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Abstract Fast and accurate fitting of non-uniform rational
B-spline (NURBS) curves and surfaces through large sets
of measured data is an important problem in applications
such as reverse engineering and geometric modelling. This
paper presents a method for realising significant improve-
ments in the computational efficiency of this task. The basic
idea is that the sparsity structures of the relevant matrices
that are specific to the problem of NURBS fitting can be
precisely defined and that full exploitation of these
structures leads to significant savings in both computational
and storage requirements. These savings allow for a large
number of control points to be used in order to define the
surface and consequently to improve the accuracy of shape
representation. The achieved computational complexity is
linear in both the number of measured points and the
number of control points while the storage requirements of
the algorithm are linear with the number of control points
only. The complexity analysis, as well as the analysis of
actual running times is presented. The results demonstrate
that, using this approach, highly complex shapes may be
modelled accurately with a single NURBS surface.
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1 Introduction

Fitting of non-uniform rational B-spline (NURBS) curves
and surfaces is most often undertaken in order to

reconstruct the shape of a digitised object from measured
data and to represent the geometry in a form suitable for
computer-aided design (CAD) [1, 2], or when an existing
CAD model needs to be modified using measured data so
that it reflects the actual shape of the manufactured object
[3–5]. NURBS fitting is also needed in situations when an
existing CAD model needs to be represented by a smaller
number of entities. This may be required by the down-
stream applications such as mesh generation for computer-
aided engineering (CAE) analysis [6], which often fail in
the presence of large number of entities and modelling
imperfections such as surface gaps and overlaps.

For shape reconstruction from measured data it is often
suggested that the algorithms are to be executed in two
phases: (1) segmentation of point clouds and (2) sub-cloud
fitting [7]. Unfortunately, such approach is fraught with
difficulties and algorithms often fail [8]. Segmentation
typically requires analysis of the underlying shape, such as
evaluation of curvatures and edge extraction, which is
difficult to perform without prior surface generation and is
particularly hard in the presence of measurement noise and
non-uniform data distribution. Combining surface patches
into a contiguous model is also non-trivial in view of the
need to match the parametric directions, parameterisation
and control point locations of the adjacent surface patches.
The issues outlined above usually demand a large amount
of user interaction and a wide range of modelling functions.

As a general rule, it is desired that the overall surface is
composed of as few entities as possible, but this in turn
demands the ability to efficiently deal with a large number of
data points that define the object shape and a large number of
control points that allow accurate modelling of that shape.
Both the computational time and the memory requirements
have been found to be the factors limiting the size of the
problem that can be adequately handled in practice [9].
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The work presented in this paper focuses on the
computational efficiency in executing the task of fitting a
single NURBS surface using all of the available data points,
where knot insertion may be arbitrarily applied to introduce
as many control points as may be needed to represent the
surface features with the required accuracy. It is illustrated
by the example in Fig. 1, which shows the level of detail
and quality of reconstruction which can be obtained using
our algorithm implementation and modest computing
hardware. The measured data set is a laser scan of the
TI85 calculator. In this example, a set of 120,000 measured
points was used. The fitted surface comprises 44,225
control points, obtained through repeated uniform knot
insertion and fitting until the desired level of detail was
obtained.

The demonstrated surface fitting would normally lead to
instability of the system as a direct result of the insufficient
measurement density in relation to knot segments, which in
our experience can often happen under repeated knot
insertion, even with dense data sets such as this [10]. Here,
such problems were readily overcome by adopting our
solution based on regularisation, which is briefly explained
in Section 2, while for the full treatment of the problem we
refer the readers to our previous paper [11]. The improve-
ments in computational efficiency presented in Section 3
remain fully applicable to this regularisation method.

2 Overview of least squares NURBS surface fitting

A NURBS surface of degree p in the u direction and degree
q in the v direction is a bivariate vector-valued piecewise
rational function of the form:

S u; vð Þ ¼
Xn
i¼0

Xm
j¼0

Ri;j u; vð Þ Pi;j ð1Þ

where control points Pi,j=(xij, yij, zij) form a bi-directional
control net with Nu=n+1 and Nv=m+1control points in
each direction (Nu Nv=N control points in total) and Rij(u,v)

are piecewise rational basis functions [12], of degree p and
q, defined by the knot vectors.

