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Abstract

One of the major challenges in human-machine interaction has always been

the development of such techniques, that are able to provide accurate human

recognition, so as to offer either personalized services or to protect critical

infrastructures from unauthorized access. To this direction, a series of well

stated and efficient methods have been proposed mainly based on biometric

characteristics of the user. Despite the significant progress that has been

achieved recently, there are still many open issues in the area, concerning

not only the performance of the systems but also the intrusiveness of the

collecting methods.

The current thesis deals with the investigation of novel, activity-related

biometric traits and their potential for multiple and unobtrusive authentica-

tion based on the spatiotemporal analysis of human activities. In particular,

it starts with an extensive bibliography review regarding the most impor-

tant works in the area of biometrics, exhibiting and justifying in parallel the

transition that is performed from the classic biometrics to the new concept

of behavioural biometrics.

Based on previous works related to the human physiology and human mo-

tion and motivated by the intuitive assumption that different body types

and different characters would produce distinguishable, and thus, valuable

for biometric verification, activity-related traits, a new type of biometrics,

the so-called prehension biometrics (i.e. the combined movement of reach-

ing, grasping activities), is introduced and thoroughly studied herein. The

analysis is performed via the so-called Activity hyper-Surfaces that form

a dynamic movement-related manifold for the extraction of a series of be-

havioural features.

Thereafter, the focus is laid on the extraction of continuous soft biomet-

ric features and their efficient combination with state-of-the-art biometric

approaches towards increased authentication performance and enhanced se-

curity in template storage via Soft biometric Keys. In this context, a novel

4



and generic probabilistic framework is proposed that produces an enhanced

matching probability based on the modelling of the systematic error induced

during the estimation of the aforementioned soft biometrics and the efficient

clustering of the soft biometric feature space.

Next, an extensive experimental evaluation of the proposed methodolo-

gies follows that effectively illustrates the increased authentication poten-

tial of the prehension-related biometrics and the significant advances in the

recognition performance by the probabilistic framework. In particular, the

prehension biometrics related biometrics is applied on several databases of

∼100 different subjects in total performing a great variety of movements.

The carried out experiments simulate both episodic and multiple authen-

tication scenarios, while contextual parameters, (i.e. the ergonomic-based

quality factors of the human body) are also taken into account. Further-

more, the probabilistic framework for augmenting biometric recognition via

soft biometrics is applied on top of two state-of-art biometric systems, i.e.

a gait recognition (> 100 subjects)- and a 3D face recognition-based one

(∼ 55 subjects), exhibiting significant advances to their performance.

The thesis is concluded with an in-depth discussion summarizing the ma-

jor achievements of the current work, as well as some possible drawbacks

and other open issues of the proposed approaches that could be addressed

in future works.
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1. Introduction

Human recognition has always been a field of primary concern in a wide

range of applications, such as access control (e.g. secure infrastructures,

computer systems, door security, portable media, safes with biometric locks,

etc.), time and attendance management and surveillance. Its primary aim is

to achieve personalized human-machine interaction by utilizing these tools

that will automatically reveal the identity of the user.

Until recently, the aforementioned scope was indirectly fulfilled via the

validation of portable identities or access cards. However, existing com-

mercial methods based on passwords or tokens are nowadays attempted to

become independent from the latter, since they can be easily lost, stolen,

forgotten or shared. Moreover, modern human recognition systems tend to

resemble more natural ways for discriminating among people. They tend to

utilize more straightforward approaches to identify someone, not by what

(s)he has (e.g. passport) or what (s)he knows (e.g. password), but by what

(s)he is. To this extend, biometrics seem to be offering a reliable solution

to the problem of identity management.

Etymologically, the term “biometrics” stems from the Greek words bio

(i.e. life/livingness) and metrics (i.e. to measure) and refers to the mea-

surements of unique physical or behavioral characteristics of individuals

that are of high discrimination capacity and are able to reveal the identity

of individuals.

Although there have been reported a few examples of biometric appli-

cations since the 14th century [1], the first automated biometric systems

became available only over the last few decades, due to three major rea-

sons: a) the development of low-cost and high accuracy sensors, b) the

significant advances in the performance and efficiency of modern computer

processors and c) to the adaptation of legislation to the arising legal and

ethical issues [2]. Many of these automated techniques, however, are based

on ideas that were originally conceived hundreds, even thousands years ago.
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Initially used by the Chinese merchants, who were stamping palmprints

and footprints of children on paper with ink, so as to distinguish them, the

anthropologist Alphonse Bertillion became the first person to work in bio-

metrics was in the 1890s, by developing a method of bodily measurement.

His system was used by police authorities throughout the world, until it

was found out that some people shared the same measurements, and based

on these measurements alone, two people could be mistaken for one an-

other. After this, fingerprint [143] and palmprint [172] became not only

the first biometric traits to be thoroughly studied by many researchers, but

also widely accepted by authorities as a robust recognition tool. However,

similarly to the majority of human-machine interaction techniques that are

inspired by natural processes, there is a tendency in utilizing more obvious

and easily collectable biometric traits. For instance, provided that since the

beginning of civilization, humans have used faces to categorize individuals

to known (familiar) and unknown (unfamiliar) ones, facial characteristics

have always been among the most popular for recognizing people.

Up to date, there can be found a significantly large collection of biometric

recognition related literature. A common approach that is frequently met

in most biometric related studies include the collection, the analysis and

processing of the most discriminative characteristics of the human, so as

to deliver robust and accurate recognition in the most efficient manner.

Although significant progress has been achieved in the modality and feature

selection domain, as well as in their corresponding analysis and processing,

there are still many open issues that need to be addressed.

1.1. Motivation

Biometrics are meant to simplify the process of recognition in human-

machine interaction systems and thus, to offer advanced security and/or

personalized services. However, contrary to most human-machine interac-

tion applications, biometrics pose a twofold challenge. Similarly to any

computerized system, the smooth functioning and the high performance are

undisputable requirements of biometric systems. More importantly, how-

ever, modern biometric systems have to overcome both the hesitation of

people to be exposed in unfamiliar and possibly unpleasant recognition pro-

cedures, as well as their fear of having their personal data misused, so as to
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increase public acceptance.

Although public acceptance is mainly affected by the public awareness

with respect to biometric technologies and the corresponding legislation, a

major shortcoming of all widely used biometric methods is the obtrusive

process for obtaining the biometric features. In particular, the subject has

to stop, go through a specific measurement procedure, which depending on

the biometric modality1 can be very obtrusive (i.e. iris scan via laser beam),

wait for a period of time and get clearance after authentication is positive.

Targeting at the convenience of the users and the optimal performance in

various realistic environments, recent trends in biometrics research deal with

the analysis of the dynamic nature of various modalities. Emerging biomet-

ric technologies, such as gait recognition, dynamic body motion recognition

and technologies, such as automated face/gestures dynamics detection, as

well as biometrics measured by sensors either worn by the user or trans-

parently integrated in the infrastructure can potentially allow the non-stop

(on-the-move) authentication or even identification, which is unobtrusive

and transparent to the subject and become part of an Ambient Intelligence

Environment (AmI).

1.1.1. Motivation for Prehension based biometric

recognition

The motivation behind using activity-related biometrics, and thus, be-

havioural biometrics, for recognition purposes is based on two distinct

observations. In particular, as with any other biometric trait, two have

conditions to be fulfilled; namely, the biometric characteristic has to exhibit

high inter-variance among different people, while these distinctiveness has

to be visible by an external observer 2.

To this extent, there are many works in the literature that prove a direct

coupling between the different outcomes of one’s of the motor behaviour

and his/her inherent individual differences [317]. In particular, Rosenbaum

et al. states in several of his publications the observation that complex

1Although the term modality is used in the general case to distinguish between biometric
traits that stem from the different sensors, in the current thesis, it will refer to different
biometric trait without any restriction.

2A more detailed motivation for the use of prehension biometrics, based on psychological
findings indications can be found in Section 2.2.2
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multijoint movements, such as walking or reaching an object, are planned

and executed according to one’s personal behaviour and style.

Furthermore, a number of natural “restrictions”, such as the physiology

of the human body, possible impairments or the perceived environment [187]

are bound to influence constantly the way that specific movements are exe-

cuted. Thus, it can be claimed that biometric recognition would be poten-

tially feasible when it may be based on all these dynamic environmentally

invariant properties (i.e movement’s distance, direction, starting/ending po-

sition, external load, etc.) [188].

On the other hand, there are also many evidences in the psychology re-

lated literature providing strong indications for the advanced visual and

cognitive perception of humans regarding biological motion. In particular,

the behavioral ability of humans to recognize subtle changes in another’s

movements [294] has been reported to be the main reason for the recog-

nition of emotional state [302], deceptive intent [303], motor effort [301],

gender [304], sexual orientation [305] and even style [323], apart from the

identification of the human himself [308].

In this direction, the current thesis proposes a novel method for activity-

related biometric authentication in the context of an AmI environment. In

particular, the users are authenticated by analyzing the invariant features

of their movements, as they are performed by their upper-body, during

several everyday activities. The analysis of the movements is based on the

processing of the extracted motion trajectories, in order to retrieve unique

signatures of dynamic nature that would form reliable biometric traits for

authentication.

1.1.2. Motivation for multi-biometric recognition

As it is mentioned in [14], humans have the ability to recognize one another,

based on the evidence presented by multiple biometric characteristics (be-

havioral or physical) in addition to several contextual details associated with

the environment. In particular, the recognition process itself may be viewed

as the reconciliation of evidence pertaining to these multiple traits and/or

multiple modalities.

The assumption that multi-biometric approaches can alleviate several

practical problems in biometric recognition (i.e. the performance of a bio-
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metrics system be improved by integrating multiple biometrics) has been

stated in a series of studies in the literature (e.g. [94] [95]), while in 1999,

Hong et al. modeled this assumption mathematically and proved its valid-

ity [16].

As such, the same authors claimed that multi-biometric systems can be

expected to be more accurate due to the presence of multiple pieces of evi-

dence, while they indicated a list of advantages offered by multi-biometrics

compared to uni-biometrics.

(i) They can offer substantial improvement in the matching accuracy of

a biometric system depending upon the information being combined

and the fusion methodology adopted.

(ii) They address the issue of non-universality or insufficient population

coverage.

(iii) It is increasingly difficult for an impostor to spoof multiple biometric

traits of a legitimately enrolled individual.

(iv) They can support continuous/multiple monitoring or tracking of an

individual in situations when a single trait is not sufficient.

(v) They may also be characterized as fault tolerant and noise resilient,

that continues to operate even when certain biometric sources become

unreliable due to sensor or software malfunction, or deliberate user

manipulation.

Similarly, a single behavioural biometric trait (i.e uni-biometric) exhibits

several drawbacks in respect with modern requirements in biometric recog-

nition, such as acceptable matching performance. Although psychologically

justified and despite the fact that all relevant studies have shown great recog-

nition accuracy when dealing with human perception (see Section 1.1.1),

when it comes to machine/computer based systems, it becomes increasingly

apparent that efforts are still to be made. In particular, it has been reported

non-conventional, but usually unobtrusive, biometrics lack in recognition

capacity [17].

