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A generic hybrid model for bulk

elastodynamics, with application to ultrasonic

Non-Destructive Evaluation
P. Rajagopal, E. A. Skelton, W. Choi, M. J. S. Lowe and R. V. Craster

Abstract

Practical ultrasonic inspection requires modeling tools that enable rapid and accurate visualisation; due to the

increasing sophistication of practical inspection it is becoming increasingly difficult to use a single modelling method

to represent an entire inspection process. Hybrid models that utilize different or interacting numerical schemes in

different regions, to use their relative advantages to maximal effect, are attractive in this context, but are usually custom-

made for bespoke applications or sets of modelling methods.The limitation of hybrid schemes to particular modelling

techniques is shown here to be related to their fundamental formulation. As a result it becomes clear that a formalism

to generalize hybrid schemes can be developed: an example ofhow such a generic hybrid modelling interface is

constructed is illustrated for the abstraction of bulk ultrasonic wave phenomena, common in practical inspection

problems. This interface is then adapted to work within a prototype hybrid model consisting of two smaller Finite

Element model-domains, and explicitly demonstrated for bulk ultrasonic wave propagation and scattering examples.

Sources of error and ways of improving the accuracy of the interface are also discussed.

I. I NTRODUCTION

Simulators capable of modelling an entire inspection process are of abiding interest to the ultrasonic Non De-

structive Evaluation (NDE) community; the creation of fast, accurate and efficient numerical techniques is becoming

even more important given the ever increasing sophistication of practical ultrasonic inspection. A desirable goal

is to model the complete experimental situation leading to the direct comparison of simulation with measurement.

Such tools are also attractive for inspection qualificationin industries with stringent safety standards such as nuclear

power generation. The ever increasing complexity and scaleof the features to be inspected, and consequently of the

transduction, make it increasingly challenging to apply a single modelling method to an entire inspection process.

The aim of this article is to present a generic methodology capable of addressing these issues.
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Over many years mesh-based numerical solution procedures such as Finite Element (FE) and Finite Difference

(FD) methods have emerged as important tools in the quantitative analysis of ultrasonic wave problems, especially

in studying scattering phenomena [1]–[4]. Robust and efficient commercial packages are now widely available,

(for example, [5] ABAQUS, [6] PZFlex and [7] Comsol) and provide good support as well as allowing for the

rapid transfer of techniques to industry. Solutions to somekey past impediments to the numerical modelling of

wave phenomena, such as representing unbounded domains or complex features and geometries have now become

accessible to the wider community via Perfectly Matched Layers and absorbing layers [4], [8]–[11] and have

been directly implemented in commercial packages [12], [13]. However, these methods still lead to an enormous

computational cost when dealing with large volumes of material and representing complex materials; modelling

realistic transduction also remains a challenge. Moreovereach defect study requires a specific model and thus many

numerically intensive runs are required to understand scattering from multiple defects or defect configurations, even

if the transduction remains the same. Commercial alternatives to such purely numerical schemes, (for example,

analytical solution and ray-tracing based software such asCIVA, [14]) do exist and are able to handle a range of

transduction methods and wave propagation through complexfeatures; however modelling wave scattering from

complex defects remains a challenge for these methods.

To handle this increasing complexity of inspection one can treat the total process as a series of modules comprising

wave excitation, scattering, reception, and post-processing, as for example, shown in Figure 1. Then the relative

merits of different methods in dealing with one or more of such modules are harnessed by linking them up in a

global ‘hybrid’ model; a long history within the ultrasonicNDE community [15]–[18] of such models exists. But

this effort was primarily devoted to specific applications or problems, or particular combinations of analytical or

numerical methods, and thus required the development and maintenance of specialist codes to implement them.

Similarly the medical ultrasound community has approachedFE-FE meshes in the past [19], however that was

limited to simpler acoustic/acoustic coupling only and notthe more detailed solid/solid hybrid methods that are

required for coupled NDE simulations.

The aim of the current article is to develop general procedures that allow the creation of hybrid models combining

any set of chosen modelling methods. It is also the aim to arrive at methods that can be readily implemented without

modifying the underlying modelling procedures, thereforeallowing commercial packages to be utilized. As a first

step, in this paper we present the development and validation of such an approach for two-dimensional cases.

This paper is organized as follows. Section II provides a description of the key step in achieving hybrid models,

that is, the decomposition of the total inspection process into a number of constituent modules. In view of our

interest in generalizing this process, the basis and validity of this modular approach is discussed, incorporating

insights from other disciplines where a similar process is employed. In Section III an integral-representation based

formalism for hybrid models is developed, showing how they become limited to specific sets of underlying methods.

A generalization is shown to emerge from conditions where modules comprising wave excitation, scattering and

reception can further be split and inter-related by an intermediate, wave propagation module. Section IV develops

a scheme for such a generic wave propagator module for ultrasonic wave phenomena in the bulk of an infinite
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homogeneous isotropic medium; this uses the fundamental physics of the problem permitting analysis in two

dimensions. An important aim of this article is to have a formulation that is implementable using standard commercial

software; this, and validation of the scheme is illustratedin Section V. A prototype hybrid model is considered,

where, for simplicity, the FE method is used to represent domains enclosing both the wave excitation and the

forward locations. This adaptation is validated against results from full-FE simulations of wave propagation and

scattering by a simple barrier, and then a realistic practical example is shown, comprising scattering from a row of

side-drilled holes. Finally, the paper ends with discussion and concluding remarks in Section VI.

II. BACKGROUND

Hybrid models have a long history within the context of elastic wave scattering studies necessitated by the

intrinsic underlying difficulty of having two, often disparate, characteristic dimensions occurring simultaneously,

namely the wavelength and the characteristic defect dimension [20]. Elastic wave scattering from a defect has to

satisfy Navier’s equation of motion,
∂σij
∂xj

+ fi − ρ
∂2ui
∂t2

= 0, (1)

or equivalently,

Cijkl
∂2uk
∂xj∂xl

− ρ
∂2ui
∂t2

+ fi = 0, (2)

as well as the conditions on the boundaries of artifacts or obstacles, which in NDE applications are usually either

those of a

cavity (zero traction) → (σijnj)
boundary = 0 or (3)

inclusion (continuous fields) → (ui)
substrate = (ui)

inclusion

and

(σijnj)
substrate = (σijnj)

inclusion (4)

whereσij denotes the ij component of the stress tensor,ni is the i th component of the outward pointing normal

to the defect,fi is the i th component of the body force vector andui is the i th component of the displacement

vector; for a linear Hookean elastic solid theCijkl encapsulate the constitutive stress-strain relation and the Einstein

summation notation is assumed. The elastic wave scatteringproblem can thus be seen as that of solving the partial

differential equation (2) with boundary conditions (3) or (4) [21]. Alternatively, solutions can be found by deriving

the material response to singular sources, that is Green’s functions, and treating the scatterer as a superposition

of secondary sources using Huygens’ principle and far-fieldradiation conditions [22]. In either case, because of

the competing dimensions involved, full analytical solutions exist only for a small class of defect geometries with

only regular shapes such as a sphere or an infinite circular cylinder studied over the entire frequency range of

interest. Therefore, from the beginning of the subject, approximate solution methods were of interest. An intuitive

progression is to consider solving separately for the wave field satisfying just the wave equation, and one that also

