtered PDF is formed from the convolution of the
joint PDF with the LES filter:

P(W;t)) = ﬁ PW;x',1)G(x — x')dx'. (2.15)

Such a convolution can also be viewed as the ideal framework for the definition
of the degree of probability in a state space volume before the generalized function
differentiation is carried out; rather than defining an indicator function in physical
space, the LES filtering is considered (an indicator function, i.e. phase space binning,
must still be considered for the remaining phase space variables). The transport
equation for the filtered joint PDF can then be obtained in a manner which is directly
analogous to the derivation of (2.14):

0= 0 . _

—P E(y;|w = ®)P],=0 2.16

5i 7+ 5y [E(I¥ = #)P) =0, (2.16)
where E(q|¥ = @) represents the expected value of ¢ conditioned on ¥ being equal
to @ anywhere within the filter volume. All moments resulting from the solution of
(2.16) will be smooth at the filter-scale level.

2.2.3. The LES spray equation

To construct a statistical representation of the dispersed phase it is first necessary to
select a set of macroscopic variables which are thought to be necessary and sufficient
to describe the spray. Equation (2.16) can then be written for these variables. To
describe the spray it is presumed here that the droplets are spherical so that their
geometry can be defined by a single dimension r, the radius; this assumption relies
on the hypothesis of small Weber number, typically We <20 (the Weber number
provides a measure of the ratio of inertial and surface tension forces; when surface
tension dominates, deformations and oscillations of the surface are minimized so
that droplets remain essentially spherical in shape). Other necessary variables are the
droplet velocity, v and the droplet temperature, 6. In addition, it has been customary
in the spray literature to introduce droplet number density, defined as the number of
droplets present per unit volume. However such a variable is not a property of the
dispersed phase alone and is thus not appropriate here. Instead a droplet number, n,
defined as the number of droplets or particles is introduced as a stochastic variable.
This is conserved and will only vary through particle coagulation (from ‘collisions’)
and breakup and is uninfluenced by vaporization which acts to change the droplet
radius and the gas phase density. It is thus presumed that the state of the spray
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can be determined uniquely from these four quantities so that the required PDF is
Py(V,R,®,N;x,t), where {V,R,©, N} is the ‘phase’ space for {v,r, 0, n}. The
equation for this joint PDF can now be written:

Py, — d(APyy) AT Py)  (ANP,)
v (aPgy, =Y, 2.1
” +V,(aPy,) + 3R + 50 + aN 0 (2.17)
where a, #, T, N represent:
E(ddlfk III=<P> where @ = v, r, 6 and n.

Equation (2.17) is an exact unclosed hyperbolic partial differential equation for the
joint PDF of the spray in which the filtered conditional Lagrangian rates are the
cause of the indeterminacy.

3. Modelling

In this section, the models for the unclosed terms in the equations formulated in the
previous sections are discussed. In the continuous-phase LES equations, models are
required for the unknown subgrid scale, SGS stresses and fluxes and for the filtered
source terms. The present work is devoted to dilute sprays, in which the gas-phase
subgrid scale turbulent dissipation rate can be assumed essentially uninfluenced by
the droplet motions. For this reason the SGS stresses and fluxes will be represented
by the models for single-phase flow summarized in §2.1.1. For the dilute sprays at
present considered, the direct influence of droplet motions on the SGS stresses is likely
to be negligible, particularly when compared with the influence of SGS fluctuations
on the unclosed terms of (2.17).

The unclosed terms appearing in (2.17) can be modelled following the heuristic
procedure previously mentioned. Mathematically, this approach consists of adding a
stochastic contribution to each of the deterministic Lagrangian differential equations
governing the evolution of the macroscopic variables. This approach is consistent
with LES concepts: in LES, the filtered quantities are simulated directly with the sub-
filter contributions, arising from the nonlinearity of the governing equations, being
modelled. If the Lagrangian differential equations for the rate of change of each
macroscopic liquid variable are evaluated in terms of filtered flow-field quantities
plus a stochastic contribution, then this may be viewed as a direct simulation of
the behaviour of the filtered macroscopic variables with the stochastic contribution
representing the (nonlinear) influence of the sub-filter scales. Each of the unclosed
terms, equation (2.17), can thus be split in the following way:

dy

E( dr

where the first term on the right-hand side of (3.1) represents a deterministic

contribution to the Lagrangian rate of change evaluated in terms of the filtered
gas phase properties ¢, etc. and where:

dy
= E _—
Xk < dr
represents the effects of the SGS fluctuations on the filtered conditional Lagrangian

rates of change. The decomposition, (3.1), can be viewed as representing a natural
extension of that adopted for defining the subgrid-scale stresses and fluxes. As

lIl=¢> Zf(wkvgggas;t)"{')(k’ (31)

W=¢>—ﬂmﬁwm,
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discussed in earlier sections, the neglect of SGS fluctuations can lead to significant
error and subgrid-scale models are thus required for y;.

The formulation of stochastic models has been discussed in Miller & Bellan (2000)
and Okong’o & Bellan (2004), where it was proposed that the random contribution of
a flow variable ¢ be related to a realization of a random variable having a standard
deviation proportional to the standard deviation of the SGS fluctuations of that
variable, i.e. oszgs = (¢> — ¢*). However, such an approach can only be properly applied
to scalar quantities and its use for vector variables, e.g. the gas velocity u;, is in conflict
with the basic transformation properties of a vector, as is discussed in Appendix A.
The present work focuses attention on particle dispersion and particle—turbulence
interaction in a shear flow, and droplet vaporization and breakup are negligible in
the cases presently considered. The droplets are ‘dilute’ and breakup processes are
unimportant and are therefore neglected. As a consequence, models for the rates
of change of particle size, temperature and breakup and coagulation, #, 7, /" are
not required here. However, the general formulation, (2.17), does provide a rational
framework for the incorporation of these latter effects and expressions capturing
sub-filter effects upon vaporization and breakup have been proposed, for example, in
Bini (2006).

3.1. Rate of change for the droplet velocity

The model for the particle acceleration, a, is directly responsible for particle dispersion
in a turbulent flow field. The deterministic part is taken to be equal to the first term
of the Maxey & Riley (1983) formulation for the force per particle mass:

_dvy, _u-v,

= —_— — .2
a=-- o + X, (3.2)

where v, is the particle velocity, u is the known filtered flow velocity at the particle
position and 7, is the particle response time:
|l_l — vp‘

-1 _3
Tp _SCD

(3.3)

Tp

where r, is the particle radius and Cp the particle drag coefficient which can be
accounted, for example, using the drag law of Yuen-Chen, (Sirignano 1999).

The random contribution is deemed to have the following general properties: it
can be integrated in time such that the increment dv, occurs over a time interval
d¢, it must possess the properties of random vectors (see Yaglom 1957), and it
must represent the ‘diffusion’ of particles owing to the unresolved fluctuations. For
these reasons, a multidimensional Wiener process can be selected. This satisfies the
first two properties exactly and has been widely used for diffusion-like processes. It
corresponds to a closed solution of the Fokker—Plank equation when there is no drift.
A time-discretized Wiener process has the form:

W(z,) = 81" is,-, (3.4)

j=1

where t, =nét and & is a random variable with zero mean and a variance of unity
(the extension to processes having non-uniform time increment does not present
additional complications). The term xdr is thus written as a Wiener vector process
pre-multiplied by a diffusion coefficient matrix which serves to adjust the diffusion
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and to relate it to the turbulence intensity of the gas phase.
dv,,:rlj1 (@ —v)dr +B-dW (3.5)

In the present work, the diffusion process is taken to be isotropic and the diffusion
matrix thus has the simplified form: B=56;;. The extension to a non-isotropic
coefficient matrix is discussed in Appendix A. The use of the Weiner process in
representing the influence of unresolved velocity fluctuations has the consequence
that acceleration cannot be defined in the sense of classical calculus. However, the
acceleration PDF can be defined in terms of dv/§t for a small but finite §¢z with the
PDF then being obtained by writing dv as an Ito integral of dW, which is well-defined
and convergent (Gardiner 2002).

