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Abstract5

An exact solution for transient Forchheimer flow to a well does not cur-6

rently exist. However, this paper presents a set of approximate solutions,7

which can be used as a framework for verifying future numerical models8

that incorporate Forchheimer flow to wells. These include: a large time ap-9

proximation derived using the method of matched asymptomatic expansion,10

a Laplace transform approximation of the well-bore response, designed to11

work well when there is significant well-bore storage and flow is very turbu-12

lent; and a simple heuristic function for when flow is very turbulent and the13

well radius can be assumed infinitesimally small. All the approximations14

are compared to equivalent finite difference solutions.15
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1 Introduction18

Non-Darcian post-linear flow has been observed in numerous hydraulic experi-19

ments in both coarse granular media (Thiruvengadam and Pradip Kumar, 1997;20

Venkataraman and Rama Mohan Rao, 1998, 2000; Legrand, 1999; Chen et al.,21

2003; Reddy and Rama Mohan Rao, 2006; Sidiropoulou et al., 2007) and frac-22

tured media (Kohl et al., 1997; Lee and Lee, 1999; Qian et al., 2005, 2007). Non-23

Darcian flow is often distinguished as being either pre- or post-linear flow. Pre-24

linear flow typically occurs at low Reynolds’ numbers (Firdaouss et al., 1997).25

In this paper, we are concerned with post-linear flow, which conversely occurs at26

high Reynold’s numbers (Zeng and Grigg, 2006). This is of particular concern in27

close proximity to abstraction wells where flow velocities are enhanced due to the28

convergence of flow lines (Sen, 1988, 1990; Kohl et al., 1997; Ewing et al., 1999;29

Ewing and Lin, 2001; Kelkar, 2000; Kolditz, 2001; Wu, 2002a,b).30

A popular method for representing the post-linear regime is to exchange Darcy’s31

Law with Forchheimer’s equation (Forchheimer, 1901). There is both a theoretical32

(Irmay, 1958; Whitaker, 1996; Giorgi, 1997; Chen et al., 2001) and experimental33

(Thiruvengadam and Pradip Kumar, 1997; Kohl et al., 1997; Venkataraman and34

Rama Mohan Rao, 1998, 2000; Reddy and Rama Mohan Rao, 2006; Sidiropoulou35

et al., 2007) basis for doing this.36

Bear (1979, p.308) and Ewing et al. (1999) obtain an exact solution for steady37

state radial Forchheimer flow to a well. Kelkar (2000) and Wu (2002a) present38
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an approximate solution for transient radial Forchheimer flow to a well, which is39

suitable for large times. Moutsopoulos and Tsihrintzis (2005) obtain an approx-40

imate similarity solution for one-dimensional transient Forchheimer flow, which41

works well for large flow rates. Wen et al. (2006) obtain an exact similarity so-42

lution for one-dimensional non-Darcian flow using the Izbash (1931) equation,43

which assumes that water flux is related to hydraulic head by a power law. Wen44

et al. (2007) present an approximate Laplace transform solution for transient radial45

Izbash flow, which works well at large times.46

Meanwhile, Sen (1988) claims to have derived a similarity solution for tran-47

sient radial Forchheimer flow to an infinitesimal well using the Boltzmann trans-48

form. This solution has been extended by Sen (1989) to consider Izbash flow,49

by Sen (1990) to consider large-diameter wells and by Birpinar and Sen (2004)50

to consider leaky aquifers. Indeed, for Darcian flow to an infinitesimal well, hy-51

draulic head is a function of the Boltzmann transform (e.g. Theis, 1935). How-52

ever, Camacho-V. and Vasquez-C. (1992) explain that this is not the case for non-53