March 1, 2012 DRAFT



IEEE TRANSACTIONS 4

satisfies the boundary conditions at an obstacle: relating these two separate local solutions then leads to the global

solution; the first hybrid models for elastic wave scattering problems such as the method of matched asymptotic

expansion, introduced for elastodynamics [23]–[25] in the1970’s used this breakdown of the field.

Although this allows one to approach scattering involving awider class of defect shapes such as spheroids

or ellipsoids, analytic matched asymptotic approaches arefundamentally limited to low-frequencies; the need to

study ever more complex scatterers meant that other techniques were required to represent the vicinity of the

defect. The rapid rise of computational capabilities in thelast two decades also allowed for the possibility of using

purely numerical methods. A literature survey shows that indealing with these challenges similar hybrid modelling

methods have since been developed across a range of areas where elastic wave scattering is employed as a sensing

tool [25]–[30]. However, the hybrid models used in the present work are perhaps closest in their intent and form, to

the global-local method originating in the structural mechanics community and the domain reduction method from

the field of geophysics.

Originally proposed [31] in the 1970’s, the global-local method involves a two-step solution procedure, where a

global solution is first found using variational (e.g., Rayleigh-Ritz) methods and the results are fed into the local

area model represented by standard FE analysis. The technique was extended to study fusing two numerical methods

[32] and has found extensive application in aircraft structural analysis and in the fracture mechanics of composites

[33]–[35]. In the last decade the method also found application in ultrasonic NDE research as a powerful way

of studying large scale problems especially in multilayer and other waveguide scattering problems: these methods

involve mode matching at the boundary of the local region, which is modelled using numerical methods such as

FE or the Boundary Element method [36], [37].

Complementary to the scattering problems created by complex defect geometries or topologies geophysicists are

also concerned with representing large propagation distances and constructing realistic three-dimensional models.

Thus several researchers (see for example [38]–[40]) proposed a two-step analysis that would involve a rapid

computation of global fields for a simplified material, combined with a more involved analysis of a small local

volume enclosing defects, complex material or topography.This work has culminated in the FE-FD coupling

procedure for three-dimensional problems called the domain reduction method [38] that has recently become very

popular [41] for studying fully three-dimensional problems.

Despite the diverse origins, and the surprisingly vast number of practical implementation schemes, reported in

the literature all such hybrid methods share a formalism that is not often stated explicitly. In a very recent paper

set in the context of geophysics, Oprsal et al [42] have elegantly summarized, as well as unified, developments

with these varied fields, under a simple and rigorous mathematical framework. In the following section, we follow

their approach to set out the fundamental basis for and justification behind using hybrid models for elastodynamic

problems. This exercise will also help in appreciating the nuances, capabilities and limitations of domain-reduction

hybrid models. However, in preparation for the developments later on in this paper, we describe the formalism in

terms of source-solutions rather than as direct solutions to the partial differential equations in (2).
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III. G ENERALIZING THE HYBRID MODELLING PROCEDURE

A. Formalism and hybrid modelling paradigm

Let PT be the total problem containing the excitation sources and the defective region and posed in a linear elastic

medium. Conventionally, this entire problem would be studied using a single method through its entirety, either

analytical or numerical. As discussed in Section II, hybridmodels instead solve separately the material response

to applied excitation, and the response of a scatterer to theincident wave field, and then connect them to yield the

solution to the total problem. Stated formally, thus hybridmodels as illustrated in Figure 2(a) and 2(b), propose to

solve two auxiliary problemsPG andPL, that together yield the total result.

In the first problemPG as shown in Figure 2(a), the medium is idealized to be defect-free and with the same

material properties as the actual problem. The incident field fieldincident = {uin,σin} is then computed as the

response of the resulting medium to loading conditions. In the application of interest here the incident field is

generally a pulse of finite duration. However, for certain aspects of the method it is convenient to perform a

Fourier transform with respect to time and to consider the individual time-harmonic components of the signal, later

recombining them for the time-dependent result.

For time-harmonic motion it is assumed that the time-variation of all the variables is proportional toexp(+iωt),

a factor which is suppressed henceforth. Using an integral representation theorem [43] and retaining the same origin

and coordinate system as for the total problem as shown in Figure 2(a), this incident field is given by:

uink (r) =

∫

CS

[

σloadij (s))Gi;k(r|s)

−Σij;k(((r|s)uloadi (s))
]

· njdS, r ∈ V+ (5)

where the integral is taken around the contourCS , enclosing the source, shown in Figure 2(a);Gk;i(p|r) is the

component of the second rank Green’s displacement tensor giving the displacement component in theêk direction at

positionp due to a unit point forcefi = δ(p−r)êi applied in thêei direction atr andΣkj;i(p|r) is the corresponding

component of the third rank Green’s stress tensor; bothG andΣ are symmetric inp andr. The three-dimensional

delta functionδ(p− r) has the property:

∫

V+

[δ ((p− r) êi)uk(p)] dV =







uk(r), r ∈ V+

0, otherwise
(6)

whereV+ is the unbounded region outside the loading region.nj are the components of inward normal to an

arbitrary contourCS suited to the calculation of the material response to the loading conditions.

Realistic loading conditions are usually complicated and equation (5) is not evaluated analytically. Let us assume

that the incident field is obtained using some solution procedure M1. The material responsefieldincident =

{uin,σin} is computed everywhere - in particular within the small regionR2 enclosing the defective region in the

original problem.

In the second problemPL shown in Figure 2(b), field quantities obtained fromPG act as excitation on the

boundaries of scatterers, leading to the responsefieldscattered = {usc,σsc}. In general the defective region could
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contain material, as well as geometric discontinuities, acting as scatterers, but for simplicity, here we assume that

it only contains a finite numberN of the latter. Again, the scattered field is expressed using the representation

theorem,

usck (r) =

∫

CD

[

α(s)σinij (s)Gi;k(r|s)

−Σij;k((r|s)α(s)uini (s))
]

· njdS, r ∈ V+ (7)

as in Achenbach [44] whereα(s) now are general scattering coefficients and the contourCD =
∑N

m=1 Sm is the

sum of all surfaces of the individual scatterers.

