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Abstract The contribution of two blue-green algae species, Anabaena flos-aquae and Microcystis 16 

aeruginosa, to the formation of trihalomethanes (THMs) and haloacetic acids (HAAs) was 17 

investigated. The experiments examined the formation potential of these disinfection by-products 18 

(DBPs) from both algae cells and extracellular organic matter (EOM) during four algal growth 19 

phases. Algal cells and EOM of Anabaena and Microcystis exhibited a high potential for DBP 20 

formation. Yields of total THMs (TTHM) and total HAAs (THAA) were closely related to the 21 

growth phase. Reactivity of EOM from Anabaena was slightly higher than corresponding cells, 22 

while the opposite result was found for Microcystis. Specific DBP yields (yield/unit C) of 23 

Anabaena were in the range of 2-11mol/mmol C for TTHM and 2-17mol/mmol C for THAA, 24 

while those of Microcystis were slightly higher. With regard to the distributions of individual 25 

THM and HAA compounds, differences were observed between the algae species and also 26 

between cells and EOM. The presence of bromide shifted the dominant compounds from HAAs to 27 

THMs.  28 

 29 

Keywords algae; anabaena flos-aquae; microcystis aeruginosa; disinfection byproducts; 30 

trihalomethanes; haloacetic acids.  31 
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INTRODUCTION 37 

Algae are ubiquitous in rivers, reservoirs and lakes. During algal blooming seasons, the increase of 38 

algae cells and their excreted metabolic substances may cause a series of problems for water 39 

treatment: (1) undesirable taste and odour; (2) potential toxicity concerns, particularly with blue-40 

green algae which may excrete algal toxins; (3) interference by both algal cells and their metabolic 41 

substances with the coagulation process (Plummer and Edzwald, 2002;  Takaara et al., 2007;  42 

Henderson et al., 2008); (4) contribution to total organic carbon and disinfection by-product (DBP) 43 

formation. Algae cells contain a wide range of organic nitrogen compounds, such as 44 

polysaccharides, proteins, peptides, amino sugars and traces of other organic acids. These materials 45 

will be excreted as metabolic substances during growth through diffusion driven by the equilibrium 46 

between intra- and extracellular concentration, often referred to as extracellular organic matter 47 

(EOM). The cell wall consists of cross-linked peptide chains of N-acetyglucosamine and N-48 

acetylmuramic acids and contains other organic nitrogen compounds as well. The irreversible 49 

degradation of cell wall surface is considered to be another EOM material (Watt, 1966). EOM 50 

released by diffusion is mostly found during the exponential growth phase with low molecular 51 

weight intermediate products such as glycolic and amino acids, while EOM from senescent cells are 52 

those with high molecular weight products, such as polysaccharides, which occur often in the later 53 

growth phases of algae. All these organic compounds may contribute to DBP formation and 54 

particularly to prominent DBP species such as trihalomethanes (THMs) and haloacetic acids 55 

(HAAs) (Scully et al., 1988;  Hureiki et al., 1994;  Westerhoff and Mash, 2002). The potential role 56 

of algae (cells and EOM) in DBP formation has been considered in several studies in the past two 57 

decades (Wardlaw et al., 1991;  Graham et al., 1998;  Glezer et al., 1999;  Plummer and Edzwald, 58 

2001;  Nguyen et al., 2005).  59 

 60 

The formation of THMs varies according to algae species, growth phase and also the chlorination 61 
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conditions (e.g. pH, temperature, contact time). Under similar chlorination conditions (pH 7, 24h 62 

contact time, 20-24oC), the reported yields of THMs from algal biomass range from 3.5 g 63 

CHCl3/mg TOC to 7.3 g CHCl3/mg TOC, and those from EOM were similar, ranging from 3.7 g 64 

CHCl3/mg TOC to 8.7 g CHCl3/mg TOC (Wardlaw et al., 1991). A difference was observed 65 

between algal biomass and EOM when extending the contact time (Plummer and Edzwald, 2001), 66 

partly due to the release of intracellular organic matter resulting from cell lysis.  67 

 68 

There has been very little research to-date on the role of algae in HAA formation. HAA yield from 69 

EOM extracted from a green algae, Senedesmus, was 60 g total HAA/mg TOC, and green algae 70 

have been argued to be the most productive in THM formation as compared to blue-green algae and 71 

diatoms (Nguyen et al., 2005). However, contradictory results were found in other research, where 72 

