
APOGEE: Global Optimization of Standard, Generalized, and
Extended Pooling Problems via Linear and Logarithmic

Partitioning Schemes

Ruth Misener, Jeffrey P. Thompson, and Christodoulos A. Floudas∗

Department of Chemical and Biological Engineering
Princeton University

Princeton, NJ 08544-5263

December 21, 2010

Abstract

Our recent work globally optimized two classes of large-scale pooling problems: (i) a generalized pooling

problem that treats the network topology as a decision variable [Misener and Floudas, 2010] and (ii) an

extended pooling problem that incorporates the United States Environmental Protection Agency (EPA) Ti-

tle 40 Code of Federal Regulations Part 80.45: Complex Emissions Model into the constraint set [Misener

et al., 2010]. The large-scale pooling problems were optimized using a piecewise scheme that activates

appropriate under- and overestimators with a number of binary decision variables that scales linearly with

the number of segments in the piecewise relaxation. In this paper, inspired by recent work proposing models

with a logarithmic number of binary variables for piecewise linear continuous functions, piecewise linear

functions, and lower semicontinuous functions [Vielma and Nemhauser, 2010, Vielma et al., 2010a], we

propose a novel formulation for the piecewise linear relaxation of bilinear functions with a number of binary

variables that depends logarithmically on the number of binary variables and computationally compare the

performance of this new formulation to the best-performing piecewise relaxations with a linear number of

binary variables. We have also unified our work by developing APOGEE (Algorithms for Pooling-problem

global Optimization in GEneral and Extended classes), a computational tool that globally optimizes stan-

dard, generalized, and extended pooling problems. APOGEE is freely available to the scientific community

at helios.princeton.edu/APOGEE/.

Keywords: large-scale optimization; global optimization; MINLP; quadratically-constrained quadratic

programs; pooling problem; EPA Complex Emissions Model

∗To whom all correspondence should be addressed (floudas@titan.princeton.edu; Tel: (609)258-4595;
Fax: (609)258-0211).

1

1 Introduction

The pooling problem, an optimization challenge of maximizing profit subject to feedstock availability, in-

termediate storage capacity, demand, and product specification constraints, has important practical applica-

tions to many process systems engineering domains, including petroleum refining, water systems, supply-

chain operations, and communications [Bagajewicz, 2000, Jeżowski, 2010, Misener and Floudas, 2009,

Visweswaran, 2009]. In petroleum refining, for example, when a variety of feedstocks emerging from distil-

lation units, reformers, and catalytic crackers are combined under limited storage conditions into a plethora

of final products with different specifications such as gasoline, diesel fuel, aviation jet fuel, and fuel oil, the

global optimum of the pooling problem reports the most profitable hydrocarbon flowrates between the pro-

cess units. Adding further complexity for petroleum refiners, the Environmental Protection Agency (EPA)

has mandated the reduction of compounds in reformulated gasoline that generate airborne toxic emissions,

smog-forming volatile organic compounds, and nitrous oxides (NOX) [40CFR80.41, 2008, 40CFR80.45,

2007, Furman and Androulakis, 2008, Misener et al., 2010]. Environmental standards, coupled with limited

availability of low-sulfur crude and automobiles requiring high octane fuels, necessitate global optimization

to meet demand with maximum profitability. Although we assume command-and-control policy on envi-

ronmental pollutants and place profitability in the objective function, the mathematical complexity of the

pooling problem does not change between the regulatory frameworks described by Malcolm et al. [2006]

and could be transformed to explicitly address environmental objectives as reviewed by Grossmann and

Guillén-Gosálbez [2010].

The theoretical significance of the pooling problem stems from the nonconvex bilinear terms that rep-

resent stream mixing in intermediate storage nodes. These bilinear terms give rise to a multiplicity of

local optima which prevent linear, convex, and stochastic solvers from certifying global optimality of the

quadratically-constrained quadratic program (QCQP) that mathematically represents the standard pooling

problem [Floudas, 2000, Floudas and Gounaris, 2009, Floudas and Pardalos, 1995, Floudas et al., 2005,

Misener and Floudas, 2009]. Adding further complexity to industrially-relevant pooling problems are the

binary decisions associated with the activation or deactivation of specific process units and/or connecting

pipelines and the variety of piecewise nonconvex equations needed to mathematically model complex prod-

uct qualities such as those in the EPA definition of polluting emissions [Audet et al., 2004, Meyer and

Floudas, 2006, Misener and Floudas, 2010, Misener et al., 2010].

Our recent work globally optimized two classes of pooling problems: (i) a generalized pooling problem

that treats the network topology as a decision variable [Misener and Floudas, 2010] and (ii) an extended

pooling problem that incorporates the Environmental Protection Agency (EPA) Title 40 Code of Federal

Regulations Part 80.45: Complex Emissions Model [40CFR80.45, 2007] into the constraint set [Misener

et al., 2010]. After separately studying these two pooling problem instantiations, we have unified our work

by developing APOGEE (Algorithms for Pooling-problem global Optimization in GEneral and Extended

classes), a computational tool that globally optimizes standard, generalized, and extended pooling prob-

lems. APOGEE is freely available to the scientific community at helios.princeton.edu/APOGEE/.

2

To globally optimize the large-scale generalized and extended pooling problems in Misener and Floudas

[2010] and Misener et al. [2010], we implemented a branch-and-bound algorithm that exploited advances

in the piecewise-linear relaxation of bilinear terms. These piecewise relaxations, which were introduced by

Meyer and Floudas [2006] and Karuppiah and Grossmann [2006] and extensively tested by Wicaksono and

Karimi [2008], Gounaris et al. [2009], and Hasan and Karimi [2010], activate appropriate under- and over-

estimators using a number of binary decision variables that scales linearly with the number of segments in

the piecewise relaxation. Vielma and Nemhauser [2010] and Vielma et al. [2010a] recently proposed mod-

eling piecewise linear continuous functions, piecewise linear functions, and lower semicontinuous functions

with a number of binary switches that scales logarithmically with the number of disjunctive segments. Mo-

tivated by their work, we propose a novel formulation for the piecewise relaxation of bilinear programs that

features a logarithmic number of binary variables and computationally compare the performance of this new

formulation to the best-performing piecewise relaxations with a linear number of binary variables [Gounaris

et al., 2009, Hasan and Karimi, 2010, Wicaksono and Karimi, 2008].

In Section 2 outlines the three classes of pooling problems, reviews recent developments in solving non-

convex mixed integer nonlinear programs (MINLP) relevant to the pooling problem, and discusses the po-

tential of modeling the piecewise-linear relaxation of QCQPs using a logarithmic number of binary variables

[Vielma and Nemhauser, 2010, Vielma et al., 2010a]. Section 3 describes the mathematical formulation of

the pooling problem. Section 4 introduces the novel formulation for the piecewise relaxation of QCQPs,

and Section 5 computationally tests the new formulation. Section 6 describes how we have integrated our

computational studies of piecewise-linear and edge-concave underestimators with our experience model-

ing the standard, generalized, and extended pooling problems by developing the global optimization solver

APOGEE. We describe the specifics of the algorithms underlying APOGEE, demonstrate its performance

on all three classes of pooling problems, and encourage readers to test its performance.

2 Literature Review

In the standard pooling problem, introduced by Haverly [1978], flow rates are chosen to maximize profit

(or minimize cost) on a tripartite, pre-determined network structure of input, intermediate, and output nodes

that represent feedstocks, storage tanks (or pools), and final products, respectively [Misener and Floudas,

2009]. Nonconvex bilinear terms in the standard pooling problem arise from tracking the levels of linearly-

blending fuel qualities about the pooling nodes to meet constraints on the composition of the final products

[Visweswaran, 2009]. Among the many notable contributions towards solving the standard pooling prob-

lem [Adhya et al., 1999, Almutairi and Elhedhli, 2009, Audet et al., 2004, Ben-Tal et al., 1994, Chakraborty,

2009, Floudas and Aggarwal, 1990, Floudas and Visweswaran, 1990, 1993, Floudas et al., 1989, Quesada

and Grossmann, 1995, Foulds et al., 1992, Greenberg, 1995, Haverly, 1978, Lasdon et al., 1979, Lodwick,

1992, Pham et al., 2009, Tawarmalani and Sahinidis, 2002, Visweswaran and Floudas, 1990, 1993], the

most directly relevant to the work presented in this paper and the computational tool APOGEE are those of:

3

Table 1: Comparison of standard, generalized, and extended problem classes [Misener and Floudas, 2009]

Problem
Class

Allowed connections EPA Complex
Emissions

Model

Optimally
Selected
Topology

Pools can
Represent

Treatment Plants∗
Input–
pool

Input–
output

Pool–
output

Pool–
Pool†

Standard X X X
Generalized X X X X X X
Extended X X X X
†While pool–pool connections are allowed in the generalized problem, the optimization algorithm excludes feasible solutions in
which cycles exist between pools.
∗See Meyer and Floudas [2006].

Floudas and Visweswaran [Floudas and Visweswaran, 1990, 1993, Visweswaran and Floudas, 1990, 1993],

who were the first to rigorously solve the pooling problem to global optimality; Foulds et al. [1992], who

developed a linear relaxation of the QCQP by replacing each bilinear term with their convex and concave

hulls [Al-Khayyal and Falk, 1983, McCormick, 1976]; Ben-Tal et al. [1994], who introduced an alterna-

tive q-formulation of the pooling problem that often has fewer nonconvex bilinear terms than the original

p-formulation [Audet et al., 2004]; and Tawarmalani and Sahinidis [2002], who showed that augmenting

the q-formulation with reformulation-linearization technique cuts [Sherali and Adams, 1999, Sherali and

Alameddine, 1992] proposed by Quesada and Grossmann [1995] produces a linear relaxation of the pooling

problem that strictly dominates both the p- and q-formulations. Depending on the formulation, the stan-

dard pooling problem can be classified as a linear objective with quadratic constraints (p-formulation) or a

quadratic objective with quadratic constraints (q- and pq-formulations).

The generalized pooling problem increases the complexity of the pooling problem by allowing flow

between the intermediate storage nodes and transforming the network topology from a pre-determined struc-

ture into an optimally-chosen configuration [Audet et al., 2004, Misener and Floudas, 2009, Meyer and

Floudas, 2006]. Choosing the interconnections between source, intermediate, and output nodes is combina-

torially complex. Because the activation or deactivation of each inter-node connection is a discrete decision

and the linear mixing at the intermediate nodes leads to bilinear terms, the generalized pooling problem

is a mixed-integer nonconvex program (nonconvex MINLP) with quadratic equalities and inequalities that

exhibits multiple locally optimal solutions. Research addressing the generalized pooling problem includes

that of Lee and Grossmann [2003], who used their global optimization algorithm for generalized disjunc-

tive programs (GDP) to determine the activated feedstocks and pools for several examples; Audet et al.

[2004], who solved case studies with pool-to-pool connections using a branch-and-cut algorithm [Audet

et al., 2000]; Meyer and Floudas [2006], who introduced a piecewise-linear underestimation scheme that

generates a valid lower bound on industrially-relevant problems that include both inter-pool connections

and discrete topological decisions; Ruiz and Grossmann [2010], who used their linear relaxation strategies

within a global optimization algorithm to solve one of the test cases of Lee and Grossmann [2003]; Misener

4

and Floudas [2010], who revisited the generalized pooling problem test cases of Meyer and Floudas [2006]

and exploited recent advances in piecewise-linear underestimation of bilinear terms [Floudas and Gounaris,

2009, Wicaksono and Karimi, 2008] within a branch-and-bound algorithm to globally optimize large-scale

problems; and Li et al. [2010] who considered multiple scenarios to account for quality parameters that are

realized after the design stage.

The mathematical program representing the generalized pooling problem is nearly identical to the model

for the optimal synthesis of integrated water systems as proposed by Galan and Grossmann [1998], so the

algorithms designed to globally optimize the water systems case studies [Bergamini et al., 2008, Karuppiah

and Grossmann, 2006, Lee and Grossmann, 2003] are highly relevant to the generalized pooling problem

and therefore aided our design of the solver APOGEE. The generalized pooling problem can also be recast

as a combinatorial process synthesis problem that addresses both economic performance and environmen-

tal impact [Chakraborty and Linninger, 2002, 2003, Chakraborty et al., 2003]. For example, Baliban et al.

[2010b] consider superstructure optimization of their Hybrid Biomass, Coal, and Natural Gas Facility [Bal-

iban et al., 2010a, Elia et al., 2010] using a model that is closely linked to the generalized pooling problem.