Eq. (7) is also usually not solved analytically and a methodM2 is chosen, that is more accurate in the vicinity

of the scatterers, to solve the problem.

In the final step, the linear behaviour of the medium is invoked and the total field{utot,σtot} is obtained as a

linear superposition of the two computed fields:

fieldtotal = fieldincident + fieldscattered (8)

On the boundaryβ2 of the defective region in the total problem, this step also ensures the continuity of the wave

fields thus avoiding spurious reflections:

utoti (β−

2 ) = uini (β2) + usci (β+
2 ) (9)

whereβ−

2 , β
+
2 denote the regions immediately inside and outsideβ2 respectively. Linearity means the tractions can

also be represented as a sum:

T toti (β−

2 ) = T ini (β2) + T sci (β+
2 ). (10)

It is instructive to examine the steps involved in the schemeto gain crucial insight into the validity, capabilities

and limitations of the procedure. Firstly, the superposition of wave fields as in Eq. (8), and also in Eqs. (9,10), are

only achieved if the material response is linear. The use of linearity implicitly renders the boundaryβ2 permeable

for the scattered field, instead of itself becoming a cause offurther scattering. These hybrid models can have the

properties of the defect domain non-elastic, as long as theyretain their linear behaviour. Scatterers with non-linear

behaviour can also be studied as long as they are located awayfrom the boundaries. However, the hybrid model

as derived here cannot treat non-linear media in general andfor such applications, alternative formulations must be

found [42].

Finally, though it may not be immediately apparent, it is thestep in Eq. (8) that ties hybrid models to specific

applications. The summation in Eq. (8) requires that the scattered field be known over the whole of the original

model space. However, because the calculation in Eq. (7) must be performed to high accuracy, it is only economical

to use the methodM2 chosen for this purpose, to compute the scattered field within the small regionβ2 enclosing
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the defective region. Therefore some special method must bedevised to then obtain the scattered field elsewhere,

which then, is inevitably limited to the two solution proceduresM1 andM2. We will look into a scheme to overcome

this issue in the next section.

B. Generalized procedure

Examination of Eq.s (5) and (7) reveals a scheme to generalize this method, as illustrated in Figure 2(c) and

2(d). The excitation and defect regions are assumed, respectively, to be located within fictitious regionsR1 andR2

of the original total problem to be studied. We take the response of the regionR1, to the applied loading, to be

calculated using the methodM1, giving the incident field generated by the sources within regionR1,

fieldincident(s) |s∈R1
= Response(R1)|

Applied loading
M1

(11)

Now, assuming that the bulk material has a known response, and thus knowing this incident field on the boundary

β1, we can express its value elsewhere using the representation theorem,

uink (r) =

∫

β1

[

σinij (s)Gi;k(r|s)

−Σij;k((r|s)uini (s))
]

· njdS, r ∈ V+. (12)

Next let the response of the regionR2 to the incident field be obtained using the methodM2, yielding the scattered

field,

fieldscattered(s) |s∈R2
= Response(R2)|

Incident field
M2

. (13)

Using this information on the boundaryβ2 then, we can obtain the global scattered field using the knownmaterial

response again,

usck (r) =

∫

β2

[

σscij (s)Gi;k(r|s)

−Σij;k((r|s)usci (s))] · njdS, r ∈ V+. (14)

The response of the medium to the incident field and the scattered field, separated according to (8) in this way,

as the local response to the applied loading in the first region and as secondary sources within the second (defect)

region, respectively, can be viewed as a general wave propagator interface between the two model domains:

fieldglobal = Response(R −R1 −R2)
∣

∣

∣

Incident/ scattered field

M1/M2

(15)

whereR−R1 −R2 is the idealized medium obtained by excluding bothR1 andR2 from the total region of study,

R. This approach, in which the field in each local region is calculated separately, is appropriate to applications in

NDE because the interest there is in the propagation and scattering of finite-duration pulses, such that the behaviour

in each region can be separated in time. This scheme can also handle multiple scattering domains, as long as the
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event is separable in time. On the other hand, if the interestis to model simultaneous coupled behaviour in the

multiple regions, then a modification of this procedure to a fully-coupled form would be necessary; this is outside

the scope of this paper.

Since the contoursβ1 andβ2 will be chosen to be simple ones, we can evaluate Eqs (15) in a straightforward

manner. Coded up in a convenient manner, they can then be usedto interface any two methodsM1 andM2 in a

customised hybrid model.

Thus the total problem is split into two local ones (11) and (13), and the local fields so obtained are globalized

using the material response, as in Eq (15). The total solution is then again obtained using the linear superposition

described in Eq. (8). This is the gist of the generalization procedure proposed here.

In the following section, an example of a generic wave propagator module is considered for the common problem

of the propagation of ultrasonic waves in the bulk of a homogeneous isotropic medium.

IV. A GENERIC WAVE PROPAGATOR

A. Scheme

We consider ultrasonic phenomena in the bulk of a homogeneous isotropic medium, which is a common

abstraction for a large class of ultrasonic wave inspectionproblems. The physics of this abstraction also permits

analysis by in-plane elasticity. We begin with the assumption that the potentials for the field generated by the

sources, together with their normal gradients, are known through some mechanism on the boundaryβ1 of region

R1. The use of potentials provides generality since they can beused to conveniently obtain any of the different field

quantities such as displacements, velocities, stresses ortractions used primarily in various commercial packages. We

take the field propagated from region 1 as the incident field onregion 2, and vice versa. The propagator integrals

can then be written as, for example,

φin(r2) =

∫

β1

[

φin(r1)∇1Gφ(r2|r1)

−Gφ(r2|r1)∇1φ
in(r1)

]

· ndS, (16)

ψin(r2) =

∫

β1

[

ψin(r1)∇1Gψ(r2|r1)

−Gψ(r2|r1)∇1ψ
in(r1)

]

· ndS, (17)

where the subscripti, i = 1, 2 refers to points on the boundaryβi of regionRi andφ andψ are compressive and

shear potentials, respectively, from which the displacements are calculated as

ux =
∂φ

∂x
+
∂ψ

∂y
, (18)

uy =
∂φ

∂y
−
∂ψ

∂x
. (19)

The potentials satisfy the homogeneous Helmholtz equations

(

∇2 + ω2γ2
)

φ = 0 (20)
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and
(

∇2 + ω2
)

