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ABSTRACT 

Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells protect vertebrates by 

killing infected or transformed cells using granzyme B (GrB) to induce apoptosis. However, 

GrB-induced apoptosis causes inflammatory disease and allograft rejection and is an important 

disease target. The aim of this project is to prevent apoptosis of the target cells by delivering a 

plasmid encoding GrB inhibitor proteinase inhibitor-9 (PI-9) using cationic polymers. 

Polyethylenimine (PEI, branched, Mw 25 kDa) gives high gene transfection efficiency in many 

cell lines, but it is highly cytotoxic. To reduce its cytotoxicity, we modified PEI by blocking 

primary amines through nucleophilic addition between primary amine and a protected 

functionalized cyclic carbonate, generating a carbamate linkage through the ring-opening of 

the cyclic carbonate. Different hydrophobic-groups or sugar functionalized carbonates were 

substituted onto PEI and the optimum substitution ratios to achieve high gene transfection 

efficiency and minimal cytotoxicity in various cell lines were determined. Among these 

polymers, PEI with 7 or 20 of 56 primary amine groups substituted by mannose had similar 

gene binding ability as unmodified PEI, leading to almost 100% transfection efficiency of a 

GFP plasmid in HEK293T cells as well as a large decrease in cytotoxicity. However, PEI with 

all primary amine groups blocked was unable to form complexes with DNA, and gene 

transfection was negligible. The PI-9 encoding plasmid was transfected into HEK293T cells 

effectively using the optimally modified PEIs, protecting up to 80% HEK293T cells from 

killing by human natural killer-like YT cells. Furthermore, PEI with 25 primary amine groups 

substituted by mannose successfully delivered PI-9 plasmid into Balb/3T3 fibroblasts and 

protected them from killing by GrB. Therefore, the carbamate-mannose modified PEI/PI-9 

encoding plasmid complexes have potential clinical utility in the prevention of allograft 

rejection and inflammatory disease caused by GrB.  
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CHAPTER 1: INTRODUCTION 

1.1 Different types of transplant pathology, risk factors, and current status of treatments 

1.1.1 Different types of transplant pathology 

Organ transplantation often brings hope to patients with irreversible diseases such as 

end-stage organ failure. However, various complications post transplantation often hamper the 

survival of the transplanted organs. Statistics reported by the Registry of the International 

Society for Heart and Lung Transplantation (ISHLT) showed that as many as 55% of lung 

transplant recipients are treated for acute allograft rejection in their first year after 

transplantation, and only 50% of lung recipients are alive 5 years after transplantation [1]. 

Moreover, taking renal transplants as an example, different forms of kidney allograft pathology 

exist. One of them, the spontaneous graft rupture, which is common in the latter half of the first 

week post transplantation, is usually caused by the hyperplasia of lymph nodes compressing 

intra-renal veins, causing intra-renal venous hypertension and rupture [2]. Although this 

complication has been cured since the introduction of cyclosporine, an immunosuppressant 

drug, acute allograft rejection (AAR) and chronic allograft rejection (CAR) still persist as 

threats to the allograft survival and functioning. A typical difference between AAR and CAR is 

the length of persistence of syndromes. Subclinical Rejection (SCR) is histologically proven 

AAR in the absence of immediate functional deterioration, while CAR is persistent SCR of 2 

years or more duration and implying continuous immunologic activation [3]. Being an indolent 

but progressive form of primarily immunologic injury to the allograft, CAR compromises 

organ function more slowly than AAR. Furthermore, according to the Banff working 

classification of kidney transplant pathology, interstitial infiltration, tubulitis and intimal 

arteritis are regarded as the principal indications of AAR, while interstitial fibrosis, tubular 

atrophy and tubular loss suggest the presence of CAR [4]. According to the degrees of severity 

of the pathological symptoms, Banff scheme also classifies both AAR and CAR into three 

grades. Therefore, the AAR and CAR are defined not only by the duration of pathology post 

transplantation, but also largely by the pathological changes integrated with clinical data. 

Although the literature suggests that the clinical symptoms of CAR are dependent on the 

function of the specific organ allograft, and no uniform criteria have been set for all kinds of 

allografts, the most common histological manifestation of CAR is progressive muscular 

arteries obliteration [5], infiltration of immunocytes, interstitial and tubular atrophy, graft 

arteriosclerosis, and marked interstitial fibrosis [6]. All in all, the various forms of post-
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transplantation complications greatly compromised the success of the transplant surgery as 

well as the patent welfare. Adaptive immune responses to the allo-antigens on the graft, which 

are perceived as foreign by the recipient, are the main barrier to successful transplant survival. 

These responses can be mediated by antibodies, CD8 T cells, CD4 T cells, or by both CD8 and 

CD4 T cells. T cell responses to the highly polymorphic Major Histocompatibility Complexes 

(MHC) molecules on the transplanted cells destroy the grafted tissue, which could only be 

prevented by perfect matching the MHC type of the donor and the recipient [7]. 

1.1.2 Risk factors of AAR and CAR 

Researchers have come up with a series of factors that could aid the prediction the onset 

of AAR. Firstly, it was shown that Human Leukocyte Antigen (HLA) (also referred to as MHC) 

mismatching between the donor and recipient, especially at the HLA-DR, HLA-B, and HLA-A 

loci, had significant correlation with the risk of AAR, especially in the lung transplants [8, 9]. 

Both donor and recipient dendritic cells (DC) capture and display the donor-antigens on their 

HLA molecules, and present them to the recipient T cells, triggering robust immune responses. 

Secondly, viral or bacterial infection has always been shown to stimulate the immune system 

and trigger allo-reactivity after the solid organ transplantation. Community-acquired 

respiratory tract infections with human influenza virus, respiratory syncytial virus (RSV), 

rhinovirus, coronavirus, etc. were reported to cause high incidence of acute lung transplant 

rejection [10, 11]. Furthermore, Chlamydia pneumonia infection was proven to cause AAR and 

bronchiolitis obliterans syndrome (BOS), a condition of progressive airflow obstruction that 

made survival at 5 years after lung transplantation only 50% [12]. Thirdly, AAR has a lot to do 

with the recipient factors. Genetic variation in the innate pattern recognition receptors in the 

donor may have a positive influence on the AAR, for example, an augmented acute rejection 

was observed in a patient with a variant in CD14 molecule, which stimulated the innate 

immune response [13]. Another example illustrating this point would be a multidrug-resistant 

genotype (MDR1 C3435T), which was shown to predispose the patient to persistent AAR, 

despite consistent immunosuppressive treatment [14]. All in all, although the precise 

mechanisms contributing to AAR are uncertain, it seems a complex interplay between genetic 

and environmental factors might modulate the incidence and severity of AAR. 

Similarly, a list of risk factors has been identified to be associated with the occurrence 

of CAR. First of all, the immune-mediated factor, often triggered by AAR, is the most 

significant risk factor for CAR [15]. The heightened and ongoing immune responses due to 
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therapeutic withdrawal of immunosuppressive drugs to minimize their side effects, patient non-

compliance [16], or development of cytotoxic anti-HLA antibodies in the recipient body [17] 

all suggest that allo-immune responses resulting from AAR gradually lead to chronic rejection. 

Secondly, the donor-related factors are critical in CAR development. For example, donor age-

related replicative senescence often led to cellular exhaustion and organ dysfunction [18]; 

donor brain death-associated electrolytes abnormalities, overproduction of cytokines and 

overexpression of allo-antigens could cause chronic graft failure [19]; bad donor organ quality 

due to complications associated with hypertension or diabetes mellitus of the donor was also 

proven to be significant hurdle to long term graft survival [20]. The third risk factor for CAR 

was identified to be the nephrotoxicity associated with calcineurin inhibitors (CNI). 

Calcineurin is a key enzyme in the T-cell signal transduction cascade, activation of which leads 

to T cell activation and potent immune reaction [21]. CNI such as cyclosporine and tacrolimus 

chronically used post transplantation as immunosuppressant often lead to renal and systemic 

vasoconstriction, progressive arteriolar hyalinosis and downstream glomerulosclerosis [22], 

and eventually organ failure. Last but not least, cytomegalovirus (CMV) infection often 

accelerates CAR, which is associated with up-regulation of transforming growth factor β 

(TGFβ), platelet derived growth factor (PDGF) in endothelial cells and connective tissue 

growth factor within fibroblasts [23]. Thus, similar to AAR, both immune and non-immune 

factors form the non-exclusive list of CAR etiology.  

1.1.3 Current status of treatments 

1.1.3.1 Treatments for AAR 

Various immunosuppressive therapies have substantially reduced the risk of acute lung 

rejection, for example, high-dose methylprednisolone, antithymocyte globulin (ATG), or 

alemtuzumab is used to treat cellular rejection, while intravenous immunoglobulin, 

plasmapheresis, or rituximab is usually employed for humoral rejection treatment [24]. For 

cellular rejection mitigation, studies from the 90s have shown promising alleviation of lung 

AAR by administration of pulse-steroids such as 500 mg of methylprednisolone intravenously 

per day, for at least three doses followed by an oral prednisone taper [25, 26]. Moreover, 

muromonal-CD3 (Orthoclone OKT3) was shown to be an effective therapy for steroid-resistant, 

high-grade, or relapsing acute lung rejection during the first 6 months after transplantation, 

when used together with antimicrobial prophylaxis [27]. Another promising example of 

treating cellular acute rejection is the administration of a CD154-specific monoclonal antibody 
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(hu5C8) to prevent CD154-CD40 interaction leading to endothelial and antigen-presenting cell 

(APC) activation and interaction with T cells, and this method enabled successful renal allo-

transplantation in outbred, MHC-mismatched rhesus monkeys without acute rejection [28]. 

Additionally, for the humoral rejection, successful clinical trials during 2005 to 2007 showed 

that intravenous immune globulin and rituximab (an anti-CD20 monoclonal antibody causing 

B cell depletion) treatment of 20 patients after renal transplantation enabled the 12-month 

survival rates of grafts and patients to be 94% and 100% respectively [29]. Despite the 

apparently high treatment efficacy of the immunosuppressant for AAR, their advantages are 

usually traded off by the serious side-effects such as severe infections and malignancy owning 

to systemic and chronic use of immunosuppressive therapy causing paralysis of normal 

immune surveillance function [30]. Specifically, corticosteroids and cyclosporine had the most 

negative impact on weight gain, blood pressure and lipids function; tacrolimus was positively 

correlated with diabetes mellitus; sirolimus and everolimus greatly increased the chance of 

post-transplant hyperlipidaemia; and CNI was one class of the immunosuppressive agents most 

linked with post-transplant malignancies [31]. Therefore, these immunosuppressive therapies 

to AAR should be considered carefully during clinical usage, in order not to let their side 

effects override their potential efficacy. 

1.1.3.2 Treatments for CAR 

Despite some success in alleviating AAR, CAR remains as the major obstacle in long-

term graft survival. Statistics showed that about 40%-50% patients undergoing renal graft 

surgery developed chronic allograft nephropathy [5].  Currently, the exact mechanisms 

underlying CAR are unknown, and therefore no targeted clinical evidence-based treatment 

strategies exist. However, several animal models has been developed, such as rodent models 

for heart CAR, swine models for lung CAR, and so on, with an aim to identify and analyze 

individual immunological and non-immunological contributing factors with the hope to 

translate effective clinical therapies from bench to bedside [32]. After many years of 

exploration, several preventative and treatment measures have been practiced in reality, and are 

explained as follows: 

The first preventative measure is to minimize the development of symptoms associated 

with AAR, due to the direct link between AAR and CAR. Tacrolimus was shown to reduce 

interstitial infiltration, whereas mycophenolate was able to reduce tubulitis, and the 

combination of them effectively eliminated SCR in a trial involving 961 kidney biopsies from 
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patients receiving kidney-pancreas transplantation [3]. In addition, due to the strong association 

between pre-sensitization and development of humoral-driven CAR, pre-treatment of 

sensitized patients using plasmapheresis combined with intravenous immunoglobulin or 

rituximab was shown to effectively prevent the onset of rejection syndromes [33]. Another 

cause of the CAR lies in the toxicity associated with the CNI. Therefore, a minimization or 

complete withdrawal strategy, such as a CNI-free immunosuppression therapy based on 

sirolimus, mycophenolate mofetil and steroids appeared to slow the rate of renal function loss, 

though only with a short follow-up [34]. Finally, antivirus treatment, diet, smoking ban and 

patient good compliance also contribute to healthy blood pressure, proteinuria, lipids, glucose 

and weight, and better results of clinical transplantation [35]. 

Other than the drug-mediated immunosuppression to treat CAR, induction of 

immunological tolerance to the antigens expressed on the graft cells by modulating the 

recipient immune cells could help avoid rejection and the need for lifelong treatment with 

immunosuppressive drugs [36]. Joffre et al. showed that by injecting in vitro allo-antigen 

stimulated donor specific regulatory CD4
+
CD25

+
Foxp3

+
 T cells (Tregs), long-term bone 

marrow, skin and cardiac allografts were well tolerated in mice pre-treated with clinically 

acceptable levels of irradiation [37]. Moreover, another group delved into the mechanisms of 

the donor specific Tregs contributing to CAR prevention. They recently conducted a similar 

BM transplantation study but demonstrated that injected donor regulatory T cells wane away 

after 9 weeks, and the nevertheless long-term allograft tolerance suggested that the donor Tregs 

were only for induction but not maintenance of the tolerance status [38]. Rather, the persistent 

CAR avoidance was likely caused by two reasons: the depletion of donor-specific CD4
+
 T cells 

after in vivo depletion of donor Tregs using diphtheria toxin, and the induction of the 

emergence of host Tregs with similar specificity by the injected Tregs, thus ensuring 

persistence of tolerance [38]. Therefore Tregs are potential highly useful agents in inducing 

self-perpetuating tolerance to the allograft. Further investigations regarding the application of 

Tregs in clinical settings such as treating the graft-versus-host diseases (GVHD) are needed.  

1.1.3.3 The urgent need to develop new treatment methods to tackle CAR 

Having analyzed all the preventative and treatment strategies above, currently, although 

better immunosuppressive strategies result in short-term improvement of allograft survival, 

they have severe side effects leading to immune system paralysis, they do not target specific 

pathways of CAR, and sometimes they may even be implicated in the process of CAR in terms 
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of calcineurin toxicity [39, 40]. Therefore, there is an urgent need to develop novel anti-CAR 

strategies that are safer and more effective. Two strategies have been proposed in my lab to 

tackle this problem: co-stimulation blockage [41] and granzyme B (GrB) inhibition. Co-

stimulation blockade was recently used in practice with promising short-term results but it was 

unable to prevent CAR. Therefore my lab proposed to use a GrB inhibition strategy to boost 

the tolerogenic effect of co-stimulation blockade. This strategy has two advantages. First, 

neither co-stimulation blockade nor GrB inhibition causes vascular disease, which is the major 

component of CAR. This is an important merit as one of the main issues with current 

immunosuppressive strategies is their vascular toxicity [42]. Secondly, immune-suppression by 

inhibiting GrB has the advantage that it is specific for the CTLs and NK cells [43]. This means 

that rejection by GrB is prevented but protective T helper cell and antibody immunity is left 

intact. Therefore GrB inhibition has the potential for immunosuppression without 

immunodeficiency and susceptibility to infection.  

1.2 The role of GrB in CTL and NK mediated killing 

Rejection of the allografts generally involves antibody and T cell responses, and among 

them, T cell effector mechanisms contribute to rejection to a major extent. Cytotoxic T 

Lymphocytes (CTL, includes CD8 and certain CD4 cells) and Natural Killer (NK) cells are 

sentinels of the immunes system and they eliminate foreign and infected cells in a quick and 

potent way. Foreign antigens in non-lymphoid tissues all over the body are captivated by DCs 

(professional APC), processed by the DCs into peptides and displayed on the MHC molecules 

on DCs cell surface. The DCs then migrate to the secondary lymphoid organs and present them 

to the naïve T cells. When the T cell receptor (TCR) of a naïve T cell recognizes the foreign 

antigen-MHC complex on a DC, with the help of co-stimulatory signals offered by the DC, a 

cascade of intracellular signaling activates the naïve T cell, which then rapidly proliferates 

(clonal expansion), and migrates to the sites of antigen presence to induce the death of the 

target cells and produce various cytokines [44]. The best understood CTL population, CD8 

cells, effectively causes lysis of the infected or malignant cells, while CD4 T helper cells 

produce cytokines which either directly aid the killing of the target cells or stimulate and 

augment other T effector cells function and B cell antibody production [45]. For NK cells, 

activation of their activating receptors and lack of signals for their inhibitory receptors trigger 

NK-mediated killing of the target cells [46]. Specifically, the absence of inhibitory signals 

derived from the binding to self peptide-MHC molecules resulting in NK cell activation and 

allograft rejection is called “missing self” response of NK cells [47].  
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There are two pathways of lymphocyte mediated contact dependent cytotoxicity. The 

first pathway is triggered by the tumor necrosis factor receptor (TNFR) family Fas, and the 

second one is calcium dependent exocytosis of cytotoxic granules in the CTL and NK cells to 

induce apoptosis of target cells, which is the focus of this thesis. Cytotoxic granules residing in 

the cytosol of CTL and NK cells contain at least three distinct classes of cytotoxic effector 

protein: perforin, which polymerizes in the target cell membrane and induce trans-membrane 

pore formation; granzymes, which are serine proteases; and granulysin, which induces 

apoptosis in target cells and has antimicrobial action [48]. There are five granzymes encoded 

by the human genome and ten encoded by the mouse genome, among which GrB is the most 

extensively studied granzyme in inducing target cell death [49]. Upon recognition of the 

foreign antigen on the target cell surface, granule contents are rapidly released into the 

lymphocyte-target cell synapse, then GrB binds to the mannose-6-phosphate receptor on the 

target cell surface and enters the target cell though pores made by perforin [43]. Once inside 

the target cell, GrB triggers apoptosis by caspase-dependent or independent pathways [50]. 

Briefly, GrB directly cleaves and activates pro-apoptotic protein Bid, which trans-locates to the 

mitochondria and causes release of cytochrome c, which in turn activates a cascade of caspases, 

and leads to cleavage and activation of the ubiquitous cellular cysteine protease caspase-3 [51]. 

Caspase-3 could also be cleaved and activated directly by GrB without the involvement of 

mitochondria. Then a caspase proteolytic cascade is activated, which eventually activates the 

caspase-activated deoxyribonuclease (CAD), the enzyme believed to finally degrade the 

cellular DNA and cause cell death [48]. For the caspase-independent pathway, GrB could 

directly cleave and activate proteins crucial to cellular structure and function, such as nuclear 

lamins, which leads to dismantling of the target cell [52]. It can also induce cell death by 

stimulating mitochondria to generate reactive oxygen species (ROS). Thus, both caspase-

dependent and independent pathways work together to ensure the most effective clearance of 

foreign or infected cells and maintenance of the maximal functionality of the various body 

systems. A schematic picture of GrB mediated cell death pathways is shown as Figure 1. 
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Figure 1. Granzyme A and B (GrA and GrB)-mediated cell death pathways. After recognizing 

foreign cells, activated CTLs release granzymes (designated by A and B, blue molecules) and 

perforin (designated by the gray spindle molecule) into the lymphocyte–target cell synapse. 

Perforin causes pore formation on target cell membrane and facilitates the entry of granzymes 

into the target cell cytoplasm. (a) Once inside the target cell, GrB induces cell death through a 

number of pathways. GrB-mediated cleavage of Bid leads to mitochondrial permeability and 

release of cytochrome c, which initiates caspase activation. SMAC/Diablo is also released from 

mitochondria, and it augments caspase activity by preventing caspase inhibition by endogenous 

inhibitors. GrB also directly cleaves and activates caspase-3. Moreover, GrB can induce cell 

death without the activation of caspases through the induction of ROS from mitochondria as 

well as through the direct cleavage of structural proteins, such as nuclear lamins. (b) GrA acts 

directly on mitochondria to induce the production of ROS. ROS induces the translocation of 

the SET complex to the nucleus, which inhibits the endonuclease NM23-H1. GrA cleaves and 

inactivates SET in the nucleus, which leaves active NM23-H1 to cleave the DNA. In addition, 

GrA induces inflammation through the production of IL-1β through a caspase-1-dependent 

mechanism. Reproduced with permission from [53]. Copyright © 2009, Rights Managed by 

Nature Publishing Group. 

 

1.3 Regulation of GrB by serine protease inhibitors 

1.3.1 Cytotoxic lymphocytes could protect themselves from self-inflicted damage 

Given the effectiveness of the granule exocytosis-induced cell death, it is not surprising 

that GrB could potentially turn against CTLs and NK cells and make them susceptible to self-
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inflicted damage. In fact, it has been reported that GrB resides in compartments other than the 

lytic granules in CTLs, and up to one-third of them is secreted directly via constitutive 

secretory pathway rather than from lytic granules with the purpose of bystander killing of 

targets [54]. Also, GrB could be misdirected into the cytoplasm of the CTL, and cause suicidal 

death of the CTL. Another possible mechanism of GrB inflicting self-destruction could be 

explained by the fratricide killing theory, where CTLs infected by viruses such as human T 

lymphotropic virus 1 and expressing peptide major histocompatibility complex (pMHC) are 

subjected to killing by other CTLs [55-57]. In addition, NK cells were observed to die due to 

its residential GrB leakage [58]. However, despite the potential self-inflicted injury, CTLs and 

NK could still effectively function to kill damaged and foreign cells without killing themselves. 

Therefore, it has been proposed that cytotoxic lymphocytes can protect themselves from self-

inflicted damage, by expressing physiologically important inhibitors of executioner proteases 

that keep both themselves and other immune cells intact [59]. 

1.3.2 Serine protease inhibitors 

1.3.2.1 Spi6 protects CTLs  

Regulation of the serine proteases is mainly achieved through inhibitors of serine 

protease inhibitor (serpin) family, which are usually located in the cytoplasm of the cells. 

Serpins regulate the proteolytic activities of serine proteases by acting like suicide substrates. 

Briefly, when a serpin interacts with a serine protease, they form a 1:1 complex where the C-

terminal reactive center loop (RCL) with a similar structure as the serine protease substrate 

undergoes a conformational change that distorts the serine protease and irreversibly locks the 

serpin-serine protease complex, rendering the protease incapable of killing [60]. Through the 

study of serine protease inhibitor 6 (Spi6) knock out (KO) mice, our lab demonstrated that Spi6 

acted as a classic suicide substrate by inhibiting ectopic or misdirected GrB, prevented CTLs 

from self-inflicted injury and maintained their effector function [61]. Actually, the complexes 

formed by GrB and Spi6 were clearly observed in western blots of proteins isolated from 

wildtype (WT) CTLs cytoplasm, but were absent in Spi6 KO CTLs cytoplasm. Also, when 

challenged with Lymphocytic choriomeningitis virus (LCMV), the size of CTL pool in the 

Spi6 KO mice shrank to 10-20% of that in the WT mice, and the elimination of LCMV in the 

Spi6 KO mice was severely compromised as a result of large extent of CTLs apoptosis. 

Subsequently, the restoration of CTLs number and function by crossing Spi6 KO and GrB KO 

mice suggest that Spi6 was indeed a potent inhibitor of GrB. Additionally, the observation that 
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fewer cytotoxic granules were present in the CTLs of the Spi6 KO mice compared to those of 

the WT mice coincide with a study suggesting that Spi6 was also responsible for maintaining 

the integrity of the cytotoxic granules [62].  

1.3.2.2 Spi6 protects DCs 

Since DCs are professional APCs that stimulate the proliferation and activation of naïve 

CD8
+
 T cells into CTLs for elimination of infected or foreign cells, they are in a dangerous 

position to be exposed to collateral damage mediated by perforin and GrB. It was suggested 

that pMHC on the DCs might induce killing by the CTLs that were primed by them. A study 

further demonstrated that in vitro killing of pMHC-expressing DCs by LCMV-specific CTLs 

was perforin dependent, and GrB was involved in the process [63]. However, Spi6 was shown 

to be up-regulated upon DCs activation by inflammatory mediators, and overexpression of 

Spi6 protected DCs from GrB mediated killing by CTLs [64]. The protective role of Spi6 in 

DCs ensures that the professional APCs could function effectively to present the foreign 

antigen to the naïve CD8
+
 T cells and initiate a robust adaptive immune response to the 

damaged or foreign cells.  

1.3.2.3 Spi6 and Spi2A protect CD8
+
 memory T cells 

Not only cytotoxic lymphocytes are protected from misdirected GrB by Spi6, but CD8
+
 

memory T cells which are important in maintaining a reactive state upon antigen recurrence 

benefit from serpins. As CD8
+
 memory T cells were thought to be a direct progeny of CTLs 

after their clonal expansion and receding [65], research has shown that there are two different 

serpins expressed in CTLs that control memory T cell survival through different mechanisms. 

The first serpin is Spi6 [66]. Although the pool size of memory CD8
+
 T cells was the same in 

Spi6 KO and WT mice, the seeming dispensability of Spi6 in memory CD8
+
 T cells survival 

was due to low GrB expression in memory cell precursors, making them resistant to GrB 

mediated self-destruction. However, high doses of LCMV re-infection in Spi6 KO mice 

diminished the memory T cell population almost completely, suggesting that Spi6 was crucial 

to the memory cell responses by ensuring the appropriate size of the CTL clonal burst after re-

infection [67]. Additionally, the serpin directly responsible for the development of memory T 

cells after infection with LCMV was found to be Spi2A. Spi2A is a cross-class-specific serpin 

inhibitor of pro-apoptotic cysteine cathepsins, and transgenic and knockdown experiments 

showed that Spi2A up-regulation protected memory T lymphocyte precursors directly from 

cathepsin B-mediated programed cell death [68, 69]. 
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1.3.2.4 PI-9 protects human CTLs and NK cells 

Another serpin, proteinase inhibitor 9 (PI-9), which is the human homolog of Spi6, is 

widely expressed in CD4/CD8 T cells, NK cells, B cells and myeloid cells in human, exerting a 

protective role against GrB mediated apoptosis [70]. PI-9 was demonstrated to be physically 

associated with the cytoplasmic surface of the GrB containing cytotoxic granules in the 

activated human CTLs and NK cells, in order to inactivate GrB immediately upon its leaking 

into the cytoplasm. Also, PI-9 level in proliferating but non-degranulating T cells and activated 

NK cells was almost constant, suggesting that there was sufficient PI-9 to protect against the 

leaking GrB. However, PI-9 was up-regulated in response to GrB production and secretion, 

indicating that granule exocytosis was associated with increasing entry of GrB into the T cell 

cytoplasm, and higher PI-9 level ensures the cell viability [70]. Furthermore, functional assay 

of PI-9 transduced CTLs lysing target cells expressing an anti-CD3 mAb (OKT3) showed that 

overexpression of PI-9 enhanced the potency of human CTLs, probably due to protection of 

CTLs from GrB mediated self-infliction.  

1.3.2.5 PI-9 protects accessory cells  

PI-9 not only protects human CTLs and NK cells from GrB killing, but is also evidently 

expressed in accessory cells (DCs, B cells, and macrophages). In particular, it is abundant in 

thymic DCs, tonsillar DCs, and DC subsets purified form peripheral blood. Although the close 

association of DCs and activated CTLs might result in inadvertent killing of DCs, elimination 

of DCs in WT mice was rare, probably due to protective mechanisms of serpins. Several 

transgenic mouse models, though, showed that elimination of antigen-specific DCs by cognate 

CTLs was possible, and expression of PI-9 in DCs prevented GrB mediated apoptosis during 

the antigen presentation to CTLs [63, 71]. The expression of PI-9 in thymic medullary DCs 

was essential in ensuring their survival during the positive and negative selection of 

thymocytes, which expressed GrB and had cytotoxic potential [70]. Moreover, the PI-9 

expression level in B cells, monocytes and granulocytes was not as high as that in CTLs or 

DCs, suggesting a delicate balance between protection against traces of ectopic PI-9 and being 

cleared by the killer cells once become infected or malignant. In conclusion, the presence and 

subcellular localization of PI-9 could successfully protect accessory cells from misdirected 

GrB during an immune response.  

1.4 The role of GrB in allograft rejection, and the strategies to block GrB 
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Clinical studies demonstrated that GrB expression in infiltrating lymphocytes correlated 

strongly with the speed and severity of rejection [72]. Histological studies also showed 

abundant amount of GrB and perforin in many types of acutely rejecting allografts [73-75]. In 

fact, increased GrB and perforin mRNA in the peripheral blood mononuclear cells from kidney 

allograft recipients were regarded as biomarkers for the renal AAR [76]. Moreover, in solid 

organ transplants, GrB was shown to act with perforin to induce rapid cell death of human 

endothelial cells in vitro, and GrB alone degraded extracellular proteins of the endothelial cells 

important for adhesion-mediated chondrocyte cell survival [77]. Further, it was reported that 

clinically, antibody-mediated rejection occurred in only 5.6-23% of rejecting ABO-matched 

kidney allografts, 30–60% of ABO-mismatched kidney allografts, and 3–28% of heart 

allografts [78, 79]. Therefore, a more substantial contribution of allograft rejection in the clinic 

was made by T cell-mediated rejection, and the perforin-GrB cytotoxic effector pathway could 

be the main mechanism of this type of allograft killing and rejection.  

Recent published data have shown that in the donor grafts, donor dendritic cells (dDC) 

are potent inducers of tolerance to allograft under conditions of co-stimulation blockage [41]. 

However, CTLs and NK cells of the host use the granule exocytosis pathway to destroy donor 

cells, including dDC. As discussed in Section 1.1.3.3, means to prevent allograft rejection 

which is safer and more effective is urgently needed. Our strategy is thus to prevent apoptosis 

of donor cells and dDC by inhibiting GrB after co-stimulation blockade, and my thesis will 

focus on GrB inhibiting strategies. Current pharmacological inhibitors of GrB are 

unsatisfactory as they are non-cell permeable and toxic. Therefore, it is rational to develop new 

clinically useful GrB inhibitors with high cell permeability and low toxicity. Indeed, a novel, 

potent and selective GrB inhibitor has been discovered by Willoughby et al. to block CTL 

mediated apoptosis with an IC50 of 3 micromolar [43], however, the inhibitor was based on the 

four amino-acid peptide GrB substrate IEPD and synthetically costly. Moreover, delivery of 

Spi6 or PI9 protein to tackle inflammatory disease was only effective against extracellular GrB, 

due to the technical difficulty in delivering intracellular proteins to the cytoplasm [59]. Since 

GrB exerts its apoptotic function only when entering the target cell cytoplasm, the difficulty of 

serpin protein to enter the cells would significantly limit the effectiveness of protein therapy to 

alleviate allograft rejection. Considering all the above-stated difficulties in GrB inhibitor 

protein/peptide development and delivery, and the fact that no major improvements have been 

made in the last few decades regarding the overall allograft survival rates following protein 
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therapies, novel forms of immunomodulation is thus justified. In this thesis, we explore such a 

strategy involving gene therapy.  

We hypothesized that using gene delivery vectors to deliver DNA encoding PI-9 gene 

into the dDC or other donor cells could achieve GrB inhibition and prevent cytotoxic 

lymphocyte killing. The idea of delivering GrB inhibitor gene was inspired by cancer 

vaccination studies using DCs in cancer patients [80]. The whole array of viral (including 

adenovirus, retrovirus, lentivirus, adeno-associated virus, poxvirus and herpesvirus) and 

nonviral methods (including gene gun, lipoplexes and electroporation) were applied to ex vivo 

generated DCs to deliver plasmid DNA or in vitro transcribed (IVT) RNA to make the DCs as 

cancer vaccines [81, 82]. Although efficient transfection of human DCs has been achieved with 

viral vectors due to the natural efficiency of viruses at infecting and transferring genetic cargos 

into cells, their application has been limited by the immunogenicity of viral particles, toxicity 

associated with residual viral gene products upon transduction, and the unfavorable economics 

of large scale industrial production [83]. As a result, the clinical application of viral vectors 

may seem more feasible in theory rather than in practice, at least for the time being. In contrast, 

non-viral methods, although without the safety and ethical concerns associated with viruses, 

have generally resulted in inefficient gene transfer, and/or low cell viability. Nevertheless, 

genes are easier and cheaper to synthesize in large scale in vitro compared to protein/peptides, 

and genetic engineering of DCs has made them successful in suppressing tumor growth in 

quite a few studies [84-88]. Therefore delivery of GrB inhibitor PI-9 gene to the dDC or donor 

cells might as well achieve promising results.  

Another factor favoring the idea of genetic engineering of the dDC or donor cells to 

prevent them against cytotoxic lymphocyte killing came from the observation that gene 

silencing via RNA interference such as small interfering RNA (siRNA) or small hairpin RNA 

(shRNA) in DCs played a role in preventing immune rejection. Depending on the maturation 

status, phenotype and source of origin, DC can both prime the adaptive immune response and 

induce immunological tolerance [89, 90]. Specifically, donor-specific, allogeneic tolerogenic 

immature DCs can enhance the survival of transplanted grafts [91, 92]. However, NF-kB 

activity (especially conferred by RelB protein in the mammalian NF-kB family) has been 

revealed to be associated with DC maturation and Th1 responses [93-96]. Hence, delivery of 

inhibitors of NF-kB activation such as RelB siRNA was shown to block the maturation of DCs, 
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resulting in reduced expression of T cell stimulatory molecules, such as MHC class II, CD80 

and CD86 molecules [97], and reduced immune responses against the transplanted organs. 

In conclusion, the relatively easier and more feasible nucleic acids (DNA, siRNA and 

shRNA) delivery to cure allograft rejection compared to the expensive and difficult GrB 

inhibitor peptide/protein intracellular delivery prompted me to develop a safe and effective 

gene carrier to deliver PI-9 gene cargo to the target cells in order to protect them from GrB 

triggered apoptosis. Since the key bottleneck in gene therapy is the lack of safe and efficient 

delivery systems, the primary objective of this thesis is thus to develop novel gene delivery 

vectors that could be evaluated in the setting of prevention of GrB and promotion of organ 

survival post transplantation. In order to achieve this, firstly, the barriers at gene delivery 

vehicle-cellular interaction level for the successful in vivo gene delivery will be examined and 

the strategies to overcome them will be discussed. These would cast a light on the rationale 

behind the designs of modern, multifunctional genetic carriers. Then the various types of gene 

delivery methods will be briefly reviewed, and the merits and limitations of each type of the 

vectors will be investigated. Prominent examples of cationic polymer based vectors are given 

special attention since the vectors used in this study are cationic polymers. Finally, a 

conclusion and justification of non-viral vectors to specifically suit PI-9 gene delivery for GrB 

inhibition and allograft rejection prevention will be presented. 

1.5 Gene therapy: Major developments and current status  

Gene therapy has brought hope to numerous genetic diseases such as hemophilia [98], 

cystic fibrosis [99] and even cancer [100]. Therapeutic action is achieved via knocking down 

erroneous genes or over-expressing therapeutic genes through gene delivery, which to date 

remains a limiting challenge [101]. Gene delivery vectors could be generally divided into two 

major categories: viral and non-viral. Viral vectors are extremely effective at delivering genes, 

however, their disadvantages such as relatively low gene loading capacity, immunogenicity, 

and safety issues impede their wide spread clinical adoption [102]. The first successful 

retroviral vector mediated gene therapy was reported in 2000 for the treatment of severe 

combined immunodeficiency (SCID) in infants [103]. Several other retroviral gene therapies 

followed, but the effect was short lived as some patients developed leukemia-like disorders 

owning to the retroviral insertion near the promoter of a proto-oncogene [104]. Moreover, the 

death of the 18-year old Jesse Gelsinger from fatal inflammatory responses to adenoviral 

vector treatment of ornithine transcarbamylase deficiency in 1999 aptly illustrated the danger 
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of a bad gene therapy introducing high dose of viruses [105]. Alternatively, non-viral gene 

delivery vectors are receiving a tremendous amount of attention because they are relatively 

inexpensive, reproducible and synthetically modular [106-111]. However their lower gene 

transfection efficiencies compared to viral vectors act as a hurdle to their clinical usage. For 

example, although lipid-based vectors are one of the most commonly used non-viral vectors for 

gene therapy (6.4%) [112], the incidence of successful clinical trials performed to date is 

disappointingly low. Among the non-viral carriers, cationic polymeric systems have been 

extensively investigated. In particular, branched polyethylenimine (PEI, Mw 25 kDa) has been 

shown to be one of the most efficient synthetic gene delivery carriers in vitro [106, 113], and it 

has been long used as the gold standard for in vitro gene transfection. However, various issues 

related to its biocompatibility, general toxicity etc. hindered its successful in vivo application. 

Therefore, an urgent demand for developing safe and efficient gene vectors exists before the 

immense potential of gene therapy can be fully realized. 

1.6 Barriers limiting gene delivery and solutions to overcome them  

Understanding the various biological barriers that gene delivery face at the cellular 

level is fundamental to formulating ingenious design strategies of the gene carriers in order to 

overcome these barriers. Here the delivery of DNA plasmids will be the subject of the topic, 

since RNA interference (RNAi) concept is relatively new and the delivery method for 

siRNA/shRNA is largely adopted from the DNA delivery technology. Generally, the 

chronological sequence of challenges that a plasmid faces during its journey towards the 

nucleus is as follows: (1) DNA packaging, (2) extracellular stability, (3) cellular uptake and 

endosomal escape, (4) intracellular trafficking, (5) DNA unpackaging, and (6) biocompatibility 

(Figure 2). Each step will be analyzed in detail in the following six subsections. Moreover, 

strategies employed by polymeric gene carriers to overcome them will be briefly discussed 

here due to the vast volume of information available for different types of vectors. 
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Figure 2. Barriers to gene delivery—Design requirements for gene delivery systems include the 

ability to (I) package therapeutic genes; (II) enter cells; (III) escape the endo-lysosomal 

pathway; (IV) efficient DNA release from the vector; (V) traffic through the cytoplasm and 

into the nucleus; (VI) successful gene expression; and (VII) remain biocompatible. Image 

reproduced with permission from [114]. Copyright (2007) Elsevier. 

