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Abstract 

 
Freshly dissected porcine synovial tissue in culture produces an enzymatic activity that 

cleaves cartilage aggrecan generating ARGS- and AGEG- bearing neo-epitope fragments. 

The aggrecanolytic activity was abolished when synovial tissue was cultured in the presence 

of cycloheximide. The enzyme(s) were sensitive to N-terminal inhibitory domain of tissue 

inhibitor of matrix metalloproteinase (N-TIMP-3) and general matrix metalloproteinase 

inhibitor (GM6001) suggesting they may belong to a disintegrin and metalloproteinase 

(ADAM) or ADAM with thrombospondin motifs (ADAMTS) family of enzymes. Cation 

exchange chromatography was used to partially purify aggrecanase(s) from synovial tissue 

culture medium (SYCM). Two active species have been separated from the partially purified 

material using size-exclusion chromatography. The smaller species had a molecular weight 

of 35-40 kDa while the larger enzyme had an apparent molecular weight greater than 2000 

kDa. Low density lipoprotein receptor-related protein (LRP1) didn’t appear to be involved in 

the formation of higher molecular weight complex. The smaller species was further 

chromatographed on a SMART mono Q column. The sequential chromatography gave 

approximately 400-fold enrichment of the enzyme. The concentration of the enzyme was 

estimated by titration with recombinant N-TIMP-3, which was expressed and purified from 

E.coli. The N-TIMP-3 was electrostatically coupled to Ni2+ agarose beads. The beads were 

then used to affinity purify the enzyme from mono Q fractions. The affinity-purified material 

was electrophoresed and protein bands were selected for mass spectrometry. No ADAMTS 

enzyme was identified in the candidate bands. Further improvements will be made to the 

purification procedure to identify the synovial aggrecanase.  
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1.1   Background 
 

Osteoarthritis (OA) is a disabling arthropathy characterised by cartilage degeneration 

whose pathogenesis is not understood. Injuries to synovial joints such as ligamentous tears, 

predispose to OA. Understanding the molecules induced upon joint injury should give 

insights into cartilage physiology and its degeneration.  

In Introduction, I will summarise the physiology of the synovial joint with main focus 

on the cartilage and synovial tissues. The features of OA and its pathogenesis will be 

discussed. The known proteinases and cytokines involved in cartilage breakdown will be 

reviewed towards the end of the introduction section. Lastly, I will describe what is known 

of the responses of tissues to injury.              
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1.2   Cartilage structure and function  

A synovial joint consists of two articulating surfaces, coated with hyaline cartilage, 

and a joint capsule lined with synovial tissue (Fig.1.1). The synovium produces synovial 

fluid, which acts both as a lubricant and a source of nutrients for the articular cartilage. 

Articular cartilage is composed of predominantly (65 to 80 %) water and of its dry weight, 

70 % is collagen, 20 % is proteoglycans and 10 % is other proteins (Sharma et al. 2008).  

 

 

 

 

 
Fig. 1.1. The basic structure of synovial joint (longitudinal section). Adapted from Dr. 
Kim Midwood’s lecture on ‘The Synovium: anatomy, physiology and pathology’ 
delivered at Kennedy Institute of Rheumatology on 24th February, 2010.    
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The chondrocyte: Chondrocytes are the only cells found in the cartilage. They are 

embedded in the ECM, which is a system of insoluble fibers and soluble polymers. They are 

derived from mesenchyme (Goldring et al. 2006) and are distributed as single cells or in 

small clusters (Fig. 1.2A). Cartilage is avascular and aneural. The chondrocytes are 

metabolically active cells which exist in relative hypoxia, and depend mainly on anaerobic 

respiration (Archer et al. 2003). Their turnover in adult cartilage is thought to be very low 

since dividing cells are rarely seen.  

             Collagen: Collagen type II is the main structural element of the ECM and forms 90 

% of the fibrous network in the cartilage (Textbook of Rheumatology, Kelly , W.N pp 1-12).  

              The type II α1 chains of collagen are synthesized as pro-collagen chains, which 

contain N-terminal and C-terminal propetides (Olsen 1995). The three compatible α1 

chains are folded into their triple helical conformation(Lees et al. 1997). The α1 chains of 

collagen are proteolytically processed at the N and C terminal ends just after secretion by the 

chondrocytes (Olsen 1995). The release of the C-propeptide of type II procollagen is a 

marker of new synthesis of the molecule (Nelson et al., 1998). The proteolytically processed 

collagen molecules then associate in a highly ordered fashion to form fibrils, which in time 

become stabilized through cross-links between molecules.  Bunches of collagen fibrils form 

fibres, which are responsible for the form and tensile strength of cartilage. Articular cartilage 

can be ordered into different zones, which are characterized by the orientation of the 

collagen fibers (Fig. 1.2B). The superficial layer of cartilage is in contact with synovial fluid 

and the collagen fibrils are ordered tangentially to the direction of the movement. Beneath 

the superficial layer is the middle layer. The collagen fibers are perpendicular throughout the 

middle zone of cartilage. This anchors cartilage to the bone. The tidemark refers to the 

region where calcified cartilage begins, below which is the bone.  
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Fig.1.2 Articular cartilage structure (A) Schematic representation of the structure of the 
cartilage (B) Schematic representation of a longitudinal section through hyaline cartilage 
showing all the cartilage zones. The black lines represent the collagen fibril layout.   
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Proteoglycans: 90% of the proteoglycan mass of cartilage is made up by aggrecan 

(Sharma et al. 2008). Each aggrecan molecule consists of a core protein with three 

globular domains. The core protein has numerous covalently attached sulphated 

glycosaminoglycan chains (GAGs) of keratan and chondroitin sulphates (Roughley 2006). 

Aggrecan molecules aggregate with hyaluronan and this interaction is stabilised by link 

protein. Aggrecan thus forms huge (> 20 aggrecan monomers)  aggregates, which fill the 

interfibrillar space of the matrix (Roughley 2006). The glycosaminoglycan chains are 

highly hydrophilic. This creates a swelling pressure, which enables the cartilage to resist 

compression. The effective pore size of cartilage is low: proteins larger than albumin and 

smaller negatively charged proteins tend to be excluded from the matrix (Buckwalter et al. 

1998). Proteinases secreted by the chondrocyte are able to cleave aggrecan at multiple sites 

as shown in Figure 1.3, leading to its loss from the matrix (Karsenty 2005) . Aggrecan is 

constantly synthesised in adult cartilage to counteract this loss. 

            Decorin, biglycan, fibromodulin and lumican are small proteoglycans found in the 

ECM which have functions in its organisation and stabilisation (Roughley 2006). The 

glycoprotein cartilage oligomeric matrix protein (COMP) is important for binding and 

stabilising collagens (Posey et al. 2008). Fibronectin is another glycoprotein of the ECM: it 

can bind integrins as well as collagen and heparan sulphate proteoglycans (Hynes 1990). 
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Fig 1.3: Schematic representation of human aggrecan with ADAMTS and MMP 
cleavage sites. G1, G2, G3 = Globular Domain 1, 2, 3; CS1 = Chondroitan sulphate 1, CS2= 
Chondroitan sulphate 2, KS = Keratan sulphate. Hyaluronan is a polysaccharide of 
glucoronic acid and N-acetylglucosamine. ADAMTS cleavage sites are indicated with 
letters and MMP cleavage site with numbers. Diagram modified from (Sawaji et al. 2008). 
 

            Pericellular matrix: The region of matrix immediately surrounding the chondrocyte 

is known as the pericellular matrix. This is structurally and biochemically distinct from the 

‘territorial’ ECM (matrix surrounding the pericellular matrix). It is abundant in perlecan (a 

heparan sulphate proteoglycan) and type VI collagen. Perlecan binds other matrix molecules 

and growth factors such as FGF-2 (Vincent et al. 2006). Cell-matrix interactions are likely 

to allow the chondrocyte to respond to mechanical forces. Examples of interactions between 

cell surface molecules and the ECM include integrins binding to collagen and fibronectin, the 

tyrosine kinase receptor DDR-2 binding to collagens, and the cellular receptor CD44 binding 

to hyaluronan (Vogel et al. 1997; Xu et al. 1997; Knudson et al. 2004). 

CS2	  CS1	  

	  	  	  KS	  
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1.3   The synovium  (Mark C., and Allan Silman., Book of Rheumatology 3rd Edition)   

Synovium is a vascular connective tissue that lines the non-cartilaginous surfaces in the joint 

cavity. It is continuous with the joint capsule, a tough dense fibrous connective tissue that 

consists of intertwining bundles of collagen attached to the bones via specialised zones 

(Mark C., and Allan Silman., Book of Rheumatology 3rd edition Chapter 17, p159-165). The 

capsule forms a sleeve around the joint to seal the joint space and provides stability. There 

are two distinct layers to the synovium: the intimal cell lining layer which faces the joint 

cavity, and a sub-intimal connective tissue layer attached to the joint capsule (Fig.1.4) 

(Archer, C., Bruce Caterson., The Biology of Synovial Joint, Section 3: Synovium p 223)  

The intima is one or two cells thick, and is sometimes thrown into villi to increase its surface 

area. The intimal cells lie on a bed of connective tissue and are not joined to each other via 

tight junctions or desmosomes. There is no basement membrane. Two cell types comprise 

the intima: type A and type B. Type A are macrophage-like cells with prominent Golgi 

apparatus and lysosomal vesicles whose main function is assumed to be clearing debris. 

Type B are fibroblast-like cells having prominent endoplasmic reticulum. They are thought 

to synthesise components of synovial fluid such as hyaluronan and lubricating molecules 

such as lubricin (Archer, C., Bruce Caterson., The Biology of Synovial Joint, Section 3: 

Synovium chapter 14., The Biology of Synovial cells p 225). The sub-synovial layer contains 

fibroblasts, networks of blood and lymphatic vessels, and nerve fibres (Davies et al. 1948). 

In addition there are resident macrophages, and mast cells, as well as mononuclear 

leukocytes that pass through the tissue (Davies et al. 1948).  

            A major function of the synovium is to produce synovial fluid. This is an ultrafiltrate 

of blood plasma to which are added molecules secreted by the synovial cells. Besides its 

lubricating function, it provides nutrients to the cartilage and perhaps the sub-chondoral bone 

and removes the waste products of metabolism.  
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Fig. 1.4 Schematic illustration of synovium showing synovial lining layer resting on 
sub-synovial layer. The figure is adapted from The Rheumatology by Mark C., and 
Allan Silman 3rd Edition Chapter 17, p 62 figure 8.6)  
 

 

 

 

 

 

 

 

 



Chapter 1                  Introduction 

	   21	  

1.4   Osteoarthritis 
 

OA is a disease of joints characterised by cartilage degeneration and osteosclerosis 

with formation of bone cysts and osteophytes (Altman 1991). In the early stages of disease 

the cartilage surface becomes fibrillated with loss of sulphated proteoglycan (Collins et al. 

1960). There follows progressive loss of cartilage ECM whose principle components are 

aggrecan and type II collagen (Mankin et al. 1970). Deep vertical fibrillations develop and 

the chondrocytes become localised in nests. Sometimes regions of intense metachromatic 

staining surround these, indicating increased proteoglycan synthesis, and suggesting 

attempted repair of the damaged ECM (Mankin et al. 1970). As cartilage destruction 

continues there is remodelling and abnormal growth of adjacent bone. At the margins of the 

joints new outgrowths of bone called osteophytes form. The joint becomes increasingly 

painful and function is lost. Besides the characteristic changes in cartilage and bone, low-

grade synovitis may also be present.  

Clinical aspects of OA: OA may occur in any joint, but it most commonly affects the 

hip, knee, hand and spine. Nearly 5 million people in the UK are estimated to have 

radiological evidence of moderate to severe OA of their hands, knees or hips which costs 

£3.197 billion in lost production (Department for Work and Pensions: Analytical Services 

Division, 2000). 

Pharmacological therapy for OA is symptomatic and supportive (Conaghan et al. 

2008). No disease modifying drugs exist and in advanced OA joint replacement is the only 

treatment. Strategies for development of new treatments include both cell and 

pharmacological therapy. The latter broadly involves either boosting cartilage anabolism 

responses with growth factors such as FGF or blocking catabolic proteinases such as matrix 

metalloproteinases (MMPs) and aggrecanases with inhibitors (Chuma et al. 2004; Fosang 

et al. 2008; Troeberg et al. 2008). For such therapies to be effective they would need to 
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be given early in disease. Generally the disease is diagnosed late when the cartilage damage 

is extensive.  

From a clinical perspective OA is a heterogeneous disease. Hand OA is characterized 

by polyarticular interphalangeal joint involvement of the fingers. There is formation of 

Herberden’s nodes, knobbly swellings of the distal interphalangeal joints of the fingers, and 

Bouchard’s nodes, swellings of the proximal interphalangeal joints (Mark C., and Allan 

Silman., Book of Rheumatology 3rd Edition p 22). Women are more likely than men to be 

affected by this form of OA, especially after the menopause with strong familial 

predisposition (Pattrick et al. 1989). The knee and the hip are the most commonly affected 

large joints, probably because they are the main weight-bearing joints of the body. 

Degenerative arthritis of the cervical or lumbar spine is also very prevalent. OA of the 

shoulders, elbows, feet and ankles are less common.   

             Risk factors for OA: OA is multifactorial disease in which age, weight, genetic 

predisposition, malalignment and previous joint trauma all contribute to susceptibility.  

Obesity predisposes to OA especially of the hip, which is the main load-bearing region of 

the body. Studies have shown that weight reduction can improve the pain score and function 

in subjects with OA (Roddy et al. 2006). From twin studies, genetic factors have been 

found to be a strong determinant of the disease, with estimates of OA heritability being 

greater than 50 % for hip, knee and spine OA (Spector et al. 2004). Genome wide 

scanning and other approaches have identified polymorphisms in gene loci such as the IL-1 

gene cluster, the IL-4 receptor, frizzled-related protein-3 and asporin (hip OA) and matrilin-

3 (hand OA) that influence disease susceptibility (Felson et al. 2000; Loughlin et al. 

2002). Such approaches have highlighted the problem of heterogeneity in OA populations 

and have been largely disappointing in identifying polymorphisms, which confer risk to 

large groups of patients. Other factors which may be important include bone density, 
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oestrogen deficiency and vitamin D status (Felson et al. 2000). 

OA as an active or passive disease: One view of OA is that it is a passive wearing 

out of the material of the articular cartilage. This in part is a result of the poor inherent repair 

capacity of the tissue. Damage to adult articular cartilage fails to heal spontaneously and 

defects that penetrate the subchondral bone elicit a repair response that generates a 

fibrocartilage repair tissue, which is a poor substitute for hyaline cartilage (Hayes et al 

2001). An alternative view is that OA is the result of active cellular processes. The 

formation of cell clusters and the early focal loss of proteoglycan staining suggest altered 

cellular activity (personal observation). The existence of the aggrecan fragments in the 

synovial fluids from patients with OA suggests increased proteolysis (Lohmander et al. 

1993) and there is evidence of increased expression of MMPs and collagenases 

(Billinghurst et al. 1997; Aigner et al. 2001).  

That OA is a disease depending on cellular activity is further supported by studies in 

knockout mice. The cartilage resorbing action of cytokines is thought to be due to cells 

being stimulated to release proteinases to degrade firstly aggrecan and secondly collagen. 

Two aggrecanases were purified from IL-1 stimulated bovine nasal cartilage cultures and 

subsequently identified belonging to a disintegrin and metalloproteinase with 

thrombospondin motifs (ADAMTS) family. These were ADAMTS-4 and ADAMTS-5 

(Abbaszade et al. 1999; Tortorella et al. 1999). Glasson and her colleagues showed that 

ADAMTS5, but not ADAMTS4 null mice were partially protected from OA caused by 

surgical destabilization of medial meniscus (Glasson et al. 2005). Mice null for MMP-13, 

the major murine mouse collagenase, also showed significant protection (Little et al. 2009). 

Similar protection from surgically induced OA has been observed in mice null for MyD88 

(an intracellular adaptor protein essential for the formation of IL-1 and TLR receptor 

signalling complexes) (Tonia Vincent, Kennedy Institute, personal communication). 
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Chondrocytes are surrounded by a pericellular pool of FGF-2 (Chia et al. 2009). FGF-2 

knockout mice show accelerated OA compared to wild type controls (Chia et al. 2009). 

Subcutaneous injections of FGF-2 in FGF null mice reversed the OA comparable to wild 

type controls. Thus the signaling pathways activated by FGF-2 may be important in 

protecting joints from degeneration over time. These studies showing the course of OA to be 

influenced by individual genes are consistent with the involvement of active cellular 

processes.  
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1.5     Proteinases and inhibitors involved in cartilage ECM catabolism 

           The remodelling of the cartilage ECM is carried out by proteinases made by cartilage 

and also perhaps the surrounding tissue. Proteinases are currently classified into 5 groups: 

serine, threonine, cysteine, aspartate and metalloproteinases (Biochemistry 3rd edition Voet 

& Voet, Chapter 13).  The main enzymes involved in cartilage matrix catabolism are MMPs 

and ADAMTS enzymes. These are part of the Metzicins (MA) MA clan of metallopeptidases 

according to the MEROPS peptidase database (Rawlings et al. 2006). MEROPS is an on-

line database for peptidases and their inhibitors published by Rawlings & Barrett in 1993. 

The motif HEXXH characterises the clan MA. The two histidines in the consensus sequence 

coordinate the zinc ion. The amino acid, which forms the last coordinate of the catalytic zinc, 

differs depending on the different families in the clan. The MA clan is split into two 

subclans, MA(E) where E stands for glutamic acid  and MA(M) where M stands for 

methionine based on the identity of the last zinc coordinate. The MMPs, ADAMs and 

ADAMTSs belong to subclan MA(M).        

            MMPs: Proteoglycan loss from the articular cartilage matrix was first described by 

Fell and Mellanby in embryonic chick limb bones cultured with retinoic acid (Fell et al. 

1951). Subsequently the enzymes implicated in mediating this matrix loss were considered 

to be the lysosomal proteinases such as cathepsins B, D and L (Lucy et al. 1961). Later 

however, it was found that the addition of cysteine proteinase inhibitor E-64 and pepstatin to 

the chick limb explant cultures stimulated with retinoic acid had no effect on proteoglycan 

loss suggesting that cathepsins, which are essentially intracellular enzymes active at acidic 

pH, were not directly influencing proteoglycan loss in the chick limb system (Hembry et al. 

1982).  

 Attention then turned to the newly emerging group of MMPs. Collagen’s unique 

structure renders it highly resistant to proteolysis at physiological pH and temperature. 



Chapter 1                  Introduction 

	   26	  

Jerome Gross and Charles Lapiere first described a specific collagenase in 1962 in the 

tadpole tail during metamorphosis (Gross et al. 1962). Specific collagenases cleave 

collagen at a single site generating ¾ and ¼ collagen fragments. Human collagenase was 

first described by Evanson and others in cultures of rheumatoid synovium (Evanson et al. 

1967). The enzyme was later purified from cultures of rheumatoid synovium (Woolley et 

al. 1975) and is now known as MMP-1. General metalloproteinase inhibitors were shown to 

inhibit IL-1- and retinoic acid stimulated aggrecan release in cartilage (Hembry et al. 1982; 

Caputo et al. 1987). MMPs were therefore strong candidates for involvement in 

proteoglycan turnover as well as collagenolysis. There are currently 23 human members in 

the MMP family assigned in the MEROPS database. The basic structure consists of a signal 

sequence, followed by a pro-domain, a catalytic domain, a linker region and a hemopexin-

like domain. A number of MMPs have been identified that degrade aggrecan (Fosang et al. 

1991). Stromelysins (MMP-3,-10), collagenases (MMP-1,-8,-13), matrilysin (MMP-7) and 

gelatinases (MMP-2, MMP-9) all cleave aggrecan at multiple sites, but the major site is 

Asn341-342Phe which lies within the interglobular domain (IGD) of aggrecan (Fig.1.3) 

(Fosang et al. 1991; Fosang et al. 1993). Collagenases (MMP-1, MMP-8) cleave at a 

second site (Asp441-442Leu) within the IGD, which is not recognised either by stromelysins or 

gelatinases (Fosang et al. 1993). These cleavages potentially cause major loss of function 

because large GAG bearing fragments would be released from the tissue reducing the ability 

of cartilage to resist compression. 

ADAMTSs and ADAMs: The N-terminal sequence of the major aggrecan degradation 

products from bovine cartilage explant cultures stimulated with IL-1α was determined to be 

374ARGXVILXAKPDF, which did not correspond to any known proteinase cleavage at the 

time (Sandy et al. 1991). Furthermore, analysis of the aggrecan fragments from bovine 

synovial fluid (Ilic et al. 1992) and from patients with OA (Lohmander et al. 1993) also 
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revealed cleavage at the Glu373-374Ala bond. The term ‘aggrecanase’ was coined to describe 

an unknown enzyme or enzymes that cleave at the Glu373-374Ala bond. Aggrecanase-1 

(Tortorella et al. 1999) and aggrecanase-2 (Abbaszade et al. 1999), purified from IL-1-

stimulated bovine nasal cartilage cultures were the first proteinases identified to make the 

Glu373-374Ala bond cleavage in the IGD domain of aggrecan. The assay for the purification of 

aggrecanases relied upon an anti-374ARGS monoclonal antibody (Hughes et al. 1995), 

which recognised the newly generated N-terminal 374ARGS of the aggrecan fragments but 

not the same sequence in intact aggrecan. Peptide sequences obtained from the purification 

of aggrecanases were used to screen cDNA libraries (Abbaszade et al. 1999; Tortorella et 

al. 1999).  

The cDNAs encoded for aggrecanase-1 and aggrecanase-2 showed they belonged to a 

disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family of 

enzymes, and they are now known as ADAMTS-4 and ADAMTS-5 respectively(Kuno et 

al. 1997). ADAMTS is a subset of a disintegrin and metalloproteinase (ADAM) family of 

proteinases and its first member (ADAMTS-1) was discovered as a novel gene expressed in 

cachexigenic tumours (Kuno et al. 1997). Their structure consists of an N-terminal signal 

peptide, pro-domain, catalytic domain, disintegrin domain, thrombospondin type I domain, 

cysteine rich domain, spacer domain and 0-14 additional C-terminal thrombospondin type I 

domains (Fig. 1.5) ADAMTS proteinases are related to other members of the ADAM family; 

however unlike the majority of the ADAM family they lack the transmembrane domain in 

addition to having the thrombospondin motifs. There are currently 32 members of ADAM 

family in the MEROPS database (Rawlings et al. 2004), which show extensive homology 

with snake metalloproteinases. They are mainly cell bound proteins. The founder members 

of the ADAM family, ADAM-1 and ADAM-2 were shown to be involved in sperm-egg 

fusion (Primakoff et al. 1987). ADAM-17 also known as TNFα converting enzyme 
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(TACE) is responsible for the processing and the release of TNFα from the cell surface 

membrane (Black et al. 1997). This enzyme is also implicated in the shedding of other 

regulatory molecules such as transforming growth factor α (TGFα), amyloid precursor 

protein (APP), neuronal cell adhesion molecules (NCAM) etc. (Peschon et al. 1998; 

Kalus et al. 2006) However, to date, the functions of majority of ADAM family members 

have yet to be elucidated.  