Following a similar approach as with physiological biometrics, behavioural

multi-biometrics seek to alleviate some of the drawbacks encountered by
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uni-biometric by consolidating the evidence presented by multiple biometric

sources. This way, the gap with classical approaches will be narrowed, and

existing unimodal approaches will be augmented with additional personal

information.

In this direction, to the author’s view, there is much stronger motiva-

tion towards the utilization of soft biometric, that can derived by the same

sensor as the hard biometric, as an extra biometric trait in multi-biometric

approaches. The reason for this choice stems from the fact that some of the

most common problems in deploying multimodal systems are the computa-

tional cost and the complexity of added sensors and the corresponding user

interfaces. Moreover, it is also more difficult to control the acquisition en-

vironment simultaneously for several traits [14]. Namely, by incorporating

sparse and not strictly distinctive characteristics of individuals that can be

collected simultaneously with the regular recognition process, such as the

colour of the eyes, the skin colour, etc.

Although the overall outlook of a human body may exhibit significant

variations over time (e.g. weight), the anthropometric (e.g. limb size,

height, etc.) and specific soft characteristics, such as gender, eye-colour,

etc., of an adult person remain unchanged throughout his/her life3. Based

on this assumption and on the numerous possible combinations of soft and

anthropometric characteristics, useful outcomes can be derived either for

reducing the search space (i.e. population) or augmenting the recognition

results. This way, in order to compensate for the possible lower recognition

performance of dynamic biometric information (compared to traditional

intrusive biometric technologies), a novel probabilistic framework for the

incorporation of supplementary biometric characteristics (i.e. soft and/or

anthropometric biometrics) is also proposed herein.

1.1.3. Contribution in activity related biometric recognition

As indicated by its title, the topic addressed by the current thesis is a gen-

eral study on activity related biometrics. Thus, the main aim of the thesis

is the contribution will regard the advancement of activity related biomet-

rics in general. In this context, prehension, an inherently activity related

biometric trait, is introduced and studied as a promising mean for human

3Within rational time periods provided the fact of the aging of biometrics [20]
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recognition. Despite its general applicability in everyday movements, the

evaluation of prehension biometrics is limited in two scenarios (i.e. a phone

conversation and reach & grasp activity). However, provided that the aim of

the thesis is not only prehension, but activity related biometrics in general,

new ideas for improving the performance of the latter are also explored. In

this direction, multi-biometric approaches, based mainly on static anthro-

pometric characteristics, are explored. Their efficiency is thus evaluated

partially on top of the proposed prehension biometric and partially on a

different activity-related system (i.e. gait recognition).

In this context, the biometric traits that will be considered in the current

thesis are summed up below:

� Introduction of prehension biometrics traits.

� Introduction of a novel descriptor for prehension biometrics for the

� Evaluation of anthropometric traits of the upperbody

� Multi-biometrics based on soft biometrics traits

� Application of the same multi-biometric framework, based on soft bio-

metrics, in combination with 3D static facial biometrics.

� Multi-biometric application on purely activity related biometrics (i.e.

prehension and gait related traits).

1.2. Problem Formulation

Existing biometric approaches obey to, more or less, a standard recogni-

tion procedure. The users requesting recognition (i.e. authentication or

identification) are initially interacting either with the interface of the sys-

tem or come in (close) contact with its sensors, so as to let their data (i.e.

biometric traits) to be captured. The latter are then processed, so as the

redundancy and all unimportant information is filtered out. Depending on

the working mode (i.e. enrollment or recognition), the most significant ex-

tracted features are fed either to the training module for the generation of

the signature of the users or to a classifier to decide about their identity,

respectively.
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Moreover, there is a number of issues that should be considered when

designing a practical biometric system, like its recognition performance (i.e.

achievable recognition accuracy and speed) and the resources required to

achieve the desired recognition accuracy and speed. Further operational

and environmental factors, such as the way and the frequency with which a

given recognition procedure is asked to be performed, as well as the degree

of approval of a certain technology by the society are also significant issues

to be taken into account.

In addition to the above, the quote that “the ideal biometric system

should offer high security combined with excellent user convenience” is

nowadays becoming an inviolable guideline for researchers and designers of

the future biometric systems [3]. Based on this, novel technologies should be

proposed that can seamlessly incorporate the standard biometric require-

ments in an unobtrusive framework for the users, maintaining in parallel

high performance rates, acceptable for biometric recognition systems.

Inspired from the analysis of periodic movements, such as gait, the current

thesis tries to extend the concept of biometric recognition based on activity-

related traits, by analyzing the way task-specific movements are performed.

To address the aforementioned requirements, the current thesis deals with

the marker-less tracking of humans, the extraction and evaluation of various

static and/or dynamic behavioural characteristics, as well as the analysis

and interpretation of the moving patterns of specific joints of the human

body during certain activities.

The main challenge of the aforementioned approach is the identification of

such movements that take place within AmI environments, the definition of

a generic descriptor for them, the extraction of the appropriate features, as

well as their classification based on pre-defined signatures. Moreover, pro-

vided the reported trade-off between unobtrusiveness and high recognition

performance, the incorporation of supplementary biometric data (i.e. soft

biometric traits or further static biometric information) or the exploitation

of multi-biometrics and multiple authentication 4 will be studied in depth.

4In the current thesis two types of authentication will be addressed. Namely, episodic
authentication refers to the cases where only a single authentication procedure is at-
tempted at one instance. The authentication decision is then inferred based on the
value of the matching probability that is produced. On the other hand, multiple
or continuous authentication refers to the repetition of episodic authentication at-
tempts, when allowed by the utilized scenario (i.e. when same movements are repeated
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The expected outcome of the current thesis will be the thorough study

of prehension biometrics regarding their recognition capacity and their po-

tential for incorporation in future biometric systems. Moreover, within the

framework of this thesis, a novel approach will be proposed for the analysis

of human actions/movements, that can either provide food for thought for

or be directly applied to other scientific domains (e.g. activity detection,

human tracking, etc.), as it will be shown later. In particular, a novel de-

scriptor will be proposed for the efficient exploitation of the aforementioned

traits in problems of biometric recognition in Ambient Intelligence (AmI)

environments, based on the utilization of spatiotemporal algorithms. This

way, the dynamic nature (i.e. the transitions that are performed in space

over time) of the latter will be effectively analyzed, enhancing thus, the

current SoA.

Additionally to the above, the recognition capacity of static anthropomet-

ric features will be evaluated in short datasets, forming thus, the basis for

further experimentation towards the augmentation of the recognition perfor-

mance of the activity related biometric systems. This way, the combination

of such biometric characteristics of static nature (i.e. anthropometric or in

general soft biometrics), with hard biometrics (i.e. gait and face), will be

attempted under the development of a generic probabilistic framework with

high adaptability and integratibility.

In general, it can be claimed that this thesis will provide high quality

and novel research results regarding both the mathematical tools, as well as

prototype use cases, where future biometric systems can have a significant

impact.

1.3. Introduction to Prehension Biometrics

One of the advantages of activity-related biometrics is the absence of a par-

ticular predefined recognition scenario (i.e. in regular biometric recognition

the user’s actual work is interrupted by a specific recognition procedure,

such as the scanning of their fingerprints). In other words the users are

not obliged to undergo a certain (often annoying) recognition process, but

within the same session). In this case, the identity of the user is verified in a constant
basis and the overall recognition outcome is derived as a merging of all aforementioned
single attempts.
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they are allowed to act normally performing their usual everyday activities,

while their recognition process takes place transparently.

In addition to the dynamics of the face (i.e. facial dynamics) and body

(i.e. gait) of the users, many of the activities performed in everyday life in-

clude the physical interaction between humans or between a subject and one

or more objects. The latter still remains an unaddressed topic in the field

of activity related biometrics. Herein, the focus is on the movement of the

arm (i.e. Reaching) and on the movement of the fingers (i.e. Grasping).

Thus, both movements are thoroughly studied during specific actions that

include people manipulating objects and for ease of reference they would be

described as Prehension Biometrics from now on and for the rest of the

current thesis. Although the prehension biometric features have not been

employed in the field of biometrics yet, and they form a completely novel

topic in the literature, significant amount of research has been performed

on various aspects of both arm movement for robotics [186] [187] [188] [190]

and dynamic palm gestures [182] [183]. As with any other type of biometric

modality, in the given case, the goal is to detect and to evaluate a series of

stable, invariant, permanent over time and unique activity related biometric

characteristics for each human.

Similarly to gait, a prehension movement is a very frequent activity per-

formed in everyday life that describes the sequential occurrence of two inde-

pendent and complementary activities. Namely, it includes the activities of

reaching for and grasping an object in the vicinity of a user. Such activities

may involve the handling of the doorknob in order to enter or to leave a

room, the answering of a phone call by picking up the phone, the grasping

of the wheel when driving, the interaction with the mouse when working

with the computer, etc.

As shown before (see Section 1.1), the assumption is that all users have

their own characteristic way of reaching, grasping or in general manipulating

specific objects, while performing specific activities. In particular, it can

be assumed that different articulated structures (e.g. human body, palm

and fingers) and different human behaviours would produce distinguishable

activity-related traits. In this context, the movement of the arm towards the

object, the positions of the hand, the palm and the fingertips with respect

to the object are analyzed, in order to extract unique signatures of dynamic

nature that would form a reliable biometric signal for authentication.
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Biological systems exhibit complex behaviours of functioning, which some-

times can not be explicitly explained. Thus, observed behaviours may be

attributed to certain “black boxes”, that optimize either some activity re-

lated criteria or the teleological behaviour of the whole organism. On the

contrary, complex behaviours could result from observable physical proper-

ties of the systems and their environment, and/or from explicitly expressed

common control principles [187].

In this respect, complex multijoint movements, such as reaching or grasp-

ing an object, are planned and executed not only according to one’s exclusive

personal behaviour, but also due to various physical properties and phenom-

ena (e.g. the physiology of the human body) [187]. According to Goodman

et al. [188], some features, like the ones discussed hereafter (Section 4.1),

have been proven to be independent of movement distance, direction, start-

ing position and external load. Thus, it is reasonable to claim that by

relying on such invariant features, user-specific activity-related properties

can be modeled as biometric signatures for authentication purposes.

Moreover, according to Hoff et al. [189] a prehension activity can be di-

vided into two parts:

(i) a fast initial movement, whereby the user moves the arm to transport

the hand towards the object and preshape their fingers (Figure 1.1(a))

(ii) a slow approach movement, whereby the final stage of the grasping

scheme takes place (Figure 1.1(b)).

Thus, the current work uses a dual approach, whereby each part of the

prehension activity is studied separately. At the end, the results are fused

in order to provide a single authentication framework.