The extended pooling problem maximizes profit on a standard pooling problem network while com-

plying with constraints on nonlinearly blending fuel qualities such as those in the Environmental Protection

Agency (EPA) Title 40 Code of Federal Regulations Part 80.45: Complex Emissions Model [40CFR80.45,

2007], a mathematical model that codifies reformulated gasoline (RFG) emissions using a function of eleven

fuel qualities [Misener et al., 2010]. The RFG program, which impacts roughly 75 million people, reduces

smog and airborne toxic pollutants (e.g., benzene, a human carcinogen) in accordance with the Clean Air

Act. Final RFG products must comply with standards, or upper bounds, on volatile organic, NOX, and

airborne toxic emissions. To solve the EPA extended pooling problem to global optimality, we formulated a

mixed-integer nonlinear program (MINLP) representing the EPA Complex Emissions Model and appended

this MINLP to a standard pooling problem network. The MINLP formulation contains nonconvex con-

straints that include bilinear, multilinear, exponential, and power law terms which bear many similarities to

the model of Furman and Androulakis [2008]. We developed a mixed-integer linear relaxation of the MINLP

using piecewise-linear [Gounaris et al., 2009, Karuppiah and Grossmann, 2006, Meyer and Floudas, 2006,

Wicaksono and Karimi, 2008], edge-concave [Meyer and Floudas, 2005, Tardella, 1988/89, 2003, 2008],

and outer approximation relaxations. We integrated these relaxations into a branch-and-bound algorithm

and solved several large-scale instances to global optimality [Misener et al., 2010].

Because the only nonconvex terms in the standard and generalized pooling problems are bilinear prod-

ucts of a quality level or a proportion of a stream times a flow, the global optimization algorithms most

relevant to the pooling problem are those specific to bilinear programs or (more generally) QCQPs and in-

clude the branch-and-bound method of Al-Khayyal and Falk [1983] that relaxes the bilinear terms using

convex envelopes, the duality-based Global Optimization Algorithm of Floudas and Visweswaran [Floudas

and Visweswaran, 1990, 1993, Visweswaran and Floudas, 1990, 1993], the RLT-based branch-and-cut al-

5

gorithm of Audet et al. [2000], the branch-and-bound procedure of Linderoth [2005] that generates tight

relaxations by partitioning two dimensional regions into triangles and rectangles, the integration of RLT and

semidefinite programming relaxations by Anstreicher [2009], and the cutting plane algorithm of Bao et al.

[2009] that generates a multiterm relaxation of a QCQP.

Note that algorithms addressing QCQPs are generically important because QCQPs commonly arise in

process synthesis applications that include heat integration networks, separation systems, reactor networks,

reactor-separator-recycle systems, and batch processes [Aggarwal and Floudas, 1990, Ciric and Floudas,

1989, Floudas and Anastasiadis, 1988, Floudas and Grossmann, 1987, Floudas and Paules, 1988, Kokos-

sis and Floudas, 1991, 1994, Lin and Floudas, 2001]. Algorithms addressing quadratically-constrained

quadratic GDPs are of particular relevance to the generalized pooling problem [Lee and Grossmann, 2001,

2003, Ruiz and Grossmann, 2010]. The extended pooling problem involves a number of additional multi-

linear, exponential, and power law equations that must be applied to each additional RFG product, so more

generic global optimization techniques are needed for this final class of pooling problems [Floudas, 2000,

Floudas et al., 2005, Floudas and Gounaris, 2009].

Of particular relevance to our recent work [Misener and Floudas, 2010, Misener et al., 2010] is the ab

initio piecewise relaxation of nonconvex bilinear terms as first developed by Meyer and Floudas [2006] and

Karuppiah and Grossmann [2006]. Recognizing the importance of formulating these piecewise-linear re-

laxations in the most computationally effective manner possible, Wicaksono and Karimi [2008] introduced

fifteen mathematically-equivalent alternative formulations to the two used by Meyer and Floudas [2006]

and Karuppiah and Grossmann [2006] and compared the relaxation performance on several test cases. We

recently proposed five additional piecewise-linear formulations and conducted a comprehensive compara-

tive study on the computational performance of these formulations on a collection of benchmark pooling

problems [Gounaris et al., 2009]. Hasan and Karimi [2010] studied the possibility of bivariate partition-

ing, that is, segmenting both variables participating in each bilinear term. Other groups who have used

piecewise-linear underestimators include: Bergamini et al. [2008] in their Outer Approximation for Global

Optimization Algorithm; Saif et al. [2008], in a reverse osmosis network case study; and Pham et al. [2009],

in a fast-solving algorithm that generates near-optimal solutions.

Each of the previously-mentioned partitioning schemes requires a number of binary variables that scales

linearly with the number of disjunctive segments in the relaxation. Vielma and Nemhauser [2010] and

Vielma et al. [2010a] recently proposed modeling piecewise functions with a number of binary switches that

scales logarithmically with the number of partitions. Inspired by their work, we formulate a novel formula-

tion for the logarithmically-sized piecewise relaxation of QCQPs and computationally test the performance

of this new formulation. Li et al. [2009] have also suggested modeling piecewise-linear functions using a

logarithmic number of binary variables and demonstrated that this may be superior to using a linear num-

ber of binary variables, but their mixed integer linear model (MILP) is not sharp [Vielma et al., 2010b];

i.e., the linear programming relaxation of their MILP formulation is a superset of the convex hull of their

6

inlet
i1

inlet
i2

inlet
i3

inlet
i4

pool
l2

pool
l3

pool
l1

out
j1

out
j2

xi2, l3 ; q
i2, l3

zi1, j1

y l3, j2

tl1, l3

Pool Qualities: pl3, k

Outlet Qualities: uj3, k

ofj2

EPA Extension:
 VOCj2
 NOXj2
 TOXj2

Figure 1: Variable Definitions for the Pooling Problem

MILP model [Jeroslow and Lowe, 1984]. Therefore, we base our formulation on the work of Vielma and

Nemhauser [2010] and Vielma et al. [2010a].

3 Mathematical Formulation for the Pooling Problem: An Overview

Extensive descriptions of the mathematical pooling problem formulation are presented elsewhere for the

standard [Misener and Floudas, 2009, Tawarmalani and Sahinidis, 2002], generalized [Audet et al., 2004,

Lee and Grossmann, 2003, Meyer and Floudas, 2006, Misener and Floudas, 2010], and extended classes

[Misener et al., 2010], but for completeness we outline the mathematical formulation of the pooling problem,

list the pooling problem notation in Table 2, and illustrate the variable definitions in Figure 1. Table 3 lists

the number of nonlinear terms in each of the benchmark pooling problems as a rough complexity estimate

[Audet et al., 2004]. The nonlinear elements in the three classes of pooling problems are as follows:

• The bilinear terms in the standard pooling problem are either of the form pl, k · yl, j or qi, l · yl, j

depending on whether Algorithm 2, which minimizes the number of bilinear terms, selects the p- or

q-formulation [Ben-Tal et al., 1994, Misener and Floudas, 2009, Tawarmalani and Sahinidis, 2002].

• The generalized pooling problem has two sets of bilinear terms: pl, k · yl, j and pl, k · tl, l′ [Misener

and Floudas, 2010]. In the absence of pool to pool connections, the generalized pooling problem can

be reformulated as a standard pooling problem and solved with either the p- or q-formulation [Audet

et al., 2004].

• In addition to bilinear terms qi, l · yl, j and uj, k · (ofj), the extended pooling problem incorporates the

uj, k variables into nonlinear terms representing the EPA Complex Emissions Model [40CFR80.45,

7

Table 2: Notation for the Pooling Problem [Misener and Floudas, 2009]

Type Name Description

Indices

i ∈{1, 2, . . . , I }
l ∈{1, 2, . . . ,L }
j ∈{1, 2, . . . , J }
k∈{1, 2, . . . ,K}

Input streams (raw materials or feedstocks)
Pools (blending facilities)
Output streams (end products)
Attributes (qualities monitored)

Sets
TX (i, l) pairs for which input to pool connection allowed
TY (l, j) pairs for which pool to output connection allowed
TZ (i, j) pairs for which input to output connection allowed
TT (l, l′) pairs for which pool to pool connection allowed (l 6= l′)

Continuous
Variables

xi, l Flow from input i to pool l
yl, j Flow from intermediate pool node l to output j
zi, j Direct flow from input feedstock i to product j
tl, l′ Flow from pool l to pool l′ (l 6= l′)
(ofj) Outflow of product j
pl, k Level of quality attribute k in pool l
qi, l Proportion of flow from input i to pool l
uj, k Level of quality attribute k in product j

Binary
Variables

γinlt
i Input i is activated

γ
pool
l Pool l is activated

γx
i, l Active link from input i to pool l

γy
l, j Active link from intermediate pool node l to output j

γz
i, j Active link flow from input feedstock i to product j

γt
l, l′ Active link from pool l to pool l′ (l 6= l′)

Parameters

ci Unit cost of raw material feedstock i
dj Unit revenue for product j
cγ , c Fixed and variable costs for the generalized problem
AL

i −AU
i Availability bounds of input i

Sl Volumetric size capacity of pool l
DL

j −DU
j Demand bounds for product j

Ci, k Level of quality k in raw material feedstock i
PL

j, k − PU
j, k Acceptable composition range of quality k in product j

rl, k removal ratio of quality k in pool l
fMIN Minimum flow on the network

8

Table 3: Test Suite of Pooling Problems

Problem
Class

Problem Name Global
Optimum

Nonlinear
Terms

Literature Source

Standard Adhya 1 −549.80 20 Adhya et al. [1999]
2 −549.80 20
3 −561.05 32
4 −877.65 40

BenTal 4 −450 2 Ben-Tal et al. [1994]
5 −3500 30

Foulds 2 −1100 8 Foulds et al. [1992]
3 −8 128
4 −8 128
5 −8 64

Haverly 1 −400 2 Haverly [1978]
2 −600 2
3 −750 2

RT 2 −4391.83 18 Audet et al. [2004]

Generalized Lee 1 −4640 24 Lee and Grossmann [2003]
2 −3849 36

Meyer 4 1.086 · 106 48 Meyer and Floudas [2006]
10 1.086 · 106 300
15 9.437 · 105 675 Misener and Floudas [2010]

Extended EPA Small R1 −279.4 108 Misener et al. [2010]
Small R2 −280.8 108
Med (R1/R2) −4567 180
Large R1 −1.490 · 104 640
Large R2 −1.496 · 104 640

9

2007, Misener et al., 2010].

The two alternative formulations for the standard pooling problem are the p- and q-formulations. The p-

formulation is:

min
xi, l, yl, j ,
zi, j , pl, k

∑
(i, l)∈TX

ci · xi, l −
∑

(l, j)∈TY

dj · yl, j −
∑

(i, j)∈TZ

(dj − ci) · zi, j (P1)

Feed

Availability

AL
i ≤

∑
l:(i, l)∈TX

xi, l +
∑

j:(i, j)∈TZ

zi, j ≤ AU
i ∀ i (P2)

Pool

Capacity

 ∑
i:(i, l)∈TX

xi, l ≤ Sl ∀ l (P3)

Product

Demand

DL
j ≤

∑
l:(l, j)∈TY

yl, j +
∑

i:(i, j)∈TZ

zi, j ≤ DU
j ∀ j (P4)

Material

Balance

 ∑
i:(i, l)∈TX

xi, l −
∑

j:(l, j)∈TY

yl, j = 0 ∀ l (P5)

Quality

Balance

 ∑
i:(i, l)∈TX

Ci, k · xi, l = pl, k ·
∑

j:(l, j)∈TY

yl, j ∀ l, k (P6)

Product

Quality

∑

l:(l, j)∈TY

pl, k · yl, j+∑
i:(i, j)∈TZ

Ci, k · zi, j

≥ PL

j,k

(∑
l:(l, j)∈TY

yl, j +
∑

i:(i, j)∈TZ

zi, j

)

≤ PU
j,k

(∑
l:(l, j)∈TY

yl, j +
∑

i:(i, j)∈TZ

zi, j

) ∀ j, k (P7)

Hard

Bounds

0 ≤ xi, l ≤ min{AU
i , Sl,

∑
j:(l, j)∈TY

DU
j } ∀ (i, l) ∈ TX

0 ≤ yl, j ≤ min{Sl, DU
j ,

∑
i:(i, l)∈TX

AU
i } ∀ (l, j) ∈ TY

0 ≤ zij ≤ min{AU
i , DU

j } ∀ (i, j) ∈ TZ

min
i

Ci, k ≤ pl, k ≤ max
i

Ci, k ∀ l, k

(P8)

The q-formulation, developed by Ben-Tal et al. [1994], replaces the feedstock flow rate variables xi, l with

proportional flow rates qi, l using the transformation:

xi, l = qi, l

∑
j:(l, j)∈TY

yl, j ∀ (i, l) ∈ TX .