EOM extracted from blue-green algae was reported to be the most reactive, followed by EOM from 73 

diatoms and green algae (Plummer and Edzwald, 2001). 74 

 75 

It is clear that the information on HAA formation from algae is insufficient, particularly the role of 76 

algal cells. Water utilities that apply pre-chlorination may cause the release of intracellular organic 77 

matter (IOM) from the disruption of algal cells, and this IOM can be a significant DBP precursor. 78 

The potential of both algal cells and extracellular organic matter (EOM) to form THMs and HAAs 79 

was investigated in this study. Two blue-green algal species, Anabaena flos-aqua and Microcystis 80 

aeruginosa were selected, as they are common species in UK surface waters. Also, blue-green algae 81 

are nitrogen fixers and liberate up to 45% of their fixed nitrogen as organic-N (Westerhoff and 82 

Mash, 2002), which may lead them to be significant contributors to THM and HAA formation. 83 

Thus, previous studies have indicated that chlorination of amino acids can form an unstable 84 

intermediate dichloroacetonitrile (DCAN), which will continue to react with chlorine to form both 85 

THMs and HAAs (Ueno et al., 1996;  Reckhow et al., 2001). In addition, other organic-N 86 
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compounds such as proteins and amino sugars contain significant amount of di-HAA active sites 87 

(Croué et al., 2000;  Hwang et al., 2001).  In this paper several aspects will be discussed: (1) the 88 

difference between algal cells and EOM in total DBP formation, specific DBP yield (yield/unit C 89 

used) and DBP species distribution; (2) the influence of algal growth phase (3) the influence of 90 

algae species; (4) interactions between algal cells and EOM in DBP formation; and (5) the relative 91 

importance of bromide on total DBP formation and individual DBP species distribution in the 92 

presence of algae. 93 

 94 

MATERIALS AND METHODS 95 

Cultivation of Algae 96 

Two axenic stock cultures of Anabaena flos-aquae and Microcystis aeruginosa were obtained from 97 

the Culture Collection of Algae and Protozoa (CCAP), Windermere, UK and Institut Pasteur, 98 

France, respectively. Both species are blue-green algae. Anabaena flos-aquae grows in long 99 

filaments of vegetative cells while Microcystis aeruginosa is usually observed as individual 100 

spherical cells.  101 

 102 

Media preparation and cultivation procedures of both algal species were followed strictly with the 103 

instructions provided by the suppliers to achieve the optimal growth of algae. In brief, stock 104 

cultures of both species were firstly inoculated into an inorganic growth medium and incubated 105 

until the cell density indicated an optimal growth for further sub-culturing. Sub-cultured samples 106 

were placed in a shaking water bath for homogenous mixing, with temperature controlled at 20  107 

1oC. Cool white fluorescent-light was provided for illumination in 12h light/12h dark cycles, and 108 

sufficient aeration was supplied. With each algae species, samples for different culture periods were 109 

run in batch without any replacement or replenishment of growth media. To prevent contamination, 110 



 5

the media used to culture both the algae species were sterilised by autoclaving and all operations 111 

with algae culture were undertaken under air filter and sterile conditions.  112 

 113 

Algal growth was monitored by measuring the concentration of chlorophyll-a. Two other 114 

commonly used methods, namely optical density measurement and cell number counting, were also 115 

conducted to confirm the results of the chlorophyll-a measurements. Methanol was used to extract 116 

chlorophyll-a from the two species according to the method created by Papista et al. (2002), which 117 

was slightly modified based on the ISO 10260 standard procedure (ISO, 1992). Due to the 118 

difficulties in cell counting for Anabaena, this measurement method was only carried out on 119 

Microcystis. Measurements of optical density at 730nm for OD730 and at 664nm and 750nm for 120 

methanol extracts were all done by a Shimadzu UV-2401 spectrophotometer with a 1-cm cell. 121 

Measurements were undertaken at least in duplicate to improve experimental accuracy. 122 

 123 

Separation of Cells and EOM 124 

To assess the contribution of algae to DBP formation over time, samples containing both algal cells 125 

and EOM were removed from the growth flasks at certain intervals throughout their growth phase 126 

and subjected to centrifugation. EOM was collected from the centrifugate after passing through a 127 