 

 

 

 

 

 
 
 
Fig. 1.5 Schematic representation of the domain structure of ADAMTS members. The 
conserved HEXXH motif is found in the catalytic domain. Pro = Pro domain, Cat = Catalytic 
domain, DIS = disintegrin domain, TSP = thrombospondin domain, Spacer = Space domain, 
CysR = Cysteine rich domain 
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ADAMTS-4 mRNA is upregulated in isolated chondrocytes and cartilage explants 

stimulated with IL-1α, TNF-α or transforming growth factor-β (TGF-β) (Moulharat et al. 

2004). The regulation of ADAMTS-5 mRNA by these cytokines has been unclear. 

Tortorella et al. (2001) and Moulharat et al. (2004) reported that ADAMTS-5 mRNA 

expression was constitutive in human cartilage explants and unaffected by IL-1α, TNF-α or 

TGF-β. Others have reported that IL-1α upregulates ADAMTS-5 mRNA levels in bovine 

cartilage explants (Little et al. 2002; Arai et al. 2004), in a human chondrosarcoma cell 

line (Koshy et al. 2002) and in human articular chondrocytes (Sawaji et al. 2008). Much 

work on characterisation, activation and regulation of ADAMTS-4 has been carried out since 

it was the first aggrecanase identified. It was a surprise therefore when in 2005 it was 

revealed that cartilage of mice null for ADAMTS-5, but not for ADAMTS-4 was protected 

from loss of aggrecan following IL-1 stimulation (Glasson et al. 2005; Stanton et al. 

2005). Similar protection from loss of cartilage aggrecan was also observed in post-surgical 

OA and antigen-induced (methylated BSA) arthritis in the ADAMTS-5 null animals 

(Glasson et al. 2005; Stanton et al. 2005). These studies indicated that ADAMTS-5 is a 

major mediator of aggrecanolysis in murine arthritis.  

           Six other ADAMTS enzymes (ADAMTS-1, -8,-9,-15,-16,-18) have been reported 

which cleave aggrecan at the Glu373-374Ala bond. ADAMTS-1 cleaves mouse aggrecan 

(Rodriguez-Manzaneque et al. 2002) and also the proteoglycan versican VI of human 

aorta (Sandy 2001). In antigen-induced arthritis, there was no difference in aggrecan 

degradation between ADAMTS-1-null mice and wild type controls (Little et al. 2005).  

ADAMTS-8 shows weak aggrecanolytic activity despite being strongly homologous to 

ADAMTS-1, - 4 and -5 (Collins-Racie et al. 2004).  ADAMTS-9 is widely expressed in 

embryonic and adult tissues and cleaves bovine aggrecan at the Glu373-374Ala in vitro 

(Somerville et al. 2003).  Not much is known about ADAMTS-15, -16, -18 apart from their 
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aggrecanolytic activity at the Glu373-374Ala bond (Zeng et al. 2006). The main functions of 

ADAMTS family members, where known, are shown in Table 1.  

Enzyme Substrate Activity 

ADAMTS-1 Aggrecan; versican; 
α2-macroglobulin 

Cleaves proteoglycan core 
proteins, anti-angiogenic 

ADAMTS-2 Procollagen I, procollagen II Processing of N-propeptide of 
procollagen 

ADAMTS-3 Procollagen II Processing of N-propeptide of 
procollagen 

ADAMTS-4 Aggrecan, versican, brevican Cleavage of proteoglycan core 
proteins 

ADAMTS-5 Aggrecan Cleavage of aggrecan core 
proteins 

ADAMTS-8 Aggrecan Cleaves aggrecan core protein 
ADAMTS-9 Aggrecan  

ADAMTS-13 Von willebrand factor Activity results in thrombotic 
thrombocytopenia purpura 

ADAMTS-14 Procollagen 1 Procollagen N-protease  
ADAMTS-15 Aggrecan Cleaves aggrecan core protein 

 
Table 1. The ADAMTSs, their substrates and biological activity are shown. Adapted 
from Nagase and Kashiwagi (2003).  
 
          TIMPs: TIMPs are endogenous inhibitors of the metalloproteinases. The family 

consists of four members in vertebrates, TIMP-1, -2, -3 and -4, which have amino acid 

sequence identity of 40-50%. TIMPs range in molecular mass from 21- to 29 kDa and are 

widely expressed throughout the body (Brew et al. 2000). TIMP-1, -2 and -4 are found in 

the body fluids and in tissues, whereas TIMP-3 is associated with the ECM (Pavloff et al. 

1992).  

              TIMPs have two domains. The inhibitory activity resides in the N-terminal domain, 

which forms a 1:1 molar complex with metalloproteinase (Murphy et al. 1991). Each 

domain contains three di-sulphide bonds (Williamson et al. 1990). The first three 

dimensional structure of a TIMP was solved by NMR and was the N-terminal domain of 

TIMP-2. It contained two α-helices and a 5-stranded antiparallel β-sheet (Williamson et al. 

1994). The NMR structure of N-TIMP-2 by itself was not sufficient to understand the 

mechanism by which MMPs was inhibited by TIMPs. The crystal structure of TIMP-1 with 
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MMP-3 revealed that the C-terminal domain includes two adjacent β-sheets, made by two 

parallel and two anti-parallel β-strands (Gomis-Ruth et al. 1997). Approximately 75 % of 

the total contact that the TIMP-1 has with MMP-3 takes place in a ‘binding ridge’ that inserts 

in the MMP-3 binding groove (Gomis-Ruth et al. 1997).  

           TIMPs are high affinity inhibitors and their Ki values are typically in the low 

nanomolar range. As a general rule TIMPs can inhibit all the MMPs (Nagase 2000). TIMP-

3 has a unique property of being able to inhibit ADAMs (e.g. ADAM-10, -12 and -17) 

(Amour et al. 1998; Amour et al. 2000) and ADAMTSs (e.g. ADAMTS-1, -4 and -5) 

(Hashimoto et al. 2001; Kashiwagi et al. 2001; Rodriguez-Manzaneque et al. 2002) 

enzymes. The Ki values of TIMP-3 indicate that it is a better inhibitor of ADAMs and 

ADAMTSs than MMPs (Amour et al. 1998; Kashiwagi et al. 2001). TIMPs are involved 

in diverse biological functions. TIMP-1 and -2 have erythroid-potentiating activities and cell 

growth-promoting activities (Gasson et al. 1985; Hayakawa et al. 1992). Lastly, TIMP-

3 is a pro-apoptotic in many different cells, such as melanoma, Hela, colon carcinoma, and 

rat smooth vascular cells (Bian et al. 1996).     

           Plasma proteinase inhibitors: There are 5 major proteinase inhibitors found in blood 

plasma: α-2 macroglobulin (α2M), α1 proteinase inhibitor (α1 PI), inter-α-trypsin inhibitor 

(IαI), α1 cysteine proteinase inhibitor (αCPI) and β1-anticollagenase (β1AC) (also known as 

TIMP-1) (Travis et al. 1983). These inhibitors regulate the enzymatic activity in the blood 

and tissue fluids. α-2M is a broad-spectrum inhibitor that is active against all major classes 

of proteinases: serine, cysteine, aspartic acid and metalloproteinase. α1 PI and IαI inhibit only 

serine proteases, α1 cysteine proteinase inhibitor inhibits only cysteine proteases, and the β1-

anticollagenase (β1AC) inhibit collagenolytic activity of metalloproteinase class.   
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1.6  Regulation of proteinases and ECM by cytokines  
 
        A number of factors have been implicated in the homeostasis of the ECM in the 

cartilage, which may be relevant to the pathogenesis of OA.  

       Cytokines: OA is not considered to be a severe inflammatory disease in the sense that 

rheumatoid arthritis is, but episodes of inflammation are common and there is often 

histological evidence of synovitis. Inflammatory cells and cytokines that are not normally 

present in normal joints are found in patients with OA. In particular, IL-1 which is the most 

potent and was the first cartilage resorbing cytokine, has frequently been implicated in the 

pathogenesis of cartilage matrix degradation in OA.  

Fell et al. (1977) first described an in vitro model in which they co-cultured normal 

porcine synovial tissue with porcine cartilage explants. They noted progressive loss of 

metachromatic staining of proteoglycans. Based on these findings they speculated that 

synovial tissue was producing a soluble factor, which they named catabolin that stimulated 

chondrocytes to resorb surrounding cartilage matrix (Fell et al. 1977; Dingle et al. 1979). 

Catabolin was later shown to be physicochemically similar to IL-1 (Saklatvala et al. 1984). 

Since these early studies further evidence has accumulated suggesting that IL-1 is present 

and may play a role in the pathogenesis of OA: This is summarised in Table 2.   

 
 

Nature of study on IL-1 Reference 
Detected in OA synovial fluid (Wood et al. 1983) 

Detected in OA synovium (Myers et al. 1990) 
Detected in OA cartilage (Middleton et al. 1996) 

Immunolocalisation in OA cartilage (Wood et al. 1983; Tetlow et al. 2001) 
Animal models  

Intra-articular injection stimulates cartilage loss (Wood et al. 1983) 
Intra-articular IL-1ra reduces progression of early 

OA in animal models 
(Caron et al. 1996; Pelletier et al. 1997) 

Table.2. Evidence of the role of IL-1 in the pathogenesis of OA. (Adapted from Goldring et 
al. 2004) 
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           Cytokines can be divided into several functional categories based on the different 

roles they have been reported to play in OA cartilage. With respect to regulation of 

chondrocyte function, it is possible to classify them: (1) catabolic cytokines that cause matrix 

degradation; (2) anti-catabolic or inhibitory cytokines that antagonise the catabolic ones; (3) 

anabolic cytokines and growth factors (4) regulatory cytokines which modulate the activity 

of other cytokines (Figure 1.4).  

            The catabolic cytokines implicated in mediating cartilage damage in OA include IL-1 

and TNFα. The injection of recombinant IL-1 in rats, mice and rabbits stimulates the 

destruction of articular cartilage (O'Byrne et al. 1990). However, when IL-1 was combined 

with TNFα and injected simultaneously, there was enhanced cartilage damage that exceeded 

the effects observed with either cytokine alone (Page Thomas et al. 1991). In addition to 

catabolic effects, IL-1 and TNFα can also adversely affect the synthetic activity of 

chondrocytes by inhibiting the synthesis of proteoglycans and type II collagen (Saklatvala 

1986). These cytokines induce chondrocytes to synthesise MMPs as well as prostaglandins 

(e.g. PGE2) and nitric oxide (NO) that also modulates catabolic activities in cartilage. 

Combining IL-1 with oncostatin M (OSM) increases expression of matrix-degrading 

proteinases in cartilage compared with IL-1 alone (Barksby et al. 2006). Other cytokines 

thought to play a catabolic role in cartilage include IL-17 and IL-18 (Van den Berg 2002). 

IL-6 and LIF (leukaemia inhibitory factor) are thought to play a regulatory role similar to 

OSM. Studies using the IL-1 receptor antagonist (IL-1ra) show that IL-1-mediated catabolic 

effects can be abrogated by this inhibitor (Pelletier et al. 1997).  
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Cytokines and growth factors in OA 

 
 
 
 
 
 
 
 
 
 
 

 
 
Fig 1.6. Classification of the role of cytokines and growth factors in OA 
The role of cytokines that currently believed to have a catabolic role, regulatory and anti-
catabolic or anabolic role in OA are shown. Abbreviations: IL- interleukin, OSM – 
oncostatin M, LIF – leukaemia inhibitory factor, IL-1ra – IL-1 receptor antagonist, IGF-1 – 
insulin-like growth factor-1, FGF-2 – fibroblast growth factor-2, CTGF – connective tissue 
growth factor (Adapted from Goldring and Goldring 2004).  
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1.7   Responses of cartilage to mechanical injury 

As discussed previously direct injury to a joint is a major predisposing cause of OA. 

Various injuries including intra-articular fracture (Furman et al. 2006), anterior cruciate 

ligament (ACL) rupture (Lohmander et al. 2004), meniscal damage (Sharma et al. 

2008) or menisectomy (Englund et al. 2004) all increase an individual’s risk of 

developing OA. The mechanisms by which injury to a joint leads to degeneration of 

cartilage are unknown. 

            Some years ago, our laboratory noted that dissecting articular cartilage from the joint 

surface (explantation) immediately activated all three mitogen activated protein kinase 

(MAPK) pathways (Gruber et al. 2004). These were extracellular regulated kinase (ERK), 

c-jun N-terminal kinase (JNK) and p38 MAPK. The degradation of IκBα was also observed, 

implying the possible activation of NFκB. Subsequently, it was shown that IκBα kinase 

(IKK), the main enzyme that activates NFκB, was activated within seconds of injury (Watt 

et al. 2013). The translocation of the p65 subunit of NFκB from the cytoplasm to the 

nucleus can be visualised by confocal microscopy 30 min after explantation (A. Didangelos, 

PhD thesis 2008). How these pathways, typically activated by inflammatory cytokines or 

microbial products, are activated by injury is under investigation.   

 Tonia Vincent in our lab was the first to investigate this induction of signalling. She 

found that upon dissection of porcine cartilage, a soluble factor was released into the 

medium that activated ERK. This was purified and identified as FGF-2 (Vincent et al. 

2004). FGF-2 is located in the pericellular matrix where it is bound to the heparan sulphate 

chains of perlecan. Subsequent studies showed that the ERK activation induced by loading 

cartilage could be inhibited using an ERK inhibitor (Vincent et al. 2004). Therefore 

cartilage loading may lead to the release of a growth factor that modulates its responses to 

injury. FGF-2 was not thought to be responsible for the activation of NFκB or JNK.   
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             More recently our lab has shown that protein tyrosine phosphorylation also occurs 

within seconds of the injury to the cartilage. Some of the proteins tyrosine-phosphorylated 

were identified by mass spectrometry e.g. focal adhesion kinase, paxillin and cortactin, and 

found to be src kinase substrates (Watt et al. 2013). A src inhibitor prevented the tyrosine 

phosphorylation. Fiona Watt has also shown that activation of MAPKs, NFκB and src 

occurs in synovial tissue upon dissection (Fiona Watt, personal communication). This 

unpublished work strongly suggests that cells of the synovium respond to injury in a fashion 

very similar to those of cartilage.  

In the mouse, our lab has used avulsion of the femoral head epiphysis as a model of 

injury. This too showed activation of MAPK and NFκB pathways, and of inflammatory 

response genes (Chong et al. 2013). Activation of the same intracellular signalling 

pathways in different connective tissues upon injury (articular cartilage, synovium and 

epiphysis) suggests it may be a generic response. The stimulus that activates the intracellular 

signaling following dissection is not understood. No soluble factors have been found from 

damaged tissues that activate JNK and NFκB in chondrocytes. Perhaps the cells directly 

sense and respond to the damage to the ECM.  

The mechanism by which cells in general respond to damage is controversial. 

Damage is thought to release intracellular molecules such as high mobility group box protein 

(HMGb1) and heat shock protein (HSPs) which act via TLRs to cause inflammatory 

signalling (Chen et al. 2010; Manson et al. 2012; Shen et al. 2013). In addition ECM 

components such as hyaluronic acid fragments are reported to activate inflammatory 

signalling (Scheibner et al. 2006). The stimulatory activity of some of these purified 

molecules has been attributed to contamination with bacterial products (Gao et al. 2003; 

Youn et al. 2008) and some of them seem to interact with several receptors, which makes it 

difficult to be sure of the role of a particular mediator in driving damaged-induced signalling. 
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The dissection of articular cartilage does not cause much release of the cellular contents as 

chondrocytes only occupy 2% of the hyaline cartilage volume and the MAPKs and NFκB 

pathways are activated in seconds. HMGb1 takes much longer to activate signalling 

pathways (Yang et al. 2005). We have also observed that recutting rested cartilage explants 

does not reactivate the JNK and NFκB pathways (A. Didangelos, PhD thesis 2008). An 

appealing hypothesis is that the chondrocytes directly sense the damage to the tissue and the 

sensing mechanism is not reset when the dissected cartilage is maintained in culture. While 

the injury response of the cartilage has been investigated extensively, the response of the 

dissected synovium, a cellularly much more complex tissue, has not.          
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1.8   Aims and objectives.  

Our laboratory has been studying cytokines and proteinases involved in the breakdown 

of cartilage aggrecan. Cartilage or synovium are dissected into culture medium where they 

are maintained and their behaviour studied. The injury of dissection causes rapid activation 

of intracellular signalling pathways typically seen when cells are stimulated by inflammatory 

stimuli such as bacterial lipopolysaccharide (LPS) or the cytokines interleukin-1 (IL-1) and 

tumour necrosis factor α (TNFα). The consequent changes in gene expression and protein 

synthesis represent injury responses, which if occurring in vivo, would likely promote local 

inflammation and tissue repair. The cultured medium of the damaged tissue can be analysed 

for factors that affect the cartilage metabolism. A product of cultured synovial tissue that 

caused cartilage to resorb its ECM by stimulating chondrocytes was identified in this way 

more than 30 years ago and called catabolin (Dingle et al. 1979). It was partially purified 

and characterised as a small (20 kDa) acidic protein (pI 4.5-5.0) (Saklatvala et al. 1980). 

Subsequently, a protein with similar physical and biological characteristics was purified to 

homogeneity from pig leukocyte culture medium and identified as the recently defined 

pleiotropic cytokine, IL-1α (Saklatvala et al. 1983; Saklatvala et al. 1984). Later TNF-α, 

another product of activated leukocytes, was also shown to induce breakdown and inhibit 

synthesis of proteoglycan in cartilage (Saklatvala 1986). Its action was similar to and 

additive with IL-1. While the role of these cytokines in rheumatoid arthritis (RA) is well 

established, their role, if any, in OA is unclear.  

The original aim of my project was to investigate what cytokines were made by the 

dissected synovium. This was based on the hypothesis that the original synovial catabolin 

was never shown to be identical with IL-1 α (which it resembled), and in the meantime other 

cytokines (e.g. IL-17 & IL-18) had been discovered and reported to have catabolic effects on 

chondrocytes. In early experiments I found that synovium produced aggrecanase activity in 
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amounts sufficient to interfere with the cartilage assays I needed to use to search for other 

regulatory cytokines. It was necessary to remove interfering proteinase from the medium if 

the cytokines present were to be investigated. The aggrecan-degrading enzymes of synovium 

have never been fully investigated or identified and in arthritis. It is possible that proteinases 

causing cartilage destruction arise from synovial tissue as well as chondrocytes. Purifying 

and identifying these synovial aggrecanases became the primary objective of focus of my 

work.    
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2.1    Molecular biology methods 

 Reagents used in Molecular Biology: Materials were purchased from the following 

sources: TOP 10 ElectrocompTM E.coli cells, Luria-Bertani (LB) broth, LB agar were 

obtained from Invitrogen (Paisley, UK); plasmid maxiprep kit was obtained from Qiagen 

(Crawley, UK); LB bacto-tryptone and yeast extract from BD biosciences (Oxford, UK); 

and chloroform, acetic acid, ethylenediaminetetraacetic acid (EDTA), ethidium bromide 

from VWR international (Leicestershire, UK).  

Isolation of plasmid from TOP 10 E.coli cells: Bacterial strain (TOP 10) containing 

pCMV6 entry vector with full length TIMP-3 ORF, C-terminally tagged with FLAG epitope 

(vector containing full length TIMP-3 ORF was bought from OriGene technologies) was 

added to 50 µl of TOP10 electrocompetent E.coli. The bacteria was spread evenly on the 

bottom of a cold electroporation cuvette and then pulsed in a BTX Electro Cell Manipulator 

with 2100 V for 5 milliseconds. Then 500 µl  of LB media was added and the cells were 

incubated at 37 °C. The following day single colonies were chosen to inoculate 2 ml of LB 

media containing 50 µg/ml kanamycin. To obtain 500 µg of DNA, 100 ml of culture were 

grown. After 16 hours of growth, the bacteria were pelleted by centrifugation at 3000 g for 

30 min at 4 °C. The plasmid was extracted according to manufacturers instructions (Qiagen 

maxiprep handbook). Briefly, bacteria were lysed under alkaline conditions and RNase  

treated before binding the plasmid DNA to Qiagen anion exchange resin under low salt and 

neutral pH conditions by gravity flow. RNA and protein contaminants were removed under 

medium salt (1.0 M) conditions and plasmid DNA was eluted in high salt (1.6 M) conditions. 

The plasmid DNA was concentrated and desalted by isopropanol precipitation. The plasmid 

pellet was redissolved in 10 mM Tris-HCl pH 8.0, 1 mM EDTA (TE buffer). The 

concentration of the plasmid was determined by measuring the absorbance at A260 in a 

Nanodrop spectrophotometer (Perkin Elmer). The purity of the plasmid was checked by 
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agarose gel (w/v 1% agarose) electrophoresis  running in 0.2 M Tris-HCl pH 7.3, 0.1 M 

acetic acid, 5 mM EDTA (0.5 × TAE buffer) containing ethidium bromide and visualised by 

a Biorad UV system.  

2.2   SDS-PAGE, Western blots, CBB stain and silver stain methods 

SDS-PAGE and Western blot reagents: Materials used for western blot and sodium 

dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE) were purchased from the 

following sources: 30% (w/v) acrylamide from Severn Biotech (Worcestershire, UK); 

glycine, bromophenol blue, β-mercaptoethanol (β-ME), Coomassie Brilliant Blue R-250 

(CBB), Tween-20, SDS and sodium thiosulphate from Sigma-Aldrich (Dorset, UK); pre-

stained Precision Protein StandardsTM from BioRad (Hemel Hempstead, UK); 4-12% Tris-

glycine gels and polyvinylidene difluoride (PVDF) membrane from Invitrogen (Paisley, 

UK); anti-rabbit horseradish peroxidise (HRP)-linked antibody, anti-mouse (HRP)-linked 

antibody, anti-goat (HRP)-linked antibody from Dako (Cambridgeshire, UK); 

chemiluminescent reagents from GE Healthcare (Buckinghamshire, UK); silver nitrate from 

Fisher scientific (Loughborough, UK); dithiothrietol (DTT) from Alexis Biochemicals (San 

Diego, USA); formaldehyde, formic acid, methanol, glycerol phosphate buffered saline 

(PBS, 137 mM NaCl, 10 mM phosphate, 2.7 mM KCl pH 7.4) from VWR international 

(Leicestershire, UK); sodium carbonate from Calbiochem (Merck Chemicals Ltd, 

Nottingham, UK) and MarvelTM dry semi-skimmed milk from Premier Foods (St. Albans, 

UK).  

Monoclonal antibody BC-3 (raised in mouse against the new N-terminus generated 

by cleavage of aggrecan core protein at the RNITEGE373 374ARGSVIL site) was purchased 

from Abcam (Cambridge, UK) and monoclonal 2-B-6 (raised in mouse against the aggrecan 

chondroitanase stubs that remain after deglycosylation with chondroitinase ABC and 

keratanase) was a gift from Prof. Bruce Caterson (University of Wales, Cardiff). The anti-
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AGEG antibody that recognised the N-terminal neo-epitope 1820AGEG of aggrecan was 

affinity purified from rabbit serum after immunising with AGEGPSGGC peptide sequence 

and kindly provided by Prof. Hideaki Nagase, Kennedy Institute of Rheumatology..   