Thomson (1987) showed, using only the Markov and continuity hypothesis, how
the Lagrangian velocity in a single-phase flow can be represented by a generalized
Langevin equation in which the stochastic dispersion is written as:

x; = /CedW;, (3.6)

where ¢ is the mean dissipation rate of turbulence kinetic energy and C is
Kolmogorov’s Lagrangian velocity structure function constant.

In the present case of material particles, the diffusion coefficient, » may be expected
to depend on the time and length scales of SGS velocity fluctuation of the continuous
phase and the particle properties. If the SGS turbulence kinetic energy, kg, is used to
characterize the velocity fluctuations then we may write:

b= ] (3.7)

T

where Cy is a model constant which, in the present work, is assigned a value of unity
and 7, is a time scale which affects the rate of interaction between the particle and
turbulence dynamics.

Now it is known — see the earlier discussion — that particle accelerations at the small
scales exhibit a probability density function which deviates strongly from Gaussianity.
By suitable choices of 7;, Bini & Jones (2007) have shown how a family of stochastic
processes can be generated that account for this. If 7, is made to depend on the
random variable v, itself then, depending on the dependence, different asymptotic
forms for the PDF of particle velocity increment can be obtained. Bini & Jones (2007)
constructed a stochastic process which is able to reproduce the desired behaviour of
the PDF of particle acceleration without over-imposing the PDF shape and which
correctly attributes high levels of probability to extreme acceleration events. A time
scale given by:

.L_Z(x

P
=,
(A/ V ksgs)zol_1

with « = 0.8, was shown to reproduce the high values of kurtosis and PDFs observed
experimentally.

The time scales 7, = A3 /|v, | and 7, = A3/, /ky,s may be considered as alternatives.
These latter two scales are related to the time taken for a particle to cross a notional
‘unresolved eddy’. Following the reasoning of Bini & Jones (2007), it is to be noted that
whilst the former time scale will result in a leptokurtic behaviour of the small-scale
acceleration PDF, because of the appearance of term [v,|!/? in the denominator, the
latter choice will give rise to particle acceleration PDFs that are Gaussian.

(3.8)
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Ficure 1. Experimental apparatus and physical domain.

3.2. Modelling of the filtered source terms

The source terms appearing in the gas phase equations can be evaluated by
interpreting them, (2.10), as the volume average of the source contributions of each of
the stochastic particles lying within the filtering volume. In the context of a large-eddy
simulation in which the finite-volume method is used to discretize the equations this
is equivalent to averaging over the cell volume. The source terms can thus be written:

S=-5>) 859, (3.9)

where n* is the number of stochastic particles present in the cell volume considered
and S is the source term arising from droplet . In the present case, the relevant

term for the LES equations is:
o _<dmvf>“”
mom,i dl .

4. Flow simulated: a droplet-laden spatially developing mixing layer

In order to demonstrate the capabilities of the filtered PDF approach and the
effectiveness of the proposed models, in this section the results of computations
are presented for the spatially developing mixing layer studied experimentally by
Lazaro & Lasheras (1989, 1992a, b). The experimental apparatus and physical domain
are shown schematically in figure 1. The test section comprises a rectangular duct
of cross-section 250 mm x 100 mm and length 1000 mm. Both ends of the duct are
open. The liquid droplets (the dispersed phase) are injected upstream of the test
section by means of a series of atomizers into a channel where the droplets and
air mix and the spray homogenizes. At the exit of the channel the droplet-laden
stream exits into the duct and a mixing layer forms downstream of the upper
channel wall. The operating conditions are such that the spray is dilute and that
droplet evaporation effects are negligible. Gravitational sedimentation effects are
also negligible in the region of the mixing layer where the measurements were
conducted. The computational domain corresponds to the region —200 < x < 450 mm,
0<y<+4+100mm and 0 < z < +1000 mm. The measured characteristics of the droplet-
laden gas stream together with many features about the dispersed phase have been
measured at a plane corresponding to the nominal origin of the mixing layer at z =0,
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FIGURE 2. Inflow conditions: cross-stream profiles of the first two moments of w (a, c),
cross-stream profiles of liquid to air concentration « (b) and SMD (d).

from here on referred to as the inflow plane. These measured properties constitute
the inflow conditions for the presented calculations and are shown in figure 2. The
Reynolds number based on the boundary-layer thickness at the inflow plane is 10 000.
The inflow data available, though detailed, is not sufficient to completely specify the
inflow joint probability density function of the dispersed phase that is required for
solution of the spray equation (2.17). In particular, the PDF of the particle diameter
is available at only a few inflow positions and there is no information available on
the incoming droplet velocity distribution at the inflow plane.

In many previous experimental studies of droplet-laden flows it has often been
argued that, when the spray has reached a good degree of homogeneity, the velocity
statistics of the continuous (in this case air) and dispersed phases can be considered
to be closely similar. Based on this — because in the present case the atomizers are
located relatively far upstream from the inflow plane — one method for determining
the entering particle velocity PDF would be to sample from velocity distribution
functions with moments, i.e. the mean velocity and Reynolds stresses, corresponding
to the measured values of the inflow velocity. However, trial computations have shown
that such an assumption is unsuitable in the present case. Turbulent boundary layers
develop along the channel walls and are clearly visible from the measured mean
and turbulence profiles of the gas phase (figure 2). If the boundary-layer profiles of
mean velocity and turbulence intensities are used as a basis for estimating droplet
velocities at the inflow plane then, near the channel wall, a significant number will
enter the domain with a very small velocity. On entering the domain, these particles
will continue to move at a slow speed with a consequence that a maximum in the
liquid concentration arises close to the inflow plane, a feature not evident in the
experiments.

Righetti & Romano (2004) have questioned the validity of the assumption that
the velocity statistics of the continuous and dispersed phases are similar, particularly
the assumption of ‘no slip’ between the two phases. Supported by measurements in
droplet-laden channel flows, they concluded that the mean velocities of the particles
can be very different from those of the gas flow, though it is reasonable to assume that
they have the same variance. Kulick, Fessler & Eaton (1994) attribute the differences
in the particle and fluid velocities mainly to inertia effects: high-momentum particles
tend to retain their velocity when moving towards a solid surface. However, it remains
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unclear how the difference between the streamwise velocities depends on the particle
sizes and on the distance from the wall and how they are related to turbulence
dynamics in the wall region.

In the present work, a relatively simple strategy has been adopted for estimating the
velocities of the particle entering close to the wall. First, it is presumed that particles
injected far away from the wall region, i.e. outside the boundary layer, are effectively
carried by the gas phase with, on average, no-slip velocity. For particles injected in
the near-wall region, the particle velocity at the injection point, v,(d) is estimated
and the velocity at the inlet plane is then computed using the deterministic part of
(3.2) only, under the assumption that the streamwise gas phase velocity is zero. This
is done for droplets of various diameters, d, so that, at the inlet plane and in the
vicinity of the wall, the droplet velocity distribution, v,(d) is determined as a function
of diameter.