2.1 Least squares fitting procedure

Applying the Eq. 1 to each of M measured points, Qk=(xk,
yk, zk), a system of equations is created:

Qk ¼
Xn
i¼0

Xm
j¼0

Ri;j uk; vkð Þ Pi;j; k ¼ 0; :::; M� 1

This can be expressed in matrix form as:

RP ¼ Q ð2Þ
where R is the observation matrix, P is the vector of
unknown control points and Q is the vector of measured
points. The fitting task can be summarised as follows: given
a vector Q Є RM and a matrix R Є RMxN, vector P Є RN has
to be found such that RP is the “best” approximation to Q.
There are many possible ways of defining the “best”
solution. A choice, often motivated by statistical reasons
is the least squares method, as it effectively reduces the
influence of random errors in measurements. It computes P
such that it minimises the functional f:

f ¼
XM�1

k¼0

Qk � Sðuk; vkÞð Þ2 ð3Þ

or in a matrix form:

f ¼ RP�Qk k22
It follows from elementary calculus that the minimum of

f, and at the same time the least squares solution for the
system of Eq. 2 may be found by solving the set of normal
equations [13, 14]:

RTRP ¼ RTQ ð4Þ
In order to overcome ill-conditioning and even rank

deficiency, it is necessary to regularise the linear system.
The principle of regularisation [13] is to expand the

Fig. 1 Calculator and the model
after repeated knot refinement
and fitting (44,225 control
points)
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functional to be minimised as follows:

f ¼ RP�Qk k22þl2 CP� Dk k22 ð5Þ
where CP� Dk kdefines some other fitting criterion as a
constraint and the constant 1>0 provides a trade-off
between the two criteria.

Importantly, when a quadratic minimisation principle is
combined with a quadratic constraint and both are positive,
only one of the two need be non-degenerate in order to
make the overall problem well posed. It is also worth
noting that the two parts of the minimisation will have
comparable weights [15] by choosing:

l2 ¼ Tr RTRð Þ
Tr CTCð Þ

Thus in the knowledge that matrix RTR is possibly
degenerate, a new criterion and a corresponding weight 1
may be chosen to set up a well-posed problem. A number
of such regularisation schemes have been proposed.

2.2 Regularisation solution

Our main idea is based on the fact that control points do
approximate the surface and it seems natural to keep them
as close to the surface as possible by introducing an
additional criterion. We therefore suggest minimising the
sum of the squared distances between the control points and
their corresponding points on the fitted surface. We expect
this criterion to smoothen the surface and to involve an
equivalent of energy minimisation.

Mathematically, we expand the functional of Eq. 3 to
include an additional “α-criterion”, as follows:

f ¼
XM�1

k¼0

Qk � Sðuk; vkÞj j2 þ a
Xn
i¼0

Xm
j¼0

Pi;j � Sðui;j; vi;jÞ
�� ��2

where Pi,j are the control points and S(ui,j,vi,j)are their
corresponding points on the surface, while coefficient α≥0
provides the required trade-off flexibility

Naturally, the question arises as to how to define the
corresponding surface points. We adopted a solution using
Greville abscissae [16] because they provide the most
regular matrix, as they are obtained using knot averaging.
For example, in the case of a cubic B-spline, no two
adjacent knot segments will be without Greville points.

After implementing this idea, we conducted extensive
experiments with a variety of shapes and concluded that
inclusion of the α-criterion is indeed highly beneficial,
especially in situations involving large deformations of the
original model. The experiments have also shown that the
α-criterion can produce the effect of flattening the fitted
surface, especially in the regions where the data points are
sparse and the control points are relatively far from the base

surface. This effect is in fact often desirable. The regions
with no, or with few, data points are generally re-shaped to
accommodate the deformation of the regions with dense
data, such that a gentle transition between the two regions is
obtained. Furthermore, the flattening effect may be con-
trolled and significantly reduced by knot insertion, making
the control polygon approximate the surface more closely.