SDS-PAGE: Proteins were resolved by SDS-PAGE with reduction using a 

modification of the tris-glycine buffer system according to Laemmli (1970). Polyacrylamide 

gels were made with 6-12% (v/v) total acrylamide depending on the size of the proteins to 

be separated. Samples were mixed with an appropriate amount of quadruple strength 200 

mM Tris-HCl 6.8, 2% (v/v)  SDS, 10% (v/v)  glycerol and a small amount of bromophenol 

blue and loaded into the wells of the stacking gel (4% (v/v)  acrylamide).  The Tris-glycine 

gels were run at 140 V for 2 hours.  

Coomassie Brilliant Blue R-250 staining for protein: SDS-PAGE gels were placed 

in the staining solution of 0.1% (w/v) CBB, 50% (v/v) methanol and 20% (v/v) acetic acid 

for 45 min and destained with 30% (v/v)  methanol and 1% (v/v)  formic acid. The 

destaining solution was changed every 10 minutes for 1 hour and the gels were further 

destained for 24 hr at room temperature (~25 oC). The gels were then dried.  

Silver staining for protein: For increased sensitivity of detection, proteins were also 

visualised in SDS-PAGE gels using a silver stain (Shevchenko et al. 1996). The gels were 

incubated in the fix solution of 50% (v/v) methanol and 5 % (v/v) acetic acid for 30 min. 

This was followed by a wash with 50% (v/v) methanol for 10 min and two further washes 

with deionised water (dH2O) for 10 min each. The gels were incubated in a sensitiser 

solution of 0.02% (w/v) sodium thiosulphate for 1 min, washed twice with dH2O and left 

with cold silver reagent of 0.1 % (v/v) silver nitrate at 4 oC for 20 min. After incubation, the 

gels were washed twice with dH2O for 1 min, before development. Formalin (0.04% (v/v) 
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was added to the developing solution of 2% (w/v) sodium carbonate immediately before use. 

Development was stopped with 5% (v/v) acetic acid. The gels were then dried.  

Western blots: Proteins separated by SDS-PAGE were transferred onto the PVDF 

membrane at 30 mA for 90 min in a transfer buffer of 20% (v/v) methanol , 25 mM Tris-

HCl pH 7.5, 192 mM glycine, with the apparatus assembled as per manufacturer’s 

instructions (Novex/invitrogen). After transfer, the membrane was blocked using 5% (w/v) 

dry skimmed milk (MarvelTM) in PBS for 1 hour at room temperature. Membranes were 

washed for 10 min in 20 mM Tris-HCl pH 7.6, 137 mM NaCl, 1% (v/v) Tween 20, 0.02 % 

NaN3 (TBS-Tween) before incubation with primary antibody in 5% (w/v) dry skimmed milk 

in TBS-Tween for 1 hour or overnight at 4 oC. The membrane was washed three times with 

TBS-Tween for 5 min before the addition of a 1:1000 dilution of relevant horseradish 

peroxidise conjugated secondary antibody in 5% (w/v) dry semi-skimmed milk in TBS-

Tween for 1 hour at room temperature. The membranes were washed three times with TBS-

Tween for 5 min before being incubated with the chemiluminescent reagents for 2 min. The 

membranes were exposed to films for increasing time points. The films were then developed.  

2.3    Tissue preparation and culture 

Materials used for cell and tissue culture: Materials were purchased from the 

following sources: Dulbecco’s modified Eagle’s medium (DMEM), penicillin, streptomycin, 

HEPES from Biowhittaker (Berkshire, UK); amphotericin B from Gibco (Paisley, UK); fetal 

calf serum(FCS) from Labtech international (East sussex, UK); Falcon plates from Beckton-

Dickinson (Oxford, UK); Recombinant human interleukin-1α was prepared in-house by 

Lesley Rawlinson (Kennedy institute, University of Oxford). Porcine metacarpophangeal 

joints were supplied by Cheale Meats Ltd (Essex, UK).  
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Cell line culture: Human epithelial kidney cells transformed with the Epstein Barr 

nuclear antigen (HEK293/EBNA) cells were cultured in DMEM containing 100 U/ml 

penicillin, 100 µg/ml streptomycin and 10 % (v/v) fetal calf serum (FCS) in a 5 % CO2 

incubator. The cells were obtained from Matrix Biology lab, Kennedy Institute of 

Rheumatology. The cells were passaged every 3-4 days using trypsin EDTA (sigma). 

Briefly, cells were allowed to reach 70-80% confluency before aspirating the media in a 

sterile culture cabinet. The cells were washed twice with 10 ml of sterile 1 X PBS solution. 

The petri dish was incubated with 4 ml of 0.05 % trypsin/EDTA solution at 37 °C.    

Cartilage explant culture: Porcine articular cartilage from metacarpophalangeal 

joints of 3-9 month old pigs was dissected using a scalpel and cut into small pieces of 

approximately 3mm long and 3mm wide. Each piece was roughly the same thickness (~2 

mm) and weighed approximately 10 mg. After dissection, the live cartilage was allowed to 

rest for 24 hours in a serum free media at 37 °C under 5 % (v/v) CO2 in DMEM containing 

100 U/ml penicillin and streptomycin, 2 ug/ml amphotericin B and 25 mM HEPES pH 7.0. 

If dead cartilage explants were needed, the explants were freeze-thawed 3 times before 

resting them for 24 hours at 37 0C under 5 % (v/v)  CO2 in serum-free DMEM containing 

antibiotics as listed above.   

Synovial tissue culture: Synovial tissue from pig metacarpophalangeal joints was 

dissected with a scalpel and cultured in serum-free DMEM with 100 U/ml penicillin and 

streptomycin, 2 ug/ml amphotericin B and 25 mM HEPES (1 g/2.5 ml) for 24 hours. The 

synovial culture medium (SYCM) was harvested, centrifuged (13000 rpm, 10 min) and 

treated with hyaluronidase from bovine testes [100ug/ml] for 1 hour at 37 oC to break down 

the hyaluronan, which makes the synovial medium viscous and interferes with the mobility 

of proteins on SDS-PAGE. The SYCM was stored at 4 oC.  
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2.4   Protein expression, purification and refolding 

Protein expression and purification reagents: Materials were purchased from the 

following sources: Q anion exchange column (HiTrap Q), Ni2+ agarose column (HisTrap), 

Superdex-75 and Superdex-200 pre-packed columns were obtained from GE healthcare 

(Buckinghamshire, UK); bovine serum albumin, β-mercaptoethanol (β-ME), 2-hydroxy-

ethyl-disulphide, cystamine dihydrochloride, imidazole, guanidine hydrochloride (GuHCl), 

nickel sulphate (NiSO4), sodium azide (NaN3), sodium Chloride (NaCl), anti-FLAG M2-

agarose, 3 X FLAG peptide and anti-FLAG M2 antibody were purchased from Sigma-

Aldrich (Dorset, UK); isopropyl β-D-thiogalactopyranoside (IPTG) from Biogene 

(Cambridge, UK); 1 M calcium chloride solution (CaCl2), 99.9 % (v/v) bis-distilled glycerol 

was purchased from  VWR international (Leicestershire, UK); bacterial proteinase cocktail 

set II (20 µM AEBSF, 1.7 µM Bestatin, 200 nM E-64, 85 µM EDTA, 2 µM Pepstatin A) 

from Calbiochem (Merck Chemicals ltd, Nottingham , UK); dithiothreitol (DTT) from 

Alexis Biochemicals (San Deigo, USA); SpectraPor dialysis membranes from Fisher 

Scientific (Loughborough, UK); Viva Spin concentrators from Vivascience (Sartorius AG, 

Surrey, UK). Recombinant proteins: the catalytic domain of MMP-1 (MMP-1ΔC) and N-

terminal domain of TIMP-1 (N-TIMP-1)  were supplied by Dr. Ngee Han Lim and Dr. 

Linda Troeberg respectively (The Kennedy Institute of Rheumatology). Full length TIMP-3 

was obtained from R & D systems (Abingdon, UK).  

Expression, purification and refolding of N-TIMP-3 from bacteria: The BL-21 

(DE3) strain of E.coli containing pET42b vector with N-TIMP-3 (N-terminal inhibitory 

domain of N-TIMP) was kindly provided by Prof. Hideaki Nagase, (The Kennedy Institute 

of Rheumatology). The pET42 vector was constructed using human cDNA encoding the N-

Terminal region of mature human TIMP-3, residues Cys1 to Asn121. The sequence was 

amplified with specific primers that introduced NdeI restriction site at the 5´-end and a NotI 
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restriction site at the 3´ end.  The PCR products were cloned into pET42 vector using the 

NdeI and NotI sites to produce the coding sequence for truncated TIMP-3 (N-TIMP-3) with 

a His tag attached to the C terminus. An overnight culture of 20 ml of Luria Broth (LB) 

containing bacteria and kanamycin (33 ug/ml) at 37 oC was used to seed one litre of LB. The 

bacteria were grown at 37 oC until the cell density reached between 0.6-0.7 A600 units. The 

bacteria were induced to make N-TIMP-3-His by the addition of 1 mM IPTG for 4 hours. 

The bacteria were collected by centrifugation a 3000 g for 30 min.  

The bacterial pellet from one litre of bacterial culture was resuspended in a 20 ml of 

50 mM Tris-HCl pH 8.0, 150 mM NaCl, 0.02% (v/v) NaN3, 1 mM EDTA (TBS-EDTA). 

The inclusion bodies were isolated by mechanically lysing bacteria 5 times at 1500 psi 

pressure using  French press and centrifugation of lysate at 24, 000 g for 15 min at 4 oC. The 

pelleted inclusion bodies from each litre of bacteria was solubilised in 20 ml of 6 M GuHCl, 

20 mM Tris-HCl pH 8.0, 100 mM β-mercaptoethanol supplemented with proteinase 

inhibitors (20 µM AEBSF, 1.7 µM bestatin, 200 nM E-64, 85 µM EDTA, 2 µM pepstatin A; 

1:1000 dilution of proteinase inhibitor cocktail II) by shaking for 2-3 hours at room 

temperature. The insoluble material was removed by centrifugation at 24,000 g for 30 min at 

4 oC. The supernatant was diluted  6 times with 6 M GuHCl, 20 mM Tris-HCl pH 8.0 to 

bring the final concentration of β-mercaptoethanol to below 20 mM. This prevented the 

reduction of nickel ion in the subsequent purification steps.  

Prepacked column containing Ni2+ charged resin with a typical binding capacity of 

40 mg of protein per ml of resin, was equilibrated with 5 column volumes of equilibration 

buffer (6M GuHCl, 20 mM Tris-HCl pH 8.0). The diluted supernatant was applied to the 

column at a flow rate of 1 ml per min. The column was washed extensively with washing 

buffer (6M GuHCl, 20 mM Tris-HCl pH 8.0, 20 mM imidazole) to remove impurities bound 

to the column. The bound material was eluted with 400 mM imidazole, 6M GuHCl, 20 mM 
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Tris-HCl pH 8.0 and 2 ml fractions were collected. The column was regenerated by stripping 

the column with stripping buffer (20 mM Na3PO4, 0.5 M NaCl, 50 mM EDTA, pH 7.4) and 

then charging with 0.5 ml of 0.1 M NiSO4 per 1 ml of resin.  

The protein concentration was estimated by taking absorbance at 280 nm using molar 

extinction coefficient (ε) 15, 450 M-1 cm-1. The protein was diluted to a concentration of less 

than 50 µg/ml in 6M GuHCl, 20 mM Tris-HCl pH 8.0, 20 mM cystamine dihydrochloride, 

20 % glycerol and placed into dialysis tubing 34 mm diameter SpectrPor3 membrane, 3.5 

kDa molecular weight cut off) and dialysed against 10 volumes of 20 % glycerol , 50 mM 

Tris-HCl pH 8.0, 150 mM NaCl, 10 mM CaCl2, 5 mM β-mercaptoethanol, 1 mM  2-

hydroxy-ethyl- disulphide 4 oC for 24 hours. The was followed by further three dialysis 

against 10 volumes of 20 % (v/v) glycerol , 50 mM Tris-HCl pH 8.0, 150 mM NaCl, 10 mM 

CaCl2 at 4 oC for 24 hours.  

The precipitated N-TIMP-3 protein was removed by centrifugation at 12 000 g for 30 

minutes. The supernatant was passed through a cell strainer (70 µm Nylon) to remove the 

floating N-TIMP-3 precipitate particles from supernatant. The clarified supernatant was 

applied to Ni2+ charged pre-packed column equilibrated with 20% (v/v) glycerol, 50 mM 

Tris-HCl, pH 8.0, 150 mM NaCl, 10 mM CaCl2 at 2 ml per min before eluting with the same 

buffer with 400 mM imidazole. The eluted protein was collected as 2 ml fractions.  This 

procedure concentrated the protein from large volume. The fractions were pooled and 

dialysed against 50 volumes of 20% (v/v)  glycerol, 50 mM Tris-HCl pH 8.0, 150 mM NaCl, 

10 mM CaCl2 twice at 4 oC to remove imidazole.  

The inhibitory activity of N-TIMP-3 was tested against MMP1ΔC. An absorbance 

reading at wavelength of 280 nm was used to calculate the concentration of N-TIMP-3 in the 

preparation. A fixed concentration of 20 nM MMP-1ΔC was titrated with increasing 

concentration N-TIMP-3. Since N-TIMP-3 and MMP-1ΔC bind in a 1:1 stoichiometric 
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complex, complete inhibition of MMP-1C gave the active concentration of N-TIMP-3 in the 

preparation.  

Expression and purification of GST-IGD-FLAG: Recombinant aggrecan 

interglobular domain (IGD) substrate is a ~50 KDa recombinant protein comprising the IGD 

of aggrecan (Fig.1) and contains an aggrecanase cleavage site (NITEGE373-374ARGS). The 

cleavage generates a  30 KDa fragment with C-terminal NITEGE373 and a 20 KDa fragment 

with N-terminal 374ARGS. The cleavage can be detected by NITEGE373 specific neo-epitope 

antibody. The pGEX4T1 plasmid containing the GST-IGD-FLAG sequence was kindly 

provided by Dr Ngee Han Lim (Kennedy Institute of Rheumatology). A starter culture of 

BL-21 cells transformed with the plasmid sequence in 20 ml LB was grown overnight at 37 

oC. This was used to seed the main culture of 1 L of LB. The main culture was grown at 37 

oC until the cell density (A600) reached 0.5. The bacteria was induced to produce GST-IGD-

FLAG by stimulation with 100 µM IPTG overnight at room temperature. After induction, 

the bacteria were spun down at 3000 g for 15 min at 4 oC. The bacteria were resuspended in 

TBS-EDTA (50 mM Tris-HCl pH 8.0, 150 mM NaCl, 0.02% (v/v) NaN3, 1 mM EDTA) 

buffer with proteinase inhibitors (1/1000 dilution of proteinase inhibitor cocktail II) and 

mechanically lysed using a French press 5 times at 1500 psi. The lysed bacteria were 

centrifuged at 24000 g for 30 min at 4 oC. The supernatant, containing the GST-IGD-FLAG, 

was applied to a glutathione-Sepharose 4B column equilibrated with 50 mM Tris-HCl pH 

8.0, 150 mM NaCl. After application, the column was washed with 0.5 M NaCl, 50 mM 

Tris-HCl pH 8.0 and the material bound to the column was eluted with 10 mM reduced 

glutathione, 50 mM Tris-HCl pH 8.0. The eluted material was dialysed three times against 

10 volumes of 50 mM Tris-HCl pH 8.0, 150 mM NaCl. This substrate was concentrated to 

A280 > 2.5 using spin concentrators.  
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2.5   Enzyme activity assays 

Reagents used in activity assays: Reagents were bought from the following sources: 

(7-methoxycoumarin-4-yl)acetyl-Pro-Leu-Gly-Leu-(3-[4-dinitrophenyl]-L-2,3-

diaminopropionyl)-Ala-Arg-NH2 (Mca-PLAQAV-Dpa-AR) fluorogenic peptide substrate 

was from R & D systems (Abingdon, UK); anti-NITEGE antibody was obtained from Dr. 

Ngee Han Lim (Kenndey Institute of Rheumatology).   

MMP-1ΔC activity assay: The MMP-1ΔC activity assay was carried out in a 96-well 

polypropylene plate. A 20nM MMP-1ΔCwas preincubated with different concentrations of 

the inhibitor (0-1 µM) in 50 mM Tris-HCl pH 7.5, 150 mM NaCl, 10mM CaCl2, 0.05% 

Brij-35, 0.02 % NaN3 at 37 oC for 1 hour. A small volume (10% final volume) of internally 

quenched fluorescent substrate (Mca-PLGL-Dap(Dnp)-AR)was added to bring the final 

concentration of substrate to 2 µM. The reaction was incubated at 37 oC for a further 1 hour. 

The resulting amount of cleavage was determined by measuring the fluorescence at 420 nm 

after excitation at 320 nm in a Spectramax fluorometer, Molecular Devices, California.   

N-TIMP-3 activity assay: N-TIMP-3 inhibits MMP-1ΔC by binding reversibly to 

form tight complexes with a 1:1 stiochiometry. The active concentration of N-TIMP-3 can 

therefore be determined by titration against an MMP-1ΔC solution of known concentration. 

The figure 2.1 shows the theoretical inhibition curves at different initial enzyme 

concentration (Eo) relative to the inhibition constant (Ki) of the enzyme. In order to obtain 

complete inhibition of the enzyme at 1:1 ratio of initial inhibitor concentration to the enzyme 

concentration ([I0]/[E0] = 1), ideally, the concentration of starting enzyme should be 1000 

times the Ki (curve 1). However, for TIMPs, 1000 times the Ki would be micromolar 

quantities, which would require large amounts of enzyme and inhibitor. For titration 

purposes,  20 nM MMP1ΔC  was used which represents approximately 30 times excess of 

enzyme concentration compared to the Ki (0.66 nM) of N-TIMP-3 (Kashiwagi et al. 2001). 
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This would yield a theoretical inhibition curve between curves 2 and 3 and deemed suitable 

for titrating unknown concentration of N-TIMP-3.  

 

 

Fig. 2.1 Theoretical inhibition curves showing the % activity of enzyme as a function of molar 
ratios of enzyme/inhibitor concentrations ([E0]/[I0])  for variable [E0]/Ki. The figure was 
adapted  from (Bieth 1995).  

 

For unknown quantities of N-TIMP-3, 20 nM MMP1ΔC (3.6 ul of 1 µM stock) was pre-

incubated with increasing concentration of N-TIMP-3 (0-200nM; concentration based on 

A280) for 1 hour at 37 oC in 200 µl reaction volume. The amount of uninhibited MMP1ΔC 

was then measured by the addition of 20 ul of fluorescent substrate. From the graph of 

fluorescence against estimated inhibitor concentration, the final active concentration of N-

TIMP-3 can be determined.  

 

[E0]/[I0]	  
[mol/mol]	  

%
	  

Ac
ti
vi
ty
	  



Chapter 2  Materials and Methods           

	   52	  

Aggrecanase activity assay using GST-IGD-FLAG substrate: GST-IGD-FLAG (7.5 

µM) was incubated with 10 ul SYCM in a 20 µl volume of TNC buffer (50 mM Tris-HCl pH 

7.5, 150 mM NaCl, 10 mM CaCl2, 0.02 % (v/v) NaN3) for 24 hours. The enzyme activity was 

stopped by the addition of 10 µl of 2 × SDS-sample buffer (100 mM Tris pH 6.8, 1 %  (v/v) 

SDS, 5% (v/v)  glycerol, 0.1 % (v/v)  bromophenol blue). The samples were electrophoresed 

on a 12% polyacrylamide gel and proteins transferred onto PVDF membrane by western blot. 

The membrane was immunoblotted with anti-NITEGE antibody (1: 1000 dilution) and then 

developed.     

Aggrecanase activity on bovine aggrecan: SYCM (1:5, 1:10 or 1:20) was incubated 

with bovine aggrecan (50 µg) for 24 hours at 37 °C. The digest was deglycosylated with 

chondroitinase ABC and keratanase enzymes at a final concentration of 0.0125 U, in double 

strength buffer of 200 mM sodium acetate, 50 mM Tris-HCl, pH 6.8 to remove the 

glycosaminoglycan (GAG) chains. The samples were precipitated with 1 ml ice-cold acetone 

by incubating at -20 oC for 15 min and then spun at 13 000 g in a  microcentrifuge for 10 

minutes. The supernatants were removed, the pellet dried and 50 µl of 1 × reducing sample 

buffer added. The samples were boiled for 5 minutes at 95 oC and subjected to SDS-PAGE. 

Cartilage aggrecan degradation assay: The live or dead cartilage explants were 

washed three times with serum-free DMEM before stimulation with IL-1α [10 ng/ml] or 

synovial culture medium (SYCM; 300 µl aliquot) for 24 hours. The cartilage conditioned 

medium was harvested and a 150 µl aliquot was deglycosylated by adding chondroitinase 

ABC and keratanase enzymes at a final concentration of 0.0125 U, in double strength buffer 

of 200 mM sodium acetate, 50 mM Tris-HCl, pH 6.8 to remove the glycosaminoglycan (GAG) 

chains. The samples were incubated for 24 hours at 37 oC and precipitated with 1 ml ice-cold 

acetone, incubated at -20 oC for 15 min and then spun at 13 000 g in a  microcentrifuge for 10 
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minutes. The supernatants were removed, the pellet dried and 50 ul of 1 × reducing sample 

buffer added. The samples were boiled for 5 minutes at 95 oC and subjected to SDS-PAGE.  

Aggrecanase activity ELISA: SYCM and fractions obtained from chromatography (at 

appropriate dilution e.g. 1:5 or 1:10 in the reaction buffer supplied with the ELISA kit) were 

incubated with aggrecan interglobular domain substrate (aggrecan IGD) (100 nM) in a 1 mM 

MES pH 6.0 buffer containing proteinase inhibitors (0.4 mM AEBSF, 0.1 nM pepstatin, 0.1 

nM leupeptin) at 37 oC for 15 min on a orbital shaker with a rotating speed of 1000 rpm. The 

proteolytic reactions were stopped with 1 mM EDTA solution before adding the digests to 

wells pre-coated with anti-ARGS neo-epitope antibody in the microtitre plate for 1.5 hours. 

The wells were then washed three times with the wash buffer. The wells were incubated with 

peroxidase labelled secondary antibody (1:100 dilution as supplied by the manufacturer) for 

another 1.5 hours. The wells are washed 5 times with wash buffer before adding 100 µl of 

3,3,5,5-tetramethlbenzidine (TMB) solution. The reaction was quenched by the addition of an 

equal amount of 1 M sulphuric acid. The plate was read immediately at a wavelength of 450 

nm using spectrophotometric plate reader with absorbance at 620 nm (A620) used as a 

reference filter.   