0.45-m Whatman membrane filter to remove any remaining cells. The separated cells from the 128 

centrifugation were washed three times and re-suspended in de-ionised water. Separated cells, 129 

EOM, as well as the original algae suspension before separation were transferred to 250ml amber 130 

bottles for chlorination tests. Duplicate quantities of the cell suspensions, EOM aliquots and 131 

original algae samples were taken for TOC determination (TOC analyser, Shimadzu Ltd, Japan).  132 

 133 

Chlorination and DBPs Analysis 134 
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All algae samples were adjusted to pH 7 by HCl before chlorination and buffered with phosphate to 135 

maintain the pH. Excess chlorine was applied based on a chlorine demand test conducted 136 

beforehand to ensure a substantial residual of chlorine (≥0.5 mg/L) after a 7-day chlorination period 137 

(DBP formation potential). All chlorinated samples were stored head-space free at 21oC in the dark 138 

for periods of 1 day and 7 days, in accordance with standard procedures (APHA, 1998). Bromide 139 

was also purposely spiked into some of the samples (6 mol/L) to investigate the effect of bromide 140 

on DBP formation.  141 

 142 

At the end of the chlorination period (either 1 day or 7 days), samples for THM analyses were 143 

collected head-space free in 40ml glass vials containing sodium thiosulphate quenching agent, 144 

while samples for HAA analyses were collected in vials with ammonia sulphate quenching agent. 145 

Residual chlorine was determined at the time of sample collection by using the DPD Standard 146 

Method 4500-Cl F (APHA, 1998) and pH was measured at the sampling times as well. The four 147 

chlorine- and bromine- containing THM compounds were extracted by liquid/liquid extraction with 148 

methyl tert-butyl ether (MtBE) and determined by gas chromatography and electron capture 149 

detection (GC/ECD) according to Standard Method 6232B (APHA, 1998) but with the minor 150 

modifications developed by Baribeau et al. (2005). The nine HAA (HAA9) compounds were 151 

quantified by liquid/liquid extraction with MtBE, followed by derivatisation with acidic methanol 152 

and finally by GC/ECD analysis in accordance with USEPA Method 552.3 (USEPA, 2003). To 153 

avoid degradation of DBP species, all samples were processed within 3 days after collection. All 154 

analyses were carried out in duplicate. In general, molar concentration units are used throughout the 155 

paper to present the data of DBP yield and to assist in the interpretation of results. Occasionally 156 

mass concentration units are used to enable comparison of the results with other published findings.  157 

 158 
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The potential complication of NH2Cl formation in the chlorination tests arising from the presence of 159 

(NH4)6Mo7O24•4H2O in the algal growth medium was believed to be insignificant owing its low 160 

concentration (1mg/L). In addition, the potential impact of the growth medium in terms of DBP 161 

formation can be neglected since the yield of THM and HAA compounds produced by the medium 162 

alone was found to be very low compared to those from samples with algae and EOM.  163 

 164 

RESULTS AND DISCUSSION 165 

Algal growth  166 

Fig. 1 shows the relationship between chlorophyll-a, optical density at 730nm (OD730) and DOC of 167 

EOM for Anabaena flos-aquae and Microcystis aeruginosa. Changes in chlorophyll-a are 168 

commonly used to distinguish the growth phases for blue-green algae. All four growth phases, 169 

namely, lag, exponential, stationary and death phase, can be distinguished. The lag phase of 170 

Anabaena and Microcystis lasted approximately 10 to 15 days, during which time barely any 171 

changes were observed in both chlorophyll-a and OD730. A dramatic increase in chlorophyll-a for 172 

both species indicated the start of the exponential phase, which lasted until Day 25 and Day 29 for 173 

Anabaena and Microcystis, respectively. For Anabaena, it was difficult to distinguish the transition 174 

from the exponential phase to the stationary phase based solely on chlorophyll-a, since the colour 175 

kept turning dark with culture time while the cell numbers seemed to stop increasing (based on 176 

OD730 value). The death phase was believed to have started at some point beyond Day 34 for 177 

Anabaena and Day 36 for Microcystis, when the pigment inside the cells began to fade resulting in 178 

a decrease in chlorophyll-a.   179 

 180 

The concentration of EOM excreted from both species increased steadily with culture age. 181 