However, the inclusion of the α-criterion does not
guarantee that the overall problem is well posed. Further-
more, it was also recognised that there are many situations
when it is desired that the shape of the unmeasured, or
sparsely measured, regions is preserved after updating. For
this reason an additional constraint, we call it “β-criteri-
on”, was introduced, which attempts to limit the displace-
ment of the control points relative to their original
positions. The overall minimisation problem still remains
linear and the cost function to be minimised becomes:

f ¼
XM�1

k¼0

Qk � Sðuk; vkÞj j2 þ a
Xn
i¼0

Xm
j¼0

Pi;j � Sðui;j; vi;jÞ
�� ��2

þb
Xn
i¼0

Xm
j¼0

Pi;j � P0i;j

���
���
2

ð6Þ
where P0

i, j is the original position of the control point Pi, j,
and β≥0 is a weighting factor. The solution of 6 is, [17]:

RTR þ a B� Ið ÞT B� Ið Þ þ bITI� P ¼ RTQþ bP0
h

ð7Þ
where:

B ¼
R0;0ðu0;0; v0;0Þ ::: ::: Rn;mðu0;0; v0;0Þ
R0;0ðu0;1; v0;1Þ Rn;mðu0;1; v0;1Þ

: :
R0;0ðun;m; vn;mÞ ::: ::: Rn;mðun;m; vn;mÞ

2
664

3
775

and P0 ¼ P0
0;0P

0
0;0 ::: ::: P0

n;m

� �T
This represents a set of generalised normal equations.
By examining Eq. 7, it can be seen that all elements of

RTR are positive and that βI is a positive diagonal matrix for
β>0. This clearly means that any non-negative value of β
will guarantee that the system is stable. In practice, the choice
of α and β is based on the relative weighting that the user
assigns to the corresponding terms relative to the weighting of
the measured data [11]. We have found that optimal settings
for α and β are α=0.1 and β=0.001, respectively.

The system of Eq. 7 is linear with respect to the control
points, Pi,j, but it would become non-linear if the unknowns
also included the knot vectors, parameters (uk, vk) or the
weights, wi,j. In the work presented in this paper, the data
set is unordered and in principle unknowns do include all of
the above parameters, so an appropriate strategy is required
to keep the system linear. As proposed by Ma and Kruth
[18], and further elaborated by Piegl and Tiller [19], the
knot vectors and weights may be taken directly from a base
surface which may be considered as a first approximation
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of the final surface. The source presents a number of
methods to generate the base surface. The parameters
(uk, vk) are then computed by projecting the measured points
onto the base surface [20]. If we take the fitted surface as a
new base surface and repeat both the parameterisation and
the fitting steps, then the results can be significantly
improved, albeit at the cost of extra computations.

Consequently, there are three main parts to the surface
fitting algorithm. The first is to initialise the fitting surface
and the related parameters, the second to fit the surface to
the data points, and the third to insert additional knots if
necessary [19]. The second and the third steps may be
repeated until the required accuracy is achieved.

The setting up of normal equations constitutes the
preparation phase in the fitting process. Clearly, this is a
conceptually simple task. However, in terms of computa-
tional resources it is an extremely demanding one and the
proposed solution will be presented in Section 3.1.

The normal equations may be solved by a number of
methods, which can be broadly divided into direct ones,
which require a fixed number of computations, and iterative
ones. A suitable direct method is Cholesky factorisation,
but in common with all direct methods it suffers from “fill
in”, i.e., it has non-zero values in positions which are zero
in A=RTR. Here we note that the QR factorisation is a more
stable way to determine the least squares solution of 2, but
requires even more computation [21].