In the context of the current study, the features selected for both phases

of a prehension activity are mainly of dynamic nature. However, it can be

claimed that static physiological information is also indirectly encoded (e.g.

the relative mean or maximum distance values between the head and the

hands during the reaching movement) [187]. This assumption can be easily

extended to the movement of the fingers, whereby the dynamic, pre-grasping

movement (opening of the palm and closing to the object’s dimensions)

forms the dynamic part, while the final hand posture is seen as the static,

user oriented one. Thus, the features described next are related to both the

users’ anatomy and their habitual behaviour.
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Figure 1.1.: (a) During a Reaching Movement shoulder and elbow angles
change in a predefined way - (b) During a Grasping Activity the
fingers’ and the palm’s angles are moving towards the hand’s
final posture

1.3.1. Reaching (Arm movement)

Regarding the reaching task, the most important so-called invariances have

been analyzed in [188] and in [190]. Specifically, any reaching task of a

human arm is characterized by the following common properties.

1. It is equifinal (i.e., the limb end-point reaches the vicinity of a target

under a wide range of external conditions).

2. Most of its path usually lies along a straight line, although it can be

slightly curved and hooked at the end.

3. The time profile of the limb end-point tangential velocity is approxi-

mately bell-shaped, with some distortions at its end.

4. The trajectory reflects speed-sensitive (uniform rates of joint torque

development) or speed-insensitive (variable rates of joint torque de-

velopment) movement strategies, depending upon the specifications

of the movement task.

5. In case of a double-step target (e.g. to reach for an object by detouring

a small obstacle on the path of the hand), the path is curved and the

velocity-time profile is bi-modal.

33



Several models have been proposed in the past attempting to describe a

reaching movement in a deterministic way. In this respect, the dependency

of the arm’s angles is explicitly stated [191] and the fact that the users seek

the “most convenient” and the least effort demanding way to perform each

movement [186], [185] has also been proven.

One of the most important studies has been conducted by Rosenbaum et

al. [190], who came up with the finding that the final body postures are not

simply considered as the results of movements, but as goals that movements

serve to satisfy. These notions were justified as follows.

1. Optimal movements can be generated once initial and final postures

are known. As assumed in several models, knowing the final as well

as initial postures allows the creation of optimal movements.

2. Memory for final positions is better than memory of movements [192].

3. Variability of end positions is generally smaller than variability of

movements towards those end positions [194].

4. The end-state comfort effect, defined as willingness to adopt initially

uncomfortable postures for the sake of comfortable final postures, is

better predicted by ratings of final-posture than by ratings of move-

ment ease.

1.3.2. Grasping (palm/fingers movement)

As an extension to the reaching task, the finishing of a prehension activity

involves the grasping of the object. Generally, the movement of the fin-

gers follows the same basic rules as for any articulated human model (e.g.

Memory for Final Posture).

The authentication capacity of such an action has been initially presented

by Vogiannou et al. in [216], where the whole concept of grasping-based

biometric features, as behavioural, dynamic biometric features related to

the dynamic manipulation of objects, has exhibited promising potential for

biometric person identification. In this respect, Grasping Biometrics can

be seen as a special case of activity related biometrics, which deal with

the characteristic features of human grasping, including both hand posture

and activity related dynamic traits that contribute to the discrimination

between different subjects.
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Additionally, the work that has been performed in [217] showed signifi-

cant variance in the movement of the finger joints during grasping of several

objects among a variety of subjects. Inspired from that, but also based on

the physiological differences between the palms and fingers of different users,

it can be claimed that increased recognition potential is encoded in the way

one grasps an object. This claim can be also supported by the Rosenbaum’s

model [190], which states, among others, that angular trajectories demon-

strate high variability within a population, although segments of paths may

be relatively straight.

At this point, it is important to point out that grasping-related features

of the hand are not the same as hand biometrics which have already been

employed for human recognition [218]. Although certain hand characteris-

tics, such as the size of the palm or the length of the fingers, have an effect

on the way humans manipulate objects, grasping biometrics are primarily

concerned with the behavioural features and the dynamics of the specific

action. Thus, descriptors invariant to palm sizes are going to be exploited

herein (e.g. angular acceleration and total angular distance covered by the

fingers). Similarly, given the fact that the final hand gesture is dependant

on the object involved, the measurements performed in the current study

are grouped with reference to the same activity-experiment (e.g. the picking

of a phone).

1.4. Validity of prehension related features as

biometric traits

As mentioned earlier, recent trends in biometrics deal with analyzing the

dynamic nature of various biometric traits, targeting user convenience and

optimal performance in various realistic environments. Activity-related bio-

metrics have been recently studied in [180] [181], where signals from various

modalities are measured, while the subject is performing specific activities.

These signals are then used to create unimodal or multimodal activity-

related biometric signatures of each subject. Moreover, activity-related bio-

metrics, such as gait, have shown the potential to discriminate accurately

between subjects, while remaining stable over time for the same subject.

However, not any movement can be seen as a potential identifier. The
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requirements that a biometric trait should satisfy are defined below [66]

� Universality: Each user should posses it.

� Distinctiveness/Uniqueness: The extracted features are characterized

by great inter-individual differences.

� Reproducibility: The extracted features are characterized by small

intra-individual differences.

� Permanence: No significant changes occur over time, age, environ-

mental conditions or other variables.

� Collectability and Automatic processing: It is possible to recognize or

verify a human characteristic, which can be measured quantitatively,

in a reasonable time and without a high level of human involvement.

� Circumvention: It should be difficult to be altered or reproduced by

an impostor who wants to fool the system.

In the context of the current study, the Universality requirement is sat-

isfied by definition, since all user’s are expected to be able to perform such

movements with their hands. Moreover, there are plenty of models which

depict that humans seeks the “most convenient” and the less effort demand-

ing way of performing each movement. Specifically, there is the Flash and

Hogan’s Minimum Jerk Model [185] which indicates that hand paths (i.e.

the path drawn by the palm joint during movements) in space should be

straight. Curved hand paths can be generated, of course, but according

to this model, they must be produced by concatenating straight-line seg-

ments. Similarly, the Uno, Kawato and Suzuki Minimum Torque Change

Model [186] assumes a hand movement according to the minimization of

the torque during the movement. Based on these observations, on Turvey

et al.’s [187] and Goodman et al.’s [188] findings, but also on the psycho-

logical background mentioned in Section 1.1, it can be claimed that the

Distinctiveness, the Reproducibility and the Permanence requirements are

fulfilled. This is to be justified by the fact that all these parameters are re-

lated to the user’s anthropometric variables, exhibiting significant variance

within the population. The Distinctiveness requirement, in particular, will

be the core study case of the current thesis.
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Given the specificities of the current biometric trait, it should be noted

that the accurate reproducibility of a prehension movement is highly de-

pending on the environmental context (see Section 3.2.2 for a detailed dis-

cussion regarding the context in prehension related movements), especially

in the cases that the movement regards an interaction with an environmen-

tal object. Specifically, in order to ensure maximum authentication capacity

of a prehension movement, the repetition of the movement should take place

in an almost identical contextual conditions (i.e. relative position of the user

with respect to the interaction object), as when initially registered. For this

reason, this restriction has been taken into account in the scenarios of the

recorded datasets (see Section 3.2.2).

Similarly, within the acceptable frames regarding the aging of biometric

traits, the Permanence requirement is preserved, given that the human body

remains unchanged over the years, in terms of anthropometric proportions,

like the distances between the joints. Of course, like with all biometrics,

the issue of aging can only be overcome via the update of the biometric

signature over time. However, it should be mentioned that expressions of

behaviour are less vulnerable to sudden changes [113] (i.e. a fingercut has a

direct and quick effect on the authentication than a change in speech-related

facial motions).

Furthermore, in order to ensure the Permanence requirement in the ex-

periments conducted in the current thesis (see Section 3.2.2), the gener-

ated biometric signatures were used for the verification of incoming pre-

hension traits within rational time frames (i.e. maximum period between

two recording was 6 months), with insignificant influence in the aging of

the biometrics. Significantly longer periods between successive recordings

should be addressed by retraining of the users’ signatures. Moreover, the

proposed approach utilizes a combination of physiological with stylish and

behavioural characteristics. Thus, the proposed biometric traits are very

hard to circumvent, if not impossible, by an impostor. Furthermore, pro-

vided the fact that recent technological achievements, especially regarding

miniaturized sensors and accurate vision-based tracking algorithms, allow

the unobtrusive application of such biometric technologies. Additionally,

given that the recognition process is incorporated in the daily activities of

the user, it can be stated that the acceptability and frequency criteria are

covered, as well. Finally, the Automatic processing requirements, including
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the recognition accuracy and speed, are highly dependent on the features

and algorithms deployed, and thus, it is easily controllable to fulfill them.

1.4.1. Ergonomic factors in Prehension

In order to fulfill the repeatability/reproducability requirement (Section 1.4)

the same or almost the same environmental conditions should remain stable

among different sessions. Moreover, the stylish and behavioural analysis of

a person’s movements always refers to a relaxed state. Otherwise, unwanted

artifacts may appear, which will act as noise to the measurements. In the

following, a method based on ergonomic studies is presented, which can

handle the “extreme” cases of movements.

Ergonomic Spheres

Due to restrictions set by the structure of the human body, it is easy to

understand that there are regions around the human, where the movement

of the hands is more convenient than in other regions. These assumptions

have been scientifically formulated in [275]. Specifically, it has been proven

that the area in front of a seated human can be divided in three different

spheres, according to the easiness with which the user can reach an object

within certain regions (Figure 1.2). It is suggested that the darkly grey

area is the one where the user moves most convenient and is thus, called

the “convenient zone”. On the contrary, the light grey area indicates the

“kinetosphere”, whereby the user has to stretch or to bend his body in order

to reach something. The white areas on Figure 1.2 are out of reach for the

user.

Thus, it can be assumed that the user performs more relaxed movements

within the “convenient zone” than in the “kinetosphere”. During run-time,

it can be claimed that the movements within the “convenient zone” reveal

more information about the user’s behavioral response, since they are per-

formed under no pressure or with force. On the other hand, the movements

within the “kinetosphere” can be considered as forced movements. Thus,

the ergonomic zones taken into account are dependent on the distance be-

tween the user’s torso and the interaction objects.
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Figure 1.2.: Human convenience zones. The dark shaded area marks the so-
called “Convenient Zone”, while the light shaded area marks
the so-called “Kinetosphere”.

1.5. Originality Achievements of the Thesis

The current thesis deals with the development of novel technologies for the

unobtrusive and if possible multiple authentication of the users within AmI

environments.

The main contribution offered to the State-of-the-Art technologies by the

current thesis can be summed up in the following bullets:

� A novel framework for biometric recognition of humans by analyzing

the dynamic and static traits of their movement during common daily

activities

� The introduction of a novel descriptor, namely the Activity hyper-

Surface, for the analysis of the movements of the upperbody, by track-

ing the trajectories of the joints of the subjects, using as reference

point the heads. This way, global, local, spatial and temporal based

features can be extracted, providing a complete description of the most

significant and personalized characteristics of the movement

� The efficient analysis of the extracted biometric features and their

selection from specific authentication cases via the combinatory uti-

lization of relative entropies and mutual information techniques in an

iterative algorithm, targeting to maximize the authentication perfor-

mance (e.g. by adjusting Error Rates such as the False Acceptance
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Rate (FAR), the False Rejection Rate (FRR) and the Equal Error

Rate (EER)).