The problem regarding the interpolation of the droplet diameter PDF measured
at discrete x-positions to other inflow locations has been solved as follows: the
data available seem to be well represented by the Nukiyama—Tanasawa distribution
function (Lefebvre 1989) which depends on the three independent parameters, p, b, g:

P(D) = aDPe "P), (4.1)

By a suitable choice of the parameters p, b, g it has been found that this distribution
can be made to fit all of the measured inflow data accurately. It is then used to provide
the required inflow conditions; the parameters p and ¢ are maintained constant while
b is varied to reproduce the measured profile of Sauter mean diameter, SMD; a
typical result is shown in figure 3.

4.1. Computational details

The in-house LES code BOFFIN has been used for the computations to be presented
in the following sections. The code employs Cartesian velocity components with a co-
located variable storage arrangement. It is based on a fully implicit low-Mach-number
formulation and is second-order accurate in space and time. For the momentum
equation convection terms, an energy conserving discretization scheme is used and
the advancement in time is performed with an implicit method of the Gear family with
variable time step. The code has been applied previously to the LES of a wide range
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of flows including plane and round jets in a crossflow (Jones & Wille 19964, b), fully
developed channel (Wille 1997), and pipe flows (Steinstrasser 1994), flow over a swept
fence (di Mare & Jones 2003) and non-swirling and swirling jet flames (Branley &
Jones 1999, 2001). Further details of the method may be found in Wille (1997) Branley
(1999) and di Mare (2002). In all the calculations presented here, the Smagorinsky—
Lilly model, with a constant equal to 0.1, has been adopted for the SGS stress, and the
source terms, equation (3.2), have been incorporated. The modelled Lagrangian form
of the spray PDF equation (2.17), has been solved using a stochastic particle method
in conjunction with a finite-difference scheme based on the method of fractional steps
(Yanenko 1971). Each time step is decomposed into a series of (unphysical) sub-steps
in which only one of the state space variables of (2.17) is allowed to vary using the
appropriate modelled Lagrangian rate of change; the scheme used for the numerical
integration of the SDEs was a simple Euler discretization (Kloeden & Platen 1992).
Each stochastic particle has a velocity, v;, a number, n, a radius, r and a temperature
6 and the tracking of the particles in phase space is conducted in a manner directly
analogous to that used in tracking physical particles. In order to compute statistical
properties of the spray in each LES ‘cell’, particle trajectories were computed over
a sufficiently long time interval with particles being allowed to leave the domain at
the exit plane and new particles being added, with properties corresponding to the
specified profiles, at the inflow plane. The properties of the dispersed and gas phase
are updated once every time step: the updated gas flow field is used in (2.17).

All of the computations presented were carried out using a grid having 81 x21 x 251
nodes in the x, y and z directions, respectively. At the inflow plane z=0 and for
x =0 inflow conditions were imposed whereas for x <0 simple Neumann boundary
conditions were applied. At the lateral boundaries-free-slip wall conditions were
adopted. At the outflow boundary, z=1000mm, a convective outflow condition is
applied:

Bu,- 81/!,'
U
ot + on

=0, (4.2)

where n is the distance normal to the boundary and U, is a constant convective
velocity whose value is determined in terms of the overall mass inflow rate.

The flow entering the inflow plane comprises a fully developed turbulent boundary
layer and the specification of realistic turbulent inflow conditions is crucial for the
accurate simulation of the downstream evolution of the mixing layer. The problem of
providing a realistic and reliable representation of inflow turbulence is a well-known
problem in both LES and DNS, which has limited the study of spatially developing
flow; often the problem can be overcome by the use of scaled periodic conditions
applied as inflow boundary profiles. However, the specification of turbulent inflow
conditions cannot be avoided in the present case. For this reason, the proposed digital
filter methodology of Klein, Sadiki & Janicka (2003) and di Mare et al. (2006) is used
to generate turbulent inflow profiles. A digital filter is applied to maps of random
numbers to construct turbulence data which are spatially correlated (the method
also allows the generation of temporally correlated data). The approach involves
a prescribed shape for the two-point correlation tensor in terms of an integral
length scale, selected to correspond to the flow being considered. The correlated
maps obtained by the digital filtering algorithm are used as instantaneous inflow
velocity profiles that reproduce, when averaged, the specified mean and Reynolds
stress profiles. The key steps of the method are outlined in Appendix B.



Large-eddy simulation of particle-laden turbulent flows 223

5. Results

The results of the computations are presented in a sequence corresponding to that
adopted in the original papers describing the experimental data.

5.1. Gas mixing-layer characterization

Measurements of the Reynolds averaged mean, w,, and r.ms., w,, longitudinal gas
velocity cross-stream profiles were performed at equally spaced downstream stations
spanning the first 260 mm of the domain. From these profiles, two quantities were used
in order to define the lateral spread of the mixing layer: the momentum thickness,
0(z), and the 0.1-0.9 level thickness, d¢s(z). These are defined, at every z location, as:

Sos = x (/o = 0.9) — x(®/,. = 0.1), (5.1)

5, :/ o <1 _ F’) dx. (5.2)
_ Wep Wep

where w., is the value in the fast-moving particle-laden side, at the particular z location
considered. Several computations have been carried out to assess the dependency of
the downstream spreading rate on the estimated integral length scale of the prescribed
inflow turbulence. In particular, the results of three computations are presented
(figure 4) in which only the length scale required by the inflow turbulence generator is
varied. The results clearly show that correlated turbulent inflow profiles are required
if the spreading rates are to be correctly reproduced. With an integral length scale
of 2.5mm, a value roughly equal to a quarter of the boundary-layer thickness at the
inflow, the downstream spreading rate of the two mixing-layer thicknesses is accurately
reproduced. This value of the prescribed length scale is used in all the comparisons
presented below. Additional confirmation of the accuracy of the solution achieved
can be gained with the comparison of the computed and experimental profiles of the
longitudinal mean velocity and turbulence intensity. Following Lazaro & Lasheras, the
measured and computed profiles are presented in similarity coordinates, (x, z) — (1, z)
where

(x — xw:wx/z(z))

Sm(2)

Figure 5 shows comparison between measured and predicted profiles at all measured
downstream locations, ie. 0<z<280mm. For the mean profiles, the level of
agreement achieved is excellent. The maximum levels and profiles of turbulence
intensity are also reproduced well with the exception of the region n<—4 in the
stagnant-air side of the mixing layer. The high levels of intensity predicted were found
to arise regardless of the inflow conditions and a detailed examination of an animation
of the simulation suggests that they originate from the recirculation (and backflow) —
relatively weak — evident in the simulations in the ‘stagnant’ air outside of the mixing
layer. Whether or not such a recirculation is present in the experiment is uncertain.
It has been shown (Scheffer, Hartmann & Dibble 1987) that the measurements of
velocity in jets can be affected by counterflows in zones outside the jet. Finally, for
the gas phase, the computed and experimentally measured power spectral density for
the z-component velocity sampled by a probe located at (x,,z,)=(5mm, 178 mm)
is shown in figure 6. The numerical signal has been acquired every time step, i.e. at
intervals of around 10~ s, corresponding to sampling at a frequency of approximately
100 kHz. On the other hand, the smallest resolved turbulent scales are of size of the
order of the filter width, ~1 — 2mm, and have a frequency of around 700 Hz. The
difference between the spatial resolution and the sampling-time interval is responsible

n(x, z) =
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FiGURE 4. Downstream spreading of longitudinal momentum: (a) dos; (b) 6. Experiment (®);
computed with no digital turbulence (dotted line); computed with digital turbulence having
filter width L =1.5mm (dashed line); computed with digital turbulence having filter width
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sampled at (x,z)=(5mm, 178 mm). Computed (solid line); qualitative behaviour of the
experimental (dashed line); —5/3 (dotted line).

of the straight line appearing in the spectrum for frequencies higher then the spatially
resolved ones. From the figure, it is evident that the LES filter is correctly applied
in the inertial range region and, as suggested by Lazaro & Lasheras, the absence
in the spectrum of a marked maximum can be taken as an indicator of important
three-dimensional effects. Structures involving Kelvin—-Helmholtz instabilities , whose
effects might be expected to appear in the spectrum at a particular frequency, undergo
distortion and further instability in the normal direction, making a definite maximum
more difficult to identify. A well-defined maximum at = 60 Hz has been identified in
‘two-dimensional LES’ computations, the results of which are not reported here.