This can be overcome by employing an iterative method,
for example, the method of successive displacements—the
Gauss–Seidel method—which computes a sequence of
approximations P(1),..., P(n), until a sufficiently accurate
solution is obtained. Thus given P(k) we compute:

Pðkþ1Þ
i ¼ 1

Aii
ðQi �

Xi�1

j¼0

Ai;jP
ðkþ1Þ
j �

XN�1

j¼iþ1

Ai;jP
ðkÞ
j Þ; i ¼ 0; :::; N� 1

ð8Þ
The Gauss–Seidel method was adopted as the primary

method in our implementation for the solution phase, while
the improved Cholesky decomposition using band method
[22] was also implemented as a direct method alternative.

3 Efficiency improvements in least squares NURBS fitting

Firstly, we turn our attention to a matrix multiplication
algorithm and then study the detailed structure of the
matrices R and RTR and suggest how to use them to
improve computational efficiency.

3.1 The preparation phase

A significant proportion of the time needed for processing
the matrices can be attributed to matrix multiplication of the

type RTR. Using the “standard multiplication” each element
Ai,j is calculated as:

Ai;j ¼
XM�1

k¼0

Rk;iRk;j

Clearly, the computational complexity is O (N2M). This
algorithm is not suitable for large problems since each
column needs to be accessed many times and consequently
the total storage requirement is of complexity O (M×N+
N2), i.e. it is proportional to the sum of spaces for the
storage of R and spaces for the storage of A. Another way
to compute the matrix A would be to consider a single row
Rk of a matrix R at a time, multiply each element Rk,i, by
each of the elements Rk,j of the same row and add the
product to Ai,j [13]. The validity of this construction may be
verified by considering an element Aij and the elements of RT

and R that contribute to its value. When using this method,
rather than computing elements of the matrix A sequentially,
we compute contribution of each measured point in turn to
all the elements of the matrix A. It should be noted that each
row of R corresponds to a single measured point. By
sequencing the operations in this manner the algorithm uses
only a single pass through the data and storage is needed
only for the matrix A. Note that this makes memory
requirements independent of the number of measured points.

Much of the usefulness of NURBS stems from their local
support property, which means that an individual control point
can influence the shape of the curve/surface only in a strictly
limited area in its vicinity. It can be proven that the position of a
point on the surface is determined by only (p+1) (q+1) control
points, as all other Ri,j values are zero [21]. Actually, assuming
that control points are stored by constant v, every row of R
contains precisely (q+1) groups of (p+1) consecutive non-
zero elements. The “pitch” between those groups is equal to
the number of control points in the u direction, Nu.

Formally, given a data point with parameterisation u and
v, within the knot segments ul<u<ul+1 and vk<v<vk+1
respectively, where p<= l<=Nu-1 and q<=k<=Nv−1, the
only possible non-zero elements within the row of the
matrix R that correspond to this measured point are given
by the index i where:

i ¼ l � pþ k� qð Þ � Nu þ aþ b � Nu

where : a ¼ 0; :::; p and b ¼ 0; :::; q
ð9Þ

The regularity of occurrence of the non-zero elements in
R introduces a regularity of occurrence in the pattern of the
non-zero elements in A [7]. The necessary and sufficient
condition for an element Ai,j to be non-zero is that at least
one row of a matrix R has non-zero elements at both
columns i and j. For the purpose of this work it is more
convenient to consider this situation in terms of a distance δ
between the ith and the jth elements of R in a row m, hence
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j= i+δ. Also, we note that this element, Ai,i+δ, is situated
exactly δ places away from the main diagonal.

As the indices of the non-zero elements of any row of a
matrix R are given by formula 9, we can represent the index
of a non-zero element, n=i+δ, by:

iþ d ¼ l � pþ k� qð Þ � Nu þ cþ d � Nu where : c ¼ 0; :::; p

and d ¼ 0; :::; q

ð10Þ
Subtracting (9) from (10) we get

d ¼ l � pþ ðk� qÞ � Nu þ cþ d � Nu

� l � pþ ðk� qÞ � Nu þ aþ b � Nuð Þ
giving:
d ¼ c� aþ ðd � bÞ � Nu

Substituting all possible values for c and a in turn it can
be seen that (c-a) can only take the values within the limits