Darcian flow and therefore the solution is invalid. Sen (1992) dismisses this claim54

on the basis of insufficient evidence.55

Exact and approximate mathematical solutions such as those discussed above56

generally represent highly idealized situations. In order to look at more realistic57

cases, such as when there is significant drainage from an unsaturated zone (Dogan58

and Motz, 2005) or a seepage face (Rushton, 2006) or when the abstraction well59

geometry is particulary complex (Demir and Narasimhan, 1994), it is often nec-60

essary to use a numerical model (Narasimhan, 2007). Nevertheless, mathematical61

solutions are invaluable for model verification.62

The idea behind verifying a numerical model with a mathematical solution is63
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that the two should produce identical results for the prescribed scenario (e.g. Zop-64

pou and Roberts, 2003; Simpson and Clement, 2004; Dogan and Motz, 2005).65

Whereas there is a vast wealth of appropriate solutions for Darcian flow to well66

problems (e.g. Moench, 1997; Mathias and Butler, 2006, 2007a,b), for Forch-67

heimer flow, with the exception of the steady state solution of Bear (1979, p.308)68

and Ewing et al. (1999), there are only the approximate solutions of Sen (1990),69

Kelkar (2000) and Wu (2002a). Unfortunately, the derivations of these two solu-70

tions are non-rigorous and therefore cannot be guaranteed to properly reconcile71

with a correctly functioning numerical model.72

The outline of this paper is as follows: a finite difference solution for transient73

radial Forchheimer flow to a well is developed; the derivation of Sen’s similarity74

solution is examined in detail; a rigorous derivation for the approximate solution75

of Kelkar (2000) and Wu (2002a) is obtained using the method of matched asymp-76

totic expansion; the method of Wen et al. (2007) is used to derive an approximate77

Laplace transform solution for Forchheimer flow to a well, which is valid for large78

times and large flow rates; a heuristic function is then proposed for Forchheimer79

flow to an infinitesimal well and is shown to work well for all times providing80

the flow rate is very large. The limitations of the four approximate mathematical81

solutions are explored by comparison with a numerical solution obtained using fi-82

nite differences. The purpose of this paper is to provide a framework for verifying83

future numerical models that incorporate Forchheimer flow to wells.84
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2 The governing equations85

The governing equation of flow to a fully penetrating well in a homogenous,86

isotropic and confined aquifer is (Papadopulos and Cooper, 1967)87

Ss
∂φ
∂t

+
1
r

∂
∂r

(rq) = 0 (1)

subjected to the initial and boundary conditions:88

φ = 0, r ≥ rw, t = 0

φ = φw, r = rw, t > 0

φ = 0, r = ∞, t > 0

(2)

whereSs [L−1] is the specific storage coefficient,φ [L] is hydraulic head,t [T]89

is time, r [L] is the radial distance from the well,φw [L] is the hydraulic head in90

the well-bore,rw [L] is the well radius andq [LT−1] is the water flux, assumed91

here to be found from Forchheimer’s equation (Forchheimer, 1901)92

q+βq2 =−K
∂φ
∂r

(3)

whereK [LT−1] is the hydraulic conductivity andβ [L−1T] is the turbulent93

flow coefficient.94

The equation for the well-bore is (Papadopulos and Cooper, 1967)95

πr2
c
dφw

dt
+Q+2πmrwq(r = rw) = 0 (4)

subjected to96
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φw = 0, t = 0 (5)

whereQ [L3T−1] is the pumping rate from the well, which is positive for ab-97

straction,rc [L] is the radius of the well casing andm [L] is the aquifer thickness.98

3 Dimensionless transformation99

Applying the following dimensionless transformations:100

φD =−2πmKφ
Q

, φwD =−2πmKφw

Q
, tD =

Kt
Ssm2 (6)

qD =−2πm2q
Q

, βD =− Qβ
2πm2 (7)

rD =
r
m

, rwD =
rw

m
, rcD =

rc

S1/2
s m3/2

(8)

the above problem reduces to:101

∂φD

∂tD
+

1
rD

∂
∂rD

(rDqD) = 0 (9)

qD +βDq2
D =−∂φD

∂rD
(10)
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φD = 0, rD ≥ rwD, tD = 0

φD = φwD, rD = rwD, tD > 0

φD = 0, rD = ∞, tD > 0
(11)

r2
cD

2
dφwD

dtD
−1+ rwDqD(rD = rwD) = 0 (12)

φwD = 0, tD = 0 (13)