ψ = 0, (21)

in which γ is the ratio of the shear wave speed to the compressional wavespeed in the elastic medium. The

corresponding Greens functions satisfy the inhomogeneousequations

(

∇2
1 + ω2γ2

)

Gφ(r2|r1) = δ(r2 − r1) (22)

and
(

∇2
1 + ω2

)

Gψ(r2|r1) = δ(r2 − r1) (23)

whose outgoing wave solutions are known to be

Gφ(r2|r1) = −
i

4
H

(2)
0 (γω|r2 − r1|), (24)

Gψ(r2|r1) = −
i

4
H

(2)
0 (ω|r2 − r1|), (25)

andH
(2)
0 is the zeroth order Hankel function of the second kind which ensures outgoing waves. These are straight-

forward to evaluate numerically and allow a straightforward numerical evaluation of the integrals of equations (16)

and (17). Thus the incident potentials on and near toβ2 may be calculated. If required, the normal derivatives of

the potentials may be approximated numerically on the second boundary from values of the potential near to the

boundary. Applying these values as input to another suitable (defect domain) model allows the potentials,φscs and

ψscs , due to scattering of this field in region2 to be obtained, along with their normal derivatives, on the boundary

β2 and used in a similar way to calculate the scattered field elsewhere, which may itself be used as an incident

field on another scattering region. For example the incidentfield for secondary scattering in region1 would be

calculated as:

φins (r1) =

∫

β2

[φscs (r2)∇2Gφ(r1|r2)

−Gφ(r1|r2)∇2φ
sc
s (r2)] · ndS, (26)

ψins (r1) =

∫

β2

[ψscs (r2)∇2Gψ(r1|r2)

−Gψ(r1|r2)∇2ψ
sc
s (r1)] · ndS. (27)

B. Adaptation to cases defined by displacements and stresses

We next adapt this scheme to a scenario where displacements and stresses are assumed to be the typical output

in the methodsM1 andM2 used to represent the wave propagation and scattering modeldomains; this form of

output occurs in a fairly large number of numerical schemes particularly in commercial codes. Thus stresses and

displacements are known on the contoursβ1 and β2 and the goal is to express the potentials, and their normal

derivatives, to be input to the wave propagator integrals, in terms of these values: here we describe an efficient

scheme for this calculation. For ease of exposition here thecontours are assumed to be rectangles with sides parallel

to thex− andy− axes, and dimensionless variables are utilised.

March 1, 2012 DRAFT



IEEE TRANSACTIONS 10

In dimensionless variables and assuming no body-force, theequations of motion (1) may be written for time-

harmonic in-plane elastic motion as

−ω2ux =
∂σxx
∂x

+
∂σxy
∂y

, (28)

−ω2uy =
∂σxy
∂x

+
∂σyy
∂y

, (29)

σxx = γ−2 ∂ux
∂x

+ (γ−2 − 2)
∂uy
∂y

, (30)

σxy =
∂uy
∂x

+
∂ux
∂y

, (31)

σyy = (γ−2 − 2)
∂ux
∂x

+ γ−2 ∂uy
∂y

, (32)

whereσxx, σxy andσyy are the stress components,ux anduy are displacement components. In terms of notation,

we usex, y andx1, x2 interchangeably.

Differentiating (18) with respect tox, and (19) with respect toy, and adding the equations shows that

∇2φ =
∂ux
∂x

+
∂uy
∂y

, (33)

which, combined with (20) gives an expression forφ:

φ =
−1

ω2γ2

(

∂ux
∂x

+
∂uy
∂y

)

. (34)

Another expression for∂ux/∂x+ ∂uy/∂y is obtained by adding (30) and (32):

σxx + σyy = 2(γ−2 − 1)

(

∂ux
∂x

+
∂uy
∂y

)

. (35)

Thus, the required expression forφ in terms of the stress is

φ =
(σxx + σyy)

2ω2(γ2 − 1)
. (36)

Similarly, ψ is obtained by differentiating (18) with respect toy and (19) with respect tox and subtracting them

to give

∇2ψ =
∂ux
∂y

−
∂uy
∂x

, (37)

and hence, using the Helmholtz equation (21)

ψ =
−1

ω2

(

∂ux
∂y

−
∂uy
∂x

)

. (38)

These terms occur only in the stress definition equation (31)hence both terms cannot be simultaneously eliminated.

However, as the displacements are known on the boundary, their tangential derivatives may be calculated numerically

there. Hence, these expressions forψ may be used on rectangular boundaries:

ψ =
−1

ω2

(

σxy − 2
∂uy
∂x

)

on y = constant, (39)

ψ =
−1

ω2

(

2
∂ux
∂y

− σxy

)

on x = constant. (40)
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On the parts of the boundary withy =constant, the normal derivative is∂/∂y, but the required expressions may

only contain derivatives with respect tox. Equation (34) may be differentiated with respect toy, and then, in turn,

(32) used to eliminate∂uy/∂y, (29) to eliminate∂σyy/∂y, and (31) used to eliminate∂ux/∂y, as

∂φ

∂y
=

−1

ω2

(

∂σxy
∂x

− 2
∂2uy
∂x2

− ω2uy

)

. (41)

Similarly, differentiating (38) with respect toy, using (31) to eliminate∂ux/∂y, (28) to eliminate∂σxy/∂y and

(30) and (32) to eliminate∂uy/∂y, results in

∂ψ

∂y
=

1

ω2

(

ω2ux +
1

2(1 − γ2)

∂σxx
∂x

+
1

2(1 − γ2)

∂σyy
∂x

)

. (42)

On the parts of the boundary withx =constant, the normal derivative is∂/∂x, but the required expressions

may only contain derivatives with respect toy. Hence, differentiating (34) with respect tox and then using (30) to

eliminate∂ux/∂x, (28) to eliminate∂σxx/∂x and then (31) to eliminate∂uy/∂x results in

∂φ

∂x
=

−1

ω2

(

∂σxy
∂y

− 2
∂2ux
∂y2

− ω2ux

)

. (43)

Similarly, differentiating (38) with respect tox and then using (31) to eliminate∂uy/∂x, (29) to eliminate∂σxy/∂x

and then (30) and (32) to eliminate∂ux/∂x results in

∂ψ

∂x
=

−1

ω2

(

ω2uy +
1

2(1 − γ2)

∂σxx
∂y

+
1

2(1 − γ2)

∂σyy
∂y

)

. (44)

These expressions then enter propagator integrals such as (16, 17) resulting in the values of the potentials on the

second boundary, thereby allowing calculation of the physical quantities there such as stress and displacement,

to be used in the forcing for that subproblem. Subsequently these expressions may be applied to the scattered

stress and displacement fields exiting the defect region to obtain scattered potentials on that boundary for use in

the propagator integrals (26, 27) in order to obtain the potentials and hence the stresses and displacements in the

observation region.