[–p, p]. Likewise, substituting all possible values for d
and b in turn we can see that (d-b) can only take the values
within the limits [–q, q]. Hence the value of δ is given by:

d ¼ eþ f � Nu where : e ¼ �p; :::; p and f ¼ �q; :::; q

ð11Þ
Consequently, the only possible non-zero elements in a

matrix A are found at the positions Ai,i+δ (situated exactly δ
places away from the main diagonal) and are confined in
stripes. From Eq. 11, we can work out that there will be
exactly 2q+1 stripes of width at 2p+1 each and separated
by a distance equal to the number of control points in the u
direction. Figure 2 presents the detailed sparsity structure of
the matrix A. The length of each stripe is less than or equal

to N and the total number of non-zero elements in the
whole matrix A is less than (2p+1) (2q+1)N. Therefore by
accounting for the sparsity structure of the matrix A, the
algorithm’s storage complexity has dropped significantly,
from O(M×N+N2) to O(N).

To summarise, for each measured point Qk, the closest
point on the base surface is computed and its parametric
values are used in the evaluation of the rational basis
functions R. The contributions of this point are then added
to all possibly non-zero elements of the matrix A. This is
implemented through the use of a new matrix S, big enough
to keep the non-zero values of A. Each non-zero stripe of
the matrix A then becomes a column of S. As a result,
instead of storing the non-zero element Ai,j into A we store
it as Sg,i,h into a matrix S. The indices i,j referring to an
element of the matrix A are transformed into the indices
g,i,h referring to an element in the new matrix S, as follows:

g ¼ ðjþ q»Nu þ p� iÞ=Nu

i ¼ i

h ¼ jþ q»Nu þ p� i� g»Nu

The results of these improvements are presented in the
Table 1. It is evident that the speed improvement is of (N/(p+
1) (q+1))2 times. Roughly, the computations that previously
could have taken 100 h to complete would be executed in less
than a second when the sparsity of the matrix R is exploited in
this way.

The following C++ code, omitting declaration and initial-
isation, provides an example of how computation and storage
of non-zero elements of A may be implemented.

The results in Table 2 are included in order to provide an
indication of the realised performance, obtained using a
Intel Xeon 3.2 GHz processor and 2 GB of RAM computer.
From the table it is apparent that the storage requirements in

the proposed method are independent of the number of
measured points and are proportional only to the number of
control points, meaning that very large systems are solvable
using modest computing resources. Also, the time com-
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plexity of the proposed method is linear with the number of
measured points. It is worth mentioning that A is
symmetric, therefore it will suffice to calculate one half of
the matrix A.

3.2 The solution phase—Gauss–Seidel method

The observed sparsity of A is now ready to be further
exploited in the solution phase in order to reduce its
computational complexity. Clearly, the knowledge of

matrix sparsity would lead to speed enhancements in both
the direct and the iterative solution methods, but the
iterative ones, such as the Gauss–Seidel method [23], are
better suited for solving very large, sparse systems [13, 24].
The enhancement of the computational efficiency is
achieved by multiplying only the non-zero elements of the
corresponding rows and columns, instead of multiplying
them in their entirety.

The optimised C++ code that illustrates the computation
of Eq. 10 is presented below:

Consequently, the computational complexity for one
iteration of the algorithm has dropped in the solution phase
from a quadratic dependence on the number of control
points, O(N2), to a linear dependence, O(N).

Table 3 provides an illustration of the computational
performance achieved by the code above for the solution

Table 1 Computational and storage complexity in the preparation phase

Storage complexity Computational
complexity

Standard technique O(MN+N2) O(MN2)

Sparsity of A exploited O((p+1) (q+1)+N(2p+1)
(2q+1))

O(M((p+1) (q+1))2)

vu NN + uN

12 + q stripes

12 + q

Fig. 2 Sparsity structure of the
matrix A=RTR

Table 2 Preparation phase: performance with regard to computational
and storage complexity