5.2. Droplet dispersion characteristics

In the experimental work, the local liquid concentration, «, defined as the ratio of
the volume occupied by the liquid and the volume occupied by the gas is used to
characterize the dispersed phase. Before attempting definitive comparisons between
the LES results and measurements, it is clearly important to demonstrate that
inflow conditions can be estimated, using the method described above, without
them having critical effects on the calculations. The effects of the streamwise
droplet inflow velocities and a realistic method of specifying them has already been
discussed above and now the effects of the cross-stream droplet inflow velocity are
examined. In figure 7, the normalized profiles of the mean liquid concentration, at
two different downstream locations, z=102mm and z =254 mm, are presented for
three computations identical in all but the distribution from which the droplet inflow
cross-stream, i.e. x-component, velocities were sampled. In all three computations, the
droplet response time-SGS dispersion model was used. They correspond to: Case A
in which the cross-stream droplet velocity, u, is obtained by random sampling at all
(x, y) from a Gaussian distribution having zero mean and unit standard deviation;
Case B where u is sampled from a Gaussian distribution with a zero mean and
a standard deviation corresponding to that of the measured gas phase streamwise
velocity, (figure 2); Case C is identical to Case B except that the standard deviation
is reduced by 40 %. Cases B and C rely on the previously mentioned proposition that
the second moments of the dispersed and continuous phase velocity PDFs can be
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FIGURE 7. Normalized mean liquid to air concentration, effects of the inflow droplet
cross-stream velocity: profiles at (a) z=102mm, (b) z =254 mm. Experiment (®), computed
with droplet velocity sampled from velocity distribution having zero mean and standard
deviation: uniform and equal to 1 ms~! (---), with the same profile and value of w gas (W),
with the same profile of w gas but intensity rescaled of 60 % (#).

assumed to be similar. Case B is based on the observation that, in turbulent channel
flows, the profile of the standard deviation of the velocity component normal to the
wall is usually found to be of the same qualitative shape as that of the streamwise
velocity, but with a magnitude that is smaller by around about 50 to 70 %. Comparing
the three, it appears that there is little difference between the profiles corresponding to
Cases A and C while the higher intensity of Case B causes a change in the predicted
physics with particles being more likely to be captured by the vortical structures
developing towards the edge of the mixing layer. Such structures can be identified by
the local maxima and minima in the iso-contour map of the pressure field (figure 8)
and can be seen in the mushroom-like structures in the ‘mixture fraction’ contours
also shown in figure 8. In Case B, stochastic particles are found to be clustered around
the edge of the vortical structures and give rise to the unrealistic maxima evident
in figure 7. The computed evolution of the profiles of the normalized mean liquid
to air concentration with downstream distance are shown in figure 9. The effect of
‘diffusion’ of the liquid droplets is clearly evident. It results from both the resolved and
unresolved droplet transport, but is mainly dependent on the gas phase turbulence—
droplet interactions. In order to shed more light on droplet transport, a comparison
of the mean liquid concentration cross-stream profiles at two different downstream
locations, z=102mm and z=254mm are shown in figure 10. In addition to the
measured profiles, the results of three computations are plotted. These correspond to
the cases (i) without the SGS droplet dispersion model, (i) with the dispersion model,
(3.8). and (iii) (3.7), but with 7, =A'3/|v,|. In the latter two cases the value of the
constant, Cy is set to unity. (The performance of the model, (3.8), has been shown,
elsewhere, to be relatively insensitive to the value of the constant Cy in the range
0.5 < Cy < 1.5). At the first downstream location, the difference between the results of
the three models is small, though some trends are suggested. With no SGS dispersion,
particle ‘diffusion’ is insufficient whereas with 7, = A/|v,| it is too large. Such a trend
is much more clearly visible at the furthermost downstream location. Here, with no
SGS dispersion, it is clear that the profile is insufficiently ‘diffuse’ and the agreement
with the measured profile is poor. In the case of the SGS dispersion model, (3.8), the
predicted profile is in good agreement with the measurements. In contrast, when the
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“filter crossing time’, A'3/|v,| is used, the results obtained are again poor. Typically,
the particle response time lies within the range between 10~ and 107> s whereas the
“filter crossing time’ is of the order of 10~ to 10~*s. In addition to producing poor
results, the use of the ‘filter crossing time’ is in any case of questionable validity as, in

general, A'3/|v,| > o

as |v,| — 0. For the computation using the SGS dispersion

model, the mean downstream spreading of the liquid phase is compared, in figure 11,
with the experimentally measured spreading rate. This spreading rate is based on a

characteristic thickness,

defined as the distance between the locations at which the

mean liquid to air concentration is 90 % and 10 %, similar to that used for the gas
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phase. The agreement between the computed and measured results is satisfactory over
the entire measurement region, though the computed mean spreading results display
a somewhat more linear behaviour than the experimental points, consistent with the
linear spreading rate of the gas-phase mixing layer. Further details of droplet transport
and cross-stream ‘diffusion’ can be observed from the joint PDFs of the particle cross-
stream position and diameter shown in figures 12 and 13. These compare the predicted
and measured joint PDF, P(x, D|z) at two downstream positions (z=110mm and
250 mm in the outer portion of the mixing layer. The qualitative shapes of the
predicted PDFs resemble very closely the experimental ones. The lack of smoothness
of the predicted functions can be attributed to an insufficiently long sampling period;
in particular, the number of particles present decreases effectively to zero as the ‘edge’
of the mixing layer is approached and this requires an increasingly long sampling
time to determine droplet statistics and PDFs. Around 150000 stochastic particles
were used to represent the spray PDF, Py, at each location. In the experimental
work, considerable effort was also devoted to determining the relative differences in
the average transport of droplets appertaining to different diameter classes. It was
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observed that the smaller the particle, the more likely it was to be found in the
outer region of the mixing layer, and various results were presented in support of
this. The quantities measured included (i) profiles of Sauter mean diameter, SMD, at
three different downstream stations, z* = 50, 180 and 250 mm and (ii) the cross-stream
behaviour of the normalized PDF for two different droplet classes, 13 um and 55 um
diameter, at the more downstream station: z* =250 mm.

In order to reproduce those findings, maps of the conditional PDFs, P(D|x, z*) were
first computed for z* =50, 180 and 250 mm and for a range of x-positions; figure 14
shows the result for the downstream location z* =250 mm. The computations indicate
that the ratio of the droplet response time and the Kolmogorov time scale, t,/7x lies
within the range 0.1 to 10 with the value for the majority of droplets being around
unity. Consistent with this and as can be readily observed from figure 14, the highest
probability arises for small particle diameters towards the outer low-speed edge of
the mixing layer, i.e. at negative x).

It is possible to compute the SMD(x, z") directly from the PDF, P(D|x,z").
However, in order to reduce the statistical ‘noise’, as can be seen in figure 14, especially
in the outer region, the PDF, P(D|x, z*) from which the SMD(x, z*) is computed, has
been obtained by averaging the one-dimensional PDFs over a small range of x around
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FIGURE 15. Shape extracted from the previous figure for PDF(D|x, z =254 mm): each curve
is the representative curve for the middle x point of the interval reported in the legend.