1.6.1 DNA packaging 

Before entering the target cell, a naked DNA plasmid is susceptible to degradation by 

the numerous serum nucleases in the cell culture medium or the extracellular milieu, and it 

needs protection against the enzymatic degradation. Additionally, the negative charge 

constituted by the phosphate groups on DNA makes it likely to be repelled from the plasma 

membrane, which contains negatively charged proteoglycans and phospholipids. The 

molecular topography of the plasmid DNAs (often several kilo base pairs long) makes them 

easily condensed into small nanosize particles when complexed with a cationic carrier. The 

advantages of packaging and condensation of DNA by cationic agents are three fold: firstly, 

the vulnerable naked DNA is protected from nuclease degradation effectively [115]; secondly, 

the negative charge of DNA is neutralized, hence DNA is not likely to subject to charge 

repulsion by the anionic plasma membrane of the cell [116]; and lastly, due to the charge 

screening effect, the size of the DNA is able to be collapsed to micro- or nano-scale, which 

facilitates its cellular internalization by phagocytosis or receptor-mediated endocytosis (RME) 

[117].  
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DNA is packaged based on three mechanisms: electrostatic interaction, non-

electrostatic interaction, and encapsulation. The entropy-driven spontaneous electrostatic 

interaction between cationic vectors and anionic DNA is the most common gene carrier design 

rationale. Polycationic polymers such as poly(2-(dimethylamino)ethyl methacrylate) 

(PDMAEMA), branched or lineal PEI, poly(propylenimine) (PPI), poly(amidoamine) 

(PAMAM), and poly(lysine) (PLL) all possess various degrees of primary, secondary, tertiary 

and/or quaternary amines which are protonated at certain degrees at physiological pH [114] 

and able to condense negatively charged DNA via electrostatic interaction. At an optimum N/P 

ratio (ratio of protonatable polymer amine groups to nucleic acid phosphate groups), efficient 

DNA condensation and gene transfection could occur. However, the net positive charges of the 

polymer/DNA complexes have drawbacks. Firstly, it was well documented that cationic 

nanoparticles disrupted lipid bilayers [118, 119] and induced oxidative stress inside the cell 

resulting in high cytotoxicity. Also, a very strong binding force between carrier and DNA 

makes unpacking and release of the DNA cargo inside the cell difficult, resulting in low gene 

transfection efficiency. Therefore, a careful balance is needed when designing the cationic 

carrier to allow both easy condensation of the DNA molecule and effective DNA release 

intracellularly to achieve its therapeutic goal.  

Cationic charge on the polymer/DNA complex is a double edged sword. Therefore, 

alternative gene packing strategies using non-electrostatic interactions namely hydrogen 

bonding and/or van der Waals interactions to bind and condense DNA were developed by 

researchers, and typical examples include polyvinyl pyrolidone (PVP) [120] and 

lipopolythioureas [121]. These polymers, after interacting with DNA, not only protect them 

from enzymatic degradation, but at the same time increase the surface hydrophobicity of the 

nanoparticle, enhancing the cellular uptake of complexes. 

Encapsulation within biodegradable spherical vehicles is an alternative means for DNA 

packaging. Poly(phosphoester) [122], poly(β-amino ester) [123], poly(lactide-co-glycolide) 

(PLGA) [124] are typical examples of biodegradable gene carriers due to the ester bonds in 

their backbone which are prone to hydrolytic degradation so that the polymer is broken into 

shorter segments for more efficient clearance from the body. Moreover, biodegradable 

polymers enable localized, controlled and sustained DNA release at the site of action via 

sustained diffusion through the polymer matrix, whose kinetics is coupled to that of 

degradation of the polymer matrix itself [125]. Thus the biodegradable polymers have 
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applications in tissue engineering, where broadening the range of DNA release rate to allow 

long-term expression of therapeutic proteins for specific growth regulation is an absolute 

advantage. However, the encapsulation approach is not without limitations. Apart from low 

encapsulation efficiency, potential degradation of DNA cargo in the low pH environment 

during the hydrolyzing event, and incomplete DNA release, current methods available for 

encapsulation usually incur high shear stresses and exposure to organic solvents and extreme 

temperatures that can damage the DNA [126, 127]. Strategies to overcome the former 

problems could be mixing the polymers using encapsulation for DNA packaging with 

polymers using electrostatic interaction to pack DNA. For example, the presence of 0.25% of a 

triblock copolymer PLGA-PEG-PLGA exhibited a 10-fold enhancement in cellular transgene 

expression when used together with polycationic protamine/DNA complexes [128]. 

1.6.2 Extracellular stability  

One potential problem of cationic polymer as an in vivo gene carrier is that they could 

encounter negatively charged macromolecules such as serum proteins like albumin, which may 

absorb onto the positively-charged nanoparticle and weaken the electrostatic interactions 

between the vector and the DNA cargo, as well as screen the inter-particle electrostatic 

repulsive forces, eventually lead to aggregation of the nanoparticles over time. A remedy to 

this is to develop “core-shell” nanoparticles which contain poly(ethylene glycol) (PEG) and a 

polycation block. When mixing with DNA in water, the electrostatic interaction between DNA 

and the cationic segment causes them to spontaneously complex into a compact “polyplex” 

structure, while PEG moieties form a protective outer layer that shields the positive charge of 

the polyplex core, and at the same time provides steric hindrance to the undesirable protein 

absorption in the surroundings [129]. One study showed that in the case of PEG-grafted PEIs, 

the stability of the nanoparticles and effective transfection efficiency is contingent upon the 

optimal length and amount of PEG side chains, as PEG side chains shorter than 350 kDa 

enabled satisfactory stability, while those longer than 350 kDa provided too much steric 

hindrance, causing interrupted gene delivery to the cells [130]. Therefore, a fine balance must 

be stricken between providing enough stability and not over-obstructing the positive charges of 

the polymer resulting less efficient DNA binding and transfection. 

One shortcoming of PEG-modified polycation/DNA nanoparticles lies in their 

propensity to easily dissociate under physiological environments due to the strong 

hydrophilicity of PEG, hence unpredictable behavior in vivo could happen [131]. The 
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counteracting strategy was adding another layer of chemical stability: disulfide cross linking. 

As is shown in the work by Miyata et al., the stability of PEG-PLL block copolymer was 

enhanced by post-DNA-complexation disulfide cross-linking. A sodium dextran sulfate 

displacement assay showed that disulfide bond cross-lined polyplexes were more stable 

compared to the non-cross-lined counterparts by demonstrating less dissociation in a non-

reductive environment [132]. Although the disulfide bonds provided an extra level of stability 

to the complexes extracellularly, they could be easily cleaved under the intracellular reductive 

environment into two thiol groups (–SH) through the action of glutathione, one of the most 

abundant cytosolic peptides in mammalian cells, facilitating DNA release [133].  

In addition, besides PEGylation, other hydrophilic moieties have been employed to 

improve the colloidal stability of polycationic vectors, for example, poly(methyl acrylate), PVP, 

and sugars [102, 120]. 

1.6.3 Cellular uptake and endosomal escape 

When cationic polymer/DNA complexes reach negatively charged cell membrane, they 

bind to the anionic proteoglycans electrostatically and are uptaken via non-specific endocytosis 

through a mechanism that is still unclear [134].  But during in vivo applications, positive 

charges of the nanoparticle are usually shielded by PEG to ensure stability. Therefore, cell-

targeting ligands are usually chemically conjugated to the polymers to increase cellular uptake 

and confer cell specificity, making the nanoparticle “smart” [129]. The cell-specific 

recognition of the ligands upon binding to their cognate cell surface receptors induces RME, 

which is important in treating lots of diseases involving a specific cell type, as uptake of the 

therapeutic DNA complexes via cell surface receptors exclusively expressed or over expressed 

on certain cell types could significantly reduce the side effects of the treatments. Table 1 lists 

some examples of the conventional ligands to be conjugated onto the polymers to provide 

selective targeting to cell types displaying the appropriate receptors.  

Table 1. Targeting ligands utilized to promote cellular uptake. 

Targeting ligand Target receptor Target cell type(s) Ref 

Carbohydrates:    

Galactose Asialoglycoprotein receptor Hepatocytes [135] 

Mannose Mannose receptor 
Dendritic cells, 

macrophages 
[136] 



39 
 

Glucose Glucose transporter Cancer cells [137] 

    

Endogenous ligands:   

Folate Folate receptor Cancer cells [138] 

Transferrin Transferrin receptor Cancer cells [139] 

    

Antibodies:    

Anti-platelet 

endothelial cell 

adhesion 

molecule 

(PECAM) 

antibody 

PECAM receptor Endothelial cells [140] 

Anti-HER2 

antibody 

Human epidermal growth 

factor receptor 
Cancer cells [141] 

    

Cell penetration 

Peptides: 
   

RGD Integrin receptor Endothelial cells [142, 143] 

EGF peptides 
Human epidermal growth 

factor receptor 
Cancer cells [144] 

HAIYPRH (T7) Transferrin receptor Cancer cells [145] 

 

Different pathways by which the nanoparticles are internalized include phagocytosis, 

macropinocytosis, clathrin-mediated endocytosis, caveolae-mediated endocytosis, and clathrin- 

and caveolae- independent endocytosis, and it is these different pathways that determine the 

intracellular itinerary of the nanoparticles. Factors such as cell type, polyplex type, and 

polyplex formulation conditions are primary determining factors of the internalization pathway 

and subsequent travel route [146]. Currently, clathrin-mediated endocytosis is the most 

characterized pathway of uptaking nanoparticles, during which clathrin-coated pits pinch off 

the cell membrane and fuse with early endosomes, with a concomitant drop of pH from neutral 

to around 6 [147]. Vesicle acidification occurs further when endosomes mature to late 

endosomes and lysosomes, with reduction of pH to around 5. Thus, the ability for the 

polymer/DNA complexes to escape from enzymatic degradation in the low pH environment in 

the endosomes is paramount to successful gene delivery.  

To address this issue, various techniques were employed to disrupt the endosome 

membrane in order to allow successful release of the genetic material into the cytoplasm. 
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Firstly, some polymers were conjugated with membrane disruptive (fusogenic) 

proteins/peptides like melittin [148] and KALA [149]. Fusogenic peptides undergo structural 

transition from random coils at neutral pH to α-helical conformation at acidified pH to disrupt 

the endosomal membrane and allow endosomal escape of the genetic cargo. The second group 

includes polymers possessing excess protonable amine groups which provide superior 

buffering capacities. A typical example is PEI. The success of PEI for gene transfection is 

primarily attributed to its high positive charge density and its composition of primary, 

secondary, and tertiary amines. While primary amines are protonated at physiological pH 7.4 

to allow PEI to bind and condense negatively charged DNA effectively into nanosize 

complexes via electrostatic interactions, the secondary and tertiary amines are able to sequester 

protons in the endosomes. The buffering effect leads to influx of chloride ions, which causes 

osmotic swelling and finally the rupture of the endosomes---a phenomenon known as the 

“proton sponge” hypothesis [150]. Moreover, people use endosomolytic agents such as 

chloroquine during in vitro gene transfection to allow the nanoparticles to escape from the 

endosomes. Chloroquine not only swells and disrupts endosomes, but also competitively 

dissociates DNA from the polycation by electrostatic interactions, and protects DNA from 

intracellular nuclease degradation [151]. The fourth group of polymers designed to enable 

endosomal release is conjugated with alkylated carboxylic acid groups, where the carboxyl 

groups contain buffering capacity in sequestering protons and the hydrophobic alkyl groups 

interact with the endosomal membrane to enhance vesicle release [152]. 

1.6.4 Intracellular trafficking 

Once released out of the endosome into the cytosol, the polyplexes face a hostile 

environment where nucleolytic enzymes are abundant to degrade the nucleic acids. Moreover, 

it was reported that part of the cytoskeleton, the cross-linked actin filaments could significantly 

hinder the diffusion of free DNA greater than 250 bp [153]. Although the exact mechanism by 

which DNA travels to the nucleus and be expressed is still under investigation, researchers 

have suggested that DNA travels on the microtubule network driven by dynein motor proteins 

to reach the nucleus [154]. Various approaches have been utilized by researchers to promote 

DNA transport into the nucleus. Firstly, nuclear localization signal (NLS), some of which are 

peptide sequences borrowed from viruses (e.g. SV40 and TAT), was frequently conjugated to 

polymers or linear DNA molecules or directly complexed with DNA via electrostatic 

interaction [155, 156]. These peptides recognize and bind to the import proteins like importins 

in the cytosol, which mediate active shuttling of the polyplexes or DNA cargo through the 
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nuclear pore complexes (NPC), which would otherwise exclude the passive diffusion of 

molecules larger than 39 nm [157]. A similar but less investigated nuclear transport method 

involves intracellular carbohydrate-binding receptors (i.e. lectins). Certain carbohydrates on 

the polymers, upon recognizing their cognate lectins, could activate energy- and signal- 

dependent processes to transport the DNA into the nucleus through NPC [158]. Conflicting 

results are present in the literature regarding the usage of certain types of carbohydrate, but the 

ease and economy of synthesis [159, 160], and the biocompatibility of the sugar molecule 

clearly provide the advantages of this technique in vector design. Moreover, it has been shown 

that increased gene transfection efficiency was observed when the gene transfection occurs 

shortly before cell division (i.e. S and G2 phases), probably due to the transient breakdown of 

nuclear membrane during mitosis, allowing easy DNA entry into the nucleus [161]. However, 

this behavior has limited clinical application since most cells in the body are non-dividing, also, 

successful exploitation of the mitosis behavior has vector dependency [162].  

1.6.5 DNA unpacking  

During the DNA delivery process, the dissociation of the DNA cargo from the polymer 

and the escape of the DNA from the endosome happen not necessarily concurrently. In some 

cases, the DNA might still be bound to the polymer after escaping into the cytosol. Actually, 

inefficient unpacking of DNA from the polymer may result in unsatisfactory gene delivery 

efficiency [132]. The competitive displacement of DNA molecules by anionic agents such as 

mRNA, heparin, proteoglycans and/or genomic DNA has been proposed as the major 

mechanism for the intracellular DNA unpacking from polyplexes, despite the fact that the 

exact mechanism and location of the event are still unclear [102, 163, 164]. Generally, 

introducing disulfide bonds or ester bonds into the polymeric delivery vehicle is the primary 

means to facilitate intracellular DNA release. Disulfide bonds could be introduced between 

cationic ligands and the polymer backbone, so that DNA bound to the ligands extracellularly 

could be easily released upon reductive bond cleavage by glutathione in the cytosol [165]. 

Alternatively, disulfide bonds along the backbone of the cationic polymer, upon reduction, 

could result in both efficient DNA release and reduced cytotoxicity associated with lower 

molecular weight (MW) polymers [166]. The idea of incorporation of hydrolytically-sensitive 

ester bonds is similar to that of the disulfide bonds except that it is the water molecules that act 

as cleaving agents, and the cleavage could occur as soon as the polymer contacts the 

physiological environments. Thus, premature release of DNA is a concern, and further studies 

investigating the relationship between structural and chemical requirements (MW, crosslinking 
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density, etc.) and sustained DNA release are absolutely necessary [114].  Moreover, another 

strategy to achieve efficient and controlled release of DNA is through thermo-responsive 

polymers. These polymers are characterized by a relaxed hydrophilic “coil” phase and a 

collapsed hydrophobic “globule” phase, which are separated by a transition temperature called 

the Lower Critical Solution Temperature (LCST) [167]. Thermo-responsive polymers with 

LCSTs lower than body temperature could deliver tightly condensed DNA molecules 

intracellularly. Then an induced temperature drop (for example, via external applied cooling 

pad) could result in conformational change of the polymer to the relaxed phase and facilitate 

DNA release. A typical example is the poly(N-isopropylacrylamide) (NIPAM)-based polymers, 

which could be used to enhance gene transfection efficiency in a temperature and N/P ratio 

dependent manner [168]. However, the enhancement was only modest so far, and a series of 

factors such as cationic character, endosomal escape capacity, the suitable LCST range need to 

be further explored for optimization of the polymer design.  

1.6.6 Biocompatibility 

Achieving biocompatibility is one of the biggest challenges in synthetic gene delivery 

vector design. The notion of biocompatibility comes two-fold. Firstly, the vector has to be 

stable within the blood stream (i.e. not interacting with anionic blood components and 

aggregate, not activating the complement system, and/or not being recognized and cleared by 

the reticuloendothelial system) [169]. As discussed in section 1.6.2, PEG incorporation into the 

polymers is the most widely used strategy for stability enhancement as it provides a 

hydrophilic shell that masks the cationic residues on the polymer which absorb competing 

anionic biomolecules in the blood, and it provides steric stability to the polymer.  Moreover, 

the inherent solubility, biodegradability, and potential targeting capacity of oligosaccharides 

make them appropriate alternatives to PEG stabilizers [114]. For example, cyclodextrins (CD) 

(compounds made of sugar molecules linked together in a ring) not only enhanced the stability 

and reduced the toxicity of polycations such as PEI and PLL by shielding their surface charges, 

they also had a topology of toroid with hydrophobic interior and hydrophilic exterior, making 

them ideal for accommodating and enhancing solubility and bioavailability of hydrophobic 

compounds [170]. This property has been widely exploited for CD containing vector mediated 

gene delivery, for example, CD-PEI nanoparticles were observed to bind specifically to 

adamantine (a kind of polycarbon)-PEG conjugates, forming particles that are stable at 

physiological salt concentrations, and allowed high-affinity loading of gene delivery vehicles 

onto mice liver without eliciting immune responses or toxicity [171, 172]. The second criterion 
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of biocompatibility is that the vector must not elicit wide scale toxicity on the transfected cells. 

Although the exact mechanism of cytotoxicity remains to be explored, the prevailing 

hypothesis is that it is the high charge densities of the cationic polymeric carriers such as PEI, 

PLL, and PAMAM dendrimers that are the major cause behind cellular membrane damage and 

phospholipid reshuffling, which often lead to the activation of the apoptotic or necrotic 

pathways [173]. In order to overcome the potential cytotoxicity, the charge shielding effects of 

hydrophilic moieties such as PEG, PVP and carbohydrates have been extensively exploited in 

the design of cationic polymers for systemic gene delivery. In a study by Liu et al.,  a 

biodegradable hyper-branched PEI (25 kDa)-grafted polycaprolactone (570 kDa)-block-mono-

methoxyl poly(ethylene glycol) (2 kDa) copolymer was found to exhibit less toxicity in the 

A549 cell line and to induce less hemolysis compared to the 25 kDa PEI control [174]. In 

addition, MW was demonstrated to be directly related to both high cytotoxicity and high 

transfection efficiency, therefore a delicate balance must be achieved to ensure successful gene 

transfection while maintaining high cell viability. Efforts were made to design biodegradable 

polymers which allowed high MW polycations to be constructed with linkages such as 

disulfide bonds which were cleavable intracellularly and converted the high MW vectors into 

less toxic low MW constituents [175]. Furthermore, another counteracting approach to address 

the cytotoxicity problem was to use polymers derived from natural resources, such as cationic 

chitosan, due to their inherent biocompatible, biodegradable, and nontoxic properties. In fact, 

chitosan-incorporated nucleic acids delivery systems have achieved high nuclease resistance, 

endosomolytic activity and promising transfection efficiency, as demonstrated in lots of studies 

[176-178].  

1.7 Methods of gene delivery  

The delivery systems for gene can be generally divided into two categories: physical 

and carrier-based. The physical methods include electroporation, sonoporation [179], gene gun 

[180], scrape loading [181], microinjection [182], and so on, mostly with the aim of disrupting 

the plasma membrane to allow gene entry. Obviously, these seemingly aggressive methods are 

associated with widespread cell death resulting from cell membrane damage, laborious 

manipulation with single cells, difficulty in in vivo applications, and concerns over selectivity. 

Therefore, safer and more efficient gene delivery methods are needed. On the other hand, viral 

and non-viral gene carriers effectively package the genetic cargo to protect them from nuclease 

degradation and facilitate cellular uptake and intracellular trafficking processes elaborated in 

section 1.6, therefore they will be the focus of discussion in this section. Different types of 
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viral and non-viral vectors, the advantages and disadvantages associated with each of them will 

be evaluated.  

1.7.1 Viral  

Viral vectors generally have superior gene transfection efficiency, often several orders 

of magnitude higher than that of non-viral vectors, mainly benefited from centuries of selective 

evolutionary pressure [183]. From the review by Kay et al., recombinant viral vectors have a 

“split design” consisting of the vector DNA and the helper DNA. The vector DNA is 

constructed in a way that the coding regions of the viral genome are replaced by a therapeutic 

gene cassette, leaving the non-coding cis-acting gene regulatory sequences responsible for 

packaging of vector genome into the viral capsid and integration of vector genome into the host 

chromatin intact. It also includes a packaging domain (ψ). On the other hand, the helper vector 

contains essential viral genes for expression of viral replication and structural proteins, and it 

does not have the packing domain (ψ). When a recombinant virus transduces the target 

packaging cell, both the vector and the helper DNA are introduced into the cell, either as 

heterologous plasmid within the same virus, or by the vector virus and the helper virus 

respectively, or in a situation when the helper DNA has already been stably integrated into the 

host chromosomes of the transduced packaging cells. Then, the viral replication proteins 

expressed from the helper DNA enabled replication of the vector DNA, resulting in synthesis 

of many copies of the therapeutic genes, while the viral structural proteins recognize the 

packing domain (ψ) on the vector DNA and package the vector genome into the viral particles, 

leaving helper (ψ negative) DNA behind (Figure 3). In this way, the spatial segregation of the 

essential viral genes and the cis-acting elements enables the production of replication-defective 

viral particles able to selectively introduce the therapeutic genes into the target cells, hence 

retains the high efficiency of viral delivery of desirable genetic cargoes, and simultaneously 

increases the safety of the viral vector system by increasing the number of recombination 

events required to make the virus replication-competent again. 
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Figure 3. Generic strategy for engineering a virus into a vector. The helper DNA contains 

genes essential for viral replication which are placed in a heterologous/unrelated DNA context 

that can be delivered as a plasmid, helper virus or stably inserted into the host chromosomal 

DNA of the packaging cell. The helper DNA lacks the packaging domain (ψ) so it itself or its 

RNA cannot be packaged into a viral particle. The helper DNA of some vectors also lacks 

additional transfer functions, to increase safety. The vector DNA contains the therapeutic 

expression cassette and non-coding viral cis-acting elements that include a packaging domain. 

The viral proteins required for replication of the vector DNA are produced, leading to the 

synthesis of many copies of the vector genome. Viral structural proteins recognize the vector 

(ψ+) but not the helper (ψ-) DNA for packaging of the vector genome into a particle. 

Reproduced with permission from [184]. Copyright (2010) Nature Publishing Group. 

Viral vectors such as retroviruses, lentiviruses, adenoviruses, adeno-associated viruses 

(AAVs) and herpes simplex viruses (HSVs) are the main clinically available gene delivery 

viruses and have been extensively reviewed by several groups [104, 184, 185]. They are 

generally classified into two categories: non-lytic viruses, such as retroviruses and lentiviruses, 

which produce virions from the cell membrane of the transduced cell, leaving the host cell 

relatively intact; and lytic viruses, such as adenovirus and HSVs, which destroy the infected 

cell after virions release [186]. Their respective structural design, mechanism of transduction, 

advantages and disadvantages will be discussed below. 

Retroviruses are a class of lipid-enveloped viruses replicating in host cells via reverse 

transcription processes. The genome of the retrovirus is a positive sense, single-stranded RNA 

molecule of 7-11 kilo bases (kb), which upon entering the host cell, is reverse-transcribed into 
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linear double stranded DNA molecule by its own reverse transcriptase enzyme, and integrated 

into the host genome by its integrase enzyme. The host cell then treats the viral DNA as its 

own, transcribes and translates the “parasite” viral genes together with its own genome, 

allowing replication and assembly of new viral particles, which cause further infection. The 

cis-acting elements of the retrovirus locate at both ends of the viral genome, allowing up to 8 

kb of therapeutic DNA to replace the viral genes, which are expressed by the transfection 

factors encoded by two heterologous helper DNA constructs. The location of cis-acting 

elements in the terminal regions as well as the property which allows viral genome integration 

into the host chromatins enabling stable expression of therapeutic genes have made 

retroviruses to be the most popular gene delivery vector in clinical trials up to now [187]. 

However, one limitation of retroviruses is that target cell mitosis must occur after viral entry so 

that nuclear membrane disruption during cell division could allow the viral gene to integrate 

into host chromatins. This limits the application of retroviruses for gene delivery to dividing 

cells such as tumor cells and ex vivo transduction of lymphocytes and hematopoietic progenitor 

cells [188]. In addition, the random insertion of retroviral gene into host genome might pose 

some potential danger in triggering cancer. For example, exciting news was released in 2000 

regarding successful retroviral mediated gene delivery treatment of children suffering from a 

rare form of X-linked severe combined immunodeficiency (SCID-X1) caused by mutations in 

genes encoding γ-chain of several interleukin receptors, blocking T and NK cells 

differentiation [189]. The treatment however, showed complication in 2012 because two of the 

ten children developed a leukemia like condition, shown to be related to retroviral vector 

insertion near the LMO2 proto-oncogene promoter leading to aberrant overexpression of the 

oncogene [190]. Nevertheless, encouraging clinical trial results were reported, for example, a 

herpes simplex virus thymidine kinase (HSV-TK) suicidal gene was transferred into donor 

lymphocytes to treat allogeneic graft-versus-leukemia while limiting the possibility of ensuing 

GVHD [191].  

Lentiviruses are another promising type of gene delivery vectors, which are different 

from retroviruses in the way of transporting their pre-integration complex into the nucleus of 

the target cell. Active transport by nuclear import machinery of the host cell is exploited by 

lentiviruses so that they could infect non-dividing cells, which greatly expands their tropism of 

infection. Research showed that lentiviral vectors were used to effectively transduce non-

dividing, differentiated, and ex vivo dissociated epithelial tissues of rodents and humans origin 

[192]. Hybrid lentiviral vectors were derived from non-human lentiviruses such as simian, 
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feline, equine, caprine and bovine immunodeficiency viruses, with the hope that they would be 

more tolerated in clinical trials as they were not likely to be infectious to humans, although 

successful in vivo testing were still waited to be seen [193]. In addition, similar to the 

retroviruses, the lentiviruses post potential danger in activating transcription of proto-

oncogenes via insertional mutagenesis.  

Adenoviruses are non-enveloped virus containing about 36 kb viral double stranded (ds) 

DNA genome encoding over 50 polypeptides. Upon cell entry, the viral particle-contained 

protein facilitates endosomal escape allowing genome entry into the host nucleus. Then, viral 

genes essential for genome replication and structural protein synthesis were expressed, 

allowing encapsulation of newly replicated genomes into new viral particles. During the 

recombinant adenoviruses vector development, it was realized that although they could induce 

high transduction efficiency, even low-level transcription of the viral genes resulted in innate 

cytokine responses and antigen-dependent immune responses, causing destruction of 

transduced cells and high toxicity profiles in animals [194]. Therefore, a helper-dependent 

vector system was subsequently employed in which the helper virus contained all the virus 

genes essential for replication but lacked the packing signal, while the second virus contained 

the viral inverted terminal repeats (ITRs), the therapeutic genes and packaging signal allowing 

its genome to be selectively packaged into the new virions. Despite the fact that this process 

was labor intensive and hard to scale up, it substantially reduced cytotoxicity and induced 

promising therapeutic effects in pre-clinical trials in rodents [195].  

AAVs are human parvoviruses that usually depend on a helper virus such as adenovirus 

to transduce cells and replicate. Upon entering the target cell nucleus, AAV carried genes 

either remain as episomal transgenes (>90%) or randomly integrate into the host genome 

(<10%) for transduction [184]. Currently, there is no known disease or obvious toxicity 

associated with AAV infection, which along with its broad tropism, is one of its greatest 

advantages in gene therapy. However, the largest drawback of AAV vectors lies in its limited 

packaging capacity, which is only about 5 kb [186]. Nevertheless, AAV seems to be a 

promising gene delivery system for phase I clinical trials. It has been involved in the treatment 

of cystic fibrosis, hemophilia B, α-antitrypsin deficiency, Leber congenital amaurosis, and so 

on, largely due to the fact that no hostile host cellular immune responses have yet been 

observed [196].  
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HSVs contain a large genome of linear dsDNA of 152 kb, which encodes at least 84 

genes, at least half of which are nonessential HSV genes replaceable by foreign therapeutic 

genes [197]. HSV type 1 (HSV-1) is the most extensively studied and used herpes virus vector 

for gene delivery, which has benefits of highly efficient gene transduction and broad tropism. 

However, its use is limited by the lack of long term transgene expression in tissues such as 

brain and difficulties in targeting specific cells. Successful HSV mediated pre-clinical 

treatments in animal models of cancer [198] and epilepsy [199] were reported, but their test in 

clinical settings remains to be explored.  

In summary, the viral vectors have superior gene delivery capabilities compared to the 

physical means and the non-viral vectors, however, their clinical applications are limited by 

problems such as high toxicity, restricted targeting of specific cell types, relatively low DNA 

loading capacity, immunogenicity, and high cost in production and packaging [182, 200]. 

Owning to these reasons, safer, non-viral gene delivery systems are becoming increasingly 

desirable to allow modern science and medicine to fully captivate the benefits brought about by 

gene therapy.  

1.7.2 Non-viral  

Comparing to the viral vector counterparts, non-viral gene vectors represent a simpler 

and safer alternative for gene delivery. Other advantages of non-viral vectors, especially 

synthetic non-viral vectors, include unlimited clone capacity, large-scale and cost-effective 

preparation, low immunogenicity, and the feasibility of repeated applications [201]. However, 

the main defect of non-viral vectors is their relatively lower gene transfection efficiencies 

compared to the viral vectors due to the various barriers of nucleic acids delivery and 

expression illustrated in section 1.6. Luckily, modern synthetic methodologies have made 

ingenious designs and modulations of the non-viral vectors’ structures and properties to 

circumvent the various barriers and enhance their widespread applications. In this section, 

various types of non-viral vectors will be introduced, and their superiorities and drawbacks will 

be discussed.  

1.7.2.1 Cationic liposomes  

Cationic liposomes are a group of attractive non-viral gene delivery vectors extensively 

investigated by researchers worldwide. Typical advantages include lack of immunogenicity, 

safety, ability to pack large genetic cargos and ease of fabrication. They are usually composed 
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of a cationic lipid and a neutral helper lipid. Cationic lipids are amphiphilic, which are 

consisted of a positively charged head group and a hydrophobic lipid anchor, linked together 

via ester, ether, or alkyl linkages. The head group is usually a single amine group or multiple 

protonable amines, whose positive charge could effectively bind and condense the negatively 

charged DNA and enhance cellular uptake via interaction with the anionic cell membranes. In 

addition, multivalent head groups such as 2,3-dioleyloxy-N-[2(sperminecarboxamido)ethyl]-

N,N-dimethyl-l-propanaminium trifluoroacetate (DOSPA) and di-octadecyl-amido-glycyl-

spermine (DOGS) were proven to be more efficient in DNA condensation than the monovalent 

counterparts [202], although they are more prone to micelle formation causing less stable and 

more toxic complexes. The hydrophobic chains are usually made up of cholesterol or diacyl 

chains, whose alkyl chain length and saturation degree correlate negatively with the 

transfection efficiency of cationic lipids [203]. Specifically, an increased degree of 

unsaturation of alkyl chains could enhance membrane fluidity and fusogenicity, resulting in 

higher gene transfection. Furthermore, the linker group has direct correlation with the 

transfection efficiency and cytotoxicity of the lipid vector; for example, lipids with non-

degradable ether linkages (2,3-bis(oleyl)oxipropyl-trimethylammonium chloride, DOTMA) are 

more toxic than those containing degradable ester linkages (1,2-dioleoyl-3-

trimethylammonium propane, DOTAP), due to the fact that the latter is more biodegradable 

after releasing the DNA cargo inside the target cell [204]. But chemically unstable linkers 

could also compromise the stability of the lipoplexes in the physiological environment. 

Therefore a fine balance must be stricken between biodegradability and stability of the 

lipoplexes.  

The neutrally charged helper lipid dioleoylphosphatidylethanolamine (DOPE) has gained 

much attention as it could improve the transfection performance of the cationic lipids such as 

DOTMA and DOTAP. Studies showed that equimolar mixture of DOPE and DOTMA could 

form a liposome that mediated higher levels of gene transfection in vitro than the single 

cationic lipids or than the mixture of DOTMA and another helper lipid DOPC [205]. The 

reason was due to the conformation transition of DOPE from a bilayer to a hexagonal structure 

under acidic pH, facilitating fusion or destabilization of endosomal membranes and enhancing 

gene escape form endosomes [206]. Additionally, cholesterol has been employed as a helper 

lipid which could greatly increase the stability of the lipoplexes and allow increased doses of 

DNA to be incorporated into the lipoplexes. An intravenous (i.v.) injection of stable cationic 

liposomes with cholesterol inclusion showed promising expression of a marker gene in mouse 
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lungs, significantly higher than that achieved by the cationic liposome/DOPE helper lipid 

counterpart [207]. In addition to the nature of lipids, other factors like stoichiometric ratio of 

cationic lipid and DNA, and method of formulation of the lipoplexes also have significant 

impact on the gene transfection efficiency and cytotoxicity of the vectors, which need to be 

taken into account when designing newer generation lipid carriers with greater safety and 

potency [208].  

1.7.2.2 Cationic polymers  

The complexes formed between cationic polymers and nucleic acids at appropriate ratios 

and conditions are referred to as polyplexes. They usually have nano-scale sizes and are 

homogeneous. Similar to the cationic liposomes, cationic polymers effectively protect the 

DNA from nuclease degradation, enhance cellular uptake, promote endosomal escape and 

nuclear transport of the genes when their properties are properly modulated. Here several most 

commonly used cationic polymer-based gene delivery vectors will be presented, including 

poly-L-lysine (PLL), poly(ethylenimine) (PEI), dendrimers, and biodegradable cationic 

polymers, and their merits together with faults will be discussed.  

1.7.2.2.1 Poly-L-lysine 

PLL is the first intensively studied peptide-based vector. Low MW PLL with a MW 

less than 3000 forms unstable complexes with DNA, as the number of primary ɛ -amines of 

lysine in the polypeptide backbone is not enough for electrostatically binding the nucleic acids 

[209]. However, high MW PLL is usually associated with high cytotoxicity, aggregation and 

precipitation [210]. Also, the relatively low transfection efficiencies of PLL are primarily 

caused by protonation of all the primary amines at physiological pH, rendering them 

unavailable for buffering in the acidic endosomes. To address this problem, chloroquine or 

fusogenic peptides were co-incubated with PLL/DNA complexes and were shown to improve 

gene transfection efficiency in vitro, although the in vivo success was limited due to the 

inherent toxicity of the endosomolytic agents [211]. Moreover, PEG was conjugated to PLL to 

screen the positive surface charges and act as a protecting hydrophilic shell, which could 

resolve the problems such as absorption of anionic serum proteins, rapid aggregation of the 

complexes, and high cytotoxicity due to the membrane disturbance property of the high 

cationic charges, and so on. Indeed, a PLL-PEG block copolymer designed by Kataoka’s group 

self-assembled into a polyion complex (PIC) upon binding to DNA, which showed a 

significant reduction in zeta potential and cytotoxicity compared to the unmodified PLL, and 
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the PIC protected the DNA from enzymatic degradation, enabling a prolonged circulation time 

in the blood compared to the naked DNA [212, 213].  Furthermore, to address the problem of 

limited transfection efficiency, histidine was conjugated to PLL, and the imidazole head group 

of histidine (pKa~6) was proven to enhance endosomal buffering and escape of the polyplexes, 

enhancing the transfection efficiency [214].  

Various targeting ligands have been conjugated to PLL to enhance cellular uptake and 

reduce unnecessary side effects at other cells. For example, Wu and Wu provided the first 

targeting strategy of PLL by conjugating asialoorosomucoid (ASOR) to PLL with N-

succinimidyl 3-(2-pyridyldithio)propionate (SPDP) as a linker, and the resulting polymer could 

specifically target asialoglycoprotein receptor-expressing hepatocytes both in vitro and in vivo 

[215]. In addition, monoclonal antibody against leukemia-specific JL1 antigen was attached to 

PLL via disulfide bonds, and the resulting polymer could specifically delivery DNA into Molt 

4 cells, a human leukemia T cell line, at a transfection efficiency significantly higher than 

PLL/DNA complexes [216]. Furthermore, folate was conjugated to PLL, making it a popular 

vehicle for delivery of anti-cancer therapeutics to the folate-receptor over-expressing malignant 

tumor cells. Actually, folate-PLL conjugate showed dramatically increased cellular uptake, and 

6 times higher luciferase gene transfection efficiency in the KB cell line, which contains 

overexpressed folate receptors, compared to the unmodified PLL [217].  

1.7.2.2.2 Poly(ethylenimine)  

Among the polycationic polymers used for nucleic acid delivery, PEIs take a prominent 

stand due to its superior gene delivery potential. First described by Boussif et al. in 1995, 

branched PEI (Mw 25 kDa) has primary (25%), secondary (50%) and tertiary amines (25%), 

making every third atom of PEI a protonable amino nitrogen atom, which imparts the polymer 

with a high cationic charge density at physiological pH [106, 218]. This property allows PEI to 

effectively form electrostatic interactions with and ensnares negatively charged nucleic acids, 

and to change its degree of ionization over a broad pH range [219]. Once internalized into the 

cells via caveolae- or clathrin- dependent routes, due to the decreasing pH in the milieu as the 

PEI/DNA complexes move from earlier to late endosomes, the estimated percentage of 

protonated nitrogen of PEI could increase from 15% to 45%, and PEI thus facilitate the release 

of the nucleic acids from endosomes through the so called “proton sponge effect”, allowing 

uptake of DNA into the nucleus and achieving high gene transfer efficiency [220-222].  
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Since it was first reported in 1995, PEI has been used as the ‘gold standard’ for non-

viral nucleic acids delivery due to its superior gene transfection capabilities. It enabled high 

gene transfection in many eukaryotic cell types, such as 3T3 (murine fibroblasts line), COS-7 

(monkey kidney cell line), HepG2 (human hepatoma cell line), K-562 (human leukemia cell 

line), HeLa (human epithelial carcinoma), and MRC-5 (human lung epithelium cells); primary 

cells such as rat brain endothelial cells and chick embryonic neurons; and in various animal 

models [106, 223, 224]. Not only therapeutic DNA molecules, but also siRNA have been 

successfully transfected by various PEI and PEI derivatives in vivo. For example, PEI/DNA 

complexes mediated overexpression of the tumor suppressor gene p53 upon effective delivery 

led to a reduction of growth of metastatic lung cancer in a mouse model [225]; and 

systemic/intratumoral administration of PEI/siRNA complexes showed inhibition of 

subcutaneous liver and lung xenograft growth upon knockdown of RecQL1 DNA helicase 

[226]. 