The q-formulation is:

10

min
qi, l, yl, j ,

zi, j

∑
(i, l)∈TX

(l, j)∈TY

ci · qi, l · yl, j −
∑

(l, j)∈TY

dj · yl, j −
∑

(i, j)∈TZ

(dj − ci) · zi, j (Q1)

Feed

Availability

AL
i ≤

∑
l:(i, l)∈TX

(l, j)∈TY

qi, l · yl, j +
∑

j:(i, j)∈TZ

zi, j ≤ AU
i ∀ i (Q2)

Pool

Capacity

 ∑
j:(l, j)∈TY

yl, j ≤ Sl ∀ l (Q3)

Product

Demand

DL
j ≤

∑
l:(l, j)∈TY

yl, j +
∑

i:(i, j)∈TZ

zi, j ≤ DU
j ∀ j (Q4)

Simplex

Definition

 ∑
i:(i, l)∈TX

qi, l = 1 ∀ l (Q5)

Product

Quality

∑

l:(l, j)∈TY

i:(i, l)∈TX

Ci, k · qi, l · yl, j+

∑
i:(i, j)∈TZ

Ci, k · zi, j

≥ PL

j,k

(∑
l:(l, j)∈TY

yl, j +
∑

i:(i, j)∈TZ

zi, j

)

≤ PU
j,k

(∑
l:(l, j)∈TY

yl, j +
∑

i:(i, j)∈TZ

zi, j

) ∀ j, k (Q6)

Hard

Bounds

0 ≤ qi, l ≤ 1 ∀ (i, l) ∈ TX

0 ≤ yl, j ≤ min{Sl, DU
j ,

∑
i:(i, l)∈TX

AU
i } ∀ (l, j) ∈ TY

0 ≤ zi, j ≤ min{AU
i , DU

j } ∀ (i, j) ∈ TZ

(Q7)

When using the q-formulation, we always append Eq. (PQ) which is redundant in Eqs. (Q1) – (Q7) but

tightens the MILP relaxation of the bilinear terms qi, l · yl, j [Tawarmalani and Sahinidis, 2002].

∑
i:(i, l)∈TX

qi, l · yl, j = yl, j ∀ l, j. (PQ)

The generalized formulation increases the complexity of the standard pooling problems by allowing pool

to pool connections and transforming the topology into a decision variable. The new continuous variable

tl, l′ represents the pool-to-pool connections and the binary variables γI
i , γP

l , γx
i, l, γy

l, j , γz
i, j , γt

l, l′ activate

the appropriate nodes and inter-node connections.

11

min
xi, l, yl, j ,
zi, j , pl, k

∑
(i, l)∈TX

(
cx
i, l · xi, l + cγ, x

i, l · γ
x
i, l

)
+

∑
(l, j)∈TY

(
cy
l, j · yl, j + cγ, y

l, j · γ
y
l, j

)
+

∑
(i, j)∈TZ

(
cz
i, j · zi, j + cγ, z

i, j · γ
z
i, j

)
+

∑
(l, l′)∈TT

(
ct
l, l′ · tl, l′ + cγ, t

l, l′ · γ
t
l, l′

)
∑

l

c
pool
l ·

 ∑
l′:(l, l′)∈TT

tl, l′ +
∑

j:(l, j)∈TY

yl, j

+ c
γ, pool
l · γpool

l

∑

i

cinlt
i ·

 ∑
l:(i, l)∈TX

xi, l +
∑

j:(i, j)∈TZ

zi, j

+ cγ, inlt
i · γinlt

i

(GEN1)

Feed

Availability

AL
i · γinlt

i ≤
∑

l:(i, l)∈TX

xi, l +
∑

j:(i, j)∈TZ

zi, j ≤ AU
i · γinlt

i ∀ i (GEN2)

Pool

Capacity

 ∑
l′:(l, l′)∈TT

tl, l′ +
∑

j:(l, j)∈TY

yl, j ≤ Sl · γpool
l ∀ l (GEN3)

Product

Demand

DL
j ≤

∑
l:(l, j)∈TY

yl, j +
∑

i:(i, j)∈TZ

zi, j ≤ DU
j ∀ j (GEN4)

Material

Balance

 ∑
i:(i, l)∈TX

xi, l +
∑

l′:(l′, l)∈TT

tl′, l −
∑

l′:(l, l′)∈TT

tl, l′ −
∑

j:(l, j)∈TY

yl, j = 0 ∀ l (GEN5)

Quality

Balance

(1− rl, k) ·

(∑
i:(i, l)∈TX

Ci, k · xi, l +
∑

l′:(l′, l)∈TT

pl′, k · tl′, l

)
=

pl, k ·

(∑
j:(l, j)∈TY

yl, j +
∑

l′:(l, l′)∈TT

tl, l′

) ∀ l, k (GEN6)

Product

Quality

∑

l:(l, j)∈TY

pl, k · yl, j+∑
i:(i, j)∈TZ

Ci, k · zi, j

≥ PL

j,k

(∑
l:(l, j)∈TY

yl, j +
∑

i:(i, j)∈TZ

zi, j

)

≤ PU
j,k

(∑
l:(l, j)∈TY

yl, j +
∑

i:(i, j)∈TZ

zi, j

) ∀ j, k (GEN7)

Hard

Bounds

0 ≤ xi, l ≤ min{AU
i , Sl,

∑
j:(l, j)∈TY

DU
j } · γx

i, l ∀ (i, l) ∈ TX

0 ≤ yl, j ≤ min{Sl, DU
j ,

∑
i:(i, l)∈TX

AU
i } · γ

y
l, j ∀ (l, j) ∈ TY

0 ≤ zi, j ≤ min{AU
i , DU

j } · γz
i, j ∀ (i, j) ∈ TZ

0 ≤ tl, l′ ≤ min{Sl, Sl′ ,
∑
j

DU
j ,
∑
i

AU
i } · γt

l, l′ ∀ (l, l′) ∈ TT

0 ≤ pl, k ≤ (1− rl, k) ·max
i

Ci, k ∀ l, k

(GEN8)

12

In each problem class, we also allow a minimum flow rate fMIN below which a pipe or node will be

deactivated [Meyer and Floudas, 2006, Misener and Floudas, 2010]. When fMIN > 0, we use binary

variables to enforce the condition each flow is either at least the minimum flow rate or set to zero. Finally,

the extended formulation builds on the standard pooling problem by appending constraints associated with

the EPA Complex Emissions Model [40CFR80.45, 2007] that involve the outlet qualities uj, k. For the sake

of brevity, we will not include the full model in this paper and the reader is directed to Misener et al. [2010].

4 Piecewise Underestimators for a Bilinear Term: Logarithmic Number of
Binary Variables

In this section, we introduce a novel piecewise linear relaxation for bilinear terms with a logarithmic num-

ber of binary terms (§4.2.2). For completeness, we also present the disjunctive program upon which all

of the piecewise relaxations are based (§4.1) and a version of relaxation nf4r (§4.2.1) from Gounaris et al.

[2009]. Both relaxations we describe assume uniform partitioning based on both the results of our compu-

tational studies [Gounaris et al., 2009] and the proof of Hasan and Karimi [2010] suggesting that segments

of identical length are likely to produce the tightest relaxation.

4.1 Disjunctive Program

The convex hull, or tightest possible relaxation, of bilinear function z(x, y):

z = x · y such that x, y ∈ R, xL ≤ x ≤ xU , yL ≤ y ≤ yU (1)

defined on a box is [Al-Khayyal and Falk, 1983, McCormick, 1976]:

z ≥ x · yL + xL · y − xL · yL (2)

z ≥ x · yU + xU · y − xU · yU (3)

z ≤ x · yL + xU · y − xU · yL (4)

z ≤ x · yU + xL · y − xL · yU . (5)

The envelope in Eqs. (2) – (5), illustrated in Figure 2, is dependent on the size of the domain, so we partition

one of the variables (x) into NP segments and come up with the disjunctive program [Gounaris et al., 2009,

Karuppiah and Grossmann, 2006, Meyer and Floudas, 2006, Wicaksono and Karimi, 2008]:

13

x
y

(a) Bilinear Term

x
y

(b) Convex Envelope

x
y

(c) Concave Envelope

Figure 2: Convex Hull of x · y

∨
nP ∈ {1, . . . , NP }

W (nP)

z ≥ x · yL + (xL + a · (nP − 1)) · (y − yL)
z ≥ x · yU + (xL + a · nP) · (y − yU)
z ≤ x · yL + (xL + a · nP) · (y − yL)
z ≤ x · yU + (xL + a · (nP − 1)) · (y − yU)

xL + a · (nP − 1) ≤ x ≤ xL + a · nP

yL ≤ y ≤ yU

(6)

In disjunctive program (6), diagrammed in Figure 3(a) & 3(c) for the case (NP = 4), there are NP

segments on range
[
xL, xU

]
and each segment is bounded by

[
xL + a · (nP − 1), xL + a · nP

]
∀nP ∈

{1, . . . , NP } where a = xU−xL

NP
. Figure 3(b) & 3(d) illustrate the under- and overestimator, respectively,

that are generated when a single segment is selected (in Figure 3(b) & 3(d), nP = 3).

Figures 4(a) & 4(b) project Figures 2(b) & 2(c) and Figures 3(a) & 3(c), respectively, onto y =
yL + 5

8 · (y
U − yL). Although the convex hull illustrated in Figure 4(a) is valid for all x ∈

[
xL, xU

]
,

each of the piecewise under- and overestimators illustrated in Figure 4(b) is valid in the domain x ∈[
xL + a · (nP − 1), xL + a · nP

]
for exactly one nP ∈ {1, . . . , NP }.

14

x
y

(a) Piecewise Convex Underestimators (NP = 4)

x
y

(b) Single Activated Convex Underestimator (NP = 4, nP = 3)

x
y

(c) Piecewise Concave Overestimators (NP = 4)

x
y

(d) Single Activated Concave Overestimator (NP = 4, nP = 3)

Figure 3: Piecewise Under- & Overestimators of (x · y) when (NP = 4)

xUxL

Convex Env
Concave Env

x * y

(a) Convex Hull

xUxL + 0.5*(xU - xL)xL

Piecewise Underestimators
Piecewise Overestimators

x * y

(b) Piecewise Relaxation (NP = 4)

Figure 4: Under- & Overestimators of (x · y) Projected on
(
y = yL + 5

8 · (y
U − yL)

)
The partitioning schemes described in Section 4.2 activate exactly one nP ∈ {1, . . . , NP } so that the

15

feasible space of corresponding to the relaxation of (x · y) goes from the parallelogram in Figure 5(a) to a

significantly smaller parallelogram illustrated in Figure 5(b) that is activated or deactivated by Disjunctive

Program (6).

xUxL

CNX Env
CCV Env

x * y

(a) Convex Hull

xUxL + 0.5*(xU - xL)xL

Isolated Piecewise Underestimator
Isolated Piecewise Overestimator

x * y

(b) Single Activated Region (NP = 4)

Figure 5: Feasible Set Corresponding to the Relaxation of (x · y) Projected on
(
y = yL + 5

8 · (y
U − yL)

)
4.2 Two Reformulations of the Disjunctive Program as a MILP

The linear partitioning scheme to be presented in Section 4.2.1 and the logarithmic partitioning scheme to be

introduced in Sections 4.2.2 exactly represent Disjunctive Program (6) by introducing additional variables

and constraints to the formulation. Table 4 compares the size of the McCormick Envelope [Al-Khayyal and

Falk, 1983, McCormick, 1976] in Eqs. (2) – (5) to that of the two formulations of Disjunctive Program (6).

Table 4: Number of Additional Vars & Constraints for the McCormick, Linear, & Logarithmic Relaxation
of a Single Bilinear Term

Continuous Vars Binary Vars Constraints

McC Hull (no partitions) §4.1 1 – 4
Linear Scheme §4.2.1 NP + 1 NP NP + 8
Logarithmic Scheme §4.2.2 2 · dlog2 NP e+ 1 dlog2 NP e 3 · dlog2 NP e+ 7†

†One constraint can be removed when the number of partitions is a power of two.