Microcystis produced a much greater amount of EOM compared to Anabaena, which reached 2.26 182 

mg/L before the excretion of intracellular organic matter (IOM) from the autolysis of cells in the 183 
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death phase. Consistent with findings reported by Nguyen et al. (2005), a close linear relationship 184 

between chlorophyll-a and OD730 (R
2 = 0.97 for Anabaena and 0.98 for Microcystis) was observed. 185 

This suggests that OD730 can also be used as a parameter to indicate the growth of the two blue-186 

green algae. However, no correlations were found between TOC and chlorophyll-a or OD730. 187 
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    188 

Fig. 1. Growth curves for Anabaena flos-aquae and Microcystis aeruginosa.  189 

 190 

Total DBP Formation from Cells and EOM 191 

Fig. 2 shows that the total THM (TTHM) and total HAA (THAA) yield produced by Microcystis 192 

(cells and EOM) varied with growth age. During the lag phase, both the TTHM and THAA yield 193 

remained constant, with a slight increase at the beginning of the exponential phase. The yield 194 

fluctuated at the end of the exponential phase, then steadily increased in the stationary phase. The 195 

maximum yield of TTHM and THAA (without bromide spike) in cell samples of Microcystis was 196 

1.41 mol/L in the exponential phase and 3.06 mol/L in the later stationary phase. In the death 197 

phase, THAA formation from the cells and EOM decreased, while TTHM produced by EOM was 198 

increased. A similar trend was found for Anabaena (Huang et al., 2008), which suggests that IOM 199 

released due the autolysis of cells in later growth phases may favour THM formation over HAA 200 

formation.  201 

 202 



 9

For both algae species, cells exhibited a higher productivity in THM and HAA formation as 203 

compared to their corresponding EOM, as was also found with other algae species (Wachter, 1982;  204 

Graham et al., 1998;  Plummer and Edzwald, 2001). This implies that treatment to physically 205 

remove algal cells (without rupture) can be a more effective way to control DBP formation, while 206 

on the other hand pre-treatment such as pre-ozonation and pre-chlorination, which may cause cell 207 

breakage and the release of IOM, should be avoided if possible. 208 

 209 

The specific molar yield of DBPs, expressed as mol/mmol C, is normally used to indicate the 210 

reactivity of organic matter with chlorine, thereby allowing comparison between different types of 211 

organic matter and their significance in DBP formation. Contrary to earlier findings for Anabaena 212 

(Huang et al., 2008), the specific yield of both THMs and HAAs from the cells of Microcystis was 213 

about 2-3 times greater than that from EOM throughout the growth phases (Fig. 3). In the absence 214 

of bromide, the average value of specific yield produced by cells and EOM of Microcystis was 5.76 215 

and 3.47 mol/mmol C, respectively, for THMs, and 9.73 and 4.61 mol/mmol C, respectively, for 216 

HAAs. Similar levels of THMs were observed in Anabaena samples containing either cells or 217 

EOM. However, the specific yield of HAAs produced by Anabaena was slightly lower compared to 218 

Microcystis, perhaps due to its lower hydrophobic characteristics and HAA precursor content in 219 

general (Liang and Singer, 2003;  Hua and Reckhow, 2007).  220 

 221 

In contrast to the total yield observed with both algae species, the specific DBP yield was much less 222 

influenced by growth phase (Fig. 3). In the case of Microcystis, a peak in the specific yield of 223 

THMs and HAAs was observed at the end of the lag phase, but the pattern of yield was quite 224 

different for Anabaena which gave a greater specific yield in the later growth phases. Overall, for 225 

both algae under all the conditions investigated, the THM specific yield was ≤14 mol/mmol C, 226 

and the HAA specific yield was ≤ 24 mol/mmol C.  227 
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 228 

Potential interactions between cells and EOM were also investigated. The numerical sum of the 229 