� The utilization of soft biometrics for augmenting the accuracy of

activity-related biometric recognition, via:

- late fusion with recognition based on anthropometric biometrics,

- the introduction of systematic error in the measurement of soft

biometrics

- the partitioning of the soft biometric feature space via clustering

� A highly unobtrusive multi-biometric study is performed, utilizing

solely activity-related biometric modules (i.e. prehension and gait bio-

metrics) in the framework of an on-the-move 5 recognition scenario [12]

and exhibiting its advantages.

� The evaluation of the aforementioned novelties in multiple datasets

and under various scenarios, i.e. episodic and multiple authentication.

Hereafter follows the list of the produced publications that have been

achieved during the current study:

Journals

1. A. Drosou, D. Ioannidis, D. Tzovaras, M. Petrou, “Activity Related

Authentication using Prehension Biometrics”, Pattern Recognition

(Elsevier), accepted with major revisions.

2. A. Drosou, K. Moustakas, D. Tzovaras, M. Petrou, “Systematic Er-

ror Analysis for the Enhancement of Biometric Systems using Soft

Biometrics”, IEEE Signal Process. Lett., vol.19, no.12, pp.833 - 836,

2012, doi:10.1109/LSP.2012.2221701.

3. D.Tzovaras, A. Drosou, “Continuous Authentication using activity-

related Traits”, SPIE Newsroom, 2012, doi:10.1117/2.1201204.004199.

5The term “on-the-move” is used to emphasize the fact that the recognition procedure
is seamlessly integrated within the regular actions expected by the users and thus, the
latter are not obliged to interrupt their ongoing action or to be diverged from their
actual business.
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4. D. Giakoumis, A. Drosou, P. Cipresso, D. Tzovaras, G. Hassapis, A.

Gaggioli, G. Riva, “Using Activity-Related Behavioural Features to-

wards more Effective Automatic Stress Detection”, PLoSONE, vol.7,

no.9, e43571, 2012, doi:10.1371/journal.pone.0043571.

5. A. Drosou, D. Ioannidis, K. Moustakas, D. Tzovaras, “Spatiotempo-

ral analysis of human activities for biometric authentication”, Elsevier

Journal of Computer Vision and Image Understanding (CVIU) - Spe-

cial issue on Semantic Understanding of Human Behaviors in Image

Sequences, vol. 116, no. 3, pp. 411 - 421, 2012, doi:10.1016/j.cviu.2011.08.009.

6. A. Drosou, D. Ioannidis, K. Moustakas, D. Tzovaras, “Unobtrusive

Behavioural and Activity Related Multi-modal Biometrics: The ACTIBIO

Authentication Concept”, in The scientific World - Special Issue on:

Biometrics Applications: Technology, Ethics and Health Hazards,

2011, doi: 10.1100/tsw.2011.51.

7. A. Drosou, G. Stavropoulos, D. Ioannidis, K. Moustakas, D. Tzo-

varas, “Unobtrusive multi-modal Biometric Recognition Approach us-

ing Activity-related Signatures”, in IET Comput. Vis., vol.5, no.6, pp.

367 - 379, 2011, doi:10.1049/iet-cvi.2010.0166.

Conferences

1. A.Drosou, P.Moschonas, D.Tzovaras, “Robust 3D Face Recognition

from Low Resolution Images”, in Proc. of International Conference

of the Biometrics Special Interest Group (BIOSIG), pp.289-296, 2013.

2. A.Drosou; N.Porfyriou; D.Tzovaras; , “Enhancing 3D face recognition

using soft biometrics” in Proc. of 3DTV-Conference: The True Vision

- Capture, Transmission and Display of 3D Video (3DTV-CON), pp.1-

4, 2012.

3. D. Giakoumis, A. Drosou, P. Cipresso, D. Tzovaras, G. Hassapis, A.

Gaggioli, G. Riva, “Real-time Monitoring of Behavioural Parameters

Related to Psychological Stress”, in Proc. of 17th Annual CyberPsy-

chology & CyberTherapy Conference, vol.181, pp.287 - 291, 2012.

4. A.Drosou, D.Ioannidis, K.Moustakas, D.Tzovaras, “Activity related

biometric authentication using Spherical Harmonics”, in Proc of IEEE
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Computer Society Conference on Computer Vision and Pattern Recog-

nition Workshops (CVPRW), pp. 25 - 30, 2011.

5. A.Drosou, K.Moustakas, D.Tzovaras, “Event-based unobtrusive au-

thentication using multi-view image sequences”, in Proc. of ACM

Multimedia/Artemis Workshop ARTEMIS10, pp. 69 - 74, 2010.

6. A.Drosou, D.Ioannidis, K.Moustakas, D.Tzovaras, “Activity Related

Biometrics based on motion Trajectories” in Proc. of BIOSIG 2010:

Biometrics and Electronic Signatures, pp. 127 - 132, 2010.

7. A.Drosou, D.Ioannidis, K.Moustakas, D.Tzovaras, “On the potential

of activity related recognition”, in Proc. of The International Joint

Conference on Computer Vision, Imaging and Computer Graphics

Theory and Applications (VISAPP), 2010.

Book Chapters

1. A.Drosou, D.Tzovaras, “Activity and Event Related Biometrics”, Sec-

ond Generation Biometrics, E.Mordini, D. Tzovaras (Eds.), Springer,

vol.11, pp. 129 - 148, 2012.

2. A.Drosou, D.Tzovaras, “Case Study - Biometric monitoring of be-

haviour” Handbook on Ambient Assisted Living for Healthcare, Well-

being and Rehabilitation, J. C. Augusto, M. Huch, A. Kameas, J.

Maitland, P. McCullagh, J. Roberts, A. Sixsmith, R. Wichert (Eds.),

IOS Press, vol. 11, pp. 155 - 177, 2012.

3. A.Drosou, D.Ioannidis, G. Stavropoulos, K.Moustakas, D.Tzovaras,

“Biometric Keys for the Encryption of Multimodal Signatures” Recent

Application in Biometrics, Jucheng Yang and Norman Poh (Eds.),

InTech, 2011.

1.6. Thesis Outline

The current thesis consists of 7 chapters. The thesis starts with introducing

the reader to activity related biometrics. The motivational background for

using activity related biometrics is stated, mainly on the basis of a series

of psychological studies that not only indicate both the increased human
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perception of inferring personal properties from one’s movements, but they

also prove a direct link between one’s behaviour and motor responses.

Thereafter, in Section 1.3 a new concept of behavioural recognition, the

Prehension Biometrics, is further analysed and motivated towards its ex-

ploitation for biometric reasons, while its validity is explained and justified

theoretically.

Next, Chapter 2 starts with a detailed literature survey that introduces

the need for biometrics for modern human-machine interaction applica-

tions. Thereafter, the evolution of biometric technologies through time is

described, while the need for the transition from conventional static biomet-

rics to the new concept of behavioural biometrics is thoroughly explained.

In this respect, the pioneering and most important works in this field will

be discussed thereafter and the open issues will be highlighted.

Chapter 3 provides a detailed presentation of possible use cases for the

biometric approaches that the current thesis will propose. Moreover, the

influence of the context in respect with activity related biometrics is thor-

oughly discussed, while the appropriate specifications and limitations for

the selection of the utilized datasets are explicitly defined. The analyti-

cal description of the utilized datasets follow, presenting the selected ac-

tions/movements that will be used for human recognition.

Following this, Chapter 4 presents a novel approach for biometric feature

extraction from everyday prehension-related movements. In particular, the

extraction of a series of features is performed herein, followed by the corre-

sponding analysis towards dimensionality reduction, in terms of their dis-

crimination capacity. Moreover, relevant classification methods are selected

and customized accordingly, so as to meet the needs of the specific data.

In order to leverage the recognition performance of the aforementioned

prehension based biometric approach, a multi-biometric approach that uti-

lizes anthropometric and/or other soft biometrics is studied in Chapter 5.

In this respect, the anthropometric biometrics of the upperbody are initially

studied (i.e. modelled) as a stand alone modality via the novel concept of

anthropometric graphs, that is evaluated in Chapter 6 both separately, as

well as fused with the aforementioned prehension biometric modality.

However, since the anthropometric graphs can not describe the general

case of soft biometrics, a generic probabilistic framework for augmenting the

recognition performance of any biometric system via the utilization of other
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soft biometric traits is proposed in Chapter 5. In particular, the theoreti-

cal background of the framework is explained in detail in the beginning of

Chapter 5, while its superiority over state-of-the-art methods is illustrated

via two practical applications (i.e. face- and gait-related biometric system)

in Chapter 7. The vision based techniques for measuring the utilized soft

biometric are also described herein.

Specifically, Chapter 6 and Chapter 7 mainly deals with evaluation of the

biometric methods presented in the previous chapters. Hereby, each ap-

proach is exhaustively tested, while the advantages compared to the state-

of-the-art approaches are highlighted. Additionally, in Chapter 6 a section

is dedicated to the combination of several modalities in a combined multi-

modal scenario for “on-the-move” recognition, based on a score-level fusion

approaches, while the corresponding improvements are presented and dis-

cussed. Among others, some slight improvements over the SoA regarding the

gait recognition method, used in the experimentation with milti-biometric

systems, are presented in Annex B.

Finally, the novelties and the most significant outcomes of the current

thesis are summarized in Chapter 8, along with some interesting suggestions

for a future research.
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2. Literature Survey

Human identification has always been a field of primary concern in applica-

tions such as access control in secure infrastructures. Contrary to old fash-

ioned methods, such as ID cards (“what somebody possesses”) or passwords

(“what somebody remembers”), which can be easily lost, stolen, forgotten

or shared, biometrics offer a reliable solution to the problem of identity

management. By using biometrics, it is possible to confirm or establish an

individual’s identity based on who she is, rather than by what she possesses

(e.g., an ID card) or what she remembers (e.g., a password). Depending on

the application context, biometrics are called to provide answers to either

the verification (Is the user Mr. X?) or the identification problem (Who is

the user?), by measuring the distinctive characteristics of individuals as a

means to reveal their identity.

Thus, biometrics have recently gained significant attention from researchers,

while they have been rapidly developed for various commercial applications,

ranging from surveillance and access control against potential impostors to

the management of voters to ensure no one votes twice [7], [8]. Moreover, the

aforementioned traditional personal recognition tools (i.e. passwords and

PINs) are not useful at all for negative recognition applications (e.g. em-

ployee background checks or terrorists prevention from boarding airplanes

via identification). On the contrary, although biometric systems may not

yet be extremely accurate to support large-scale identification applications,

they are the only choice for negative recognition applications [66].

These systems require reliable personal recognition schemes to either con-

firm or determine the identity of an individual requesting their services. In

this concept, a number of approaches have been described in the past to

satisfy the different requirements of each application such as reliability, un-

obtrusiveness, permanence, etc.