4.2.1 Linear Relaxation Scheme

This relaxation, with a linear number of binary variables, is based on nf4r [Gounaris et al., 2009]. Two

additional variable sets are introduced in the linear partitioning scheme:

• Binary switch: λ ∈ {0, 1}NP

• Continuous switch: ∆y ∈
[
0, yU − yL

]NP

16

The binary switch λ is active (i.e., λ(nP) = 1) for the segment where (xL +a · (nP −1) ≤ x ≤ xL +a ·nP)
and is otherwise inactive. Equations (7) & (8) mathematically describe these restrictions on λ.

NP∑
nP =1

λ(nP) = 1 (7)

xL +
NP∑

nP =1

a · (nP − 1) · λ(nP) ≤ x ≤ xL +
NP∑

nP =1

a · nP · λ(nP) (8)

Equation 7 combined with the λ ∈ {0, 1}NP definition is logically equivalent to declaring λ to be a special

ordered set of type 1 (SOS1) because exactly one member of the set is non-zero. However, we do not explic-

itly declare λ to be SOS1 in our C++/CPLEX 12.1 [ILOG, 2009] implementation of this linear relaxation

scheme for the solver APOGEE.

Figure 6 illustrates Eqs. (7) & (8) for the case NP = 4 and x = xL + 2.6 · a which implies that np = 3,

the active binary switch is λ(nP = 3) = 1, and Eq. (8) becomes xL + 2 · a ≤ x ≤ xL + 3 · a:

xL xL + 0.5*(xU - xL) xU
x

λ(1) = 0 λ(2) = 0 λ(3) = 1 λ(4) = 0

Figure 6: Activation of a Single λ(nP) (i.e., nP = 3 =⇒ λ(3) = 1) According to the Value of x (NP = 4
and x = xL + 2.6 · a)

Equation (9) sets continuous switch variable ∆y(nP) to (y−yL) when λ(nP) = 1 and 0 otherwise [Wicak-

sono and Karimi, 2008]:

y = yL +
NP∑

nP =1

∆y(nP) where 0 ≤ ∆y(nP) ≤ (yU − yL) · λ(nP) ∀ nP ∈ {1, . . . , NP } (9)

Figure 7 diagrams Eq. (9) for the case depicted in Figure 6. Because the only active binary switch is

λ(nP = 3) = 1, the only nonzero ∆y is ∆y(nP = 3) = y − yL:

17

xL xL + 0.5*(xU - xL) xU
x

λ(1) = 0 λ(2) = 0 λ(3) = 1 λ(4) = 0

∆y(1) = 0 ∆y(2) = 0 ∆y(3) = y - yL ∆y(4) = 0

Figure 7: Activation of a Single ∆y(nP) According to the Value of x (NP = 4 and x = xL + 2.6 · a)

After defining these two switches λ and ∆y, Equation Set (10) equivalently represents Disjunctive Program

(6) and activates the correct over- and underestimators as shown in Figure 5(b):

z ≥ x · yL +
NP∑

nP =1

[
xL + a · (nP − 1)

]
· ∆y(nP) (10a)

z ≥ x · yU +
NP∑

nP =1

[
xL + a · nP

]
·
[
∆y(nP)− (yU − yL) · λ(nP)

]
(10b)

z ≤ x · yL +
NP∑

nP =1

[
xL + a · nP

]
· ∆y(nP) (10c)

z ≤ x · yU +
NP∑

nP =1

[
xL + a · (nP − 1)

]
·
[
∆y(nP)− (yU − yL) · λ(nP)

]
(10d)

xL ≤ x ≤ xU ; yL ≤ y ≤ yU

Notice that, after the introduction of Equation Set (10), Eq. (8) is redundant because the left hand side of

Eq. (8) can be obtained up to a factor of (yU − yL) by subtracting Eq. (10d) from Eq. (10a) and the right

hand side of Eq. (8) is, up to the factor of (yU − yL), Eq. (10b) minus Eq. (10c). Therefore, Eq. (8) follows

from Equation Set (10).

4.2.2 Logarithmic Relaxation Scheme

For the logarithmic partitioning scheme, we define a parameter NL and three additional variable sets so that

the number of continuous variables, binary variables, and constraint equations all scale logarithmically.

• Number of Logarithmic Binary Variables: NL = dlog2 NP e

• Binary switch: λ ∈ {0, 1}NL

• Continuous switch: ∆y ∈
[
0, yU − yL

]NL

• Continuous slack: s ∈
[
0, yU − yL

]NL

18

As we described in Section 2, the logarithmic relaxation scheme presented in this section is inspired by

the recent work of Vielma and Nemhauser [2010] and Vielma et al. [2010a]. The consistent elements

between Vielma and Nemhauser [2010] and this contribution are (1) the logarithmic number of binary

variables and constraint equations and (2) the injective mapping from the activation of exactly one of the

NP segments to the activation/deactivation of the NL binary variables. However, the logarithmic number

of continuous variables in this formulation differs from their linear number of continuous variables [Vielma

and Nemhauser, 2010]. We can use a logarithmic number of continuous variables because the continuous

switch ∆y(nL) is effectively a linear reformulation of the bilinear term (y − yL) · λ(nL) [Wicaksono and

Karimi, 2008]. It is important to note that since Li et al. [2009], Vielma and Nemhauser [2010], and Vielma

et al. [2010a] focus on piecewise-linear functions, our contribution represents, to the best of our knowledge,

the first logarithmically-scaled relaxation of continuous, nonlinear functions.

The NL elements of λ activate or deactivate according to the binary representation of the largest grid

point that is less than x. Equation (11) mathematically describes these restrictions. Although we model the

mapping from the partition containing x to λ using a base-2 representation, note that any injective function

B : {1, . . . , NP } 7→ {0, 1}dlog2 NP e could formulate the SOS1-like constraints for the activation of exactly

one of the NP segments in Disjunctive Program (6) [Vielma and Nemhauser, 2010].

xL +
NL∑

nL=1

2nL−1 · a · λ(nL) ≤ x ≤ xL + a +
NL∑

nL=1

2nL−1 · a · λ(nL) (11)

In the case when NP is not a power of two (i.e., log2 NP 6= dlog2 NP e), we include an additional constraint

to strengthen the linear programming relaxation of the MILP:

xL + a +
NL∑

nL=1

2nL−1 · a · λ(nL) ≤ xU (12)

Figures 8(a) & 8(b) illustrate Eq. (11) for two example cases: NP = 4 and x = xL + 2.6 · a and NP = 5
and x = xL + 3.6 · a, respectively. In Figure 8(a), which is identical to the case diagrammed in Figure 6,

setting λ(nL = 1) = 1 and λ(nL = 2) = 0 results in the appropriate:

x ≥ xL +
NL∑

nL=1

2nL−1 · a · λ(nL) = xL + 2 · a · λ(1) + a · λ(2) = xL + 2 · a

x ≤ xL + a +
NL∑

nL=1

2nL−1 · a · λ(nL) = xL + a + 2 · a · λ(1) + a · λ(2) = xL + 3 · a

For the case NP = 5 and x = xL + 3.6 · a in Figure 8(b), Eq. (11) is satisfied when λ(nL = 1) = 0,

λ(nL = 2) = 1, and λ(nL = 3) = 1:

19

x ≥ xL +
NL∑

nL=1

2nL−1 · a · λ(nL) = xL + 4 · a · λ(1) + 2 · a · λ(2) + a · λ(3) = xL + 3 · a

x ≤ xL + a +
NL∑

nL=1

2nL−1 · a · λ(nL) = xL + a + 4 · a · λ(1) + 2 · a · λ(2) + a · λ(3) = xL + 4 · a

xL xL + 0.5*(xU - xL) xU
x

λ(2) = 1

λ(1) = 0

(a) NP = 4 and x = xL + 2.6 · a

xL xU
x

λ(3) = 0

λ(2) = 1

λ(1) = 1

(b) NP = 5 and x = xL + 3.6 · a

Figure 8: Activation of λ(nL) according to the Value of x

As in Section 4.2.1, the ∆y(nL) variables are equal to (y − yL) for each active λ(nL) (i.e., λ(nL) =
1 ⇐⇒ ∆y(nL) = y − yL). Because ∆y(nL) can be active for multiple nL ∈ {1, . . . , NL} rather than

for a single partition (i.e., ∆y is not SOS1 in the logarithmic formulation), we introduce continuous slack

s(nL) ∀nL ∈ {1, . . . , NL}:

∆y(nL) ≤ (yU − yL) · λ(nL) (13a)

∆y(nL) = (y − yL)− s(nL) where 0 ≤ s(nL) ≤ (yU − yL) · (1− λ(nL)) (13b)

Figure 9 represents the same two examples diagrammed in Figure 8. Notice that λ(nL) = 1 =⇒
∆y(nL) = y − yL and λ(nL) = 0 =⇒ ∆y(nL) = 0:

xL xL + 0.5*(xU - xL) xU
x

λ(2) = 1
∆y(2) = y - yL

λ(1) = 0
∆y(1) = 0

(a) NP = 4 and x = xL + 2.6 · a

xL xU
x

λ(3) = 0
∆y(3) = 0

λ(2) = 1
∆y(2) = y - yL

λ(1) = 1
∆y(1) = y - yL

(b) NP = 5 and x = xL + 3.6 · a

Figure 9: Activation of ∆y(nL) according to the Value of x

20

With the definitions above, a final logarithmic partitioning scheme equivalent to Disjunctive Program (6) is:

z ≥ x · yL + xL · (y − yL) +

[
NL∑

nL=1

a · 2nL−1 ·∆y(nL)

]
(14a)

z ≥ x · yU + (xL + a) · (y − yU) +

[
NL∑

nL=1

a · 2nL−1 ·
(
∆y(nL)− (yU − yL) · λ(nL)

)]
(14b)

z ≤ x · yL + (xL + a) · (y − yL) +

[
NL∑

nL=1

a · 2nL−1 ·∆y(nL)

]
(14c)

z ≤ x · yU + xL · (y − yU) +

[
NL∑

nL=1

a · 2nL−1 ·
(
∆y(nL)− (yU − yL) · λ(nL)

)]
(14d)

xL ≤ x ≤ xU ; yL ≤ y ≤ yU

As in Section 4.2.1, Eq. (11) is redundant after the introduction of Equation Set (14) and unnecessary in the

formulation.

4.2.3 Summary of the Relaxation Schemes

We conclude Section 4.2 by summarizing the two relaxation schemes presented in Sections 4.2.1 & 4.2.2.

The two relaxations are also presented in Appendix A for the bilinear term pl, k · yl, j that appears in the

p-formulation of the standard pooling problem. Appendix A assumes that the pl, k variables are partitioned.

The linear relaxation scheme (§4.2.1) has λ ∈ {0, 1}NP and ∆y ∈
[
0, yU − yL

]NP :

NP∑
nP =1

λ(nP) = 1 (i.e., λ SOS1) (15a)

xL +
NP∑

nP =1

a · (nP − 1) · λ(nP) ≤ x ≤ xL +
NP∑

nP =1

a · nP · λ(nP) (15b)

y = yL +
NP∑

nP =1

∆y(nP) where 0 ≤ ∆y(nP) ≤ (yU − yL) · λ(nP) ∀ nP ∈ {1, . . . , NP } (15c)

z ≥ x · yL +
NP∑

nP =1

[
xL + a · (nP − 1)

]
· ∆y(nP) (15d)

z ≥ x · yU +
NP∑

nP =1

[
xL + a · nP

]
·
[
∆y(nP)− (yU − yL) · λ(nP)

]
(15e)

z ≤ x · yL +
NP∑

nP =1

[
xL + a · nP

]
· ∆y(nP) (15f)

21

z ≤ x · yU +
NP∑

nP =1

[
xL + a · (nP − 1)

]
·
[
∆y(nP)− (yU − yL) · λ(nP)

]
(15g)

xL ≤ x ≤ xU ; yL ≤ y ≤ yU (15h)

The logarithmic relaxation scheme (§4.2.2) has NL = dlog2 NP e, λ ∈ {0, 1}NL , ∆y ∈
[
0, yU − yL

]NL ,

and s ∈
[
0, yU − yL

]NL . The equation marked with a dagger (†) is only used when NP is not a power of

two.

xL +
NL∑

nL=1

2nL−1 · a · λ(nL) ≤ x ≤ xL + a +
NL∑

nL=1

2nL−1 · a · λ(nL) (16a)

xL + a +
NL∑

nL=1

2nL−1 · a · λ(nL) ≤ xU (16a†)

∆y(nL) ≤ (yU − yL) · λ(nL) ∀ nL ∈ {1, . . . , NL} (16b)