4 Finite difference solution102

Numerical models have been developed for Forchheimer flow to a well using both103

finite differences (Choi et al., 1997; Ewing and Lin, 2001; Wu, 2002a,b) and finite104

elements (Ewing et al., 1999; Ewing and Lin, 2001; Kolditz, 2001). In this paper105

we use finite differences. We start by discretizing the radial axisrD into N number106

of nodes such thatrwD < r i < reD for i = 1. . .N where,r i is the value ofrD at the107

ith node andreD is a large radial distance from the well at which to approximate108

the boundary condition atrD = ∞. The dimensionless head,φD is approximated109

at each node byφi . Having discretized in space, the above problem reduces to the110

following set of ordinary differential equations with respect to time:111

dφi

dtD
≈ r i−1/2qi−1/2− r i+1/2qi+1/2

r i(r i+1/2− r i−1/2)
, i = 1. . .N (14)

where (Wu, 2002b)112
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qi−1/2 =
1

2βD

{
−1+

[
1+4βD

(
φi−1−φi

r i− r i−1

)]1/2
}

, i = 2. . .N (15)

qi+1/2 =
1

2βD

{
−1+

[
1+4βD

(
φi−φi+1

r i+1− r i

)]1/2
}

, i = 1. . .N−1 (16)

The boundary conditions are implemented through:113

q1−1/2 =
1

2βD

{
−1+

[
1+4βD

(
φwD−φ1

r1− rwD

)]1/2
}

(17)

qN+1/2 =
1

2βD

{
−1+

[
1+4βD

(
φN−0

reD− rN

)]1/2
}

(18)

whereφwD, is the dimensionless head in the well-bore, which is approximated114

by115

dφwD

dtD
≈ 2

r2
cD

[
1− rwDq1−1/2

]
(19)

The above set of equations are integrated with respect to time using the stiff116

integrator ODE15s (Shampine and Reichelt, 1997; Shampine et al., 1999) avail-117

able in any standard version of MATLAB. Due to the convergence of flow lines118

at the well, it is a good idea to space the nodes logarithmically in therD direction119

(Wu, 2002b) such that120

r i = (r i−1/2 + r i+1/2)/2, i = 1. . .N (20)

where121
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log10(r i+1/2) = log10(rw)+ i

[
log10(reD)− log10(rwD)

N

]
, i = 0. . .N (21)

For all the simulations presented in this paper,rwD andrcD were both set to122

1. The observation well response was found to be insensitive to the abstraction123

well diameter,rwD whenrD ≥ 103, therefore, when presenting results for an in-124

finitesimal diameter abstraction well, the location of the observation well was set125

to a normalized distance ofrD = 103. Both the observation and abstraction well126

responses were then found to be insensitive to the far-field boundary condition127

when reD was set to108. From a grid sensitivity study, it was found sufficient128

to setN = 2000nodes. A specified time-step is not needed as ODE15s uses an129

adaptive time grid.130

5 Sen’s solution131

Sen (1988) attempts to obtain a similarity solution by substituting the independent132

variable transform (IVT),ξ = r2
D/tD (i.e. Boltzmann transform) into equations (9)133

and (10) to obtain the ordinary differential equation134

dqD

dξ
+

(
1
4

+
1
2ξ

)
qD +

βD

4
q2

D = 0 (22)

which has the general solution (Sen, 1988)135

qD =
e−ξ/4

ξ1/2

[
A+βD

π1/2

2
erf

(
ξ1/2

2

)]−1

(23)
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whereA is an integration constant, dependant on the boundary condition at136

ξ = 0 and the erf operator denotes the error function.137

Sen (1988) considers an infinitesimal well in an infinite aquifer and therefore138

applies the initial and boundary conditions:139

φD = 0, rD ≥ 0, tD = 0

rDqD = 1, rD = 0, tD > 0

φD = 0, rD = ∞, tD > 0
(24)

The transformed boundary condition is140

lim
ξ→0

ξ1/2qD = t−1/2
D (25)

A crucial requirement for the applicability of similarity arguments is that both141

the governing equations and all the initial and boundary conditions be reducible142

to similarity form (e.g. Kevorkian, 1990, p.8). The presence of thet−1/2
D term143

in equation (25) shows that this is not the case, which supports the concern of144