V. VALIDATION

The wave propagator adaptation, as described in Section IV.B, is designed to be a generic hybrid modelling

interface between any two of a large class of numerical, or analytical, modelling procedures for two-dimensional

bulk elastic wave phenomena.

We now validate this procedure using a prototype hybrid model where the regionsR1 andR2 are both represented

by a single method, chosen to be the FE method. The hybrid interface was coded up as a MATLAB function and

for simplicity both the contoursβ1 andβ2 are chosen to be rectangles. The interface code considers asinput, the

stresses and displacements onβ1 surrounding the source, and predicts a required quantity (stress or displacement)

on β2 surrounding a required destination position. The prototype hybrid model, together with the functions of the

hybrid interface, is illustrated in Figure 3.

Sections V.A and V.B consider the forward wave propagation and the reverse wave scattering problems, respec-

tively. In both sections, the approach taken is that first thetotal problem is modelled by a single FE model of the
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whole system and the results so obtained are then compared with predictions by the example hybrid interface. The

excitation consists of a mixed-point force [45], [46] applied in one direction at a single node, leading to circular

crested waves; both Longitudinal (P) and Shear (S) waves areconsidered. The basic code works in the frequency

domain, but for the completely time-domain calculations required for most NDE applications, a simple frequency

loop enables recovery of time-domain predictions through the use of Fourier Transforms, as demonstration in the

final section. The FE simulations are performed by a time-marching scheme in the time-domain. Thus forward and

inverse Fourier Transforms are used as part of the calculations. The time-domain field quantities delivered by the

FE simulation in the source domain are transformed to the frequency domain by a fast Fourier Transform (FFT),

for input to the hybrid interface. Then, on arrival at the destination domain, the output field quantities from the

hybrid interface are transformed to the time-domain by inverse FFT.

Finally, Section V.C presents the hybrid solution of the forward and the backward problems consisting of

physically-separated domains with an example of real practical relevance. This is the scattering of a wave pulse

from a row of three Side-Drilled Holes (SDHs). SDHs are used routinely in practical inspections for calibration

of equipment. Thus calibration blocks containing SDHs are readily available and familiar to practitioners, and the

prediction of scattering from them is a useful and relevant demonstration.

A. Forward wave propagation

We consider the propagation of ultrasound in the bulk of a defect-free infinite isotropic elastic medium. This

will be represented using the two modelling approaches: thefull FE model of the entire domain, and the prototype

hybrid model linking two smaller FE model domains for the wave generation and the forward propagation locations

respectively. We use the same geometry for both of these approaches, as illustrated in Figure 4(a). The full FE

model is represented by the entire region of the figure. The analysis of this provides us with reference results for

the validation of the hybrid model. The hybrid model links the two smaller FE domains (or ”boxes”) which are

shown by the two red squares, representingβ1 and β2. The domain on the left surrounds the source while the

domain on the right is the destination. The explicit time commercial FE package ABAQUS (version 6.7) [5] is

used in the simulations; a central objective of our approachis to develop a versatile scheme that is not model or

package dependent and so can be used with standard, easily available, commercial codes, and we believe this to

be a key contribution of this work.

The bulk of the defect-free infinite medium of the full FE model is represented by a two-dimensional plane-strain

domain bounded at its edges by absorbing layers with increasing damping [12]. The black rectangle surrounding

the full FE model indicates the boundary between the elasticand absorbing parts of the model. The size of the

total domain, including the absorbing regions, is1.5 m by 0.58 m and that of the actual area of study is1.14 m by

0.22 m. Uniform linear quadratic square elements with the material properties of Aluminium (Elastic modulus71

GPa, density2700 kg/m3 and Poisson ratio 0.33) are used to mesh the whole domain. Thechoice of material is

arbitrary, aluminium is chosen for convenience, and similar results and trends occur for other isotropic materials.

The simulation is run with time-domain excitation providedby a 5-cycle Hanning windowed toneburst [47]
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centred at the required frequency and applied as a force in a single direction (x or y), at a single node. In the

example in Figure 4(a), the force is applied in the location indicated as ’Source’, in they direction. Compressional,

P, and shear, S, waves propagate primarily perpendicular and parallel to the excitation direction respectively, and

are eventually absorbed at the model edges. Two separate cases are chosen, with different excitations (direction

of applied force and frequency of the applied signal) to drive primarily S- or P-waves, respectively, to propagate

into the destination box. For the S-wave case the nodal point-force is applied in they direction, while for the

P-wave case, it is applied in thex direction. The purpose of this is that, with the destinationbox positioned as

shown in Figure 4(a), we detect primarily S-waves when the nodal point-force is applied in they direction, and

primarily P-waves when the force is applied in thex direction. The element size at1 mm is the same in both

cases, but an appropriate centre-frequency (100 kHz and200 kHz respectively for S- and P-wave studies), is chosen

to ensure a constant mesh density of about32 elements per centre-wavelength,λc; this is the wavelength at the

centre-frequency of the wave. This ensures that there is a sufficient number of elements per wavelength for accurate

numerical modelling of the elastic wave propagation [47]. In both studies, the simulation was run up to a time when

S- and P-waves respectively had travelled completely across the destination box. The colour contours in Figure 4(a)

present snapshots of the total displacement magnitude, obtained from the simulation for the S-wave case, showing

the wave field at two selected times during propagation.

Displacements and stresses are obtained along the two100 mm (approximately3.2λc long) boxes, one surrounding

the source and the other bounding an arbitrary forward destination located about26 wavelengths from it. It must be

mentioned that while the displacements can be monitored directly at the boundary nodes, ABAQUS outputs stress-

histories only as elemental quantities. Therefore, stresses were obtained on two concentric layers bounding the

nodal contour from the inside and the outside respectively,and then these were averaged to give the (approximate)

stresses at the nodal locations. Field quantities so obtained on the source box are then transformed into the frequency

domain and the values at the centre-frequency are extracted. These are fed into the hybrid interface code along

with material and geometrical details to obtain predictions for their values on the destination box. These values are

then compared with those from the full FE simulations obtained at the boundary of the destination box.

Results for the S and P wave cases are shown in Figure 5: the comparison is along nodes constituting the ‘Left’

boundary of the monitored destination box which is indicated by a row of white dots in Figure 4(a). The Y axis in

Figure 5(a)-(d) is scaled with respect to the maximum amplitude of the incident field at the source location of the

full FE model. In both S and P wave cases, we observe excellentagreement between the hybrid prediction and the

full-FE results.