X and then smoothing the result by interpolating with a fourth-order polynomial.
Averaging and interpolation is carried out over an interval of 5 mm, indicated by the
two horizontal lines shown in figure 14. Figure 15 shows the particle diameter PDFs,
at 7" =250mm, obtained with this procedure. The particle diameter PDFs deviate
appreciably from the analytical shape prescribed at the inflow. The cross-stream
profiles of SMD(x, z*) computed from the smoothed PDF, P(D|x, z") are compared
with the measured profiles in figure 16. The agreement between experiment and
predictions is good. This, together with the predicted functional shapes of figure 15,
suggests that the characteristics of the mixing-layer-droplet dispersion are consistent
with experimental observation. The lighter the particles, the more probable it is that
they will interact with the turbulent structures of the gas phase in such a way that
they migrate towards the external edge of the mixing layer. The relative velocity
between the smallest droplets and the continuous phase is likely to be small, with
the consequence that their trajectories will be determined by the large-scale vortical
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FiGURE 17. Normalized PDF(x|z =254 mm; D = D") for two droplet classes: D* =13 um
(dotted line); D* =55 um (solid line).

structures of the mixing layer, ie. the small-diameter droplets ‘follow’ the flow. The
influence of the structures is such that small droplets are transported preferentially
towards the low-speed side of the mixing layer so that in such a region the particles
are characterized by a smaller diameter.

In further support of these observations, the predicted behaviour of the conditional
PDF P(x|D, z") is examined. The procedure adopted to compute these conditional
PDFs is similar to the averaging and interpolation used for the PDF shown in
figure 14. The resulting PDFs, P(x|D, z*) are plotted in figure 17 for D =13 um and
D =55pum. The difference in the behaviour of the small and the large droplets at
Z"=250mm is clearly evident. In particular, the maximum conditional probability
that occurs for D =13 um is almost certainly due to the already mentioned clustering
effects arising from large-scale vortical turbulence structures discussed above. The
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Computation Particles Stochastic dispersion active a at inflow
I No — —
I Yes No 10-3F
111 Yes Yes, Co=1 1073
v Yes No 5x 10
\Y Yes Yes, Co=1 5x 1074

TExperimental value

TABLE 1. Characteristics of the computations with sampling. « = [liquid volume/gas volume]

Probe number x (m) y(m) z (m)
1 —0.0250 0.0500 0.0250
2 —0.0500 0.0500 0.1780
3 —0.0200 0.0500 0.1500
4 0.0200 0.0500 0.1500
5 —0.0600 0.0500 0.2540
6 0 0.0500 0.3000
7 —0.0250 0.0500 0.3000
8 0.0250 0.0500 0.3000
9 —0.0500 0.0500 0.3000

TaBLE 2. Coordinates and numbering of the probing volumes.

dynamics of smaller droplets are closely linked to those of the gas flow and, as
has been observed, they concentrate preferentially at the edges of the large-scale
vortical structures of the gas phase turbulence. In the present case, the ‘edge’ of the
mixing layer occurs on average at around x = —20mm at the downstream location
z=250mm, e.g. figure 4.

6. Two-way coupling
6.1. Preliminaries

In order to shed further light on the processes underlying the interactions between
the particle and flow fields, it is advantageous to examine the spectral energy content
of particle-laden and particle-free flows. The aim here is to elucidate further the
influence of the large-scale vortical structures of the gas phase on droplet dispersion
and ‘mixing’ and particle segregation phenomena and to investigate the correlation
between the particle and gas flows. With this in mind, time series of the flow and
particle fields have been sampled during simulations conducted for the conditions in
table 1. Samples have been collected within particular LES cells defined as probing
volumes. To enhance the effects of particle concentration, two simulations have been
carried out with a particle concentration at the inflow fifty times higher than that of
the experiment.

The locations of the probing volumes are reported in table 2. Before the sampling
began, a simulation without particles was completed to the point at which the
effects of the initial conditions had practically disappeared. This condition was then
used as the starting condition for each of the different computations of table 1.
For particle-laden cases, particles were injected into the domain at the inflow at
this starting condition. An examination of particle entrainment at different probing
locations and particle mass loadings provides a means of determining the influence
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FiGure 18. Contour maps of the particle field, the pressure and a passive scalar transported
by the droplet-laden stream.

of the stochastic dispersion model and the typology of departure from that of the
particle-free flow, simulation I. The gradual departure of the various simulations
from that of the particle-free flow is illustrated in figure 19 where the time series,
determined by probes 3 and 4, of the streamwise velocity are shown whereas, in
figure 20, the corresponding time series of the dispersed phase concentration are
reported. A straightforward examination of these raw signals reveals that: (i) the
time series sampled within the faster moving stream are characterized by a higher
frequency content; (ii) the amplitude of the ‘dominant’ velocity fluctuations increases
when particles are transported; (iii) stochastic dispersion is extremely influential in
providing higher liquid concentrations in the outer zone; and (iv) the time series
of liquid concentration with the stochastic model displays an intermittent character
consistent with the dispersion model properties. A qualitative picture of particle
behaviour is provided by the snapshot shown in figure 18 from which it is clear that
when particles are transported they tend to organize and segregate in preferential
locations such that the overall instantaneous shape resembles that resulting from a
passive scalar added to the fast-moving droplet-laden inflow stream. To examine these
aspects in more detail, Fourier and wavelet analyses are conducted.

6.2. Fourier analysis

The Fourier power spectral densities of the x and z components of velocity for the
particle-free flow exhibit a marked cross-stream (x) dependence of the more energetic
frequencies (figure 21). For probes lying within the faster-moving side of the mixing
layer, the signals are characterized by high-frequency fluctuations whereas in the
slow-moving side — the outer probing position — lower-frequency modes are excited.
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FiGUure 20. Time series of the concentration of the dispersed phase, o for probes 3 and 4.

Probe 8 exhibits dominant frequencies in the range 80-200 Hz; for probe 6, the energy
is localized in the range 60-70 Hz; 40-50 Hz is the dominant range for probe 7; and
very low (8-10 Hz) high-energy-containing frequencies are displayed for probe 9. The
fact that markedly dominating frequencies can be observed in the spectrum of single
components but are in some way smoothed out in the spectra of |v| and |@| has been
reported also by Lazaro & Lasheras (1989) and can be attributed to three-dimensional
features of the flow.

A comparison of the gas-phase spectra for the cases of particle-free and particle-
laden flows, with different particle concentrations, reveals two major distinctive
features regarding the large-scale energy-containing modes, f < 100 Hz). First, some
of the energetic modes present in the particle-free flow have an energy content
that is enhanced by the presence of particles, whereas the rest of the low-frequency
components are generally damped. This aspect can be observed from the power
spectral density of the y-component of vorticity obtained from probe 6 shown in
figure 22, where the higher energy gain of the dominant vorticity frequencies is evident.
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FIGURE 21. Particle-free flow: power spectral densities of the x and z velocity components at
various positions across the mixing layer.