Camacho-V. and Vasquez-C. (1992) that Sen’s solution is not valid. Nevertheless,145

from equation (25), Sen (1988) concludes thatA = t1/2
D and therefore that146

qD =
e−ξ/4

ξ1/2

[
t1/2
D +βD

π1/2

2
erf

(
ξ1/2

2

)]−1

(26)

Finally, Sen (1988) obtains an expression forφD by rearranging equation (10)147

such that148

φD =
∫ ∞

rD

(
qD +βDq2

D

)
drD (27)
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Figure 1 compares the Sen (1988) solution given in equation (27) with the149

finite difference solution developed in section 4. The integral in equation (27)150

was evaluated using an adaptive Lobatto quadrature (the quadl command in MAT-151

LAB). Despite Sen’s non-rigorous handling of the independent variable transform,152

the solution approximates the finite difference solution relatively well. Neverthe-153

less, for small times it overestimates and for intermediate times it underestimates.154

However, because both the solutions are essentially approximate it is not yet pos-155

sible to say which one is more accurate.156

6 Solution by matched asymptotic expansions157

A popular method for solving non-linear partial differential equations is the method158

of matched asymptotic expansions (e.g. Kevorkian, 1990, p.478). At large times,159

the head profile has spread out over a large distance. Roose et al. (2001) were160

interested in a similar mathematical scenario but in the context of nutrient uptake161

in cylindrical plant roots. Following Roose et al. (2001), this can be specified by162

writing163

tD =
τ

β2
D

and rD =
R

βD
(28)

whereβD ¿ 1. The reason for having the squaredβD term for time is that164

within the governing equation of flow, the temporal derivative is first-order whereas165

the spatial derivative is second-order. The quantitiesτ andR are auxiliary vari-166

ables as defined above.167

The outer limit process ofφD is denoted asφ0. The inner limit processes ofφD168
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andφwD are denoted asφ∗0 andφ∗w0 respectively. The solution for the outer limit169

process is (Theis, 1935)170

φ0 = B·Ei

(
R2

4τ

)
(29)

whereB is an integration constant yet to be defined and Ei denotes the expo-171

nential integral.172

For the inner region near the abstraction well it is better to revert back to the173

variablerD such that the inner limit process is characterized by (recall equations174

9 and 12)175

β2
D

∂φ∗0
∂τ

+
1
rD

∂
∂rD

(rDq∗0) = 0 (30)

β2
D

r2
cD

2
dφ∗w0

dτ
−1+ rwDq∗0(rD = rwD) = 0 (31)

whereq∗0 satisfiesq∗0 +βDq∗20 =−dφ∗0/drD. WhenβD << 1, equation (30) in176

conjunction with equation (31) has the analytical solution177

φ∗0 =
βD

rD
− ln(rD)+C+O(β2

D) (32)

whereC is another integration constant. Note that it is possible forC to be a178

function ofτ (Roose et al., 2001).179

The constantsB andC are determined by matching the inner and outer limit180

processes, i.e.181

lim
rD→∞

φ∗0 = lim
R→0

φ0 (33)
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For smallR, equation (29) can be expanded to get (Cooper and Jacob, 1946)182

φ0 = B[0.5772+2ln(rD)+2ln(βD)− ln(4τ)]+O(β2
D) (34)

Therefore by applying equation (33), it can be seen that183

B =−1
2
, C =−1

2
[0.5772+2ln(βD)− ln(4τ)] (35)

Adding the inner and outer limits and subtracting out of their sum the term that184

is common to both expressions in the overlap domain then yields the composite185

solution186

φ̃0 =
1
2

[
ln

(
4tD
r2
D

)
−0.5772

]
+

βD

rD
(36)

The mathematical development above provides a more rigorous derivation for187

the large time approximation proposed by Kelkar (2000) and Wu (2002a). Figure188

2 verifies that both the finite difference solution and the Sen (1988) solution, given189

in equation (27), correctly converge on to the large time approximation given in190

equation (36). However, it is still unclear which solution is more accurate at small191

and intermediate times.192

7 Laplace transform solution for large βD193

In this section we follow the linearization procedure used by Odeh and Yang194

(1979), Ikoku and Ramey (1979) and Wen et al. (2007) to look at non-Darcy flow195

problems using the Izbash equation. The starting point is to rearrange equation196