∆y(nL) = (y − yL)− s(nL) ∀ nL ∈ {1, . . . , NL} (16c)

s(nL) ≤ (yU − yL) · (1− λ(nL)) ∀ nL ∈ {1, . . . , NL} (16d)

z ≥ x · yL + xL · (y − yL) +

[
NL∑

nL=1

a · 2nL−1 ·∆y(nL)

]
(16e)

z ≥ x · yU + (xL + a) · (y − yU) +

[
NL∑

nL=1

a · 2nL−1 ·
(
∆y(nL)− (yU − yL) · λ(nL)

)]
(16f)

z ≤ x · yL + (xL + a) · (y − yL) +

[
NL∑

nL=1

a · 2nL−1 ·∆y(nL)

]
(16g)

z ≤ x · yU + xL · (y − yU) +

[
NL∑

nL=1

a · 2nL−1 ·
(
∆y(nL)− (yU − yL) · λ(nL)

)]
(16h)

xL ≤ x ≤ xU ; yL ≤ y ≤ yU (16i)

5 Comparison Between Linear & Logarithmic Relaxation Schemes

Our twofold purpose in this paper is to (1) compare the linear and logarithmic relaxation schemes presented

in Section 4.2 within the context of a branch-and-bound global optimization algorithm for the three classes

of pooling problems and to (2) test and report the performance of the solver APOGEE. We use the suite

of twenty-five pooling problems recorded in Table 3 to test APOGEE and compare the linear and logarith-

mic relaxation schemes presented in Section 4.2 by globally optimizing each problem with both relaxation

schemes for NP = 3, 4, 5, 6, 8, 12, 16. Algorithm 1, our global optimization algorithm, is identical to the

back-end of the online APOGEE application and similar to global optimization approaches that have previ-

22

ously addressed bilinear programs [Audet et al., 2004, Bergamini et al., 2008, Karuppiah and Grossmann,

2006, Misener and Floudas, 2010, Misener et al., 2010, Tawarmalani and Sahinidis, 2002].

The way we compare the performance of the linear and logarithmic relaxations within a global opti-

mization algorithm differs from previous work that isolates the performance of a single MILP to compare

different formulations of piecewise-linear functions [Gounaris et al., 2009, Hasan and Karimi, 2010, Meyer

and Floudas, 2006, Vielma and Nemhauser, 2010, Vielma et al., 2010a, Wicaksono and Karimi, 2008]. In

this paper, our goal is to design the best overall algorithm that can address any pooling problem, so we are

interested in the performance of the two relaxations when they are incorporated into the APOGEE algo-

rithm rather than in an isolated root node relaxation. Therefore, Table 8 compares the linear and logarithmic

schemes within the context of Algorithm 1 and the only distinction between the linear and logarithmic test

is the relaxation of the bilinear terms in the Solve the MILP Relaxation step of Algorithm 1. Also differing

from the work of Vielma and Nemhauser [2010], we have not designed specialized branching schemes for

the logarithmic representation of the piecewise functions.

In addition to the relative sizes of the linear and logarithmic relaxation of a single bilinear term x · y
that are described in Table 4, we record in Table 5 the relative sizes of the MILP relaxations for bilinear

programs such as the pooling problem. In each of the three classes of pooling problems, there is one set

of variables that is partitioned based on Algorithm 2, so we reduce the number of binary variables in the

MILP formulation by reusing the binary variables representing the partitions. To give a better sense of the

relative sizes of the pooling problems for the twenty-five benchmark problems, we also record the sizes of

the MILP relaxations at the root node for NP = 4 and NP = 8 in Tables 6 and 7, respectively. In Tables

6 and 7, the Total column represents the size of the root node pooling problem relaxation and PW is the

contribution from the piecewise bilinear relaxation only. As should be expected, the smaller size of the

logarithmic relaxation is particularly noticeable for NP = 8.

Table 5: Number of Additional Vars & Constraints for the McCormick, Linear, & Logarithmic Pooling
Problem Relaxations

Continuous Vars Binary Vars Constraints

McC Hull NBIL – 4 ·NBIL
Lin. Rlxn NBIL · (NP + 1) NVAR ·NP NBIL · (NP + 5) + 3 ·NVAR

Log. Rlxn NBIL · (2 ·NL + 1) NVAR ·NL NBIL · (3 ·NL + 4) + 3 ·N †
VAR

†NVAR constraints can be removed when the number of partitions NP is a power of two
NL = dlog2 NP e; NBIL ≡ number of bilinear terms; NVAR ≡ number of partitioned variables

The results of Table 8 were generated on a four-core, 2.27GHz Intel Xeon E5520 processor running

Linux using a C++ program that interfaces to SNOPT 5.3 [Gill et al., 1999] and a four-threaded implemen-

tation of CPLEX 12.1 [ILOG, 2009]. Although the back-end of the APOGEE application runs the same C++

program on the same processor, APOGEE users will experience solution time variability due to currently

running jobs, network load, the non-deterministic performance of the opportunistic CPLEX 12.1 [ILOG,

2009] parallel solver, and the alternative choice of SCIP 2.0.0 [Achterberg et al., 2008] linked with CLP

23

Algorithm 1 Globally Optimize a Standard, Generalized, or Extended Pooling Problem
Receive xml file from helios.princeton.edu/APOGEE/ submission and load data
if Topological Correctness Checks Fail then

Return error message describing the infeasibility issue.
end if

Choose the formulation and relaxation scheme (Algorithm 2).

Initialize UB =∞ and the branch-and-bound tree with root NODE that incorporates topological reason-
ing to determine variable bounds [Misener and Floudas, 2009, 2010, Misener et al., 2010].

while Branch-and-bound tree non-empty and running time within 7200 CPU s do

If NODE is root or the bounds parent of NODE significantly improved with optimality-based bounds
tightening (OBBT), tighten the variables participating nonlinearly with OBBT [Belotti et al., 2009,
Floudas, 2000].

Solve the MILP Relaxation of the Pooling Problem for NODE [ILOG, 2009].

if NODE is Infeasible or UB−LBNODE
|UB| < εOPT TOL then

Discard NODE
else

NODE begets two progeny nodes by branching on the variable that contributes to the greatest dis-
crepancy between the auxiliary relaxation variables and the original problem variables [Adjiman
et al., 1998a,b, Audet et al., 2000, Misener and Floudas, 2010]. The branching point is a convex com-
bination of the variable mid-point (λ = 0.15) and the solution to the MILP relaxation (1−λ = 0.85)
[Adjiman et al., 1998a,b, Belotti et al., 2009, Floudas, 2000, Tawarmalani and Sahinidis, 2002].

Use topological reasoning to tighten the variable bounds on the two new nodes [Misener and Floudas,
2009, 2010, Misener et al., 2010].

Locally solve the Pooling Problem for NODE using the pool of feasible solutions discovered by the
relaxation as initial points [Gill et al., 1999].

if UBNODE < UB then
UB← UBNODE

end if
end if
NODE← node in the tree with the smallest LBnode

end while

if Branch-and-bound tree is empty and UB <∞ then
Return εOPT TOL optimal solution to user.

else if Branch-and-bound tree is empty then
Return infeasibility state to the user.

else
Algorithm did not converge at the time limit (7200 CPU s). Return the best found feasible solution to
user.

end if

24

Algorithm 2 Choose the Formulation and Relaxation Scheme
if Standard Pooling Problem then

if p-Formulation has Fewer Bilinear Terms than q-Formulation [Ben-Tal et al., 1994] then
if Fewer pl, k Variables than yl, j Variables then

Use the p-Formulation [Misener and Floudas, 2009] and partition the pl, k variables.
else

Use the p-Formulation [Misener and Floudas, 2009] and partition the yl, j variables.
end if

else
if Fewer qi, l Variables than yl, j Variables then

Use the pq-Formulation [Misener and Floudas, 2009] and partition the qi, l variables.
else

Use the pq-Formulation [Misener and Floudas, 2009] and partition the yl, j variables.
end if

end if
else if Generalized Pooling Problem then

if Fewer pl, k Variables than yl, j and tl, l′ Variables then
Use the Generalized-Formulation [Audet et al., 2004, Lee and Grossmann, 2003, Misener and
Floudas, 2010] and partition the pl, k variables.

else
Use the Generalized-Formulation [Audet et al., 2004, Lee and Grossmann, 2003, Misener and
Floudas, 2010] and partition the yl, j and tl, l′ variables.

end if
else

Use the Extended-Formulation [Misener et al., 2010] and partition the qi, l variables.
end if

25

Table 6: Relative Sizes of the Linear and Logarithmic Relaxation Scheme for N = 4

Problem
Linear Number of Binaries Logarithmic Number of Binaries

Cnt Vars # Bin Vars # Eqs # Cnt Vars # Bin Vars # Eqs

Total PW Total PW Total PW Total PW Total PW Total PW

Adhya 1 114 100 20 20 258 195 114 100 10 10 273 210
Adhya 2 114 100 20 20 274 195 114 100 10 10 289 210
Adhya 3 181 160 32 32 403 312 181 160 16 16 427 336
Adhya 4 219 200 32 32 465 384 219 200 16 16 497 416
BenTal 4 19 10 4 4 41 21 19 10 2 2 42 22
BenTal 5 189 150 24 24 341 288 189 150 12 12 365 312
Foulds 2 63 40 8 8 113 78 63 40 4 4 119 84
Foulds 3 809 640 32 32 1287 1176 809 640 16 16 1407 1296
Foulds 4 809 640 32 32 1287 1176 809 640 16 16 1407 1296
Foulds 5 421 320 16 16 687 588 421 320 8 8 747 648
Haverly 1 18 10 4 4 39 21 18 10 2 2 40 22
Haverly 2 18 10 4 4 39 21 18 10 2 2 40 22
Haverly 3 18 10 4 4 39 21 18 10 2 2 40 22
RT 2 107 90 24 24 227 180 107 90 12 12 239 192

Lee 1 161 120 41 32 285 240 161 120 25 16 301 256
Lee 2 225 180 57 48 415 360 225 180 33 24 439 384
Meyer 4 304 240 103 48 625 468 304 240 79 24 661 504
Meyer 10 1708 1500 307 120 3307 2790 1708 1500 247 60 3577 3060
Meyer 15 3742 3360 531 180 7162 6183 3742 3360 441 90 7789 6810

EPA Small R1/2 357 40 46 16 799 84 351 40 38 8 155 819
EPA Med R1/2 687 150 85 40 1467 300 182 150 20 20 436 320
EPA Large R1/2 2411 700 206 56 5168 1302 2393 700 178 28 5362 1428
Total is the size of the root node pooling problem relaxation. PW is the contribution from the bilinear relaxation.

26

Table 7: Relative Sizes of the Linear and Logarithmic Relaxation Scheme for N = 8

Problem
Linear Number of Binaries Logarithmic Number of Binaries

Cnt Vars # Bin Vars # Eqs # Cnt Vars # Bin Vars # Eqs

Total PW Total PW Total PW Total PW Total PW Total PW

Adhya 1 194 180 40 40 338 275 154 140 15 15 333 270
Adhya 2 194 180 40 40 354 275 154 140 15 15 349 270
Adhya 3 309 288 64 64 531 440 245 224 24 24 523 432
Adhya 4 379 360 64 64 625 544 299 280 24 24 617 536
BenTal 4 27 18 8 8 49 29 23 14 3 3 48 28
BenTal 5 309 270 48 48 461 408 249 210 18 18 455 402
Foulds 2 95 72 16 16 145 110 79 56 6 6 143 108
Foulds 3 1321 1152 64 64 1799 1688 1065 896 24 24 1791 1680
Foulds 4 1321 1152 64 64 1799 1688 1065 896 24 24 1791 1680
Foulds 5 677 576 32 32 943 844 549 448 12 12 939 840
Haverly 1 26 18 8 8 47 29 22 14 3 3 46 28
Haverly 2 26 18 8 8 47 29 22 14 3 3 46 28
Haverly 3 26 18 8 8 47 29 22 14 3 3 46 28
RT 2 179 162 48 48 299 252 143 126 18 18 293 246

Lee 1 257 216 73 64 381 336 209 168 33 24 373 328
Lee 2 369 324 105 96 559 504 297 252 45 36 547 492
Meyer 4 496 432 151 96 817 660 400 336 91 36 805 648
Meyer 10 2908 2700 427 240 4507 3990 2308 2100 277 90 4477 3960
Meyer 15 6430 6048 711 360 9850 8871 5086 4704 486 135 9805 8826

EPA Small R1/2 405 72 62 32 831 116 371 56 42 12 843 112
EPA Med R1/2 847 270 125 80 1587 420 740 210 75 30 1609 410
EPA Large R1/2 3027 1260 262 112 5728 1862 2687 980 192 42 5782 1848
Total is the size of the root node pooling problem relaxation. PW is the contribution from the bilinear relaxation.