In particular, the greater the particle concentration, the higher the energy gain of
the dominating vorticity frequencies. Secondly, at certain locations, the dominant
frequencies of the non-laden case are damped while at the same time new energetic
frequencies appear for the particle-laden case (figure 23). It is tempting to speculate
that the presence of the particles acts on the flow by reducing and damping the energy
of local perturbations whilst enhancing the energy of the large-scale characteristic
structures of the mixing layer. Additional evidence for this is provided in figure 24,
where spectra of the y-component vorticity is shown for probes 7 and 8. The particle-
free case is characterized by high-energy fluctuations at high frequencies near the
boundary. It is unclear whether this behaviour is attributable to high-frequency ‘noise’
that may have resulted as a consequence of numerical aspects — all non-dissipative
discretization schemes are susceptible to this — or to a physical mechanism arising
in the near-wall region. However, when particles are present, the energy content of
these high frequencies is damped remarkably. The results from probes 7 and 8 show
that a few selected frequencies gain energy whilst the energy associated to most of
the spectra is damped. The frequencies gaining energy can be thought of as being
those characteristic of the large-scale turbulence structures of the mixing layer; the
frequency values are noticeably close to the values at which the longitudinal vortices
are expected to shed.

The linear power spectra of the time series of liquid concentration, plotted in
figure 25 for computations II and III and probes 6-9, show that high-energy-
containing frequencies are also found in the dynamics of & and the range of frequencies
excited is similar to that appearing in the vorticity spectra. For computation III,
where stochastic dispersion is enabled, the high-frequency range appears more likely
to be excited. For the simulations with no SGS dispersion, the liquid concentration
fluctuations often have enhanced very low frequencies, see for example probe 9. In
general, the liquid concentration seems to fluctuate preferentially with frequencies
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FiGURE 23. Power spectral densities of the y-component vorticity obtained from probe 9.

which are of the same order or somewhat lower than the energetic modes found in
the gas phase; such phenomena may be linked to inertial effects characterizing the
particle phase. Finally the power spectral densities of streamwise gas-phase velocity
and particle concentration are plotted on semi-logarithmic axes for probes 6-9 in
figures 26 and 27. At very high frequencies, the spectra exhibit either a linear form,
probes 6 and 7, or a wide band of excited modes, probe 9. This is a consequence
of sampling at every time step with the result that the signals are over sampled —
during the computations, the time step is chosen so as to maintain the maximum
Courant number (based on the local filtered velocity) at less than of order 0.3. This
energy band is obtained only for particle-laden simulations in situations where particle
velocity fluctuations, transferred directly to the gas-flow field by the two-way coupling,
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FIGURE 24. Power spectral densities of the y-component vorticity obtained from
(a) probe 7 and (b) probe 8.

are capable of inducing fluctuations at the probing location. Such fluctuations are
of a period which is the same order as the integration time step, thus falling in
the over-sampled modal region. Notwithstanding this, the instantaneous coupling of
the stochastic forces (particle dispersion) acting on the continuous and dispersed
phases may result in a high-frequency energy source for the continuous phase the
physical nature of which may be questionable. However, it is fundamental to note
that the power spectral densities associated to these fluctuations are five to ten orders
of magnitude smaller than the power spectral densities of the large-scale energetic
modes. It therefore appears that ad hoc modification of the SGS dispersion model is
not necessary. If required, then either the coupling between the two phases could be
implemented over an averaged set of time steps, thus smoothing out instantaneous
random forcing fluctuations or by a modification to the sub-filter residual stress
model. The existence of an inertial (—5/3) range can be identified in most of the plots
though the extent to which it applies is variable, dependent on the probe position.
This is consistent with the observation that the large-scale structures are characterized
by frequency ranges which depend on the location; if the spatial resolution is similar,
then the part of the inertial range resolved must be variable. When particles are
present, the major changes observed are: (i) a general damping of the large scales
which can also be observed in log scale for certain probes, for example probe 9 (the
damping is not uniform, a few frequencies are enhanced but this is clearer on linear
coordinates); (ii) a small increase in the energy at high frequencies, in the range 100
to 500 Hz, regardless of the inclusion or otherwise of stochastic sub-filter particle
acceleration.

6.3. Wavelet analysis

Given the evidence of preferential particle concentrations that have been attributed
to the influence of the large-eddy structures in the gas phase and given that the flow
and the particle concentration fields show similar ranges of excited modes, it is of
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FIGURE 25. Power spectral density of the dispersed phase concentration. (a) Probe 6,
(b) probe 7, (c) probe 8, (d) probe 9.

interest to investigate the localized time-dependent relation between these two fields.
The wavelet framework constitutes an ideal means of doing this as it is eminently
non-local, i.e. it enables the analysis of correlations conditioned upon the observation
of particular events, and uses basis functions — mother wavelets of eddy-like shape —
which makes the method eminently suited to capturing and describing large-scale
turbulence structures. The Fourier power spectral densities provide only an overall
picture of which frequencies are present and how energetic they are during the
complete time history.

The wavelet analysis is conducted using a ‘Morlet’” mother wavelet with f;=6.
(For a self-contained introduction to statistical signal processing using wavelets and
how these can be applied to analyse local events, coherent structures and temporal
correlations, see Kaiser 1994; Torrence & Compo 1998). In what follows, W,(s, 7)
and W,(f, ) indicate the wavelet transform of the u time series as a function of scale
and time (s, 7) and frequency and time (f, ), respectively, for Morlet f = f,/(2ns).
The cross-scalogram for the signals u and v is W,,(s, 7)=W,(s, t)W, (s, t) with "
indicating the complex conjugate. This is customarily decomposed according to:

Woo(s, T) = CoW,, (s, ) — iQuad W, (s, 7).

With the relatively benign hypothesis of regularity of the time series, the following
holds for the real part of the cross-scalogram:

/_Z f()g(r)dt = C}w /000/:: Co W,,(s, t)dsdr, (6.1)
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FIGURE 26. Power spectral density of the streamwise gas-phase velocity and dispersed phase
concentration; (a, ¢) probe 6 and (b, d) probe 7.

where C, is the admissibility constant of the wavelet. The above highlights the
importance of the Co—cross-scalogram in the investigation of the correlation of u
and v and a wavelet local correlation coefficient (WLCC) can be defined:

CoW,,(s, 1)
(W, T) [ Wo(s, T)]

It is straightforward to prove that WLCC € [—1, 1].

Attention is now focused on the time series sampled by probe 6 where the Fourier
analysis suggested that most of the features regarding mixing-layer structures exhibit
appreciable energy. In figure 28, the maps of the y-component of vorticity, |W,,(f, T)|*
and the liquid volume fraction, |W,(f, T)|* are reported for computation II. The time-
scale evolution of the vorticity component is dominated, for given time instants,
almost exclusively by a single structure (a band of excited frequencies) having a width
of 20-30 Hz. The energetic band of frequencies is not stationary in time; it oscillates in
frequency space. In addition also the intensity — indicated by the colour in the map —
of the phenomena changes. The overall picture provided of the turbulence structures is
more detailed than that suggested by ordinary spectral analysis. There is no structure
having a wide band of excited modes as Fourier analysis might suggest. Instead, there
exists a relatively narrow band of excited modes whose frequency localization and
intensity change in time. The corresponding Fourier spectrum may be seen as related
to the wavelet map through some type of time average (see Kaiser 1994). Regarding
the liquid concentration, much less coherence can be observed in |W,(f, 7)]*> for
computation II. However, coherent structures appear sporadically and they are often
characterized by the same scale range as that of the vorticity component.