 
2.6   Purification of synovial aggrecanase 
 

Cation exchange chromatography: A 60 ml aliquot of SYCM was centrifuged at 

13,000 g. The supernatant was collected. The clarified material was dialysed against 2 litres of 

buffer (20 mM Tris-HCl pH 8.0, 10 mM CaCl2) for 8 hours. The dialysate was centrifuged to 

remove debris and applied to HiTrap S column (1 ml) in 10 ml batches equilibrated with 

buffer (20 mM Tris-HCl pH 8.0, 150 mM NaCl, 10 mM CaCl2) at a flow rate of 0.5 ml/min 

using AKTA HPLC system (GE Healthcare UK). The proteins were eluted from the column 

in the same buffer with increasing salt gradient over 20 column volumes. 1 ml fractions were 

collected and assayed for activity on bovine aggrecan and aggrecanase ELISA.  
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Gel filtration chromatography: Active fractions from cation exchange 

chromatography were pooled and concentrated to about 5 ml using Viva Spin concentrators 

with a molecular weight cut off of 3 kDa. The concentrate was centrifuged at 13000 g. The 

clarified concentrate was applied to Sephacryl S200 (120 ml), equilibrated with buffer (20 

mM Tris-HCl pH 8.0, 150 mM NaCl, 10 mM CaCl2), at a flow rate of 0.5 ml/min. Fractions 

(5ml) were collected in the same buffer and assayed on bovine aggrecan and aggrecanase 

ELISA.   

Anion exchange chromatography:  Active fractions were pooled (25 ml) and dialysed 

against 2 litres of Tris buffer without NaCl (20 mM Tris-HCl pH 8.0, 10 mM CaCl2).  The 

dialysate was applied to SMART mono Q column (100 µl) at a flowrate of 0.1 ml/min. The 

column was eluted with tris buffer with increasing salt over 40 column volumes. The fractions 

(100 µl) were collected and assayed on for activity on bovine aggrecan and aggrecanase 

ELISA.    

Affinity chromatography:  A 15 µl aliquot of Ni2+ agarose beads was washed twice 

with dH20 followed by further two washes of Tris buffer (20 mM Tris-HCl pH 8.0, 150 mM 

NaCl, 10 mM CaCl2).  A 100 µl aliquot of N-TIMP-3 (2 µg active protein) was incubated 

with washed Ni2+ agarose beads for 30 min. The beads were then washed twice with tris 

buffer as above. The active fraction from mono Q chromatography was applied to N-TIMP-3 

bound Ni2+ agarose beads (15 µl) for 1 hour. The beads were then washed 3 times with tris 

buffer. Sample buffer (50 µl) containing 50 mM DDT was added to the beads. The material 

was then heated for 10 min at 100 °C before electrophoresing it on 4-12 % (v/v)  NuPage 

gradient gel.   
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2.7   Mass spectrometry 
 

Protein bands from gel electrophoresis were identified by mass spectrometry in 

collaboration with Dr. Benedikt Kessler, Henry Wellcome building for molecular physiology, 

University of Oxford. Silver stained protein bands were manually cut out of the gel for trypsin 

digestion and reductively alkylated as previously described (Adam et. al. 2011).  

Peptides were separated on an Acquity nano UPLC system (Waters) supplemented with 

a 25 cm C18 column, 1.7 µm particle size (Waters) using a linear gradient from 3% buffer A 

(0.1% (v/v)  formic acid in water) to 40% buffer B (0.1% (v/v) formic acid in acetonitrile) at a 

flow rate of 250 nl/min (approx. 7000 psi) from 0 to 90 min. Peptides were ionized and 

introduced to an LTQ Orbitrap Velos tandem mass spectrometer (Thermo Scientific) using an 

electrospray ionization (ESI) source. Collision induced dissociation (CID) was induced on the 

twenty most abundant ions per full MS scan. Raw data was converted to Mascot generic files 

using msconvert (Kessner et al., 2008). Searches were performed using the SwissProt 

database (06/2011) with MASCOT (Perkins et al., 1999) and CPFP 1.3.0 (Trudgian et al., 

2010) with the following settings: Variable modifications: 2-succinyl (cysteine, +116.01 Da), 

pyridylethyl (cysteine, +105.06 Da), oxidation (methionine, +15.00 Da), peptide tolerance: ± 

10 ppm, fragment tolerance: ± 0.5 Da. 

 
 
 
 
 
 
 
 
 
 
 
 



Chapter 3           Synovium-derived aggrecan degrading enzyme 

	   56	  

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Results 
 
 

Chapter 3 
 
 
 

Characterising aggrecanolytic activity made by injured synovial tissue 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



Chapter 3           Synovium-derived aggrecan degrading enzyme 

	   57	  

3.1    Introduction 

Our laboratory is using a surgical model of OA in the mouse (Clements et al. 2003; 

Glasson et al. 2005) to elucidate the molecular mechanisms of disease. This model involves 

sectioning the anterior attachment of the medial meniscus, a fibrocartilagenous tissue which 

creates a concave surface for articulation with the medial femoral condyle and distributes load. 

The medial meniscus is displaced medially creating an abnormal contact between the femoral 

and tibial articular surfaces. Loss of aggrecan and superficial fibrillations are apparent at the 

site of abnormal contact within 2 weeks of surgery and the cartilage surfaces gradually 

degenerate over about 12 weeks. There is debate about whether OA is a simple wear and tear 

process leading to loss of cartilage substance by mechanical attrition, or an active process 

involving for example production of proteinases which degrade cartilage matrix. There is 

evidence of up regulation of MMP-1 and MMP-13 transcripts in late osteoarthritic cartilage 

(Aigner et al. 2001), along with reports of collagenase (Billinghurst et al. 1997) and 

aggrecanase activity in osteoarthritic cartilage (Malfait et al. 2002). In 2005, it was revealed 

that ADAMTS-5, but not ADAMTS-4 knockout mice were protected from loss of cartilage 

aggrecan following IL-1 stimulation of cartilage explants (Glasson et al. 2005; Stanton et 

al. 2005). Similar protection from loss of cartilage aggrecan was also observed in post-surgical 

OA and antigen-induced (methylated BSA) arthritis in the ADAMTS-5 null animals (Glasson 

et al. 2005; Stanton et al. 2005). Recent but unpublished work in our lab has shown that 

MyD88-/- knockout mice are strongly protected from surgically-induced OA. MyD88 is an 

adaptor protein which is essential for the formation of signalling complexes of the IL-1 and 

Toll-like receptor family. The protection shows that murine OA is an active process and 

depends on intracellular signalling pathways which typically control inflammatory response 

genes. The cellular processes involved could occur in the damaged meniscus, in the adjacent 

synovium or in the cartilage. Cells of any or all of these tissues could be a source of 
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degradative proteinases. There is uncertainty to what extent the proteinases involved are 

produced in response to cytokines or other biochemical mediators or to mechanical stresses.  

Thus, the current consensus is that the balance between anabolism and catabolism of ECM is 

tipped towards catabolism and this is due to increase in catabolism rather than a decrease in 

anabolism.  

The role of cytokines in OA is unclear. The two best known cytokines that activate 

chondrocytes to resorb their proteoglycan matrix (and inhibit the resynthesis) are IL-1 and 

tumour necrosis factor-alpha (TNFα) (Saklatvala 1986) and ADAMTS-5 is strongly 

implicated in this response (Glasson et al. 2005). Prior to the purification of IL-1α and IL-1β 

as cartilage resorbing cytokines made by leukocytes (Saklatvala et al. 1983; Saklatvala et 

al. 1984), a molecule with similar activity had been identified in SYCM and called catabolin 

(Dingle et al. 1979; Saklatvala 1981). This was physicochemically similar to IL-1α (pI ~ 4.5 

-5.0), but was never purified to homogeneity and never proven immunologically to be IL-1.  

Moreover, the early attempts at purification of synovial catabolin (and of leukocyte IL-1) 

employed a relatively insensitive assay for GAG release from cartilage explants, based on 

reactivity with the metachromatic dye dimethylmethylene blue (DMMB), and depended on low 

resolution chromatography. Furthermore,  NH4SO4 fractionation was used as an initial 

procedure which resulted in 70%-80% loss in the cartilage-catabolic activity of the porcine 

synovial culture medium (Saklatvala 1981). Thus damaged synovial tissue may produce IL-1 

or IL-1-like cytokines which could stimulate proteinase production by synovium itself and by 

chondrocytes.   

There is also evidence that synovial tissue produces aggrecan degrading proteinases. 

Fell at al. (1977) showed that co-culture of synovial tissue with dead cartilage caused aggrecan 

loss from the cartilage. The culture of bovine synovial tissue generates a soluble proteoglycan-

degrading activity and the N-terminal sequence of the major proteoglycan fragments in the 
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culture was determined to be 374AXGSVIL which confirmed cleavage at the Glu373-374Ala bond 

(Vankemmelbeke et al. 1999). Later, Buttle and his colleagues probed the bovine synovial 

culture medium with an antibody to ADAMTS-5 which detected multiple protein bands: an 

intense band of ~60 kDa and two minor bands of 61 kDa and 63 kDa. But, it was not shown 

which bands were ADAMTS-5. Immunoprecipitation of SYCM with this antibody removed 

only 20% of the total aggrecan degrading activity as assessed on bovine aggrecan-entrapped in 

polyacrylamide (Vankemmelbeke et al. 2001). The incubation of synovium-conditioned 

medium with bovine aggrecan generated more aggrecan fragments than recombinant 

ADAMTS5 which further indicated that there could be other proteinases present in the synovial 

culture medium. Moreover, the agents leading to increased aggrecanolytic activity in cartilage 

explants, IL-1 and retinoic acid, didn’t upregulate the expression of synovial ADAMTS-5 

mRNA, nor did they increase the amount of aggrecanase activity generated by the synovium 

(Vankemmelbeke et al. 2001).  

Thus neither the cytokines nor the possible aggrecanases made by synovium in culture 

have been identified. I set out to identify these proteins since they may be involved in cartilage 

degradation in vivo.    
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3.2     Aggrecan degrading activity from synovial tissue 

Synovial tissue (~ 1g) from porcine metacarpophalangeal joints was cultured in serum 

free DMEM (2.5 ml) for 24 hours and SYCM was harvested as outlined in Materials and 

Methods. The medium was applied to live porcine cartilage explants for 24 hours and 

aggrecanolysis was assessed by measuring release of neo-epitope bearing fragments into the 

culture medium with anti-ARGS and anti-AGEG antibodies. Fig. 3.1A shows that ARGS- and 

AGEG- containing fragments were present after incubation of cartilage with SYCM compared 

to incubation with DMEM alone (Fig. 3.1A, lane 1 vs. lane 4). IL-1 also caused the release of 

large (~280 kDa) ARGS-bearing fragment and two smaller fragments representing further 

cleavages. The release of these neo-epitope bearing fragments was prevented if IL-1 receptor 

antagonist protein (IRAP) was added along with IL-1 (Fig. 3.1A, lane 2 vs. lane 3). The effect 

of synovial culture medium was slightly suppressed by the inclusion of IRAP suggesting the 

presence of IL-1 in SYCM (Fig. 3.1A, lane 4 vs lane 5). Similar suppression of aggrecanolytic 

activity was also observed when SYCM was applied to cycloheximide treated live explants 

suggesting the presence of chondrocyte activating mediators in SYCM (Fig. 3.1B, lane 3 vs. 

lane 4).   

It was important to check that the aggrecan fragments apparently generated by SYCM 

from the cartilage did not originate from the synovial culture. Fig. 3.1B lane 1 shows the 

amount of material present in SYCM that reacted with neo-epitope antibodies before applying 

it to the cartilage, while fig. 3.1B lane 4 shows the neo-epitope bearing fragments present 

after the culture with live cartilage. This established that the aggrecan fragments were arising 

from the cartilage. The fragments could have been produced both as a result of factors such as 

cytokines from synovium stimulating the chondrocytes to produce proteinases and by 

proteinases made by synovial tissue which had accumulated in the SYCM. Fig. 3.1B shows 

that incubating SYCM with either freeze-thawed cartilage explants  
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Fig 3.1 The effect of synovial culture medium on (a) live or (b & c) freeze-thawed 
cartilage explants.	   (A) Synovial culture medium (300 µl) in the presence and absence of 
interleukin receptor antagonist protein (IRAP) was applied to live cartilage explants (3mm3, 3 
pieces/point) for 24 h. A 150 µl aliquot of harvested medium was deglycosylated and 50 µl of 
this digest was electrophoresed and transferred onto PVDF membrane. The membranes were 
immunoblotted with anti-ARGS and anti-AGEG neo-epitope antibodies. (B) The synovial 
culture medium (300 µl) was applied to freeze-thawed or cycloheximide-treated live explants 
(10 µg/ml) and western blotted with antibodies as described in (a) (C) Boiled synovial culture 
medium (100 °C for 10 min) or medium obtained from synovial tissue cultured with 
cycloheximide (10 µg/ml) was applied to freeze-thawed cartilage explants and western 
blotting was carried out with antibodies as described for (a).  

 

A 
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(lane 2) or cycloheximide-treated live explants (lane 3) caused release of ARGS and AGEG 

fragments suggesting the presence of aggrecanolytic proteinases in the SYCM. This activity 

was abolished by boiling SYCM (Fig. 3.1C, lane 2 vs. lane 4). If the synovial tissue was 

cultured with cycloheximide (10 µg/ml), no active material was produced (Fig. 3.1C, lane 2 

vs. lane 3). This suggests that protein synthesis was necessary for the synovial tissue to 

produce the proteinases responsible for the aggrecan degradation, and that the enzymes were 

not pre- existent in the tissue and passively released into the medium. The experiments also 

indicated that the proteinases would need to be removed from synovial culture medium before 

the presence of any cytokines affecting aggrecan metabolism could be studied. The 

aggrecanolytic enzyme activity in SYCM was very interesting since synovium may be a 

source of matrix-degrading enzymes in disease and, as described earlier, little is known about 

its aggrecan degrading enzymes and their regulation.  

The aggrecan core protein peptides appearing in IL-1 and SYCM treated cartilage 

explant were analysed with an anti-stubs antibody. This antibody detects peptides with 

oligosaccharide stubs that remain after deglycosylation of the aggrecan and its fragments with 

chondroitinase ABC and keratanase. Six major proteoglycan bands were observed when 

cartilage was cultured dead or live (Fig. 3.2, lane 1 and lane 5). When live cartilage was 

cultured with IL-1 (lane 2) there was an increase in band 3 and 6 and the presence of new 

band, labelled 7. Band 3 (~ 280 kDa) and band 6 (130 kDa) were likely to be the large ARGS 

and the smaller AGEG bearing fragments respectively, which was seen upon stimulation with 

IL-1α as shown in Fig. 3.1A. Band 1 in Fig. 3.2 was likely to be intact aggrecan core protein. 

When SYCM was applied to dead cartilage it amplified the proteoglycan fragments 3 to 7 

(Fig. 3.2, lane 4 vs. lane 5). This suggests that SYCM may contain more than one 

aggrecanolytic enzyme or the enzyme was very efficient at cleaving aggrecan at multiple sites. 

Moreover SYCM on dead cartilage explants and IL-1 on live tissue appeared to generate 
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fragments with similar molecular weights. Therefore, the enzyme(s) in SYCM might belong 

to the same family of proteinases as generated upon IL-1 stimulation that cleave at 

characteristic sites in the core protein of aggrecan.  
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Fig. 3.2 Analysing aggrecan core protein peptides following IL-1 and SYCM stimulation of 
cartilage explants (A) Aggrecan core protein peptides appearing in the medium of IL-1 and 
SYCM stimulated live and dead cartilage explants respectively were analysed using stubs antibody. 
A 10 µl aliquot of samples was electrophoresed and immunoblotted with 2-B-6 anti-stub antibody 
(1: 10,000) as described in Materials and Methods. Lane 5 was from the same blot but was cropped 
to align with lanes 1 to 4.    
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3.3     Characterising substrates for analysing synovial aggrecanase 

            The aggrecanolytic activity of SYCM was also analysed by incubating it with purified 

bovine aggrecan, and the release of ARGS- and AGEG- containing fragments was again 

measured using neo-epitope antibodies. Fig. 3.3A shows that live synovial tissue culture 

(SYCM) produced aggrecanolytic enzymes generating ARGS (~ 250 kDa) and AGEG (~130 

kDa) bearing protein fragments whereas freeze-thawed synovium (F/T SYCM) was unable to 

generate the activity (lane 1 & 2 vs. lane 3). The results replicated the generation of neo-

epitope bearing fragments by SYCM when applied to freeze-thawed porcine cartilage 

explants (Fig. 3.1B lane 2). Two additional protein bands were also observed with molecular 

weights 37 kDa and 23 kDa (Fig. 3.3A, lane 1 to 3). The bovine aggrecan and SYCM 

preparations were probed with anti-ARGS antibody to determine whether the anti-ARGS 

reactive protein bands were the cleavage products generated by synovial aggrecanase(s) or 

antigens present in either the aggrecan or SYCM preparations. Fig. 3.3B shows the presence 

of 37 kDa and 23 kDa protein bands in SYCM (lane 2), which were absent from the bovine 

aggrecan preparation (lane 1). Therefore the smaller protein bands were non-specifically 

stained material present in SYCM detected by anti-ARGS antibody. A relatively small 

amount of ARGS bearing fragment (~250 kDa) was also observed in SYCM preparation that 

was absent in freeze-thawed synovial tissue culture (Fig. 3.3B lane 2). The origin of this 

fragment is unclear but may represent the product of synovial aggrecanolytic enzyme(s) on 

aggrecan present in the synovial culture.  

           The aggrecan degrading activity was also assessed on 50 kDa recombinant 

interglobular aggrecan domain (rIGD) substrate containing the aggrecanase cleavage site 

(NITEGE373-374ARGS). The cleavage at this site was detected by NITEGE373 specific neo-

epitope antibody. Nine preparations of SYCM, generated over an 8 month period were 

analysed for aggrecanase activity. Only 4 samples showed NITEGE generating activity with 
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rIGD substrate (Fig. 3.3C). Although not shown, the SYCM preparations were all capable of 

degrading the dead cartilage aggrecan. All the subsequent experiments were carried out using 

one of the 9 batches of SYCM. Due to variability of results with SYCM preparations on rIGD, 

the freeze-thawed cartilage explants and bovine aggrecan became the preferred choices of 

substrate for analysing aggrecan degradation. However in order to ensure reproducibility of 

the results the quantifiable bovine aggrecan preparation was favoured. 
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Fig 3.3 Assaying SYCM using bovine aggrecan and recombinant interglobular domain 
substrate (rIGD). (A) SYCM (300 µl) and freeze-thawed SYCM (F/T, SYCM; 300 µl) was 
incubated with bovine aggrecan (50 µg) for 24 hours at 37 °C and electrophoresed on a 4-12% 
NuPage bis-tris gradient gel. The proteins were transferred to PVDF membrane and 
immunoblotted with anti-ARGS and anti-AGEG antibodies as described in Materials and 
Methods. (B) SYCM (300 µl) and bovine aggrecan (50 µg) were electrophoresed on a 4-12% 
NuPage bis-tris gradient gel and proteins were transferred to PVDF membrane. The PVDF 
membrane was immunoblotted with anti- ARGS and anti-AGEG antibodies as described in 
Materials and Methods. (C) A 10 µl aliquot of SYCM samples were analysed for 
aggrecanolytic activity by incubating them with rIGD substrate (17 µM) for 24 hours at 
37 °C. The cleavage at NITEGE373-374ARGS site was probed with anti-NITEGE antibody as 
described in Materials and Methods. A 5 µl aliquot of crude culture medium of HEK93 cells 
expressing recombinant ADAMTS5 (rADAMTS5)  was also incubated with the rIGD as a 
positive control.          
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A commercially available enzyme-linked immunosorbant assay (ELISA) for the release of 

ARGS neo-epitope was also tested against synovial aggrecan degrading enzyme(s) for 

obtaining a quick readout for activity. A standard curve for the assay was obtained by using 

recombinant ADAMTS-4 (0-1.5 nM) to obtain its linear range. Recombinant ADAMTS4 (0-

1.5 nM) was incubated with aggrecan IGD (100 nM) in a 1 mM MES pH 6.0 buffer 

containing proteinase inhibitors (0.4 mM AEBSF, 0.1 nM pepstatin, 0.1 nM leupeptin) at 

37oC for 15 min. The proteolytic reactions were stopped with 1 mM EDTA solution before 

adding the digests to wells pre-coated with anti-ARGS neo-epitope antibody in the microtitre 

plate. The bound ARGS peptide from the proteolytic digests was detected with peroxidase 

labelled antibody. The amount of peroxidase bound to different wells was determined by 

taking absorbance at 450 nm (A240) with absorbance at 620 nm (A620) used as a reference 

filter. The ratio of A450/A620 was expressed as unit of activity. The standard curve was linear 

up to A450/A620 average reading of 1.230 units obtained with 0.188 nM of ADAMTS-4 (Fig. 

3.4A). The lowest concentration of rADAMTS4 used was 24 pM giving an average A450 of 

0.158 units and therefore, the values of A450 above 0.158 were considered significant (Fig. 

3.4B).  

          SYCM tested at 1:5 dilution gave A450/A620 value of approximately 0.80 units, which 

was within the linear range of the assay and represented a ~ 20 fold increase over the buffer 

control (~0.045 units) (Fig 3.4B). The enzymatic activity of SYCM was abolished when 

SYCM was either boiled or synovial tissue freeze-thawed (F/T SYCM) before cultured in the 

medium. However cycloheximide treated synovial tissue culture medium (CHX SYCM) 

showed ~ 3 fold higher enzymatic activity compared to boiled SYCM or freeze-thawed 

synovial tissue culture medium (F/T SYCM). The increase in aggrecanolytic activity was also 

observed when CHX SYCM was applied to freeze-thawed porcine cartilage explants (Fig. 

3.1C lane 3 vs. lane 4). As synovial tissue was dissected into culture medium containing 
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cycloheximide, it may have taken time for the protein synthesis inhibitor to penetrate into the 

cells of the synovial tissue and inhibit the production of injury induced aggrecanolytic 

enzyme(s). Nevertheless the aggrecanolytic activity in CHX medium was still 4 fold less than 

that of live SYCM (Fig. 3.4B).  