DBPs formed individually by cells and EOM was compared with the yield produced by the two 230 

together. An antagonistic effect was observed with both algae species, although it was less apparent 231 

for Microcystis. With regard to individual DBPs, the interaction between cells and EOM had more 232 

of an impact on THM formation than HAA formation (Fig. 4a). Several reasons may help to explain 233 

the observed antagonistic effect. Firstly, cell debris may serve as an adsorbent for THMs and HAAs 234 

in chlorinated samples containing both cells and EOM. THMs are relatively hydrophobic and may 235 

be more readily adsorbed by cell material than the more hydrophilic HAAs, thereby explaining the 236 

greater apparent antagonistic effect for THMs than HAAs. Secondly, there may be interactive 237 

scavenging of THM or HAA intermediate species produced during chlorination leading to a 238 

consequent reduction in the final compounds, or interactions between intermediate compounds that 239 

react with the cells and EOM leading to other (non-THM/non-HAA) DBP compounds.  Similar 240 

antagonistic effects between substances with different chemical properties and polarity have also 241 

been reported in other studies (Kanokkantapong et al., 2006). Finally, the extent of cell breakage 242 

resulting in the release of organic matter to react with chlorine, which mainly depends on cell 243 

morphology and cell-to-chlorine ratio (Plummer and Edzwald, 2002), may also be responsible for 244 

the antagonistic effect. As shown in Fig. 4b, the antagonistic effect was much less obvious in the 245 

results corresponding to a 1-day chlorination period, in which the samples still had a high chlorine-246 

to-cell ratio.   247 



 11

 

0

1

2

3

4

5

0 10 20 30 40
Time (day)

T
ot

al
 T

H
M

 (
um

ol
/L

)

Cell EOM
Cell+Br EOM+Br

Lag Exponential Stat ionary Death

    

0

1

2

3

4

5

0 10 20 30 40
Time (day)

T
ot

al
 H

A
A

 (
um

ol
/L)

Cell EOM

Cell+Br EOM+Br

Lag Exponential Stationary Death

 248 

Fig. 2. Total THMFP and HAAFP for Microcystis cells and EOM (pH 7, 21oC, 7 days). 249 

 250 

0

6

12

18

24

30

0 10 20 30 40
Time (day)

T
ot

al
 T

H
M

/T
O

C
 (

um
ol

/m
m

ol
 C

)

Cell EOM
Cell+Br EOM+Br

Lag Exponential Stationary Death

   

0

6

12

18

24

30

0 10 20 30 40
Time (day)

T
ot

al
 H

A
A

/T
O

C
 (

um
ol

/m
m

ol
 C

)

Cell EOM
Cell+Br EOM+Br

Lag Exponential Stationary Death

 251 

Fig. 3. Specific total THMFP and HAAFP for Microcystis cells and EOM (pH 7, 21oC, 7 days). 252 
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(b) 257 

Fig. 4. Interaction effects between cells and EOM in DBP formation: (a) TTHM-FP and THAA-FP 258 

for Anabaena; (b) TTHM formation (1 day and 7 days) for Microcystis.  259 

 260 

HAA Speciation from Cells and EOM 261 

Apart from the total yield of DBPs, differences were also observed in the distribution of individual 262 

DBPs (mainly the HAA speciation) for cells versus EOM. Mono-HAA was the predominant species 263 

produced by both cells and EOM of Anabaena in the early growth phase (lag and exponential 264 

phase) (Fig. 5a). However, higher halogenated species became dominant when the growth phase 265 

progressed into the stationary phase, which was especially prominent in cell samples. For 266 

Microcystis, mono-HAA appeared only at the transition between the lag and exponential growth 267 

phases. The average ratio of tri-HAA to di-HAA was 1.2 umol/umol for cells and 0.66 umol/umol 268 

for EOM, which are comparable to the results of Nguyen et al. (2005) and Plummer and Edzwald 269 

(2001). The dissimilarity existing in individual HAA species distribution from the two algae species 270 

may be attributed to differences in the composition of individual algogenic organic matter (AOM), 271 

including both IOM and EOM.  272 

 273 
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In the early growth phase, EOM excreted from algae is mainly derived from a diffusion process 274 

driven by the equilibrium between intra- and extracellular concentrations (Nguyen et al., 2005) and 275 

is comprised of up to 90% polysaccharides and a small amount of protein, amino acids and other 276 

trace amounts of nitrogenous organic matter (Myklestad, 1995). The proportion of protein-related 277 

substances in EOM increases with time and usually reaches a maximum when IOM is released 278 

resulting from the autolysis of cells. The increasing proportion of proteinaceous material in EOM 279 

intensified the domination of di-HAA, as observed for both algae (Fig. 5), which is consistent with 280 

the suggestion that organic-N compounds contain active sites for di-HAA formation (Croué et al., 281 