The effects produced by an augmented liquid concentration, computation IV, are
shown in figure 29. Figures 28 and 29 suggest that an augmented particle concentration

WLCC,,(s, 1) =

(6.2)
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FIGURE 27. Power spectral density of the streamwise gas-phase velocity and dispersed phase
concentration; (a, ¢) probe 8 and (b, d) probe 9.

tends to enhance the formation of distinctive blobs in the map which represent large-
scale vortical structures. In scale-time space the mixing-layer structures are definitely
more marked and separated in the case of an augmented particle concentration,
i.e. they are not blended in an almost continuous pattern as for figure 28. This
fact, together with Fourier analysis, which showed how few low-frequency modes gain
energy when particles are present, supports the idea that the presence of particles tends
to strengthen the most important vortical structures while damping the formation of
less intense and subsidiary eddies, at least for the range of particle diameters used
in this experiment. The particle diameters vary from 1pum to 200 um, the majority
being concentrated within the interval [10, 50] um in order to offer a comparison
with the classification reported in Ferrante & Elghobashi (2003), the corresponding

particle response times, t\* resulting from Stokes law lie in the range [107°, 107°]

with the majority of particles having t{¥ ~ 10~*. The Kolmogorov time scale at the
centre of the domain can be estimated to be of the order tx ~10™*3s and this gives
a time-scale ratio 7,/tx & € [0.1, 10] and for the majority of the particles 7,/7x ~ 1.
The augmented particle concentration has a large effect on the vorticity field, which,
becoming more ‘organized’, has the effect of enhancing the preferential concentrations
of the particle field. The concentration field is highly coupled to the vorticity field as
is evident from the more intense and identifiable structures in the fields of |W,(f, 7)[?
in figure 29 compared with figure 28.

In order to extract information which is hidden in the |w| spectra owing to three-
dimensional effects, wavelet analysis is applied to examine the correlation between
the fields of vorticity and particle concentration. For vorticity, attention is focused
on w, and the results are plotted in figure 30. It is well known (Kaiser 1994) that
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FIGURE 29. As figure 28, but for computation IV.



242 M. Bini and W. P. Jones

Frequency (Hz)

WLCConridge &
.O —_—
(=) W (=)

&

(d)

107
N
<)
z
g 1
% 10
=

10°

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Time (s)

FiGure 30. Wavelet analysis and wavelet cross-spectral analysis for the time series of vorticity
and liquid concentration of computation II. (¢) Wavelet map for the vorticity time series,
Wo(f, ), (b) for the liquid concentration W,(f, t). (¢) Wavelet cross-correlation coefficient
of vorticity and liquid concentration WLCC,,_,. (d) Wavelet cross-spectrum of vorticity and
liquid concentration W,,_,. WLCC value along the ridge of the wavelet map of W,_,; ridge
of W,_q.



Large-eddy simulation of particle-laden turbulent flows 243

careless observation of the map of the wavelet cross-correlation coefficient of two
signals, u and v, WLCC,,(s, ) may point misleadingly at correlations in the time-
scale domain which are not connected to important energy-containing structures.
The remedy for this is to observe the local correlation under a particular template:
the energy contained in the wavelet cross-scalogram, |W,,(s, 7)|. The cross-scalogram
highlights the zones where the mutual wavelet transform is more intense. Hence
when the correlation, WLCC, in these zones, is examined, the correlation is known to
indicate important mutually related physical oscillations. Because it is impracticable
to carry out a study involving direct comparison of all the two aforementioned maps,
for example |Wy,,(f, T)] and WLCC,,,,(f, 7) (figure 30a, b), a procedure is required
in order to identify the regions where the correlation should be examined. The
procedure followed for extracting physically relevant correlations is, first, to identify
a zone where observations are meaningful in the cross-scalogram |W,,(f, t)| and,
secondly, to restrict the WLCCy,,((f, ) to the identified zone. The region where
mutual influences are important is defined as the crest or ‘ridge’ of the wavelet cross-
scalogram. There appear to be many different ways of defining a ‘ridge’ available
in the literature on wavelet cross-spectral analysis. In the present context, a simple
definition is adopted: the ridge is taken to be the locus of the local maxima of
|Waiw,|(f, T)| for any given t.

The procedure described above is applied to the study of local cross-correlation
between the fields of o and |wy| shown in figure 30. Arrows have been drawn to
indicate the important zones of the ridge which are linked to the mutual interactions
between o and |w,|, arising from the vortices previously discussed. The WLCC
evaluated along the ridge for computations II and IV takes only occasionally positive
values and, in the few cases where this happens tends, in a notable manner, toward
a perfect positive correlation (41). The zones where the correlation is —1 can be
seen to correspond to time instants where frequencies of the order of 50 to 80 Hz
dominate the cross-scalogram. This suggests that, at the particular range of frequencies
typically associated with large-scale mixing structures, vorticity and particles tend to
be exclusive. Such an observation confirms in time—frequency space what is visible
in the instantaneous fields, i.e. that vortex cores expel particles that are consequently
preferentially found at the edges of consecutive eddies.

A similar localized cross-correlation analysis is carried out (figure 31) of the fields
of particle concentration and dissipation rate for case II. Here, it is evident that the
WLCC of particle concentration and dissipation, when evaluated along the ridge of
the scalogram, tends to be remarkably close to +1, i.e. the dissipation rate is nearly
perfectly correlated to the particle field. When particle concentration is above (below)
the mean particle concentration at a particular location, the dissipation rate is likely
to be above (below) the mean rate of dissipation. However, in spite of this observed
strong correlation, it appears likely that there may be no direct causal relationship
between dissipation rate and particle correlation. Rather, the present analysis suggests
that these two fields, though correlated, are related to each other via an intermediate
physical entity, the enstrophy — a measure of the intensity of the vorticity field. With
<> being read as ‘influences and it is influenced by’, a more logical connection to be
made seems to be as follows:

Particle field < enstrophy (vorticity field) « dissipation field.

The relation between enstrophy and dissipation rate in turbulent flows has been the
object of many studies. Amongst others the computational study of Kida & Ohkitani
(1992) and the experiments of Zeff et al. (2003) in a single-phase flow showed how an
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FIGURE 31. Wavelet cross-spectral analysis for the field of dissipation and particle
concentration of computations IV and V at probing location 6. (a) WLCC,, along ridge
of the cross-scalogram, (b) cross-scalogram W, (f, r) for computation 1V; (¢) WLCC,, and
(d) Weolf, T) for computation V.

increase in enstrophy is accompanied to a decrease in dissipation and vice versa. The
same strong connection is observed here, see figure 32, where the cross-spectral wavelet
analysis is carried out for the field of vorticity and dissipation rate. Along the ridge of
the cross-scalogram, the field of |w,| and dissipation have a WLCC which is almost
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computations IV and V at probing location 6. (a) WLCC,,, along ridge of the
cross-scalogram, (b) cross-scalogram W, 4(f, T) for computation IV; (c) WLCC,,, and
(d) Wiey il fs T) for computation V.

everywhere —1. This finding is in agreement with the view that dissipation tends to
be relatively small at the centre of a vortex, where a small amount of deformation
is present in comparison to rotational effects, and that it increases with increasing
distance from the vortex centre to have a high value at the ‘edge’ of a vortex where
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there is high strain and small rotation. The fact that dissipation rate and vorticity are
so well negatively correlated and that, as previously shown, the particles can provide
a means whereby large-scale vorticity structures acquire longevity, supports the idea
that the interactions between particle motion and turbulence are best understood in
terms of the influence of particles on the enstrophy field, and the consequence that
this has on the field of dissipation rate.

7. Conclusions

The concept of LES filtered probability density function has been applied to provide
a probabilistic description of the dispersed liquid droplet phase in the context of LES
of two-phase flows. Models for closing the unknown terms in the transport equation
for the joint filtered probability density function of the dispersed phase properties
have been proposed. In particular, following a heuristic procedure, it has been show
how SGS dispersion effects can be modelled in a stochastic manner; during the present
work, attention has been focused on providing a physically accurate representation
of the droplet subgrid scale dispersion effects. To achieve this a multi-dimensional
isotropic Wiener process based on a particle response time has been proposed. The
conditions necessary for extending the formulation to a more general anisotropic
model have been outlined in Appendix A.