	  
	  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 3.4 Testing aggrecanase ELISA for analysing aggrecan degrading enzyme(s) made 
by synovial tissue.  (A) Recombinant ADAMTS4 (0-1.5 nM) was incubated with aggrecan 
IGD (100 nM) in a 1 mM MES pH 6.0 buffer containing proteinase inhibitors (0.4 mM 
AEBSF, 0.1 nM pepstatin, 0.1 nM leupeptin) at 37oC for 15 min. The proteolytic reactions 
were stopped with 1 mM EDTA solution before adding the digests to wells precoated with 
anti-ARGS neoepitope antibody in the microtitre plate. The bound ARGS peptide from the 
proteolytic digests was detected with peroxidase labelled antibody. The amount of peroxidase 
bound to different wells was determined by taking absorbance at 450 nm (A240) with 
absorbance at 620 nm (A620) used as a reference filter (B) The medium obtained from live 
synovial tissue culture (SYCM), freeze-thawed synovial tissue culture (F/T SYCM), 
cycloheximide (10ug/ml) treated synovial tissue culture (CHX treated SYCM) and boiled 
SYCM were tested for aggrecanolytic activity at 1:5 dilution using ELISA as described above.  
A450/A620 values greater than 0.160 were considered significant. n = 1, error bars represent 
standard deviation of the three replicates for the one experiment.  
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3.4     Inhibition of aggrecan-degrading activity by TIMP-3 

The sensitivity of the aggrecan-degrading enzyme to TIMP-3 and TIMP-1 was 

determined to characterise it further. These early experiments were carried out on freeze-

thawed cartilage explants. Fig. 3.5 shows that the ARGS-generating activity of SYCM was 

completely inhibited by TIMP-3 (100 nM) but was unaffected by TIMP-1 (Fig. 3.5a, upper 

panel). The AGEG-generating activity in this experiment was reduced by TIMP-3 but was 

also unaffected by TIMP-1 (Fig. 3.5A, lower panel). It became important to determine the 

linear increase of the aggrecan degradation in this assay in order to account for the apparently 

less efficient inhibition of the production of AGEG fragment by TIMP-3. An approximate 

linear increase of the aggrecan-degrading activity was determined by incubating freeze-

thawed cartilage explants with 300 µl of SYCM for different periods of time up to 31 hours at 

37 oC. Fig. 3.5B shows that the cleavage at TAQE1819 1820AGEG site generating 1829AGEG 

fragment was linear up to 24 hours when 5 µl of sample was electrophoresed and PVDF 

membrane exposed to x-ray films for 30 s. Within the linear range of the activity assay and 

using the same pool of freeze-thawed cartilage explants, TIMP-3 (100 nM) and general 

metalloproteinase inhibitor GM6001 (10 µM), fully inhibited the release of AGEG and ARGS 

bearing fragments (Fig. 3.5C, lane 3 & 4 vs. lane 1).  
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Fig 3.5 TIMP-3 but not TIMP-1 inhibits synovial tissue derived aggrecan-degrading 
enzyme. (A) SYCM (300 µl) was pre-incubated with TIMP-3 (100 nM) and TIMP-1 (100 nM) 
for 1 hour and samples were added to freeze-thawed (dead) cartilage explants for 24 hours. 
The aggrecan fragments released into the cartilage conditioned SYCM were detected by 
western blotting using ARGS and AGEG neo-epitope antibodies as described in materials and 
methods section. (B) The dead cartilage explants were incubated with SYCM (300 µl) for 
increasing time periods up to 31 hours. The AGEG-bearing fragment was detected by western 
blotting as described in Materials and Methods (C) SYCM (300 µl) was pre-incubated with 
TIMP-3 (100 nM) and GM6001 (10 µM) for 1 hour and samples were added to freeze-thawed 
(dead) cartilage explants for 24 hours. A 5 µl aliquot of cartilage conditioned SYCM was 
electrophoresed and western blotted with anti-ARGS and anti-AGEG neo-epitope antibodies 
with 30 second exposure to X-ray film.  

A	   B	  

C	  
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           The synovial aggrecanolytic activity was titrated with increasing concentration (20,40 

and 60 nM) of N-terminal inhibitory domain of TIMP-3 (N-TIMP-3). The aggrecan degrading 

activity was completely abolished when SYCM containing 40 nM N-TIMP-3 was applied to 

freeze-thawed cartilage explants (Fig. 3.6A, lane 5 vs. lane 3). The lack of aggrecanolysis in 

the presence of N-TIMP-3 (40 nM & 100 nM) was also observed using bovine aggrecan (Fig. 

3.6B, lane 2 & 3) and recombinant aggrecan-IGD substrate of aggrecanase ELISA (Fig. 3.6C). 

As seen on freeze-thawed cartilage explants, the inclusion of TIMP-1 to SYCM failed to 

suppress the generation of ARGS- and AGEG- bearing fragments from bovine aggrecan (Fig. 

3.6B lane 6) and ARGS bearing peptide fragment from aggrecan-IGD (Fig. 3.6C). The ARGS 

generating activity was also completely inhibited by EDTA (1 mM) and GM6001 (10 µM) 

but unlike EDTA, GM6001 was not able to completely abolish the AGEG generating activity  

on bovine aggrecan (Fig. 3.6B, lane 5). The reduced inhibition by GM6001 can be attributed 

to lower dose of GM6001 used relative to EDTA (10 µM vs. 1 mM). These results are 

consistent with synovial tissue producing aggrecan-degrading enzyme of ADAM/ADAMTS 

type. 
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Fig.3.6. Testing different substrates against synovial aggrecan degrading activity (A) & 
(B) SYCM (300 µl) was pre-incubated with increasing concentrations (20 to 100 nM) of N-
terminal inhibitory domain of TIMP-3 (N-TIMP-3), EDTA (1mM), GM6001 (10 µM) and 
TIMP-1 (100 nM) for 1 hour before applying the samples to dead cartilage explants or bovine 
aggrecan for 24 hours. The cartilage-conditioned medium was immunoblotted with ARGS 
and AGEG neo-epitope antibodies as described in Material and Methods. (C) SYCM (300 µl) 
was pre-incubated with N-TIMP-3 (40 & 100 nM) and TIMP-1 (100 nM) for 1 hour at 37 oC. 
The aggrecanolytic activity of the medium was assessed at 1 in 10 dilution using aggrecanase 
ELISA as described in Materials and Methods. n = 5, the error bars represent the standard 
deviation of the values obtained from the five experiments.   
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3.5   Discussion 

My experiments show that injured synovial tissue generates an active form of aggrecan-

degrading enzyme, which is in agreement with other reports (Fell et al. 1977; 

Vankemmelbeke et al. 1999; Vankemmelbeke et al. 2001). Here, I describe an assay for 

the activity of this proteoglycan-degrading enzyme using freeze-thawed (dead) cartilage 

explants as substrate. The proximity of the synovial tissue to the cartilage makes the assay 

possibly physiologically significant since the enzymes are acting on aggrecan within the real 

ECM. The cartilage substrate is a readily available substrate when the synovial tissue is being 

dissected and the sensitivity and reproducibility achieved with neo-epitope antibodies makes 

the assay suitable for aggrecan degradation studies. While all samples of synovial culture 

medium were active on the dead cartilage explants, only about half showed activity on rIGD. 

On further analysis, I found that anti-ARGS antibody couldn’t detect even the ARGS bearing 

epitope upon cleavage of IGD substrate with either ADAMTS5 or ADAMTS4. It is not clear 

why rIGD showed variability in the results. It is probable that bacterial purification of this 

substrate gives truncated forms of protein, which are less susceptible to cleavage by enzyme. 

Moreover, the rIGD is an artificial system that can only be used to assay one neo-epitope but 

the dead cartilage substrate can be used for ARGS, AGEG or any other neo-epitope, as well 

as for aggrecan cleavage in general which can be detected with the stubs antibody. The 

cartilage and bovine aggrecan substrates are therefore more versatile for analysing enzymes in 

the SYCM. The bovine aggrecan preparation gives control over the quantity being used for 

each experiment and therefore ensures reproducibility of the conditions. However the use of 

aggrecan or cartilage substrate to analyse aggrecan degradation is time consuming, taking 3-4 

days to complete the whole process whereas the aggrecanase ELISA takes only 3 hours and 

provides reproducible numerical values for different batches of SYCM. The aggrecan 

degrading activity observed on aggrecanase ELISA was also completely abolished with 
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TIMP-3 but not TIMP-1 thus mimicking the results obtained with physiological substrates i.e. 

bovine aggrecan and dead cartilage explants. Hence aggrecanase ELISA provides a relatively 

quick readout for the synovial aggrecanolytic activity and a valuable tool for purifying the 

enzyme from SYCM.      

Vankemmelbeke and his colleagues used bovine aggrecan trapped in polyacrylamide 

gel as a substrate for observing aggrecanolytic activity in synovial tissue explant cultures 

(Vankemmelbeke et al. 2001). The amount of aggrecan release from the substrate was 

quantified using DMMB dye assay, which measures the amount of sulphated GAGs in the 

medium by taking absorbance at 525 nm. I also tested DMMB dye assay to assess the 

aggrecanolysis mediated by proteinases in the SYCM. However, I observed a very high level 

of absorbance at 525 nm in SYCM alone suggesting the presence of GAGs in the culture 

medium. On incubating the SYCM with either bovine aggrecan or freeze-thawed cartilage 

explants, no significant release was observed relative to control (SYCM only). DMMB is a 

generic dye, which is likely to bind any negatively charged sulphated molecules. The synovial 

explant cultures are very heterogeneous and likely to contain components of synovial tissue 

ECM that could interfere with assay. Similar high background levels are also a problem when 

analysing the culture medium of cartilage explants using DMMB dye assay. Saklatvala et al. 

1979 also highlights this problem where 1 in 4 of the experiments analysing the cartilage 

degradation upon IL-1 stimulation failed due to high background release of GAGs from 

unstimulated cartilage explants (Saklatvala 1981). Given the problems with DMMB assay 

when analysing SYCM, the method was not used to assess cartilage degradation.       

The sensitivity of synovium-derived aggrecanolytic enzyme to TIMP-3 and GM6001 

indicate that it could belong to ADAMTS/ADAM family. A number of ADAMTS enzymes 

(ADAMTS 4,-5,-1, -8, -9,-15, -16) have been reported to cleave aggrecan but to date only 

ADAMTS-4 and ADAMTS-5 has been reported to be TIMP-3 sensitive (Kashiwagi et al. 
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2001).  It is possible that the enzyme in SYCM is ADAMTS-4 or -5. The TIMP-3 sensitivity 

of the enzyme can be exploited to purify the aggrecan-degrading enzyme by affinity 

chromatography. A TIMP-3 matrix could also be used to deplete the neo-epitope generating 

enzyme in SYCM and the proteinase depleted medium could then be analysed for cytokines 

that regulate chondrocyte catabolic functions. 
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4.1  Introduction  

        Early results have shown that damaged synovial tissue is a source of aggrecan 

degrading enzyme(s). The SYCM may consist of one or more aggrecan degrading 

enzyme(s). One way to identify these enzymes is to use ADAMTS antibodies. Our 

laboratories at Kennedy Institute (Prof. Jeremy Saklatvala & Prof. Hideaki Nagase) have 

made several antibodies to ADAMTS-4 and ADAMTS-5 and tested a number of other 

commercial antibodies over the years but none has reliably and convincingly detected 

enzymes in the culture medium. The ADAMTS antibodies work well with recombinant form 

of enzymes. But with tissue culture medium such as IL-1 stimulated cartilage cultures 

multiple bands were observed and no IL-1 inducible bands were seen consistently. An 

alternative approach was to use chromatography to purify the enzyme(s) and identify them 

by mass spectrometry. Different chromatographic techniques that work on different 

principles to separate molecules in a mixture were used: ion exchange chromatography 

separate proteins on charge whereas gel filtration on the basis of size. The separated proteins 

in different fractions would be tested for aggrecanolytic activity using the assays available 

for aggrecan degradation e.g. freeze-thawed cartilage explant assay, bovine aggrecan assay 

and aggrecanase activity ELISA. The fractions containing the aggrecanolytic activity would 

be pooled for further chromatographic separation. Initially the SYCM will be 

chromatographed on low-resolution columns to enrich and purify the enzymes from the bulk 

of other proteins which will followed by microscale purification using high resolution 

columns. An affinity chromatography step could also conceivably be used, probably as a 

final step to isolate the enzyme from a relatively small number of other proteins. Mass 

spectrometry would be used to identify the candidate proteins bands obtained after 

purification.       
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4.2 Anion exchange chromatography of synovial culture medium 

       Anion exchange chromatography was carried out on SYCM to separate and purify the 

enzyme or enzymes. A HighTrap Q anion exchange column was used and eluted with a salt 

gradient. Fractions were collected and analysed for their activity at 1 in 10 dilution on 

freeze-thawed cartilage explants. Figure 4.1A shows the elution profile of proteins as an 

absorbance trace at 280 nm as the salt gradient was developed. A peak of AGEG-generating 

enzyme was seen in fractions 8 and 9 (Fig. 4.1B, lower panel).  However, no ARGS band 

was generated by fractions 8 and 9 (Fig. 4.1B, upper panel). The intensity of the AGEG 

band generated by fractions 5 and 6 was similar to that observed when the synovial culture 

medium was diluted 4-fold (Fig. 4.1B, lower panel). At this dilution no ARGS band was 

observed. Assaying a larger amount of the fractions might have generated the ARGS band. 

It was calculated from the gradient elution that fractions 8 & 9 contained aproximately 0.4-

0.5 M NaCl. Salt concentrations higher than 0.2 M have an inhibitory effect on aggrecan 

degradation (data not shown). So fractions 7,8,9 & 10 were dialysed to remove salt and 

pooled. The pooled fractions when applied to freeze-thawed explants generated both ARGS 

and AGEG bearing fragments (Fig. 4.2A). The SYCM had been diluted 5-fold before 

applying it to the column as shown in Fig. 4.1A and the flow through (FT) fraction was 

therefore concentrated 5-fold by ultrafiltration before applying it to dead explants. No 

ARGS or AGEG bands were produced by the FT fraction. SYCM, flowthrough (FT) and 

fractions (4-12) were also analysed for aggrecanolytic activity using aggrecanase ELISA. 

The peak activity was observed in fractions 7 to 10 (Fig. 4.1C). The absorbance values of 

A450/A620 were taken as arbitrary units of aggrecan degrading activity. An estimated 180 

units of activity were present in 5 ml of SYCM and a total of 116 units were recovered in 

fractions 7 to 10 after anion exchange chromatography. It was calculated that approximately 

65% of aggrecanolytic activity was recovered from the HiTrap Q column. However the  
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Fig 4.1 Anion exchange chromatography of synovial culture medium on agarose Q 
column. A 1ml HighTrap Q column was equilibrated with 20 mM Tris-HCl, pH 8.0. A 5 ml 
aliquot of SYCM was diluted 5-fold in 20 mM Tris-HCl, pH 8.0 and applied to the column. 
The unabsorbed material was collected as flow through (FT) fraction and concentrated 25-
fold using Vivaspin ultrafilters (MW cut off 2KDa). The column was eluted with a gradient 
of NaCl (0 - 1 M over 20 ml) and fractions (1ml) were collected (A) A280 of the eluate (B) 
Fractions were diluted 1:10 using buffer A (25 mM HEPES, 10 mM CaCl2) and applied to 
dead cartilage explants for 24 h at 37 °C. Western blots for ARGS and AGEG fragments 
was carried as described in Material and methods (C) SYCM, FT and fractions (1:10 
dilutions) were incubated with aggrecan-IGD (100 nM) for 15 min at 37 °C. The reactions 
were quenched with 1 mM EDTA and ARGS bearing peptide in proteolytic digests was 
quantified using ELISA module as described in Materials and Methods.    



Chapter 4               Purification of synovial aggrecanase 

	   81	  

specific activity (units of activity per 1 mg of protein) of pooled fractions (7 to 10) was 

similar to SYCM suggesting that purification of enzyme(s) using anion exchange 

chromatography was poor (Fig. 4.1C lower panel). 

           Aliquots (25 µl) of SYCM, FT and pooled medium of fractions 7 to 10 were 

electrophoresed and proteins visualised by staining with silver. The silver stained gel showed 

that majority of proteins in SYCM were also present in the pooled anion exchange fractions 

and hence contributing to low specific activity observed (Fig. 4.2B lane 4 vs. lane 2). A 

number of plasma proteins were abundant in SYCM e.g albumin (60 kDa), heavy and light 

chains of IgG (50 kDa & 25 kDa respectively) and transferrin (75 kDa) (Fig. 4.3A lane 2). 

The identity of the plasma proteins in SYCM or fractions was determined by comparing the 

molecular weights of known plasma protein in serum and SYCM. The presence of these 

proteins was not surprising as damage to synovial tissue would release the contents of 

capillaries into the culture medium alongside aggrecanolytic enzyme(s) made by injured 

synovium. The proteins in fractions 7, 8 and 9 were stained with Coomassie Brilliant Blue, 

which showed an abundant protein band of albumin (60 kDa) in all three fractions (Fig. 4.2C). 

Given the abundance of albumin in fractions containing aggrecanolytic activity, it was 

decided to use commercially available kits to remove albumin which would improve the 

purification on the anion exchange step and further chromatography.  

         A high affinity albumin and IgG removal kit designed for the removal of albumin and IgG 

proteins from human serum was tested against SYCM. The kit comprised recombinantly 

expressed peptide ligand coupled to agarose matrix with high affinity for albumin and IgG. A 

50 µl aliquot of human serum was used to test the efficiency of the matrix. It removed about  

95% of the albumin from the human serum, but the removal of IgG was much less successful 

(Fig. 4.3A lane 4 vs. lane 3). However the kit only removed about 5 % of porcine albumin from 

SYCM (Fig.4.3B lane 4 vs. 2) and the majority of the putative albumin was in the flow through 



Chapter 4               Purification of synovial aggrecanase 

	   82	  

(lane 3). The differences in pig and human albumin protein sequence might explain the 

inability of the kit to remove albumin and IgG from SYCM.  A different albumin and IgG 

removal matrix utilising a generic dye-based affinity ligand for albumin (proprietary Cibacron 

Blue matrix) and protein G agarose for IgG was deployed for the removal of albumin and IgG 

from SYCM. Fig. 4.3C shows that the unabsorbed material obtained from the mixture of 

protein G and Cibrecan Blue agarose matrices was devoid of albumin and IgG (lane 5 vs. lane 

3). However the analysis of proteins bound to the matrix shows that besides albumin and IgG, 

numerous other proteins had bound to the agarose beads (lane 5). It was important to determine 

whether the aggrecanolytic activity was present in the FT. The FT was applied to bovine 

aggrecan and showed no aggrecan degrading activity (Fig 4.4D lane 3 & 4). This suggested that 

the enzyme(s) had non-specifically adhered to the agarose matix and was likely to be present in 

the eluted material. The elution of matrix bound proteins was carried out using SDS sample 

buffer with strong heating (10 min at 100 °C). Hence it was not possible to determine the 

aggrecan degrading activity of eluted material. As both of the albumin removal procedures 

didn’t show promising results, the idea of removing albumin followed by anion exchange 

chromatography was abandoned. It was decided to try a strong cation exchange matrix (HiTrap 

S) for the purification of synovial aggrecanase(s).    
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Fig. 4.2 Analysis of aggrecanolytic activity and protein content of fractions from anion 
exchange chromatography of SYCM on agarose Q column (A) The fractions (7 to 10) 
showing aggrecanolytic activity in fig. 4.1A were pooled and dialysed against 20 mM Tris pH 
8.0, 150 mM NaCl and 5 mM CaCl2 for 4 hours. The dialysate was applied to dead cartilage 
explants and aggrecanolysis observed using ARGS and AGEG neo-epitope antibodies as 
described in Material and methods. (B) A 25 µl aliquot of dialysate was electrophoresed on a 4-
12 % gradient gel and the proteins visualized with silver stain as described in Material and 
Methods. (C) A 25 µl aliquots of fractions 7,8 & 9 were electrophoresed and the gel was 
stained with Coomassie Brilliant Blue as outlined in Materials and Methods.    
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Fig. 4.3 Testing matrices for albumin and IgG removal on SYCM. Aliquots (50 µl) of 
human serum (A) and SYCM (B) were applied to a column packed with commercial agarose 
beads coupled high affinity proprietary peptide ligands to albumin and IgG. The unabsorbed 
material was collected as flow through (FT). The beads were eluted with SDS and heating at 
100 °C for 10 min.  Aliquots (50 µl) of human serum, FT and eluted material were 
electrophoresed on a gradient gel. The silver staining procedure was used to visualize proteins 
as described in Material and Methods. (C) A 50 µl aliquot of SYCM was applied to a mixture 
of agarose beads (protein G agarose and Cibacron Blue beads) in a mini column. The beads 
were spun in a centrifuge to collect the FT. The beads were washed with proprietary wash 
buffer supplied with the kit and the fluid collected. The material bound to the beads was eluted 
as described above. A 50 µl aliquots of SYCM , FT and eluted material was electrophoresed on 
a gradient gel and gel stained with silver as described in Material and Methods. 
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4.3    Cation exchange chromatography of SYCM   
  

Cation exchange chromatography was carried out on SYCM using a HighTrap S cation 

exchange column. A 50 ml aliquot of SYCM was applied to the column and the unabsorbed 

material was collected as FT. The column was eluted with a salt gradient (Fig. 4.4A). Fractions 

were collected and analysed for their activity at 1 in 10 dilution on bovine aggrecan 

preparation. An ARGS and AGEG-generating enzyme was seen in fractions 9 to 12 (Fig. 4.4B, 

lanes 5 to 10). No ARGS bearing fragments were observed in FT (Fig. 4.4B, lane 2). However 

a faint AGEG generating activity was seen in FT (lane 2, lower panel). Figure 4.4A shows the 

elution profile of proteins as an absorbance trace at 280 nm as the salt gradient was developed. 

The enzyme(s) eluted from the column at relatively high salt concentration (0.4-0.5 M NaCl) 

and were present at the tail end of the absorbance peak observed in the trace. Majority of the 

eluted proteins concentrated in fractions 3 to 5. Although not shown in fig. 4.4B, fractions 3 to 

5 didn’t show aggrecan-degrading activity on bovine aggrecan. The presence of aggrecanolytic 

enzyme(s) in fractions 9 to 12 was also observed with the aggrecanase activity ELISA, which 

showed the peak of activity in fraction 11 (Fig. 4.5A). It was calculated that approximately 

74% of the aggrecanolytic activity in SYCM was recovered in the pooled fractions 8 to 13 (Fig. 