Despite its high nucleic acids transfection efficiency, the high cationic charge density of 

PEI may lead to major drawbacks concerning toxicity/biocompatibility, complex aggregation 

and undesired non-specific complex interactions with cellular and non-cellular components, 

particularly in vivo, resulting in adverse effects such as liver necrosis , adhesion of aggregated 

platelets and shock after systemic injection of higher doses [169, 227, 228]. To improve the 

biocompatibility and abrogate the toxic effects, various modifications of PEI molecules have 

been introduced, aiming at shielding of PEI surface charge and altering the PEI/DNA complex 

architecture [219]. For instance, PEG [229], hyaluronic acid [230], chitosan [231], 

oligosaccharide such as mannose [232] and galactose [135] have been grafted onto PEI. 

Additionally, various other hydrophobic [233] or hydrophilic moieties [234] aiming at 

neutralizing the primary amine groups on PEI have been studied. For example, Wang et al. 

attached cystamine derivatives containing a reductive cleavable disulfide bond to the primary 

amines of PEI to reduce the polymer charge density and accelerate the intracellular release of 

the complexed DNA, achieving reduced cytotoxicity and up to 4.1-fold of the transfection 

efficiency of the unmodified PEI [235]. Thomas et al. modified PEI with the hydrophobic 

acetylated alanine, and observed a 2-fold increase in luciferase gene expression and reduced 

cytotoxicity in COS7 cells [236]. Similarly, the acetylation of PEI [237] and modification with 

N-isopropylacrylamide [238] also showed reduced cytotoxicity and enhanced transfection 

efficiency in HEK293 and HeLa cells, respectively. The transfection efficiency enhancement 

brought about by the hydrophobic groups has been suggested to be due to the increase of 
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polymer/DNA complex interactions with the cell membrane and therefore enhancement of 

complexes endocytosis.  

PEI exist in many different MWs and structures, and generally, PEI with higher MW 

and higher degree of branching has been found to have more cytotoxicity and hemolytic 

properties, presumably due to their higher charge densities [239, 240]. The low molecular 

weight (LMW) counterparts, for example PEI 1.8 kDa, on the other hand is non-cytotoxic, but 

only had low gene transfection efficiency, due to weak DNA binding and insufficient 

protection from nuclease degradation of DNA [241]. Thus, researchers cross linked LMW PEI 

to form biodegradable high molecular weight (HMW) PEI to circumvent the low transfection 

efficiency problem [242]. Generally, among the various forms of PEI, branched 25 kDa, linear 

22 kDa and 25 kDa PEIs have been regarded by researchers as prominent candidates for in 

vitro and/or in vivo gene delivery by exhibiting more favorable physicochemical characteristics, 

serum stability, and cytotoxicity profile [223, 224, 243-245]. And in this study, branched 25 

kDa PEI was selected as the benchmark for investigation and evaluation of the non-viral 

vectors for PI-9 gene delivery for prevention of cytotoxic lymphocyte killing mediated 

allograft rejection. 

1.7.2.2.3 Dendrimers  

Dendrimers such as PAMAM are highly branched and symmetrical molecules with a 

tree like structure that consists of multiple branched monomers emanating radially from a 

central core. The number of branch points from the core to the periphery is called generation, 

with higher generation number indicating larger and more branched dendrimers [246]. 

Moreover, a higher generation number and associated higher charge density often lead to an 

enhancement in cellular uptake and gene transfection, and the undesirable cytotoxicity effects 

[247]. Additionally, the more interior branches have lower chain densities, and are ideal for 

loading small drug molecules, while the peripheral end groups provide points for DNA binding 

and surface modifications.  

Various benefits are associated with dendrimers. For example, their high structural and 

chemical homogeneity makes reproducibility of pharmacokinetic data facile; their ability to be 

loaded with multiple drugs or ligands at both interiors and peripheries greatly increases the 

cargo loading capacity compared to linear polymers; their high ligand density on the surface 

favors ligand-receptor interaction and targeting; and the ability to fine-tune the bio-distribution 
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and pharmacokinetic properties by controlling dendrimers size and conformation, like varying 

generation number [248] is beneficial for in vivo studies. However, successful application of 

dendrimers as drug/gene carriers is limited by their low biocompatibility, as they cause toxic 

reactions in the biological host, and they are difficult to be degraded into smaller units for 

excretion in the urine or feces after metabolism. To circumvent the problems, taking PAMAM 

for example, PEG and sugars were attached to the dendrimer periphery to bring down the 

charge density of the amino-terminals and reduce the toxicity [107], and disulfide bonds were 

introduced into PAMAM to make the polymer biodegradable in the intracellular reductive 

environment [249]. 

1.7.2.2.4  Biodegradable polymers  

Many polymers for gene delivery contain a backbone made by carbon-carbon bonds, or 

vinyl bonds, which are not spontaneously degraded into smaller constituents in the 

physiological environment. Thus, they are not eliminated easily after administration into the 

host body, or they are simply too large to be filtered out via the kidney. Their accumulation 

inside cells could cause severe cytotoxicity. To address this problem, cleavable linkages were 

introduced into backbones or side chains of cationic polymers, rendering them biodegradable. 

By doing so, the polymers generally demonstrated less cytotoxicity and greater transfection 

efficiency due to easier unpackaging and release of the genetic cargo in the cytosol.  

Poly(a-[4-aminobutyl]-l-glycolic acid) (PAGA), a biodegradable PLL analogue, is 

synthesized via the polymerization of ε-carbobenzoxy (cbz)-L-lysine, whose α-amino group 

has been converted into a hydroxyl group [250]. After complexing with DNA, the complex 

was observed to complete dissociate within 24 h at 37˚C, suggesting easy degradation of 

PAGA. In the meantime, there was higher transfection efficiency and no obvious cytotoxicity 

as compared to PLL [251]. Since its development, PAGA has been successfully applied to 

several in vivo studies. For instance, by delivering interleukin (IL)-4 and IL-10 encoded 

plasmid DNA using PAGA via mice tail veins, autoimmune diabetes was prevented in three 

quarters of the treated 32-week-old non-obese diabetic (NOD) mice six weeks after the 

treatment [252].  

Another example of biodegradable polymer is the degradable PEIs, which are made by 

crosslinking LMW PEI using reducible linkages such as dithiobis(succinimidylpropionate) 

(DSP) and dimethyl 3,3’-dithiobispropionimidate (DTBP), and acid-labile imine linkage, 
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achieving lower cytotoxicity than the HMW counterparts, and enhanced gene transfection 

capability compared to the LMW prototype [253]. Research showed that when transferred from 

a medium of neutral pH to a medium of pH 4.5, 50% of the imine bonds were degraded within 

one hour, suggesting easy degradation of the synthetic polymer in the acidic endosomes [254]. 

Also, the imine-groups containing PEI had transfection efficiency comparable to the gold 

standard PEI 25 kDa and at the same time had significantly reduced cytotoxicity.  

1.8 Summary and Concluding remarks 

In conclusion, as discussed in this chapter, allograft rejection represents a big challenge 

for transplanted organ survival in the long run. Although immunosuppressive agents such as 

cyclosporine and tacrolimus promote short term alleviation of allograft rejection, they are not 

prominent in the long term, and they do not target specific pathways of CAR. There is 

therefore an urgent need to develop safer and more effective anti-allograft rejection strategies, 

one of which is gene therapy. PI-9 gene encodes a serine protease inhibitor which irreversibly 

binds to and inhibits GrB which is the main culprit of allograft rejection. Hence, a promising 

gene delivery vector is needed to deliver the PI-9 gene into the dDC or other donor cells to 

inhibit GrB and improve graft survival rates. 

Synthetic non-viral vectors demonstrate clear advantages that they greatly mitigate 

problems such as immunogenicity and carcinogenicity associated with their viral counterparts. 

Moreover, the modern advanced synthetic chemistry makes large scale, cost effective and 

volatile production of synthetic non-viral vectors with well-defined and modulated chemical 

structures for gene delivery feasible. Cationic polymers are highly prominent among the 

various classes of non-viral gene delivery vectors due to their promising transfection efficiency, 

synthetic versatility and precision, and the ease of conjugating tailor-made functional groups 

such as ligands for cell/tissue targeting. Although currently adenovirus and retrovirus dominate 

the clinical trials of gene therapy, non-viral vectors are gaining more and more attention. 

Actually, it is encouraging that certain polymeric cationic vectors based on PEI and PLL have 

been employed in phase 1 or 2 clinical trials to combat cystic fibrosis, ovarian cancer and HIV 

virus infection [255]. The evidence for the safety and effectiveness of cationic polymers in 

clinical applications provided strong impetus for the continued development of safer and more 

effective polymeric gene delivery systems, aiming at better overcoming the various gene 

delivery barriers discussed in the section 1.6.  
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Furthermore, talking about the gene therapy for allograft rejection prevention using 

synthetic cationic polymeric vectors, one concern is that gene expression mediated by non-viral 

vectors is only transient as they do not integrate into the host chromosome like some of the 

viral counterparts. While this is a valid concern, non-viral vectors can still contribute to the 

cytotoxic lymphocyte killing inhibition and long-term survival of grafts, through careful design 

of the gene delivery regimes and methods. For example, renal pumps, and implanted 

biodegradable hydrogels or matrices could be employed to ensure slow, long-term release of 

the genetic cargo to achieve better therapeutic effects. They could also be part of a multi-

component treatment strategy to boost the effect of immunosuppressive drugs. Moreover, the 

treatment could also occur during the ex vivo culture prior to transplantation to help combat the 

initial shock of acute rejection. And we believe that in the near future, widespread gene therapy 

using cationic polymers to fight various diseases would become a reality, with the help of 

ingenious synthetic polymer design. 
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CHAPTER 2: HYPOTHESIS AND AIMS 

 

After reviewing the current status and various treatment methods of allograft rejection, 

and the benefits of using synthetically easy, reproducible, safe and potent non-viral gene 

delivery vectors for gene therapy in Chapter 1, we hypothesized that using well-designed gene 

delivery vectors to ex vivo deliver DNA encoding PI-9 gene into the dDC or other donor cells 

prior to transplantation could sequester GrB, inhibit cytotoxic lymphocyte killing mediated by 

GrB and improve graft survival rates (Figure 4, reproduced from [256]).  

 

Figure 4. Granzyme B (GrB) which was released from the cytotoxic granules of the host 

cytotoxic T lymphocytes (CTL)/NK cells entered the target cell (indicated by the black arrow) 

and could trigger cell apoptosis. To prevent this, a plasmid encoding GrB inhibitor (i.e. 

proteinase inhibitor-9, PI-9) was delivered by nanoparticles (indicated by the red arrow) to 

prevent target cell apoptosis. When GrB was released from the host CTL/NK cells to the target 

cells, it would be inhibited by PI-9 protein, allowing survival of target cells. Reproduced with 

permission from [256], copyright © 2013, rights managed by Elsevier Ltd. 

 

Among the various synthetic gene delivery vectors currently used in research or clinics, 

the gold standard branched PEI (25 kDa) is arguably one of the best in terms of achieving 

superior in vitro gene transfection efficiencies, which can be attributed to its high positive 

charge density for DNA binding and condensation as well as the unique proton sponge 

properties conferred by the high density of secondary and tertiary amines that participate in the 

endosomal buffering process, hence facilitating the liberation of DNA into the cytoplasm [182]. 



58 
 

However, its clinical potential is limited by its notoriously high cytotoxicity, mainly attributed 

to its high positive charge density leading to problems such as complexes aggregation and 

disturbed cell membrane. Thus, a method to partially block the primary amines of PEI to 

reduce its positive charge has been proposed to effectively eliminate the associated problems.  

To test our hypothesis, we explored the following specific aims: 

(1) Rationally design and evaluate the gene transfection ability and cytotoxicity of 

novel cationic polymers based on the gold standard PEI (Mw 25 kDa), which has superior 

transfection efficiency but high cytotoxicity. The overall goal of this thesis is to design a novel 

class of modified PEIs with higher or comparable transfection efficiency but greatly mitigated 

cytotoxicity compared to unmodified PEI. 

(2) Use the modified PEIs to deliver PI-9 gene as a strategy to protect various target 

cells from killing by GrB released from cytotoxic lymphocytes. 

Work performed to address each specific aim is outlined in the following chapters: In 

Chapter 3, we designed and synthesized a variety of differentially modified PEI (25 kDa) to 

provide an in vitro proof-of-concept for the gene transfection efficiency and biocompatibility 

of this panel of modified PEIs. Traditionally, as discussed in Section 1.7.2.2.2, various 

functional groups were attached to the primary amines of PEI with an attempt to reduce 

cytotoxicity. However, despite having demonstrated to be somewhat less toxic, with 

comparable or elevated gene transfection efficiency to the unmodified PEI, the modified PEIs 

often face problems such as laborious synthetic process, relatively large polydispersities, 

complex molecular architectures, difficulty in reproduction, low yield and high cost of starting 

materials (in the case of amino acids). Therefore, the quest for novel materials with 

uncomplicated synthetic schemes, well-controlled MWs and narrow polydispersities for 

potential clinical gene therapy applications continues. In this chapter, a single step, 

spontaneous ring-opening event will be employed to modify primary amines on PEI using 

cyclic carbonates, in the presence or absence of DBU catalyst. Commercially available 

trimethylene carbonate (TMC) was conjugated onto PEI at various PEI:TMC ratios (1, 8, 25, 

100) to identify the optimum substitution ratio for high transfection efficiency and low 

cytotoxicity, which was then applied to different substituted cyclic carbonates to determine 

which functional groups were the best suited for the purpose of this thesis [150]. Examples of 

functional groups on cyclic carbonates include Mannose, Galactose, Glucose, Ethyl, Benzyl, 
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Urea, and so on. Besides to reduce the positive charge of PEI, the rationale of incorporating 

hydrophobic groups such as TMC, Ethyl, Benzyl, and Urea into the polymer was to increase 

polymer/DNA complex interaction with cellular membranes and enhance complexes uptake 

and transfection efficiency [236]; and the purpose of employing sugar molecules was to 

provide targeting ability towards cells that over-express carbohydrate receptors. Moreover, 

other than physicochemical properties such as size, zeta potential, DNA binding, etc., in vitro 

gene transfection efficiency and cytotoxicity of these polymers were evaluated on a group of 

different cell lines comprising HepG2, HeLa, NIH3T3, MCF7, 4T1, HMSC, keratinocytes, and 

so on. A preliminary in vivo test of the polymers’ potency and toxicity was also carried out via 

intravenous injection of the polyplexes into 6-7 weeks old Balb/c mice. As a result, several 

candidate polymers with satisfactory gene transfection efficiency and greatly mitigated 

cytotoxicity were selected for further application studies.  

In Chapter 4, we examined the feasibility of using the modified PEIs to deliver the GrB 

inhibitor PI-9 gene into kidney cell line HEK293T to protect the cells from GrB mediated 

killing. Similar to Chapter 3, facile nucleophilic addition chemistry was employed to attach 

mannose-functionalized cyclic carbonates to the primary amines of branched PEI with MW of 

25 kDa at varying substitution degrees. The ring-opening of the cyclic carbonate resulted in a 

carbamate linkage and a primary hydroxyl group together with mannose protected with acetyl, 

and after deprotection, five hydroxyl groups were generated, which could further mask the 

positive charge density of PEI/DNA complexes and bring down cytotoxicity. Additionally, as 

stated above, mannosylpolyethylenimine (ManPEI) conjugates are of particular interest for in 

vitro delivery of PI-9 gene, as the highly expressed mannose receptor on antigen-presenting 

DCs and macrophages could be potentially exploited for targeted gene transfer by RME. In fact, 

research has shown that DCs transfected with ManPEI/DNA complexes containing adenovirus 

particles are effective in activating T cells of T cell receptor transgenic mice in an antigen-

specific fashion [232]. Here, roughly 7, 20, or 67 carbamate-mannose groups were attached 

onto PEI to determine the optimal balance of substituted to free primary amines to achieve high 

Green Fluorescent Protein (GFP)-reporter gene delivery and minimal undesirable adverse side 

effects on a model cell line HEK293T (human embryonic kidney cell line), where the 

unmodified PEI was used as a control. The selected modified PEI with the optimal mannose-

attachment ratio were further used to deliver PI-9 encoding plasmid into HEK293T cells which 

were challenged by GrB mediated cell killing by YT cells (human NK-like leukemic cell line), 

so that the degree of protection provided by PI-9 gene delivery could be investigated.  
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In Chapter 5, the potential of using mannose modified PEIs to deliver PI-9 gene to 

mouse fibroblast cell line Balb/3T3 and protect the cells from killing by GrB secreted by allo-

specific CTLs from B6 mice or YT cell line was examined. Based on the results in Chapter 4, 

three other ManPEI polymers were synthesized at PEI to mannose-functionalized cyclic 

carbonate (MTC-ipman) monomer conjugation ratios of 1:6, 1:12.5, and 1:25, as 1:75 ratio was 

proven inefficient for DNA complexation and transfection. Moreover, the synthesis of these 

three polymers was carried out in the same ring-opening reaction but without the use of 

catalyst, which further simplified the synthesis process. GFP-reporter gene was used to 

determine the gene transfection efficiency and cytotoxicity on Balb/3T3 cell line, and the 

results were compared to those of the unmodified PEI. Further, PI-9 was delivered by the 

modified polymers at optimal N/P ratios into Balb/3T3 cells which were then subjected to GrB 

mediated killing by allo-specific CTLs isolated from B6 mice or by YT cells. The different 

killing mechanisms by these two killer cells were compared. Additionally, the promising 

results also set a foundation for future in vivo work for measuring the longevity of the PI-9 

transfected Balb/3T3 cells after i.v. injection. 

Lastly, in Chapter 6, a conclusion of the thesis was presented. 

The successful completion of this thesis has evidently established the molecularly well-

defined and narrowly dispersed cationic polymers based on functional carbamate-modified 

PEIs prepared by facile one step ring-opening reaction as safe and efficient non-viral gene 

carriers. The promising findings presented here should provide the impetus for further 

preclinical evaluations of these polymers for gene delivery to lengthen the survival of various 

transplanted tissues. 
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CHAPTER 3: RATIONAL DESIGN OF CARBAMATE-MODIFIED PEI FOR 

MITIGATED CYTOTOXICITY AND ENHANCED GENE TRANSFECTION 

EFFICIENCY 

3.1 Introduction 

In Chapter 3, we designed and synthesized a variety of differentially modified PEI (25 

kDa) to provide an in vitro proof-of-concept for the gene transfection efficiency and 

biocompatibility of this panel of modified PEIs. 

Part of Chapter 3 has been published in Advanced Healthcare Materials [150], and was 

reproduced with permission from [150]. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. 

KGaA, Weinheim.  

Part of Chapter 3 has also been published in Biomaterials [256], and was reproduced 

with permission from [256]. Copyright © 2013, rights managed by Elsevier Ltd. 

3.2 Materials and Methods  

3.2.1 Materials  

Trimethylene carbonate (TMC, Bohringer-Ingelheim, Germany) and branched PEI 

(MW of 25 kDa) were freeze-dried prior to use. 1,8-Diazabicyclo[5,4,0]undec-7-ene (DBU) 

was stirred over CaH2 and distilled using vacuum before being transferred to a glove box. 1-

(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan, thiazolyl blue formazan (MTT) for 

cytotoxicity assay, and other reagents for polymer synthesis were purchased from Aldrich and 

used without any other purification unless otherwise noted. Bcl-2 targeted siRNA duplex 

(sequence: sense 5’-GUA CAU CCA UUA UAA GCU G; antisense 5’-CAG CUU AUA AUG 

GAU GUA C), β-Actin targeted siRNA duplex, and scrambled siRNA (negative control) were 

purchased from Dharmacon (U.S.A). Luciferase substrate and 5 × lysis buffer were purchased 

from Promega (Singapore). GFP-reporter gene (encoding a red-shifted variant of wild-type 

GFP driven by the cytomegalovirus promoter) and luciferase-reporter gene (encoding the 6.4 

kb firefly luciferase gene driven by the cytomegalovirus promoter) were obtained from 

Clontech (U.S.A.) and Carl Wheeler, Vical (U.S.A.) respectively. The plasmids were amplified 

in Escherichia coli DH5α which was later purified using Endofree Giga plasmid purification 

kit from Qiagen. The BCA protein assay kit was from Pierce Biotechnology, Inc. (Singapore). 
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HepG2, HeLa, NIH3T3, MCF-7, 4T1, HMSC, and keratinocytes cell lines were purchased 

from ATCC (U.S.A.). 

3.2.2 Synthesis of carbamate-modified PEI 

All the carbamate-modified PEIs were synthesized by Dr. Chuan Yang in Dr. Yi Yan 

Yang’s lab in IBN, A*STAR, Singapore. The various functional cyclic carbonates were used to 

modify primary amines on branched PEI 25 kDa through a single step, spontaneous ring-

opening reaction, at different substitution ratios. The detailed procedures for the synthesis of 

the functional cyclic carbonate monomers (MTC-monomers) and MTC-monomer modified 

PEIs, and the characterization of the monomers and polymers using 
1
H NMR spectroscopy 

were attached in the appendix.  

3.2.3 Cell culture 

HepG2, HeLa, NIH3T3, MCF7, 4T1, human mesenchymal stem cell (HMSC), and 

keratinocytes were cultured in Minimum Essential Medium Eagle (MEM, Invitrogen, 

Singapore, for HepG2), RPMI 1640 medium (Invitrogen, Singapore, for HeLa, MCF7, 4T1, 

HMSC, and keratinocytes), and Dulbecco's Modified Eagle Medium (DMEM, Invitrogen, UK, 

for NIH3T3). All media were supplemented with 10% (v/v) fetal bovine serum (FBS, 

Invitrogen, Singapore), streptomycin at 100 µg/mL, penicillin at 100 U/mL, L-glutamine at 2 

mM, and 1 mM sodium pyruvate (Sigma-Aldrich, Singapore). MEM was further supplemented 

with 1 mM non-essential amino acids (Sigma-Aldrich, Singapore). Cells were cultured at 

37 °C, under an atmosphere of 5% CO2 and 95% humidified air. All cell lines were split using 

Trypsin/EDTA medium when reached 90% confluence.  

3.2.4 Preparation, particle size and zeta potential analyses of polymer/nucleic acids complexes 

The polymer was first dissolved in DNase/RNase-free water (Fermentas, Singapore). 

To form the complexes, an equivolume solution of siRNA/DNA was dripped into the polymer 

solution to achieve the intended N/P ratios (molar ratio of nitrogen content in the polymer to 

the phosphorus content of the nucleic acids) under gentle vortexing for about 5 s. The mixture 

was equilibrated at room temperature for 30 min to allow complete electrostatic interaction 

between the polymer and the nucleic acids, before being used for subsequent studies.  

The particle sizes and zeta potentials of the post-equilibrated polymer/DNA complexes 

were measured by dynamic light scattering (Brookhaven Instrument Corp., Holtsville, New 
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York, U.S.A.) using a He–Ne laser beam at 658 nm, with a scattering angle of 90° and 

Zetasizer (Malvern Instrument Ltd., Worcestershire, UK) respectively. Immediately prior to 

the measurement, the polymer/DNA complexes in nuclease free water was diluted 10x in PBS 

to mimic the dilution in the physiological environment after i.v. administration. Particle size 

and zeta potential measurements were repeated for 3 runs per sample and reported as the mean 

± standard deviation of 3 readings. 

3.2.5 Gel retardation assay 

Various formulations of polymer/DNA complexes were prepared as described in 

section 3.2.4 with N/P ratios ranging from 1 to 30. Post equilibration, the complexes were 

electroporated on 1% agarose gel, which was stained with 5 µL of 10 mg/mL ethidium 

bromide per 60 mL of agarose solution. The gel was run in 1 x TBE buffer at 110 V for 50 min, 

and then analyzed under a UV illuminator (Chemi Genius, Evolve, Singapore) to reveal the 

relative position of the complexed DNA to the naked DNA plasmid. 

3.2.6 DNA binding assay 

Polymer/DNA complexes were formed at increasing N/P ratios by gently mixing a 

fixed amount of plasmid with varying concentrations of polymer in nuclease-free water, as 

described in section 3.2.4. After incubating the mixture at room temperature for 30 min, an 

equivolume ratio of SYBR
®

 Safe Green dye (Invitrogen, Singapore) was added. When SYBR
®

 

Safe Green dye intercalated with free DNA, it emitted fluorescence, which was measured by a 

TECAN microplate reader and calculated as relative fluorescence (%) = (Fsample-Fblank)/(Ffree 

DNA-Fblank). Where Fsample is the fluorescence of the complex formed at a specific N/P ratio, 

Fblank is the fluorescence of the dye in nuclease free water and Ffree DNA is the fluorescence of 

free DNA read at excitation and emission wavelengths of 502 and 530 nm, respectively. 

3.2.7 In vitro gene expression 

The in vitro gene transfection efficiency of the polymer/DNA complexes was 

investigated using HepG2, HeLa, NIH3T3, MCF7, 4T1, HMSC and keratinocytes. Cells were 

seeded onto 24-well plates at a density of 1×10
5
 cells per 500 μl per well for GFP/luciferase 

gene delivery. After 24 h, the plating media were replaced with fresh growth media, followed 

by the drop-wise addition of 50 μL of the complex solution (containing 1.75 μg GFP plasmid 

DNA) or 50 μL of complex solution (containing 2.5 μg luciferase plasmid DNA) at various 

N/P ratios. Following 4 h of incubation, free complexes were removed by replacing the 
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medium in each well. After a further 68 h of incubation, the cell culture medium in each well 

was removed and the cells were rinsed once with 0.5 mL of phosphate-buffered saline (PBS, 

pH 7.4). For GFP protein expression analysis, 0.3 mL trypsin was added to detach cells in each 

well. Fresh growth medium (0.3 mL) was then added, and the cell suspension was centrifuged 

at 1500 rpm for 5 min. Two further cell-washing cycles of re-suspension and centrifugation 

were carried out in FACS buffer (PBS supplemented with 2% bovine serum albumin). The 

percentage of cells expressing GFP was then determined using a flow cytometer (FACSCalibur, 

BD Biosciences, USA) from 10000 events, and reported as mean ± standard deviations of 

triplicates.   

For luciferase expression assay, 0.2 mL of reporter lysis buffer (1x) was added to each 

well. The cell lysate collected after two cycles of freezing (-80 °C, 30 min) and thawing (room 

temperature, 30 min) was cleared by centrifugation at 14000 rpm for 5 min. After that, 20 μL 

of supernatant was mixed with 100 μL of luciferase substrate for the determination of relative 

light units (RLU) using a luminometer (Lumat LB9507, Berthold, Germany). The RLU 

readings were normalized against the protein concentration of the supernatant determined using 

the BCA protein assay to give the overall luciferase expression efficiency. In all in vitro gene 

expression experiments, naked DNA was used as a negative control, and unmodified PEI/DNA 

complexes prepared at the optimal N/P ratio (i.e. 10 for 25 kDa PEI), at which PEI induced 

high gene expression efficiency yet provided close to or more than 50% cell viability, were 

used as the positive control. Data were expressed as mean ± standard deviations of four 

replicates. 

3.2.8 Confocal imaging for GFP expression in HepG2 cells 

HepG2 Cells were treated in similar fashion as described in Section 3.2.7 with 

polymer/GFP plasmid DNA complexes at intended N/P ratios (unmodified PEI: N/P 15; 

K:PEI-TMC(1:25): N/P 30 and 50). After 3, 6, and 10 days of transfection, the medium in the 

wells containing transfected cells was removed and the cells were washed once with PBS and 

fixed with paraformaldehyde for 15 min. Then, the cells were washed 3 times with PBS and 

imaged using a Motorized Zeiss AxioVert 200M inverted microscope (Carl Zeiss, Germany). 

3.2.9 Cellular trafficking 

Luciferase plasmid DNA was labelled with YOYO-1 Iodide (Invitrogen, Singapore) 

according to the manufacturer’s instructions. Briefly, DNA (200 μg) was mixed with 300 μL of 



65 
 

1 μM YOYO-1 and incubated at room temperature for 2.5 h in the dark. HepG2 cells were 

seeded onto 24-well plates at a density of 1×10
5
 cells per 500 μL per well at 24 h before 

treatment. The plating MEM media were then replaced with 0.5 mL of fresh growth media, 

followed by the dropwise addition of 50 μL of the polymer/luciferease-gene-YOYO-1 

complexes solution prepared at N/P 50 (containing 2.5 μg labelled luciferase DNA). HepG2 

cells were incubated with the complexes at 37 °C for 0.5, 2, 4, 6 or 24 h. Then, the medium in 

each well was discarded and the cells were washed with PBS three times and fixed in formalin 

containing 1% paraformaldehyde solution (300 μL) for 15 min at 4 °C. After that, the cells in 

each well were washed with PBS for three times and stained with 300 μL of Hoechst 33342 

dye (5 μg/mL in PBS) for 40 min at room temperature in the dark. After five runs of rinsing 

with cold PBS, the cells were visualized by confocal microscopy (LSM 5 DUO, Carl Zeiss, 

Jena, Germany) to reveal the relative positions of the DNA plasmids to the nuclei. 

3.2.10 siRNA transfection and real-time reverse transcription-polymerase chain reaction (RT-

PCR) analysis 

The in vitro siRNA delivery property of the polymers was investigated using HeLa cell 

line. Cells were seeded onto 12-well plates at a density of 1×10
5
 cells per 1000 μl per well. 

After 24 h, the plating media were replaced with fresh growth media, followed by the drop-

wise addition of 100 μL of complex solution (containing 100 nM bcl-2 siRNA or negative 

control siRNA complexed with various polymers at N/P ratio of 50). Following 4 h of 

incubation, free complexes were removed by replacing the medium in each well. After a 

further 68 h of incubation, the cell culture medium in each well was removed and the cells 

were subjected to RNA extraction.  

Each condition was performed in duplicates to ensure the reproducibility of the results, 

and each sample was taken from an individual well of a 12 well plate. Total RNA from 

untreated HeLa cells or those transfected with polymer/bcl-2 siRNA or polymer/negative-

control-siRNA complexes was extracted with RNeasy
®

 Mini Kit (Qiagen, Singapore) 

according to the RNeasy
®

 Mini Handbook. The total RNA was then reverse-transcribed by 

SuperScript
TM

 III Reverse Transcriptase (Invitrogen, Singapore) using oligo(dT)18 primer 

according to the manufacturer’s instructions. The resulting cDNA was subjected to real-time 

PCR reaction, which was performed with SYBR
® 

Green PCR master mix (2x) (Stategene, 

Singapore) and detected with Rotorgene 6000 (Corbett Research). Custom primers were 

purchased for Bcl-2 (target gene) and β-Actin (endogenous control), with sequences as follows: 
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Bcl-2: sense 5’-CGACGACTTCTCCCGCCGCTACCGC-3’, antisense 5’-

CCGCATGCTGGGGCCGTACAGTTCC-3’; β-Actin, sense 5’-

GCTCGTCGTCGACAACGGCTC-3’, antisense 5’-CAAACATGATCTGGGTCATCTTCTC-

3’. β-Actin primer sequence is based on Invitrogen primers provided with the Superscript III 

reverse-transcription kit, and yields a 353-bp product. Custom Bcl-2 primer is based on the 

literature [257]. A 25 µL reaction mixture contained 12.5 µL of SYBR
®

 Green I PCR master 

mix (2×), 10 µM of each primer, 9.5 µL of DEPC-treated water, and 2 µL of the cDNA sample. 

Reaction conditions were set as follows: (1) incubation at 95 ºC for 10 min; (2) amplified for 

45 cycles (95 ºC for 45 s, 55 ºC for 45 s, 72 ºC for 90 s for each cycle); (3) 1 cycle of 72 °C for 

7 min for final extension; (4) ramp from 72°C to 95 °C, 1 degree change per step, 5 s interval 

between steps. The mean fold change of Bcl-2 gene expression level upon various treatments 

was normalized against the house-keeping gene β-Actin using the 2
-∆∆CT

 method [258]. 

3.2.11 Cytotoxicity test 

The cytotoxicity of the polymer/DNA and polymer/siRNA complexes was studied 

using the standard MTT assay protocol. Briefly, HepG2, HeLa, NIH-3T3, MCF7, 4T1, HMSC 

and keratinocytes were seeded onto 96-well plates at densities of 10000, 5000, 10000, 10000, 

10000, 10000 and 10000 cells per well, respectively, and allowed to grow to 60–70% 

confluence before treatment. Polymer/DNA or polymer/siRNA complexes at various N/P ratios 

were prepared in water as described in sections 3.2.4. The cells in each well were then 

incubated with growth medium comprising of 10 μL of polymer/nucleic acid complexes and 

100 μL of fresh medium for 4 h at 37 °C. Following incubation, the medium was replaced with 

fresh growth medium and incubated further for 68 h. Subsequently, 100 μL of growth medium 

and 20 μL of MTT solution (5 mg/mL in PBS) were added to each well and the cells were 

incubated for 4 h at 37 °C. Formazan crystals formed in each well were solubilized using 150 

μL of DMSO upon removal of growth media. A 100 μL aliquot from each well was then 

transferred to a new 96-well plate for determination of absorbance using a microplate 

spectrophotometer at wavelengths of 550 nm and 690 nm. Relative cell viability was expressed 

as [(A550−A690)sample / (A550−A690)control] ×100%. Data were expressed as mean ± standard 

deviations of at least eight replicates per N/P ratio. 

3.2.12 Organ specific luciferase gene expression in mice 

The animal protocols were approved by the Institutional Animal Care and Use 

Committee (IACUC), Biological Resource Centre, Agency for Science, Technology and 
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Research (A*STAR), Singapore. 6- to 7- week-old female Balb/c mice (the Jackson Laboratory, 

Singapore) were maintained under specific pathogen-free conditions. The mice were randomly 

divided into 10 groups of six mice each: PBS control, PEI/DNA (N/P 10), G:PEI-

Mannose(1:25)/DNA (N/P 30, 50, 80, 120), K:PEI-TMC(1:25)/DNA (N/P 50, 80) and O:PEI-

ethyl(1:25)/DNA (N/P 50, 80). The polymer/luciferase DNA complexes were formed in PBS 

according to the protocol mentioned in section 3.2.4, by mixing equal volumes of polymer and 

luciferase gene solutions at intended N/P ratios, and incubating at room temperature for 30 min. 

Then a dose of 200 µl polymer/luciferase gene complexes solution per mouse (contained 4 µg 

luciferase plasmid DNA) was injected intravenously via tail vein, with PBS solution as control. 

After injection, the mice were returned to their cages for 72 h with normal food and water. 72 h 

later, the various treated and control mice were asphyxiated with CO2, and heart, liver, spleen, 

lung and kidney from each sacrificed mouse were excised and stored in -80˚C freezer 

immediately until analysis. When analyzing the luciferase gene expression in each organ, the 

respective organ tissues were thawed in 4˚C fridge for 1 h, rinsed twice in PBS, and 1mL 

luciferase reporter lysis buffer (1x) (Promega, Singapore) was added to each sample. The tissue 

was then homogenized in 1 mL of reporter lysis buffer using a EpiShear™ Probe Sonicator 

(Active Motif, Singapore), and stored on ice. The organ homogenate was then centrifuged for 

20 min, at 14000 rpm and 4˚C, and the supernatant was transferred to another set of clean 1.5 

mL eppendorf tubes. Luciferase measurements were made by adding 100 µL of freshly 

reconstituted luciferase assay buffer (Promega, Singapore) to 20 µL of the supernatant of the 

organ homogenate. Luciferase activity was measured as RLU using a standard luminometer 

(Lumat LB9507, Berthold, Germany). The RLU readings were normalized against the protein 

concentration of the supernatant determined using the BCA protein assay to give the overall 

luciferase expression efficiency. Luciferase activity in the organs of PBS treated mice was used 

as negative control, and that in PEI/DNA N/P 10 treated mice were used as a positive control. 

Data were expressed as mean ± standard deviations of six replicates.  

3.2.13 Statistical analysis 

All data were presented as mean ± standard deviation. The statistical analyses between 

different groups were determined with unpaired Student’s t-test and were considered 

significant if p<0.05.  
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3.3 Results and Discussion  

3.3.1 Polymer synthesis and characterization  

In this study, facile nucleophilic addition chemistry was employed to conjugate 

functionalized cyclic carbonate monomers onto primary amines of PEI. Taking PEI-mannose 

conjugates for example, Scheme 1 shows the synthesis procedures and structures of some PEI-

mannose conjugates. The reaction was conducted in the presence or absence of DBU, giving 

polymer A/B/C or F/G, respectively. Quantitative comparisons between the integral intensities 

of methylene peaks of PEI and those of methyl peaks of MTC-mannose moieties gave the 

compositions of the polymers (Figure 5). The 
1
H NMR results showed that the content of 

mannose in the polymer was proportional to that in the feed (Table 2a and Table 2b). After 

substituting primary amines in PEI with the MTC-mannose, a large excess of 1 M HCl/MeOH 

solution was added to the reaction solution and refluxed for 2 h, removing the protecting 

groups of mannose moieties. Finally, all the small molecules were removed using ultrafiltration 

method (MW cut-off of the membrane: 5000 Da). As a result, a series of PEI-mannose 

conjugates with different feed ratios were synthesized. The resulting polymers, their feed ratios 

of PEI to mannose monomers, and nitrogen content, etc. were summarized in Table 2a. 
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Scheme 1. Synthesis procedures and structures of PEI-mannose conjugate. 
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Figure 5. 
1
H NMR spectrum of polymer B in D2O. 

Table 2. (a) Mannose-PEI conjugates synthesized and used in this thesis. Higher nitrogen 

content correlates with lower degree of Mannose attachment. Therefore the extent of 

mannosylation is: N>M>L>C>B=F=G>S>A>T. B, F, and G were synthesized by different 

methods of mannose conjugation (B: reacted for 1 h in the presence of DBU as catalyst; F: 

reacted for 18 h without DBU; G: reacted for 1 h without DBU). (PEI: 58 primary amines, 116 

secondary amines and 58 tertiary amines) 

Modified 

bPEI 

Name 

Cyclic 

Monomer 

 

Cyclic 

Monomer 

 MW 

Mass Feed 

Ratio 

(bPEI: 

Cyclic 

Monomer) 

Molar 

Feed Ratio 

(bPEI: 

Cyclic 

Monomer) 

Mol% 

Cyclic 

Monomer
a
 

Used 

DBU? 

Nitrogen 

Content 

(%) 

A 
MTC-

IPMAN 
402.15 3:1 1:8 13.7 Yes 24.4 

B 
MTC-

IPMAN 
402.15 1:1 1:25 43.1 Yes 16.3 

C 
MTC-

IPMAN 
402.15 1:3 1:75 129.3 Yes 8.14 

T 
MTC-

IPMAN 
402.15 4:1 1:6 10.3 No 26.2 

S 
MTC-

IPMAN 
402.15 2:1 1:12.5 21.6 No 21.7 

F 
MTC-

IPMAN 
402.15 1:1 1:25 43.1 No 16.3 
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G 
MTC-

IPMAN 
402.15 1:1 1:25 43.1 No 16.3 

L 
MTC-

IPMAN 
402.15 1:2.3 1:58 100.0 Yes 12.03 

M 
MTC-

IPMAN 
402.15 1:5 1:120 206.9 Yes 5.6 

N 
MTC-

IPMAN 
402.15 1:16 1:400 689.7 Yes 1.9 

a
 moles cyclic monomer / moles primary amine groups x 100%. 