In general, biometric traits can be divided in two main categories. Namely,

soft biometrics, which do not predict a deterministic identity, but only
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output certain human characteristics, can be divided into continuous (e.g.

height, weight, stride length, anthropometrics, etc.) and discrete proper-

ties (i.e. gender, race/ethnicity etc.) [106]. On the other hand, hard bio-

metrics include both the common physical biometrics, like finger- [143],

hand- or palmprint [172] and retina, iris [108], or facial characteristics [109],

and the behavioural ones, which describe activity-related patterns of the

user, such as signature [110], speech [168], keystroke pattern [111], gait [176],

etc.

Provided that the current thesis will tackle and explore significant open

issues regarding all most of the aforementioned types of biometric charac-

teristics, it is worth describing some of the latest and most significant works

in this area.

2.1. Anthropometric characteristics & Soft

Biometrics

Soft biometrics, whose automated recognition is a growing area of research,

are characteristics that provide some information about the individual, but

lack the distinctiveness and permanence to sufficiently differentiate any two

individuals [222] [66]. However, they can straightforwardly provide use-

ful additional information towards user identification in large datasets, by

verifying hypotheses or by reducing the search space in typical biometric

systems [114], or in augmenting authentication processes [6]. In the same

context, Cordea et al. in [277] and Jahanbin et al. in [276] proposed two

alternative schemes for augmenting facial recognition via the extraction and

incorporation of facial anthropometric characteristics.

The increasing importance and reliability of soft biometric traits has al-

ready been proven by Dantcheva et al. [115]. Their importance in biometric

recognition systems becomes even more evident when considering that auto-

matic soft biometric based inference outperforms human observation, since

cognitive biases sometimes make it difficult to come to accurate decisions

regarding the face of a person [116] (e.g. people are generally better at rec-

ognizing and characterizing those of their own race and approximate age).

Among a series of potential carriers of soft biometric characteristics [117],

such as palm geometry (i.e. ratio between finger lengths), facial characteris-
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tics (i.e. age [126] [127], gender [128] [129] [130] or race/ethnicity [131] [135]

[137], geometry of the chin, lips, nose, eyebrows, creases, lines, sagging, the

loss of muscle tone [129], wrinkles or other face components), gait-related

recordings are among the most popular. In this respect, efficient algorithms

have been proposed for the accurate extraction of gait-related soft charac-

teristics like weight, height and stride length [138] [139].

2.2. Hard Biometrics

As mentioned above, hard biometrics can be divided in two broad categories,

namely the Physical and the Behavioural (i.e. activity-related) ones.

2.2.1. Physical Biometrics

Physiological biometrics are usually based on static biological measurements

and inherent characteristics of each human. The most typical example in

this area is the fingerprint [105], which is widely used in law enforcement for

identifying criminals [143]. Further, static biometrics include DNA, facial

characteristics [168], iris [169] and/or retina [170], and hand geometry [171]

or palm print [172] recognition.

Despite their high accuracy, physical biometric traits exhibit a couple of

shortcomings that can be proven significant per case. Firstly, the obtrusive

process it is required of obtaining the biometric signature. In particular,

the subject has to stop, go through a specific measurement protocol, which

can be very uncomfortable, wait for a period of time and get clearance after

authentication is positive. Moreover, static physical characteristics can be

digitally duplicated, e.g. the face could be copied using a photograph, a

voice print using a voice recording and the fingerprint using various forging

methods. In addition, static biometrics could be intolerant of changes in

physiology, such as daily voice changes or appearance changes [240]. Last

but not least, dealing with very specific features of the human body (e.g.

fingerprint, iris, etc.) in detail, physical biometric systems are hard to

implement, since they require the exploitation of high precision sensors,

efficient algorithms for demanding data processing and their transparent

integration in a wide range of environments.

Alternatively, emerging biometric technologies, which have recently at-
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tracted the attention of researchers, resemble more natural ways of recogniz-

ing people. Similarly to the ways or techniques humans utilize to recognize

each other (dynamic face, grimaces, gait, movements, etc.), they detect liv-

ingness. Specifically, they utilize behavioural and activity related biometrics

and thus they can potentially allow the non-stop (i.e. “on-the-move”) au-

thentication or even identification in an unobtrusive and transparent manner

regarding the subject and become part of an Ambient Intelligence (AmI)

environment.

Although physiological biometrics have enjoyed more attention than be-

havioral biometrics and have consequently become more integrated into

commercial products, behavioral biometrics exhibit several qualities that

make them attractive for security applications. For instance, whereas an

adversary can passively extract physiological biometrics (i.e. by lifting a

fingerprint from a keyboard), behavioral biometrics do not lend themselves

as easily to surreptitious capture as they require a user to consciously per-

form an action (i.e. speaking a specific phrase) [166]. Thus, it becomes

evident that while physiological biometrics cannot change, behavioral bio-

metrics naturally change with the action that is performed. This property

is useful for security applications such as key generation, where key com-

promise necessitates the creation of a new key.

In this respect, the need for the transition from the classic biometrics

to the new concept of activity related biometrics is stated and the latest

advances in the field of behavioural biometrics are discussed.

2.2.2. Behavioural Biometrics

Recent technologies in biometric recognition resemble more natural ways

of recognizing people. Similarly to the methods or techniques humans uti-

lize in order to recognize each other, modern trends in biometrics focus on

the recognition of dynamic face grimaces, gait, movements, etc. In other

words, they tend to recognize liveness rather than static features as the

aforementioned traits do (e.g. fingerprint, iris, etc.). In this respect, be-

havioural biometrics are related to specific actions and the way that each

person executes them.

However, an important question still to be answered is the extent to

which behavioural (i.e. activity related) biometrics can be considered as
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valuable informational traits with high recognition capacity. To this respect,

significant psychological studies are presented below, so as to form a solid

theoretical basis to support the use of movements for human identification.

Psychological background of behavioural recognition

Following the guideline that Artificial Intelligence in Human Machine In-

teraction (HCI) is built on the principles of more human-centered designs,

(i.e. made for humans and based on naturally occurring human interactive

behaviour) [43], the main motivation for investigating activity-related and

thus, behavioural biometrics stems from both the fields of human perception

and human psychology.

In order to obtain a solid base and a strong motivation for investigating

new types of behavioural biometrics, the human nature should have been ex-

plored in terms of distinctive (behavioural) properties that can differentiate

a personality from the crowd.

As inherently social beings, humans have developed the ability to per-

ceive and interpret the actions of others as the fundamental prerequisite

for successful social interaction. In this respect, it has been observed that

they show remarkable ability in recognizing movements of a biological ori-

gin, even in complex visual scenes [295, 318]. In particular, psychophysical

research has demonstrated that the human visual system is finely tuned to

the social cues available in human movement.

In an initial approach, movements highlighted by a few point-lights [297]

allowed the researchers to investigate the perception of biological motion

without the influence of biological form. Later work confirmed that a human

figure can be perceived very easily from such moving displays and more

recently [298] it has been shown that point light displays are sufficient for

the discrimination of different types of motion such as jumping and dancing.

Furthermore, observers have been still shown capable of identifying a point-

light one’s emotional state, deceptive intent, motor effort, vulnerability,

gender [301–304], respectively, or even their sexual orientation from brief

and degraded displays of their actions [305]. Moreover, a study regarding

the features used by people towards the recognition of style in movements

has been delivered in [323].

The aforementioned findings have been explained in the literature on a
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neural basis. Starting with single-cell recording results from monkeys [318]

and subsequent brain imaging experiments [319] studies have revealed a spe-

cific brain area in the superior temporal sulcus (STS) that appears active

when human movement is observed. This area in the STS has been impli-

cated to be part of a larger system that is involved in social cognition [320].

In addition to these visual and social regions, research into the production of

human movement has found that certain brain areas traditionally thought

of as motoric also serve a visual function. In particular the cells termed

mirror neurons [321] are activated by both producing a movement, as well

as seeing the same goal-directed movements performed. All of these results

are beginning to have an impact on research into the perception of human

movement since they hold suggestions for what processing constraints are

apparent in the human system and what distinct subsystems a general pur-

pose ability to perceive human movement might fall into [322].

Extending these findings, Thompson et al. has noticed the behavioral

ability of humans to recognize even more subtle changes in another’s move-

ments [294], by triggering different parts of their brains for the tracking

of different bodyparts [293] each time. This impressive visual sensitivity

to human movement is mainly justified by two theories. Namely, the first

refers to an indirect coupling of the perception and reproduction of actions

performed by others [306], while the second deals with the fact that hu-

mans have a lifetime of experience watching other people moves [307]. On

top of these, Rosenbaum et al. proved in [317], that different outcomes

of the motor behaviour are in direct correlation with inherent individual

differences.

In this direction, a further implication of this improved human percep-

tion is the identification of others, based on their moving patterns. In this

respect, the first experimentally rigorous study of identity perception from

motion was performed by Cutting et al. in [308], where a group of friends

managed to accurately identify each of them in recorded videos, just by

viewing their moving point-lighted joints. Qualitative good results showed

also a similar study of Beardsworth et al. conducted in 1981 [310].

The background assumptions for this ability (e.g. what are the roots of

this improved perception ability [311], whether motor experience influences

the visual analysis of action [312], whether view-dependent visual experience

determines visual sensitivity to human movement [308], etc.) have been
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addressed in several psychological studies, towards the recognition of people

based on their movements [296]. Similarly [299] has shown that humans can

also recognize people by their gait. The study proved that humans have the

ability to identify their familiar persons, based on their movement, even

under adverse viewing conditions.

Consequently, it can be claimed that psychology presents a strong base

for considering action/movement patterns valuable for perceiving individual

differences.

Advantages of Behavioural Biometrics

On the whole, behavioural biometrics are less obtrusive and simpler to be

integrated in existing systems and scenarios [66] [173], although they are

less reliable than physiological biometrics in most cases. This way, integral

drawbacks of regular biometrics can be lifted; for instance, inborn physio-

logical characteristics may be mixed with stylish and behavioural ones, so

that even twins can be separated.

Provided that the imposed obtrusiveness by non-behavioural biometrics

lies in both the utilized sensors (e.g. fingerprint or iris reader) and the

recognition procedure which the users are subjected to, Table 2.1 lists a

series of different types of behavioural biometric traits [112] that have been

presented in the literature up to date and that can be potentially used for

recognition reasons, along with the environmental objects/sensors required

for the capturing of activity-related traits. Hereby, it becomes evident that

no special procedure has to be followed by the user requesting recognition.

On the contrary, the subject is let free to act as he would normally do in

his everyday activities. Moreover, the reader can also notice that no special

hardware equipment (if any) is required in most cases, other than commonly

used environmental objects (e.g. Phone, Computer, Credit Card, Pen, etc.),

while the recording needs can be easily covered in most cases by a single

low cost camera.

Despite the large number of reported behavioural biometrics (see Table

2.1), only a few of them have shown adequately high recognition results,

for both person verification and reliable large scale person identification,

i.e. signature/handwriting and speech. Yet, some other types have exhibit

increased recognition capacity and high potential, exploiting in parallel a
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Table 2.1.: Classification and properties of behavioural biometrics [112]
G

ro
u

p

Classification of the various types of
behavioural biometrics D

ir
ec

t
H

C
I

In
d

ir
ec

t
H

C
I

M
ot

o
r

S
k
il

l

P
u

re
ly

B
eh

av
io

u
ra

l

R
ec

o
g
n

it
io

n
T

y
p

e

Required
Hardware

G
en

er
ic

C
om

p
.