There are some minor differences. The errors averaged over the 100 nodal points are shown in Table 1. One

small source of error is the averaging of stresses at the centroids of elements surrounding a node; this is necessary

because the stresses are calculated at element centroids whereas the displacements are calculated at nodes. Another

source of error comes from the fact that the accuracy with which the frequency spectrum is extracted depends on

the number of points in the time-signal at the source box. This in turn, depends on the number of time-increments

used in the FE simulation and subsequently, the number of increments at which the output field is recorded. In
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addition, spatial discretisation inevitably introduces errors to the result to an extent. For the full FE and the hybrid

simulations, approximatelyλc/30 is selected as the element size since it is well below the typical limit used for

accurate modelling (for example [47]), but the accuracy might be still improved with a more dense mesh. However,

despite these minor issues the agreement is very satisfying.

B. Back-scattering

Next we consider the back-scattering of waves from a reflector. For simplicity we start with a very basic scatterer

consisting of a straight rigid barrier located within the bulk of an infinite isotropic medium. Again we use the

same geometry for both a single FE model of the complete domain and the hybrid procedure using two smaller

domains; the results are compared in a similar manner. The full-FE model set up is identical to that of the previous

section V.A, except for the fact that the destination box nowcontains the barrier; we use a rectangular box for

convenience, but the method works in principle for any shape. The barrier was realized by selecting nodes along a

required straight line and fixing all displacements on them to be identically zero for the duration of the simulation.

The barrier was placed centrally in the destination box (Figure 4). Again, two separate cases were set up for when

S- and P-waves, respectively, primarily interact with the barrier, whose nominal physical length is kept constant

at 64 mm. The different centre-frequency used for the excitationsignal ensured that in both models, the barrier’s

effective length also remained constant at2λc. This choice of barrier-length is significant as it has a bearing upon

how the signals obtained on the boundaries of the destination box are processed to obtain the input for the reverse

hybrid process.

The generic hybrid interface developed in Section IV.B requires as input, the purely scattered field, without any

incident signal components. This can be extracted from the total field at the destination box by two processing

methods: we could allow for the dimensions of the box to be large so that the incident and scattered components

are separated in time, or we could subtract out the incident component from the total signal (see [13] for a more

detailed discussion of these two processing approaches). The separation method usually requires larger dimensions

than the subtraction method, which theoretically just requires a very small destination box for the FE calculation

of the total field. However a very small destination box is also likely to be located in the near-field of the scattered

waves. To illustrate this better, let us assume that the destination contour is a circle instead of a square, and that

the scatterer too, is of an ideal, circular shape, as shown inset within the plot in Figure 6. We then define the radius

of the contour required for achieving signal separation as the separation-radius and similarly a near-field-radius,

estimates for which can be obtained respectively from time-of-flight analysis and piston-behaviour of the scatterer

(aperture formulaa2/(4λ) wherea is the aperture-length). Figure 6 then presents these two radii plotted against

the scatterer radius for the case where the excitation signal consists of a 5-cycle long Hanning windowed toneburst.

We observe that the separation method always requires a verylarge dimension of the monitoring contour. Thus our

implementation using the subtraction method provides significant advantage.

An advantage of the hybrid propagator interface, as developed in this paper, is that it can handle field quantities

even within the near-field efficiently: therefore the destination box bounding the defective region can be made small.
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We thus note that, as can be seen from Figure 6, the2λc long barrier means that the boundaries of the3.2λc long

destination box, especially the top and the bottom ones, lieclose to or within the expected near-field of the barrier.

The dimensions are, of course, far lower than those requiredfor the separation of incident and scattered signals.

The full-FE simulations were run up to a time such that S- and P-waves respectively interacted with the barrier

and scattered back, as shown for example, using the contour of the total displacement magnitude obtained from

the S-wave study, in Figure 4(b). Displacements and stresses were again extracted in the frequency domain on the

boundary of the destination box. Frequency-domain field quantities monitored at this same location from studies in

the previous section V.A without the defect were then subtracted from these values. Field quantities now contain

only the scattered component and form the input to the reverse hybrid interface, to obtain predictions for the field

at a required backscatter location.

Figure 7 shows the comparison for the S- and P- wave studies, for a backscattered position forming the ‘Right’

nodes of the original source box (indicated in Figure 4(b)) and their averaged errors are shown in Table 1. Again,

we observe excellent agreement between the hybrid prediction and the full-FE result. The remarks on averaging of

stresses and number of time-points in the FE simulation madeat the end of section V.A are also pertinent for this

case. Furthermore, for accurate performance of the inversehybrid interface, it is important that the incident signals

are obtained at the same nodal positions as the total scattered signals, so that there are no spurious signals in the

subtracted purely scattered signals.

C. Full forward and backscattered example

In the previous sections, hybrid calculations were demonstrated and verified separately for propagating and

scattering waves. However, the benefit of the hybrid method is realised when the whole model is physically divided

into separate domains and these are used to simulate the fullforward propagation and back-scattering problem. The

source and scatterer can then be arbitrarily distant from each other with no computational cost penalty. Such an

approach is demonstrated here. As an example, we take up a case from a realistic NDE procedure, namely that of

the scattering of ultrasound from a row of side-drilled holes. The physical case to be modelled was a solid block

of steel with three parallel circular holes, as shown in Figure 8(a). It is common for NDE practitioners to use

blocks with SDHs to perform calibration of ultrasound instrumentation, such that signal amplitudes can be known

when interpreting reflections from un-seen defects in real inspections. In our case we choose to model the signals

which are sent and received by a transducer placed on the leftside of the sample. The incident wave is generated

by the transducer, and after it has scattered from the holes,the returning signal is monitored at the same location

representing the transducer as a receiver.

Figure 8(b) shows a Full FE model which was used to simulate the whole problem in the conventional manner,

and in this case to provide reference results for validationof the hybrid calculations. The full FE domain including

source and three SDHs has dimensions 55× 56 mm2. The main domain is 19× 20 mm2 surrounded by an

absorbing region simulating an infinite medium. Three SDHs of 1 mm radius are aligned with 6 mm intervals.