(b) Summary of the NMR analysis of the mannose- modified PEI (25 kDa) polymers. 

Modified 

bPEI 

Name 

Cyclic 

Carbonate 

Mole 

Ratio Found
 

(NMR)  

bPEI: Carbamate 

Groups
a 

% of bPEI 

Primary Amine 

Groups Modified
 

(NMR)
b 

# of bPEI Primary 

Amine Groups 

Modified Per 

Mole bPEI
a,c 

A MTC-IPMAN 1:7 12.1 7 

B MTC-IPMAN 1:20 34.5 20 

C MTC-IPMAN 1:67
a
 115.5

b 
67

c
 

T MTC-IPMAN 1:5.5 9.5 5.5 

S MTC-IPMAN 1:12.2 21.0 12.2 

F MTC-IPMAN 1:23 39.7 23 

G MTC-IPMAN 1:23 39.7 23 

L MTC-IPMAN 1:53 91.4
b
 53 

M MTC-IPMAN 1:120
a
 206.9

b
 120

c
 

N MTC-IPMAN NA NA NA 
a based on 1 mole bPEI-25 = 10000 g, containing 58 primary amine groups per mole.   

b A value greater than 100% indicates reaction at all active primary amine sites, and reaction of 

secondary amine groups. 

c A number greater than 58 indicates reaction at all active primary amine sites, and reaction of 

secondary amine groups. 

 

Using a similar approach, Galactose/Glucose-PEI conjugates were synthesized. The 

single step, spontaneous ring-opening event allows different amounts of Galactose monomers 

to be substituted onto PEI, in a precisely controlled manner (Table 3a). Moreover, the 
1
H NMR 

results showed that the content of Galactose/Glucose functional cyclic monomers attached to 

the PEI was proportional to that in the feed (Table 3b). 

Table 3. (a) Galactose/Glucose-PEI conjugates synthesized and used in this thesis.  

Modified 

bPEI 

Name 

Cyclic 

Monomer 

 

Cyclic 

Monomer 

 MW 

Mass Feed 

Ratio 

(bPEI: 

Molar 

Feed Ratio 

(bPEI: 

Mol% 

Cyclic 

Monomer
a
 

Used 

DBU? 

Nitrogen 

Content 

(%) 
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Cyclic 

Monomer) 

Cyclic 

Monomer) 

U 
MTC-

IPGAL 
402.15 4:1 1:6 10.3 No 26.2 

R 
MTC-

IPGAL 
402.15 2:1 1:12.5 21.6 No 21.7 

I 
MTC-

IPGAL 
402.15 1:1 1:25 43.1 No 16.3 

H 
MTC-

IPGLU 
402.15 1:1 1:25 43.1 No 16.3 

a
 moles cyclic monomer / moles primary amine groups x 100%. 

(b) Summary of the NMR analysis of the Galactose/Glucose-modified PEI (25 kDa) polymers. 

Modified 

bPEI 

Name 

Cyclic 

Carbonate 

Mole 

Ratio Found
 

(NMR)  

bPEI: 

CarbamateGroups
a 

% of bPEI 

Primary Amine 

Groups Modified
 

(NMR)
b 

# of bPEI Primary 

Amine Groups 

Modified Per 

Mole bPEI
a,c 

U MTC-IPGAL 1:6 10.3 6 

R MTC-IPGAL 1:12 20.7 12 

I MTC-IPGAL 1:24 41.4 24 

H MTC-IPGLU 1:23 39.7 23 
a based on 1 mole bPEI-25 = 10000 g, containing 58 primary amine groups per mole.   

b A value greater than 100% indicates reaction at all active primary amine sites, and reaction of 

secondary amine groups. 

c A number greater than 58 indicates reaction at all active primary amine sites, and reaction of 

secondary amine groups. 

Moreover, the incorporation of hydrophobic groups has been suggested to increase 

polymer/DNA complex interaction with cell membrane and therefore enhance endocytosis of 

the complexes, which in turn leads to enhanced transfection efficiencies [236]. Commercially 

available trimethylene carbonate (TMC) was substituted onto PEI at various PEI:TMC ratios 

(1:1, 1:8, 1:25, and 1:100) to determine the optimum substitution ratio to achieve high 

transfection efficiency and minimal cytotoxicity.  

Reaction of nucleophilic PEI with hydrophobic group functionalized cyclic carbonates 

was done only for 1 h under ambient conditions without using a catalyst or producing any by-

products. The primary amines were converted into carbamate linkages and primary hydroxyl 

groups during the ring-opening event, while concurrently installing the functionality on the 

original cyclic carbonate [259, 260] (Scheme 2). The final polymer composition, or degree to 

which primary amines of PEI were substituted, was readily controlled by PEI:cyclic carbonate 
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feed ratios (Table 4a). Modification was monitored and quantified using 
1
H NMR. For example, 

by comparing relative integral intensities of PEI methylene signals (2.4-2.9 ppm) and TMC 

methylene signals (1.83 ppm), the degree of TMC incorporation was determined (Figure 6). 

The obtained values from 
1
H NMR experimentally matched the starting PEI:TMC feed ratio, 

suggesting the reaction was quantitative (Table 4b). This clean and controlled substitution 

reaction permitted a structural-functional relationship study between PEI polymer 

functionalization and resulting transfection capacity. It should be noted that when excess TMC 

relative to the PEI primary amines was used (PEI contains 58 primary, 116 secondary and 58 

tertiary amines [261]), the secondary amines were also found to react with the cyclic 

carbonates, as in the case of modification with 100 TMC groups (Table 4b, TMC 1:100). With 

a similar approach, MTC-Ethyl, MTC-Benzyl and MTC-Urea were attached to PEI at a molar 

ratio of 1:25 (Table 2a).  

 

Scheme 2. Single-step carbamate modification of branched PEI (PEI-TMC, PEI-Ethyl, PEI-

Benzyl and PEI-Urea). Reproduced with permission from [149]. Copyright © 2013 WILEY-

VCH Verlag GmbH & Co. KGaA, Weinheim. 

Table 4. (a) Hydrophobic groups-PEI conjugates synthesized and used in this thesis.  

Modified 

bPEI 

Name 

Cyclic 

Monomer 

 

Cyclic 

Monomer 

  MW 

Mass 

Feed 

Ratio 

(bPEI: 

Cyclic 

Monomer) 

Molar 

Feed 

Ratio 

(bPEI: 

Cyclic 

Monomer) 

Mol% 

Cyclic 

Monomer
a
 

Used 

DBU? 

Nitrogen 

Content 

(%) 

V TMC 102.1 100:1 1:1 1.7 No 16.3 

P TMC 102.1 12:1 1:8 13.7 No 25.92 

K TMC 102.1 4:1 1:25 43.1 No 30.0 

J TMC 102.1 1:1 1:100 172.4 No 32.2 

O 
MTC-

Ethyl 
188 2:1 1:25 43.1 No 22.12 

aa 
MTC-

Benzyl 
250.25 1.6:1 1:25 43.1 No 20.0 

ab 
MTC-

Urea 
322 1.2:1 1:25 43.1 No 18.0 

a
 moles cyclic monomer moles / primary amine groups x 100%. 
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(b) Summary of the NMR analysis of the hydrophobic groups-modified PEI (25 kDa) polymers. 

Modified 

bPEI 

Name 

Cyclic 

Carbonate 

Mole 

Ratio Found
 

(NMR)  

bPEI: 

CarbamateGroups
a 

% of bPEI 

Primary Amine 

Groups Modified
 

(NMR)
b 

# of bPEI Primary 

Amine Groups 

Modified Per 

Mole bPEI
a,c 

V TMC 1:1 1.7 1 

P TMC 1:7 12.1 7 

J TMC 1:109
a
 187.9

b
 109

c
 

K TMC 1:27 46.6 27 

O MTC-Ethyl 1:27 46.6 27 

aa MTC-Benzyl 1:29 46.6 29 

ab MTC-Urea 1:27 46.6 27 
a based on 1 mole bPEI-25 = 10000 g, containing 58 primary amine groups per mole.   

b A value greater than 100% indicates reaction at all active primary amine sites, and reaction of 

secondary amine groups. 

c A number greater than 58 indicates reaction at all active primary amine sites, and reaction of 

secondary amine groups. 

 

 

Figure 6. 
1
H NMR spectra of PEI-TMC at conjugation degrees of 1, 8, 25 and 100 (a, b, c and 

d respectively) in MeOD. 
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3.3.2 Size and zeta potential of polymer/DNA complexes 

Traditionally, small size of nanoparticles within the nano-size range is desirable in drug 

and gene delivery, as small nanoparticles can take advantage of the presence of 100-200 nm 

fenestrations along the sinusoidal endothelial wall which permit the extravasation of 

nanoparticles less than 200 nm into the liver [262]. Moreover, in the case of carcinoma, passive 

accumulation of the nanoparticles less than 400-600 nm can occur in the tumor via the 

enhanced permeation and retention (EPR) effect that was first described by Matsumura and 

Maeda in 1986 [263]. In gene delivery application in this thesis, particle size is an important 

parameter for dictating cellular uptake by non-specific endocytosis [264]. And here, 

nanoparticle sizes under 200 nm are considered desirable properties (as indicated by the 

threshold lines in Figure 7A-D). As can be seen from Figure 7A-D, generally, the size of the 

DNA complexes decreased with increasing N/P ratio, indicating that stronger electrostatic 

interaction between the cationic polymer and anionic DNA enabled the formation of more 

compact complexes. This effect was more prominent in polymers A, B, F, U, R, P, J, aa and 

ab, whose sizes plunged from over 400 and 1000 nm at N/P 5 to 119 and 103 nm at N/P 30 for 

A and B, and from over 250, 280, 370, 270, 260, 240, and 280 nm at N/P 10 to 91, 96, 99, 113, 

131, 94, and 98 nm at N/P 50 for F, U, R, P, J, aa and ab, respectively. Size of Polymer G 

decreased from 269 nm at N/P 10 to 202 nm at N/P 50, reaching the desired nano-size range. In 

each of the four graphs (Figure 7A-D), at most of the high N/P ratios, and under the same 

reaction conditions, the least amount of amine groups in S/T, U and V were used for functional 

carbonate modification, leading to stronger interactions between S/T, U, V and DNA and thus 

forming more compact DNA complexes as compared to other polymers. For example, polymer 

V produced the smallest DNA complexes (87 nm) among all the polymers. Polymer C, L and 

M did not complex DNA as effectively as other polymers, leading to large particles even at 

high N/P ratios (Figure 7A and B). The size distribution of the A/DNA, B/DNA, S/DNA, 

T/DNA, F/DNA, G/DNA, L/DNA, U/DNA, R/DNA, I/DNA, H/DNA, V/DNA, P/DNA, 

J/DNA, K/DNA, O/DNA, aa/DNA and ab/DNA complexes was found to be narrow with 

polydispersities of 0.178, 0.200, 0.168, 0.104, 0.129, 0.078, 0.150, 0.130, 0.120, 0.207, 0.209, 

0.149, 0.075, 0.104, 0.097, 0.123, 0.071 and 0.110, respectively. However, the polydispersities 

of M/DNA and N/DNA complexes were large, which were above 0.4 and 0.7, respectively 

(PDI=0: ideally homogenous; PDI=1: completely heterogeneous). As a comparison, DNA 

complexes formed with unmodified PEI at N/P 10 also had a small size (84 nm) and low 

polydispersity (0.120). 
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The net positive charge of DNA complexes also has a crucial function of interacting 

with the negatively charged phospholipid surface of the cell membrane, therefore affecting 

cellular uptake as well as gene transfection efficiency [110]. From Figure 7E-H, A/DNA, 

B/DNA, S/DNA, T/DNA, F/DNA, and G/DNA complexes had a comparable cationic charge 

density on the surface at N/P 10-50 as compared to unmodified PEI/DNA complexes at N/P 10 

(Zeta potential: ~20-26 mV for A/DNA, B/DNA, S/DNA, T/DNA, F/DNA, and G/DNA 

complexes and 22 mV for PEI/DNA complexes). C/DNA, L/DNA, M/DNA and N/DNA 

complexes had a significantly lower cationic charge density on the surface at the same N/P 

ratios (Zeta potential: ~5 to 13 mV for C/DNA, -11 to 2 mV for L/DNA, -14 to -8 mV for 

M/DNA, and -25 to -14 mV for N/DNA complexes). Therefore, given the big particle size 

and/or low zeta potential, polymer C, L, M, and N were expected to be less effective in gene 

transfection. 

For polymers conjugated with galactose, glucose or hydrophobic groups (Figure 7G 

and H), the zeta potentials were between 7 and 20 mV at all N/P ratios, slightly lower than that 

of unmodified PEI at N/P ratio of 10 (22 mV). Because positively charged particles are prone 

to plasma protein and erythrocyte adhesion, which might cause alternative complement 

pathway activation, limiting in vivo applications [169],  slightly lower zeta potentials 

demonstrated by these polymer/DNA complexes at N/P 10-50 were expected to exert less 

cytotoxicity as compared to the unmodified PEI.  
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Figure 7. Particle size (A, B, C, D) and zeta-potential (E, F, G, H) of polymer/DNA complexes 

at various N/P ratios specified. Unmodified PEI(25k)/DNA complexes prepared at N/P ratio of 

10 was used as a control, with a size of about 84 nm and a zeta potential of around 22 mV. 

Data were expressed as mean ± standard deviations of triplicates.  

3.3.3 DNA binding 

The condensation of DNA by the polymers to form complexes of appropriate sizes and 

surface charges is an important requirement for gene delivery. Thus the DNA binding ability is 

an important parameter determining the efficiency of the polymeric gene delivery. DNA 

retardation assay was employed to assess the gene binding ability of the various functional 
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groups-modified PEIs, using the unmodified PEI as positive control. As shown in Figure 8, like 

the unmodified PEI, polymers A, B, S, T, F, G, U, R, I, H, V, P, K, J, O, aa and ab were able 

to effectively bind to and condense DNA. The complete retardation of DNA mobility in the 

complexes was observed at or below N/P 3 for the above mentioned polymers. On the contrary, 

C, L, M and N had poor DNA binding ability, and complete DNA binding was observed only 

at N/P 15 for C. Moreover, even at N/P 30, L, M and N could not bind to and condense DNA 

effectively. This was because in these polymers, more amine groups were consumed for 

carbonate-mannose attachment, leaving insufficient numbers of amines for DNA binding. 

Finally, as a gold standard, unmodified PEI (25 kDa) also enabled complete DNA binding 

from a fairly low N/P ratio (i.e. N/P 3) (Figure 8).  

PEI 25 kDa/DNA     N/P ratios 
Ladder    1        2      2.5       3      3.5      4       6        10       15       0

 

A/DNA     N/P ratios 
ladder     1       2      2.5       3      3.5       4        6      10       15      0

 
B/DNA     N/P ratios 
ladder     1       2       2.5       3      3.5       4       6       10     15      0 

 

C/DNA     N/P ratios 
ladder  1         2        2.5     3       3.5       4       6      10        15      0 

 
T/DNA     N/P ratios 
ladder    1       2        2.5       3      3.5      4         6      10     15        0 

 

S/DNA     N/P ratios 
ladder       1       2      2.5     3      3.5       4       6        10     15      0 

 
F/DNA     N/P ratios 
ladder     1       2      2.5      3      3.5      4       6      10     15      0 

 

G/DNA     N/P ratios 
ladder      1       2       2.5      3      3.5     4       6        10     15      0 
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L/DNA     N/P ratios 
ladder    1       2       2.5      3        3.5     4       10      15       30      0 

 

M/DNA     N/P ratios 
ladder    1       2       2.5       3      3.5      4      10        15       30      0 

 
N/DNA     N/P ratios 
ladder    1       2       2.5       3       3.5     4         10     15       30      0 

 

U/DNA     N/P ratios 
ladder     1       2       2.5      3      3.5       4       6        10     15      0 

 
R/DNA     N/P ratios 
ladder    1       2       2.5        3      3.5     4       6         10     15      0 

 

I/DNA     N/P ratios 
ladder    1       2       2.5      3      3.5        4       6      10       15      0 

 
H/DNA     N/P ratios 
ladder     1       2       2.5      3      3.5     4       6       10     15      0 

 

V/DNA     N/P ratios 
ladder     1       2       2.5      3      3.5     4       6       10     15      0 

 
P/DNA     N/P ratios 
ladder        1       2       2.5      3      3.5     4       6      10     15      0 

 

K/DNA     N/P ratios 
ladder      1       2       2.5      3      3.5       4       6       10     15      0 
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J/DNA     N/P ratios 
ladder       1       2       2.5      3      3.5     4       6        10     15      0 

 

O/DNA     N/P ratios 
ladder    1       2       2.5      3        3.5       4       6      10     15      0 

 
aa/DNA     N/P ratios 
ladder    1       2       2.5        3      3.5     4       6        10     15      0 

 

ab/DNA     N/P ratios 
ladder    1       2       2.5       3      3.5       4       6      10       15      0 

 
Figure 8. Electrophoretic mobility of DNA in polymer/DNA complexes. 

Since the primary amines of PEI are protonated at physiological pH 7.4 to allow PEI to 

condense negatively charged DNA effectively into nano-sized complexes via electrostatic 

interactions, conjugating functional groups onto primary amines of PEI might have a negative 

impact on the gene binding efficiency of the modified PEI. In order to quantitatively 

investigate the relationship between the degree of PEI primary amine substitution and the 

amount of DNA bound to the polymer, the gene binding efficiency of TMC-modified PEIs 

(ratio from 1:1 to 1:100) was studied by measuring the fluorescence emitted by SYBR green 

dye when bound to free DNA [220]. For most polymers, the relative fluorescence emitted 

negatively correlated with the N/P ratio, indicating the inaccessibility of the dye to the 

condensed DNA (Figure 9). Substitution of PEI primary amines with an increasing number of 

TMC up to 25 slightly increased the IC50 value (N/P ratio at which the relative fluorescence is 

50%) of the modified PEIs as compared to unmodified PEI (IC50 value: ∼1.8 for PEI, ∼2.1 for 

V:PEI-TMC(1:1) and P:PEI-TMC(1:8), and ∼2.5 for K:PEI-TMC(1:25)), indicating 

marginally decreased gene binding capacity. In contrast, J:PEI-TMC(100) showed a drastic 

plunge in gene binding ability with an IC50 value of more than 10. The reason of this large IC50 

value is most likely due to the complete blockage of the primary amines in J, which are 

required for DNA binding. Moreover, modification of PEI with cyclic carbonate monomers 

functionalized with other hydrophobic groups (ethyl, benzyl and urea) at ratio of 1:25 (Figure 9) 

also increased the IC50 values to some extent (∼2.8 vs. ∼1.8 for PEI). 
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Figure 9. DNA binding analyzed as a decrease in fluorescence of SYBR green dye added to 

polymer/DNA complexes. A relative fluorescence of 100 represents the fluorescence of SYBR 

green intercalated with uncomplexed DNA, while 0 corresponds to the fluorescence of non-

intercalating SYBR green dye. Data were expressed as mean ± standard deviations of 

triplicates. Reproduced with permission from [150], Copyright © 2013 WILEY-VCH Verlag 

GmbH & Co. KGaA, Weinheim.  

3.3.4 In vitro GFP gene expression in various cell lines 

To assess the suitability of these polymers as gene delivery vectors, in vitro GFP and 

luciferase gene transfection and expression assays were performed in various cell lines: HepG2 

(human hepatocellular carcinoma cell line), HeLa (human cervical epithelial cancer cell line), 

NIH-3T3 (mouse fibroblast cell line), MCF-7 (human breast cancer cell line), 4T1 (mouse 

breast cancer cell line), HMSC (human mesenchymal stem cell), and keratinocytes (epidermal 

cell line). In this section we will first present GFP transfection efficiencies achieved by the 

various polymers. GFP transfection efficiency reflects the percentage of transfected cells. For 

most gene therapy cases, it is important for gene carriers to transfect a high percentage of cells 

such that a large number of cells incorporate the therapeutic gene.  

3.3.4.1 In vitro GFP gene expression in HepG2 

As shown in Figure 10, the polymers mediated high GFP expression in the presence of 

serum proteins in a polymer- and N/P ratio-dependent manner. Generally, increasing N/P ratio 

led to higher transfection efficiency. For HepG2 cells, unmodified PEI/DNA transfected 4.8% 

of the cells with GFP gene at N/P 15, and its transfection efficiency reached a plateau of about 

25% at N/P 40 and 50. For the mannose-modified PEIs (Figure 10A), as expected, C/DNA, 

L/DNA, M/DNA and N/DNA complexes gave much lower transfection efficiency than 
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unmodified PEI/DNA complexes due to their large particle size with huge size distribution and 

low cationic charge density on the surface (Figure 7). However, A and B with fewer amine 

groups used for MTC-mannose attachment were promising with transfection efficiency 

comparable to that of unmodified PEI at N/P ratios below 30, but greater than that of 

unmodified PEI at N/P 30-50. In addition, among all mannose-modified polymers, S, T and G 

were the best, demonstrating higher transfection efficiency than unmodified PEI at all N/P 

ratios tested, with the highest value reaching 37%, 36% and 47% at N/P 50, respectively 

(Figure 10A).  

For the glucose and galactose conjugated PEI, polymer R:PEI-Galactose(1:12.5) 

achieved the highest transfection efficiency at N/P 50, which was 37%, compared to polymers 

U:PEI-Galactose(1:6) (30%), I:PEI-Galactose(1:25) (27%), and H:PEI-Glucose(1:25) (22%), 

whose transfection efficiencies were comparable to that of the unmodified PEI at N/P 50 (25%) 

(Figure 10B). 

Hydrophobic groups greatly enhanced the transfection efficiency of PEI 25 kDa in 

HepG2 cells. PEI modified with TMC at different ratios were first used to determine the 

optimal carbamate functionalization for gene transfection (Figure 10C).  It was found that 1:25 

was the optimal PEI:cyclic carbonate ratio in terms of GFP transfection efficiency. Polymer 

K:PEI-TMC(1:25), whose transfection efficiency at N/P 50 reached 64%, currently was the 

highest value achieved among all the polymers in HepG2 cells, which was 5.5-fold higher than 

that of the unmodified PEI at N/P 20. Also, polymer P:PEI-TMC(1:8) had very high 

transfection efficiency, reaching 35% at N/P 50. Polymer J:PEI-TMC(1:100) and V:PEI-

TMC(1:1) had comparable GFP transfection efficiency (22-26%) with unmodified PEI at N/P 

50 (Figure 10C). When this optimized PEI:cyclic carbonate ratio was applied to the 

modification of PEI with various substituted hydrophobic carbonates, despite the additional 

hydrophobicity (PEI-ethyl, PEI-benzyl, PEI-urea), and hydrogen bonding capacity provided by 

urea groups (PEI-urea) [265, 266], PEI functionalized with commercially available TMC 

proved to be the most effective gene delivery vector (Figure 10D). Polymer O:PEI-Ethyl(1:25) 

also had very high transfection efficiency, reaching 48% at N/P 50, making it the second best 

in GFP gene transfection among the hydrophobic-groups modified PEI polymers. On the 

contrary, benzyl and urea conjugation onto PEI only provided a marginal improvement in gene 

transfection efficiency at N/P 40-50 as compared to unmodified PEI at N/P 20, probably 

because their hydrophobicity was too high [236]. A similar phenomenon was also observed by 
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Jia et al. that modification by benzyloxyl trimethylene carbonate (conducted at 70˚C for 48 h) 

did not improve gene transfection efficiency in HepG2 cells significantly [267]. Although the 

exact mechanism of hydrophobic groups such as TMC and ethyl contributing to increased 

transfection efficiency is not clear, it was suggested that they favorably modulated the 

polymer/DNA complexes action with or within cells, such as cell membrane adsorption and 

cellular uptake, as well as aided in the dissociation of the polymer-DNA complex and 

subsequent release of DNA, which otherwise would be strongly bound through ionic 

interactions on the cationic polymers [268]. These favorable features contributed by the 

hydrophobic modification may result in higher transfection efficiency than polymers 

depending solely on electrostatic interactions to complex and deliver DNA. 
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Figure 10. In vitro GFP gene transfection efficiency in HepG2 cells mediated by the various 

polymers at various N/P ratios indicated. Results represent mean ± standard deviation of 

triplicates. Polymer concentrations in the order of N/P ratios specified: unmodified PEI - 0, 1.6, 

2.4, 3.2, 4.0, 6.0, 8.0, 12.0, 16.0 and 20.0 mg/L. A - 0, 2.2, 3.3, 4.4, 5.5, 8.2, 11.0, 16.4, 21.9 

and 27.4 mg/L. B, F, G, H, I, J - 0, 3.3, 4.9, 6.6, 8.2, 12.3, 16.4, 24.6, 32.8 and 41.0 mg/L. C - 

0, 6.6, 9.9, 13.1, 16.4, 24.6, 32.8, 49.3, 65.7 and 82.1  mg/L. K - 0, 2.1, 3.1, 4.1, 5.2, 7.7, 10.3, 

15.5, 20.6 and 25.8 mg/L. L - 0, 4.4, 6.7, 8.9, 11.1, 16.7, 22.2, 33.3, 44.4, and 55.5 mg/L. M - 0, 

9.5, 14.3, 19.1, 23.9, 35.8, 47.7, 71.6, 95.5, and 119.3 mg/L. N - 0, 28.1, 42.2, 56.3, 70.3, 105.5, 

140.7, 211.0, 281.3, and 351.7 mg/L. T, U - 0, 2.0, 3.1, 4.1, 5.1, 7.7, 10.2, 15.3, 20.4, and 25.5 

mg/L. R, S - 0, 2.5, 3.7, 4.9, 6.2, 9.2, 12.3, 18.5, 24.6, and 30.8 mg/L. V - 0, 1.7, 2.5, 3.3, 4.2, 

6.2, 8.3, 12.5, 16.6, and 20.8 mg/L. P - 0, 1.8, 2.7, 3.6, 4.5, 6.7, 8.9, 13.4, 17.8, and 22.3 mg/L. 

O - 0, 2.4, 3.6, 4.8, 6.0, 9.1, 12.1, 18.1, 24.2, and 30.2 mg/L. 
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3.3.4.1.1 Confocal imaging of GFP gene expression in HepG2 

Confocal images of HepG2 cells transfected with GFP DNA plasmid by K:PEI-

TMC(1:25) after 3 days were consistent with the flow cytometry data. This result further 

showed that TMC-modified PEI at the optimal conjugation ratio (1:25) mediated efficient  GFP 

gene transfection of HepG2 cells, and yielded a larger number of cells transfected with green 

fluorescent GFP gene, at N/P 30 and 50, compared to the unmodified PEI at N/P 15 (Figure 11 

A).  

In addition, as expected, the expression of the GFP gene transfected by the non-viral 

polymers (carbamate modified PEIs) into the HepG2 cells was only transient, as the plasmids 

were not integrated into the HepG2 cell genome, but rather, they were gradually diluted and 

lost from generation to generation during cell division over time [269]. In order to test the 

duration of the gene expression, two of the best modified PEIs achieving high transfection 

efficiency in HepG2 cells were selected: G:PEI-Mannose (1:25) in the sugar modification 

group, and K:PEI-TMC(1:25) in the hydrophobic-group modification group. After using these 

two polymers to transfect GFP gene into HepG2 cells at N/P 50, with PEI (N/P 15) as a control, 

confocal images were taken at 3, 6, and 10 days after gene transfection to monitor the 

expression profiles over time. As shown in Figure 11B, the peak of gene expression was at 3 

days, and then the expression lasted until 6 days but slowly went off at 10 days. The same 

trend was observed for all the three polymers tested. These results provided guidance for the 

approximate effective time frame of the cargo gene expression after delivered by the modified 

PEIs, and might be useful for designing the gene delivery regime in preclinical/clinical trials in 

the future.  

 

A             PEI                          K:PEI-TMC(1:25)              K:PEI-TMC(1:25) 

 

 

 

 

N/P 15  N/P 30  N/P 50 

200 µm 
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B                               PEI                 K:PEI-TMC(1:25)   G:PEI-Mannose(1:25) 

                     

Green: GFP protein expressed from GFP plasmid transfected into the cells 

Figure 11. (A) Confocal images of HepG2 cells after incubation with unmodified or modified 

PEI/DNA complexes formed at various N/P ratios. N/P 15 was used to form PEI/DNA 

complexes as they were highly toxic at N/P 20-50. Carbamate modifications, especially TMC 

at PEI:TMC molar ratio of 1:25, increased gene transfection efficiency tremendously. (B) GFP 

gene delivered by the polymers could be expressed in HepG2 cells over a time of 6 days, 

however the expression diminished to very low level at day 10 after transfection.  

3.3.4.1.2 Intracellular trafficking of polymer/DNA complexes in HepG2 

In order to investigate the possible mechanism behind the drastically boosted GFP 

transfection efficiency provided by TMC modification of PEI at the ratio of 1:25, intracellular 

trafficking of the polymer/DNA complexes was monitored by confocal microscopy over a 24 h 

period. Prior to complex formation, the DNA was tagged with YOYO-1, a fluorescent DNA 

intercalator, which enabled real-time visualization and tracking of DNA localization within 

HepG2 cells. As is shown in Figure 12, after 2 h of incubation, DNA (green) delivered by both 

PEI and K:PEI-TMC(1:25) have entered the HepG2 cells but remained in the cytoplasmic 

region. At 4 h, more DNA was observed to accumulate around the nuclei for both polymer 
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treated cells. At 6 h, DNA was obvious and abundant in both the cytoplasm and the nuclei 

(cyan regions in blue-colored Hoechst-stained nuclei) of the cells incubated with K:PEI-

TMC(1:25) as compared to those incubated with unmodified PEI. Moreover, at 24 h, almost 50% 

of the cells treated with K:PEI-TMC(1:25)/DNA complexes showed DNA accumulation in the 

nuclei, whereas most of DNA molecules were still trapped in the peri-nuclear region of the 

cells treated with PEI/DNA complexes, and the amount of DNA entered the PEI treated cells 

was far less than in those treated by K:PEI-TMC(1:25). This result suggested that in contrast to 

unmodified PEI, K:PEI-TMC(1:25) provided more nuclear localization and better cell 

trafficking kinetics. It was postulated that weaker DNA binding of K:PEI-TMC(1:25) (Figure 9) 

led to more facile intracellular release of DNA allowing it to travel more easily to the nuclei. 

Furthermore, increased vector hydrophobicity by TMC attachment caused more favorable 

plasma membrane and nuclear envelope interactions, hence enhancing gene transfection 

efficiency (Figure 10D).  

 

Figure 12. Cellular trafficking of DNA. HepG2 cells were treated with unmodified PEI or 

TMC modified PEI (1:25)/DNA complexes formed at N/P 50. Blue: Hoechst stained nuclei; 

Green: DNA with YOYO-1 dye. K:PEI-TMC(1:25) provided higher nuclear localization and 

faster cell trafficking kinetics of DNA as compared to unmodified PEI. Reproduced with 

permission from [150], Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, 

Weinheim. 

3.3.4.2. In vitro GFP gene expression in other cell lines 

Based on the GFP gene transfection efficiency in HepG2 cells, the following eight 

polymers giving comparable or higher transfection efficiency than the unmodified PEI were 

selected and their gene transfection capacities were further tested in other cell lines: A:PEI-

Mannose(1:8) (synthesized with DBU), B:PEI-Mannose(1:25) (synthesized with DBU), T:PEI-
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Mannose(1:6) (without DBU), S:PEI-Mannose(1:12.5) (without DBU), F:PEI-Mannose(1:25) 

(reaction 18 h without DBU), G:PEI-Mannose(1:25) (reaction 1 h without DBU), K:PEI-

TMC(1:25) (without DBU), and O:PEI-ethyl(1:25) (without DBU).  

The mannose-modified PEIs (A, B, F and G) were tested in HeLa cells for their GFP 

gene transfection efficiency over three days, using PEI as a positive control and polymer 

C:PEI-Mannose(1:75) as a negative control. F gave the highest gene transfection efficiency of 

6.9% at N/P 50 among all mannose-modified PEIs tested (Figure 13). Although unmodified 

PEI yielded higher gene transfection efficiency (8.6%), it was much more cytotoxic than F at 

N/P ratio of 50 (to be shown in the cytotoxicity studies in Section 3.3.6.1). At comparable cell 

viability, unmodified PEI gave much lower transfection efficiency (< 2% at N/P 20) (Figure 

13). Moreover, surprisingly, polymer G which achieved the highest transfection in HepG2 cells 

showed lower GFP transfection efficiency compared to other mannose polymers in HeLa cells 

(2.8% at N/P 50 for G), suggesting that the transfection efficiency achieved using a 

transfection reagent varies depending on the cell type being transfected and the transfection 

conditions used. Therefore, the best transfection reagent and conditions for a particular cell 

type must be empirically and systematically determined because inherent properties of the cell 

influence the success of any specific transfection method [270, 271].  

 

Figure 13. In vitro GFP gene transfection efficiency in HeLa cells mediated by polymers at 

various N/P ratios indicated. Results represent mean ± standard deviation of triplicates. 

Polymer concentrations in the order of N/P ratios specified: unmodified PEI - 0, 1.6, 2.4, 3.2, 

4.0, 6.0, 8.0, 12.0, 16.0 and 20.0 mg/L. A - 0, 2.2, 3.3, 4.4, 5.5, 8.2, 11.0, 16.4, 21.9 and 27.4 

mg/L. B, F, G - 0, 3.3, 4.9, 6.6, 8.2, 12.3, 16.4, 24.6, 32.8 and 41.0 mg/L. C - 0, 6.6, 9.9, 13.1, 

16.4, 24.6, 32.8, 49.3, 65.7 and 82.1  mg/L.  
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Moreover, polymers T, S, and G were proven highly effective in transfecting GFP gene 

to the mouse embryonic fibroblast cell line NIH3T3, especially polymer G:PEI-Mannose(1:25), 

whose transfection efficiencies from N/P 20-50 were much higher than those of T:PEI-

Mannose(1:6) and S:PEI-Mannose(1:12.5). It even achieved 89% transfection efficiency at N/P 

100, equivalent to that of polymer T (Figure 14). Although the unmodified PEI had the highest 

transfection efficiency among the four polymers tested, especially from N/P 50-100, its high 

cytotoxicity (to be described in Section 3.3.6.1) compromised its potential clinical application.  

 

Figure 14. In vitro GFP gene transfection efficiency in NIH3T3 cells mediated by polymers at 

various N/P ratios indicated. Results represent mean ± standard deviation of triplicates. 

Polymer concentrations in the order of N/P ratios specified: unmodified PEI - 0, 4.0, 8.0, 12.0, 

16.0, 20.0, 32.1, and 40.1 mg/L. T - 0, 5.1, 10.2, 15.3, 20.4, 25.5, 40.8, and 51.0 mg/L. S - 0, 

6.2, 12.3, 18.5, 24.6, 30.8, 49.3, and 61.6mg/L. G - 0, 8.2, 16.4, 24.6, 32.8, 41.0, 65.6, and 82.0 

mg/L. 

 

In addition, polymers T, S, G, K and O were tested on MCF7 (human breast cancer) 

and 4T1 (mouse breast cancer) cells. For MCF7 cells, as can be seen in Figure 15A, except 

unmodified PEI, polymer K:PEI-TMC(1:25) achieved the second highest transfection 

efficiency (65% vs. 75% for PEI), while the three mannose modified PEIs (T, S, G) showed 

comparable transfection efficiency of around 45%, at N/P 50. Ethyl modified PEI only made 

26% of the MCF7 GFP positive at the highest N/P ratio tested (N/P 50). However, in 4T1 cells, 

polymer O:PEI-ethyl(1:25) was the best polymer, achieving 34% transfection efficiency at N/P 

100, which surpassed that of the unmodified PEI (30%). Additionally, in 4T1 cells, the 

mannose attachment ratio showed an inversed relationship with their transfection efficiency (T: 
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22%, S: 17% and G: 13%) (Figure 15B), which was on the contrary to the relationship between 

mannose conjugation degrees and transfection efficiencies achieved in HepG2 (T: 36%, S: 37% 

and G: 47%) (Figure 10A). The different performance of polymers in different cell lines again 

suggested that to select the best polymer to transfect therapeutic genes in a certain cell line, 

testing of the transfection efficiency of the selected polymers using a reporter plasmid first was 

absolutely necessary.  

 

 

 

Figure 15. In vitro GFP gene transfection efficiency in MCF7 (A) and 4T1 cells (B) mediated 

by polymers at various N/P ratios indicated. Results represent mean ± standard deviation of 

triplicates. Polymer concentrations in the order of N/P ratios specified: unmodified PEI - 0, 4.0, 

6.0, 8.0, 12.0, 16.0 and 20.0 mg/L. G - 0, 8.2, 12.3, 16.4, 24.6, 32.8 and 41.0 mg/L. K - 0, 5.2, 

7.7, 10.3, 15.5, 20.6 and 25.8 mg/L. T - 0, 5.1, 7.7, 10.2, 15.3, 20.4, 25.5 mg/L. S - 0, 6.2, 9.2, 

12.3, 18.5, 24.6, and 30.8 mg/L. O - 0, 6.0, 9.1, 12.1, 18.1, 24.2, and 30.2 mg/L. 

3.3.5 In vitro luciferase gene expression assay 

While GFP transfection efficiency reflects the percentage of cells successfully 

transfected with the plasmid for GFP expression, luciferase gene expression assay detects the 
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mean protein expression level in the transfected cells and therefore is also an important 

parameter of the gene transfection efficiency of the polymers.  

Firstly, when polymers A, B and C were used to transfect luciferase DNA plasmid to 

HepG2 cells, as can be seen in Figure 16, the luciferase expression profiles of A, B and 

unmodified PEI were similar, with luciferase expression level positively correlated with the 

N/P ratio, which reached a plateau of above 10
9
 RLU/mg protein from N/P 15 onwards. The 

luciferase expression level induced by C was two magnitudes lower than that mediated by 

unmodified PEI. The low gene transfection mediated by C/DNA complexes correlated well 

with its size, zeta potential, and DNA binding ability (Figure 7A, 7E, and 8). The large particle 

size and low positive charge density of the C/DNA complexes might lead to low cellular 

uptake, which together with inefficient DNA binding, might led to poor gene expression. 