U
sa

ge

Audit logs [270] [258] • Computer
Network traffic [257] • Computer
Storage Activity [324] • Computer

P
er

so
n

a
li

ze
d

C
om

p
u

te
r

U
sa

ge

e-mail behaviour [282] • • Computer
Calling Behaviour [273] • Phone
Call-stack [261] [264] • Computer
System Calls [264] • Computer
Command line Lexicon [274] [278] • • Computer

H
ab

it
u

al
S

ty
le

Credit Card use [267] • Credit Card
Registry Access [290] • Computer
GUI Interaction [262] • Computer

B
o
d

y
D

y
n

am
ic

s

Blinking [272] • Camera
Dynamic Facial Features [113] [177] • Camera
Lip Movement [288] • Camera
Gait/stride [176] • Camera
Handgrip [255] • Gun Sensors
Haptic [285] • • Haptic

C
og

n
it

.
B

eh
av

. Game Strategy [254] [284] • • Computer
Programming Style [263] • • Computer
Car driving style [266] [265] • Car Sensors

H
C

I
I/

O

Keystroke dynamics [286] • • Keyboard
Mouse dynamics [268] [269] • • Mouse
Tapping [260] • • Sensor

W
ri

ti
n

g
S

ty
le

Biometric sketch [271] • • Mouse
Painting Style [289] • Scanner
Text Autorship [313] • Computer
Signature/Handwritting [325] • Stylus
Voice/Speech/Singing [291] [292] • Microphone

52



combination of cognitive, motor and habitual patterns, namely the group of

body dynamics (see literature review below and Section 1.3), i.e. Blinking,

Dynamic Facial Features, Lip Movement, Gait, Handgrip/Haptic.

As mentioned before, recent research trends have been moving towards

the vision-based methods (i.e. [176]) aiming at decreased intrusiveness, con-

trary to sensor-based recognition [174] using body dynamics related signals.

Additionally, the majority of recent works and efforts on human recognition

are mainly focusing on two specific biometric traits, i.e. the extraction and

processing of facial dynamics features [113], as well as the well-known gait

related features, either in the form of human body shape dynamics [178] or

joints tracking analysis [179].

In this respect, an analysis of the existing methodologies in these scientific

areas is presented in the following paragraphs of the current Section, implic-

itly exhibiting the advantages of dynamic behavioural traits over traditional

biometrics.

At this point, a list of some indicative survey publications has been in-

cluded in the following table per biometric approach, targeting to the con-

venience of the reader.

Table 2.2.: Biometric Approaches and Relevant Surveys

Biometric Approach Relevant Literature Review

General (e.g. fingerprint, iris, etc.) Biometrics [66], [7], [173], [134]
Static Face Biometrics [68], [44], [118], [119]. [120]
Behavioural Biometrics [67], [112]
Facial behavio-metrics [121], [122], [123], [44]

Gait biometrics [309], [132], [125]
Soft Biometrics [133], [13], [117]

Multi-Biometrics [68], [14], [15], [93]

Person Recognition using Facial Dynamics

The term “facial dynamics” refers to the way one moves both his/her head

and his/her facial parts (e.g. mouth eyebrows, etc.). In general, facial

dynamics belong to the same category of behavioural movements, and are

thus, defined by the same generic principles regarding the psychological-

motor dependencies and neural and cognitive perception procedures, as the

ones mentioned in Section 2.2.2.
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However, since the face is the primary identification mean between hu-

mans, its expressions (i.e. facial dynamics) have been given special atten-

tion by psychologists and neurologists. In particular, [162–165] indicate

that both facial structure and behavioral characteristics provide valuable

information to face analysis in the human visual system.

Among some significant findings derived from the aforementioned psycho-

logical works is that (i) both static and dynamic facial information are useful

for face recognition and analysis, (ii) static information has higher recogni-

tion capacity, (iii) facial dynamics provide added value to the recognition

under degraded viewing conditions (iv) facial dynamics are more difficult to

be learned, (v) familiar faces are easily identified in animation sequences,

contrary to unfamiliar ones and (vi) facial dynamics is better for gender

identification.

For decades human face recognition has been an active topic in the field

of object recognition. Recently, the potential of recognizing a human based

on his/her behavioural information from face videos was examined [113,150,

154,156–158]

Most of algorithms have been proposed to deal with individual images,

also called image-based recognition, where both the training and test set

consist of individual face images. However, with existing approaches, the

performance of face recognition is affected by different kinds of variations:

for example, expression, illumination and pose changes. Thus, researchers

have started to look at video-based recognition, in which both training and

test sets are video sequences containing the face.

Person recognition using videos has some advantages over image-based

recognition. Firstly, the temporal information of faces can be exploited to

facilitate the recognition task (e.g. the user’s specific dynamic characteris-

tics like the motion of the head, the evolution of the pose or the mimic of the

face, etc.) and secondly, more effective representations (i.e. 3D face models

and super resolution images) can be obtained from the video sequence and

used to improve the performance of the systems. Last but not least, video-

based recognition allows learning or updating the subject model over time.

In this respect, aiming to exploit the temporal information or the human

behaviour embedded in video sequences, the following categorization of the

recent attempts can be considered:
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1. Holistic Methods This family of techniques analyze the head as a

whole, by extracting the head displacements or the pose evolution.

In 2002, Li and Chellappa [167] were the first to develop a generic

approach to simultaneous object tracking and verification in video

data, using posterior probability density estimation through sequential

Monte Carlo methods. Huang and Trivedi in [153] describe a multi-

camera system for intelligent rooms, combining PCA based subspace

feature analysis with Hidden Markov Models (HMM). Three classifi-

cation schemes are applied to the videos. In the first one each frame is

classified and a majority rule is applied to the entire sequence. In the

second scheme a Discrete HMM is created by using several training

sequences for each person using Baum-Welch estimation, and then a

test sequence is classified by the forward method.

Following the same principle, Zhou et al. [151] propose a similar prob-

abilistic framework, where a time series state space model is applied

to fuse temporal information. An exemplar-based learning strategy

to automatically select video representatives has been also developed

therein, serving as mixture centers in an updated likelihood measure.

Liu and Chen [155] propose a recognition system based on adaptive

Hidden Markov Models (HMMs). They first compute low-dimensional

feature vectors from the individual video frames by applying a Princi-

pal Component Analysis (PCA); next they model the statistics of the

sequences and the temporal dynamics using a HMM for each subject.

Then, in the classification part, identification is achieved by using the

likelihood scores provided by the HMMs, which are then automati-

cally adapted with the test video sequence, towards better modelling

over time.

Aggarwal et al. have modelled the moving face in [150] as a linear dy-

namical system using an autoregressive and moving average (ARMA)

model. The system starts by a pre-processing step which crops the face

to a fixed size, then the nose tip is tracked by a KL tracker and pose is

estimated by a rough edge based technique. Recently, Lee et al. [154]

developed a unified framework for tracking and recognition based on

the concept of appearance manifold. In this approach, the tracking

and recognition components are tightly coupled: they share the same
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appearance model, a low dimensional piecewise linear approximation

of the appearance manifold. The connectivity among the subspaces

is represented by a transition matrix, which is directly learned from

training sequences by observing the actual transitions between pose

states. Finally, recognition is achieved through Bayesian inference and

a maximum likelihood estimate.

In [156] and [157] a new recognition system based on head motion

is proposed, exploiting the temporal information and the human be-

haviour embedded in video sequences. Head motion is firstly analysed

by retrieving the displacements of the eyes, nose and mouth in each

video frame; then, the raw signals are transformed and normalized in

order to obtain video independent feature vectors. Finally, in order

to extract the behavioural information related to each individual and

use it for identification and verification purposes, they train individual

Gaussian Mixture Models (GMMs) and achieve classification through

a Bayesian classifier. In [113] the idiosyncrasies (i.e. uniqueness and

permanence of facial actions) of facial motions for person identification

are investigated whether these can be used as a behavioral biometric

via an efficient pattern recognition algorithm based on dynamic time

warping (DTW) concluding that emotional expressions (e.g., smile

and disgust) are not sufficiently reliable for identity recognition in

real-life situations, contrary to speech-related facial movements that

show promising potential.

2. Feature-based methods These methods typically exploit the individ-

ual facial features, like the eyes, nose, mouth and eyebrows. One of

the first attempts to exploit facial motion for identifying people is pre-

sented by Chen et al. in [152]. In their work, they propose to use the

optical flow extracted from the motion of the face in order to create

a feature vector used during the identification. More precisely, they

concatenate the optical flows belonging to each frame into a high di-

mensional feature vector, which is subsequently reduced using a Prin-

cipal Component Analysis (PCA) followed by a Linear Discriminant

Analysis (LDA). Recently, Choi et al. proposed a face recognition

based on the adaptive fusion of multiple face features acquired from

a sequential video frames. Towards the fusion the weights for each of
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the facial features are computed based on fuzzy membership function

and an additional quality measurement for facial images [204].

Using a combination of Hidden Markov Models, Tistarelli et al. man-

age to capture both the face appearance and the face dynamics, form-

ing thus, a dynamical face model [203]. Interestingly, they automat-

ically map the number of states are via unsupervised clustering of

expressions of faces in video sequences, resembling in a way the neu-

ral patterns activated in the perception of moving faces.

Extending their work on Local Binary Patterns (LBP) for combining

appearance and motion for dynamic texture analysis, Hadid et al. in-

vestigated in [202] the combination of static and facial dynamics via an

extended set of volume LBP features and a boosting scheme (EVLBPL

operator), that selects only the personal specific information related

to identity while discards any information related to facial expression

and/or emotions towards dynamic face and gender recognition.

3. Hybrid methods Colmenarez et al. in [149] have proposed a Bayesian

framework which combines face recognition and facial expression recog-

nition to improve results; it finds the face model and expression that

maximizes the likelihood of the test image. The face is divided into 4

feature region images containing 9 facial features which are detected

and tracked automatically. The feature region images are modelled

using Gaussian distributions on principal component subspace. Re-

cently in [158] , Saeed et al. have augmented the feature vector of a

previous system [156] [157] with features extracted from the motion

of the mouth. The exploit of the rough localization of the mouth pro-

vided by the head feature extractor and develop a simple algorithm

based on a colour transform that enhances the mouth and then de-

tects the edges using Sobel edge detector with Otsu’s thresholding,

followed by a series of morphological operations to improve the shape

of the detected mouth. Then features such as the area contained in

lip, major / minor axis of lip are extracted and arranged in the feature

vector and used for recognition.

Conclusively, current work and efforts on human recognition have

shown that the human behaviour (e.g. extraction of facial dynam-

ics features) and motion (e.g. human body shape dynamics during
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gait), when considering activity-related signals, may be useful for dis-

criminating people. This is the first step in the exploration of such

signals and their potential use in real applications.