(9) to get197
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qD
∂φD

∂t
+

q2
D

rD
+

1
2

∂2q2
D

∂r2
D

= 0 (37)

WhenβD is very large, equation (10) reduces to198

q2
D =− 1

βD

∂φD

∂rD
(38)

which on substitution into equation (37) yields199

qD
∂φD

∂t
− 1

βDrD

∂φD

∂rD
− 1

2βD

∂2φD

∂r2
D

= 0 (39)

To linearize the above equation, it is assumed that theqD term on the left-200

hand-side is approximatelyr−1
D (Odeh and Yang, 1979; Ikoku and Ramey, 1979;201

Wen et al., 2007), which certainly becomes true at very large times (Chen and Liu,202

1991). Applying the Laplace transform203

φ̂D(p) =
∫ ∞

0
φD(tD)e−ptDdtD (40)

then leads to the linear ordinary differential equation (assuming a zero initial204

condition)205

βDpφ̂D− dφ̂D

drD
− rD

2
d2φ̂D

dr2
D

= 0 (41)

subjected to206

φ̂D = φ̂wD, rD = rwD

φ̂D = 0, rD = ∞
(42)

which has the analytical solution207
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φ̂D = φ̂wD

(
rwD

rD

)1/2 K1[(8pβDrD)1/2]
K1[(8pβDrwD)1/2]

(43)

whereKn denotes annth order modified Bessel function of the second kind.208

To obtain an expression for the Laplace transform of the well-bore head,φ̂wD,209

equation (38) must first be substituted into equation (12) to get210

r2
cD

2
dφwD

dtD
−1− rwD

[
1

βDqD

∂φD

∂rD

]

rD=rwD

= 0 (44)

To linearize the above equation the remainingqD term is again assumed to be211

approximatelyr−1
D . Applying the Laplace transform and the initial condition in212

equation (13) then leads to the linear ordinary differential equation213

p
r2
cD

2
φ̂wD− 1

p
− r2

wD

βD

dφ̂D

∂rD

∣∣∣∣
rD=rwD

= 0 (45)

Differentiating equation (43) and substituting into equation (45) then yields214

φ̂wD =
p−1βDK1(x)

(rwD +0.5r2
cDpβD)K1(x)+ r3/2

wD(2pβD)1/2K0(x)
(46)

wherex2 = 8pβDrwD.215

Furthermore, it can be shown that for an infinitesimal well216

lim
rwD→0

φ̂D =
(

8β3
D

prD

)1/2

K1[(8pβDrD)1/2] (47)

Equations (43), (46) and (47) represent special cases of the more general prob-217

lem solved by Wen et al. (2007) who considered the Izbash (1931) equation,218

qn
D =−dφD/drD, wheren > 0.219
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Figure 3 compares the Laplace transform solution for the well-bore head given220

in equation (46) with the finite difference solution. For all simulations bothrwD221

andrcD were set to1. The Laplace transform solution was inverted numerically us-222

ing the de Hoog et al. (1982) algorithm. It can be seen that for very turbulent flow223

(i.e. βD/rD > 103), the correspondence between the Laplace transform and the224

finite difference solution is very good. It is also interesting to note that the finite225

difference solution results also correspond excellently with those presented by Wu226

(2002b) in his Figure 7. However, the good correspondence between the Laplace227

transform solution and the finite difference solution at small times is largely due228

to the well-bore storage dominating the head response. As shown in the next sec-229

tion, far away from the abstraction well, the small time response of the Laplace230

transform solution becomes inaccurate due to the linearization procedure. Nev-231

ertheless, this exercise builds more confidence into the accuracy of the small and232

intermediate time response of the finite difference solutions presented in this paper233

and by Wu (2002b).234

8 Similarity solution for large βD235

Interestingly, it can be shown that for largeβD, the Sen (1988) solution (equations236