2000;  Hwang et al., 2001). As compared to other algae species, Microcystis also produced a large 282 

amount of tri-HAA, especially in cell samples, in which tri-HAA accounted for nearly 60% of the 283 

total HAA formation. This may be attributed to the high hydrophobicity of algogenetic organic 284 

matter produced by Microcystis (Choi et al., 2004;  Henderson et al., 2008). A sharp increase in the 285 

tri-HAA ratio was observed in EOM samples during the death phase, which suggests that 286 

intracellular organic matter (IOM) from decaying cells of Microcystis can be a significant tri-HAA 287 

precursor. The reason for the appearance of a high proportion of mono-HAA from both algae 288 

species during the early growth phase is not clear, but polysaccharides, as the predominant 289 

metabolic substance, may be responsible for the production of low halogenated HAA species.  290 
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                                           (a)                                                                        (b) 292 

Fig. 5. Distribution of HAA compound groups (with bromide spike) from EOM of (a) Anabaena 293 

and (b) Microcystis. 294 

 295 

Impact of bromide on DBP formation 296 

Greater concentrations of HAAs compared to THMs were observed for both algae species in the 297 

absence of bromide as (Fig. 6), which is different from earlier findings obtained with green algae 298 

(Nguyen et al., 2005). Blue-green algae are nitrogen fixers which can excrete up to 45% of the total 299 

fixed nitrogen as organic-N, which supports the formation of HAA over THM and di-HAA over tri-300 

HAA when in a relatively high ratio to DOC (C/N < 15) (Westerhoff and Mash, 2002). 301 

Nevertheless, in the presence of bromide the DBP species shift from HAAs to THMs. This is 302 

consistent with the theory that bromide is more effectively incorporated into low UV-absorbing, 303 

low molecular weight and hydrophilic fractions, since more than 70% of AOM are hydrophilic 304 

(Choi et al., 2004;  Henderson et al., 2008). With regard to total DBP yield (THM and HAA), 305 

however, no significant change was evident in algae samples with a bromide spike compared to 306 

those without bromide; this was also reported by an earlier study of chlorination tests carried out on 307 

raw water under different bromide levels (Hua et al., 2006).  308 

 309 

The degree of bromine incorporation, on the other hand, varies from species to species and also 310 

changes with growth phase due to the alteration in AOM components (Fig. 7). To examine the 311 

degree of bromine substitution in DBP species, the bromine incorporation factor, n’ (Symons et al., 312 

1996), was calculated. It is defined as follows: 313 

 314 

For THMs:                               n’ =  THMBr3 (µmol/L) / TTHM  (µmol/L) 315 

where THMBr3 = [CHCl2Br] + 2[CHClBr2] + 3[CHBr3] 316 



 15

 317 

For HAAs:                               n’ = HAABr6 (µmol/L) / THAA (µmol/L) 318 

where HAABr6 = [MBAA] + [BCAA] + [BDCAA] + 2[DBAA] + 2[CDBAA] + 3[TBAA]  319 

and MBAA – monobromoacetic acid; BCAA – bromochloroacetic acid; BDCAA – bromodichloroacetic 320 

acid; DBAA – dibromoacetic acid; CDBAA – chlorodibromoacetic acid; TBAA – tribromoacetic acid 321 

 322 

During the lag phase, a similar amount of bromide was incorporated into precursor material from 323 

cells and EOM to form HAAs and THMs (Fig. 7). With increasing culture age, less bromide active 324 

sites were available to form brominated THMs, whereas in Anabaena some sites favoured HAA 325 

formation. A decrease in bromide incorporation into THMs with time was especially obvious for 326 

Microcystis, which might be due to the decrease in its hydrophilic content with culture age 327 

(Henderson et al., 2008). When the growth phase of both algae species progressed to the death 328 

phase, bromine incorporation appeared to become more active again.  329 

 330 

In terms of THM speciation, bromodichloromethane and dibromochloromethane were the two 331 

predominant THM species produced from cells and EOM of Anabaena, ranging from 65%-75% of 332 

total THM yield throughout the culture time. Microcystis produced a similar proportion of the two 333 

THM species during the lag and exponential phase, however the proportion of chloroform formed 334 

from cells increased from 22% to 38% after the growth phase progressed to the stationary phase, 335 

while a distinct decrease occurred for the two higher brominated species (CHBr2Cl and CHBr3). 336 

Changes in THM species distribution with culture age were less dramatic for the EOM of 337 