In the following, Table 2.3 provides an overview of the recognition re-

sults and the size of the utilized dataset for some of the most recent works

regarding the facial dynamics related human recognition.

As it was seen by the most of the methods which use facial dynamics for

face recognition from videos, promising results can be seen. However, there

are still some drawbacks in suggesting them as robust biometric systems.

First of all, the relative small size of most utilized dataset, indicates the fur-

ther investigation needed, unless they are targeting at specific application

scenarios for authentication, with small size of registered subjects. More-

over, the utilization of mostly global features is a another drawback, since

local ones are also of high recognition capacity, when biometric recognition

is the question, as indicated in [124]. Finally, the holistic approaches that

lack from a feature selection preprocessing, leading this way to the utiliza-

tion of redundant and noisy information to be co-precessed towards person

recognition. Last but not least, it should be mentioned that most of the

presented methods exhibit great difficulties when dealing with not-aligned

faces, making them very sensitive in most cases of practical scenarios and

uncontrolled contextual conditions.

In this respect, the aforementioned drawbacks form also the challenges

remaining to be solved in the current domain, so as to make facial dynamics

related biometrics a robust identifier.

Person Recognition using Gait Biometrics

Gait is a common, periodic human movement and very indicative represen-

tative of activity related biometric traits. The field of gait related recog-

nition has become an attention from researchers, due to its property to

reveal significant evidence for one’s gender [309], behaviour (e.g. emotional

state [62], etc.) and even identity [308], as indicated by significant works in

psychology of movement and perception.

Among them, most researchers have focused on gait related human recog-

nition, as the most challenging and perspective domain. Most of the recent

gait analysis methods can be divided into two categories of complemental
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nature [58]; namely the model-based and the feature-based (i.e. model-

free) ones. Model-based approaches use the human body structure [23] [24],

while model-free methods employ the whole motion pattern of the human

body [25].

Human model-based approaches, that represent an action or a gait with

body segments, joint positions, or pose parameters. In general, model-based

approaches create models of the human body from the input gait sequences.

Previous work on these approaches has shown that they can guarantee good

degrees of view- and scale-invariance. They study static and dynamic body

parameters of the human locomotion [26], like stride length, stride speed

and cadence [28].

The authors of the latter presented in [27] a gait recognition method

that fused static and dynamic body biometric features with the constraint

that people were walking parallel to the image plane. Static features were

extracted from a contour, while dynamic ones were obtained with a model-

based tracking approach. In particular, human body is modeled as 14 rigid

parts connected to one another at the joints. The whole model has 48

degrees of freedoms (DOFs). The tracking results, namely joint-angle tra-

jectories signals, are considered as gait dynamics for identification and ver-

ification. They also obtain static information of body based on Procrustes

shape analysis of the change of moving silhouettes, which can has the po-

tential improve the recognition performance.

Bouchrika et al. presented the effects of covariates, such as footwear, load

carriage, clothing, and walking speed, for gait recognition [175], while a year

later, the same authors proposed a model-based method to extract the joints

of the lower limb from lateral walking sequences. The adaptive sequential

forward floating selection search algorithm was then employed to select the

discriminative features for gait recognition [36]. A noise resistant method

has been presented in [29], whereby the proposed gait model contained a

pendular motion model and a structural model. The lower limb was modeled

as two interconnected pendulums.

A view invariant human action recognition with inputs of projected 2D

joint positions was suggested in [35], similarly with [30], whereby an invari-

ant analysis regarding human actions on the use of anthropometry towards

constraints on matching was presented. Thereby, a point-light display like

representation was used, where a pose was presented through a set of 3D
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points. The accurate matching between similar actions performed at differ-

ent rates was ensured by nonlinear time warping. Further, a realtime action

segmentation and recognition algorithm with given 3D joint positions was

developed in [31] based on a multi-class AdaBoost algorithm and an HMM

classifiers so to improve the overall accuracy. However, it was found out

that 2D models are more suitable for motions parallel to the image plane,

particularly for gait recognition, while 3D models are capable of tracking

movement that is more complex. In [24] the previous human model-based

pose recovery approaches are thoroughly reviewed.

A common limitation of gradient descent approaches is the use of a single

pose or state estimate that is updated at each time step [32], while other

approaches use annealed particle filtering [33] or calibrated cameras [34] to

track the full body

Contrary to model based approached, model-free (i.e. feature based)

ones seem to be more attractive to researches, since they do not rely on

the assumption of any specific model of the human body for gait analysis.

They directly represent human motion using image information, such as a

silhouette, an edge, and an optical flow.

Most of works in the current domain have as origin the pioneering idea

of Davis and Bobick [197] pioneered the idea of temporal templates for

appearance-based action representation. In particular, they used the two

well-known spatiotemporal templates, motion energy images (MEIs) and

motion history images (MHIs), to represent action sequences.

Usually simple methods are employed, such as temporal correlation, linear

time normalization [37], full volumetric correlation on partitioned silhouette

frames [38] and Dynamic Time Warping (DTW ) [39]. For instance, in [38]

the extraction of features was performed on whole silhouettes, in [61] an

angular transform was applied on silhouette sequences, while in [40] and [45]

gait recognition based on Hidden Markov Models (HMM).

Contrary to the fronto-parallel view assumption or other view depen-

dent approaches like [46], some recent approaches deal with non-canonical

view gait recognition, or view-invariant recognition of gait sequences, in-

cluding model-based schemes with self-camera calibration [47]. Similarly,

view transformations based on planar silhouette approximation are pre-

sented in [48] while tracking of body parts’ trajectories are studied in [49]

that can be also used to reconstruct the articulated full body motion [50].
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More recent approaches in this domain have intensively dealt with the

view invariance of the gait sequence. In this context, Hu et al. presented in

[51] a novel multiview gait recognition method that combines the enhanced

Gabor (EG) representation of the gait energy image and the a variance of

discriminant analysis method for dimensionality reduction in the CASIA

gait dataset, so as to cope with the variations due to surface, shoe types,

clothing, carrying conditions, etc.

Similarly, Kusakunniran et al. proposed an approach using multiple

regression-based view transformation model (VTM) to address this chal-

lenge of changing view angles during gait, by transforming gait feature from

the source viewing angle into the target one [56]. A year later, the same

authors presented in [53] a new view-invariant feature based on procrustes

mean shape (PMS), via invariant low-rank textures procrustes shape anal-

ysis (PSA) towards cross-view gait recognition.

In order to add contextual invariance, two novel gait descriptors are pro-

posed (i.e. the shifted energy image and the gait structural profile, with

increased robustness to some classes of structural variations), have been pro-

posed in [57], along with a new method for the simulation of walking condi-

tions. The same authors combined a year later holistic and model-based fea-

tures for capturing general gait dynamics and more detailed sub-dynamics,

respectively, by refining upon the preceding general dynamics [52].

Last but not least, Matovski et al. the conclusion that elapsed time does

not affect recognition significantly in the short-medium term was drawn by

the experiments carried out in [54]/

Apparently, the main challenges in the current domain include (i) mainly

the preservation of view invariance in the most efficient way, in terms of com-

putational cost and amount of utilized sensors, (ii) the context invariance

and (iii) the optimal modelling of the input information, towards improved

recognition performance. In this respect, the current thesis aims to address

challenges (i) and (ii) by applying the algorithms proposed in Annex B on

top of existing SoA algorithms, as far as the uni-biometric gait recognition

is concerned.
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2.3. Multi-biometric Approaches

The assumption that humans have the ability to recognize each other based

on motion patterns has been initially psychologically proven by Cutting et

al. in 1977 [308], while it was neurologically justified by Thompson et al.

in [294]. Yet, a work presented by Hong et al. a few years earlier than the

latter extended this assumption to multiple evidence and suggested that

multiple traits could augment the identification performance. Specifically,

they also proved the validity of this claim mathematically in [16]. In the

same context, Ross et al. claimed that humans have the ability to recognize

one another, based on the evidence presented by multiple biometric char-

acteristics (behavioral or physical) in addition to several contextual details

associated with the environment. In particular, the recognition process itself

can be viewed as the reconciliation of evidence pertaining to these multiple

traits and/or multiple modalities.

Thus, following the analysis that was initiated in Section 1.1.2, a summary

of the most important works in the field of multi-biometrics will follow in

the current section, discussing as well the pros and cons of such approaches

over uni-biometric ones.

In general, from an academic perspective, research in multi-biometrics

has several different facets: identifying the sources of multiple biometric

information; determining the type of information to be fused; designing

optimal fusion methodologies; evaluating and comparing different fusion

methodologies; and building robust multimodal interfaces that facilitate

the efficient acquisition of multi-biometric data.

Uni-biometric systems have to contend with a variety of problems such

as noisy data, intra-class variations, restricted degrees of freedom, non-

universality, spoof attacks, and unacceptable error rates. On the other hand,

a multimodal system can combine any number of independent biometrics

and overcome some of the limitations arising when using just one biometric

as the verification tool. For instance, it is estimated that approximately 3%

of the population does not have legible fingerprints [103] [104], a voice could

be altered by a cold and face recognition systems are susceptible to changes

in ambient light and the pose of the subject.

According to Jain et al. [66], multimodal biometric systems can be de-

signed to operate in the following five scenarios:
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1. Multiple sensors: the information obtained from different sensors for

the same biometric are combined (e.g. optical, solid-state, and ultra-

sound based sensors are available to capture fingerprints).

2. Multiple biometrics: multiple biometric characteristics such as finger-

print and face are combined. In the verification mode, the multiple

biometrics are typically used to improve system accuracy, while in the

identification mode the matching speed can also be improved with a

proper combination scheme.

3. Multiple units of the same biometric (e.g. fingerprints from two or

more fingers, images from the two irises of the same person, etc.).

4. Multiple snapshots of the same biometric: more than one instance of

the same biometric is used for the enrollment and/or recognition (e.g.

multiple impressions of the same finger, multiple images of the face,

etc.).

5. Multiple representations and matching algorithms for the same bio-

metric: a verification or an identification system uses such a combi-

nation for recognition, or an identification system uses such a combi-

nation for indexing.

As stated in [66] scenarios 2 and 3 are considered to provide the larger

improvement in recognition accuracy. However, the aforementioned im-

provement is bound to come with an increase in the inconvenience to the

user in providing multiple cues and a longer acquisition time, while sce-

narios 1, 4 and 5 apart from combining strongly correlated measurements,

they also require increased storage and processing resources. Thus, the next

chapters will focus on the overview of approaches that either combine mul-

tiple biometric characteristics, i.e. different hard biometrics (Section 2.3.1)

or multiple traits of the same biometric, like the hard and soft biometrics

extracted by the upperbody, or the face of the full body in gait (Section

2.3.2).

On the whole, multi-biometric approaches can significantly improve the

recognition performance of a biometric system besides improving popula-

tion coverage, deterring spoof attacks, and reducing the failure-to-enroll

rate. Although the storage requirements, processing time and the computa-

tional demands of a multi-biometric system can be significantly higher, the
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above mentioned advantages present a compelling case for deploying multi-

biometric systems in systems requiring very high accuracies (see proposed

application scenarios in the end of Section 3.1).