26 and 27) reduces to237

rD

βD
φD = 1+

ζ
ζ+2

+ζ.ln

(
ζ

ζ+2

)
, ζ =

βDrD

tD
(48)

Figure 4 compares the finite difference solution with the Sen (1988) solution238

given in equation (27) for various values ofβD/rD, with the axes transformed to239
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emphasize largeβD/rD behavior. As with equation (48), it can be seen that for240

βD/rD > 103 the finite difference solution also converges to a single curve.241

Indeed, for the case of the infinitesimal well and largeβD a similarity solution242

does exist. Applying the DVT (dependent variable transform),u = rDφD/βD and243

the IVT, ζ = βDrD/tD, the problem defined by equations (9) and (38) reduces to244

the non-linear ordinary differential equation245

ζ
du
dζ

=
d
dζ

[(
u−ζ

du
dζ

)1/2
]

(49)

The boundary condition atrD = ∞ is satisfied by the form of the DVT. The246

boundary condition atrD = 0 and the initial condition are transformed by the IVT247

to (recall equation 24):248

u−ζ
du
dζ

= 1, ζ = 0

u = 1, ζ = ∞
(50)

Unfortunately, equation (49) is still highly non-linear and therefore difficult to249

solve. However, Figure 5 shows the finite difference solution, whenβD/rD > 103
250

and rD >> rwD. Note that the x-axis in Figure 5 isζ whereas in Figure 4 it is251

equivalent toζ−1. It can be seen that, according to the finite difference solution,252

the solution to equations (49) and (50) should have a log-log slope of around−2253

for largeζ and ultimately should equal 1 whenζ→ 0. There are several possible254

functions,ua(ζ) that satisfy this criteria. However, after many exercises studying255

different functions, it was found that256

ua = (1+ζ)−2 (51)
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was the best choice. A similar approach was adopted by Lockington (1997) to257

obtain approximate solutions to the Boussinesq equation.258

Figure 5 also compares the special case of the Sen (1988) solution given in259

equation (48), the Laplace transform solution (whenrw→ 0) as given in equation260

(47) and the proposed function given in equation (51). As seen in previous plots261

it is found that the Sen (1988) solution overestimates the finite difference solu-262

tion during small times, underestimates it during intermediate times but performs263

well during large times. The Laplace transform solution converges onto the finite264

difference solution faster than Sen’s solution although during small times it is un-265

derestimating considerably. This is due to its associated linearization procedure.266

The proposed function in equation (51), although not exact, accurately follows the267

finite difference solution during all times.268

It can also be shown that equation (51) is a more accurate solution to the269

similarity problem described by equations (49) and (50) than the special case of270

Sen’s solution given in equation (48). Because both equations (48) and equation271

(51) satisfy the boundary conditions in equation (50) exactly, it is necessary only272

to focus on equation (49). The error,εa associated with using an approximate273

solutionua(ζ)≈ u(ζ) can be quantified by (recall equation 49)274

εa = ζ
dua

dζ
− d

dζ

[(
ua−ζ

dua

dζ

)1/2
]

(52)

Substituting equation (48) into equation (52) yields275

εa = 1+
ζ

ζ+2
+ζ.ln

(
ζ

ζ+2

)
− 2

(ζ+2)2 (53)

whereas substituting equation (51) into equation (52) yields276
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εa =
1

(1+ζ)2

[
3ζ

(1+4ζ+3ζ2)1/2
− 2ζ

(1+ζ)

]
(54)

Figure 6 compares the error,εa associated with Sen’s solution and the pro-277

posed function(1+ ζ)−2 using equations (53) and (54) respectively. It is clear278

that(1+ζ)−2 consistently provides a better approximation to the true problem.279

9 Conclusions280

The derivation of Sen’s similarity solution has been examined in detail. Unfor-281

tunately, it fails to satisfy the crucial requirement that the initial and boundary282

conditions be reducible to similarity form (e.g. Kevorkian, 1990, p.8). Conse-283

quently, the concern of Camacho-V. and Vasquez-C. (1992), that Sen’s formula284

(equation (27)) is not a true similarity solution, is valid. Nevertheless, Sen’s for-285

mula correctly converges on to the large time approximation of Kelkar (2000) and286