Microcystis. 338 

 339 

Compared to THMs, the characteristics of precursors have more of an impact on HAA species 340 

distribution with bromine incorporation. No MBAA was found with Anabaena throughout the 341 

growth phases, while TBAA produced by cells only appeared in the stationary phase and by EOM 342 



 16

in the exponential phase (Fig. 8). DBAA, BCAA and BDCAA were the three dominant brominated 343 

HAA species formed from Anabaena; however, BCAA was not detected until the mid-exponential 344 

phase and BDCAA was prominent in the stationary phase.  345 

 346 

Bromine incorporation seemed more extensive with AOM from Microcystis in the earlier growth 347 

phase as compared to Anabaena. Among the bromine incorporated HAA compounds, BDCAA, 348 

DBAA and CDBAA, were the three principal species observed with both cells and EOM of 349 

Microcystis in the exponential phase, accounting for more than 40% of total HAA formation (Fig. 350 

8). However, bromine incorporation weakened once the growth phase progressed to the stationary 351 

phase, resulting in a sharp decrease in all brominated HAA species, especially those with a higher 352 

degree of bromine incorporation. A small amount of TBAA was produced in the exponential phase 353 

but was absent later. In contrast, MBAA did not appear until the stationary phase for Microcystis.  354 
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                                        (a)                                                                             (b) 357 

Fig. 6. Total THM yield versus total HAA yield, (a) without bromide, and (b) with bromide (6 358 

mol/L). (diagonal line represents THM:HAA yield as 1:1)  359 

 360 
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Fig. 7. Br incorporation factor as a function of algal growth phase for (a) THMs and (b) HAAs. 363 
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                                     (a)                                                                             (b) 367 

Fig. 8. Individual HAA compound distribution in samples of (a) Anabaena, and (b) Microcystis 368 

(Day 16 and Day 34 were selected as the representative exponential phase and stationary phase, 369 

respectively, for Anabaena; Day 17 and Day 36, respectively, for Microcystis; EP: Exponential 370 

Phase; SP: Stationary Phase).  371 

 372 

Implications of the results of this study 373 
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Within the experimental limitations of this study, the cells and EOM of two prominent blue-green 374 

algae species have been shown to be significant THM and HAA precursors. As nitrogen fixers, 375 

blue-green algae contain large amounts of organic-N compounds and exert a high chlorine demand, 376 

thus decreasing the effectiveness of chlorine disinfection and leading to higher DBP formation. To 377 

further understand the relative contribution of AOM to DBP formation and link it with available 378 

information gained from other studies of natural organic matter (NOM), a comparison is made 379 

between the two algae species in this study and information concerning two river sources: the South 380 

Platte River and Suwannee River, located in the USA. The NOM of the South Platte River is 381 

derived from both allochthonous aromatic and acid constituents and autochthonous contents from 382 

phytoplankton and bacteria, while Suwannee River NOM is mainly derived from allochthonous 383 

tannings and lignins, consisting of a large amount of humic and fulvic acids (Croué et al., 1999). 384 

Table 1 shows that the specific yields of THM, DCAA and TCAA generated from the EOM of the 385 

two algae species are comparable to those produced by hydrophilic acid and neutral fractions 386 

isolated from the two river waters (Leenheer and Croué, 2003). However, slight differences exist 387 

with regard to the capacities of EOM in producing THM, DCAA and TCAA from algae and NOM 388 

fractions. This may be attributed to the existence of proteinaceous substances, accounting for 30% 389 

of total AOM in the later stationary phase, which affects the dominance of HAAs relative to THMs, 390 

and di-HAA to tri-HAA. 391 

 392 

Algae cells have a much higher productivity in DBP formation as compared to EOM, the yield of 393 

which is similar to that from hydrophobic fractions, especially those having high humic and fulvic 394 

acid content. It can be deduced that N-enriched aromatic substances and other hydrophobic AOM 395 

are mainly retained in cells, leading to a greater formation of TCAA over DCAA and THM. Hong 396 

et al. (2008) reported that blue-green algal cells contained predominantly proteins (>50%), 397 

carbohydrates and lipids, and showed that the specific HAA formation for a model algal-derived 398 
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protein (bovine serum albumin) was an order of magnitude greater than a model carbohydrate and 399 

lipid. Since the formation of DBPs from cells can occur from the chlorination of intact cell wall or 400 

lysing intracellular organic matter, it is difficult to confirm whether the cell wall is also a significant 401 