Sources representing a transducer are located 4λc from the centre of the middle hole, perpendicular to a line
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connecting the centres of the three holes. The 10 mm transducer is modelled by 101 nodal points excited by a

synchronised input signal. The S wave is chosen, soy direction forces are applied to the sources. The chosen

signal is a 1 MHz centre frequency, five-cycle toneburst signal. Figure 9 shows a snapshot of the FE domain with

the wave scattering from the defect. Inside the domain shownin the figure is free-meshed with nominal 0.1 mm

element size, in order to verify the hybrid method in a general case with irregular defects, but the rest of the model

including the absorbing regions is regularly meshed.

Next this problem is modelled using the hybrid approach, thedomains for which are illustrated in Figure 8(c).

The source domain is selected to be 42× 52 mm2 regularly meshed, its size excluding absorbing region is 8× 16

mm2 . The source is placed at the centre of the domain, and halfλc away from the source is the Source Monitoring

Box (SMB). The defect domain of 45.5× 56 mm2 with three SDHs has a free-meshed region of 9.5× 20 mm2

and is regularly meshed in the absorbing region. The Defect Monitoring Box (DMB) is located at halfλc from the

holes, and an excitation line is located approximately halfλc in front of the DMB.

The full simulation was started by a forward hybrid calculation. The model of the source domain (Figure 8(c))

was run to obtain the outgoing signal at the SMB. The hybrid calculation was then used to predict the propagation

of the signal to the defect domain, expressing the arriving signal by tractions along the line shown in the figure

as the excitation line. Calculations were then performed inthe defect domain, using these tractions as the input.

Two cases were run, one including the SDHs, and the other without, so that the scattered field could be found by

subtracting the latter from the former. Finally the scattered field in the defect domain was monitored at the DMB,

and the hybrid calculation was used once more to predict the signal arriving back at the source.

Figure 10 shows snapshots of the two domains with the wave propagating from the source to the defect domain.

Wave generation can be seen in Figure 10(a). The wave signal then arrives, via the hybrid model and its input at

the excitation line, in the defect domain, and can be seen propagating in the positive x direction in Figure 10(b).

Waves also propagate from here in the negative direction, but are absorbed in the absorbing region to the left of

the excitation line. Figure 10(c) shows the waves in the defect domain being scattered by the SDHs. They are then

monitored on the DMB, in order to predict the field returning to the source (receiver). The wave field in Figure

10(c), although complex, can be seen to match very closely tothe wave field in the full FE model at the same

moment in time, which was shown in Figure 9.

Figure 11 shows a comparison of the results for the full FE model and the two hybrid models. The results which

are shown, by way of example, are for the averaged y componentof the displacement over the location of the

transducer (location shown in Figure 8). In both cases the signal is chosen, arbitrarily, to have an amplitude of

unity at the source location. Figure 11(a) shows the time-domain signal, that is, a simulation of the signal which

would be received by the transducer. Figure 11(b) shows the same information transformed to the frequency-domain.

Excellent agreement between the two cases can be seen.
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For a more detailed comparison, Figure 12 shows only the scattered waves in the time interval 5 - 20µsec. The

amplitudes of the scattered signal in Figure 12(a) is seen tobe about 20 % of that of the incident signal. Despite the

complex fields around the 3 SDHs shown in Figures 9 and 10(c), the shape of the scattered signal in Figure 12(a)

is simple, because this signal is dominated by the reflectionfrom the centre hole; excellent agreement between the

results for the full FE model and those for the the hybrid model can be seen. The frequency domain signal in Figure

12(b) also agrees well within the bandwidth 0.6-1.4 MHz, butthere are noticeable differences below and above

that range; these result from the fact that the hybrid calculations only used frequencies to cover that bandwidth.

In addition, there are some differences due to the reasons mentioned in Section V-A. However, overall the results

show excellent agreement.

The CPU times for the full FE and the hybrid method are approximately 21 and 23 minutes, respectively, in an

identical computation system. The similarity of times is tobe expected given the broadly similar model sizes. The

size of the full FE model is 3080 mm2 while that of the source and the defect domains for the hybridcalculation are

2184 mm2 and 2548 mm2. Therefore superficially the hybrid approach does not present a computational advantage.

However, this is because of our choice of an example problem for which the scatterer is close to the source, which

was made deliberately in order to limit the computer resources needed for the full FE model. The real advantage

of the hybrid model, and indeed its purpose, will be for casesin which the wave propagation path is much longer,

so that it becomes prohibitively expensive, or indeed impossible, to perform the full FE calculation. This advantage

will be amplified further in future when the method is extended to three dimensions.

VI. CONCLUSIONS

In this paper we have developed a general modelling tool to simulate practical ultrasonic inspection. Due to

the ever increasing sophistication of practical inspection, it is best to develop this in a modular manner for each

step, such as wave generation, propagation, scattering andpost-processing, and then integrate the different steps

for practical inspection. In this context hybrid modellingschemes display maximal advantage: a suitable scheme

must be generic and independent of the constituent modelling techniques. Although hybrid modelling methods

are commonly known in the literature and may be as old as the study of elastic wave scattering itself [20], most

developments (including recent ones, such as [3] for efficient FE models and [48] where a CIVA-FE link is being

pursued) are tied to specific sets of modelling techniques. We show how the limitation of the hybrid schemes to

particular modelling techniques arises out of their fundamental formulation and give a formalism to generalize them.

We generate a generic hybrid modelling interface by considering the case of bulk ultrasonic wave phenomena, an

abstraction common to a large class of practical inspectionproblems. This interface works within a prototype hybrid

model consisting of two smaller FE model-domains, and the feasibility of such an approach is demonstrated for

bulk ultrasonic wave propagation and scattering examples.Sources of error and ways of improving the accuracy of

the interface are also discussed.
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Figure& Table captions

Fig. 1. Illustration of the various modules that constitutea typical ultrasonic inspection simulation.

Fig. 2. (a) and (b) show the Global and Local problems, respectively, in traditional Hybrid models. (c) and (d)

show the Global and Local problems in the proposed generalization of the Hybrid modelling method.

Fig. 3. Illustration of the prototypical hybrid model, together with the functions of the hybrid interface.

Fig. 4. Snapshots of the contour of total displacement magnitude from a FE simulation , (a) for the S-wave

propagating towards the destination square and (b) for the S-wave case with a rigid barrier in the destination box

showing the wave field just after scattering from the barrier. The full FE model is represented by the complete area

shown; the two red boxes are the small domains selected to be modelled by the hybrid approach. Thus the hybrid

model results can be compared directly with the full model results.

Fig. 5. Comparison of the hybrid interface model to full FE simulations for the forward propagation case. (a)

x displacements and (b) y displacements for S-wave propagation; (c) x displacements and (d) y displacements for

P-wave propagation. The comparison is performed along all the nodes on the left boundary of the destination box,

at the centre frequency of the signal in each case.