Wu (2002a) (see Figure 2), which we have rigorously derived using the method287

of matched asymptotic expansion (see section 6). Furthermore, Sen’s solution be-288

comes an approximate similarity solution with the correct variable combinations289

for large flow rates (βD/rD >> 103) (see Figure 4 and compare equations (48) and290

(49)). However, it was found to slightly overestimate at small times and slightly291

underestimate at intermediate times as compared to the finite difference solution292

(see Figures 1 and 5).293

The method of Wen et al. (2007) was used to derive a new approximate Laplace294

transform solution (equations (43), (46) and (47)) for Forchheimer flow to a well,295

designed to work well for large times (tD >> 1) and large flow rates (βD/rD >296
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103). This was found to underestimate the finite difference solution considerably297

at small times but became increasingly accurate at large times (see Figure 5). Fur-298

thermore, the discrepancy at small times became unimportant within the well-bore299

due to the dominating effect of well-bore storage (see Figure 3).300

For large flow rates (βD/rD > 103), far away from the abstraction well (rD >>301

rwD) it was shown that the original problem of Forchheimer flow to a well col-302

lapses onto a similarity solution (see Figure 4 and equation (49)) which is accu-303

rately approximated byua = (1+ ζ)−2. A subsequent error analysis showed the304

aforementioned heuristic function to be significantly more accurate than the Sen305

(1988) solution whenβD/rD > 103 (see Figure 6).306

An exact solution for transient Forchheimer flow to a well does not currently307

exist. However, this paper has presented a number of approximate solutions that308

can be used to confidently verify a numerical model of transient Forchheimer flow309

to a well. At large times (i.e.tD >> 1) a numerical model should replicate the310

response provided by equation (36) (e.g. Figure 2). When the flow rate is very311

large (i.e. βD/rwD > 103) and the well-bore storage is significant (i.e.rcD >312

rwD), a numerical model should closely replicate the well-bore response given by313

equation (46) (e.g. Figure 3). When the flow rate is very large (i.e.βD/rD > 103)314

and the well radius can be assumed infinitesimally small (i.e.rD >> rwD), a315

numerical model should closely replicate the heuristic function given in equation316

(51) (e.g. Figure 5). Obviously, when the flow rate is very small (i.e.βD → 0) a317

numerical model should accord with solutions associated with Darcian flow.318
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10 Notation453

K hydraulic conductivity [LT−1];

m aquifer thickness [L];

p Laplace transform variable [-];

q water flux [LT−1];

Q abstraction rate [L3T−1];

r radial distance [L];

rc radius of well casing [L];

rw well radius [L];

Ss specific storage coefficient [L−1];

t time [T];

β turbulent flow coefficient [L−1T];

φ hydraulic head [L];

φw hydraulic head in the well-bore [L];

qD =−2πm2q/Q dimensionless water flux;

rD = r/m dimensionless radius;

rcD = rc/(S1/2
s m3/2) dimensionless radius of well casing;

rwD = rw/m dimensionless well radius;

tD = Kt/(Ssm2) dimensionless time;

βD =−Qβ/(2πm2) dimensionless turbulent flow coefficient;

φD =−2πmKφ/Q dimensionless hydraulic head;

φwD =−2πmKφw/Q dimensionless hydraulic head in the well-bore;

R= βDrD stretched dimensionless radius;

u = rDφD/βD dependant variable transform;

ζ = βDrD/tD independent variable transform;

ξ = r2
D/tD independent variable transform;

τ = β2
DtD stretched dimensionless time;454
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Figure 1: Comparison of the finite difference solution with the Sen (1988) solution
given in equation (27) for various values ofβD/rD.
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Figure 2: Comparison of the finite difference solution, the Sen (1988) solution
given in equation (27) and the large time approximation given in equation (36) for
various values ofβD/rD.
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Figure 3: Comparison of the finite difference solution with the Laplace trans-
form solution for the well-bore head given in equation (46) for various values of
βD/rwD.
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Figure 4: Comparison of the finite difference solution with the Sen (1988) solution
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