DBP precursor. Overall, the findings in this study are consistent with those of Hong et al. (2008) 402 

(for Oscillatoria sp.) that cells of blue-green algae may contribute as significantly to the DBP 403 

precursor pool as humic and fulvic acids. 404 

 405 

Table 1. Comparison of DBP formation from blue-green algae with river-derived NOM fractions 406 

 

 

C/N 

ratio 

(mmol/mmol) 

Specific 

THMFP 

(g/mg DOC) 

Specific 

DCAAFP  

(g/mg DOC) 

Specific 

TCAAFP 

(g/mg DOC) 

 Anabaena*       Cells    na** 50 29 49 

                        EOM na 26 26 22 

 Microcystis*   Cells na 61 71 93 

                        EOM na 28 42 24 

South Platter River, CO (Leenheer and Croué, 2003)  

Hydrophobic:   Acid 51.3 46 14 28 

                         Neutral   32.7 29 12 16 

Transphilic:      Acid                   21.0 39 14 21 

                         Neutral  4.7 25 20 12 

Hydrophilic:     Acid 17.5 35 16 24 

                         Neutral 10.5 28 19 15 

Suwannee River, GA (Leenheer and Croué, 2003) 

Hydrophobic:   Acid 81.7 55 25 59 
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                         Neutral   54.8 51 24 51 

Transphilic:      Acid                   53.7 40 23 57 

                         Neutral  35.0 40 22 44 

Hydrophilic:     Acid 39.7 36 22 36 

                         Neutral 17.5 23 22 26 

                         Base 9.3 29 39 31 

*data was obtained when algae were in stationary phase with absence of bromide (Day 34 for 407 

Anabaena and Day 36 for Microcystis) 408 

**na – not available 409 

 410 

CONCLUSIONS 411 

This has study examined the comparative contribution of two common UK blue-green algae, 412 

Anabaena flos-aquae and Microcystis aeruginosa, to the formation of THMs and HAAs during 413 

chlorination. The following summarises the key findings from this research: 414 

 A close relationship was found between TTHM and THAA yield with growth phase and a direct 415 

association with biomass (cells and EOM). In contrast, no clear association was found for the 416 

specific yield (per unit carbon) with the growth phase. 417 

 For both algae species, the absolute yield of TTHM and THAA from cells was substantially 418 

greater than that from EOM. However, the specific yield from EOM was slightly greater than 419 

cells for Anabaena, while the opposite trend was found for Microcystis.  420 

 An antagonistic interaction between cells and EOM was observed for both algae species with 421 

regard to THM and HAA formation, though it is less apparent for Microcystis than Anabaena. 422 

 The distribution of HAA compounds varies with algae species as well as growth phase. For 423 

Anabaena cells, mono-HAA is the predominant HAA species during the lag and early 424 

exponential phase, while di- and tri-HAA species dominate in the later growth phases; in EOM 425 
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samples mono-HAA is a major species throughout the growth phases up to the death phase. For 426 

Microcystis, mono-HAA only briefly appeared in the early exponential phase in samples of both 427 

cells and EOM. In cell samples, the proportion of tri-HAA was slightly higher than di-HAA, 428 

whereas di-HAA was dominant in EOM samples. 429 

 The presence of bromide shifts the relative DBP speciation from HAAs to THMs. 430 

 The degree of bromine incorporation changes with growth age. Higher bromine incorporation 431 

into THMs occurred at the early growth phase and decreased until the later stationary phase. A 432 

similar trend was found with Microcystis samples with regard to the bromination of HAAs, 433 

while the extent of bromine incorporation increased with the growth age in samples containing 434 

Anabaena. 435 

 The behaviour of algal cells was similar to the hydrophobic fractions isolated from river waters 436 

in terms of reactivity to form DBPs, while the behaviour of algal EOM was similar to the 437 

hydrophilic fractions. 438 

 The chlorination tests were conducted under standardized conditions to identify the maximum 439 

potential for by-product formation and to compare the DBP formation with the two algal 440 

species. Thus, the chlorination conditions used in this study are very different from those 441 

applied in practical water treatment processes (e.g. chlorine dose), and therefore may not reflect 442 

by-product formation under actual water treatment conditions.  443 
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