 

Figure 16. In vitro luciferase expression levels in HepG2 cells, mediated by polymers at 

various N/P ratios indicated. Results represent mean ± standard deviation of triplicates. 

Polymer concentrations in the order of N/P ratios specified: unmodified PEI - 0, 1.1, 2.3, 3.4, 

4.6, 5.7, 8.6, 11.5, 17.2 and 22.9 mg/L. A - 0, 1.6, 3.1, 4.7, 6.3, 7.8, 11.7, 15.6 23.5 and 31.3 

mg/L. B - 0, 2.3, 4.7, 7.0, 9.4, 11.7, 17.6, 23.4, 35.1 and 46.8  mg/L. C - 0, 4.7, 9.4, 14.1, 18.8, 

23.5, 35.2, 46.9, 70.4 and 93.8 mg/L. 

Furthermore, polymers T:PEI-Mannose(1:6), S:PEI-Mannose(1:12.5), G:PEI-

Mannose(1:25), and hydrophobic groups-modified PEIs K:PEI-TMC(1:25), and O:PEI-

ethyl(1:25) were used to deliver luciferase gene to MCF7, 4T1, HMSC, and keratinocytes, 

respectively. As can be seen in Figure 17A, in MCF7 cells, Polymer G proved to be the best in 

the mannose series of polymers, reaching more than 8*10
9
 RLU/mg protein from N/P 15 

onwards, while polymer T and S reached around 10
9
 RLU/mg protein at the highest N/P ratio 
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50. K:PEI-TMC(1:25) achieved the highest luciferase expression value among all polymers at 

N/P 50, namely 1.5*10
10

 RLU/mg protein. Additionally, ethyl group modified PEI (1:25) 

achieved high luciferase gene expression only at N/P 50, which was 1*10
10

 RLU/mg protein, 

whereas it had similar gene expression levels with polymer S and T at lower N/P ratios. 

Moreover, the expression level for unmodified PEI at N/P 40 and 50 was not presented because 

of the high cytotoxicity induced by PEI, therefore the luciferase expression reading was 

negligible.  

Regarding the mouse breast cancer cell line 4T1, it was shown in Figure 17B that the 

degree of mannosylation had a negative impact on the luciferase gene transfection efficiency--- 

the larger the mannose attachment ratio, the lower the transfection efficiency of the modified 

PEI, especially at high N/P ratio of 100, which showed the same trend as the GFP transfection 

efficiency data in 4T1 (Figure 15B). Moreover, K:PEI-TMC(1:25) achieved the highest degree 

of transfection among all the modified PEIs at N/P 80: 5.5*10
9
 RLU/mg protein. However, the 

luciferase transfection capabilities of the modified PEIs were still inferior as compared to the 

unmodified PEI, which had the highest gene expression level of 9*10
9
 RLU/mg protein, at N/P 

100. This matched the GFP transfection data in Figure 15B as well.  

However, the luciferase gene expression profiles for these polymers were different in 

HMSC and keratinocytes. In these two cell lines, G:PEI-Mannose(1:25) achieved the highest 

gene expression level, which was 1.3*10
9
 RLU/mg protein at N/P 40 in HMSC (Figure 17C), 

and 1.8*10
9
 RLU/mg protein at N/P 20 in the keratinocytes (Figure 17D), respectively. These 

values were at least one magnitude higher than those achieved by the unmodified PEI: 2.5*10
7
 

RLU/mg protein at N/P 40 in HMSC, and 3.8*10
8
 RLU/mg protein at N/P 20 in the 

keratinocytes. Moreover, T:PEI-Mannose(1:6) and S:PEI-Mannose(1:12.5) achieved luciferase 

gene expression level which was one magnitude lower than that of G:PEI-Mannose(1:25) in 

both HMSC and the keratinocytes. In addition, M:PEI-Mannose(1:120), which was used here 

as a negative control, much like the case of polymer C in HepG2 cells, induced a luciferase 

expression level which was three magnitudes lower than that mediated by unmodified PEI. The 

low gene transfection mediated by M/DNA correlated well with its zeta potential data (Figure 

7F) and DNA retardation gel picture (Figure 8). The negative polyplex charge might lead to 

low cellular uptake and thus low gene expression. Furthermore, among the hydrophobically 

modified PEIs, K:PEI-TMC(1:25), which achieved the highest luciferase transfection 

efficiency in the breast cancer cell lines (Figure 17A and B), in this case had comparable 
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luciferase gene expression level as S:PEI-Mannose(1:12.5); and O:PEI-ethyl(1:25) had an even 

lower gene expression level: around 6.5*10
7
 RLU/mg protein at N/P 40 and N/P 20, in HMSC 

and keratinocytes, respectively.  

The different behaviors of the polymers in different cell lines again suggested that the 

nature of cells, and perhaps different cell surface proteins interacting favorably with different 

modification groups, were a critical factor determining the suitability of using a modified PEI 

as a gene delivery vector to achieve desirable therapeutic efficacies. 
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Figure 17. In vitro luciferase expression levels in (A) MCF7, (B) 4T1, (C) HMSC, and (D) 

keratinocytes, mediated by polymers at various N/P ratios indicated. Results represent mean ± 

standard deviation of triplicates. Polymer concentrations in the order of N/P ratios specified: 

(A) unmodified PEI - 0, 5.7, 8.6, 11.5, 17.2, 22.9 and 28.6 mg/L. T - 0, 7.3, 10.9, 14.6, 21.9, 

29.1 and 36.4 mg/L. S - 0, 8.8, 13.2, 17.6, 26.4, 35.2 and 44.0 mg/L. G - 0, 11.7, 17.6, 23.4, 

35.1, 46.8 and 58.6 mg/L. K - 0, 7.4, 11.0, 14.7, 22.1, 29.5 and 36.8 mg/L. O - 0, 8.6, 12.9, 

17.3, 25.9, 34.5 and 43.2 mg/L. (B) unmodified PEI - 0, 5.7, 11.5, 17.2, 22.9, 28.6, 45.8 and 

57.3 mg/L. T - 0, 7.3, 14.6, 21.9, 29.1, 36.4, 58.3 and 72.9 mg/L. S - 0, 8.8, 17.6, 26.4, 35.2, 

44.0, 70.4 and 88.0 mg/L. G - 0, 11.7, 23.4, 35.1, 46.8, 58.6, 93.7 and 117.1 mg/L. K - 0, 7.4, 

14.7, 22.1, 29.5, 36.8, 58.9 and 73.7 mg/L. O - 0, 8.6, 17.3, 25.9, 34.5, 43.2, 69.0, and 86.3 

mg/L. (C) unmodified PEI - 0, 8.6, 17.2 and 22.9 mg/L. T - 0, 10.9, 21.9 and 29.1 mg/L. S - 0, 

13.2, 26.4 and 35.2 mg/L. G - 0, 17.6, 35.1 and 46.8 mg/L. M - 0, 51.1, 102.3 and 136.4 mg/L. 

K - 0, 11.0, 22.1 and 29.5 mg/L. O - 0, 12.9, 25.9 and 34.5 mg/L. (D) unmodified PEI - 0, 2.3, 

4.0, 5.7, 8.6 and 11.5mg/L. T - 0, 2.9, 5.1, 7.3, 10.9 and14.6 mg/L. S - 0, 3.5, 6.2, 8.8, 13.2 and 

17.6 mg/L. G - 0, 4.7, 8.2, 11.7, 17.6 and 23.4 mg/L. K - 0, 2.9, 5.2, 7.4, 11.0 and 14.7  mg/L. 

O - 0, 8.6, 12.9, 17.3, 25.9, 34.5 and 43.2 mg/L. 
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3.3.6 Cytotoxicity test 

The cytotoxicity of unmodified PEI was likely due to polymer aggregation on cell 

surfaces, impairing important membrane functions, as PEI has been reported to induce hole 

formation or expand the size of pre-existing holes on the cellular membrane [272]. After 

consecutively feeding a cell with many membrane-disrupting particles, high toxicity was 

observed, which might be a consequence of the escape of endo/lysosomal enzyme into the 

cytoplasm, disturbing vital cellular processes [106]. Although PEI mediates high gene 

transfection efficiency at a low N/P ratio of 10, its high toxicity at higher concentrations 

impedes its potential in vivo application. As the strong positive charge of PEI has been 

considered to be the main culprit of its high cytotoxicity [273], various functionalized cyclic 

monomers were used in this thesis to partially shield the primary amines of PEI with the 

purpose of reducing its toxicity. 

In order to evaluate the cytotoxicity of the polymer/DNA complexes, MTT assay was 

performed on HepG2, HeLa, NIH3T3, MCF7, 4T1, HMSC, and keratinocytes. The GFP 

plasmid was used for complex formation for treatment of HepG2, HeLa, and NIH3T3 cells, 

while the luciferase plasmid was used for complex formation and treatment on MCF7, 4T1, 

HMSC, and keratinocytes. 

3.3.6.1 Cytotoxicity test for HepG2, HeLa and NIH3T3 cells 

The results of cytotoxicity studies for the modified PEIs are shown as follows. The 

viability of HepG2 and HeLa cells treated with unmodified PEI/DNA complexes drastically 

plunged with increasing PEI concentration (or N/P ratio), yielding cell viability of less than 60% 

at N/P 20 and higher for HepG2 cells (Figure 18A-C) and less than 46% at N/P 30 and higher 

for HeLa cells (Figure 18D). In particular, at N/P 50, the cell viability was only about 20% for 

HepG2 and only 4.6% for HeLa after treatment with unmodified PEI/DNA complexes. 

However, all the modified PEI/DNA complexes were much less cytotoxic than unmodified 

PEI/DNA complexes at N/P 20-50 in both HepG2 and HeLa cell lines. At N/P 50, the viability 

of the cells treated with A, B, C, T, S, F, G, L, M, N, U, R, I, H, V, P, K, J, O, aa, ab/DNA 

complexes was 57%, 57%, 82%, 87%, 84%, 63%, 73%, 95%, 94%, 94%, 87%, 81%, 87%, 

82%, 75%, 91%, 87%, 89%, 99%, 72%, and 66%, respectively for HepG2 (Figure 18A-C) and 

nearly 100% for HeLa (Figure 18D).  
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Similar trend was observed in NIH3T3 cells. Unmodified PEI was highly toxic, with 

cell viability rapidly dropping from 60% at N/P 40 to 1.3% at N/P 80 and 100 (Figure 18E). 

Although PEI had over 90% GFP transfection efficiency at N/P 80 and 100 in NIH3T3 (Figure 

14), the high cytotoxicity suggest that the high GFP signal observed in flow cytometry might 

be due to auto-fluorescence of the dead cells which emitted green fluorescent light with a peak 

intensity around 560  nm [274]. On the contrary, the modified PEIs showed greatly mitigated 

cytotoxicity. T:PEI-Mannose(1:6) and S:PEI-Mannose(1:12.5) were only toxic at N/P 80 and 

100, giving cell viability of 63% and 28% when treated by T/DNA, and 78% and 41% when 

treated by S/DNA. Additionally, higher mannose conjugation ratio significantly improved the 

cell survival rates, presumably because more primary amine groups were blocked, shielding 

more positive charges of PEI. Interestingly, when the mannosylation ratio increased to 1:25, 

polymer G totally eliminated the cytotoxicity problem of the unmodified PEI, achieving 100% 

cell viability even at N/P 100 (Figure 18 E).  

In the present study, cell viability was significantly enhanced by simple modification 

with mannose and other functional sugar carbonates such as galactose and glucose. Mannose is 

a common metabolite and research has shown direct utilization of mannose for mammalian 

glycoprotein biosynthesis [275]. Therefore it should not impose any toxic effects on the cells. 

Indeed, comparing to unmodified PEI, a much higher percentage of HepG2 cells transfected by 

sugar modified PEIs were healthy even at N/P 30-50 (Figure 18A and B), nearly all HeLa cells 

treated by them were viable even at N/P 50 (Figure 18D), and nearly all NIH3T3 cells were 

viable by polymer G treatment even at N/P 100 (Figure 18E). Importantly, at these N/P ratios, 

gene transfection efficiency provided by the modified PEI was significantly higher than that 

given by unmodified PEI at N/P 15 (Figure 10, 13 and 14). Although cationic polymers with 

high charge density had strong cell lytic and toxic properties, a reduction of charge density 

resulted in less cell toxicity [276]. Therefore the significantly reduced cytotoxicity by sugar 

attachment was most likely due to the shielding of the primary amines of PEI, leading to 

reduced charge density.  

Similarly, hydrophobic group-conjugation and blockage of the primary amines of PEI 

also accounted for the reduced cytotoxicity for the respective polymers. In fact, even 

modification with only a single TMC equivalently made V:PEI-TMC(1:1) minimally toxic at 

N/P 50 (75% vs 20% for unmodified PEI) for HepG2 (Figure 18C). The large cytotoxicity 

reduction could be due to the formation of a hydroxyl shell on the polymer/DNA complexes, 
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which shielded the cationic surface charge, rendering them less cytotoxic. With increasing 

TMC conjugation degree of PEI, additional toxicity reduction, albeit relatively mild, was 

observed. Moreover, modification using other functional hydrophobic carbonates such as ethyl, 

benzyl and urea also demonstrated cell viability enhancement. Among the hydrophobic group-

modified PEIs at 1:25 ratio, O:PEI-ethyl(1:25) demonstrated the greatest cytotoxicity reduction 

at N/P 30-50 in HepG2 (Figure 18C). Despite the lack of the exact mechanism of cytotoxicity 

reduction, it can be postulated that a decreased quantity of free primary amines diminishes the 

surface charge density of PEI/DNA nanocomplexes (Figure 7H), hence cell membrane rupture 

and consequent cytotoxicity was significantly mitigated.  
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Figure 18. Viability of HepG2 cells (A, B, C), HeLa cells (D), and NIH3T3 cells (E) after 

incubation with polymer/DNA complexes at various N/P ratios in comparison to unmodified 

PEI/DNA complexes. Results represent mean ± standard deviation of at least 8 replicates. (A-D) 
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Polymer concentrations in the order of N/P ratios specified: unmodified PEI - 0.8, 1.6, 2.4, 3.2, 

4.0, 6.0, 8.0, 12.0, 16.0 and 20.0 mg/L. A - 1.1, 2.2, 3.3, 4.4, 5.5, 8.2, 11.0, 16.4, 21.9 and 27.4 

mg/L. B, F, G, H, I, J - 1.6, 3.3, 4.9, 6.6, 8.2, 12.3, 16.4, 24.6, 32.8 and 41.0 mg/L. C - 3.3, 6.6, 

9.9, 13.1, 16.4, 24.6, 32.8, 49.3, 65.7 and 82.1  mg/L. K - 1.0, 2.1, 3.1, 4.1, 5.2, 7.7, 10.3, 15.5, 

20.6 and 25.8 mg/L. L - 2.2, 4.4, 6.7, 8.9, 11.1, 16.7, 22.2, 33.3, 44.4, and 55.5 mg/L. M - 4.8, 

9.5, 14.3, 19.1, 23.9, 35.8, 47.7, 71.6, 95.5, and 119.3 mg/L. N - 14.1, 28.1, 42.2, 56.3, 70.3, 

105.5, 140.7, 211.0, 281.3, and 351.7 mg/L. T, U - 1.0, 2.0, 3.1, 4.1, 5.1, 7.7, 10.2, 15.3, 20.4, 

25.5 mg/L. R, S - 1.2, 2.5, 3.7, 4.9, 6.2, 9.2, 12.3, 18.5, 24.6, and 30.8 mg/L. V - 0.8, 1.7, 2.5, 

3.3, 4.2, 6.2, 8.3, 12.5, 16.6, and 20.8 mg/L. P - 0.9, 1.8, 2.7, 3.6, 4.5, 6.7, 8.9, 13.4, 17.8, and 

22.3 mg/L. O - 1.2, 2.4, 3.6, 4.8, 6.0, 9.1, 12.1, 18.1, 24.2, and 30.2 mg/L. (E) Polymer 

concentrations in the order of N/P ratios specified: unmodified PEI -4.0, 8.0, 12.0, 16.0, 20.0, 

32.1, and 40.1 mg/L. T - 5.1, 10.2, 15.3, 20.4, 25.5, 40.8, and 51.0 mg/L. S - 6.2, 12.3, 18.5, 

24.6, 30.8, 49.3, and 61.6mg/L. G - 0, 8.2, 16.4, 24.6, 32.8, 41.0, 65.6, and 82.0 mg/L. 

3.3.6.2. Cytotoxicity test in other cell lines 

Mannose-modified polymers T:PEI-Mannose(1:6), S:PEI-Mannose(1:12.5), G:PEI-

Mannose(1:25), and hydrophobic groups-modified K:PEI-TMC(1:25), and O:PEI-ethyl(1:25) 

were used to deliver luciferase gene to MCF7, 4T1, HMSC, and keratinocytes, and the 

cytotoxicity caused by the polymer/luciferase DNA complexes in these cell lines were tested 

by MTT assay.  

As shown in Figure 19A, unmodified PEI caused very high toxicity in MCF7, with less 

than 30% viability at N/P 30 and above. The mannose-modified PEI series drastically 

promoted the viability of the cells, and the survival rate of MCF7 positively correlated with the 

degree of mannosylation at N/P 50, as the viability of MCF7 treated by T/DNA, S/DNA and 

G/DNA complexes was 70%, 80%, and 90%, respectively. O:PEI-ethyl(1:25) also enhanced 

the viability of MCF7 to above 70% at all N/P ratios. However, TMC modified PEI at 1:25 did 

not provide a good relief of the toxicity (40% cell viability at N/P 50). The same phenomenon 

was observed in TMC-PEI treated HMSC at N/P 40 (Figure 19C), and in this case, K:PEI-

TMC(1:25) caused even more cytotoxicity compared to the unmodified PEI (viability was 32% 

for K vs. 49% for PEI). Moreover, 4T1 cells, the mouse breast cancer cell line showed more 

tolerance to the unmodified PEI, as 62% cells survived even at a high N/P ratio of 100. 

However, in contrast to MCF7, K:PEI-TMC(1:25) was completely not toxic in 4T1 cells at all 

the N/P ratios tested (Figure 19B). O:PEI-ethyl(1:25), however, caused even greater toxicity 

than the unmodified PEI, especially at N/P 80 and 100 (viability was 57%, 27% for O vs 66%, 

62% for the unmodified PEI). Finally, in keratinocytes, all the modified PEIs decreased the 

cytotoxicity of the unmodified PEI 25kDa significantly, by at least 25%, at the highest N/P 

ratio tested (Figure 19D). Although the reason of the toxicity associated with TMC and Ethyl 
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modifications in these cell lines is still unclear, similar phenomenon was observed before that 

MCF7 cell viability was seen to decrease with increasing degree of trimethylation on chitosan 

which delivered drugs and gene to MCF7[277]. Also, it was reported in the literature that 

addition of aliphatic hydrocarbon (alkyl group) in the structure of hydrophobic substitution for 

chitosan induced toxicity on cells, while the addition of aromatic hydrocarbon (aryl group) in 

the hydrophobic substitution reduced toxicity on cells [278]. The difference in cytotoxicity 

induced by the same polymer between cell lines may be a valuable asset suggesting researchers 

to preferentially transfect specific cell types with appropriate vectors. Also, when new 

polymeric materials and derivatives are developed, they need to be tested individually to assess 

their toxicity and transfection efficiency on the desired cell lines so that a comprehensive 

understanding of their properties could be attained.  

Combined with the luciferase gene transfection results, the best polymers achieving 

high luciferase protein expression level while maintaining minimal cytotoxicity were: G:PEI-

Mannose(1:25) for MCF7, HMSC and keratinocytes, and K:PEI-TMC(1:25) for 4T1 cells. 

Furthermore, the low cytotoxicity of polymer G/DNA and K/DNA complexes in these 

respective cell lines ensured that luciferase transfection results were reliable without any 

superficial amplification, as superficial amplification might occur when the RLU of luciferase 

was normalized against a low protein content of the cells in case a polymer exerts high 

cytotoxicity, which could be the case of the unmodified PEI at high N/P ratios [279]. 

Furthermore, T:PEI-Mannose(1:6) and S:PEI-Mannose(1:12.5) improved the viability in all 

four cell lines, and  their luciferase gene transfection efficiency was slightly lower than the best 

polymers in the four cell lines.  

 

0

20

40

60

80

100

120

10 15 20 30 40 50

C
e
ll
 V

ia
b

il
it

y
 (

%
) 

N/P ratio 

T:PEI-Mannose(1:6) S:PEI-Mannose(1:12.5)
G:PEI-Mannose(1:25) K:PEI-TMC(1:25)
O:PEI-ethyl(1:25) bPEI (25k)

A 



102 
 

 

 

 

Figure 19. Viability of (A) MCF7, (B) 4T1, (C) HMSC, and (D) keratinocytes after incubation 

with polymer/DNA complexes at various N/P ratios in comparison to unmodified PEI/DNA 
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complexes. Results represent mean ± standard deviation of at least 8 replicates. Polymer 

concentrations in the order of N/P ratios specified: (A) unmodified PEI - 5.7, 8.6, 11.5, 17.2, 

22.9 and 28.6 mg/L. T - 7.3, 10.9, 14.6, 21.9, 29.1 and 36.4 mg/L. S - 8.8, 13.2, 17.6, 26.4, 

35.2 and 44.0 mg/L. G - 11.7, 17.6, 23.4, 35.1, 46.8 and 58.6 mg/L. K - 7.4, 11.0, 14.7, 22.1, 

29.5 and 36.8 mg/L. O - 8.6, 12.9, 17.3, 25.9, 34.5 and 43.2 mg/L. (B) unmodified PEI - 0, 5.7, 

11.5, 17.2, 22.9, 28.6, 45.8 and 57.3 mg/L. T - 0, 7.3, 14.6, 21.9, 29.1, 36.4, 58.3 and 72.9 

mg/L. S - 0, 8.8, 17.6, 26.4, 35.2, 44.0, 70.4 and 88.0 mg/L. G - 0, 11.7, 23.4, 35.1, 46.8, 58.6, 

93.7 and 117.1 mg/L. K - 0, 7.4, 14.7, 22.1, 29.5, 36.8, 58.9 and 73.7 mg/L. O - 0, 8.6, 17.3, 

25.9, 34.5, 43.2, 69.0, and 86.3 mg/L. (C) unmodified PEI - 8.6, 17.2 and 22.9 mg/L. T - 10.9, 

21.9 and 29.1 mg/L. S - 13.2, 26.4 and 35.2 mg/L. G - 17.6, 35.1 and 46.8 mg/L. K - 11.0, 22.1 

and 29.5 mg/L. O - 12.9, 25.9 and 34.5 mg/L. (D) unmodified PEI - 2.3, 4.0, 5.7, 8.6 and 

11.5mg/L. T - 2.9, 5.1, 7.3, 10.9 and14.6 mg/L. S - 3.5, 6.2, 8.8, 13.2 and 17.6 mg/L. G - 4.7, 

8.2, 11.7, 17.6 and 23.4 mg/L. K - 2.9, 5.2, 7.4, 11.0 and 14.7  mg/L. O - 8.6, 12.9, 17.3, 25.9, 

34.5 and 43.2 mg/L. 

3.3.7 siRNA mediated Bcl-2 knockdown in HeLa cells 

Since several polymers have been identified which could successfully deliver GFP and 

luciferase plasmid DNA to various cell lines and at the same time greatly reduce the 

cytotoxicity caused by the unmodified PEI, it would be interesting to investigate the 

effectiveness of these polymers to deliver siRNA to the cells and the associated cytotoxicity of 

the polymer/siRNA complexes, as knocking down erratic gene expression is another crucial 

aspect of an effective gene therapy. As shown in Figure 20, Bcl-2 siRNA or negative control 

siRNA was successfully delivered inside HeLa cells using polymers A and B at N/P ratio of 50, 

and Bcl-2 down-regulation at the mRNA level was manifest. For Bcl-2 knockdown mediated 

by A and B/siRNA complexes, Bcl-2 mRNA expression levels were reduced to 29% and 25% 

of that in the untreated HeLa cells, respectively, which was comparable to the knockdown level 

induced by unmodified PEI/siRNA complexes (26%). In a control experiment where negative 

control siRNA (i.e. scrambled siRNA) was used, no mRNA down-regulation was observed, 

thus proving the validity of the knockdown results by Bcl-2 siRNA delivery. On the other hand, 

siRNA delivery using polymer C was not successful as the amount of Bcl-2 mRNA was still 

85% of that in the untreated cells, which coincided with the inferior GFP gene transfection 

efficiency mediated by C in HeLa cells (Figure 13). 
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Figure 20. Downregulation of Bcl-2 mRNA in HeLa cells at siRNA concentration of 100 nM 

and N/P 50. The corresponding polymer concentrations used were: unmodified PEI - 8.4 mg/L; 

A - 11.4 mg/L; B - 17.1 mg/L; C - 34.3 mg/L. Results represent mean ± standard deviation of 

triplicates. 

 

3.3.8 Viability of HeLa cells after being treated with polymer/siRNA complexes 

The HeLa cells appeared to be resistant to Bcl-2 siRNA-induced cell death at the 

siRNA and polymer concentrations tested in this thesis. As can be seen in Figure 21, there was 

no difference between the cytotoxicity when Bcl-2 siRNA or scrambled siRNA (the negative 

control) was delivered into HeLa cells at various N/P ratios. Therefore any difference in cell 

viability was due to the nature of the polymers used. In fact, 82% of the cells were alive after 

treatment with unmodified PEI/Bcl-2 siRNA complexes (N/P ratio 60). However, when 

polymers A, B and C were used, nearly 100% of the HeLa cells were viable at N/P 60. All in 

all, together with the mRNA knockdown data, A and B were effective in complexing with 

negatively charged siRNA and mediating siRNA delivery into HeLa cells, leading to 

successful Bcl-2 mRNA down-regulation to a level comparable to that achieved by unmodified 

PEI while maintaining excellent cell viability. Although HeLa cells were resistant to death 

after Bcl-2 mRNA knockdown, this mRNA knockdown was frequently reported to sensitize 

cancer cells to anticancer drugs [280-283]. Hence, there is huge potential in using the 

mannose-modified PEIs to deliver Bcl-2 siRNA into HeLa cells as part of a multi-component 

treatment regime to boost the effect of chemotherapeutic agents such as cisplatin, 5-

fluorouracil (5-FU) and 10-hydroxycamptothecin (HCPT). 
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Figure 21. Viability of HeLa cells after being treated with polymer/siRNA complexes at 

various N/P ratios. siRNA concentration was fixed at 100 nM. Results represent mean ± 

standard deviation of 8 replicates. The polymer concentrations corresponding to different N/P 

ratios used: unmodified PEI - 0.7, 1.0, 1.3, 1.7, 2.5, 3.4, 5.0, 6.7, 8.4 and 10.1mg/L; A - 0.9, 1.4, 

1.8, 2.3, 3.4, 4.6, 6.9, 9.2, 11.4 and 13.7 mg/L; B - 1.4, 2.1, 2.7, 3.4, 5.1, 6.9, 10.3, 13.7, 17.1 

and 20.6  mg/L; C - 2.7, 4.1, 5.5, 6.9, 10.3, 13.7, 20.6, 27.4, 34.3 and 41.2 mg/L. 

3.3.9 In vivo organ-specific luciferase expression in mice 

Having investigated the biophysical properties, in vitro gene/siRNA delivery efficiency 

and cytotoxicity of the modified PEIs, their biodistribution and in vivo organ specific gene 

delivery efficiency were studied by tail-vein injection of 4 µg of luciferase plasmid DNA 

complexed with selected polymers at various N/P ratios: unmodified PEI (N/P 10), G:PEI-

Mannose(1:25) (N/P 30, 50, 80, 120), K:PEI-TMC(1:25) (N/P 50, 80), and O:PEI-ethyl(1:25) 

(N/P 50, 80). 10 µg of luciferase plasmid DNA complexed with polymers at the designated 

N/P ratios was found to cause severe lethality, as more than half of the mice injected with it 

died within hours after injection. Therefore, a lower, non-lethal 4 µg DNA dose was used to 

construct the complexes with various polymers. The polymer concentrations in the 

nanoparticle complexes solution, as well as the polymer to mice weight/weight ratio (mg/kg) 

were summarized in Table 5. 

Polymer & N/P  PEI 10 G 30 G 50 G 80 G 120 K 50 K 80 O 50 O 80 

polymer 

concentration 

(mg/L) 

25.2 154.6 257.7 412.3 618.4 162.0 259.3 189.9 303.8 

Mg polymer/kg 

mice (20g per 

mice) 

0.25 1.55 2.58 4.12 6.18 1.62 2.59 1.90 3.04 
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Table 5. The concentrations of various polymers used to deliver 4 µg luciferase DNA 

intravenously per mouse, and the polymer to mouse weight/weight ratios.   

Luciferase expression levels inside the various visceral organs were analysed 72 h after 

intravenous injection of the polymer/luciferase DNA complexes. As can be seen in Figure 22, 

generally, the luciferase gene expression level induced by different polymers as well as the 

unmodified PEI was not significantly higher than the PBS control, especially in hearts, livers, 

kidneys and spleens. However, there was significantly higher luciferase gene expression 

observed in the lungs, mediated by unmodified PEI at N/P 10 and polymer G at N/P 120, 

compared to the PBS control, suggesting that these cationic particles were tend to aggregate 

with serum proteins, erythrocytes, and other blood components to form complexes that can 

embolize and accumulate in vascular beds of the lung [284, 285]. The lung tropism of 

unmodified PEI and G was consistent with another study by Goula, D., et al., which also 

showed high levels of luciferase expression in the lung when DNA was complexed with  linear, 

22 kDa PEI in 5% glucose and administered intravenously, while heart, spleen, liver and 

kidney remained refractory to PEI mediated luciferase gene transfection [286]. For G:PEI-

Mannose(1:25), it achieved higher luciferase expression levels when used at higher N/P ratios, 

especially when complexed with the luciferase DNA at N/P 120, it achieved the highest gene 

expression in the lung (6*10
3
 RLU/mg protein), which was higher than that of unmodified PEI 

(4.6*10
3
 RLU/mg protein), although not significant. However, the luciferase expression level 

mediated by G at N/P 120 was one magnitude higher than those achieved by the hydrophobic 

groups (TMC and Ethyl)-modified PEIs and the PBS control, and the difference was highly 

significant according to the statistical analysis (p<0.05). Moreover, relative luciferase 

expression in the lung induced by G:PEI-Mannose(1:25)/DNA complexes formed at N/P 120 

was 4-fold higher than the that induced by the same polymer and N/P ratio in the heart, 10-fold 

higher than that in the kidney and spleen, and 100-fold higher than that in the liver. Therefore, 

G:PEI-Mannose(1:25) could potentially be used for targeted gene delivery to the lung tissue in 

vivo in the future. In addition, although it was reported in the literature that between 50 and 60% 

of 
32

P-labelled plasmid/cationic lipid complexes injected into the tail veins of mice were taken 

up by the liver, the low level of transgene expression in the liver suggested that the complexes 

were taken by scavenger cells (Kupffer cells) via phagocytosis, resulting in rapid degradation 

of the plasmid [287]. This result was bolstered by our modified PEIs-mediated organ-specific 

luciferase gene expression results, which showed no increase in gene expression level in livers 

compared to the PBS control. 
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Figure 22. In vivo organ specific luciferase gene expression induced 72 h after i.v. injection of 

selected polymers complexed with luciferase gene at various N/P ratios. PBS was injected as a 

negative control, and unmodified PEI at N/P 10 was used as a positive control. (** p<0.05) 

Results represent mean ± standard deviation of 6 replicates. 

3.4 Conclusion 

In this study, PEI 25 kDa was successfully modified with cyclic carbonates with 

mannose/galactose/glucose/hydrophobic groups as functional groups at various feed molar 

ratios, using a rapid and synthetically facile ring-opening reaction approach. Functionalization 

of PEI was easily controlled by pre-determined PEI:cyclic carbonate feed ratios and permitted 

a simple means for the addition of functionality. Polymers C, L, M and N with too many 

primary amines blocked by a higher degree of carbonate-mannose modification did not bind 

DNA effectively, giving rise to large particles with low positive charges on the surface and 

thus poor gene transfection efficiency. However, when PEI was modified with functional 

carbonates at lower degrees (feed molar ratios of PEI-mannose=1:25, 1:12.5 and 1:8; 

PEI:Galactose=1:25, 1:12.5 and 1:8; PEI:TMC=1:25, 1:8, 1:1; PEI:Ethyl=1:25), the resulting 

polymers efficiently condensed DNA into nanosized particles with positive zeta potential. 

Importantly, the cytotoxicity of modified polymers in HepG2, HeLa, NIH-3T3, MCF7, 4T1, 

HMSC, and keratinocytes was significantly reduced, while the gene transfection efficiency was 

comparable or higher than unmodified PEI. Especially, GFP gene transfection efficiency was 

increased by ~ 10 times in HepG2 cells as compared to unmodified PEI, by the commercially 

available TMC modified PEI (1:25) which was an extremely efficacious gene delivery vector 
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with minimal cytotoxicity in HepG2. In addition, the mannose-modified polymers effectively 

delivered Bcl-2 siRNA into HeLa cells and down-regulated Bcl-2 mRNA to one quarter of the 

normal level without apparent cytotoxicity. And polymer G:PEI-Mannose(1:25) even showed 

targeted gene delivery to the lung 72 h after intravenous injection of G/luciferase DNA 

complexes formed at N/P 120.  

This synthesis approach could also be extended to include a plethora of other functional 

groups such as a targeting signal that recognizes a specific cell type (e.g. mannose towards 

keratinocytes, macrophages and dendritic cells; galactose targeting liver cells; anti-HER2 

antibody targeting breast cancer cell line), PEG for improving serum stability of polymer/DNA 

complexes, and disulfide linkages for triggered release of other biologically relevant materials. 

Modified PEIs are envisioned to hold great potential as gene delivery systems due to easy 

synthesis, scalability, low cost, low cytotoxicity and outstanding transfection capacity.  

All in all, careful screening of the various functionalized PEI polymers generated a list 

of selected polymers with effective gene delivery potential and minimal cytotoxicity which 

could be used to deliver therapeutic genes and evaluate the biological effects. The details of the 

therapeutic application of these polymers will be presented in the next two chapters.  
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CHAPTER 4: DELIVERY OF A GRANZYME B INHIBITOR GENE USING 

CARBAMATE-MANNOSE MODIFIED PEI TO PROTECT AGAINST NK CELL 

KILLING 

4.1 Introduction  

Mass screening of the various functional cyclic carbonate monomer modified PEIs in 

terms of their physicochemical properties, in vitro gene/siRNA transfection efficiency, 

cytotoxicity, and in vivo organ specific luciferase gene delivery capability in Chapter 3 enabled 

several outstanding polymers to be shortlisted: A:PEI-Mannose(1:8) (synthesized with DBU), 

B:PEI-Mannose(1:25) (synthesized with DBU), T:PEI-Mannose(1:6) (without DBU), S:PEI-

Mannose(1:12.5) (without DBU), G:PEI-Mannose(1:25) (without DBU), K:PEI-TMC(1:25) 

(without DBU), and O:PEI-ethyl(1:25) (without DBU). In this chapter, the potential of using 

polymers A and B to deliver PI-9 gene to protect kidney cells from killing by GrB released 

from a human NK like cell line: YT was examined. Polymer C, too many of whose primary 

amines was blocked by mannose leading to inefficient DNA binding and transfection, was 

included as a negative control. The reason for selecting mannose-modified PEIs for 

investigation of the therapeutic gene delivery potential and the associated biological effects 

was due to the potential possibility of exploitation of the mannose receptor highly expressed on 

DCs for targeted gene transfer in the future [232], as well as the consistent low cytotoxicity 

demonstrated by the mannose-PEI conjugates in the various cell lines tested in Chapter 3. Here, 

facile nucleophilic addition chemistry described in Chapter 3 was employed to substitute 

primary amines in branched PEI (25 kDa) with roughly 7, 20 or 67 carbamate-mannose groups 

(determined by NMR spectra), generating polymers A, B and C respectively. The optimal 

degree of primary amines substitution was determined by a series of tests such as DNA binding, 

GFP-reporter gene delivery and cytotoxicity on HEK293T (human embryonic kidney cell line), 

and so on. Finally, the selected polymers with the optimal balance of substituted to free 

primary amines were further used to deliver PI-9 gene into HEK293T, and the degree of killing 

by GrB released from YT cells was assessed to investigate the efficacy of protection offered by 

PI-9 gene transfection.  

Part of Chapter 4 has been published in Biomaterials [256], and was reproduced with 

permission from [256]. Copyright © 2013, rights managed by Elsevier Ltd. 

4.2 Materials and Methods 
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4.2.1 Materials  

Branched polyethylenimine with a molecular weight of 25 kDa, MTT for cytotoxicity 

assay, and other reagents for polymer synthesis were obtained from Aldrich and used without 

any further purification unless otherwise noted. GFP-reporter gene was obtained from Clontech 

(U.S.A.). MigR1-PI-9 encoding plasmid DNA was amplified in the Escherichia coli strain 

DH5α, isolated and purified using a QIAGEN HiSpeed Plasmid Maxi Kit (Qiagen, UK). The 

concentration of DNA was determined using Nanodrop spectrophotometer (Thermo scientific, 

UK) by measuring the UV absorption at 260 nm. HEK293T human embryonic kidney and YT 

human natural killer-like leukemic cell lines were purchased from ATCC (U.S.A.) and cultured 

according to the instructions on the ATCC website. 

4.2.2 Synthesis of protected mannose-functionalized cyclic carbonate (MTC-ipman) and MTC-

ipman modified PEI 

The protected mannose-functionalized cyclic carbonate (MTC-ipman) and the 

carbamate mannose-modified PEIs were synthesized by Dr. Chuan Yang in Dr. Yi Yan Yang’s 

lab in IBN, A*STAR, Singapore. A single step, spontaneous ring-opening reaction of the 

cyclic carbonate generated a carbamate linkage and a primary hydroxyl group together with 

mannose protected with acetyl group, and the deprotection step revealed each mannose with 5 

hydroxyl groups which were expected to reduce positive surface charge and cytotoxicity 

associated with PEI/DNA complexes. The detailed procedures for the synthesis of the MTC 

ipman and MTC-ipman modified PEIs, and the characterization of the monomers and polymers 

using 
1
H NMR spectroscopy were described in the appendix.  

4.2.3 Cell culture 

HEK293T and YT cells were cultured in DMEM (Invitrogen, UK) and RPMI 1640 

medium (Invitrogen, UK), respectively. Both growth media were supplemented with 10% (v/v) 

FBS, (Invitrogen, UK), penicillin at 100 U/mL, streptomycin at 100 µg/mL, and L-glutamine at 

2 mM (Invitrogen, UK), and the cells were cultured at 37 °C, under an atmosphere of 5% CO2 

and 95% humidified air. Both cells were subcultured using 0.25% trypsin/EDTA (1x) 

(Invitrogen, UK) when reaching 90% confluence.  