Number of data
points

Number of control points

102 103 104 105

104 46 ms 63 ms 93 ms –
42.6 kb 425 kb 4,253 kb

105 422 ms 502 ms 875 ms 1,159 ms

42.6 kb 425 kb 4,253 kb 4,2534 kb

106 4,172 ms 4,813 ms 8,797 ms 1,1468 ms

42.6 kb 425 kb 4,253 kb 4,2534 kb
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phase. The termination criterion was that, for each control
point, the relative distance it had moved in the last step was
smaller than a pre-set tolerance—in our case, 0.0001.The
time is given in milliseconds and the observed number of
iterations required for convergence varied between 20 and
50. As for the preparation phase, the storage requirements
in the proposed method are independent of the number of
measured points and are proportional only to the number of
control points while the computational complexity of the
proposed method is linear with the number of control points.

The Gauss–Seidel method was subsequently compared
with the Cholesky method as a direct method alternative.
The computational complexity of the standard Cholesky
method is O(N3), [13]. However, we have implemented the
band method as the most suited variation of Cholesky’s
techniques, in view of the sparsity of the matrices involved.
In a banded matrix all of the non-zero elements belong to a
band centred at the main diagonal. The definition is as
follows: A Є RNxN is a banded matrix with half bandwidth p
if Aij=0 for |i-j|>p. In our implementation of the Cholesky
band algorithm, the upper triangle of the banded matrix A
to be factorised is supplied in banded storage mode [22]. In
this storage scheme, the band of the matrix is stored into a
rectangular matrix and, if the half bandwidth is p, the new
array has p+1 rows and as many columns as the original
matrix.

A detailed treatment of this method is provided in
George and Liu [22], including the derivation of expres-
sions for computational complexity. In the case of NURBS
fitting and the consequent band width (Fig. 2), the
computational complexity can be shown to be O(N2). The
corresponding results of our tests are presented in Table 4.

It is difficult to provide a direct comparison of the
computational speed between the two solution methods, as
one uses direct computation and the other an iterative
procedure that stops at a pre-set value. Also, the computa-
tional time of an iteration procedure varies significantly
with the quality of the initial guess. Nevertheless, the data
in Tables 3 and 4 provides an indicative comparison based
on experiments with the two methods, involving variation
in the number of control points on a large scale, over
several orders of magnitude.

The results obtained with the proposed method are
exactly the same as the results obtained by the standard
solutions of the generalised normal equations and for this
reason the accuracy is considered identical to the one of the
standard methods.

The comparison results are also shown in Fig. 3. When
the number of control points, N, is smaller than 1,000
Cholesky method appears to be superior, while the iterative
procedure is seen to be faster for N>1,000.

As an illustration, for 100,000 control points, the
processing time is over half an hour if Cholesky method
is used, while it takes only 13 s to process the data using
the iterative method. With increased number of control
points (N>100,000), Cholesky becomes too slow and it
takes up prohibitive amount of memory, which renders it
practically unusable for such applications in surface fitting.
The precise limit of course varies, depending on the
computer specification.

4 Examples

Two examples where chosen to illustrate the key aspects
of the proposed method—its iterative nature and its
usefulness in practice. The first examples-modelling of
the mobile telephone keypad, illustrates the iterative
nature of fitting using base surface, while the second-
modelling of the injection moulding tool, illustrates
usability of the presented work in engineering design,
analysis, and manufacture.

Figure 4 shows a data set comprising 40,400 points,
corresponding to the front cover and keypad of a mobile
telephone handset. The aim was to create a model that
accurately captures all the shape details represented by the
data. The points were unordered and the density was non-
uniform, providing significantly more data in the curved
areas than in the flat areas, as the figure demonstrates. The
base surface is shown in Fig. 5a, and it was constructed
interactively as a Coons patch, with 189 control points. The
NURBS surface was then fitted through the points using the
knot vectors from the base surface and parameters for each
point taken from the projection on the base surface. The

Table 3 Solution phase: Gauss–Seidel method performance with
regard to computational complexity