27

Ta
bl

e
8:

C
om

pa
ri

ng
th

e
Li

ne
ar

an
d

Lo
ga

ri
th

m
ic

R
el

ax
at

io
n

Sc
he

m
e

fo
r

Se
ve

ra
lP

ar
tit

io
ni

ng
Le

ve
ls

(C
P

U
s

fo
r
ε O

P
T

TO
L

G
lo

ba
lO

pt
im

iz
at

io
n)

Pr
ob

le
m

ε O
PT

TO
L

=
U

B
−

L
B

|U
B
|

N
P

=
3

N
P

=
4

N
P

=
5

N
P

=
6

N
P

=
8

N
P

=
12

N
P

=
16

L
in

L
og

L
in

L
og

L
in

L
og

L
in

L
og

L
in

L
og

L
in

L
og

L
in

L
og

A
dh

ya
1

1
·1

0−
6

0.
62

8
0.

79
9

0.
75

2
0.

61
3

0.
82

2
0.

86
8

0.
79

1
0.

78
2

1.
14

1
0.

82
6

2.
25

0
1.

04
1

9.
45

0
0.

98
1

A
dh

ya
2

1
·1

0−
6

0.
42

8
0.

56
3

0.
46

9
0.

49
4

0.
58

5
0.

70
5

0.
61

1
0.

58
5

0.
59

0
0.

62
7

1.
42

5
0.

69
3

5.
71

6
0.

65
0

A
dh

ya
3

1
·1

0−
6

0.
48

5
0.

54
8

0.
43

4
0.

46
9

0.
53

4
0.

65
3

0.
58

3
0.

69
4

0.
69

0
0.

50
1

2.
07

4
0.

65
4

–
0.

61
3

A
dh

ya
4

1
·1

0−
6

0.
20

3
0.

24
0

0.
22

6
0.

20
9

0.
24

9
0.

26
7

0.
31

5
0.

25
9

0.
35

1
0.

28
8

1.
32

4
0.

38
4

1.
67

1
0.

39
1

B
en

Ta
l4

1
·1

0−
6

0.
02

3
0.

03
8

0.
02

2
0.

02
9

0.
02

3
0.

03
8

0.
02

2
0.

02
5

0.
02

6
0.

03
0

0.
03

4
0.

02
5

0.
04

0
0.

02
8

B
en

Ta
l5

1
·1

0−
6

0.
08

2
0.

11
4

0.
07

6
0.

08
1

0.
20

0
0.

22
3

0.
26

3
0.

17
4

0.
26

9
0.

18
5

0.
60

4
0.

18
7

2.
93

6
0.

21
9

Fo
ul

ds
2

1
·1

0−
6

0.
02

9
0.

04
0

0.
02

8
0.

03
2

0.
02

8
0.

06
0

0.
02

8
0.

04
3

0.
03

1
0.

03
4

0.
03

2
0.

04
4

0.
03

0
0.

03
5

Fo
ul

ds
3

1
·1

0−
6

0.
32

4
0.

32
8

0.
61

4
0.

36
7

0.
76

6
0.

68
3

0.
40

1
0.

57
5

0.
42

8
0.

39
9

0.
49

2
0.

40
9

2.
49

9
0.

43
2

Fo
ul

ds
4

1
·1

0−
6

0.
32

9
1.

69
8

0.
46

8
1.

65
2

0.
30

3
0.

44
9

0.
38

5
0.

41
3

1.
20

7
0.

38
2

0.
60

4
0.

55
6

0.
62

8
1.

06
3

Fo
ul

ds
5

1
·1

0−
6

0.
13

0
0.

12
1

0.
22

6
0.

09
7

0.
20

9
0.

36
6

0.
14

8
0.

17
7

0.
12

7
0.

15
6

0.
31

6
0.

22
4

1.
57

7
0.

52
6

H
av

er
ly

1
1
·1

0−
6

0.
02

5
0.

02
8

0.
02

3
0.

02
7

0.
02

2
0.

03
8

0.
02

4
0.

02
6

0.
02

3
0.

03
0

0.
03

2
0.

02
7

0.
03

8
0.

02
7

H
av

er
ly

2
1
·1

0−
6

0.
03

1
0.

02
8

0.
02

6
0.

02
4

0.
03

5
0.

03
6

0.
03

5
0.

07
3

0.
02

9
0.

02
8

0.
03

4
0.

02
9

0.
03

0
0.

02
6

H
av

er
ly

3
1
·1

0−
6

0.
03

1
0.

03
4

0.
03

2
0.

03
2

0.
02

9
0.

03
3

0.
03

2
0.

03
3

0.
03

3
0.

03
1

0.
03

9
0.

03
4

0.
03

9
0.

03
3

R
T

2
1
·1

0−
6

0.
25

8
0.

58
8

0.
27

4
0.

20
8

0.
30

5
0.

36
9

0.
37

6
0.

33
4

0.
70

2
0.

31
3

6.
41

0
0.

53
2

9.
15

8
0.

41
7

L
ee

1
1
·1

0−
3

3.
60

2
11

.1
61

4.
12

7
3.

55
6

2.
56

2
3.

73
9

10
.2

57
5.

28
5

9.
41

5
2.

62
2

9.
09

1
3.

66
5

22
.7

50
5.

92
8

L
ee

2
1
·1

0−
3

38
.7

93
40

.1
89

51
.2

16
36

.9
73

67
.6

75
55

.8
08

76
.4

75
49

.0
75

13
8.

42
58

.5
85

25
6.

53
70

.6
96

79
1.

31
77

.8
35

M
ey

er
4

1
·1

0−
3

85
.2

43
13

6.
16

9.
05

5
11

.7
87

12
.0

67
27

.1
38

16
.8

32
23

.8
69

13
.4

49
16

.6
87

19
.9

94
71

.9
06

12
.3

38
37

.1
60

M
ey

er
10

1
·1

0−
3

32
03

.8
47

07
.3

36
9.

91
13

30
.0

29
5.

75
25

54
.9

22
2.

35
99

4.
42

12
98

.2
52

0.
81

11
93

.3
38

78
.4

26
00

.9
22

06
.4

M
ey

er
15

1
·1

0−
3

92
1.

06
58

41
.2

13
80

.1
33

45
.5

14
21

.2
–

19
57

.3
60

74
.0

45
18

.9
33

32
.4

45
70

.9
–

64
72

.7
37

50
.6

E
PA

Sm
al

lR
1

1
·1

0−
3

2.
18

3
2.

00
2

2.
05

2
1.

67
2

1.
95

8
1.

96
4

1.
99

4
1.

91
2

1.
96

0
1.

92
7

1.
84

1
2.

24
7

1.
91

5
2.

16
6

E
PA

Sm
al

lR
2

1
·1

0−
3

1.
85

2
1.

78
5

1.
73

2
1.

83
3

2.
43

3
2.

00
7

1.
94

4
1.

95
5

1.
91

5
2.

00
8

1.
93

1
1.

94
3

2.
08

2
1.

88
2

E
PA

M
ed

R
1

1
·1

0−
3

13
2.

32
14

6.
01

23
4.

30
21

0.
77

14
3.

27
17

8.
15

18
9.

54
12

7.
83

20
7.

52
17

1.
10

26
4.

35
14

7.
22

44
3.

45
12

5.
16

E
PA

M
ed

R
2

1
·1

0−
3

11
9.

48
16

0.
94

25
0.

41
20

9.
74

12
9.

33
11

3.
42

14
2.

42
18

0.
75

21
6.

00
16

6.
51

25
4.

50
14

9.
66

35
3.

60
15

1.
08

E
PA

L
ar

ge
R

1
1
·1

0−
2

45
80

.3
68

3.
85

31
49

.5
59

96
.9

88
0.

89
12

28
.4

83
2.

56
38

62
.8

41
2.

10
22

7.
01

18
7.

82
16

13
.0

59
5.

49
35

5.
41

E
PA

L
ar

ge
R

2
1
·1

0−
2

48
2.

08
18

6.
58

26
1.

72
30

3.
53

52
7.

23
33

10
.9

51
9.

70
89

.7
81

61
8.

08
85

.1
27

29
6.

41
23

6.
40

18
7.

18
11

2.
22

B
es

tF
or

m
.(

L
in

/L
og

)
23

10
16

16
21

8
18

14
11

21
7

19
4

21

B
es

tP
ar

t.
L

ev
el

15
20

7
5

6
1

4
B

ol
d

nu
m

be
rs

hi
gh

lig
ht

th
e

be
st

fo
rm

ul
at

io
n

(L
in

or
L

og
)

fo
r

ea
ch

pa
rt

iti
on

in
g

le
ve

lN
P

.
It

al
ic

iz
ed

nu
m

be
rs

re
pr

es
en

tt
he

be
st

tim
e

fo
r

a
si

ng
le

pr
ob

le
m

.
C

PU
tim

es
w

ith
in

10
%

of
th

e
m

in
im

um
ar

e
co

ns
id

er
ed

eq
ui

va
le

nt
to

th
e

be
st

tim
e.

E
m

pt
y

ta
bl

e
en

tr
ie

s
re

pr
es

en
tr

un
s

th
at

di
d

no
tc

on
ve

rg
e

in
th

e
72

00
C

PU
s

tim
e

lim
it.

28

1.13 [Forrest et al., 2010] as a MILP solver.

The first two columns of Table 8 list the twenty-five test cases and the optimality tolerance to which

each of the problems was solved. In general, APOGEE solves standard problems to εOPT TOL = 1 ·10−6 and

the larger generalized and extended problems to εOPT TOL = 1 · 10−3, but in Table 8 we have solved the two

largest extended problems to εOPT TOL = 1 · 10−2 so that we can better compare the formulations (these two

problems do not converge to εOPT TOL = 1 · 10−3 within the 7200 CPU s time limit).

The remaining columns in Table 8 compare the linear and logarithmic formulations by highlighting in

bold the formulation that is faster for each partitioning level NP = 3, 4, 5, 6, 8, 12, 16. Some comparisons

(e.g., EPA Small R1 for NP = 8) have the times corresponding to both the linear and logarithmic formu-

lation highlighted because we consider CPU times within 10% of the minimum to be equivalent to the best

time. The penultimate row in Table 8 sums the number of times that the linear and logarithmic formulations

are faster for each of the seven partitioning levels. For Np = 8, the linear and logarithmic formulations win

11 and 21 times, respectively (observe that the sum of the linear and logarithmic wins rarely adds to the

number of test cases because a time within 10% of a win is also a win). The final row in Table 8 counts the

number of times that the partitioning level (irrespective of formulation) is best for a specific pooling prob-

lem (again, the numbers in the final row do not sum to 25 because a tie is a win in our methodology). For

example, using a partitioning level of NP = 8 with either formulation is best for 6 of the 25 test instances.

Table 8 suggests several conclusions. First, corroborating the computational results of Vielma et al.

[2010a], the logarithmic relaxation scheme is particularly advantageous for higher partitioning levels (NP ≥
8). This observation suggests a robustness to the claims of Vielma et al. [2010a] because their suggestion

of using a logarithmic number of binary variables has only been tested for individual MILP models that

feature piecewise-linear functions. In contrast, the MILP relaxation in our tests is a portion of a larger

global optimization algorithm and the relaxation itself includes not only the piecewise relaxation of bilinear

terms but also pooling problem topological constraints and possibly the unwieldy EPA Complex Emissions

Model [40CFR80.45, 2007, Misener et al., 2010].

Next, the logarithmic formulation is comparatively better when the number of partitions is a power of

two. This observation follows from the size analysis in Table 5 where it is evident that our logarithmic

piecewise relaxation for NP = 2n−1 + 1 is actually larger than the NP = 2n relaxation. For example,

dlog2 5e = dlog2 8e = 3, so the number of continuous and binary variables are equal for the logarithmic

NP = 5 and NP = 8 formulations, but there are more constraint equations in the NP = 5 case because

Eq. (12) is used to sharpen the logarithmic formulation.