4.2.4 Preparation, particle size and zeta potential analyses of polymer/DNA complexes 
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The polymer/DNA complexes were prepared as previously described under Section 

3.2.4. Briefly, an equivolume solution of DNA was added to the polymer solution in nuclease 

free water to achieve the intended N/P ratios, followed by gentle vortexing for about 5 seconds. 

After equilibration at room temperature for 30 min, the complexes were subjected to particle 

size and zeta potential analysis, by dynamic light scattering (Brookhaven Instrument Corp., 

Holtsville, New York, U.S.A.) using a He–Ne laser beam at 658 nm with a scattering angle of 

90° and Zetasizer (Malvern Instrument Ltd., Worcestershire, UK), respectively. Immediately 

prior to the particle size and zeta potential measurement, the polymer/DNA complexes in 

nuclease free water was diluted 10x in PBS to mimic the dilution in the physiological 

environment after i.v. administration. Both measurements were repeated for three runs per 

sample and reported as the mean ± standard deviation of three readings. 

4.2.5 Gel retardation assay 

DNA binding ability of the polymers was investigated using agarose gel electrophoresis 

as detailed in Section 3.2.5. Briefly, 20 µL polymer/DNA complexes prepared with N/P ratios 

ranging from 1 to 15 were electroporated on 1% agarose gel with ethidium bromide staining, 

which was conducted at 110 V for 50 minutes to detect the relative position of the complexed 

DNA to the naked DNA. 

4.2.6 In vitro gene transfection 

The in vitro gene transfection efficiency of the mannose modified PEIs/DNA 

complexes was investigated using HEK293 cell line. HEK293T cells were seeded onto 24-well 

plates at a density of 1×10
5
 cells per 500 μL growth media per well, 24 h prior to transfection. 

Just before transfection, the plating media was replaced 0.5 mL of fresh growth media, and 50 

μL of the polymer/GFP plasmid DNA complex solution (containing 1.75 μg DNA) at various 

N/P ratios was drop-wise added into each well. After 4 h of incubation, free DNA complexes 

were removed by changing the media in each well. 68 h incubation later, the cells were rinsed 

once with 0.5 mL of PBS (pH 7.4), and 0.2 mL of 0.25% trypsin-EDTA (1X) (Invitrogen, UK) 

was added to detach them, followed by adding 0.3 mL fresh growth media and centrifuging at 

1500 rpm for 5 min. Two further cell-washing cycles of resuspension and centrifugation were 

carried out in FACS buffer, and the cell pellet was finally resuspended in FACS buffer for flow 

cytometry analysis of the percentage of cells transfected by GFP plasmid (FACSCalibur, BD 

Bioscience, San Jose, CA, USA). 10,000 events were collected, and percentage of cells 

expressing GFP was reported as mean ± standard deviations of triplicates.  Cells were defined 
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to be GFP positive by setting the gating region to include <0.5% of cells transfected with 

naked GFP plasmids alone. The data were statistically analyzed for significant differences 

based on the student’s t test at p<0.0001. 

4.2.7 Confocal imaging for GFP expression in HEK293T cells 

HEK293T Cells were treated in the similar fashion as described in Section 4.2.6 with 

polymer/GFP plasmid DNA complexes at intended N/P ratios (unmodified PEI: N/P 10; 

polymer A, B and C: N/P 30). After 72 h of transfection, the medium in the wells containing 

transfected cells was removed, and the cells were washed once with PBS and fixed with 

paraformaldehyde for 15 min. Then, the cells were washed 3 times with ice cold PBS and 

imaged using a Motorized Zeiss AxioVert 200M inverted microscope (Carl Zeiss, Germany). 

4.2.8 Cytotoxicity test 

The cytotoxicity of the polymers was studied using the standard MTT assay protocol. 

Briefly, HEK293T cells were seeded onto 96-well plates at a density of 10,000 cells per well 

one day before experiment. Polymer/GFP DNA complexes at various N/P ratios were prepared 

in nuclease-free water as described in Section 4.2.4. The cells in each well were then 

transfected with 10 μL of polymer/DNA complex solution containing 0.35 µg of GFP plasmid 

for 4 h at 37 °C. Untreated cells were used as control. Then the wells were replaced with fresh 

growth media and incubated further for 68 h. Subsequently, the cell viability was assessed by 

replacing all wells with 100 μL of growth medium and 20 μL of MTT solution (Sigma, 5 

mg/mL in PBS) and incubating the cells for 4 h at 37 °C according to the manufacturer's 

directions. Resultant formazan crystals formed in each well were solubilized using 150 μL of 

DMSO after careful aspirating of the growth medium. The absorbance of the solution in each 

well was measured using a microplate spectrophotometer (PowerWave X, Bio-Tek Inc., 

Winooski, VT, USA) at wavelengths of 550 nm and 690 nm. Relative cell viability was 

expressed as [(A550−A690)sample / (A550−A690)control]×100%. Data are expressed as mean ± 

standard deviations of eight replicates at every N/P ratio.  

4.2.9 Characterization of GrB expression level in YT cells 

To evaluate the GrB expression level in YT cells, intracellular staining by PE-

conjugated anti-GrB antibody and an isotype matched control antibody (Sigma, UK) was 

carried out. Briefly, 1 million YT cells were incubated in 250 μL Cytofix/Cytoperm solution 

(BD Biosciences) at 4˚C for 20 min for permeabilization, followed by pelleting and 
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resuspension in 50 μL of BD Perm/Wash solution containing a pre-determined optimal 

concentration of a fluorochrome(PE)-conjugated anti-GrB antibody or the isotype control 

antibody, and incubated at 4°C for 30 minutes in the dark. After that, cells were washed two 

times with 1 mL 1× BD Perm/Wash solution and resuspended in 300 μL FACS buffer prior to 

flow cytometric analysis. The results were analyzed using the Summit software.  

4.2.10 In vitro protection of HEK293T cells from YT cell killing by transfection with 

polymer/PI-9 encoding plasmid DNA complexes 

The protective effect of polymer/PI-9 plasmid DNA complexes was evaluated by a 

killing essay in which human natural killer-like leukemic YT cells were used as the effecter 

[288] and HEK293T cells were the target. Calcein-acetoxymethyl (Calcein-AM, Invitrogen, 

UK), a fluoresceinated molecular probe that is retained within the intact membranes of live 

cells but excluded by cells with damaged membranes, was used to measure the percentage of 

cell killing [289]. Briefly, YT cells were collected, washed and re-suspended to 5×10
6
 cells/mL 

in RPMI, 100 µL of which was dispensed into each well of a 96 well round bottom plate. 

Moreover, HEK293T cells were transfected using the polymer/DNA complexes at N/P 10, 20 

and 40, respectively, in a 24-well plate as described in Section 4.2.6. Three days after 

transfection, HEK293T cells were trypsinized, washed and re-suspended at 2×10
6
 cells/mL in 

RPMI, followed by adding Calcein-AM to reach 15 µM final concentration, and incubating for 

30 min with occasionally mixing. Then the Calcein-AM labelled HEK93T were washed twice 

with RPMI and re-suspended to 10
5
 cells/mL, 100 µL of which was dispensed to each well of 

the 96-well plate containing 5×10
5
 YT cells to reach effector:target (E:T) ratio of 50:1. After 

incubating the effector and target cells together for 4 h, 100 µL of the supernatant was removed 

to be read on a microplate spectrophotometer at excitation and emission wavelengths of 485 

nm and 530 nm respectively. Wells for spontaneous release (100 µL of fresh RPMI medium 

without YT cells was added) and maximal release (100 µL of 5% Triton X-100 instead of YT 

cells for total lysis of the cells was added) of Calcein-AM were included as negative and 

positive controls respectively. Untreated and empty MigR1 plasmid mock-transfected 

HEK293T cells were used as the negative controls. The data were expressed as light units per 

minute (LUPM). The average values were determined from 4 replicates for every N/P ratio and 

control. Percent cytotoxicity was determined using the following formula: 

                      
                    (    )                       (    )

                (    )                       (    )
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Statistical analysis was performed using the Student’s t test, and the differences were 

considered statistically significant at p<0.05. 

4.3 Results and Discussion 

4.3.1. Polymer synthesis and composition 

Nucleophilic addition between primary amine and a protected mannose-functionalized 

cyclic carbonate (MTC-ipman) was used to block primary amine groups of PEI in order to 

reduce its inherent cytotoxicity. Scheme 1 in Section 3.3.1 shows the synthesis procedures and 

structures of carbamate-mannose modified PEIs (polymer A, B and C). Substitution of MTC-

ipman onto primary amines of the PEI was a simple click reaction that was carried out by 

mixing two feeds in DCM for 1 h, in the presence of the DBU catalyst. It is well known that 

primary amines are much more nucleophilic than secondary amines. When MTC-ipman 

concentrations were below the molar concentration of primary amine groups, the ring-opening 

of the cyclic carbonate generated a carbamate linkage and a primary alcohol, which modified a 

portion of the primary amines of the branched PEI. However, when MTC-ipman 

concentrations exceeded the molar concentration of primary amines (in the case of polymer C), 

effectively all primary amine groups were blocked, and part of secondary amine groups were 

also substituted by the MTC-ipman. After the nucleophilic addition reaction, the protecting 

groups of mannose moieties were removed by heating and refluxing in methanol and 1 M HCl 

for 2 h, giving rise to carbamate-mannose modified PEIs. The 
1
H NMR analysis allowed 

quantitative comparisons between the integral intensities of methylene peaks of PEI and those 

of methyl peaks of carbamate mannose moieties, thus the compositions of the polymers were 

elucidated (Figure 5 in Section 3.3.1, Table 6). The result showed that the content of mannose 

in the polymer identified in the 
1
H NMR spectrum was proportional to that in the feed.  

Table 6. Compositions, nitrogen contents, and 
1
H NMR analysis of carbamate-mannose 

modified PEI. Higher nitrogen content correlates with lower substitution degree. Substitution 

degree: A<B<C. (PEI: 58 primary amines, 116 secondary amines and 58 tertiary amines). 

Polymer 

Nitrogen 

Content 

(%) 

Method of 

mannosylation 

Mole 

Ratio Found
 

(NMR) 

bPEI: 

Carbamate 

Groups
a 

% of bPEI 

Primary 

Amine 

Groups 

Modified
 

(NMR)
b 

# of bPEI 

Primary 

Amine 

Groups 

Modified Per 

Mole bPEI
a,c 

A 24.4 

bPEI : ipman = 3:1 

(mass ratio) (molar 

ratio = 1:8) 

1:7 12.1 7 
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B 16.3 

bPEI : ipman = 1:1 

(mass ratio) (molar 

ratio = 1:25) 

1:20 34.5 20 

C 8.14 

bPEI : ipman = 1:3 

(mass ratio) (molar 

ratio = 1:75) 

1:67
a
 115.5

b 
67

c
 

a based on 1 mole bPEI-25 = 10000 g, containing 58 primary amine groups per mole.   

b A value greater than 100% indicates reaction at all active primary amine sites, and reaction of 

secondary amine groups. 

c A number greater than 58 indicates reaction at all active primary amine sites, and reaction of 

secondary amine groups. 

4.3.2 Size and zeta potential of polymer/DNA complexes 

As an important parameter for effective cellular uptake of polymer/DNA complexes, size 

was investigated using dynamic light scattering [264]. As can be seen from Figure 7A in 

Chapter 3, generally, the size of the polymer/DNA complexes negatively correlated with N/P 

ratio, indicating that stronger electrostatic interaction between the anionic polymer and cationic 

DNA at higher N/P ratio led to the formation of more compact complexes with smaller 

hydrodynamic sizes. Especially, the sizes of polymers A and B plunged from over 1000 and 

400 nm at N/P 5 to 103 and 119 nm at N/P 30, respectively. Also, as polymer A has the least 

amount of primary amine groups blocked by mannose, under the same reaction conditions, A 

and DNA had stronger electrostatic interaction, and thus formed more compact polymer/DNA 

complexes than polymers B and C (103 nm vs. 119 nm and 500 nm for B and C respectively, 

at N/P 30). As demonstrated in Figure 7A, polymer C which has PEI:MTC-ipman attachment 

ratio of 1:67 failed to complex DNA as effectively as A and B due to insufficient free primary 

amines available, leading to large particles even at high N/P ratios (Figure 7A). Moreover, 

A/DNA and B/DNA complexes had small size distribution, as the polydispersity indices of 

them were found to be 0.200 and 0.178, respectively. As a comparison, DNA complexes 

formed with unmodified PEI, which conferred high gene transfection efficiencies in various 

cell lines [106], were found to have a hydrodynamic size of ~84 nm.  

The surface charge of gene delivery vectors plays a pivotal role in determining gene 

transfection efficiency [110]. Extensive studies have demonstrated that DNA condensation and 

stabilization are enhanced when a carrier possesses a net positive surface charge [102, 290]. 

Additionally, a net positive surface charge of carrier/DNA complexes is favourable for 

effective cellular uptake via electrostatic interactions with the negatively charged phospholipid 
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surface of the cell membrane. Indeed, the cationic mannose-attached PEIs interacted 

electrostatically with the anionic DNA to give rise to A/DNA and B/DNA complexes with 

positive zeta potentials at N/P 10-30 of approximately 18-23 mV in nuclease free water (Figure 

7E), which were found to be comparable to the 22 mV obtained with unmodified PEI/DNA 

formulated at N/P ratio 10. C/DNA complexes however, had a significantly lower cationic 

charge density on the surface at all N/P ratios tested, which was only ~5-13 mV. The high 

percentage of mannose conjugation on the primary amines on polymer C, rendering them 

unavailable for protonation in the nuclease free water was the most probable reason for this 

phenomenon. Therefore, taking the smaller particle size and relatively higher zeta potential 

together, polymers A and B were expected to be more effective in gene transfection as 

compared to polymer C. 

4.3.3 DNA binding ability of polymers 

As DNA binding by a gene delivery vector constitutes an important first step for the 

formation of stable and compact DNA complexes that are essential for efficient cellular uptake, 

gene binding ability of the polymers was evaluated by gel retardation assay [102]. As shown in 

Figure 8 in Chapter 3, same as unmodified PEI, polymers A and B were able to bind to and 

condense DNA effectively from N/P ratio of 1. The degree of DNA binding and hence the 

retardation of its movement across the agarose gel was enhanced with increasing 

concentrations of the cationic polymers A and B, giving rise to complete retardation of DNA 

movement at N/P ratio of 3 (Figure 8). In contrast, C had poor DNA binding ability, showing 

complete DNA retardation only at N/P 15. More primary amine groups consumed for 

carbamate-mannose modification contributed to the poor DNA binding ability of C. These 

results suggested that PEI with 7 or 20 of 56 primary amine groups substituted by the 

carbohydrate condensed DNA effectively.  

4.3.4 In vitro GFP transfection efficiency 

In order to assess the suitability of using the carbamate-mannose modified PEIs as DNA 

delivery vectors, we transfected the GFP-reporter gene into HEK293T cells using these 

polymers. The evaluation of gene transfection in the presence of serum offers a more accurate 

assessment of the gene delivery efficiency of the polymers in serum protein-containing 

physiological environments. As shown in Figure 23, the unmodified PEI showed prominent 

gene transfection capability in HEK93T cells, reaching a plateau of nearly 100% transfection 

efficiency from N/P 10 onwards. The GFP expression profiles of polymers A and B in 
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HEK293 were similar, with GFP expression increasing with N/P ratio. Although the gene 

transfection efficiency for A and B at N/P 6-20 was lower than that of the unmodified PEI, A 

and B quickly emulated PEI, and reached nearly 100% GFP transfection efficiency at N/P 30 

and higher (Figure 23). In sharp contrast, polymer C only achieved less than 3% GFP 

transfection efficiency even at the highest N/P ratio tested: N/P 40 (Figure 23). Furthermore, 

the GFP gene transfection efficiency by the various polymers assessed by flow cytometry were 

verified by confocal microscopy studies showing the GFP expressing HEK293T cells 72 h 

after the cells being transfected by the modified and unmodified PEI (Figure 24). Unmodified 

PEI (N/P 10), A:PEI-Mannose(1:8) (N/P 30) and B:PEI-Mannose(1:25) (N/P 30) all showed 

evident GFP expression inside almost all the cells in the field of view (Figure 24A-F), while 

C:PEI-Mannose(1:75) (N/P 30) hardly mediated any transfection of GFP plasmid into the 

HEK93T cells (Figure 24G, H). These results were correlated well with polymer gene binding 

ability, DNA complex size and zeta potential data (Figure 7A, 7E and Figure 8) and met our 

expectation. All in all, both unmodified PEI and carbamate-mannose modified PEIs with 

primary amine groups partially blocked at optimal ratios mediated high gene transfection 

efficiency in HEK93T cells. 

 

Figure 23. In vitro GFP transfection in HEK293T cells. GFP transfection efficiency mediated 

by various polymers at different N/P ratios. Results represent mean ± standard deviation of 

triplicates. Polymer concentrations in the order of N/P ratios specified: PEI - 0, 0.8, 1.6, 2.4, 

3.2, 4.0, 6.0, 8.0, 12.0, and 16.0 mg/L. Polymer A - 0, 1.1, 2.2, 3.3, 4.4, 5.5, 8.2, 11.0, 16.4, and 

21.9 mg/L.  Polymer B - 0, 1.6, 3.3, 4.9, 6.6, 8.2, 12.3, 16.4, 24.6, and 32.8 mg/L. Polymer C - 

0, 3.3, 6.6, 9.9, 13.1, 16.4, 24.6, 32.8, 49.3, and 65.7 mg/L. Data are shown as mean ± SD (n=3; 
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student’s t test, **p<0.05). Reproduced with permission from [256]. Copyright © 2013, rights 

managed by Elsevier Ltd. 

 

Figure 24. Confocal microscopic images of GFP-transfected HEK293T cells mediated by 

unmodified PEI at N/P 10 (A and B), polymer A at N/P 30 (C and D), polymer B at N/P 30 (E 

and F) and polymer C at N/P 30 (G and H). Reproduced with permission from [256]. 

Copyright © 2013, rights managed by Elsevier Ltd. 

4.3.5 Cytotoxicity of unmodified and carbamate-mannose modified PEIs 

Overt cellular toxicity remains as one of the biggest challenges to overcome in the 

quest for a novel and efficient non-viral gene delivery vector [102, 290]. The cytotoxicity of 

unmodified and modified PEIs was evaluated in HEK293T cells using the standard MTT assay 

protocol. As demonstrated in Figure 25, the notoriously high cytotoxicity of the “gold standard” 

unmodified PEI was aptly demonstrated by the viability of HEK293T cells treated with it, 

which drastically decreased with increasing PEI concentration. Specifically, only 

approximately 81%, 63% and 43% HEK293T cells were viable after 4 h of incubation with 4.0, 

6.0 and 8.0 mg/L of PEI (corresponding to PEI concentrations at N/P 10, 15 and 20), 

respectively. However, the cytotoxicity problem seemed to be almost completely mitigated by 

the treatment of all the three carbamate-mannose modified PEIs at all concentrations tested. 

For example, amazingly, under the same treatment conditions, polymers A, B and C even at 

the highest concentrations (21.9, 32.8 and 65.7 mg/L respectively) still maintained the 

HEK293T cell viability at about 100%. This degree of cell viability contrasts very favorably 

with the significant cytotoxicity obtained with unmodified PEI.  

A 

B 

C 

D 

E 

F 

G 

H 
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As discussed in Section 3.3.6, feeding a cell with many membrane-disrupting particles 

consecutively enabled endo/lysosomal enzyme release into the cytoplasm and disturbance of 

vital cellular processes, resulting in high cytotoxicity [106]. A prominent example is the 

unmodified PEI, which due to its high surface charge density, interacts favourably with the 

anionic cell membrane, and even induces hole formation or expands the size of pre-existing 

defects on the cellular membrane. It was reported that the cell membrane holes due to the 

action of PEI caused leakage of more significant amounts of the cytosolic enzyme lactate 

dehydrogenase (LDH) as compared to other cationic polymers such as poly-L-lysine (PLL) in 

human epithelial KB and rat fibroblast Rat2 cell lines, as PEI possesses a much greater 

charge/monomer ratio than those counterparts [118]. Therefore, the cytotoxicity of unmodified 

PEI in HEK293T cells observed in the present study could be very much attributed to the 

impairment of important membrane functions by PEI [272]. Although the GFP transfection 

efficiency mediated by PEI was observed to reach the highest level of nearly 100% at a 

moderately low N/P ratio of 10, its high toxicity in HEK293T cells from N/P 15 onwards 

hampered its potential in vivo application which usually requires a high polymer concentration 

to achieve distinctive therapeutic effects. Thus, the present study clearly demonstrated the 

advantage of the modified PEIs as potential in vivo gene delivery vectors, whose primary 

amines were substituted by the carbamate-mannose at various degrees, as they not only 

significantly enhanced the cellular viability, but also achieved comparable high gene 

transfection efficiency as compared to the unmodified PEI. Mannose is a common metabolite 

and well tolerated by the cells. Carbamate-mannose modified PEIs condensed DNA effectively 

and formed nanoparticles with a mannose shell, which led to reduced charge density and thus 

mitigated cytotoxicity. Similar phenomenon was reported previously in the literature, which 

stated that although cationic polymers such as PEI with high charge density had strong cell 

lytic and toxic properties, a reduction of charge density by reaction with glycidol, which 

converted primary and secondary amines to secondary and tertiary ones respectively, resulted 

in less cell toxicity [291]. 
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Figure 25. Viability of HEK293T cells after incubation with unmodified PEI/DNA and 

carbamate-mannose modified PEI/DNA complexes at various concentrations. Results represent 

mean ± standard deviation of 8 replicates. Polymer concentrations in the order of N/P ratios (0, 

2, 4, 6, 8, 10, 15, 20, 30 and 40): PEI - 0, 0.8, 1.6, 2.4, 3.2, 4.0, 6.0, 8.0, 12.0, and 16.0 mg/L. 

Polymer A - 0, 1.1, 2.2, 3.3, 4.4, 5.5, 8.2, 11.0, 16.4, and 21.9 mg/L.  Polymer B - 0, 1.6, 3.3, 

4.9, 6.6, 8.2, 12.3, 16.4, 24.6, and 32.8 mg/L. Polymer C - 0, 3.3, 6.6, 9.9, 13.1, 16.4, 24.6, 

32.8, 49.3, and 65.7 mg/L. Reproduced from [256]. Copyright © 2013, rights managed by 

Elsevier Ltd. 

4.3.6 Protection of HEK293T cells from GrB mediated killing 

Having demonstrated the high gene transfection efficiency and low cytotoxicity profiles 

of the carbamate-mannose modified PEIs, especially polymers A and B, it would be interesting 

to employ them for in vitro biological functional applications. Since PI-9 is a specific and 

physiologically relevant inhibitor of granzyme B, we examined the ability of PI-9 gene 

delivered by the modified PEIs into HEK93T cells to protect them against GrB mediated 

cytotoxicity in vitro. In this system, death by GrB was induced by exposure to intact human 

NK-like leukemic YT cells [288].  

YT cells have been reported to express high levels of GrB constantly and thus 

demonstrate strong killing activity in vitro [292-294]. In order to verify that the YT cells used 

in this study are potent killer cells, intra-cellular staining of GrB by a PE-conjugated anti-GrB 

antibody was carried out, while isotype-matched control antibody of irrelevant specificity was 

used to ensure the GrB binding was specific. Figure 26 showed that YT cells in standard 

culture condition expressed high level of GrB, thus they could potentially function as a potent 

killer against HEK293T cells.  
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Figure 26. Intracellular staining of GrB on YT cells under standard cell culture condition.  

As shown in Figure 27, HEK293T cells as the target cells when transfected with PI-9, 

showed less cytotoxicity than those transfected with empty plasmids or untreated control when 

challenged by WT YT killer cells, confirming the inhibitory role of PI-9 against GrB-mediated 

apoptosis [70]. Moreover, PI-9 delivered by different polymers demonstrated distinct abilities 

to protect against GrB. Specifically, at effector:target ratio of 50:1, A and B provided more 

potent protection of HEK293T cells against GrB-mediated killing, at N/P 20 and 40, where 

more than 70-80% cells were viable as compared to ~ 30% viability of untreated HEK293T 

cells. It is worth to be noticed that at N/P 10, the difference in cytotoxicity between A/B and C 

was not evident (53.0% for A, 47.1% for B, and 53.3% for C). This was probably due to the 

fact that the gene transfection efficiency for A and B at N/P 10 (20.5% and 62.6% respectively) 

had not reached the threshold of physiologically significant demonstration of protection against 

GrB-mediated apoptosis. When the threshold of physiologically relevant protection was not 

reached, the cytotoxicity contributed by bystander and indirect killing unspecific in the cell 

culture might also account for the insignificant protection by PI-9 delivered at N/P 10 by A and 

B. However, when the N/P ratio increased to 20 and 40, gene transfection efficiency shot up to 

close to 100% for A and B, while polymer C still conferred very low gene transfection 

efficiency, which was below 3%, and it conferred only slight protection of HEK293T cells 

against YT cell killing. Thus, the difference in cytotoxicity when challenged with YT cells 

killing between A/B and C was obvious and statistically significant (25.6%, 25.5% and 40.5% 

for A, B and C respectively, at N/P 40). On the other hand, the transfection of PI-9 encoding 

plasmid into HEK293T cells induced by unmodified PEI at N/P 10 and 20 provided effective 

Unstained control 
Isotype control 
Anti-GrB antibody 
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protection of the cells from GrB-mediated killing (Figure 27), which was consistent with its 

high gene transfection efficiency (Figure 23). However, at N/P 40 (i.e. PEI concentration: 16.0 

mg/L), PI-9 lost its potent protective effect, with about 55% cells killed (Figure 27). This was 

presumably due to PEI’s high intrinsic cytotoxicity at high N/P ratio, which hampered its 

biological usefulness. Therefore, carbamate-mannose modified PEIs at appropriate mannose 

attachment ratios: polymers A:PEI-Mannose(1:8) and B:PEI-Mannose(1:25) were superior to 

unmodified PEI due to PEI’s intrinsic cytotoxicity.  

 

Figure 27. Viability of HEK293T cells after incubation with YT cells for 4 h. HEK293T cells 

were transfected with PI-9 encoding plasmid using A, B and C at N/P 10, 20 and 40 in 

comparison with unmodified PEI and empty plasmids (i.e. empty vector). Polymer 

concentrations in the order of N/P ratios specified: PEI -4.0, 8.0, and 16.0 mg/L. A -5.5, 11.0 

and 21.9 mg/L. B -8.2, 16.4 and 32.8 mg/L. C -16.4, 32.8 and 65.7 mg/L. Each data represents 

mean ± SD (n=4; student’s t test, ** p<0.05). Reproduced from [256]. Copyright © 2013, 

rights managed by Elsevier Ltd. 

4.4 Conclusions 

In this study, a novel platform for synthetic gene vectors was developed and their 

biological functions were tested. After successful modification of PEI by selectively blocking a 

portion of the primary amine groups with a mannose-functionalized cyclic carbonate through 
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facile nucleophilic addition chemistry, the degree of carbamate-mannose substitution was 

readily controlled, as evidenced by NMR spectra readings. The polymers A:PEI-Mannose(1:8) 

and B:PEI-Mannose(1:25) at the optimal substitution degrees of carbamate-mannose 

effectively condensed DNA into nanosized complexes with narrow size distribution and 

positive zeta potential, which induced high gene transfection efficiency and significantly 

reduced intrinsic cytotoxicity as compared to unmodified PEI. These carbamate-mannose 

modified PEIs successfully delivered PI-9 encoding plasmid into HEK293T human embryonic 

kidney cells which were protected from killing by human NK cells (YT cells) to a great extent, 

compared to the empty-vector transfected and the untreated HEK293T cells. Also, these 

modified PEIs outperformed the unmodified PEI at relatively high N/P ratio of 40, as effective 

protection of HEK293T cells by PI-9 gene delivery was evident for A and B at high N/P ratio, 

but was lost in the case of unmodified PEI, largely due to its intrinsic cytotoxicity against the 

target cells, which masked the effect of PI-9, despite its high gene transfection efficiency at 

N/P 40. These findings suggest that the delivery of PI-9 gene by the modified PEIs has the 

potential to target pathogenic GrB and so alleviate allograft rejection and other inflammatory 

diseases. Thus, aim 2 described in Chapter two was partially fulfilled, while the exploration of 

the potential of using other functionally modified PEIs to deliver the PI-9 gene to other cell 

types to protect them from GrB released from other killer cells will be presented in the next 

chapter.  
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CHAPTER 5: CARBAMATE-MANNOSE MODIFIED PEI DELIVERY OF A 

GRANZYME B INHIBITOR GENE TO MOUSE FIBROBLAST BALB/3T3 CELLS TO 

PROTECT AGAINST GrB MEDIATED KILLING 

5.1 Introduction 

Based on the results in Chapter 4, the degree of primary amines substitution for PEI is a 

paramount factor determining the satisfactory performance of the modified polymer. When 

molar feed ratio of 1:75 (PEI:mannose) was applied in the nucleophilic addition reaction, all 

the primary amines of PEI were consumed, rendering the modified PEI (polymer C) ineffective 

in DNA condensation and transfection. Therefore during PEI modification by functionalized 

carbamate, a careful balance must be stricken between the amount of free and substituted 

amines. This chapter serves as an extension to Chapter 4, where three other mannose-modified 

PEIs were synthesized at PEI to MTC-ipman monomer conjugation ratios of 1:6, 1:12.5, and 

1:25, in the absence of the DBU catalyst, which further simplified the synthesis process as 

compared to Chapter 4. After investigating the physicochemical properties, GFP reporter gene 

transfection capability, as well as cytotoxicity of these modified PEIs on mouse fibroblast cell 

line Balb/3T3, we examined the potential of using them to deliver PI-9 gene to and protect the 

Balb/3T3 cells from cytotoxicity caused by GrB secreted from allo-specific CTLs from B6 

mice or YT cell line. The reason of using two types of killer cells was because they have 

different killing mechanisms toward the same target cell. Finally, the potential in vivo work for 

measuring the longevity of the PI-9 transfected Balb/3T3 cells after i.v. injection was 

introduced. 

5.2 Materials and Methods 

5.2.1 Materials  

Branched PEI with a MW of 25 kDa, MTT for cytotoxicity assay, and other reagents 

for polymer synthesis were obtained from Aldrich and used without any further purification 

unless otherwise noted. GFP-reporter gene was obtained from Clontech (U.S.A.). pcDNA3.1-

hGH vector encoding human growth hormone (hGH) gene and the empty pcDNA3.1 vector 

were kindly provided by Professor Peter E. Lobie from Cancer Science Institute of Singapore, 

and contain gene expressing neomycin phosphotransferase, conferring resistance to G418. PI-9 

encoding plasmid DNA MigR1-PI9 was amplified in the Escherichia coli strain DH5α, 

isolated and purified using a QIAGEN HiSpeed Plasmid Maxi Kit (Qiagen, UK). The 
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concentration of DNA was determined by measuring the UV absorption at 260 nm by 

Nanodrop spectrophotometer (Thermo scientific, UK). YT human natural killer-like leukemic 

cell lines were purchased from ATCC (U.S.A.). The immortalised mouse fibroblast cell line 

Balb/3T3 was stemmed from the clone A31-1-1, and was kindly provided by Dr. Jessica Ponti 

from European Commission, Joint Research Centre, Institute for Health and Consumer 

Protection, Nanobiosciences Unit, Ispra, VA, Italy. 

5.2.2 Synthesis of mannose-functionalized cyclic carbonate (MTC-ipman) and mannose-

modified bPEI-25 in the absence of DBU 

The monomers with protected mannose pendent groups is designated MTC-ipman, they 

and the carbamate mannose-modified PEIs were synthesized by Dr. Chuan Yang in Dr. Yi Yan 

Yang’s lab in IBN, A*STAR, Singapore, according to a protocol reported previously [295]. 

Briefly, a single step, spontaneous ring-opening reaction of the cyclic carbonate generated a 

carbamate linkage and a primary hydroxyl group together with mannose protected with acetyl 

group, and the deprotection step revealed each mannose with 5 hydroxyl groups which were 

expected to reduce positive surface charge and cytotoxicity associated with PEI/DNA 

complexes. Polymers T, S and G were synthesized without DBU using a molar feed ratio 

bPEI-25:MTC-ipman of 1:6, 1:12.5 and 1:25, respectively, and mass feed ratio of 4:1, 2:1 and 

1:1, respectively, for 1 hour before acidification. In each case, available primary amine sites 

exceeded the available MTC-ipman. The PEI:MTC-ipman molar ratio found by NMR for 

polymer T, S and G was 1:5.5, 1:12.2, and 1: 23, respectively. The detailed procedures for the 

synthesis of the MTC-ipman and MTC-ipman modified PEIs, and the characterization of the 

monomers and polymers using 
1
H NMR spectroscopy were described in the appendix.  

5.2.3 Cell culture 

YT cells were cultured in RPMI 1640 medium (Invitrogen, UK) supplemented with 10% 

(v/v) fetal bovine serum (FBS, Invitrogen, UK) and PSG (v/v) (penicillin at 100 U/mL, 

streptomycin at 100 µg/mL, and L-glutamine at 2 mM, Invitrogen, UK), and split every two 

days, when cells reach 90% confluence.  

Experimental cultures of the mouse fibroblast cell line Balb/3T3 were prepared from 

deep-frozen stock vials and always maintained in a sub-confluent state (less than 70% of 

confluence). Cells were maintained in complete culture medium made by DMEM (Gibco®, 

UK) added with 10% (v/v) fetal bovine serum and 1% (v/v) PSG.  
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All cells were maintained under standard cell culture conditions (37 °C, 5% CO2 and 95% 

humidity, in GALAXY® DIRECT HEAT CO2 INCUBATORS, RS Biotech, UK).  

5.2.4 DNA handling, transformation of bacteria with recombinant DNA, and maxiprep 

pcDNA3.1-hGH vector encoding hGH gene and the empty pcDNA3.1 vector were 

bound to two pieces of sterile filter paper upon arrival. To extract the DNA, the DNA bound 

filter paper was transferred to a sterile microcentrifuge tube. 100 µl distilled water was added 

to the tube and incubated for 1 h at room temperature. The DNA was resuspended by gently 

pipetting up and down 5-10 times and stored at –20˚C till use.  

Transformation was carried out in the ultra-competent E.coli strain. 50 µl of the 

competent cells were removed from –70˚C and thawed on ice. 1 µL plasmid DNA (around 50 

ng) was added to the 50 µl cell suspension, mixed thoroughly in a 1.5 mL autoclaved 

microcentrifuge tube by finger flicking and incubated on ice for 30 min. After that, the cells 

were heat-shocked by immersion in a 42˚C water bath for 45 seconds without shaking, 

followed by transferring the tube on ice for 1-2 min. 500 µl of room temperature LB broth was 

added to the heat-shocked reaction and the tube was then transferred to an agitating incubator 

at 37˚C for 60 min at 700 rpm. The tube was then centrifuged at 8000 rpm for 5 min and the 

supernatant was removed taking caution not to disturb the pellet. The pellet was resuspended in 

300 µl of fresh LB broth, and a volume of 50-200 µl of the bacterial transformation was evenly 

spread on LB agar plates containing appropriate antibiotics (100 µg/mL ampicillin for 

pcDNA3.1 and pcDNA3.1-hGH) using a sterile spreader. The agar plate was then placed in a 

37˚C incubator overnight. Single colonies were isolated on the LB plate and propagated in LB 

media for plasmid DNA preparation. 

Plasmid DNA was prepared according to the protocol provided with QiagenHispeed 

Plasmid Maxi Kit (Qiagen
®

 Ltd, UK). Briefly, a single colony was picked from a freshly 

streaked selective plate and inoculated into a starter culture of 2–5 mL LB medium containing 

the appropriate selective antibiotic (100 µg/mL ampicillin for pcDNA3.1 and pcDNA3.1-hGH), 

which was incubated for approximately 8 h at 37°C with vigorous shaking (approximately 300 

rpm). The starter culture was then diluted 1000 times into selective LB medium. For high-copy 

plasmids like pcDNA3.1, 150 µL starter culture was inoculated into 150 mL medium, which 

was then incubated at 37°C for 12–16 h with vigorous shaking (approx. 300 rpm). A volume of 

100 mL of bacteria was harvested by centrifugation at 6000 x g for 15 min at 4°C in a Sorval 
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SS34 rotor (Du Pont Instruments, UK). The pellet was resuspended in 10 mL Buffer P1 (50 

mM Tris HCL [pH 8.0], 10 mM EDTA, 100 µg/mL RNase A) and the bacteria were lysed by 

10 mL Buffer P2 (0.2 M Sodium hydroxide, 1% SDS) by vigorously inverting the sealed tube 

4–6 times, and incubating at room temperature (15–25°C) for 5 min. The mixture was 

neutralized with 10 mL chilled Buffer P3 (3 M KAc, [pH 5.5]), and the resulting precipitate of 

protein and genomic DNA was poured into the barrel of the QIAfilter Cartridge and incubated 

at room temperature for 10 min. Then the plunger was inserted into the QIAfilter Maxi 

Cartridge and the cell lysate was filtered into the previously equilibrated HiSpeed Tip 

(equilibrated with 10 mL Buffer QBT), and allowed to pass through the resin by gravity flow. 

The column was then washed with 60 mL Buffer QC (1 M NaCl, 50 mM MOPS [pH 7.0] and 

15% isopropanol) and bound plasmid DNA was eluted with 15 mL Buffer QF (1.25 M MaCl, 

50 mM MOPS [pH 7.0] and 15% isopropanol). Eluted plasmid DNA was then precipitated 

with 10.5 mL (0.7 volumes) room temperature isopropanol, mixed and incubated at room 

temperature for 5 min. The Elutate/isopropanol mixture was then transferred into a 30 mL 

syringe with a QIAprecipitator Maxi Module attached onto the outlet nozzle, filtered through 

the QIAprecipitator using constant pressure. Subsequently, 2 mL 70% ethanol was added to the 

syringe and pressed through the QIAprecipitator using constant pressure to wash the DNA. The 

DNA was dried by pressing air though the QIAprecipitator quickly and forcefully for a few 

times and eluted by 1 mL of Buffer TE. The final plasmid DNA concentration was accurately 

determined by Nanodrop spectrophotometer (Thermoscientific, UK). 