The capabilities of the approach have been evaluated in detail by application to
the particle-laden mixing layer studied experimentally by Lazaro & Lasheras (1989,
1992a,b). In doing so, it has been shown that SGS dispersion plays a crucial role in
determining the spreading and properties of the dispersed phase. The good agreement
achieved between the LES and experimental results is dependent on the choice of the
particle response time as being representative of subgrid dispersion. The LES results
obtained with the formulated model have been analysed in some detail and have been
found to be entirely consistent with the behaviour observed experimentally. Practically
identical conclusions on droplet behaviour with respect to size and distribution can
be drawn from the LES and experimental results. The work thus constitutes a step
towards the accurate prediction and optimization of spray flows of practical interest.

The good agreement obtained in the statistical quantities motivated the use of
the computational results in an investigation of the particle—turbulence interactions
in a shear flow. The spectral modulation of turbulence and flow characteristics
owing to particle transport shows how large scales of the flow can gain energy
and acquire longevity through the influence of particle motion. This is due to the
capability of large-scale vortical structures to segregate particles at their edges, thus
increasing their rotational inertia. This feature appears not to have been observed
previously in numerical studies as these were carried out in isotropic turbulence
where the entire energy spectral content of the flow is damped by the presence of
particles. Identification of large-scale structures and the study of localized cross-
correlation coeflicients between the fields of particle, enstrophy, and dissipation also
provides insight into the particle-turbulence interactions. In particular, the present
study suggests that the connection between particle concentration and turbulence
dissipation fields can be better understood if, rather than examining their direct
correlation, the effects of both fields upon the field of vorticity are investigated.
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European Community under the project INTELLECT D.M. (Project AST3-CT-
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Appendix A. Anisotropic diffusion tensor

A random vector is a finite-dimensional column whose entries are random variables,
quoting Feller (1968): ‘A random vector is to be viewed as a vector with a random
length and random direction’. If in a physical vector, the length is the vector invariant,
then in a random vector, the invariant can be thought to be its length in probability.
In order to define a distance between random variables, the concept of a norm must
be introduced; let X be a random variable defined on a certain probability space
(£2,7,P), X : 2 — R, for positive integers k=1 and the kth norm can now be
defined as:

I Xk = [E(X )]V, (A1)
where |X| represents the usual Euclidean norm in R” and E(...) the expectation with
respect to the probability P. The k-norm, like any norm, can be used to measure

distance; the k-distance (or k-metric) between real-valued random variables X and Y
is defined:

d(X.Y) = | X =Yk = [E(X — Y[V~ (A2)
All the moments of X about a are simply the k-distances from X to a. Two random
variables can be said to be identical in probability if d(X, Y)=0, Vk.

The aim here is to construct a stochastic process representing the unresolved particle
acceleration starting from a standard Wiener process in R". A natural way of doing
so is by supposing that the variance of the process is proportional to the (estimated)
subgrid-scale kinetic energy. In this simple way of proceeding, note that: different
observations of the flow field using different frames of reference will have the same
kinetic energy estimate, independent of the reference frame, and so the stochastic
processes should remain unchanged. If a particle travelling through a region where
the turbulent fluctuations are strongly anisotropic is considered, then a possible
method of accounting for this is to construct a random vector such that the modelled
particle acceleration is a function of the anisotropy. However, the resulting stochastic
process must satisfy the invariance of random vector lengths: different observers using
different frames of reference to obtain the anisotropy of the flow field at a given point
must build random vector processes that are the same in probability. Hence:

ldvlle = [E(1BAW |)]¥, (A3)

where B € R"*" is the diffusion matrix and W, € R” is the standard n-dimensional
Wiener process. To simplify, let us consider the case n=2, and let us suppose
that the modelled diffusion matrix is taken to be anisotropic and diagonal. Let
the result arising from two different reference frames be By; =diag[oy, 02] and
B,y =diag[4y, A»], respectively. Let us now suppose that the two different frames
of reference differ only by a solid-body rotation through an angle 6. To guarantee the
invariance of vector norms, we must ensure that the two diffusion matrices become
identical when written in the same reference frame. If 7'(0) is the rotation matrix
then:

B, = T-\(0)BoaT (6) — (llcosz(H) + J8in®(0)  cos(8)sin(6)(4r — 21)) (Ad)

cos(0)sin(0) (A — A1) Arcos2(9) + Aysin’(6)
Hence, if the model is to be reference-frame independent, then the diffusion matrix
can be a diagonal matrix if and only if it as isotropic. It is thus necessary to preserve

the appropriate tensor transformation properties in any modelled diffusion matrix
that purports to incorporate the effects of subgrid-scale anisotropy. With this in mind,
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the following simple model can be constructed:

u;u; C()
Bi' =1 X 7ks ) AS
! kSgS T ¢ ( )
where u;u; can be represented by:
ufi\u/j = %ksgssij - 2vsgs§ij’ (A 6)

where v, is the SGS eddy viscosity and where S;; = 1/2(dii; /dx; + dii;/dx;). Finally,
an estimate of the SGS kinetic energy can be obtained from:

sgs (2AvsgsSUSt])2 r (A7)

Appendix B. Inflow data generation based on digital filters

In this Appendix, the main features of the work of Klein et al. (2003) for the
generation of turbulent inflow data are summarized. The usual approach to the
generation of synthetic turbulence inflow data is to generate a velocity signal that has
certain statistical properties, which may, for example, be known from experimental
data. Such quantities are mean values, the Reynolds stresses, higher-order moments,
energy spectra, two-point velocity correlations and various length and time scales.
Such a procedure can be split into two parts: first a provisional three-dimensional
signal %; possessing prescribed properties, typically two-point statistics (length scale,
energy spectra) is generated for each velocity component; then the required Reynolds
stress tensor can be obtained using a transformation method, such as that proposed
by Lund, Wu & Squires (1998). In order to create a two-point correlation, let r,, be
a series of random data with zero mean and unity variance, the quantity

N
= > buTuin (B1)

n=—N

then defines a convolution or a digital linear non-recursive filter. The quantity u,,
can be interpreted as being the value of one component of the velocity vector at a
discrete point in space or time, corresponding to a single realization. The b, are the
filter coefficients and N is connected to the support of the filter. Because (r,,r,) =0
for m #n it follows that:

N
(Um um+k _ Z bibj Z b?, (B2)

Uy U
< m ) —N+k j=—N

and this determines the relationship between the filter coefficients and the two-
point correlation function of u. A three-dimensional filter can be obtained from the
convolution of three one-dimensional filters:

b,’jk:b[ bj bk. (B3)

Rather than attempt to construct a detailed form for the correlation function, it is
presumed that it depends only on the separation distance, r = |r| and a single length
scale. The following shape is adopted:

T r?

R,.(r,0,0) =exp (_4L2> . (B4)
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Suppose Ax is the grid spacing and L =nAx the desired length scale, then the
correlation function can be written in discretized form as:

<um um+k> _ _ T k2
W = Ruu(k AX) = eXp 47;12 . (B 5)

where the filter coefficients are given by:

N 12
b ~ b S B B = exp (K (B6)
k A D = E »  br ==eXp 2 )

With the filter coefficients previously defined, it is possible to filter a collection of
random maps differing for only a row or a column of random numbers. If the
random numbers are shifted ad hoc between subsequent filtering operations, it is
possible to obtain filtered fields of data in which every field has a spatial correlation
and each point of a given filtered field is correlated with the same point of some of
the subsequent filtered maps.
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