Fig. 6. Separation and near-field radius plotted versus the defect radius for the case where the excitation signal

consists of a 5-cycle Hanning windowed toneburst. For a 2λc long defect, the domain radius would need to be at

least 3.5λc to ensure separation of incident and scattered signals, andat least 1λc to escape the near-field. Inset:

an idealised circular domain with a circular defect.

Fig. 7. Comparison of the hybrid interface model to full FE simulations for the back-scattering case. (a) x

displacements and (b) y displacements for S-wave propagation; (c) x displacements and (d) y displacements for

P-wave propagation. The comparison is performed along all the nodes on the right boundary of the source box, at

the centre frequency of the signal in each case.

Fig. 8. Realistic example of prediction of scattering from arow of side drilled holes (SDHs). (a) illustration of

test block with three side-drilled holes; a transducer is placed on the left of the block and used to generate the test

signal and receive the back-scattered signal. Illustration of the model of this case, showing (b) full FE domain and

(c) the two boxes for the hybrid model.

Fig. 9. Snapshot of propagating wave through the two physically separated domains. (a) Source domain at 6

µsec: propagating waves are monitored at the Source Monitoring Box (SMB) as input to the hybrid model which

then predicts the signals at the destination box. (b) Defectdomain without the SDHs at 8µsec: propagating waves

are generated by imposing tractions on the excitation line,representing the signal coming from the source box. For

clarity, the field is shown for the case without the presence of SDHs. (c) Defect domain with the SDHs at 8µsec:

The scattered waves are monitored at the DMB and fed into the hybrid interface to predict the signal back at the

source location (now the receiver).

Fig. 10. Snapshot of propagating wave through the two physically separated domains. (a) Source domain at 6

µsec: propagating waves are monitored at the Source Monitoring Box (SMB) and used to calculate signals on
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secondary sources. (b) Defect domain without the SDHs at 8µsec: propagating waves are generated by imposing

traction on the excitation line, representing the signal coming from the source box. For clarity, the field is shown

for the case without the presence of SDHs. (c) Defect domain with the SDHs at 8µsec: The scattered waves are

monitored at the DMB and fed into the hybrid interface to predict the signal at the receiver.

Fig. 11. Comparison of predicted amplitudes of the average ydisplacement at the nodes on the receiver, monitoring

the waves scattering back from the side-drilled holes. Predictions of full FE (solid), back scattering only (dash-dot),

and forward-backward (dashed) models in (a) time-domain; (b) frequency-domain.

Fig. 12. Comparison as in Fig.11: Identical plots but showing only the scattered wave, and the data from 5 to

20 µsec inside the box in Fig.11a.

Table 1. Errors averaged over 100 nodal points for each of thefigure 5(a)-(d) and 7(a)-(b)
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Fig. 1. Illustration of the various modules that constitute a typical ultrasonic inspection simulation.
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Fig. 2. (a) and (b) show the Global and Local problems, respectively, in traditional Hybrid models. (c) 
and (d) show the Global and Local problems in the proposed generalization of the Hybrid modelling 
method. 
 



 

 
 
Fig. 3. Illustration of the prototypical hybrid model, together with the functions of the hybrid interface. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
Fig. 4. Snapshots of the contour of total displacement magnitude from a FE simulation , (a) for the S-
wave propagating towards the destination square and (b) for the S-wave case with a rigid barrier in the 
destination box showing wave field just after scattering from the barrier. The full FE model is 
represented by the complete area shown; the two red boxes are the small domains selected to be 
modelled by the hybrid approach. Thus the hybrid model results can be compared directly with the full 
model results. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Fig. 5. Comparison of the hybrid interface model to full FE simulations for the forward propagation 
case. (a) x displacements and (b) y displacements for S-wave propagation; (c) x displacements and (d) 
y displacements for P-wave propagation.  The comparison is performed along all the nodes on the left 
boundary of the destination box, at the centre frequency of the signal in each case.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Fig. 6. Separation and near-field radius plotted versus the defect radius for the case where the excitation 
signal consists of a 5-cycle Hanning windowed toneburst. For a 2 lc long defect, the domain radius 
would need to be at least 3.5 lc to ensure separation of incident and scattered signals, and at least 1 lc to 
escape the near-field. Inset: an idealised circular domain with a circular defect.



  
 
Fig. 7. Comparison of the hybrid interface model to full FE simulations for the back-scattering case. (a) 
x displacements and (b) y displacements for S-wave propagation; (c) x displacements and (d) y 
displacements for P-wave propagation.  The comparison is performed along all the nodes on the right 
boundary of the source box, at the centre frequency of the signal in each case. 



    
      

Fig. 8.  Realistic example of prediction of scattering from a row of side drilled holes (SDHs). (a) 
illustration of test block with three side-drilled holes a transducer is placed on the left of the block and 
used to generate the test signal and receive the back-scattered signal. Illustration of the model of this 
case, showing (b) full FE domain and (c) the two boxes for the hybrid model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
Fig. 9. Snapshot of the contour of total displacement magnitude, from FE simulation of the side-drilled 
holes case. Results shown are for the full FE calculation, showing the scattering field just after 
incidence of the wave pulse at the side drilled holes.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



           
      

Figure 10. Snapshot of  propagating wave through the two physically separated domains. (a) Source 
domain at 6 sec: propagating waves are monitored at the Source Monitoring Box (SMB) and used to 
calculate signals on secondary sources. (b) Defect domain without the SDHs at 8 sec: propagationg 
waves are generated by imposing traction on the excitation line, representing the signal coming from 
the source box. For clarity, the field is shown for the case without the presence of SDHs. (c) Defect 
domain with the SDHs at 8 sec: The scattered waves are monitored at the DMB and fed into the 
hybrid interface to predict the signal at the receiver. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 



 
(a) Time signal      (b) Frequency signal 

Fig. 11. Comparison of predicted amplitudes of the average y displacement at the nodes on the receiver, 
monitoring the waves scattering back from the side-drilled holes. Estimates of full FE (solid), back 
scattering only (dash-dot), and forward-backward (dashed) (a) time-domain; (b) frequency-domain. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
(a) Time signal      (b) Frequency signal 

Fig. 12. Comparison as in Fig.11:   Identical plots but only with the scattered wave, and the data from 5 
to 20 sec inside the box in Fig.11a. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Error (%) a b c d 
Fig. 5 4.03 2.32 0.49 6.93 
Fig. 7 6.66 1.79 2.09 5.35 
 
Table 1. Errors averaged over 100 nodal points for each of the figure 5(a)-(d) and 7(a)-(b)  
 
 
 
 