Finally, despite the evident advantage of the logarithmic partitioning scheme for large NP , the global

optimization algorithm seems to converge fastest with smaller partitioning levels (e.g., NP = 3, 4, 5) where

there is an advantage in using the linear partitioning scheme. For the case NP = 4, the linear and logarithmic

schemes do win an equal number of times, but three of the very large-scale problems (i.e., Meyer 10, Meyer

15, and EPA Large R1) have numerical difficulty with the logarithmic scheme and our goal is that the

solver APOGEE should be as stable as possible. Although the relaxations with higher partitioning levels

are generally tighter than the ones with fewer partitions and are therefore likely to require fewer nodes in

a branch-and-bound optimization algorithm [Gounaris et al., 2009], there is a trade-off between relaxation

29

strength and node solution time that encourages using fewer partitions for the pooling problem [Misener and

Floudas, 2010]. Therefore, we will continue using the linear relaxation scheme to solve pooling problems.

Although we are currently using NP = 4 to solve pooling problems within APOGEE, note from Table 8

that guessing the right partition is not a crucial element of our process. The only three instances that do

not converge within the time limit (7200 CPU s) are two logarithmic relaxations of the largest generalized

pooling problem (Meyer 15) at partitioning levels that are not powers of two (NP = 5, 12) and one linear

relaxation of a standard problem (Adhya 3) at an unreasonably high partitioning level (NP = 16).

6 The Computational Tool APOGEE

(a) Constructing a problem (b) Viewing results

Figure 10: The APOGEE Desktop Client. Shown is the mid-size extended problem from Misener et al.
[2010].

We have integrated our work on global optimization of pooling problems by developing the compu-

tational tool APOGEE, a generic system capable of globally optimizing the standard, generalized, and

extended classes of pooling problems. The core algorithms are implemented as a C++ program that in-

terfaces with the SNOPT 5.3 [Gill et al., 1999] and CPLEX 12.1 [ILOG, 2009] packages (Algorithm 1).

APOGEE alternatively employs SCIP 2.0.0 [Achterberg et al., 2008] linked with CLP 1.13 [Forrest et al.,

2010] as a MILP solver. To facilitate evaluation of the tool’s performance and encourage feedback, we have

also created the APOGEE Desktop Client, a cross-platform graphical user interface that enables users to

construct problems interactively, submit specifications to the solver, and view results. Additionally, users

are able to monitor the complexity and preferred formulation (i.e., p or q) of a pooling problem as it is

constructed (see Figure 10(a)). This information is relevant in predicting the computational intensity of

30

the global optimization algorithm. The client software is freely available to the scientific community at

helios.princeton.edu/APOGEE/.

The test suite of pooling problems presented in Table 3 is also available on the APOGEE website as

pre-constructed problems. Users are encouraged to build their own problems from scratch, directly test

the benchmark problems, or experiment with different scenarios by modifying the test suite of pooling

problems. The desktop client warns users who submit unusually large problems that the instance is unlikely

to completely converge within the time limit, but there is no size limit to accepted problems. For such large

instances or problems of special interest, we recommend contacting Professor C. A. Floudas to discuss the

possibility of using more specialized algorithms or more powerful computers [Misener and Floudas, 2010].

7 Conclusion

In this paper, inspired by recent work proposing modeling piecewise functions with a logarithmic number of

binary switches [Vielma and Nemhauser, 2010, Vielma et al., 2010a], we develop a novel formulation for the

piecewise relaxation of bilinear programs and computationally compare the performance of this new formu-

lation to the best-performing piecewise relaxations with a linear number of binary variables. While we find

a definitive advantage to using the logarithmic number of variables for a high partitioning level (NP ≥ 8),
we observe that, for the pooling problem, a lower partitioning level tends to be advantageous. Therefore,

using the linear partitioning level for solving large-scale pooling problems is recommended, but we conjec-

ture that problem classes requiring finer partitioning would benefit from this alternative logarithmic relax-

ation scheme. We have also unified our work by developing APOGEE (Algorithms for Pooling-problem

global Optimization in GEneral and Extended classes), a computational tool that globally optimizes stan-

dard, generalized, and extended pooling problems. APOGEE is freely available to the scientific community

at helios.princeton.edu/APOGEE/.

Acknowledgments: The authors gratefully acknowledge support from the National Science Foundation

(CBET – 0827907). R.M. is further thankful for her NSF Graduate Research Fellowship.

References

40CFR80.41. Code of Federal Regulations: Standards and requirements for compliance, 2008. http:
//www.gpoaccess.gov/cfr/retrieve.html.

40CFR80.45. Code of Federal Regulations: Complex emissions model, 2007. http://www.
gpoaccess.gov/cfr/retrieve.html.

T. Achterberg, T. Berthold, T. Koch, and K. Wolter. Constraint integer programming: a new approach to
integrate CP and MIP. In Integration of AI and OR Techniques in Constraint Programming for Combina-
torial Optimization Problems. CPAIOR, 2008.

N. Adhya, M. Tawarmalani, and N. V. Sahinidis. A Lagrangian approach to the pooling problem. Ind. Eng.
Chem. Res., 38(5):1965 – 1972, 1999.

31

C. S. Adjiman, S. Dallwig, C. A. Floudas, and A. Neumaier. A global optimization method, αBB, for
general twice differentiable NLPs-I. Theoretical advances. Comput. Chem. Eng., 22:1137 – 1158, 1998a.

C. S. Adjiman, I. P. Androulakis, and C. A. Floudas. A global optimization method, αBB, for general twice
differentiable NLPs-II. Implementation and computional results. Comput. Chem. Eng., 22:1159 – 1179,
1998b.

A. Aggarwal and C. A. Floudas. Synthesis of general distillation sequences - nonsharp separations. Comput.
Chem. Eng., 14(6):631–653, 1990.

F. A. Al-Khayyal and J. E. Falk. Jointly constrained biconvex programming. Math. Oper. Res., 8(2):273 –
286, 1983.

H. Almutairi and S. Elhedhli. A new Lagrangean approach to the pooling problem. J. Global Optim., 45:
237 – 257, 2009.

K. M. Anstreicher. Semidefinite programming versus the reformulation-linearization technique for noncon-
vex quadratically constrained quadratic programming. J. Global Optim., 43(2-3):471 – 484, 2009.

C. Audet, P. Hansen, B. Jaumard, and G. Savard. A branch and cut algorithm for nonconvex quadratically
constrained quadratic programming. Math. Program., 87(1):131 – 152, 2000.

C. Audet, J. Brimberg, P. Hansen, S. Le Digabel, and N. Mladenovic. Pooling problem: Alternate formula-
tions and solution methods. Manage. Sci., 50(6):761 – 776, 2004.

M. Bagajewicz. A review of recent design procedures for water networks in refineries and process plants.
Comput. Chem. Eng., 24:2093 – 2113, 2000.

R. C. Baliban, J. A. Elia, and C. A. Floudas. Toward novel hybrid biomass, coal, and natural gas processes
for satisfying current transportation fuel demands, 1: Process alternatives, gasification modeling, process
simulation, and economic analysis. Ind. Eng. Chem. Res., 49(16):7343–7370, 2010a.

R. C. Baliban, J. A. Elia, and C. A. Floudas. Optimization framework for the simultaneous process synthesis,
heat and power integration of a thermochemical hybrid biomass, coal, and natural gas facility. 2010b.
Submitted.

X. Bao, N. V. Sahinidis, and M. Tawarmalani. Multiterm polyhedral relaxations for nonconvex,
quadratically-constrained quadratic programs. Optimization Methods and Software, 24(4-5):485 – 504,
2009.

P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter. Branching and bounds tightening techniques for
non-convex MINLP. Optimization Methods and Software, 24(4-5):597–634, 2009.

A. Ben-Tal, G. Eiger, and V. Gershovitz. Global minimization by reducing the duality gap. Math. Program.,
63:193 – 212, 1994.

M. L. Bergamini, I. Grossmann, N. Scenna, and P. Aguirre. An improved piecewise outer-approximation
algorithm for the global optimization of MINLP models involving concave and bilinear terms. Comput.
Chem. Eng., 32(3):477 – 493, 2008.

A. Chakraborty. A globally convergent mathematical model for synthesizing topologically constrained water
recycle networks. Comput. Chem. Eng., 33(7):1279 – 1288, 2009.

32

A. Chakraborty and A. A. Linninger. Plant-wide waste management. 1. synthesis and multiobjective design.
Ind. Eng. Chem. Res., 41(18):4591–4604, 2002.

A. Chakraborty and A. A. Linninger. Plant-wide waste management. 2. decision making under uncertainty.
Ind. Eng. Chem. Res., 42(2):357–369, 2003.

A. Chakraborty, R. D. Colberg, and A. A. Linninger. Plant-wide waste management. 3. long-term operation
and investment planning under uncertainty. Ind. Eng. Chem. Res., 42(20):4772–4788, 2003.

A. R. Ciric and C. A. Floudas. A retrofit approach for heat exchanger networks. Comput. Chem. Eng., 13
(6):703 – 715, 1989.

J. A. Elia, R. C. Baliban, and C. A. Floudas. Toward novel hybrid biomass, coal, and natural gas pro-
cesses for satisfying current transportation fuel demands, 2: Simultaneous heat and power integration.
Ind. Eng. Chem. Res., 49(16):7371–7388, 2010.

C. A. Floudas. Deterministic Global Optimization : Theory, Methods and Applications. Nonconvex Opti-
mization and Its Applications. Kluwer Academic Publishers, Dordrecht, Netherlands, 2000.

C. A. Floudas and A. Aggarwal. A decomposition strategy for global optimum search in the pooling prob-
lem. ORSA J. Comput., 2:225 – 235, 1990.

C. A. Floudas and S. H. Anastasiadis. Synthesis of distillation sequences with several multicomponent feed
and product streams. Chem. Eng. Sci., 43(9):2407–2419, 1988.

C. A. Floudas and C. E. Gounaris. A review of recent advances in global optimization. J. Global Optim., 45
(1):3 – 38, 2009.

C. A. Floudas and I. E. Grossmann. Synthesis of flexible heat-exchanger networks with uncertain flowrates
and temperatures. Comput. Chem. Eng., 11(4):319–336, 1987.

C. A. Floudas and P. M. Pardalos. State-of-the-art in global optimization - computational methods and
applications - preface. J. Glob. Optim., 7(2):113, 1995.

C. A. Floudas and G. E. Paules. A mixed-integer nonlinear programming formulation for the synthesis of
heat-integrated distillation sequences. Comput. Chem. Eng., 12(6):531 – 546, 1988.

C. A. Floudas and V. Visweswaran. A global optimization algorithm (GOP) for certain classes of nonconvex
NLPs: I. Theory. Comput. Chem. Eng., 14(12):1397 – 1417, 1990.

C. A. Floudas and V. Visweswaran. Primal-relaxed dual global optimization approach. J. Optim. Theory
Appl., 78(2):187 – 225, 1993.

C. A. Floudas, A. Aggarwal, and A. R. Ciric. Global optimum search for nonconvex NLP and MINLP
problems. Comput. Chem. Eng., 13(10):1117 – 1132, 1989.

C. A. Floudas, I. G. Akrotirianakis, S. Caratzoulas, C. A. Meyer, and J. Kallrath. Global optimization in the
21st century: Advances and challenges. Comput. Chem. Eng., 29:1185 – 1202, 2005.

J. Forrest, M. Saltzman, L. Hafer, and J. Hall. CLP. https://projects.coin-or.org/Clp, 2010.
Version 1.13.

L. R. Foulds, D. Haughland, and K. Jornsten. A bilinear approach to the pooling problem. Optim., 24:165
– 180, 1992.

33

K. C. Furman and I. P. Androulakis. A novel MINLP-based representation of the original complex model
for predicting gasoline emissions. Comput. Chem. Eng., 32:2857 – 2876, 2008.

B. Galan and I. E. Grossmann. Optimal design of distributed wastewater treatment networks. Ind. Eng.
Chem. Res., 37(10):4036 – 4048, 1998.

P. E. Gill, W. Murray, and M. A. Saunders. SNOPT. http://www.sbsi-sol-optimize.com/
asp/sol product snopt.htm, 1999. Version 5.3.

C. E. Gounaris, R. Misener, and C. A. Floudas. Computational comparison of piecewise-linear relaxations
for pooling problems. Ind. Eng. Chem. Res., 48(12):5742 – 5766, 2009.

H. J. Greenberg. Analyzing the pooling problem. ORSA J. Comput., 7:205 – 217, 1995.

I. E. Grossmann and G. Guillén-Gosálbez. Scope for the application of mathematical programming tech-
niques in the synthesis and planning of sustainable processes. Comput. Chem. Eng., 34(9):1365 – 1376,
2010.

M. M. F. Hasan and I. A. Karimi. Piecewise linear relaxation of bilinear programs using bivariate partition-
ing. AIChE J., 56(7):1880 – 1893, 2010.