4.5A, lower panel) and the specific activity of the pooled medium was 8 fold higher than 

SYCM. The degree of purification achieved was confirmed when 25 µl aliquots of SYCM, FT 

and pool of fractions (9,10,11 and 12) were electrophoresed and stained with silver. The 

abundant proteins of the SYCM were not bound by the cation exchanger and were found in the 

FT (Fig. 4.5A lane 3). Fig. 4.5B lane 4 shows that far less proteins were present in the pooled 

fractions which was ideal for further purification of the synovial aggrecanase(s).   
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Fig	  4.4	  Cation	  exchange	  chromatography	  of	  SYCM	  using	  agarose	  S	  column	  (HiTrap	  
S)	  PART	  I	  A	  10	  ml	  aliquot	  of	  SYCM	  was	  applied	  to	  1	  ml	  HiTrap	  S	  column.	  The	  unabsorbed	  
material	   was	   collected	   as	   FT.	   	   The	   bound	   proteins	   were	   eluted	   with	   increasing	   salt	  
gradient	   (0	   to	   1	  M	  NaCl	   over	   20	  ml)	   and	   1	  ml	   fractions	  were	   collected.	   (A) A280 of the 
eluate (B) SYCM, FT and Fractions 6 to 15 were diluted 1:10 using 25 mM Tris-HCl pH 8.0, 
10 mM CaCl2 and applied to bovine aggrecan for 24 h at 37 °C. Western blots for ARGS and 
AGEG fragments was carried as described in Material and methods 	  
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Fig	  4.5	  Cation exchange chromatography of SYCM on agarose S column (HiTrap S)  
Part II (A) A 10 ml aliquot of SYCM was applied to HiTrap S column. The proteins bound to 
the agarose matrix were eluted with salt gradient (0 to 1 M NaCl) and 1 ml fractions were 
collected. The fractions 7 to 15 were incubated with aggrecan-IGD (100 mM) for 15 min at 37 
°C. The proteolytic reactions were quenched with 1 mM EDTA. The ARGS bearing peptide in 
the digests was measured using the ELISA procedure as outlined in the Materials and Methods. 
The protein concentration of SYCM and pooled medium (fraction 7 to 13) was determined 
using lowry protein assay (B) A 25 µl aliquots of SYCM, FT and pool of fractions (9,10,11 & 
12) wee electrophoresed on a 4-12 % gradient gel. The silver staining procedure was used to 
visualise the proteins as described in Materials and Methods.  
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4.4    Gel filtration chromatography of SYCM on Sephacryl S-200 
	  

A large volume of synovial culture medium (60 ml) was ion-exchanged on a HiTrap S 

column (1 ml) in 10 ml batches. The fractions (1 ml) from each batch were analysed for 

aggrecan degrading activity on bovine aggrecan as shown in Fig. 4.4B. The active fractions 

from six runs were pooled (25 ml) and concentrated to 5 ml using a 3.5 kDa cut-off spin 

concentrator and applied to Sephacryl S-200 column equilibrated and eluted with buffer (20 

mM Tris-HCl pH 8.0, 150 mM NaCl and 10 mM CaCl2). The gel filtration column was 

calibrated with goat	   IgG	   (160	   kDa),	   conalbumin	   (75	   kDa),	   ovalbumin	   (45	   kDa),	  

ribonuclease	  (13.5	  kDa)	  and	  aprotonin	  (6	  kDa) kDa) and run under the same conditions to 

yield a calibration curve of the fractionation range of the matrix (250-5 kDa) (Fig. 4.6A). The 

void volume (Vo) of the column was determined using dextran (2000 kDa). The 

aggrecanolytic assay on bovine aggrecan showed that there were two peaks of ARGS and 

AGEG generating activity. One in the void volume and other within the fractionation range of 

the column. The ARGS generating activity of this included peak was spread equally in 

fractions 7 to 10, whereas AGEG generating activity peaked in fractions 12 to 13 (Fig. 4.6B 

lane 7 to 10). The aggrecan degrading activity was also measured using the aggrecanase 

ELISA. This confirmed the presence of aggrecan degrading activity in fractions 11 to 14 (Fig. 

4.6C) with highest amount of activity apparently in fractions 12 and 13. The calibration curve 

was compared with the elution profile of sample to estimate the molecular weight of the 

aggrecan degrading species present in fractions 12 and 13. The elution volumes (Ve) were 

found at maximum peak height of each respective protein using the calibration curve of the 

standard proteins. The Kav values of the proteins was calculated using the equation Kav = (Ve – 

Vo) / (Vc – Vo) where Vo = void volume of column, Ve = elution volume and Vc = geometric 

column volume. A graph of Kav versus log molecular weight was drawn and a curve was fitted 

around the points (Fig.4.7).  
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Fig 4.6 Chromatographic separation of proteins on Sephacryl S200 gel filtration column 
following HiTrap S chromatography. A 60 ml aliquot of SYCM was partially purified using 
1 ml HiTrap S column. The fractions showing aggrecan degrading activity were pooled and 
concentrated to 5 ml using 3.5 kDa spin concentrator and applied to a Sephacryl S-200 gel 
filtration column (16 X 600 mm) that was equilibrated with 20 mM Tris-HCl pH 8.0, 150 mM 
NaCl, 10 mM CaCl2. The fractionation range of the gel filtration column was calibrated with 
goat IgG (160 kDa), conalbumin (75 kDa), ovalbumin (45 kDa), ribonuclease (13.5 kDa) and 
aprotonin (6 kDa). The column was run at 0.5 ml/min and eluted material was collected as 5 
ml fractions.  (A) The elution profile of pooled medium is drawn as an absorbance at 280 nm 
on vertical axis and fractions collected on the horizontal axis is compared against the elution 
profile of the calibration curve. (B) The fractions were incubated with bovine aggrecan (50 
µg) for 24 hours at 37 °C and western blotted for ARGS and AGEG fragments as described in 
materials and methods. (C) The aggrecanolytic activity of the fractions was analaysed at 1 in 
10 dilution using aggrecanase activity ELISA as described in Materials and Methods.  
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The elution volume of aggrecan degrading  enzyme was taken as 60 ml (midway fraction 12 

and 13) and the molecular weight was estimated as approximately 36-37 Da (Fig. 4.7). The 

degree of purification achieved with the gel filtration step was assessed by electrophoresing a 

100 µl aliquot of the pooled fractions 12 & 13. The silver stain of the proteins showed that gel 

filtration step had fewer proteins relative to cation exchange step with majority of them 

present in the region of 60 to 30 kDa (Fig. 4.7B lane 4 vs. 3).    

          The first peak of ARGS and AGEG generating activity, which was observed using 

bovine aggrecan substrate in fractions 8 & 9 corresponded to the void volume of the gel 

filtration column and the molecular weight of species greater than 200 kDa. This aggrecan-

degrading enzyme may form a part of a multimeric complex, or be bound to a high molecular 

weight material. The aggrecanolytic activity on bovine aggrecan observed in the void volume 

appeared to be as strong as that seen in the later fractions, but the ELISA showed barely 

detectable activity in fractions 8 & 9. On calculations made using the activity observed with 

aggrecanase ELISA, 35 units of activity were observed in the excluded fractions 8 & 9 while 

115 units of activity were observed in fraction 12 & 13. Hence included peak of 

aggrecanolytic activity contained 3 times as much activity as excluded peak. This was 

puzzling: perhaps the recombinant form of aggrecan IGD used in aggrecanase ELISA was 

sterically hindered and not accessible to the high molecular weight form of the aggrecan-

degrading enzyme.  
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Fig 4.7. (A) Molecular weight determination of the included aggrecanase using Sephacryl 
S-200 chromatography. (B) Analysis by PAGE. A 2 ml protein mix of standard proteins 
(goat IgG (160 kDa), conalbumin (75 kDa), ovalbumin (45 kDa), ribonuclease (13.5 kDa) and 
aprotonin (6 kDa) was applied to Sephacryl S-200 equilibrated with 20 mM Tris-HCl, 150 
mM NaCl and 10 mM CaCl2 at a flow rate of 0.5 ml/min. The elution volumes (Ve) were 
found at maximum peak height of each respective protein using the calibration curve. The Kav 
values of the proteins was calculated using the equation Kav = (Ve – Vo)/ (Vc – Vo) where V0 = 
void volume of column, Ve = elution volume and Vc = geometric column volume. A 
calibration curve of Kav versus log molecular weight was drawn and a curve was fitted around 
the points. The elution volume of aggrecan degrading enzyme was taken 60 ml (midway 
fraction 12 and 13) and molecular weight was estimated as approximately 36 kDa. Aliquots of 
SYCM, pooled medium after cation exchange chromatography (CIEX) and pooled fractions 
12-15 after gel filtration (GF) were electrophoresed on a 4-12 % gradient gel and the gel was 
silver stained as described in Materials and Methods.  

A 

B 
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4.5   Gel filtration chromatography of SYCM on Superose-6 column 1 
 

The high molecular weight form of aggrecanolytic activity in the void volume of 

Sephacryl S-200 may comprise of one or more species of aggrecan-degrading enzyme. A 

Superose-6 column with a wide separation range (5000-5 kDa) was therefore chosen to 

separate the enzyme(s) in the pooled fractions after cation exchange chromatography. Figure 

4.8A shows the absorbance trace observed when concentrated after cation exchange fractions 

(500 µl) was chromatographed on a Superose-6 column. The column was calibrated with 

dextran (2000 kDa), thyroglobulin (690 kDa), ferritin (440 kDa), aldolase (158 kDa), albumin 

(66 kDa) and ribonuclease (13.5 kDa) and run under the same conditions to yield a calibration 

curve (Fig. 4.8A). The aggrecanolytic assay using the bovine aggrecan showed an ARGS and 

AGEG generating activity in fractions 18 and 19 (Fig. 4.8B lane 14 & 15). It was estimated 

from the calibration curve that the aggrecanolytic species in these fractions had a molecular 

weight between 50 to 30 kDa. Moreover, the aggrecanase activity ELISA detected strong 

aggrecan-degrading activity only in fractions 18 and 19 and weak activity around the void 

volume (Fig. 4.9). Approximately 6 units of activity were observed in the included fractions 8 

& 9 while 0.25 units of activity were observed in fraction 8 & 9. Hence included peak of 

aggrecanolytic activity contained 24 times as much activity as excluded peak. This suggests 

that the enzymatic entity in fractions 18 and 19 represented the ~37 kDa species observed in 

the fractionation range of the Sephacryl S-200 column. No other significant ARGS generating 

activity was observed in any of the fractions obtained from Superose-6 chromatography. 

However an AGEG generating activity was seen in the void volume (fraction 8 & 9) of the 

Superose-6 column indicating the presence of aggrecan-degrading enzyme of molecular 

weight greater than 2000 kDa (Fig.  4.9A). But it was surprising that the fractions 8 or 9 were 

not able to show significant ARGS generating activity. The activity may have become visible 

in fraction 8 & 9 if they were assayed at a higher concentration or if a higher concentration of 

bovine aggrecan was used in the assay.  
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Fig 4.8 Chromatographic separation of proteins on Superose-6 gel filtration column 
following HiTrap S chromatography. A 30 ml aliquot of SYCM was partially purified using 
1 ml HiTrap S column. The fractions showing aggrecan-degrading activity were pooled and 
concentrated to 0.5 ml using 3.5 kDa spin concentrator and applied to a superose 6 gel 
filtration column (10 × 300 mm) that was equilibrated with 20 mM Tris-HCl pH 8.0, 150 mM 
NaCl, 10 mM CaCl2. The fractionation range of the gel filtration column was calibrated with 
dextran (2000 kDa), thyroglobulin (690 kDa), ferritin (440 kDa), aldolase (158 kDa), albumin 
(66 kDa) and ribonuclease (13.5 kDa). The column was run at 0.5 ml/min and eluted material 
was collected as 1 ml fractions.  (A) The elution profile of pooled medium is drawn as an 
absorbance trace at 280 nm on vertical axis and fractions collected on the horizontal axis were 
compared against the elution profile of the calibration curve. (B) The fractions at 1 in 5 
dilution were incubated with bovine aggrecan (50 µg) for 24 hours at 37 °C and western 
blotted for ARGS and AGEG fragments as described in materials and methods.  
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Fig 4.9 Measuring aggrecan-degrading activity of fractions obtained after Superose-6 
chromatography (A) The 1 ml fractions obtained after Superose-6 chromatography were 
incubated with aggrecan-IGD at 1: 5 dilution for 15 min at 37 °C. The ARGS bearing peptide 
was quantified as described in Materials and Methods.     
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4.6    Gel filtration chromatography of SYCM on superose 6 column 2 
 

The chromatographic separation of aggrecan-degrading enzymes on Superose-6 and 

Sephacryl S-200 suggested a low molecular weight form of enzyme around 40 kDa and a high 

molecular weight form, perhaps in a complex. Recently Yamamoto et al have shown that 

ADAMTS-5, a major aggrecanase in murine models of arthritis, binds to low-density 

lipoprotein receptor-related protein 1 (LRP1), a 600-kDa cell surface protein by which it gets 

endocytosed. This modulates the extracellular activity of ADAMTS-5. It is also known that 

proteinases cleave LRP1 near the membrane to release a 550-kDa extracelluar subunit 

(sLRP1) into the medium that is capable of binding wide array of molecules (> 40 ligands 

have been identified). Given the large molecular weight of sLRP1 (~ 550 kDa) and the 

likelihood of synovial aggrecanase being an ADAMTS, it was possible that the void volume 

fractions of Sephacryl S-200 and Superose-6 contained a complex of LRP1 and synovial 

aggrecanase.   

         In order to investigate the release of sLRP1 into the medium, damaged porcine synovial 

tissue was cultured for increasing length of time and the medium was probed with an anti-

LRP1 antibody that detects epitopes in the extracellular subunit of LRP1. Fig  4.10A shows 

that a protein of approximate molecular weight 550 kDa accumulates in the culture medium 

after 2 hours (lane 2) but was rapidly degraded if synovial tissue was left up to 8 hours (lane 

4). The loss of 550 kDa protein band could be due to proteolytic processing of sLRP1 by 

proteinases made by damaged synovial tissue. The release of sLRP1 after 2 and 24 hours was 

inhibited if synovial tissue was cultured in the presence of cylcoheximide suggesting that the 

accumulation of sLRP1 was an active process (Fig. 4.10B lane 2). Another anti-LRP1 reactive 

protein band was observed at a MW of 200 kDa at all time points which was unaffected by the  
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Fig 4.10. sLRP1 is released into the medium of synovial cultures.    
(A) Synovial tissue (~ 1g) was cultured for increasing length of time (0.5 to 24 hours) in 2.5 
ml of serum free DMEM. A 500 µl aliquot of SYCM was precipitated with tricholoroacetic 
acid and the pellet was dissolved in SDS containing sample buffer. The solubilised material 
was electrophoresed on a 4-12 % gradient gel under non-reducing conditions. The proteins 
were transferred to PVDF membrane and the membrane was immunoblotted using anti-LRP1 
antibody at 1:1000. (B) Synovial tissue (~ 1g) was cultured for increasing length of time (0.5 
to 24 hours) in the presence of cycloheximide (10 µg/ml) and the medium was probed with 
anti-LRP1 antibody as described above.      
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presence of cycloheximide (Fig 4.10A and B). The anti-LRP1 reactive material was either 

present in synovial fluid that accumulated alongside proteins made by synovial tissue or 

passively leached from synovial tissue with the passage of time. 

          The fractions obtained from Sephacryl S-200 chromatography (Fig. 4.6) were probed 

with anti-LRP1 antibody. The truncated forms of LRP1 were spread in fraction 9 to 11 (Fig. 

4.11A lane 3 to 5) but were absent from fractions 12 and 13, which contained the major 

aggrecanolytic activity (Fig. 4.6B lane 7 to 8). However the long form of sLRP1 was seen in 

fraction 8 corresponding to the void volume of the gel filtration column (Fig. 4.11A lane 2), 

which also contained the high molecular weight form of aggrecanolytic enzyme (Fig. 4.6B, 

lane 3). The presence of sLRP1 and the aggrecanolytic activity in the same fraction may be a 

coincidence or may represent an interaction between LRP1 and the synovial aggrecanase. In 

order to investigate this possibility further the fractions obtained after Superose-6 

chromatography were probed with anti-LRP1 antibody. The truncated forms of sLRP1 were 

observed in fractions 15 to 19 (Fig. 4.11B lane 11 to 15) whereas the low molecular weight 

form of aggrecan-degrading activity was present in fractions 18 and 19 (Fig. 4.8B lane 11 to 

15). The lack of co-migration suggests that the two species do not interact with each other. 

Some long form of the sLRP1 chromatographed in fractions 11 to 13 with an apparent 

molecular weight of ~ 800 kDa but no aggrecanolytic activity was observed in these fractions 

(Fig. 4.8B lanes 7 to 9). However some long form of sLRP1 was also observed in the void 

volume (fraction 8) of Superose-6 chromatography (Fig. 4.11B, lane 4). The AGEG-

generating activity was also observed in this same fraction and in fraction 9 in an equal 

amount (Fig. 4.8B lower panel). One possible explanation could be that a portion LRP1 was 

bound to some aggrecanolytic enzyme, along with many other high molecular weight proteins 

in the culture medium. There was a possibility that some of the high molecular weight 

aggrecanase was complexed with sLRP1.  
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Fig 4.11 Immunoblotting fractions obtained from Sephacryl S-200 and Superose 6 
chromatography with anti-LRP1 antibody.   
(A) A fresh 60 ml aliquot of SYCM was purified using 1 ml HiTrap S column. The fractions 
showing aggrecan-degrading activity were pooled and concentrated to 5 ml using 3.5 kDa spin 
concentrator and applied to Sephacryl S-200 gel filtration column (10 × 300 mm) that was 
equilibrated with TNC buffer (20 mM Tris-HCl pH 8.0, 150 mM NaCl, 10 mM CaCl2). The 
column was run at 0.5 ml/min and eluted material was collected as 5 ml fractions. A 500 µl 
aliquot of fractions was mixed with 1.5 ml of ice-cold 100% acetone for 30 min at -20 °C. The 
precipitate was mixed with SDS sample buffer and electrophoresed on a 4-12% gradient gel 
under non-reducing conditions. The proteins were transferred onto PVDF membrane and the 
membrane was immunoblotted with anti-LRP1 antibody at 1 in 1000 dilution as described in 
Materials and Methods. (B) A 30 ml aliquot of SYCM was chromatographed on a 1 ml HiTrap 
S column and the fractions showing aggrecan-degrading activity were pooled and 
concentrated to 0.5 ml using 3.5 kDa spin concentrator. The concentrate was applied to a 
superose 6 gel filtration column that was equilibrated with TNC buffer. The column was run at 
0.5 ml/min and eluted material was collected as 1 ml fractions. A 500 µl aliquot of fractions 
was probed with anti-LRP1 antibody using the procedure described above in (a).  
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4.7   Anion exchange chromatography of enzymatically active fractions 
obtained from gel filtration step 
 

Because the majority of the synovial aggrecanase detectable by assaying either with 

ELISA or bovine aggrecan was present in the smaller gel filtration peak, it was decided to 

focus on identifying this species. To purify and concentrate the low molecular weight form of 

the aggrecan-degrading enzyme, the fractions containing the aggrecan-degrading activity after 

the gel filtration step were pooled and applied to a microprecision mono Q anion exchange 

column. The fractions obtained from Sephacryl S-200 were selected because of the higher 

resolution achieved for the aggrecanolytic enzyme (~ 40 kDa) in the fractionation range of this 

column. Figure 4.12A shows the absorbance trace of the eluted material from the anion 

exchange column as the salt gradient was developed. The analysis of the aggrecan-degrading 

activity on bovine aggrecan showed a strong ARGS generating activity in fraction 8 (Fig. 

4.12B lane 4). The aggrecanase activity ELISA further supported this observation by 

registering strong activity for fraction 8 (Fig. 4.13). However the western blot showing AGEG 

generating activity didn’t work for this experiment (data not shown). But the results obtained 

for ARGS activity on bovine aggrecan and aggrecanase ELISA were definitive and it was 

deemed not necessary to repeat the AGEG activity assay. It was decided to keep fraction 8 

material for later chromatography steps.     
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Fig 4.12 Chromatographic separation of proteins on mono Q ion exchange column. A 60 
ml aliquot of SYCM was partially purified using 1 ml HiTrap S column. The fractions 
showing aggrecan-degrading activity were pooled and concentrated to 5 ml using 3.5 kDa spin 
concentrator and applied to Sephacryl S-200 column (10 × 300 mm) that was equilibrated with 
TNC buffer (20 mM Tris-HCl pH 8.0, 150 mM NaCl, 10 mM CaCl2). The enzymatically 
active fractions for low molecular species (~ 40 kDa) were pooled. A 25 ml aliquot was 
applied to mono Q column (100 µl) equilibrated with 20 mM Tris-HCl pH 8.0, 150 mM NaCl, 
10 mM CaCl2 and the unabsorbed material was collected as flow through. The bound material 
was eluted with salt gradient over 40 column volumes and 100 µl fractions were collected. (A) 
The elution profile was drawn as an absorbance trace at 280 nm on vertical axis and fractions 
collected on the horizontal axis (B) The fractions at 1 in 5 dilution were incubated with bovine 
aggrecan (50 µg) for 24 hours at 37 °C and the medium western blotted for ARGS and AGEG 
fragments as described in materials and methods.  
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Fig 4.13 Measuring aggrecan-degrading activity of fractions obtained after Mono S 
chromatography (A) The 100 µl fractions obtained after Mono S chromatography were 
incubated with aggrecan-IGD at 1: 200 dilution for 15 min at 37 °C. The ARGS bearing 
peptide was quantified as described in Materials and Methods.     
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4.8   Discussion 
 

The cation exchange chromatography on HiTrap S columns proved to be a good initial 

purification step, which lead to 8-fold increase in the specific activity of the synovial 

aggrecanolytic enzyme(s). Abbaszade et al. reported a 20-fold increase in the specific activity 

of aggrecan-degrading enzymes when purified from IL-1 stimulated bovine cartilage cultures 

using cation exchange chromatography (Abbaszade et al. 1999). Such a large increase in 

the specific activity was attributed to the increase in the total activity of the medium collected 

after cation exchange chromatography. This was surprising, as any chromatography step 

would cause 10-20% decrease of the target species. This increase was explained by the loss of 

inhibitory activity. Such an increase in the activity was not observed in the initial 

chromatography step used for the purification of synovial aggrecanase.  

 The cation exchange chromatography step failed to separate the high and low molecular 

weight forms of the enzyme(s). However, size-exclusion chromatography (Sephacryl S-200) 

successfully separated two forms of enzyme(s) present in the pooled fractions after the initial 

chromatography. Abbaszade et al. also used Sephacryl S200 as a purification step but didn’t 

report the high or low molecular weight forms of the enzymes present in the medium 

(Abbaszade et al. 1999). The high MW form of aggrecan-degrading enzyme was difficult to 

chromatograph in the included volume of the available gel filtration columns. The results have 

also suggested that synovial aggrecanase(s) were unlikely to interact with LRP1. It may be 

that LRP1 plays a physiologically different role in cartilage compared to synovial tissue. It is 

also possible that synovial aggrecanolytic enzyme in SYCM has truncated form of domain 

structure which prevents its interaction with LRP1. The lack of interaction with LRP1 made it 

harder to justify the use of LRP1 immunoprecipitation to purify the enzyme in the void 

volume of gel filtration column. However, the low MW form of aggrecan-degrading enzyme 

(~ 40 kDa) was chromatographed as the major enzyme in the included volume of Sephacryl S-
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200. The anion exchange chromatography sharply concentrated and purified the included peak 

from Sephacryl S-200 making the fractions ideal for affinity chromatography. An affinity 

chromatography step using the inhibitor of synovial aggrecanase, TIMP-3, could be used to 

pull down the low MW form of aggrecan-degrading enzyme. But this requires the successful 

purification of recombinant TIMP-3 and the application of protein as a tool for affinity 

purification, which will discussed in the following chapter.    
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5.1   Introduction 

In order to affinity purify synovial aggrecanase, recombinant TIMP-3 needed to be 

expressed in sufficient amount (milligrams) for coupling to an agarose matrix. An expression 

system producing full length active TIMP-3 would be the ideal system for this purpose. A 

bacterial expression system expressing full length TIMP-3 has not been successful at Kennedy 

Institute because of difficulties associated with refolding the denatured TIMP-3 extracted from 

the inclusion bodies. A mammalian expression system for full-length TIMP-3 using transient 

transfection of HEK293 cells has been used at the Kennedy but does not give such high yields 

of protein as bacterial system (Linda Troeberg, personal communication). The truncated form 

of TIMP-3, the N-terminal inhibitory domain (N-TIMP-3) has been successfully expressed in 

milligram quantities in a bacterial system, but using N-TIMP-3 rather than full-length protein 

might be disadvantageous because there might be more steric hindrance to its interaction with 

enzyme when coupled to agarose matrix (Wisniewska et al. 2008). However the majority of 

lysine residues likely to be involved in the covalent coupling of N-TIMP-3 do not lie in the 

region involved in its inhibitory properties of TIMP-3 as determined from the 3-D structure of 

N-TIMP-3-MMP-1C complex. Therefore N-TIMP-3 might work as efficiently as full-length 

TIMP-3 for purifying the synovial enzyme(s).  
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5.2   Mammalian expression system for producing full length TIMP-3 

I first tried setting up a mammalian expression system for full length TIMP-3 using a 

commercially available expression vector (OriGene technologies, USA). Full length TIMP-3 

was expressed by transient transfection of HEK293 cells the vector (OriGene technologies, 

USA) containing full length sequence of TIMP-3 with a FLAG tag attached to the C-terminus. 