5.2.5 Generation of stable cell transfectants 

In order to generate stable Balb/3T3 cells expressing and secreting hGH protein, 

pcDNA3.1 vector alone and pcDNA3.1-hGH vector were stably transfected into Balb/3T3 cells 

by the use of Lipofectamine
®

 2000 (Invitrogen, UK) and the stably transfected cells were 

selected by Geneticin
®

 Selective Antibiotic (G418 Sulfate, Invitrogen, UK).  These gene 

plasmid vectors contain gene expressing neomycin phosphotransferase, conferring resistance to 

G418. As the selection condition for each specific cell type and each batch of G418 needs to be 

established experimentally, first of all, the minimum level of G418 to be added to the culture 

medium to prevent Balb/3T3 cell growth was determined. Balb/3T3 cells were split into 60 

mm tissue culture plates in the density of 2x10
5
 cells in 2 mL DMEM without G418 per well. 

The next day, the medium was replaced with fresh DMEM containing increasing 

concentrations of G418 (G418 in a range of 0.1 mg/mL to 1.0 mg/mL was added to the cells). 

Cells were fed every 3 days with the selection medium and observed under light microscopy 
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every day to check cell death. The concentration which caused complete cell death in 7-14 

days was chosen as the appropriate G418 concentration for selection: 0.4 mg/mL.  

Then, Balb/3T3 cells were seeded into 60 mm tissue culture plates (BD Falcon™, UK) 

at 8x10
5
 cells per well in 5 mL DMEM medium with 10% (v/v) heat-inactivated FBS but 

without antibiotics. The next day, to prepare the Lipofectamine
®

 2000 transfection, for each 

well of cells, 15 µL DNA (1mg/mL in sterile molecular biology water, pcDNA3.1 or 

pcDNA3.1-hGH) was diluted into 250µL OptiMEM
®

 Medium (Invitrogen, UK); 20 µL 

Lipofectamine
®

 2000 reagent was diluted into 250 µL OptiMEM
®

 Medium as well, and 

incubated for 5 min at room temperature. After that, the diluted Lipofectamine
®

 2000 reagent 

was combined with the DNA by gentle pipetting, and the mixture was allowed to sit 

undisturbed for 20 minutes at room temperature for DNA-Lipofectamine
®

 2000 complexes to 

form. Finally the complexes were distributed over the Balb/3T3 cells. A plate of untransfected 

Balb/3T3 cells was used as a negative control. The medium was replaced by fresh one 6 h after 

transfection, and the cells were allowed to grow and express the protein for G418 resistance 

under non-selective conditions for 48 hours. Then, cells were split 1:10 and cultivated in the 

selection medium (standard medium with supplements and G418 at 0.4 mg/mL) for the 

selection of stably expressing cells. Cell growth was observed every day and the medium was 

replaced with fresh selection medium every 3 days for a total of 15 days. In the well containing 

untransfected cells, there should be no sign of living cells, while outgrowth of resistant cells 

was observed in pcDNA3.1-hGH and pcDNA3.1 transfected wells.  

In order to generate single clones of hGH expressing Balb/3T3 cells, cells from 

pcDNA3.1-hGH and pcDNA3.1 transfected wells 15 days after G418 selection were harvested 

using trypsin. The living cells were counted by trypan blue staining, then 100, 1000, and 10000 

living cells were into T-160 tissue culture flasks (BD Falcon™, UK) containing 0.4 mg/mL 

G418. Cells were incubated at 37 °C, 5% CO2 and 95% humidity for 7-10 days, and observed 

under the microscope. Cells in the non-transfected control plates should be completely dead, 

while large, healthy and well separated colonies were observed in the flasks containing 

pcDNA3.1-hGH and pcDNA3.1 transfected cells. To isolate these colonies, the locations of the 

colonies were marked by a marker pen, and the medium in the flasks was carefully removed. 

Trypsin-soaked Scienceware
®

 cloning discs (3mm, Sigma-Aldrich, UK) were put directly on 

the surface of the cell colonies and left there for around 2 min. Then the paper discs containing 

cells from different clones were transferred to wells of 24 well plate for growth in fresh 
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selection medium. After three days, clones that reach ~80% confluence were split into 12-well 

plate, and hGH protein secretion in the medium of the wells of the 24 well plate was assessed 

by enzyme-linked immunosorbent assay (Roch, Singapore). The hGH expression positive 

clones were further expanded using 6 well plate and T25 tissue culture flasks, and stored in 

liquid nitrogen till use in the future.  

Cells stably transfected with pcDNA3.1-hGH were designated Balb/3T3-hGH, whereas 

cells stably transfected with pcDNA3.1 were designated Balb/3T3-empty. 

5.2.6 Preparation, particle size and zeta potential analyses of polymer/DNA complexes 

Polymer/DNA complexes were prepared as previously described under Section 3.2.4. 

The particle sizes and zeta potentials of the post-equilibrated polymer/DNA complexes were 

measured by dynamic light scattering (Brookhaven Instrument Corp., Holtsville, New York, 

U.S.A.) using a He–Ne laser beam at 658 nm with a scattering angle of 90° and Zetasizer 

(Malvern Instrument Ltd., Worcestershire, UK), respectively, at a set temperature of 25 °C.  

Immediately prior to the particle size and zeta potential measurement, the polymer/DNA 

complexes in nuclease free water was diluted 10x in PBS to mimic the dilution in the 

physiological environment after i.v. administration. Particle size and zeta potential 

measurements were repeated for three runs per sample and reported as the mean ± standard 

deviation of three readings. 

5.2.7 Titration experiments 

The buffering capacity of the unmodified and modified PEIs was analyzed as described 

previously [296]. Briefly, the polymer (0.1 mmol nitrogen atoms) was first dissolved in 5 mL 

of NaCl solution (150 mmol). Then, 15 mL of 0.01 M HCl was added to the solution to reduce 

the pH to 2, and the solution was titrated against 0.01 M NaOH until reaching pH 11 using an 

auto titrator (Spectralab Instruments). The unmodified PEI was used as a control. The buffering 

capacity is defined as the percentage of amine groups which get protonated over the pH of 4.8-

7.2 and is calculated by the following equation: buffering capacity (%) = 100 x (∆VNaOH x 0.01 

mol) / N mol.  

Where ∆VNaOH is the volume of NaOH (0.01 M) which is required to increase the pH 

from 4.8 to 7.2 and N mol is the total moles of protonable amines. 

5.2.8 Gel retardation assay 
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DNA binding ability of the polymers was investigated using agarose gel electrophoresis 

as detailed in Section 3.2.5. Briefly, various formulations of polymer/DNA complexes were 

prepared with N/P ratios ranging from 1 to 30. Post-equilibration, the complexes were 

electrophoresed on 1% agarose gel (stained with 5 μL of 10 mg/mL ethidium bromide per 60 

mL of agarose solution) in 1× TBE buffer at 110 V for 50 min. The gel was then analyzed 

under an UV illuminator (Chemi Genius, Evolve, Singapore) to reveal the relative position of 

the complexed DNA to the naked DNA. 

5.2.9 In vitro GFP gene transfection 

The in vitro gene transfection efficiency of the polymer/DNA complexes was 

investigated using the GFP reporter gene in mouse fibroblast cell line Balb/3T3. Briefly, 

Balb/3T3 cells were seeded onto 24-well plates at a density of 5×10
4 
cells per 500 μL per well. 

24 h later, the plating DMEM media were replaced with 0.5 mL fresh growth media, followed 

by the drop-wise addition of 50 μL of the polymer/GFP-reporter plasmid DNA complex 

solution (containing 1.75 μg DNA) at various N/P ratios. Following 8 h of incubation, free 

DNA complexes were removed by replacing the media in each well. After a further 64 h of 

incubation, cells were harvested for analysis by first washing with 1 mL of PBS and then 

detaching with 0.3 mL of trypsin (0.5 g/L in PBS). The cell suspension was then centrifuged at 

1500 rpm for 5 minutes, followed by one more round of wash by 1 mL PBS. The cell pellet 

was again collected and finally resuspended in 300 µL PBS for flow cytometry (FACSCalibur, 

BD Bioscience, San Jose, CA, USA). Prior to FACS analysis, 10 μL of Propidium Iodide (PI) 

Nucleic Acid Stain (Molecular Probes, UK) (10 μg/mL diluted in PBS) was added to a control 

tube of otherwise unstained cells, mixed gently and incubated for 1 minute in the dark. Then 

the data for unstained cells and single-color positive controls (GFP single positive and PI 

single positive) were acquired with the flow cytometer. Subsequently, 10 μL of PI staining 

solution was added to each sample just prior to analysis. 30000 total events were recorded and 

the percentage of viable (PI negative) cells expressing GFP was reported as a mean ± standard 

deviation (n ≥ 3). Cells were defined to be GFP positive by setting the gating region to 

include less than 0.5% of the un-transfected cells. In all in vitro gene expression experiments, 

naked DNA was used as a negative control, and unmodified PEI/DNA complexes prepared 

were used as the positive control. 

5.2.10 Cytotoxicity test 
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The cytotoxicity of the polymer/DNA complexes was studied using the standard MTT 

assay protocol detailed in Section 3.2.11. Cells were seeded in 96 well plates at 1×10
4 
per 100 

μL per well, for Balb/3T3 cells. And polymer/DNA complexes were removed after 8 h 

incubation with the cells. Data are expressed as mean ± standard deviations from two 

independent experiments performed in eight replicates per N/P ratio. 

5.2.11 Mixed Lymphocyte Reaction (MLR) 

WT B6 and Balb/c mice (6-8 weeks old) were obtained from the Jackson Laboratory. 

Mice were kept in a standard animal housing setting at the CBS facilities at St Mary’s Hospital, 

Imperial College London. In the mixed lymphocyte reaction (MLR), suspensions of responder 

T cells (lymphocytes isolated from non-immunized B6 mouse spleen) were cultured with 

allogeneic stimulator lymphocytes isolated from Balb/c mouse spleen. The activating stimulus 

is the foreign histocompatibility antigen (usually MHC class I or class II molecules) expressed 

on the allogeneic stimulator cells. Responder cells needed not be primed because a sufficiently 

high number of T cells in the MLR will respond to the stimulator population. 

Mice were humanly killed by cervical dislocation. Single-cell suspensions from the 

spleen of both B6 and Balb/c mice were aseptically prepared in the sensitization medium: 

RPMI +10% (v/v) FCS +1% (v/v) PSG +1mM sodium pyruvate +1% (v/v) nonessential amino 

acids +0.1% (v/v) beta-mercaptoethanol (2ME). The stimulator cells isolated from Balb/c mice 

spleen was treated by 3000 rad gamma irradiation (Gammacell Irradiator, UK) to block cell 

division. The B6 splenocytes were pelleted at 1600 rpm, 5 min at 4 ˚C, and 3 mL 1x RBC lysis 

buffer (eBioscience, UK) was added to the pellet. After a brief vortex, the cell suspension was 

incubated at room temperature for 10 min. 7 mL fresh medium was added to the suspension 

followed by pelleting and resuspension in 5 mL medium. Viable cells were then counted by 

trypan blue staining. After that, responder B6 spleen cells (7 x 10
6
) and irradiated stimulator 

Balb/c spleen cells (1 x l0
6
) were cultured together in 2 ml of the sensitization medium in 24-

well plates, for 5 days in a humidified 37°C, 5% CO2 incubator. Mouse recombinant IL-2 (10 

U/mL) was added when cultures were initiated to enhance the generation of CTL activity. On 

day 5, non-adherent effector cells were harvested from each well by vigorous pipetting, washed 

once with PBS, and resuspended in 10 mL serum free RPMI. Then they were spun over 

lympholyte gradients to remove dead cells. Briefly, Lympholyte-M Cell Separation Media 

(Isolation of lymphocytes from Mouse lymphoid tissue) (VH Bio Ltd. UK) was equilibrated to 

the room temperature, 2 mL of which was added to the bottom of the cell suspension using a 
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Pasteur pipette. The tube was centrifuged at room temperature, 2000 rpm for 20 min without 

brake, so that a well defined lymphocyte layer (buffy coat) was formed at the interface of the 

medium and lympholyte-M. The lymphocyte layer was removed carefully using a pipette and 

washed once with PBS, and the viable CD8 cells were counted using trypan blue staining. 

Finally, the cells were characterized by flow cytometry after being stained by anti-mouse CD8-

PB (Biolegend, UK), and intracellular anti-GrB-PE (Sigma, UK) FACS antibodies. For the 

immunostaining of GrB, cells were incubated for 20 min in 250 μL Cytofix/Cytoperm solution 

(BD Biosciences) at 4˚C for permeabilization, followed by pelleting and thorough resuspension 

in 50 μl of BD Perm/Wash solution containing a pre-determined optimal concentration of a 

fluorochrome(PE)-conjugated anti-GrB antibody, and the cells were incubated at 4°C for 30 

minutes in the dark. After that, cells were washed twice with 1 mL 1× BD Perm/Wash solution 

and resuspended in FACS buffer prior to flow cytometry analysis. Auto-compensation was 

done using the Summit software.  

5.2.12 In vitro protection of Balb/3T3 cells from YT cell or allo-specific CTL killing by 

transfection with polymer/PI-9 encoding plasmid DNA complexes 

The protective effect of polymer/PI-9 plasmid DNA complexes was evaluated by a 

killing essay using human natural killer-like leukemic YT cells [288] or allo-specific CTL 

generated from section 5.2.11 as the effecter, and Balb/3T3 cells as the target. Calcein-

acetoxymethyl (Calcein-AM, Invitrogen, UK) which is a fluoresceinated molecular probe 

retained only by live cells with intact membranes, was used to assess the percentage of cell 

killing [289]. Briefly, YT cells or allo-specific CTL generated from B6 mouse spleen were 

washed and re-suspended to 5×10
6
 cells/mL in RPMI, 100 µL of which was dispensed into 

each well of a 96 well plate (round-bottom). Balb/3T3 cells were transfected using the 

polymer/PI-9 DNA complexes at various N/P ratios in a 24-well plate as described in Section 

5.2.9. After 72 h of incubation, the target cells were trypsinized, washed and re-suspended at 

2×10
6
 cells/mL in RPMI. Calcein-AM was added to target cell suspension to a final 

concentration of 15 µM and the cells were incubated for 30 min with occasionally mixing. 

Then they were washed twice with the medium and re-suspended to 10
5
 cells/mL, 100 µL of 

which was dispensed to each well of the 96-well plate containing 5×10
5 

allo-specific CTLs or 

YT cells to achieve effector:target (E:T) ratio of 50:1. Subsequently, the target and effector 

cells were incubated together for designated period of time, and centrifuged at 1000 rpm for 5 

min, before 100 µL of the supernatant was removed to be read on a microplate 

spectrophotometer at excitation and emission wavelengths of 485 nm and 530 nm respectively. 
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Wells for spontaneous release (100 µL of fresh RPMI medium without effector cells was added) 

and maximal release (100 µL of 5% Triton X-100 instead of effector cells was added for 

complete lysis of cells) of Calcein-AM were included as negative and positive controls, 

respectively. Untreated and empty MigR1 plasmid-transfected target cells were used as the 

negative controls. The data were expressed as light units per minute (LUPM). The average 

values were determined from 4 replicates for every N/P ratio and control. Percent cytotoxicity 

was determined using the following formula: 

                      
                    (    )                       (    )

                (    )                       (    )
       

5.2.13 Statistical Analysis 

Results were analyzed using the two-tailed Student’s t-test to determine statistical 

significance (Microsoft Excel). The difference between mean readings was considered to be 

statistically significant when p < 0.05. 

5.3 Results and Discussion 

5.3.1 Polymer synthesis  

To study the structure-function relationship between the modification groups and the 

modified PEI (25 kDa) polymer properties, the MTC monomer was modified with mannose.  

In addition, the protected MTC-ipman monomers were able to react with the primary amines of 

PEI (25 kDa) in a typical ring-opening reaction. The synthesis procedures and structures of 

carbamate-mannose modified PEIs (polymers T, S and G) were shown in Scheme 1 in Section 

3.3.1. The reaction went smoothly without the help of the DBU catalyst, and it was highly 

controllable, fast, and correlated well to feed molar ratios of PEI to MTC-ipman monomers as 

verified by 
1
H NMR analysis. Specifically, the conjugation degree of MTC-ipman to PEI was 

found to be at molar ratios of 1:5.5, 1:12.2, and 1:23 for T:PEI-Mannose(1:6), S:PEI-

Mannose(1:12.5), and G:PEI-Mannose(1:25) by comparing relative integral intensities of 

methyl signals of MTC-ipman and PEI methylene signals on NMR (Figure 28), and the molar 

ratios on NMR were proportional to those in the feed. The reaction is highly advantageous as it 

enabled the synthesis of well-defined polymers which permitted an accurate study of structure-

function relationships. The compositions and nitrogen contents of carbamate-mannose 

modified PEI synthesized without the DBU catalyst (polymers T, S and G) were summarized 

in Table 7. 



134 
 

 

Figure 28. 
1
H NMR spectra of PEI-mannose at conjugation degrees of 6, 12.5 and 25 (a, b and 

c, corresponding to polymers T, S and G, respectively) in D2O. 

Table 7. Compositions and nitrogen contents of carbamate-mannose modified PEI synthesized 

without the DBU catalyst, and their buffering capacity. Higher nitrogen content correlates with 

lower substitution degree. Substitution degree: T<S<G. (PEI: 58 primary amines, 116 

secondary amines and 58 tertiary amines) 

Polymer 
Nitrogen Content 

(%) 
Method of mannosylation 

Buffering Capacity 

(%) 

T 26.2 
bPEI : ipman = 1:6 (molar ratio); 

Actual molar ratio from NMR: 1:5.5 

19.7 

S 21.7 

bPEI : ipman = 1:12.5 (molar ratio); 

Actual molar ratio from NMR: 

1:12.2 

20.0 

G 16.3 
bPEI : ipman = 1:25 (molar ratio); 

Actual molar ratio from NMR: 1:23     

22.3 
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bPEI (25 

kDa) 
33.3  

21.2 

 

As there are approximately 58 primary amine, 116 secondary amine and 58 tertiary 

amine groups in every PEI (25 kDa) molecule, the degree of mannose conjugation on the 

primary amine groups of PEI in this chapter was varied from 6 to 25 in order to determine an 

optimal number of conjugated mannose monomer. As shown in Chapter 3, modified PEI with 

all the primary amines blocked---C:PEI-Mannose(1:75), L:PEI-Mannose(1:58), M:PEI-

Mannose(1:120), and N:PEI-Mannose(1:400) were inferior in gene transfection efficiency in 

various cell lines such as HepG2 and HMSC, due to inefficient DNA binding and condensation, 

and therefore they were excluded in this chapter.  

5.3.2 Buffering Capacity  

Increasing the conjugation degree not only decreased the number of free primary 

amines, it might also affect the pKa values of the available amines [297]. Altered pKa might in 

turn have an impact on the endosomal buffering properties and thus the ability of endosomal 

escape of the DNA/polymer complex [298]. In order to evaluate whether the buffering capacity 

of the PEI 25 kDa was modified by the MTC-ipman conjugation, acid-base titration 

experiments were performed. As a result, the buffering capacity of polymers T:PEI-

Mannose(1:6), S:PEI-Mannose(1:12.5), and G:PEI-Mannose(1:25) with different mannose 

conjugation degrees were found to be 19.7%, 20.0% and 22.3%, respectively, which were 

comparable to unmodified PEI (21.2%) (Table 7). The unaltered buffering capacity of the 

mannose modified PEIs suggested that the majority of conjugation reactions took place at the 

primary amine sites of PEI, leaving the secondary and tertiary amines intact and available to 

sequester protons in the acidic environment of endosomes [299]. Therefore, mannose 

modification could largely conserve the prominent endosomal escape capabilities of the gold 

standard PEI 25 kDa, while other properties of the modified PEI remained to be explored in the 

following sections.  

5.3.3 Size and zeta potential of polymer/DNA complexes 

Nanoparticles with sizes less than 200 nm are ideal as they have been reported to exploit 

the clathrin-mediated endocytosis to enter and accumulate in cells, in a better and more 

efficient way than larger sized particles [300]. The size and zeta potential of the polymer/DNA 

complexes formed using mannose modified PEI (25kDa) synthesized without the use of 
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catalyst and the unmodified PEI were measured by dynamic light scattering. For polymers 

T:PEI-Mannose(1:6) and S:PEI-Mannose(1:12.5), they had lower percentages of primary 

amine groups modified with cyclic mannose carbonate monomer, as compared to polymer 

G:PEI-Mannose(1:25). Therefore, more compact DNA complexes formed by them were 

observed as compared to polymer G in Figure 29A, especially at higher N/P ratios (~93 nm at 

N/P 50 to ~250 nm at N/P 10 for T, S; and 202 nm at N/P 50 to 268 nm at N/P 10 for G). As a 

comparison, DNA complexes formed with unmodified PEI at N/P 10 also had a small size 

(~84 nm). In addition, the modified PEI/DNA complexes displayed low polydispersity index 

(PDI) values ranging from 0.078 to 0.186, indicating uniform particle sizes.  

In addition to having a small size, a net positive surface charge is also beneficial as it aids 

in electrostatic interaction with the negatively charged cellular membrane, mainly through 

proteoglycans, such as syndecan on cell surfaces, enhancing the chance of cellular uptake [301]. 

From Figure 29B, T/DNA, S/DNA and G/DNA complexes had a comparable or slightly lower 

cationic charge density on their surfaces at N/P 20-50 as compared to unmodified PEI/DNA 

complexes at N/P 10 (Zeta potential: ~18-22 mV for T/DNA and G/DNA complexes, ~16-18 

mV for S/DNA complexes, and ~22 mV for PEI/DNA complexes). This could be explained by 

the fact that primary amine groups responsible for being protonated in PBS (pH 7.4) were 

partially blocked by the mannose cyclic carbonate in the modified polymers, therefore reducing 

the net positive charge of the modified polymer/DNA complexes. A similar phenomenon was 

also reported in lipoic acid modified LMW PEI (1.8 kDa), which showed comparable and 

slightly lower zeta potential than the unmodified PEI 1.8 kDa, demonstrated stronger DNA 

binding ability and mediated nontoxic and highly potent in vitro gene transfection in HeLa and 

HEK293T cells [296]. 
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Figure 29. Particle size (A) and zeta potential (B) of polymer/DNA complexes at various N/P 

ratios as specified. Unmodified PEI/DNA complexes prepared at N/P 10 were used as a control. 

Results represent mean ± standard deviation of triplicates. 

5.3.4 DNA binding ability of polymers 

To determine whether the mannose modified PEI (25kDa) could effectively bind DNA to 

form compact complexes for easy cellular uptake, agarose gel electrophoresis was performed 

to evaluate the gene binding capacity of the polymers. As shown in Figure 30, like unmodified 

PEI, which enabled complete DNA binding from a fairly low N/P ratio (i.e. N/P 3) (Figure 

30D), polymers T, S and G condensed DNA effectively. The complete retardation of DNA 

mobility in the complexes was observed at N/P 3 for S, and N/P 2.5 for both T and G (Figure 

30A, B and C). These results suggested that PEI with 5.5, 12.2 or 23 of 56 primary amine 

groups substituted by mannose still condensed DNA effectively.  

A      Polymer T              N/P ratios 
DNA ladder  1      2     2.5     3     3.5      4       6     10      15     0 

 

B      Polymer S              N/P ratios 
DNA ladder  1      2     2.5     3      3.5    4       6     10    15     0 

 

C         Polymer G              N/P ratios 
DNA ladder  1      2      2.5     3      3.5     4      6     10      15     0 

 

D            PEI                    N/P ratios 
DNA ladder  1     2     2.5     3     3.5     4       6    10      15     0 
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Figure 30. Electrophoretic mobility of DNA in polymer/DNA complexes. A, B, C and D 

represent polymer T, S, G, and the unmodified PEI, respectively. 

5.3.5 Cytotoxicity of unmodified and carbamate-mannose modified PEIs 

The cytotoxicity of unmodified and modified PEIs was evaluated against Balb/3T3 

cells using the MTT cell viability assay. As demonstrated in Figure 31, the unmodified PEI 

caused extensive cytotoxicity over the range of concentrations tested, especially at high N/P 

ratios of 50 and above, where less than 25% of the Balb/3T3 survived after 8 h incubation with 

the unmodified PEI. On the contrary, although demonstrating a trend of decreasing cell 

viability with increasing N/P ratio, all three mannose-modified PEI polymers were much less 

cytotoxic against Balb/3T3 cells than unmodified PEI at all N/P ratios. Balb/3T3 cells 

demonstrated strong tolerance to the mannose-modified PEIs, Especially G:PEI-

Mannose(1:25), which caused almost 0% cytotoxicity from N/P 10-50, and more than 80% cell 

survived when treated by G/DNA complexes at N/P 60. Moreover, the same treatment 

conditions of the cells with T, S and G even at the highest concentrations corresponding to N/P 

100 (51.0, 61.6 and 82.0 mg/L, respectively) led to 42%, 40%, and 61% cell viability. 

Furthermore, in the present study, cell viability correlated positively with the increasing 

degrees of carbamate-mannose substitution, further proved that mannose moieties successfully 

shielded the primary amines of PEI and reduced the high positive charges associated with 

strong cell lytic and toxic properties. Taken together, the MTT assay demonstrated the 

potential of the mannose-modified PEIs to be safe gene delivery vectors. 
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Figure 31. Viability of Balb/3T3 cells after incubation with unmodified PEI/DNA and 

carbamate-mannose modified PEI/DNA complexes at various concentrations. Results represent 

mean ± standard deviation of 8 replicates. Polymer concentrations in the order of N/P ratios 

specified: unmodified PEI - 4.0, 8.0, 12.0, 16.0, 20.0, 24.1, 32.1, and 40.1 mg/L. T - 5.1, 10.2, 

15.3, 20.4, 25.5, 30.6, 40.8, and 51.0 mg/L. S - 6.2, 12.3, 18.5, 24.6, 30.8, 37.0, 49.3, and 

61.6mg/L. G - 8.2, 16.4, 24.6, 32.8, 41.0, 49.2, 65.6, and 82.0 mg/L. 

5.3.6 In vitro GFP gene transfection efficiency 

The percentage of Balb/3T3 cells successfully transfected with the reporter gene 

encoding for GFP by the various polymers was quantified using flow cytometry. DNA/polymer 

complexes were formed at N/P ratios ranging from 10 to 100, cells were incubated with the 

complexes for a period of 8 h which corresponded to the polymer treatment time in the MTT 

viability assay, and the GFP expression was analyzed 72 h after transfection. As the 

unmodified PEI caused extensive cytotoxicity at N/P 40 and above, the false positive GFP 

signal caused by auto-fluorescence of the dead cells needed to be eliminated [274]. To achieve 

this, 30000 total Balb/3T3 cells were acquired by fluorescence-activated cell sorting (FACS), 

and gating was first performed on forward scatter and side scatter double-positive cells, then on 

propidium iodide (PI) negatively-stained cells, therefore most of the dead cells were eliminated 

to avoid interference with the genuineness of the GFP transfection efficiency.  

As shown in Figure 32A, although the unmodified PEI caused a peak of 59% GFP 

positive cells at N/P 30 and 40, its transfection efficiency drastically plunged at N/P 50 and 

above, presumably because of its high intrinsic toxicity at high concentrations. The transfection 

efficiency of the mannose-modified PEIs increased with increasing mannose attachment degree 

at each N/P ratio, suggesting that mannose-conjugation had a positive influence on the gene 

transfection ability. Polymers T and S demonstrated the highest transfection efficiency at N/P 

50, where 42% and 54% GFP transfection efficiency was achieved in the presence of serum by 

T and S, respectively (Figure 32A). But their transfection efficiency dropped at higher N/P 

ratios, suggesting that their elevated cytotoxicity at N/P 80-100 (~40% cell viability for both 

polymers, Figure 31) had a negative impact on the percentage of GFP positive cells. In the 

contrast, polymer G mediated around 65% transfection efficiency even at the highest N/P 100, 

and the peak of its transfection efficiency occurred at N/P 80 (66%) (Figure 32A). Furthermore, 

when counting the absolute number of GFP positive cells transfected by the various polymers 

at the N/P ratios tested, the negative impact of the polymer cytotoxicity on the effectiveness of 

gene transfection was even more obvious. As can be seen in Figure 32B, the unmodified PEI 

led to ~5400 live GFP positive cells out of 30000 total cells, which corresponded to the high 
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cell viability of 93% at N/P 20 (Figure 31). When the cell viability dropped to below 40% from 

N/P 40 and above, only less than 630 GFP positive cells were managed to be collected. 

Moreover, ~40% cell viability at N/P 80 and 100 also made the amount of GFP positive cells 

collected at these two N/P ratios very low for Polymer T and S (200 and lower). In sharp 

contrast to these, polymer G enabled more than 3900 viable GFP positive cells to be collected 

even at N/P 100, which was significantly higher than those achieved by other polymers at such 

a high N/P ratio, largely due to its compatibility with Balb/3T3 cells at high concentrations. All 

in all, the favourable data in Sections 5.3.5 and 5.3.6 suggested that carbamate-mannose 

modified PEIs with primary amine groups partially blocked, especially G:PEI-Mannose(1:25), 

was potentially a very useful gene delivery vector with high gene transfection efficiency and 

very well contained cytotoxicity, even at high N/P ratios.   
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Figure 32. In vitro GFP transfection in viable Balb/3T3 cells. (A) GFP transfection efficiency 

mediated by various polymers at different N/P ratios. (B) Absolute number of GFP
+ve

 viable 

cells transfected by the various polymers. Results represent mean ± standard deviation of 

triplicates. Polymer concentrations in the order of N/P ratios specified: unmodified PEI - 0, 4.0, 

8.0, 12.0, 16.0, 20.0, 32.1, and 40.1 mg/L. T - 0, 5.1, 10.2, 15.3, 20.4, 25.5, 40.8, and 51.0 

mg/L. S - 0, 6.2, 12.3, 18.5, 24.6, 30.8, 49.3, and 61.6mg/L. G - 0, 8.2, 16.4, 24.6, 32.8, 41.0, 

65.6, and 82.0 mg/L. 

5.3.7 Protection of Balb/3T3 cells from allo-specific CTL and YT cell killing 

Given the high gene transfection efficiency and low cytotoxicity of the carbamate-

mannose modified PEIs, especially polymer G, they were used to transfect PI-9 encoding 

plasmid into Balb/3T3 cells in order to protect them from GrB mediated killing. In order to 

carry the study a step further, the source of GrB used to kill Balb/3T3 used in Chapter 5 was 

designed to be allo-specific CTLs generated from the spleen of a mouse of a different strain 

(B6), rather than human NK-like leukemic YT cells as in Chapter 4. The killing of target cells 

by sensitized T lymphocytes is an important type of cell-mediated immunity, which is antigen 

specific and requires contact between the specific effector T lymphocyte and a target cell 

carrying the appropriate cell surface antigen. Effector/killer cells were generated in a manner 

analogous to the generation of antibody-forming cells in which antigens stimulate specific T 

lymphocyte precursors to proliferate and differentiate. In this study, mixed lymphocyte 

responses (MLR) was carried out whereby two populations of allogeneic lymphoid cells 

(isolated from Balb/c and B6 mice spleens respectively, and Balb/c splenocytes were γ-

irradiated to block proliferation) were mixed together, resulting in B6 T cell proliferation. Cell 

surface antigens encoded by genes of the MHC are the major stimuli of this response. As 

Balb/c and C57BL/6 mice have different H2 haplotypes: H2-d for Balb/c, and H2-b for 

C57BL/6 [302], the cell surface antigens displayed by γ-irradiated Balb/c splenocytes  were 

able to stimulate the proliferation and differentiation of C57BL/6 T lymphocyte precursors, and 

the stimulated B6 CTLs incubated for 5 days in MLR culture were specific against cells 

displaying antigens of the Balb/c mice origin, in this case, Balb/3T3 cells.  

7 x 10
6
 Responder B6 spleen cells and irradiated (3000 rad) stimulator Balb/c spleen 

cells (1 x l0
6
) were cultured together in 2 ml sensitization medium containing 10 U/mL IL-2 in 

24-well plates, for 5 days at 37°C. After five days, lympholyte-M gradient recovered the 

effective T lymphocytes, and they were analyzed by flow cytometry for CD8 and GrB 

expression. According to Figure 33, 5-day MLR culture successfully generated B6 strain CTLs 
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expressing high levels of CD8 and GrB, which are presumably potent killer of cells of the 

Balb/c mouse strain.   

A.   B.  

Figure 33. Expression profiles of intracellular GrB (A) and cell surface CD8 (B) markers of B6 

CTLs, which were generated by a 5-day MLR culture with γ-irradiated Balb/c splenocytes. Red 

line denotes unstained control, Green line denotes cells expressing GrB, and Blue line denotes 

cells expressing CD8. 

 

Then, serial dilutions of cytolytic effector cell populations (B6 CTLs) were incubated 

with a constant number of Calcein-AM dye labelled target cells (WT Balb/3T3), at a range of 

effector-to-target ratios (50:1, 25:1, 12.5:1, 6:1, 3:1, 1.5:1). However, no killing was observed 

even at the highest effector-to-target ratio of 50:1, after a 72 h co-incubation. The apparent 

impotency of the allo-specific B6 CTLs against Balb/3T3 could be explained by the nature of 

Balb/3T3 cells provided. The Balb/3T3 provided by Dr. Ponti from European Commission was 

stemmed from the clone A31-1-1. Although it is not tumorigenic in immunosuppressed mice, it 

did form colonies in semisolid medium [303]. Also, research showed that Balb/c mouse 

embryo lines maintained in culture with minimal cell-to-cell contact remained non-tumorigenic 

for over 200 generations, however, when extensive cell contact was allowed during cell culture, 

cells could become tumor-producing within 30 generations [304]. Loss of contact inhibition of 

Balb/3T3 in this study was constantly observed throughout cell culture, therefore the Balb/3T3 

cells used in this experiment probably have acquired tumor-like properties, critical in 

determining the effectiveness of killing by the allo-specific CTLs, which will be illustrated 

below. 

In healthy individuals, tumor cells and virus-infected cells are eliminated by CTLs and 

NK cells of the adaptive and innate immune system. Both the killer cells use the same basic 

mechanisms for destroying their targets, although they are triggered by different receptors, and 

the expression of cytolytic molecules is constitutive in NK cells, but regulated in CTLs [305]. 

CTL recognizes its target through engagement of its TCR-CD3 complex with a specific target 

cell antigen bound with class I MHC molecules expressed on the target cell surface; also, its 

CD8 binds to the constant portion of the class I MHC molecule, associated signalling 
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molecules cluster, and other larger molecules such as CD2 and leukocyte function-associated 

antigen 1 (LFA 1), forming a well-organized immunological synapse [59]. Then the cytotoxic 

granules which are dispersed throughout the cytosol migrate towards the synapse, and activated 

granzymes enter target cells through holes formed by perforin, triggering apoptosis of the 

target cells. Given the important roles played by CTLs in controlling tumor growth or viral 

infection, it is unsurprising that many tumors/viruses have evolved mechanisms for immune 

evasion, for example, down-regulation or even loss of expression of a particular MHC class I 

molecule, rendering tumor cells unrecognizable by CTLs [48]. This explains the inefficiency of 

allo-specific CTLs in killing Balb/3T3 cells in this study. In order to induce more potent GrB 

mediated killing of the Balb/3T3 cells and test the efficiency of protection of Balb/3T3 

apoptosis by polymeric delivery of the PI-9 gene, NK cells (YT, human NK like cell line) were 

used as the GrB source instead. NK cells are activated in a simpler fashion, by direct 

engagement of activating receptors on the NK cell surface with ligands that are expressed on 

the surface of tumor/virus-infected cells [306] or by exposure to cytokines, such as interferon 

produced by other immune cells in response to viral infection [307]. Both activating and 

inhibitory receptors are expressed on the NK cell surface, which recognize different 

determinants on the target cell surfaces of infected cells. The inhibitory receptors recognize 

mainly major histocompatibility complex (MHC) class I molecules, while the activating NK 

receptors recognize stress-induced ligands and viral products. NK cell activity thus is 

determined by a combination of signals perceived by both activating and inhibitory receptors 

[308, 309]. As the inhibitory receptor engages MHC class I molecules [306], NK-mediated 

autoimmunity is prevented as all nucleated cells in the body express MHC class I, which are 

capable of engaging an NK inhibitory receptor, and rendering NK cells inactive. Down-

regulation of MHC class I molecules from the cell surface by oncogenic transformation or 

virus infection, although makes the target cells less sensitive to CD8 CTLs, renders these cells 

more susceptible to attack by NK cells. This mechanism is called “missing-self” hypothesis, 

which proposes that loss of signalling from the inhibitory receptors for “self” MHC class I 

molecules activate the NK cells [310] (Figure 34A). 

Another reason to justify the use of NK cells for increased Balb/3T3 killing is the 

“KIR-HLA mismatch” model. The killing by NK cells is regulated by their inhibitory, co-

stimulatory, and activating receptors. Killer immunoglobulin-like receptors (KIRs) are NK cell 

surface proteins that regulate NK cell activation and function. Inhibitory KIRs are 

distinguished from activating KIRs by the inclusion of an immune-receptor tyrosine-based 
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inhibitory motif (ITIM) in the cytoplasmic signalling domain, leading to a potent inhibition of 

multiple cell processes upon engagement [311]. Inhibitory KIRs recognize Class I human 

leukocyte antigen (HLA-I) molecules, which are expressed by all nucleated cells, and thus NK 

effector function against HLA-expressing autologous normal cells is inhibited by the 

expression of inhibitory KIRs [312]. KIR genes and HLA-I genes are encoded on 

chromosomes 19q13.4 and 6p21.3 respectively and therefore inherited independently [311]. 

Moreover, a great degree of polymorphism of KIR and HLA-I genes among individuals can 

cause some individuals to have NK cells that express KIRs for which that same individual has 

no corresponding HLA, a situation designated by Leung et al. as “KIR-HLA mismatch” [313]. 

Various reports of clinical trials have suggested that an autologous KIR/HLA mismatch occurs 

in approximately 60% of patients undergoing allogeneic hematopoietic stem cell transplant 

(HSCT) [313-315], and the clinical benefit of autologous KIR/HLA mismatch in paediatric 

patients that received HSCT for lymphoma or solid tumors has been demonstrated [313]. In a 

retrospective study of 169 patients, Venstrom et al. (2009) found a significantly lower risk of 

death and disease progression in HSCT patients lacking one or more autologous HLA 

compared to patients who were fully autologous KIR/HLA matched [316]. Applying the model 

to the NK cell killing experiment, the mouse MHC I molecules expressed on the target 

(Balb/3T3) cells would very probably mismatch the inhibitory KIRs on the human NK cell line 

YT, leading to YT cell activation and killing of Balb/3T3 cells (Figure 34B). This effect has 

already been demonstrated in xenotransplantation experiments. A review by Auchincloss & 

Sachs [317] showed that human NK cells were able to kill porcine targets due to the failure of 

pig MHC class I molecules to interact with human HLA class I–specific inhibitory receptors. 