C. A. Haverly. Studies of the behavior of recursion for the pooling problem. ACM SIGMAP Bulletin, 25:19
– 28, 1978.

ILOG. CPLEX. http://www-01.ibm.com/software/integration/optimization/
cplex-optimizer/, 2009. Version 12.1.

R. G. Jeroslow and J. K. Lowe. Modelling with integer variables. Math. Prog. Stud., 22:167 – 184, 1984.

J. Jeżowski. Review of water network design methods with literature annotations. Ind. Eng. Chem. Res., 49
(10):4475 – 4516, 2010.

R. Karuppiah and I. E. Grossmann. Global optimization for the synthesis of integrated water systems in
chemical processes. Comput. Chem. Eng., 30:650 – 673, 2006.

A. C. Kokossis and C. A. Floudas. Synthesis of isothermal reactor–separator–recycle systems. Chem. Eng.
Sci., 46(5 - 6):1361 – 1383, 1991.

A. C. Kokossis and C. A. Floudas. Optimization of complex reactor networks–II. nonisothermal operation.
Chem. Eng. Sci., 49(7):1037 – 1051, 1994.

L. S. Lasdon, A. D. Waren, S. Sarkar, and F. Palacios. Solving the pooling problem using generalized
reduced gradient and successive linear programming algorithms. ACM SIGMAP Bull., 27:9 – 15, 1979.

S. Lee and I. E. Grossmann. A global optimization algorithm for nonconvex generalized disjunctive pro-
gramming and applications to process systems. Comput. Chem. Eng., 25(11-12):1675 – 1697, 2001.

S. Lee and I. E. Grossmann. Global optimization of nonlinear generalized disjunctive programming with
bilinear equality constraints: applications to process networks. Comput. Chem. Eng., 27(11):1557 – 1575,
2003.

H. L. Li, H. C. Lu, C. H. Huang, and N. Z. Hu. A superior representation method for piecewise linear
functions. INFORMS J. Comput., 21(2):314–321, 2009.

34

X. Li, E. Armagan, A. Tomasgard, and P. I. Barton. Stochastic pooling problem for natural gas production
network design and operation under uncertainty. AIChE J., 2010. In Press.

X. Lin and C. A. Floudas. Design, synthesis and scheduling of multipurpose batch plants via an effective
continuous-time formulation. Comput. Chem. Eng., 25(4 - 6):665 – 674, 2001.

J. Linderoth. A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic pro-
grams. Math. Program., 103(2):251 – 282, 2005.

W. A. Lodwick. Preprocessing nonlinear functional constraints with applications to the pooling problem.
ORSA J. Comput., 4(2):119–131, 1992.

A. Malcolm, L. Zhang, and A. A. Linninger. Design of environmental regulatory policies for sustainable
emission reduction. AIChE J., 52(8):2792 – 2804, 2006.

G. P. McCormick. Computability of global solutions to factorable nonconvex programs: Part 1-convex
underestimating problems. Math. Program., 10(1):147 – 175, 1976.

C. A. Meyer and C. A. Floudas. Global optimization of a combinatorially complex generalized pooling
problem. AIChE J., 52(3):1027 – 1037, 2006.

C. A. Meyer and C. A. Floudas. Convex envelopes for edge-concave functions. Math. Program., 103(2):
207–224, 2005.

R. Misener and C. A. Floudas. Advances for the pooling problem: Modeling, global optimization, and
computational studies. Applied and Computational Mathematics, 8(1):3 – 22, 2009.

R. Misener and C. A. Floudas. Global optimization of large-scale pooling problems: Quadratically con-
strained MINLP models. Ind. Eng. Chem. Res., 49(11):5424 – 5438, 2010.

R. Misener, C. E. Gounaris, and C. A. Floudas. Mathematical modeling and global optimization of large-
scale extended pooling problems with the (EPA) complex emissions constraints. Comput. Chem. Eng., 34
(9):1432 – 1456, 2010.

V. Pham, C. Laird, and M. El-Halwagi. Convex hull discretization approach to the global optimization of
pooling problems. Ind. Eng. Chem. Res., 48:1973 – 1979, 2009.

I. Quesada and I. E. Grossmann. Global optimization of bilinear process networks with multicomponent
flows. Comput. Chem. Eng., 19:1219 – 1242, 1995.

J. P. Ruiz and I. E. Grossmann. Strengthening of lower bounds in the global optimization of bilinear and
concave generalized disjunctive programs. Comput. Chem. Eng., 34(6):914 – 930, 2010.

Y. Saif, A. Elkamel, and M. Pritzker. Global optimization of reverse osmosis network for wastewater treat-
ment and minimization. Ind. Eng. Chem. Res., 47(9):3060 – 3070, 2008.

H. D. Sherali and W. P. Adams. A Reformulation-Linearization Technique for Solving Discrete and Contin-
uous Nonconvex Problems. Nonconvex Optimization and Its Applications. Kluwer Academic Publishers,
Dordrecht, Netherlands, 1999.

H. D. Sherali and A. Alameddine. A new reformulation-linearization technique for bilinear programming
problems. J. Global Optim., 2:379 – 410, 1992.

35

F. Tardella. On a class of functions attaining their maximum at the vertices of a polyhedron. Discret. Appl.
Math., 22:191–195, 1988/89.

F. Tardella. On the existence of polyhedral convex envelopes. In C. A. Floudas and P. M. Pardalos, editors,
Frontiers in Global Optimization, pages 563–573. Kluwer Academic Publishers, 2003.

F. Tardella. Existence and sum decomposition of vertex polyhedral convex envelopes. Optim. Lett., 2:
363–375, 2008.

M. Tawarmalani and N. V. Sahinidis. Convexification and Global Optimization in Continuous and Mixed-
Integer Nonlinear Programming: Theory, Applications, Software, and Applications. Nonconvex Opti-
mization and Its Applications. Kluwer Academic Publishers, Norwell, MA, USA, 2002.

J. P. Vielma and G. Nemhauser. Modeling disjunctive constraints with a logarithmic number of binary
variables and constraints. Math. Program., 2010. In Press (DOI: 10.1007/s10107-009-0295-4).

J. P. Vielma, S. Ahmed, and G. Nemhauser. Mixed-integer models for nonseparable piecewise-linear opti-
mization: Unifying framework and extensions. Oper. Res., 58(2):303 – 315, 2010a.

J. P. Vielma, S. Ahmed, and G. Nemhauser. A note on “A superior representation method for piecewise
linear functions”. INFORMS J. Comput., 22(3):493 – 497, 2010b.

V. Visweswaran. MINLP: Applications in blending and pooling. In C. A. Floudas and P. M. Pardalos,
editors, Encyclopedia of Optimization, pages 2114 – 2121. Springer Science, 2 edition, 2009.

V. Visweswaran and C. A. Floudas. A global optimization algorithm (GOP) for certain classes of nonconvex
NLPs: II. application of theory and test problems. Comput. Chem. Eng., 14(12):1419 – 1434, 1990.

V. Visweswaran and C. A. Floudas. New properties and computational improvement of the GOP algorithm
for problems with quadratic objective functions and constraints. J. Global Optim., 3:439 – 462, 1993.

D. S. Wicaksono and I. A. Karimi. Piecewise MILP under-and overestimators for global optimization of
bilinear programs. AIChE J., 54(4):991 – 1008, 2008.

A Linearly and Logarithmically Dependent Relaxations Applied to the Pool-
ing Problem

This appendix summarizes the two relaxation schemes presented in Sections 4.2.1 & 4.2.2 for the bilinear
term pl, k · yl, j that appears in the p-formulation of the standard pooling problem. We assume that the pl, k

variables are partitioned and al, k =
pU

l, k−pL
l, k

NP
.

A.1 Linearly Dependent Relaxations

The linear relaxation scheme (§4.2.1) has λl, k ∈ {0, 1}NP and ∆yl, j, k ∈
[
0, yU

l, j − yL
l, j

]NP

:

NP∑
nP =1

λl, k(nP) = 1 ∀ l, k (17a)

36

pL
l, k +

NP∑
nP =1

al, k · (nP − 1) · λl, k(nP) ≤ pl, k ≤ pL
l, k +

NP∑
nP =1

al, k · nP · λl, k(nP) ∀ l, k (17b)

yl, j = yL
l, j +

NP∑
nP =1

∆yl, j, k(nP) ∀ (l, j) ∈ TY , k (17c)

0 ≤ ∆yl, j, k(nP) ≤ (yU
l, j − yL

l, j) · λl, k(nP) ∀ (l, j) ∈ TY , k, nP ∈ {1, . . . , NP } (17d)

zl, j, k ≥ pl, k · yL
l, j +

NP∑
nP =1

[
pL

l, k + al, k · (nP − 1)
]
· ∆yl, j, k(nP) ∀ (l, j) ∈ TY , k (17e)

zl, j, k ≥ pl, k · yU
l, j +

NP∑
nP =1

[
pL

l, k + al, k · nP

]
·[

∆yl, j, k(nP)− (yU
l, j − yL

l, j) · λl, k(nP)
] ∀ (l, j) ∈ TY , k (17f)

zl, j, k ≤ pl, k · yL
l, j +

NP∑
nP =1

[
pL

l, k + al, k · nP

]
· ∆yl, j, k(nP) ∀ (l, j) ∈ TY , k (17g)

zl, j, k ≤ pl, k · yU
l, j +

NP∑
nP =1

[
pL

l, k + al, k · (nP − 1)
]
·[

∆yl, j, k(nP)− (yU
l, j − yL

l, j) · λl, k(nP)
] ∀ (l, j) ∈ TY , k (17h)

pL
l, k ≤ pl, k ≤ pU

l, k; yL
l, j ≤ yl, j ≤ yU

l, j (17i)

A.2 Logarithmically Dependent Relaxations

The logarithmic relaxation scheme (§4.2.2) has NL = dlog2 NP e, λl, k ∈ {0, 1}NL , ∆yl, j, k ∈
[
0, yU

l, j − yL
l, j

]NL

,

and sl, j, k ∈
[
0, yU

l, j − yL
l, j

]NL

. The equation marked with a dagger (†) is only used when NP is not a power
of two.

pL
l, k +

NL∑
nL=1

2nL−1 · al, k · λl, k(nL) ≤ pl, k ≤ pL
l, k + al, k +

NL∑
nL=1

2nL−1 · al, k · λl, k(nL) ∀ l, k (18a)

pL
l, k + al, k +

NL∑
nL=1

2nL−1 · al, k · λl, k(nL) ≤ pU
l, k ∀ l, k (18a†)

∆yl, j, k(nL) ≤ (yU
l, j − yL

l, j) · λl, k(nL) ∀ (l, j) ∈ TY , k, nL ∈ {1, . . . , NL} ∀ l, k (18b)

∆yl, j, k(nL) = (yl, j − yL
l, j)− sl, j, k(nL) ∀ (l, j) ∈ TY , k, nL ∈ {1, . . . , NL} (18c)

sl, j, k(nL) ≤ (yU
l, j − yL

l, j) · (1− λl, k(nL)) ∀ (l, j) ∈ TY , k, nL ∈ {1, . . . , NL} (18d)

zl, j, k ≥ pl, k · yL
l, j + pL

l, k · (yl, j − yL
l, j)+[

NL∑
nL=1

al, k · 2nL−1 ·∆yl, j, k(nL)

]
∀ (l, j) ∈ TY , k (18e)

37

zl, j, k ≥ pl, k · yU
l, j + (pL

l, k + al, k) · (yl, j − yU
l, j)+[

NL∑
nL=1

al, k · 2nL−1 ·
(
∆yl, j, k(nL)− (yU

l, j − yL
l, j) · λl, k(nL)

)] ∀ (l, j) ∈ TY , k (18f)

zl, j, k ≤ pl, k · yL
l, j + (pL

l, k + al, k) · (yl, j − yL
l, j)+[

NL∑
nL=1

al, k · 2nL−1 ·∆yl, j, k(nL)

]
∀ (l, j) ∈ TY , k (18g)

zl, j, k ≤ pl, k · yU
l, j + pL

l, k · (yl, j − yU
l, j)+[

NL∑
nL=1

al, k · 2nL−1 ·
(
∆yl, j, k(nL)− (yU

l, j − yL
l, j) · λl, k(nL)

)] ∀ (l, j) ∈ TY , k (18h)

pL
l, k ≤ pl, k ≤ pU

l, k; yL
l, j ≤ yl, j ≤ yU

l, j (18i)

38