HEK293 cells were transfected in the presence and absence of serum and the lysates were 

probed with anti-FLAG antibody. FLAG-tagged TIMP-3 was found to be intracellularly 

localised (Fig. 5.1A, lane 5 & 6). Intracellular FLAG tagged TIMP-3 was purified by 

immunoabsorption chromatography on an anti-FLAG antibody coupled to agarose beads (Fig. 

5.1B). From 50 ml of HEK293 lysates (obtained from 50 × 10 cm dishes) about 20µg of 

TIMP-3 was obtained. The yield of TIMP-3 from this expression system was too low for it to 

be used for affinity purification of aggrecanases. Moreover, the TIMP-3 fractions obtained 

from anti-FLAG chromatography were impure due to non-specific interaction of the agarose 

beads with proteins in the lysates (Fig. 5.1C). The TIMP-3 containing fractions were ion-

exchanged to remove contaminating proteins but this procedure also resulted in 50% loss of 

TIMP-3 (Data not shown). The purified TIMP-3 fractions showed weak inhibitory activity 

against MMP-1ΔC (Fig. 5.1D). The inhibitory line formed a curve rather than a steep line to 

the x-axis, which is characteristic of tight binding inhibitors like TIMP-3. Due to poor yield, 

impurities in purified fractions and weak inhibitory activity against MMP-1ΔC, the 

mammalian system for TIMP-3 expression was abandoned. 
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Fig. 5.1. Mammalian expression system for expression of full-length TIMP-3.  
(A) Confluent (70-80%) HEK293 cells were transfected with Turbofectin 8.0 in a solution 
containing 1 µg of DNA. The cells were lysed in RIPA buffer (150 mM NaCl, 1.0% IGEPAL 
CA-630, 0.5% sodium deoxycholate, 0.1% SDS, and 50 mM Tris, pH 8.0). Aliquots (10 µl) of 
cell lysates were electrophoresed and probed with anti-FLAG, anti-TIMP-3 and anti-tubulin 
antibodies as described in the Material and Methods. (B) The cell lysates (1 ml) were 
incubated with 50 µl aliquot of FLAG agarose beads for 24 hours. The beads were gently 
pelleted and the supernatant collected as flow through. The beads were eluted with 250 µl of 3 
✕ FLAG peptide. The aliquots (10 µl) of cell lysate, flow through and eluted material were 
electrophoresed and probed with anti-FLAG, anti-TIMP-3 and anti-tubulin antibodies as 
described in the Materials and Methods (C) A 10 µl aliquot of eluted material was 
electrophoresed and silver stained as described in Materials and Methods. (D) MMP1ΔC (20 
nM) in a 200 µl reaction volume was titrated with increasing volume of eluted material and 
FLAG containing buffer. The residual MMP1ΔC activity was measured with fluorescent 
substrate as described in materials and methods.  
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5.3 Expression, purification and folding of N-TIMP-3 from E.coli   

       E.coli expressing N-terminal inhibitory domain of TIMP-3 (N-TIMP-3) with His tag 

attached to the C-terminus to facilitate purification were used. The details of N-TIMP-3 

expression, purification and folding procedures are described in the Materials and Methods 

section. The purification procedure of N-TIMP-3 from 3 litres of bacterial culture is 

summarised in Table 3. The extract of inclusion bodies from 3 litres of bacterial culture was 

applied to a 5 ml column packed with Ni2+ agarose beads (Fig. 5.2A, lane 6). The column was 

washed with buffer containing 20 mM imidazole to remove the majority of the non-specific 

proteins (Fig. 5.2A, lane 8 to 12). The eluted material was collected as 2 ml fractions (Fig. 

5.2A, lane 13 to 25). Since all fractions contained sufficiently pure N-TIMP-3 protein, they 

were pooled for its in vitro refolding by dialysis. Approximately 4.5 mg of soluble N-TIMP-3 

was obtained after in vitro refolding and Ni2+ chromatography of 62 mg of unfolded N-TIMP-

3 (Table 3). The worst loss of protein occurred at this step (about 5.2 % recovery of the 

original material) because the majority of the protein formed an insoluble precipitate upon 

dialysis. The N-TIMP-3 was seen on electrophoresis as a monomer (15 kDa), dimer (30 kDa) 

and trimer (45 kDa) (Fig. 5.2A, lane 13 to 35). Because monomeric N-TIMP-3 is thought to 

be the active form (Kashiwagi et al. 2001), a Sephacryl S-200 column was used to purify 

this species. Fig. 5.2C shows the chromatographic separation of the monomeric N-TIMP-3 

from the other multimers. Monomeric form of N-TIMP-3 was present in fractions 16 to 19, 

whereas the probable dimer was in fractions 14 to 17 (Fig. 5.2C). Fractions 16 and 17 showed 

significant overlap between the dimeric and monomeric forms, but fractions 18 and 19 

contained predominantly the 15 kDa monomeric N-TIMP-3 (Fig. 5.2C). Therefore fractions 

18 and 19 were pooled and titrated with 20 nM MMP-1ΔC to estimate the concentration of 

active N-TIMP-3, assuming N-TIMP-3 to MMP1ΔC stoichiometric ratio of 1:1. A 10 µl 

aliquot of N-TIMP-3 preparation fully neutralised the activity of 20 nM MMP1ΔC (Fig. 5.3). 
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It was calculated that the active N-TIMP-3 concentration was 360 nM (Fig. 5.3). This 

corresponded to 55 µg of active N-TIMP-3 protein (MW: 15230 g/mol) in 200 µg of pooled 

fractions. Hence, only about 28 % of refolded N-TIMP-3 was active against MMP1ΔC.  
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Table 3. Purification of N-TIMP-3 from bacterial culture. Inclusion bodies from 3 litres of 
bacterial culture were extracted and unfolded N-TIMP-3 was purified by Ni2+ affinity 
chromatography. The protein was refolded by slowly removing the denaturant by dialysis. 
Insoluble precipitates of N-TIMP-3 were removed by centrifugation and soluble N-TIMP-3 
was purified from the supernatant by Ni2+ affinity chromatography. Chemical assay (Bradford 
protein assay) was used to quantify the amount of protein in inclusion body extract, fractions 
obtained after Ni2+ affinity chromatography and from in vitro refolding.  
 

 

 

 

 

 

 

 

 

Purification step Total protein (mg) Recovery of protein (%) 

Inclusion body extract  87 100.0 

Unfolded N-TIMP-3 recovered after Ni2+ affinity chromatography  62 72.0 

Soluble N-TIMP-3 obtained after in vitro refolding and Ni2+ affinity chromatography 4.5 5.2 

Purified N-TIMP-3 recovered after gel filtration chromatography (fractions 16 to 19) 0.4 0.4 
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Fig. 5.2. Purification, refolding and separation of monomeric N-TIMP-3 (A) Bovine 
serum albumin (BSA) in the range of 1 to 12 µg (lane 1 to 5), a 20 µl aliquot of inclusion body 
extract (lane 6) and 5 µl of 2 ml fractions (lane 13 to 35) were electrophoresed on a 15 % 
polyacrylamide gel and Coomassie Brilliant Blue stained to visualise the proteins as described 
in Materials and Methods. (B) A 20 ml aliquot of refolded N-TIMP-3 was applied to 
Sephacryl S-200 equilibrated and eluted with TNC buffer (20 mM Tris-HCl pH 8.0, 150 mM 
NaCl, 10 mM CaCl2). The eluted material was collected as 5 ml fractions. A 50 µl aliquot of 
each fraction was electrophoresed on a gradient gel and proteins visualised with silver stain.    
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Fig 5.3. Titrating 20 nM MMP1ΔC with increasing volume of N-TIMP-3.    
MMP1ΔC (20 nM) in a 200 µl reaction volume was titrated with increasing volume of purified 
N-TIMP-3. The residual MMP1ΔC activity was measured with fluorescent substrate as 
described in materials and methods. The line was extrapolated on to horizontal axis to show 
the volume of N-TIMP-3 inhibiting 20 nM MMP1ΔC. The information was used to determine 
the concentration of active N-TIMP-3.   
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Calculations	  to	  determine	  the	  active	  N-‐TIMP-‐3	  concentration	  

1. 10	  μl	  of	  N-‐TIMP-‐3	  completely	  inhibits	  20	  nM	  
MMP1ΔC	  in	  200	  μl.	  

2. 20	  nM	  MMP1	  in	  200	  μl	  assay	  volume	  equates	  to	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  4	  ✕  10-3 	  nmoles	  of	  MMP1.	  	  	  

3. Assuming	  1:1	  ratio	  of	  MMP1ΔC	  to	  N-‐TIMP-‐3,	  	  
4	  ✕  10-3 	  nmoles	  of	  N-‐TIMP-‐3	  are	  present	  in	  10	  μl	  of	  
N-‐TIMP-‐3.	  	  	  	  

	  	  	  	  	  	  	  4.	  	  	  Therefore	  the	  [N-‐TIMP-‐3]	  ~	  360	  nM.	  	  
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5.4   Covalent coupling of refolded N-TIMP-3 protein 
 

In order to isolate the synovial aggrecanolytic enzyme by an affinity step, the N-TIMP-3 

protein needed to be coupled to a solid support. Cyanogen bromide (CNBr) and N-

hydroxysuccinimide (NHS) activated agarose beads are commonly used matrices to covalently 

couple proteins. The N-TIMP-3 protein was purified in buffer containing 20 % (v/v) glycerol. 

The glycerol concentration was high to prevent the aggregation of N-TIMP-3. In order to 

immobilise N-TIMP-3, the Tris present in the purification buffer was removed because it 

contains primary amino groups that can interact with the activated agarose beads. The N-

TIMP-3 preparation (300 µg/ml) was dialysed into bicarbonate buffer pH 8.0 containing 20% 

(v/v) glycerol. The dialysed N-TIMP-3 was incubated with 1 ml of CNBr-activated agarose 

beads for 6 hours and absorbance at 280 nm (A280) was measured to estimate the concentration 

of protein left in the supernatant. Less than 10 % of N-TIMP-3 had coupled to CNBr-activated 

agarose matrix after 2 hours (Fig. 5.4). The covalent coupling of N-TIMP-3 to agarose beads 

is a time limited reaction, which should be complete within an hour. Therefore increasing the 

incubation time of CNBr activated agarose beads with N-TIMP-3 didn’t increase coupling 

(data not shown).  There are many factors that can reduce the coupling efficiency of N-TIMP-

3 namely pH, coupling medium etc. The pH was kept at 8.0 to maintain the amino groups in 

unprotonated state and thus aiding the formation of covalent bonds with the agarose beads. 

However, the viscous 20% (v/v) glycerol might hinder the coupling. In order to investigate 

this possibility, BSA was dissolved in the bicarbonate buffer at 300 µg/ml, either with or 

without 20% glycerol. The BSA preparations were then coupled to 1 ml of activated CNBr 

agarose beads and A280 was taken at regular intervals to estimate the concentration of BSA left 

in the supernatant (Fig. 5.5A). Approximately 80 % of BSA was coupled to agarose beads 

when no glycerol was present in the buffer compared to only 15 % in the presence of 20% 

glycerol. Hence the presence of 20 % glycerol led to significant impairment of coupling.   
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Fig 5.4. Covalent coupling of N-TIMP-3 to CNBr activated agarose beads. N-TIMP-3 
(~300 µg/ml) was dialysed into bicarbonate buffer containing 20% glycerol and incubated 
with 1 ml of CNBr activated beads for 2 hours. Another preparation of N-TIMP-3 (~300 
µg/ml) in bicarbonate buffer was incubated with Ni2+ agarose beads for 2 hours. The agarose 
beads were pelleted with gentle centrifugation and the supernatant collected from both 
incubations of N-TIMP-3. The concentration of N-TIMP-3 was determined by DC protein 
assay before and after incubation with agarose beads.  n = 1, the error bars represent the 
standard deviation for the triplicates of one experiment.   
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Fig 5.5.  Covalent coupling of BSA to CNBr activated beads. (A) BSA (300 µg) was 
prepared in bicarbonate buffer pH 8.0 containing 20 % and 0 % glycerol. Both preparations 
were incubated with 1 ml of washed CNBr activated beads. Concentration of BSA remaining 
in the solution was determined at three time points (0, 2 and 6 hours) using DC protein assay. 
The percentage decrease in BSA concentration was plotted on y-axis against time (min). (B) 
Five different solutions of BSA (300 µg) in bicarbonate buffer pH 8.0 each containing 
different glycerol concentration (0%, 5%, 10%, 20%) were prepared. Both preparations were 
incubated with 1 ml of washed CNBr activated beads. Concentration of BSA remaining in the 
solution was determined at regular time points (0, 0.5, 1.0, 1.5 and 2.0 hours) using DC 
protein assay. The percentage decrease in BSA concentration was plotted on y-axis against 
time (min).  
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It was also not possible to completely remove the glycerol as this  caused ~ 90% of the N-

TIMP-3 to precipitate. It was decided to investigate whether or not there was a minimum 

glycerol concentration that keeps N-TIMP-3 in solution but does not hinder its 

immobilization. The coupling of BSA to CNBr was assessed at increasing glycerol 

concentrations up to 20% glycerol. Fig 5.5B shows that the coupling of BSA to agarose beads 

decreased with increasing glycerol concentrations. Even 5% glycerol impaired coupling of 

BSA to agarose beads. Unfortunately reducing N-TIMP-3 concentration below 20 % resulted 

in more or less complete N-TIMP-3 precipitation. Similar attempts were made to couple N-

TIMP-3 to NHS-activated beads but these were similarly unsuccessful (data not shown). 

Therefore the covalent coupling of N-TIMP-3 was unsuccessful with activated agarose beads 

and other ways to immobilize N-TIMP-3 were considered.    
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5.5   Coupling N-TIMP-3 to Ni2+ agarose beads 

Given the poor covalent coupling of N-TIMP-3 to either CNBr or NHS activated 

agarose beads, other approaches to tether N-TIMP-3 to a solid support were considered. The 

N-TIMP-3 protein was purified from E.coli lysate by exploiting the electrostatic attraction 

between the histidine tag of N-TIMP-3 and Ni2+ agarose beads. Therefore it was decided to 

exploit the affinity of the His tag for Ni2+ beads to create an affinity reagent for the isolation of 

the aggrecanolytic enzyme. It was important to see whether Ni2+ N-TIMP-3 beads interacted 

with proteinase and could be used to isolate the aggrecan-degrading enzyme. The beads were 

therefore tested for their ability to bind MMP1ΔC. A 50 µl aliquot of N-TIMP-3 (15 µg) was 

immobilized on agarose beads (Fig 5.6, lane 1). No leakage of N-TIMP-3 was observed upon 

washing the beads with Tris buffer (20 mM Tris-HCl pH 8.0, 150 mM NaCl, 10 mM CaCl2) 

(Fig. 5.5, lane 2 to 5). MMP1ΔC (5 µg) was incubated with Ni2+ N-TIMP-3 agarose beads for 

2 hours at 25 °C. Minor leakage of N-TIMP-3 was observed upon washing the agarose beads. 

However no other protein band was observed. The washed beads were then eluted with a 

buffer containing 0.5 M imidazole. Two prominent proteins bands of molecular weight 15 kDa 

(N-TIMP-3) and 20 kDa (MMP1ΔC) were observed (Fig. 5.6, lane 10). The elution of 

MMP1ΔC along with N-TIMP-3 suggests that N-TIMP-3 coupled Ni2+ agarose beads can be 

used successfully for the affinity purification of MMP1ΔC. The enzyme-inhibitor ratio used in 

this experiment was 3:1 and a similar procedure could also be used to isolate the aggrecan-

degrading enzyme from the SYCM. However MMP1ΔC does not exactly mimic the 

aggrecanolytic enzyme because its molecular weight is half that of the predicted molecular 

weight of synovial aggrecanase. Therefore the N-TIMP-3 Ni2+ agarose beads were tested for 

their ability to purify recombinant catalytic domain of ADAMTS-5 (~ 75 kDa). A 1.5 µg 

quantity of ADAMTS-5 was incubated with the N-TIMP-3-agarose beads. The beads were 

eluted with a buffer containing 0.5 M imidazole. The eluted material contained a strong 
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protein band of MW 75 kDa indicating that affinity pull down of ADAMTS-5 was successful 

(Fig. 5.7 lane 6) Monomeric and dimeric forms of N-TIMP-3 were also observed in the eluted 

material. A dimeric form of N-TIMP-3 (~30 kDa) was observed because partially purified N-

TIMP-3 (refolded N-TIMP-3 without the separation of multimers by gel filtration) was used 

for the purpose of affinity pull down. Impurities around 60 kDa were also observed which 

could possibly be present either in Ni2+ agarose beads or ADAMTS-5 preparation. Given the 

successful purification of MMP1ΔC and ADAMTS-5, it was decided to use the same coupling 

and affinity purification procedure to isolate the synovial aggrecanase.     
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Fig 5.6. Validating N-TIMP-3 agarose beads as a tool for affinity purification.  
A 50 µl aliquot of N-TIMP-3 (300 µg/ml, lane 1) was added to 50 µl Ni2+ agarose beads and 
left on gentle shaking for 30 min at 25 oC. The agarose beads were washed three times with 1 
ml of TNC buffer (20 mM Tris-HCl pH 8.0, 150 mM NaCl, 10 mM CaCl2) (lane 2-5). A 5 µg 
quantity of MMP1ΔC (lane 15) was added to N-TIMP-3-agarose beads for 2 hours at 25 oC. 
The beads were pelleted on gentle centrifugation (1000 g, 30 s) and supernatant collected  
(lane 7). The agarose beads were further washed twice with TNC buffer (lane 8 & 9) and 
eluted with TNC buffer containing 0.5 M imidazole (lane 10).  A 5 µg quantity of MMP1ΔC 
was added also added to Ni2+agarose beads without N-TIMP-3 for 2 hours at 25 oC. The beads 
were pelleted on gentle centrifugation (1000 g, 30 s) and supernatant collected  (lane 11). The 
agarose beads were further washed twice with TNC buffer (lane 12 & 13) and eluted with 
TNC buffer containing 0.5 M imidazole (lane 14) A mixture of two proteins, 5 µg of 
MMP1ΔC and N-TIMP-3 (50 µl), was run as a positive control (lane 6).       
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Fig 5.7.  Testing N-TIMP-3 agarose beads for purification of ADAMTS-5. 
A 50 µl aliquot of N-TIMP-3 (300 µg/ml) was added to 50 µl Ni2+ agarose beads and left on 
gentle shaking for 30 min at 25 oC. The agarose beads were washed three times with 1 ml of 
TNC buffer. A 25 µl aliquot of ADAMTS-5 (480 nM) was incubated with N-TIMP-3-agarose 
beads for 2 hours at 25 oC. The agarose beads were pelleted with gentle centrifugation (1000 
g, 30 sec) and supernatant collected (lane 5). The agarose beads were eluted with TNC buffer 
containing 0.5 M imidazole (lane 6). A 25 µl quantity of MMP1ΔC was also added to 
Ni2+agarose beads without N-TIMP-3 for 2 hours at 25 oC. The beads were pelleted on gentle 
centrifugation (1000 g, 30 s) and supernatant collected (lane 7). The agarose beads were eluted 
with TNC buffer containing 0.5 M imidazole (lane 8). A mixture of two proteins, 5 µg of 
MMP1ΔC and N-TIMP-3 (50 µl), was run as a positive control in lane 4.         
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6.1   Introduction  
 

The plan was to adapt the procedure used to purify MMP1ΔC and ADAMTS-5 in 

Chapter 5 to isolate the synovial aggrecanase. A three-step purification scheme for the low 

molecular weight form of the enzyme was worked out in Chapter 4. The aim was to use the 

active fraction from the third step (SMART mono Q anion exchange chromatography) and 

affinity purify the enzyme on N-TIMP-3 bound Ni2+ agarose beads. The proteins bound would 

then be eluted with imidazole and electrophoresed. The proteins bound specifically to N-

TIMP-3 would be selected for identification by mass spectrometry.    
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6.2   Analysing fraction 8 of mono Q chromatography     
 

The lower molecular weight aggrecanase from SYCM was purified by successive steps 

as worked out in Chapter 4: firstly chromatography on cation exchange column, then gel 

filtration on Sephacryl S-200 and thirdly anion exchange chromatography. This third step on a 

high resolution SMART column concentrated the 40 kDa aggrecanolytic species in a 100 µl 

fraction (Fig. 6.1B fraction 8). More than 90% of the ARGS generating activity was found in 

fraction 8 when measured in either the assay on bovine aggrecan or the aggrecanase ELISA 

(Fig. 6.1B; Fig.6.1A and 6.2B are duplication of Fig.4.12). Fraction 8 was titrated with N-

TIMP-3 in the aggrecanase ELISA to estimate the quantity of enzyme. This information was 

needed to determine whether sufficient enzyme was present in fraction 8 for detection by mass 

spectrometry.  The titration revealed that 6 µl of 7.2 nM N-TIMP-3 fully inhibited the activity 

of 0.25 µl of fraction 8 (Fig. 6.2). Assuming N-TIMP-3 inhibited the synovial aggrecanase in 

1:1 stiochiometric ratio, and a molecular weight of 40 kDa for the enzyme,1 µl of fraction 8 

was calculated to contain 6.9 ng of the enzyme, and the whole 100 µl fraction 690 ng.  

The elution profile (A280) showed an intense absorbance peak in fraction 8 (Fig. 6.1A). 

Aliquots (5 µl) of the fractions were electrophoresed and the gel stained with silver (Fig. 

6.1C). Fraction 8 (Fig. 6.1C, lane 3) showed multiple protein bands ranging from molecular 

weight 60 kDa to 25 kDa. The most prominent protein band (band 1) was of molecular weight 

~ 45 kDa but a band of similar molecular weight and intensity was also present in the 

subsequent fractions 9 to 11 (Fig. 6.1C lanes 4-6). A doublet (band 2) with approximate 

molecular weight 40 kDa was seen below band 1 (Fig. 6.1C lane 3) but a similar doublet was 

also observed in fractions 10 and 11 (Fig. 6.1C lane 5 & 6). Therefore the protein bands 1 and 

2 were unlikely to be synovial aggrecanase. However 3 unique protein bands with molecular 

weight  ~ 37 kDa (band 3), ~ 35 kDa (band 4), and 25 kDa (band 5) were seen in fraction 8. 