Number of data points Number of control points

102 103 104 105

104 15 ms 140 ms 1,125 ms –

105 31 ms 156 ms 2,007 ms 13,672 ms

106 32 ms 171 ms 1,797 ms 21,285 ms

Table 4 Solution phase: Cholesky band method performance with
regard to computational complexity

Number of data
points

Number of control points

102 103 104 105

104 11 ms 93 ms 7,344 ms –

105 10 ms 94 ms 7,235 ms 1,967,339 ms

106 12 ms 94 ms 7,328 ms 1,926,738 ms
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result is shown in Fig. 5b. After a uniform knots insertion
the process was repeated in order to obtain more accurate
reconstruction, as shown in Fig. 5c. The final model,
shown in Fig. 5d was constructed after repeated knots
insertion and fitting, eventually using 163,840 control
points that were needed to model the fine details. The
entire procedure included 730 iterations and it took less
than 1 h to complete using an Intel Xeon 3.2 GHz
processor and 2 GB of RAM.

Figure 6 shows an injection moulding tool for a car
dashboard. This is a representative example of a high cost
engineering component that is relatively large (about
2,000 mm length) yet contains numerous fine features that
need to be represented with high accuracy (better than
0.1 mm). An important part of the mould development
process is to assess its structural performance using finite
element analysis, because the mould is in production
subjected to high pressures that it must withstand with
acceptably small deformation. The original design of the

mould was produced using a standard CAD package and
consisted of 156,443 entities. It was provided as a neutral
format IGES file for processing by downstream systems.
The model inevitably contains numerous imperfections
such as small gaps and overlaps between surface entities.
The native CAD system accommodates such imperfections
based on the tolerance definitions and extensive topological
information produced during model creation, however such
information is largely lost when converting to a neutral data
exchange format. Consequently, stand alone mesh genera-
tion packages often fail when dealing with such models.
Interactive model repair in preparation for meshing is a
hugely laborious process, often requiring many hours or
11 weeks of work.

The solution was sought in fitting a single surface to a
cloud of points generated from the model. Thus the
model was adaptively sampled to produce 800,000 points
with non-uniform distribution and local point density
adapted to the local feature size. The final result, a single
surface with 120,000 control points was fitted using all
data points, is presented in Fig. 6. The required mesh was
subsequently readily generated from this model and the
concept of using a single surface representation was
proved successful.

Figure 7 shows the airfoil-shaped blade of a propeller.
Measured data set containing 54 000 points was modelled
with 1,020 control points.

5 Conclusions

This paper has presented details of the implementation of a
method for generation and solution of generalised normal
equations in NURBS fitting, which realises significant
improvements in the memory requirements and the com-
puting speed. The newly observed sparsity structure of the
relevant matrices is specific to the problem of NURBS

Fig. 4 Point data set for telephone handset, showing regions of very
dense data required to capture fine detail of the keypad
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fitting and lends itself well to the row oriented method of
matrix multiplication. The critical aspects of the fitting
process were identified to be the storage of matrices R and
RTR and the computation of the matrix product RTR. The
storage requirements for the presented method are indepen-
dent of the number of measured points and linear with the
number of control points. The computing speed is linear
with the number of measured points and independent of the
number of control points.

The normal equations were solved using two methods: A
Cholesky band method and optimised iterative procedure.
Both methods were implemented in order to make viable
comparison in terms of their computational speed and
storage requirements. The optimised iterative procedure
proved distinctly superior for the large number of control

points (N>1,000). The Cholesky method however proves
more efficient when the number of control points is smaller
(N<1,000). The results of this research provide a novel and
efficient methodology for solving an important class of
fitting problems.

Consequently, the method is well suited for applications
involving modelling of complex shapes from a cloud of
digitised points [25], where both the number of data points
and the number of control points may quickly lead to a
problem of insoluble size.

Fig. 5 Phases of surface fitting,
a initial base surface fitted with
9×21 control points, b initial
surface fitted to the data, c
intermediate surface fitted with
17×41 control points, d final
surface fitted with 256×640
control points

Fig. 7 Blade of a propellerFig. 6 Injection mould for a car dashboard
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