In this context, it is likely that the NK-mediated cytotoxicity in xenografts may be the result of 

the failure to engage HLA-specific inhibitory human receptors (due to inappropriate MHC 

ligands) together with the NK-mediated recognition of xenogeneic ligands (possibly via 

NKp46) [318]. 

NKp46 was observed to express on YT cells as an activating receptor. Recognition by 

NKp46 is required to lyse cells expressing haemagglutinin of influenza virus and the 

haemagglutinin-neuraminidase of parainfluenza virus [319]. Moreover, YT cells kill B7
+
 

targets in a non-MHC-restricted, CD28-dependent manner. CD28 ligation on the surface of YT 

cells caused CD28 receptor association with phosphatidylinositol 3-kinase (PI3-K), a rapid 

increase in the tyrosine phosphorylation of PI3-K, and induction of PI3-K activity [320]. The 

association of PI3-K with CD28 requires the interaction of SH2 domains of the PI3-K 
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regulatory subunit with the phosphotyrosine motif p
173

YMNM within the CD28 cytoplasmic 

tail. And it was suggested that the src-family protein tyrosine kinase (PTK), Lck and Fyn, are 

capable of phosphorylating CD28 in vitro, leading to CD28/PI3-K binding and eventually NK 

killing [321]. Furthermore, generally, NK cell-mediated killing can be triggered by a number 

of pathways, and the most potent mechanism for triggering degranulation is linked to antibody 

recognition through the Fc receptor CD16 on NK cells, which can trigger antibody‐dependent 

cellular cytotoxicity (ADCC) by NK cells without other signals, and it has the potential to 

overcome inhibition by inhibitory KIRs [322]. Other NK cell activating receptors must be 

engaged in combinations in order to trigger cytotoxicity, and activating receptors with different 

types of motifs constitute the most synergistic combinations. For instance, Ly49 (Ly49D,-H -P 

and -W) and CD94/NKG2 (NKG2C and NKG2E) receptors associate with DAP12, which has 

an ITAM motif [323, 324]; while NKG2D recognizing a number of stress-induced and virally 

expressed ligands associates with DAP10, which has a YINM motif [325]. Also, several of the 

activating NK cell receptors have unknown but widely expressed ligands, such that not all of 

the receptors engaged in an activating NK synapses can be known at present. A complete 

review of the various activation receptors with their respective ligands involved in cytotoxic 

activity of NK cells as well as the different intracellular signalling molecules was presented by 

Vyas et al. [326]. The activating receptors specifically employed by YT cells to recognize and 

kill its target cells, except from NKp46 and CD28, need to be further explored.  
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Figure 34. A. “Missing self” hypothesis. MHC Class I molecule is crucial in displaying tumor 

or viral antigens to the TCR on CTLs to induce activation of CTLs and killing of the malignant 

or infected cells. However, both tumors and viruses adapt to this by chronic down-regulation of 

MHC class I molecules on the target cell surface, rendering them impervious to CTL mediated 

immune surveillance. NK cells, however, are believed to evolve as a counteraction to this 

tumor/viral adaption [306]. According to the ‘missing-self’ hypothesis originally proposed by 

Klas Kärre, when cells down-regulate MHC class I on their cell surface, they become more 

prone to be recognized and eliminated by NK cells, because they are unable to engage the NK 

cell inhibitory receptors for MHC class I, and NK cells will no longer be inhibited [327].   

B. KIR-HLA mismatch model. NK cell function is regulated by KIR interactions with matched 

HLA class I alleles. In the case for inhibitory KIRs, binding with matching HLA prevents 

donor NK cell activation to self. If HLA is mismatched, NK cells are relieved from inhibition 

and induce cell lysis.  

 

In order to test the killing efficiency of YT cells, a killing assay against Calcein-AM 

labelled Balb/3T3 cells was performed. As shown in Figure 35A, when WT Balb/3T3 cells 

were exposed to different amounts of YT cells in a series of effector:target ratios from 50:1 to 

0.39:1, over a time course of 8 h, the percentage of Balb/3T3 killed by GrB released by the YT 

cells positively correlated with the effector:target ratio, suggesting the effectiveness of YT as a 

killer of the target cell. Although the killing efficiency was not high compared to that of YT 

killing HEK293T (13.6% at E/T 50, 8 h incubation for Balb/3T3; compared to 69.5% at E/T 50, 

4 h incubation for HEK293T, Figure 27, Chapter 4), it did show more effective killing of 

Balb/3T3 by YT than by allo-specific CTLs, and the killing by YT might be attributed to the 

“missing self” and “KIR-HLA mismatch” mechanism discussed above. The apparent higher 
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resistance to killing by YT for Balb/3T3 compared to HEK293T might be due to the different 

expression levels of the ligands on the target cell surfaces which engage the activation or 

inhibitory receptors of the NK cells, resulting in a more activation-prone integrated signal for 

HEK293T. Moreover, to test the effectiveness of PI-9 mediated protection of Balb/3T3 against 

GrB induced apoptosis, MigR1-PI-9 plasmid was transfected into Balb/3T3 by polymers T, S, 

G and the unmodified PEI, at the following N/P ratios: N/P 20, 50 and 80 for the unmodified 

PEI, N/P 30, 40, and 80 for T and S, N/P 30, 50, and 80 for G. According to Figure 32B, N/P 

20 for PEI, N/P 30 and 40 for T and S, N/P 30 and 50 for G gave the highest absolute number 

of GFP
+ve

 Balb/3T3 cells 72 h after GFP gene transfection, and N/P 80 was included for each 

polymer to evaluate the influence of polymer cytotoxicity at high N/P ratio on the effectiveness 

of PI-9 mediated apoptosis protection.  

As shown in Figure 35, generally, Balb/3T3 transfected with PI-9 gene demonstrated 

greater viability than those transfected with empty MigR1 plasmids or the untreated control 

when challenged by wild type YT cells, confirming the protective role of PI-9 against GrB-

mediated apoptosis [70]. To compare the protective effects of PI-9 delivered by different 

polymers, at effector:target ratio of 50:1, G provided very effective protection of Balb/3T3 

cells against GrB-mediated killing, at all three N/P ratios tested: N/P 30, 50, and 80, where 

only 2.3%, 3.5%, and 6.0% cells were killed (Figure 35B) as compared to 13.6% of killed 

untreated Balb/3T3 cells (Figure 35A). The effective protection correlated with the high gene 

transfection efficiency of polymer G, which caused 8000, 7600, and 5000 absolute GFP
+ve

 

cells out of 30000 total cells acquired by FACS at N/P 30, 50, and 80, respectively, and 8000 

was the highest GFP
+ve

 cell number achieved among all the polymers tested (Figure 32B). 

However, in the GrB mediated killing assay, the higher percentage of dead cells at N/P 80 

when challenged by YT compared to N/P 30 and 50 (p<0.05) was probably due to the higher 

inherent cytotoxicity of polymer G at N/P 80 (70% at N/P 80 vs. 95% at N/P 50 and 104% at 

N/P 30) (Figure 31).  

Moreover, consistent with the high gene transfection efficiency, the transfection of PI-9 

encoding plasmid into Balb/3T3 cells by polymers S and T at N/P 30 and 40 also protected the 

cells from GrB-mediated killing, compared to the empty plasmid transfected Balb/3T3 (Figure 

35 C and D). However, at N/P 80 (i.e. polymer concentrations: 60.2 mg/L for S, and 49.9 mg/L 

for T), PI-9 lost its potent protective effect, with about 10.8% and 25.1% cells treated by S and 

T killed by YT, which were significantly higher than the cell death rates at N/P 30 and 40. 
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Again, this could be explained by the relatively higher cytotoxicity of S and T at high N/P 

ratios (~ 41% cell viability at N/P 80 vs. ~90-100% viability at N/P 30 and 40, for both 

polymers, Figure 31).  

Finally, when unmodified PEI was used to deliver PI-9 gene to protect the Balb/3T3, 

consistent with its high cytotoxicity from N/P 40 onwards, and its relatively low gene 

transfection efficiency compared to the mannose-modified PEIs, it conferred slightly less 

protection of Balb/3T3 against YT cell killing at N/P 20 (4.4% killed), compared to the 

protection conferred by PI-9 delivered by mannose-modified PEIs (2.3%, 3.3%, and 3.3% cells 

killed for G, S, and T) at N/P 30. However, at N/P 50 and 80, due to PEI’s severe inherent 

cytotoxicity, PI-9 totally lost its potent protective effect, with about 23.0% and 34.6% cells 

killed, which were higher than the death rate of the WT Balb/3T3 when challenged by YT 

(Figure 35E). Therefore, polymer G, S, and T were superior to unmodified PEI due to PEI’s 

huge intrinsic cytotoxicity. 
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Figure 35. Viability of Balb/3T3 cells after incubation with YT cells for 8 h. Balb/3T3 cells 

were transfected with PI-9 encoding plasmid using T, S, G, and unmodified PEI at N/P ratios 

which gave the highest GFP transfection efficiency, and the GrB killing efficiency of the PI-9 

or MigR1 empty plasmids transfected Balb/3T3 by the various polymers were compared. 

Polymer concentrations in the order of N/P ratios specified: PEI -14.7, 24.5, and 39.2mg/L. T -

18.7, 31.2, and 49.9mg/L. S -22.6, 37.6, and 60.2mg/L.G -30.1, 50.1, and 80.2mg/L. Each data 

represents mean ± SD (n=4; student’s t test, ** p<0. 05). 

The fact that Balb/3T3 cells, a murine fibroblast cell line could be killed by the human 

NK cell line YT was supported by evidence in the literature [328]. Usually, different natural 

cytotoxicity receptors (NCR) on NK cells cooperate in target cell recognition and killing. 
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Blocking experiments demonstrated that when NK clones were assessed for cytotoxicity 

against Fc receptor negative, NK-susceptible target cells, blocking of individual NCR using an 

anti-NCR mAb only resulted in partial inhibition of cytotoxicity [329, 330]. Only the combined 

use of mAbs directed to different NCRs resulted in strong inhibition of cytolysis [331]. Thus, 

the cooperation of the different NCRs strongly suggested that most target cells expressed 

multiple ligands recognized by these receptors. However, there was an infrequently 

encountered case that a single triggering receptor was sufficient for the lysis of a given target 

cell. One such example is killing of xenogeneic (murine) target cells. Indeed, lysis of murine 

cells by human NK cells only involved NKp46-mediated recognition. Various blocking 

experiments demonstrated that NKp46 blocking by anti-NKp46 mAb prevented killing of 

murine target cells such as YAC, BW15.02, or P815 [331, 332]. Also, a murine (m) NKp46 

homologue was discovered in 1999 by Biassoni et al., suggesting that this particular 

receptor/ligand interaction might be conserved during evolution [333]. Nonetheless, the 

simultaneous engagement of different NCRs usually resulted in a more efficient target cell 

lysis, which suggested that a given human NK cell clone would kill human target cells more 

efficiently than murine target cells, further corroborating the higher killing efficiency of YT 

cells against HEK293T versus Balb/3T3 cells. 

5.4 Future work 

We have demonstrated that the mannose-modified PEIs synthesized without the DBU 

catalyst could effectively deliver PI-9 gene into Balb/3T3 cells with minimal cytotoxicity, and 

protected them from GrB mediated apoptosis in vitro by decreasing the cell death rate by 11.3% 

compared to the untreated cells. In the future, it would be interesting to assess the role of PI-9 

gene delivered by the mannose-modified PEIs in the survival of Balb/3T3 cells in vivo. In 

order to quantitatively measure the in vivo longevity of the PI-9 transfected cells, a pcDNA3.1-

hGH plasmid construct containing the gene expressing neomycin phosphotransferase, which 

was kindly provided by Professor Peter E. Lobie from Cancer Science Institute of Singapore, 

was stably transfected into Balb/3T3 cells. The stably transfected cell clones were successfully 

selected by G418 antibiotics, and the hGH expressed and secreted in the cell culture medium 

was assessed by the hGH ELISA kit from Roche.  

The protocol for measuring the longevity of the PI-9 transfected Balb/3T3 will be 

adopted from [334]. Cells stably transfected with pcDNA3.1-hGH were designated Balb/3T3-

hGH, whereas cells stably transfected with pcDNA3.1 were designated Balb/3T3-empty. PI-9 
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gene will be transfected into them using the unmodified and modified PEIs, at different N/P 

ratios as in Section 5.3.7. After 72 h of transfection, they will be injected into two groups of 

syngeneic (Balb/c) and allogeneic (C57BL/6) recipient mice. Mice serum will be collected at 1, 

3, 6, 10, and 13 days after injection, and the hGH in the serum will be used as an indicator for 

Balb/3T3-hGH survival after injection. 1x 10
6
 cells will be injected per animal. Balb/3T3-

empty will be used as a negative control to make sure that the background signal of hGH in the 

serum is low when measured by the ELISA kit. The reason for injecting the transfected 

Balb/3T3-hGH in a syngeneic background is to assess the possibility of hGH triggering an 

immune response from the recipient and influencing Balb/3T3-hGH survival. Ideally this 

should not be the case and the cells should be surviving fairly well in the syngeneic setting. 

Moreover, in order to rule out the possibility of the viability of Balb/3T3-hGH being affected 

by the various treatments such as the gene transfection, cells will be injected to humanized 

NOD-SCID IL-2rγ
null

 mice [335], which are immune-deficient mice lacking NK activity and 

thus alloimmunity or innate immunity. The serum hGH will be assessed at the same time 

points as for allogeneic and syngeneic injections, and a stable hGH serum concentration at all 

time points will be expected. Furthermore, for the cells injected into allogeneic mice, the levels 

and lengths of expression of hGH in the serum will be compared, for mannose-modified PEIs-

treated and unmodified PEI-treated Balb/3T3-hGH. Given that mannose-modified PEIs 

enabled more effective gene transfection into Balb/3T3 and caused much less cytotoxicity 

compared to the unmodified PEI, especially at high N/P ratios such as N/P 80, a longer 

survival would be expected for the BALB/c 3T3-hGH transfected with PI-9 by the mannose-

modified PEIs. 

5.5 Conclusions 

In this study, PEI was successfully modified by selectively blocking a portion of the 

primary amine groups with a mannose-functionalized cyclic carbonate through a simple ring-

opening of functional carbonate monomers based on nucleophilic addition chemistry, without 

the help of the DBU catalyst. The compositions of the modified PEI (25kDa) polymers 

correlated well with the mannose monomer and PEI feed ratios, and thus allowed an accurate 

study of how mannose affected PEI’s physicochemical properties, transfection efficiency and 

cytotoxicity. The modified PEIs had similar buffering capacity as the unmodified PEI, were 

able to condense DNA into nanosized complexes with narrow size distribution and positive 

zeta potential, resulted in higher gene transfection efficiency and significantly reduced 

cytotoxicity as compared to unmodified PEI. They could also deliver PI-9 encoding plasmid 
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effectively into Balb/3T3 mouse embryonic fibroblast cells which were protected from GrB 

mediated killing by human NK cells (YT cells). Moreover, hGH plasmid was stably transfected 

into Balb/3T3 cells, which provided a feasible readout to test the in vivo longevity of PI-9 

delivered Balb/3T3 cells in the future. These findings provided insights into modification of 

PEI for the development of effective and non-toxic non-viral vectors, which could mediate 

delivery of various therapeutic genes to target different diseases. 
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CHAPTER 6: CONCLUSIONS AND FUTURE PERSPECTIVES 

The overall aim of this thesis was to design and evaluate a novel class of carbamate 

modified branched PEIs (25 kDa) synthesized by facile one-step ring-opening reaction, and use 

them in gene delivery applications, i.e. protection against cytotoxic lymphocyte killing. We 

tested the hypothesis that the well-defined cationic polymers with predictable molecular 

weights and narrow polydispersities conferred by the simple reaction are safe and effective 

synthetic non-viral gene carriers. In aim (1), we provided an important proof-of-concept that 

rationally designed hydrophobic-groups or sugar-functionalized MTC monomers could be 

attached to the primary amines of PEI at precisely controlled ratios. And at optimized 

PEI:monomer ratios, the resulting modified PEIs can effectively condense DNA to form 

complexes with highly desirable physicochemical properties. It was demonstrated that the 

polymer/DNA complexes mediated GFP/luciferase reporter gene expression that was 

comparable or superior to the 25 kDa branched PEI benchmark, while inducing minimal 

cytotoxicity even at relatively high N/P ratios for gene transfection in a panel of mammalian 

cell lines. 

In aim (2), mannose-modified PEIs synthesized with or without the DBU catalyst at 

optimal mannose conjugation degrees were used to deliver plasmids encoding PI-9, a potent 

GrB inhibitor to HEK293T cells (Chapter 4) and Balb/3T3 cells (Chapter 5). These transfected 

cells were then subjected to killing by GrB releasing killer cells such as YT cells (Chapter 4 

and 5) and/or allo-specific CTLs (Chapter 5). PI-9 expression in the target cells successfully 

inhibited GrB induced apoptosis, especially when the PI-9 gene was delivered by the modified 

PEIs, as the inherent high toxicity of the unmodified PEI caused undesirable cytotoxicity on 

the target cells, masking the protective effect of PI-9 against GrB. Thus, the findings suggested 

that the modified PEIs could be potentially used for PI-9 delivery to inhibit GrB and alleviate 

conditions such as allograft rejection.  

This present work has raised several issues and identified potential opportunities that 

can be pursued in future investigations. Firstly, through our preliminary in vivo study 

performed in Chapter 3, the modified PEIs which demonstrated superior in vitro transfection 

efficiency and significantly reduced cytotoxicity did not achieve satisfactory organ-specific 

luciferase gene expression level 72 h after i.v. injection. The relatively higher luciferase gene 

expression in the lungs might suggest aggregation of the modified PEIs in the body. Therefore 

in the future, polymer/DNA complexes stabilization strategies could be explored, such as 
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tagging PEG molecules on the polymer to provide more serum stability. Otherwise, the 

modified PEIs could be employed for ex vivo gene delivery, for example, delivery of PI-9 gene 

to the tissue/organ before it was transplanted into the recipient’s body.  

Another inherent problem lying in the modified PEIs is that they are not biodegradable. 

Therefore the potential difficulty of eliminating them from the body after administration needs 

to be addressed. Recently, biodegradable polymers have emerged as highly attractive gene 

delivery vehicles as they are able to reduce long term accumulations in the body following 

repeated administrations, as well as to facilitate DNA release in the intracellular milieu. A bio-

friendly synthetic method therefore is imperative to allow control over MW and composition of 

the polymers which have favorable pharmacological profiles. Once reported in the literature, 

reductively cleavable disulphide-bond containing moieties incorporated via primary amines of 

PEI was able to facilitate DNA release and reduce cytotoxicity [235]. In the future, disulfide 

bonds could be introduced into the backbone or side chain of the modified PEIs to enhance its 

biodegradability and DNA release efficiency. Also, LMW PEI, which was properly modified 

with functional carbamate could be cross-linked to form biodegradable HMW PEI to overcome 

the problems of accumulation of non-degradable polymers inside the body and the associated 

toxicity. 

Furthermore, with regard to the application aspect in this thesis, which is to use the 

modified PEIs to deliver PI-9 gene to protect target cells from cytotoxic killing, the results in 

Chapter 5 suggested that the degree of killing was influenced by the nature of the target and 

killer cells and the killer-target engagement mechanism. Target cells with normal MHC I 

expression are normally subjected to killing by allo-specific CTLs, while those with down-

regulated MHC I expression could be killed by NK cells via “missing self” mechanism. Also, 

mismatched KIR-HLA interaction could result in killing by NK cells. The unexpected low 

killing of BALB/c 3T3 cells by allo-specific B6 CTLs in Chapter 5 suggested that further 

investigations in a wider range of target cells should be performed to validate the relationship 

between MHC I expression level and efficiency of killing by either CTLs or NKs. Specifically, 

for example, primary mouse hepatocytes isolated from healthy liver tissue obtained from 

Balb/c mouse will be used as target cells. Their MHC I expression will be measured using anti-

MHC I mAb to make sure the expression level is high. Allo-specific CTLs generated from B6 

mouse lymphocytes by MLR using irradiated Balb/c hepatocytes as stimulators will be used as 

effector cells. Effector cells will be co-cultured for 4 hours with target cells stained with 15 µM 
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Calcein-AM, and the degree of killing at various effector:target ratios will be determined by a 

spectrofluorometer. When an appropriate level of killing of the WT target cell is achieved (e.g. 

50% killing at E:T ratio of 50), PI-9 gene or the MigR1 empty plasmid could be transfected 

into the WT target cells to evaluate the degree of protection against killing by the effector cells. 

In this way, a proper in vitro cell-killing system could be established for more effective 

identification of the most optimal polymer system for gene delivery.  

All in all, the findings of this thesis have supported the hypothesis that rationally 

designed carbamate modified branched PEIs (25 kDa) with well-defined molecular 

architectures and narrow polydispersities conferred by one-step ring opening reaction are 

highly effective and non-toxic non-viral gene vectors which compare favorably with the 

commercially available 25 kDa branched PEI benchmark. Through functional biological assays 

in Chapter 4 and Chapter 5, we have clearly demonstrated that the modified PEIs with optimal 

primary-amine conjugation degree, and at optimal N/P ratios, could deliver PI-9 gene encoding 

the GrB inhibitor into target cells and prevent them from GrB mediated killing. Moreover, the 

current strategy of employing polymeric nanoparticles to deliver PI-9, the GrB inhibitor gene 

for allograft rejection prevention has not been reported previously in the literature, and it 

demonstrated superiority as compared to other strategies targeting AAR or CAR. For instance, 

immunosuppressive drugs have been associated with increasing patient intolerance and toxicity 

[30]; nanotechnology such as co-precipitation of polymers and immunosuppressive drugs 

experienced formulation challenges, for example, burst release of drugs and systemic toxicities 

[336]; also, strategies such as donor specific transfusion of CD47 mediated repression of 

recipient DC activation and subsequent allograft rejection could potentially compromise the 

ability of the recipient to combat other infections [337]. In contrast, our strategy of inhibiting 

GrB by PI-9 gene delivery has the advantage that it specifically targets the CTLs and NK cells 

responsible for allograft rejection, and the polymeric gene delivery vector based on PEI (25 

kDa) is safe, well-modulated, synthetically facile and reproducible. Given the valid in vitro 

evaluation of biological functions of PI-9 gene-loaded nanoparticles using a cell killing assay 

(Chapter 4 and 5), with further optimization of the vector design, and evaluation of the in vivo 

longevity of PI-9 transfected Balb/3T3 cells in the future, the nanoparticles could be finally 

used to evaluate allograft rejection alleviation in a mouse chronic heart allograft rejection 

(CHAR) model. Specifically, hearts from CD11c-DTR-GFP mice (C57BL/6; GFP is linked to 

the CD11c promoter to identify dDC) will be transplanted into allogeneic recipients under co-

stimulatory blockade using anti-CD154. The effective dose and frequency of administration of 
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PI-9 gene needed to increase the lifespan of GFP
+ve

 dDC for up to 30-100 days after 

transplantation will be examined. Immunohistology (IH) on multiple heart sections and 

secondary lymphoid tissues will be used to measure the number of GFP
+ve

 dDC. If this 

approach fails, the alternative approach of delivery of nanoparticles loaded with PI-9 gene by 

heart perfusion in donors via inferior vana cava over a range of concentrations (10-0.3 

micromolar) will be performed. Donor DC will be measured before hearts being transplanted 

to C57BL/6 recipients. Heart allograph survival will be compared in the anti-CD154 alone vs. 

anti-CD154 and PI-9 treated groups. Rejection will be determined by complete cessation of 

cardiac contractility. Heart allografts recovered at day 60 and 100 post transplantation will be 

examined for chronic rejection histologically. An expert in the field will blindly evaluate and 

score CHAR using established procedures and criteria. The criterion of success would be PI-9 

delivered by the nanoparticles proven effective in the CHAR model. All in all, pending 

successful in vivo proof-of-concept, the modified PEI platform may potentially facilitate the 

widespread use of gene therapy for various genetic and acquired diseases in the clinical setting.  
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APPENDIX A 

Synthetic procedures and characterization of functionalized methylcarboxytrimethylene 

carbonate (MTC) monomers and carbamate modified PEIs  

1. Synthesis of sugar-functionalized cyclic carbonate (MTC-ip-sugar) (Figure S1) 

The monomers with protected sugar pendent groups include MTC-ipman, MTC-ipgal 

and MTC-ipglu and they were prepared according to the protocol reported previously [A1]. 

The details of the procedure for preparation of MTC-ipman are given below as a typical 

example. Briefly, a solution of oxalyl chloride (2.48 mL, 19.0 mmol) in 50 mL of dry 

tetrahydrofuran (THF) was drop-wisely added into a solution of MTC-OH (5-Methyl-5-

carboxyl-1,3-dioxan-2-one) (2.75 g, 17.2 mmol) in 50 mL of dry THF, followed by adding a 

catalytic amount (3 drops) of anhydrous dimethylformamide (DMF) over 30 min under N2 

atmosphere. The reaction solution was stirred for 1 h with N2 bubbled through to remove 

volatiles. After the reaction, the solvent was evaporated under vacuum. The solid residue 

(intermediate product MTC-Cl) was then dissolved in 50 mL of dry dichloromethane (DCM), 

and a mixture of 2,3;5,6-di-O-isopropylidene-D-mannofuranose (ipman, 4.13 g, 15.8 mmol) 

and triethylamine (2.8 mL, 20.6 mmol) in 50 mL of dry DCM was stepwise dropped into the 

solution over 30 min at room temperature. Then, the reaction mixture was heated to 40 °C and 

reacted for 48 h. After cooled down to room temperature, the reaction solution was 

concentrated and 100 mL THF was added to precipitate triethylamine salt. After evaporating 

the filtrate, the crude product was passed through a silica gel column by gradient, eluted of 

ethyl acetate and hexane (20/80 to 50/50) to provide the product as sticky colorless oil that 

slowly solidified to a white solid (5.85 g, 85%). 
1
H-NMR (400MHz, CDCl3, 22 C): δ 6.17 (s, 

1H, H-a), 5.79 (dd, 1H, H-b), 4.83 (m, 1H, H-d), 4.66 (d, 2H, H-c), 4.41 (m, 1H, H-g), 4.22 (m, 

2H, H-c), 4.03 (m, 2H, H-e + H-f), 3.73 (m, 1H, H-e), 1.33-1.50 (m, 15H, H-h + H-i). By 

changing the alcohol with 1,2;3,4-Di-O-isopropylidene-D-galactopyranose or 1,2;5,6-Di-O-

isopropylidene-D-glucofuranose, the following monomers, MTC-ipgal and MTC-ipglu, were 

also obtained.   

MTC-ipgal, Yield, 81%, 
1
H-NMR (400MHz, CDCl3, 22 C): δ 5.54 (d, 1H, H-a), 4.70 

(m, 2H, H-c), 4.62 (m, 1H, H-b), 4.41 (m, 1H, H-f), 4.33 (m, 2H, H-d and H-e), 4.26 (m, , 3H, 

H-c and H-g), 4.03 (m, 1H, H-g), 1.32-1.49 (5 s, 15H, H-h + H-i). 
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MTC-ipglu, Yield, 75%,  
1
H-NMR (400MHz, CDCl3, 22 C): δ 5.90 (d, 1H, H-a), 5.39 

(d, 1H, H-b), 4.69 (d, 2H, H-c), 4.46 (d, 1H, H-g), 4.18 (m, 2H, H-c), 4.06 (m, 2H, H-e and H-

f), 4.00 (m, , 1H, H-e), 1.30-1.52 (5 s, 15H, H-h + H-i). 

 

 

Figure S1. (A) Synthesis of protected mannose-functionalized cyclic carbonate (MTC-ipman). 

(B) Chemical structures of sugar-functionalized cyclic carbonates. 

2. Synthesis of hydrophobic groups-functionalized cyclic carbonate (MTC-benzyl, MTC-ethyl, 

and MTC-urea) 

The detailed preparation protocol of functional MTC monomers, including MTC-

benzyl, MTC-ethyl and MTC-urea, was reported previously [A2-A4]. As shown in Figure S2a, 

they were synthesized via coupling reaction of the corresponding substrates with hydroxyl 
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group and cyclic carbonate, MTC-OH. MTC-OH was prepared using the standard procedures 

reported previously [A2]. The synthetic procedure of MTC-urea is given below as a typical 

example. MTC-urea was synthesized by tagging phenylureaethanol with MTC-OH. In order to 

prepare phenylureaethanol, ethanolamine (2.96 g, 48.5 mmol) was dissolved in dry THF (30 

mL) and cooled to 0°C using an ice bath. Phenylisocyanate (5.19 g, 4.74 mL, 43.6mmol) in dry 

THF (30 mL) was added dropwise during a period of 30 min. The resulting solution was 

allowed to warm to the ambient temperature (∼ 22°C) and stirred for an additional 16 h. Then, 

THF was evaporated. The crude product was re-crystallized from ethyl acetate and stirred 

rigorously for 4 h. The product was collected by filtration, washed with ethyl acetate and dried 

until a constant weight was reached (7.0g, ∼86%). 
1
H NMR (400 MHz, DMSO-d6, 22 °C): δ 

8.59 (s,1H, PhNH), 7.39 (d, 2H, PhH), 7.21 (t, 2H, PhH), 6.95 (t, 1H, PhH), 6.10 (t, 1H, 

PhNHC(O)NH), 4.78 (t, 1H, -OH), 3.43 (q, 2H, -CH2OH), 3.17 (q, 2H, -NHCH2CH2OH). 

MTC-OH (3.04 g, 19 mmol) was converted to MTC-Cl using the standard procedure with 

oxalyl chloride [A2]. MTC-Cl was dissolved in dry methylene chloride (50 mL) and charged in 

a funnel. In a dry 500 mL round bottom flask equipped with a stir bar was charged 

phenylureaethanol (4.10 g, 22.8 mmol), pyridine (1.81 g, 1.85 mL, 22.8 mmol) and dry 

methylene chloride (150 mL) and cooled to 0 °C using an ice bath. The MTC-Cl solution was 

added dropwise during a period of 30 min and stirred for 30 min. Then, the ice bath was 

removed, and the solution was allowed to gently warm to the ambient temperature and left 

under stirring for an additional 16 h. The crude product was purified by column 

chromatography. Ethyl acetate/hexane (1/1) was initially used as eluent before gently 

increasing the polarity and finishing with ethyl acetate. The product fractions were collected, 

and the solvent was removed through rotational evaporation. The isolated product (MTC-urea) 

was dried under vacuum until a constant weight was reached, yielding 6.0 g of an off 

white/slight yellow oil which crystallized upon standing (∼80%). 
1
H NMR (400 MHz, 

CDCl3,22 °C): δ 7.39 (d, 2H, PhH), 7.25 (m, 2H, PhH), 7.02 (t, 1H, PhH), 4.68 (d, 2H, -

CH2OCOO),4.30, (t, 2H, -COOCH2-), 4.20 (d, 2H, -CH2OCOO), 3.55 (t, 2H, -

CH2NHC(O)NHPh), 1.30 (s,3H, -CH3). 

As shown in Figure S2b, MTC-ethyl was synthesized using the following protocol. 

(i) Bis-MPA (22.1 g, 0.165 mol) was added in ethanol (150 mL) with Amberlyst-15 

(6.8 g) and refluxed overnight. The resins were then filtered out and the filtrate was evaporated. 

Methylene chloride (200 mL) was added to the resulting viscous liquid to filtrate the unreacted 
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reagent and byproduct. After the solution was dried over MgSO4 and evaporated, ethyl 2,2-

bis(methylol)propionate was obtained as a clear and colorless liquid (24.3 g, 91%). 
1
H NMR 

(400 MHz, CDCl3, 22 °C): δ 4.09 (q, 2H, -OCH2CH3), 3.74 (d, 2H, -CH2OH), 3.57(d, 2H, -

CH2OH), 1.18 (t, 3H, -OCH2CH3), 0.98 (s, 3H, -CH3). 

(ii) A solution of triphosgene (11.7 g, 0.039 mol) in CH2Cl2 (150 mL) was added drop-

wise to a methylene chloride solution (150 mL) of ethyl 2,2-bis(methylol)propionate (12.6 g, 

0.078mol) and pyridine (39 mL, 0.47 mol) over 30 min at -75 °C with dry ice/acetone under N2 

atmosphere. The reaction mixture was kept stirring for another 2 h under the chilled condition 

and then allowed to warm to room temperature. The reaction was quenched by addition of 

saturated aqueous NH4Cl (75 mL), after which the organic layer was washed with 1 M aqueous 

HCl (3 × 100 mL), saturated aqueous NaHCO3 (1 × 100 mL), dried over MgSO4, filtered and 

evaporated. The residue was re-crystallized from ethyl acetate to give MTC-ethylas white 

crystals (8.0 g, 55%). 
1
H NMR (400 MHz, CDCl3, 22 °C): δ 4.67 (d, 2H, -CH2OCOO), 4.25 

(q, 2H, -OCH2CH3), 4.19 (d, 2H, -CH2OCOO), 1.30 (s, 3H, -CH3), 1.27 (t,3H, -OCH2CH3). 

 

Figure S2. Synthesis of functional MTC-urea (a) and MTC-ethyl (b) monomers. 
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3. Synthesis of sugar-modified PEI (25 kDa) 

The details of the procedure for ring-opening polymerization of MTC-ipman with PEI 

(molar feed ratio 1:25, polymer B) are given as a typical example. In a glove box, MTC-ipman 

(0.25 g, 0.625 mmol) was added to the solution of PEI (Mn = 10 kDa, 0.25 g, 0.025 mmol) in 2 

mL of DCM, followed by adding DBU (4.7 L, 0.031 mmol). The reaction solution was stirred 

for 1 h. And then 10 mL of methanol and 10 mL of 1 M HCl (aq.) were added. The resulting 

reaction mixture was heated to reflux and last for 2 h before cooled down to room temperature. 

Finally, the above mixture was purified by ultrafiltration in a Vivaspin 20 concentrator 

(MWCO = 5 k, Sartorius AG, Goettingen, Germany), washed 3 times with de-ionized (DI) 

water, and freeze-dried (0.36 g, 80%). 
1
H-NMR (400MHz, D2O, 22 C): δ: 4.08 (s, 40H, H-d 

and H-e), 2.70-3.65 (br, m, 992H, H-e, H-f, H-g and H of bPEI), 1.06 (s, 61H, H-i). 

Using a similar protocol, polymer A, C, L, M, and N were synthesized at PEI to 

mannose-carbonate molar feed ratios of 1:8, 1:75, 1: 58, 1:120, and 1:400.  

For polymer F and G, they were synthesized with the PEI to mannose-carbonate molar 

ratio of 1:25 in the absence of DBU, and reacted for 18 h and 1 h respectively before 

acidification.  

For polymer T and S, they were synthesized with the PEI to mannose-carbonate molar 

ratio of 1:6 and 1:12.5 in the absence of DBU, and 1 h before acidification.  

For polymer H, I, R and U, they were synthesized with the PEI to glucose-carbonate 

molar ratio of 1:25 (H), PEI to galactose-carbonate molar ratio of 1:25 (I), 1:12.5 (R), and 1:6 

(U), and reacted for 1 h in the absence of DBU before acidification and purification by 

ultrafiltration.  

4. Synthesis of hydrophobic groups functionalized carbamate-modified PEI 

For polymer P, V, J, K, O, aa, and ab, they were synthesized with different 

hydrophobic monomers (TMC, MTC-ethyl, MTC-benzyl, and MTC-urea) at various molar 

ratios of monomer to PEI, and reacted for 1 h in the absence of DBU. The detailed procedure 

for modifying PEI with TMC at feed molar ratio of 1:25 (K:PEI-TMC(1:25)) was given as a 

typical example. TMC (64 mg, 0.625 mmol) was added to the 2 mL DCM solution of PEI (Mn 

= 10 kDa, 0.25 g, 0.025 mmol) and the reaction solution was stirred for 1 h before being 
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concentrated to dryness and dried in vacuo. 
1
H-NMR (400MHz, MeOD, 22 °C): δ 4.13 (s, 54H, 

H-a), 3.62 (t, 54H, H-c), 3.21 (br, d, 54H, H-d), 2.50-2.82 (br, m, 930H, H of bPEI), 1.83 (s, 

54H, H-b). Using a similar protocol, V:PEI-TMC(1:1), P:PEI-TMC(1:8), and J:PEI-

TMC(1:100) were synthesized at the PEI to TMC molar feed ratios of 1:1, 1:8 and 1:100 

respectively. 

ab:PEI-urea(1:25), 
1
H-NMR (400 MHz, MeOD, 22 °C): δ 7.39 (s, 54H, PhH), 7.27 (t, 

54H, PhH), 7.00 (s, 27H, PhH), 4.23 (s, 108H, H of -CH2OCOO and -COOCH2-), 3.69 (s, 54H, 

-CH2OCOO), 3.49 (s, 54H, -CH2NHC(O)NHPh), 2.40-2.87 (br, m, 930H, H of bPEI), 1.22 (s, 

81H, -CH3). 

aa:PEI-benzyl(1:25), 
1
H-NMR (400MHz, MeOD, 22 °C): δ 7.35 (s, 145H, PhH), 5.16 

(s, 58H, PhCH2-), 4.23 (s, 58H, -CH2OCOO), 3.70 (s, 58H, -CH2OCOO), 2.50-2.82 (br, m, 

930H, H of bPEI), 1.22 (s, 87H, -CH3). 

O:PEI-ethyl(1:25), 
1
H-NMR (400MHz, MeOD, 22 °C): δ 4.16 (m, 54H, H of -

OCH2CH3 and -CH2OCOO), 3.64 (t, 54H, -CH2OCOO), 2.50-2.82 (br, m, 930H, H of bPEI), 

1.25 (s, 54H, - CH3). 

5. Characterization of monomers and polymers using 
1
H NMR spectroscopy 

1
H NMR spectra were obtained on a Bruker Advance 400 NMR spectrometer at 400 

MHz at room temperature. The 
1
H NMR measurements were carried out with an acquisition 

time of 3.2 s, a pulse repetition time of 2.0 s, a 30° pulse width, 5208-Hz spectral width, and 32 

K data points. Chemical shifts were referred to the solvent peaks (δ = 7.26, 3.33 and 2.50 ppm 

for CDCl3, MeOD and DMSO-d6, respectively). 
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