One of these proteins might be a synovial aggrecanase (Fig. 6.1C lane 3).  
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Fig. 6.1. Mono Q (SMART) chromatography of active material from size-exclusion 
column (Sephacyl S-200) A 60 ml aliquot of SYCM was used to partially purify synovial 
aggrecanase on a 1 ml HiTrap S column. The fractions showing aggrecan-degrading 
activity were pooled and concentrated to 5 ml using 3.5 kDa spin concentrator and applied 
to Sephacryl S-200 column (10 × 300 mm) that was equilibrated with a buffer (20 mM 
Tris-HCl pH 8.0, 150 mM NaCl, 10 mM CaCl2). The enzymatically active fractions for 
low molecular species (~ 40 kDa) were pooled. A 25 ml aliquot was applied to mono Q 
column (100 µl) equilibrated with Tris buffer without NaCl (20 mM Tris-HCl pH 8.0, 10 
mM CaCl2) and the unabsorbed material was collected as flow through  (A) A280 trace of 
the material eluted from the mono Q column (B) Aliquots (5 µl) of the fractions were 
incubated with bovine aggrecan (50 µg) for 24 hours at 37 oC. The medium was probed 
for ARGS neo-epitope bearing fragment as described in Materials and Methods. (C) 
Aliquots (5 µl) were electrophoresed on a gradient gel (4-12 %) and protein stained with 
silver as described in Materials and Methods.    
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Fig 6.2. Estimating the amount of synovial aggrecanase in fraction 8 from SMART mono 
Q chromatography by aggrecanase ELISA. A 0.25 µl aliquot of fraction 8 was titrated with 
increasing volumes of 7.2 nM N-TIMP-3 (0 to 10 µl) in a 50 µl reaction volume. The 
incubations were left for 30 min at 37 °C. The materials were then applied to aggrecan IGD 
for 15 min at 37 °C. The release of ARGS bearing peptide in the medium was measured as 
described in Materials and methods.  
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6.3   Affinity purification of synovial aggrecanase  

Initial pull downs of MMP1ΔC and ADAMTS-5 were carried out with a 50 µl aliquot of 

Ni2+ agarose beads (Chapter 5). A trial pull down with fraction 10 from the mono Q 

chromatography (Fig. 6.1) was carried out using the same volume of Ni2+ agarose beads as 

described in Chapter 5. A number of proteins were present in the eluted material suggesting 

that Ni2+ agarose beads may bind to some proteins in the fraction (data not shown). Ni2+ 

agarose beads have a very high binding capacity for His tagged protein (600 µg for 1 ml of 

agarose beads) so it was decided to bind a smaller aliquot of Ni2+ agarose beads (15 µl) with 

100 µl of N-TIMP-3 (~ 2 µg) to reduce the presence of non-specifically bound proteins. The 

remaining 40 µl of fraction 8 was then applied to these beads, 60 µl having been used for 

enzyme assays and electrophoresis. A parallel pull down was carried out by applying 40 µl of 

fraction 9 (Fig. 6.1C, lane 4) to a 15 µl aliquot of Ni2+ agarose beads. It was hoped a 

comparison of proteins eluted from fraction 8 and fraction 9 pull downs would help 

distinguish those binding specifically to N-TIMP-3 from those binding to the Ni2+ agarose 

alone. MMP1ΔC (5 µg) was also incubated with another batch of N-TIMP-3 Ni2+ agarose 

beads (15 µl) as a positive control.  

The beads from all three incubations were gently pelleted and the supernatants collected. 

The supernatant of fraction 8 was assessed for activity using aggrecanase ELISA. More than 

95 % of the enzymatic activity was removed of fraction 8 by the N-TIMP-3 agarose beads 

(Fig. 6.3). The elution of agarose beads was carried out in a buffer containing 0.5 M 

imidazole. The eluted materials of fraction 8, fraction 9 and the MMP1ΔC pull down were 

electrophoresed in lanes 1, 2 and 3 respectively of a gradient gel and proteins were visualized 

by silver stain (Fig. 6.4A, lanes 1, 2 and 3). Fig. 6.4A lane 1 shows that MMP1ΔC pull down 

was successful as the eluted material contained both MMP1ΔC (20 kDa) and N-TIMP-3 (15 

kDa) proteins.  
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Fig 6.3. Aggrecan-degrading activity of fraction 8 measured on aggrecanase ELISA 
before and after incubation with N-TIMP-3 coupled agarose beads. The fraction 8 from 
mono Q chromatography was incubated with aggrecan-IGD at 1:200 dilution for 15 min at 37 
°C. The ARGS bearing peptide was quantified using aggrecanase ELISA as described in 
Materials and Methods. n= 1, error bar represents the standard deviation of the triplicates for 
one experiment.   
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The eluted material of fraction 8 pull down contained 4 protein bands (Fig. 6.4A lane 2, 

bands 1-4). The majority of the proteins in fraction 8 were not bound by N-TIMP-3 coupled 

Ni2+ agarose beads and were collected as supernatant (Fig. 6.4A, lane 5). Lane 3 shows 

proteins from fraction 9, which bound to Ni2+ agarose beads in the absence of TIMP-3. 

However the majority of fraction 9 proteins did not bind and were found in the supernatant 

(Fig. 6.4A, lane 6). The protein with molecular weight 15 kDa in lane 2 (band 4) represented 

monomeric N-TIMP-3 (15 kDa). This band was absent in the eluted material from the pull 

down carried out with fraction 9 (Fig. 6.4A, lane 3). Another protein band (band 3) with a 

molecular weight of 30 kDa was also seen in lane 2 which may represent the dimeric form of 

N-TIMP-3 (Fig. 6.4A lane 2). A strong band (band 2) that appeared to be unique to lane 2 had 

a molecular weight of ~ 35 kDa (Fig. 6.4A lane 2). This band was absent from lane 1 

indicating that it originated from fraction 8 (Fig. 6.4B) and was not a multimer of N-TIMP-3 

protein. However a fainter band of similar molecular weight was also observed in lane 3 

suggesting that the band 2 protein may represent a non-specific interaction of the protein with 

Ni2+ agarose beads. Protein bands in the region of 50-60 kDa (Band 1) were observed in all 

three lanes 1, 2 and 3. It was felt these may represent contamination by keratins (50-60 kDa) 

that could be present either in the sample buffer used to solubilize the eluted material for gel 

electrophoresis or in the buffer used to resuspend the Ni2+ agarose beads. However band 1 in 

lane 2 was stronger than lane 1 or lane 3. Perhaps there were more keratins in fraction 8 or it 

may represent an interaction of 50-60 kDa protein with N-TIMP-3. The silver stained gel 

under the light box didn’t suggest the appearance of any discrete bands in the region of 50-60 

kDa. Therefore it was decided not to select this region for mass spectrometric analysis. The 

prominent appearance of band 2 (predicted molecular weight of the synovial aggrecanase) 

made it an interesting candidate for identification by mass spectrometry. A protein band with 

similar molecular weight (marked with B) was also located in the silver stained proteins of 

fraction 8 and selected for identification by mass spectrometry (Fig. 6.4B lane 3, Fig. 6.4B is a 
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duplication of Fig.6.1C). Altogether 4 protein bands were selected for analysis by mass 

spectrometry as shown in Fig. 6.4.  
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Fig. 6.4 Use of TIMP-3 to affinity purify synovial aggrecanase. (A) A 15 µl aliquot of Ni2+ 
agarose beads (~ 10 µg binding capacity) was incubated with 100 µl of N-TIMP-3 protein (2 
µg active N-TIMP-3 protein) for 30 min at 25 °C. Aliquots of N-TIMP-3 Ni2+ agarose beads 
(15 µl) were incubated separately with fraction 8 (40 µl) and MMP1ΔC (5 µg) in separate 
ependorfs while Ni2+ agarose beads were incubated with fraction 9 for 2 hours at 25 °C. The 
beads were gently pelleted and supernatants collected. The beads were then washed three 
times with buffer (20 mM Tris-HCl pH 8.0, 150 mM NaCl, 10 mM CaCl2). The beads were 
eluted with buffer containing 0.5 M imidazole. The eluates of MMP1ΔC, fraction 8 and 
fraction 9 pull downs were loaded in lanes 1, 2 & 3 respectively and electrophoresed on a 4-
12% polyacrylamide gradient gel. The supernatants from fraction 8 and 9 pull downs were 
loaded in lane 5 and 6 respectively. The gel was stained with silver (B) Aliquots (5 µl) of 
fractions obtained after mono Q anion exchange chromatography (Fig. 6.2A) were 
electrophoresed and stained as for (A). Bands with boxes indicates the bands selected for mass 
spectrometry analysis.  
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6.4   Mass spectrometric analysis of protein bands 
 

Three major proteins were identified in band 2 of the N-TIMP-3 pull down of the active 

fraction (Fig.6.4A, lane 2): annexin A1 & A2, carboxypeptidase B2 and TIMP-3. Annexins 

A1 and A2 were by far the most abundant proteins in band 2 as indicated by a very high 

Mascot scores (annexin A1: 1935 and annexin A2: 1495) and more than 15 distinct sequence 

matches, seq(sig) (Fig. 6.5B). The Mascot score indicates how well the experimental data 

(peptide sequences) match the database sequence. The Mascot score for a protein is the 

summed score for the individual peptides (peptide masses for all peptides) matching a given 

protein. A very high Mascot score for annexins A1 and A2 indicate strong confidence in the 

matching of the peptides arising from tryptic cleavages of these proteins against the database 

sequence of annexin A1 and A2. Another measure known as emPAI, which offers relative 

quantitation of the protein in a mixture based on protein coverage by peptide matches, was 

also very high for annexins A1 (7.38) and A2 (4.51) (Fig. 6.5B). Only one metallopeptidase 

was observed in band 2 namely carboxypeptidase B2 (CBP2). However, the sequence 

coverage for carboxypeptidase B2 was very low, only two distinct sequence matches (Fig. 

6.5B), along with low Mascot score and emPAI number. TIMP-3 was another protein 

identified in band 1 with 2 distinct peptide sequence matches albeit with low Mascot score 

(63) and sequence matches (2)  (Fig. 6.5B). TIMP-3 was also the only significant protein 

identified in band 3 (Fig. 6.5C). No peptides matching ADAMTS enzyme were found in either 

band 2 or band 3.  

        

 

 

  

 



Chapter 6              Affinity purification of synovial aggrecanase 

	   132	  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.5 Mass spectrometric analysis of selected protein bands. (A) The bands 2 and 3 were 
excised using scalpel. The processing of gel discs and mass spectrometric identification of 
proteins was carried in the proteomics laboratory of Prof. Benedikt Kessler, University of 
Oxford. The list of major proteins identified through database searching from the peptide 
sequences obtained through MS analysis of band 1 (A) and band 2 (C).  
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The electrophoresis gel of fraction 8 of mono Q chromatography (Fig. 6.4B) was also 

analysed by mass spectrometry. Two bands, A & B, were cut from the 37 kDa region (Fig.6.6, 

lane 3). Band B was thought to correspond to the band 2 of the N-TIMP-3 pull down (Fig. 

6.4A, lane 2) and band A contained a prominent protein that apparently did not bind to N-

TIMP-3. Annexins A1 and A2 were the two most abundant proteins in both bands A and B as 

indicated by a very high Mascot score, peptide sequence matches and emPAI scores (Fig. 

6.6B). Methionine aminopeptidase 1 (MAP 1) was the only proteinase identified in both bands 

A and B with relatively high Mascot score (Fig. 6.6B). Another proteinase, carboxypeptidase 

B2 was also found in band B and was the only common proteinase between band 2 and band 

B (Fig. 6.5B vs. Fig. 6.6B).  No ADAMTS enzyme was identified in any of the 4 protein 

bands analyzed by mass spectrometry.  
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Fig. 6.6 Mass spectrometric analysis of selected protein bands. PART1 (A) The bands A 
and B were excised using scalpel. The processing of gel discs and mass spectrometric 
identification of proteins was carried in the proteomics laboratory of Prof. Benedikt Kessler, 
University of Oxford. The list of major proteins identified through database searching from 
the peptide sequences obtained through MS analysis of band A (B) and band B (C).  
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Fig. 6.6 Mass spectrometric analysis of selected protein bands. PART 2 (C) The list of 
major proteins identified through database searching from the peptide sequences obtained 
through MS analysis of band 4.  
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6.5   Discussion 
 

The mass spectrometric analysis showed that annexins A1 and A2 were the dominant 

proteins in bands 1 to 4 of the N-TIMP-3 pull down.  The annexins are 35-40 kDa cellular 

proteins that associate with negatively charged phospholipids in a calcium-dependent manner, 

a property that resides in the conserved calcium binding domains of annexins (Gerke et al. 

2002). There are more than 160 members of the annexin family with diverse functions 

including endocytosis, phagocytosis, membrane trafficking, Ca2+ ion dependent assembly of 

lipid rafts etc. No catalytic activity against aggrecan has been reported for them (Gerke et al. 

2002). Given the affinity of annexins for Ca2+ ions, they might conceivably bind non-

specifically to Ni2+ charged agarose beads and hence appear as major protein bands in band 1. 

They are unlikely to be synovial aggrecanase.   

Methionine aminopeptidase 1 (MAP1) and carboxypeptidase B2 (CPB2) were two 

metalloenzymes identified in bands 1 to 4. Methionine aminopeptidase 1 (MAP1) releases N-

terminal methionine residues from the nascent proteins in the translation stage of protein 

synthesis (Kendall et al. 1992). Although MAP1 is a metalloenzyme, there is no evidence for 

the enzyme involved in aggrecanolysis. Carboxypeptidase B2 (CPB2) is a 36 kDa plasma 

protein. Its precursor is a 60 kDa zymogen expressed by hepatocytes and platelets (Eaton et 

al. 1991). Upon thrombin or plasmin cleavage of the zymogen, a 36 kDa enzymatically active 

fragment, thrombin activatable fibrinolysis inhibitor (TaFIa) or CPB2, is released. This 

fragment plays a role in the fibrinolytic system. Effective fibrinolysis results from the 

formation of a ternary complex between tissue plasminogen activator (tPA), plasminogen and 

C-terminal lysine residues on fibrin. Plasminogen bound to fibrin is more effectively 

converted to plasmin, thereby localizing the lytic activity to the area of the clot. Plasmin 

degradation of fibrin generates additional C-terminal lysine residues thereby amplifying the 

system locally. TAFIa cleaves C-terminal lysines on fibrin resulting in down-regulation of 
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fibrinolysis by reducing the number of plasminogen and tPA binding sites on fibrin.    CPB2 is 

a plasma protein and therefore unlikely to be synovial aggrecanase, which is actively 

synthesized by cells in the synovial tissue culture. In order to eliminate MAP1 and CPB2 as 

candidates of synovial aggrecanase, it would be worth testing the recombinant proteins on 

bovine aggrecan nd assessing the aggrecan degradation using anti-ARGS and anti-AGEG 

antibodies.  

The combination of the three chromatography steps gave a purification of 384-fold 

(Table 4). Each step lead to significant loss of the enzyme. Such losses of protein are part and 

parcel of chromatography. The proteins are lost on the surface, in the chromatographic media 

and on the agarose beads. The recovery of activity after cation exchange and gel filtration 

chromatography was approximately 56 %. The worst loss occurred at the mono Q step as only 

25% of the activity from gel filtration step was recovered. The anion exchange (HiTrap S) and 

gel filtration (Sephacryl S200) chromatographic steps were carried out sequentially whereas 

mono Q step was carried after a time period of one month. It is possible that the enzyme lost 

some of its activity on storage at 4 oC prior to its application to the mono Q column. A better 

procedure would be to carry out all three purification steps sequentially with minimal storage 

time between each step. All the chromatography steps were carried out in a buffer with pH 

7.0-8.0 and a salt concentration of 150 mM NaCl to obtain the maximal activity of the 

enzyme. Experiments carried out to determine the stability window of the synovial 

aggrecanase suggest that aggrecan degrading activity decreased with pH values below 5.0 and 

maximal activity was observed in the range of pH 7.0 to 8.0 (data not shown). Similar analysis 

with increasing salt concentrations (0-1 M NaCl) suggests that the enzymatic activity was 

maximum in the range of 100 mM to 300 mM NaCl (data not shown). The stability of 

synovial aggrecanase appears to be similar to aggrecanases produced by IL-1 stimulated 

bovine cartilage cultures (Arner et al. 1999).   
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Table 4. Purification of synovial aggrecanase from 60 ml of SYCM. Aggrecanase ELISA 
was used to measure the activity of the medium at each chromatography step. The A450/A620 
measurement from aggrecanase ELISA was taken as an arbitrary unit of activity. Recovery of 
activity for each chromatography step was calculated as a percentage of the original material. 
The protein content of mono Q fraction was estimated using A280 value from the absorbance 
trace.     
 

 

Purification+step Total+Protein+
(mg)

Total+activity+
(arbitary+units)

Specific+activity+
(units/mg)

Purification+factor Recovery+of+activity+
(%)

SYCM 240 2500 10.42 1 100

HiTrap+S 30 2000 66.67 6.4 80

Sephacryl+S200 7 1400 200.00 19.2 56

Mono+Q 0.1 400 4000.00 384 16
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7.1   Final discussion 
 

A number of steps would be taken to improve the purification of synovial 

aggrecanase(s). A new batch of Ni2+ beads will be obtained to ensure no keratin is present. A 

mass spectrometry grade sample buffer from Invitrogen will be used to solubilize the proteins 

for gel electrophoresis, which could further reduce the problem of keratin contamination. 

Another resin (TALON), which uses Co2+ rather Ni2+ as divalent cation for binding His tagged 

proteins could also be tried. An alternative would be to use a His tag pull down kit 

(Dynabeads His tag pull down kit) available from Invitrogen. The kit contains optimized 

buffers for affinity isolation of native proteins expressed in small amounts.  

As discussed earlier, annexins A1 and A2 were the most abundant proteins in the 

fraction 8 of mono Q cation exchange chromatography (Fig. 4.12) and appeared to bind Ni2+ 

agarose beads. An anti- annexin A1 and A2 antibody coupled to protein A or G beads could be 

used to deplete the active fractions of annexins A1 and A2 or a pre-clearing step with Ni2+ 

agarose beads could also be used to remove the annexin proteins. An alternative approach 

would be to further chromatograph the enzyme in fraction 8 on a high resolution gel filtration 

column using a SMART system (SMART Superdex 75). This step should give a good 

separation of proteins in the region of 60 to 20 kDa, thus separating the enzyme from annexin 

proteins.    

Fraction 8 of mono Q chromatography was applied to N-TIMP-3 bound Ni2+ agarose 

while fraction 9 was applied to Ni2+ agarose beads only (Chapter 6 section 6.1) to distinguish 

proteins binding specifically to N-TIMP-3 from those binding to the Ni2+ beads. A better 

procedure would be to incubate half of the fraction 8 material with N-TIMP-3 Ni2+ agarose 

beads and the other half with Ni2+ beads. The N-TIMP-3 specific protein bands would be 

selected for mass spectrometry but unlike my earlier experiment where only 37 kDa region 

was selected for mass spectrometry, the whole lane should probably be cut for analysis by 
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mass spectrometry. In addition to improving the individual procedures, the starting material 

volume could be scaled up to give a higher yield of enzyme after sequential chromatography.  

If improved chromatography does not help in the identification of the enzyme, 

antibodies against the catalytic domain of ADAMTS-4/ADAMTS-5 (discussed in Chapter 4 

introduction) could be tested on purified mono Q fractions or material obtained after N-TIMP-

3 pull down. Any antibody reactive bands could be subjected to mass spectrometry analysis to 

ensure they do not represent non-specific interaction of antibody with antigens in the medium. 

Recently the matrix biology lab at Kennedy Institute of Rheumatology has successfully 

developed ADAMTS-5 neutralizing antibodies. The antibodies would be tested against 

synovial aggrecanase for neutralizing its aggrecanolytic activity. A positive result could 

establish that synovial enzyme is ADAMTS5. The antibodies could then be used to 

immunoprecipitate the aggrecanolytic enzyme and subjected to mass spectrometry for positive 

identification of the aggrecan degrading species.  

From my results, synovial aggrecanase appears in two forms: low and high molecular 

weight. They may represent one or two different enzymes. LRP1 did not appear to be involved 

in the formation of the higher molecular weight form. The expected size of ADAMTS proteins 

is about 100 kDa, significantly larger than the 37 kDa form protein I identified. This smaller 

enzyme could represent the truncated form of ADAMTS protein or a novel enzyme. Both 

forms were active in the SYCM that contained abundant plasma proteins (Fig. 4.3A). The 

plasma proteins accumulated in the culture medium presumably through the passive release of 

the contents of capillaries present in the synovial tissue. One group of plasma proteins is 

proteinase inhibitors of which the most abundant is alpha-2 macroglobulin (α2-M), which 

inhibits all classes of enzymes including the metalloproteinase family of proteins. The ability 

of high and low molecular weight forms of synovial enzymes to evade inhibition by plasma 

proteinase inhibitors is interesting. In synovial joint, the synovial tissue is attached to joint 

capsule on one side while the other side opens up to synovial fluid, which is an ultrafiltrate of 
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blood plasma. Joint trauma may produce synovial enzymes, which can pass the synovial fluid 

uninhibited and destroy the ECM of cartilage. Further study is needed to investigate the 

inhibition of the enzymes by α2-M, their lack of interaction with the LRP1 and the 

composition of the high molecular weight species.   

The synovial explant cultures differ from those of cartilage explant cultures. Little or no 

soluble aggrecanase activity is observed in the medium of IL-1 stimulated cartilage explant 

cultures. We currently think this is because the enzymes are continually being internalised by 

LRP-1, or interact with TIMP-3, which is also internalised by LRP1 (Yamamoto et al. 

2013). Why proteinase(s) accumulate in the synovial cultures is unknown. The original 

purifications of aggrecanase 1 and 2 (ADAMTS4 and ADAMTS5) were carried out from IL-1 

stimulated bovine nasal cartilage cultured for a week. Since this tissue has vascular channels, 

the cellular origin of the enzymes was uncertain. Moreover, these enzymes have not been 

convincingly demonstrated in chondrocyte cultures.   

To what extent the production of the aggrecanase by synovial tissue is a response to 

damage can be investigated when the enzyme is identified. Whether it is produced generally 

by damaged connective tissue also needs to be investigated. Lohmander and his colleagues 

found significantly higher levels of ARGS- and AGEG- neo-epitope bearing fragments in the 

synovial fluid of patients with acute and chronic knee injuries (Struglics et al. 2011). The 

synovial enzyme(s) could be involved in the generation of these fragments which could erode 

the ability of the cartilage to resist compressive forces and hence predispose to OA.   

Once the enzyme is identified then its mRNA regulation can be studied. Is it induced 

by tissue explantation? Can it be regulated by cytokines or other agents? It will be important 

to determine the cell of origin (by immunolocalisation and by possibly by in situ 

hybridisation) and to find the relationship of this enzyme to those responsible for IL-1 

mediated, or disease mediated, aggrecan degradation.  The enzyme may be regulated at the 
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mRNA level (transcriptional regulation & stability) or the mRNA may be pre-existent and 

the protein production be regulated translationally. Its post-translational processing will also 

be investigated. These steps would all present possible therapeutic targets if the enzyme is 

involved in pathological tissue destruction.  
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