2.3.1. Combination of Hard Biometrics

Additionally to the aforementioned fact that the combination of more bio-

metric traits of the same identity improves the recognition performance and

the reliability of the biometric systems, it also provides reduced discrim-

ination to people, whose biometrics cannot be recorded well (e.g. due to

certain disabilities, etc.). For instance, a major issue with biometrics is that

there is a group of humans who do not satisfy all requirements for specific

biometrics (i.e. 3% of the population does not have legible fingerprints).

Furthermore, there is a demand in improving the performance of the uni-

biometric systems, in order to broaden their scope and deployment in real

scenarios. Moreover, multimodal biometric systems are much more invulner-

able to fraudulent technologies, since multiple biometric characteristics are

more likely to resist to spoof attacks than a single one [59]. Additionally,

multi-biometric systems are difficult to simultaneously be spoofed, while

they can efficiently search large databases, by utilizing pruning methods.

According to recent state of the art works, there are four major levels

at which, fusion of multimodal biometrics can take place, namely the sen-

sor level, the feature level, the score level and the decision level fusion.

However, score level fusion is mainly preferred when dealing with biometric

authentication [93].

In this respect, a lot of work has been carried out in the last decade

by the scientific community on multimodal biometrics. Following many

works in the domain of fixed biometrics solutions that have already been

investigated and implemented various multimodal systems [9–11, 18, 19, 21,

22, 64, 65, 117, 220]. Indicatively, an “on-the-move” gait recognition system

has been proposed in [102], whereby gait traits have been combined with

face recognition in a controlled environment with fixed cameras. Other

multimodal approaches have combined face images and speech signals [10],

[11], while face and fingerprint have been combined [18].

Of high significance is also the multimodal approach of the research team

of S.Nixon, an expert in gait recognition, who presented the so-called multi-
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Biometric tunnel, as able to contact-less acquire a variety of biometrics (i.e.

face, an ear and gait) via the utilization of eight synchronised cameras [102],

targeting at applications related to “on-the-move” recognition in airports

and other high throughput environments.

Some more recent works in the domain of multi-biometry that are based

on the combination of purely hard biometrics are presented below, so as

not only to exhibit the recent advantages in the field but also to point the

direction towards which the research trends are moving.

In [99] a negotiating agent computational architecture towards achieving

the desired performance of the multimodal system is presented, while the

work in [100] proposes the adaptive combination of real multiple biometric

data to determine the optimal fusion strategy and the corresponding fusion

parameters and thus, to ensure the optimal performance for the desired level

of security.

In particular, great achievements have been performed recently by J.Kittler

and his group. For instance, a benchmarking study has been carried out

in [94] involving face, fingerprint, and iris biometrics towards person authen-

tication of ∼ 500 persons. Namely, quality-dependent and cost-sensitive

experiments have been performed thereby, assessing how well fusion algo-

rithms can perform under changing quality of raw biometric images princi-

pally due to change of devices and how well a fusion algorithm can perform

given restricted computation and in the presence of software and hardware

failures, respectively.

The same group proposed a kernel based approach, for substituting a

missing modality - at the kernel level- by an unbiased one, the so-called

a neutral point, achieving good performance compared to simple baseline

fusion methods (e.g. sum rule fusion) [96]. Unlike common missing-data

substitution methods, calculation of neutral points may be omitted.

Another two works of the same research team regard again quality mea-

sures (e.g., image resolution) derived from the raw biometric data. In [95]

the performance degradation that can be due cross device matching is com-

pensated by device-specific quality-dependent score normalization, based

on several alternatives such as direct score modelling, by modeling via the

cluster index of quality measures, etc. Furthermore, a general Bayesian

framework for quality-based fusion of multimodal biometrics dynamically

combines the outputs of several biometric classifiers [97].
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In a similar context, Fernandez et al. proposed a quality-based conditional

processing of the multi-biometric traits to be fused, allowing thus, the easy

and efficient combination of matching scores from different devices assuming

low dependence among modalities [101]. This way, biometrics traits with

low quality data are rejected during the fusion.

Yet, Monwar et al. attempted to lift the limitations induced by noise, intr-

aclass variability, and low data quality [98] via a multimodal fusion scheme.

Thereby, the results of different classifiers for face, ear, and signature bio-

metrics are consolidated via the rank-level fusion integration method.

Below, the few available works on the multi-biometric fusion of hard and

soft biometric traits is presented, while the pros and cons of each method are

discussed. Similarly, the decision for choosing one of these two approaches

in the current thesis is justified.

2.3.2. Combination of Soft with Hard Biometrics

As mentioned earlier, soft biometric traits do not have the discriminative

capacity to function as stand-alone biometric systems. However, since their

first introduction as potential identifiers, they have been effectively inte-

grated in a series of applications. In particular, it has been reported that

automated gender identification and age estimation has potential applica-

tions in a multitude of areas, such as in filtering digital photo albums or in

customizing advertisements. Similarly, iris-based soft biometrics can benefit

Unique Identification Number (UID) programs for large populations (e.g.

in India) [116].

The most important property of soft biometrics, however, is their con-

tribution to a much smaller candidate pool and the fact that they allow

the overall query to be answered more accurately and faster by minimizing

the size of comparisons for both single uni- and multi-biometric identifica-

tions. In the context of authentication processes, Moustakas et al. have

proposed a Bayesian framework for boosting the authentication rates from

behavioral gait traits with gait-related soft biometrics [6], while Marcialis et

al. and Jain et al. proposed a combinatorial approach for facial recognition

and fingerprint in [220] and [13], respectively. Soft biometrics have been

also combined in another work of A.Jain’s group; namely [18]. Thereby,

a hybrid multi-biometric approach that combines face and fingerprint with

67



gender, ethnicity, and height as the soft characteristics, towards enhanced

person recognition of 263 users under a bayesian framework.

Similarly, a soft biometric (i.e. the color of the iris) is integrated within a

multi-biometric system that combines hard biometrics, such as fingerprint

and iris texture in a framework where steerable pyramid filters and multi-

channel log-Gabor filters are employed for the proper feature extraction

[140]. Moreover, Niinuma et al. proposed in [141] a method for fusing

face colour and clothing colour with conventional authentication schemes

for multiple user authentication.

Although not addressing combinatorial approaches of multi-biometrics,

two works performed by Dantcheva et al. are of high interest, in order not

only to formulate an opinion of how soft biometric are recently preferred to

be exploited, but also to find commonalities with combination with solely

hard multi-biometric approaches.

Initially, the reliability of certain biometric traits (i.e. weight and color

of clothes) is studied [106], while person identification is attempted based

only on a “bag” of facial, body and accessory soft biometric traits, so as to

produce a first evaluation of their recognition capacity. Following this work,

statistical analysis on the reliability of soft biometrics systems which employ

multiple traits for human identification is performed in [107], emphasizing

on the setting where identification errors occur mainly due to the fact that

two or more subjects may share similar facial and/or bodial characteristics.

As it can easily become apparent from Section 2.3.1, but also from some

recent works on soft biometrics (e.g. [107]), the recent trends indicate a

direction towards exploitation of quality factors in modern techniques for

combining multi-biometric traits. In other words, the challenge of recent

trends tend to assess the effectiveness of a certain biometric trait according

to the systematic noise (i.e. reduction in quality) that has been induced on

it.

In this direction, to the author’s view, there is much stronger motiva-

tion towards the utilization of soft biometric, that can derived by the same

sensor as the hard biometric, as an extra biometric trait in multibiometric

approaches. The reason for this choice stems from the fact that some of the

most common problems in deploying multimodal systems are the computa-

tional cost and the complexity of added sensors and the corresponding user

interfaces. Moreover, it is also more difficult to control the acquisition en-
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vironment simultaneously for several traits [14]. Namely, by incorporating

sparse and not strictly distinctive characteristics of individuals that can be

collected simultaneously with the regular recognition process, such as the

colour of the eyes, the skin colour, etc.

Thus, being in alignment with recent multi-biometric trends (i.e. quality

and systematic noise of biometric traits as fusion factors), a novel proba-

bilistic framework that will deal with the induced systematic error in multi-

biometric recording will be presented in Section 5.2, apart from the ex-

ploitation of classic sum rule based approaches at score level (see Section

6.1.3 and Section 6.2.3). This will then be compared in terms of recogni-

tion performance with the state of the art multi-biometric approaches based

on soft characteristics of [6] and [141] (see Section 7.1.1 and Section 7.1.2.

respectively).

2.4. Summary

In the current chapter, a detailed overview of the research field of biomet-

rics has been presented. Once the motivational background for prehension

biometrics in the general framework of behavioural biometrics has been jus-

tified, based on relevant psychological works, the most significant works in

each relevant sub-domain has been included in a state of the art review.

Moreover, the most typical and recent approaches towards human recogni-

tion have been analyzed, indicating thus, to which direction next generation

biometric efforts should be put to.

Additionally, the current chapter is further extended in the field of multi-

biometrics as a common approach to increase the accuracy and the perfor-

mance of recognition. In this respect, the most significant works in the field

of multi-biometrics are cited and shortly described, so as to make clear the

experimental setup and the contextual settings. A general conclusion of the

current analysis is that soft biometrics will be preferred for integration in

multi-biometric systems for the reason that they allow their seamless inte-

gration in most of the existing biometric system by being extracted from the

same sensor as the basic biometric trait and by requiring less computational

resources than regular hard biometrics.

Based on the findings of the relevant literature, the aim of the current

work is bilateral. Initially, the current thesis aims to propose and to evaluate

69



through experimental validation the introduction of a novel behavioural

biometric trait that is based on prehension related movements of humans.

Provided both the facts that there is a direct connection, behaviour wise,

between one’s movements and his/her identity and that the majority of

these movements are performed by the upperbody, prehension movements

can potentially lead to human identification.

Furthermore, this pioneering work will offer significant added value to

the field of behavioural biometrics. In particular, extending the limited

applicability of gait recognition (i.e. only when the user is walking), the

concept of activity-related recognition will be significantly enhanced by the

introduction of prehension biometrics, allowing thus, e a wide variety of

recognition scenarios to be defined per case and per contextual environment.

Moreover, the methodology that will be followed can be easily applied to

a series of relevant scientific fields, such as activity detection or feature

classification.

Apart from these, the current thesis will also have significant impact

in the field of multi-biometrics. By evaluating the recognition potential

of static anthropometric and their combination with existing physiological

and behavioural biometric systems, but also by experimentally evaluating

the performance of a purely behavioural multi-biometric system1, the long

standing problem of limited recognition performance of activity related bio-

metrics will be seamlessly addressed.

Summarizing, the following chapters of the current thesis attempt to ad-

dress the core of the aforementioned topics. In particular, a new concept of

behavioural biometrics related with movement of the arm and the palm is

proposed, its potential is studied and evaluated, while it is also combined

with other existing unobtrusive biometric modalities (i.e. gait) in a mul-

timodal human recognition framework. Moreover, static anthropometric

characteristics are exploited and evaluated as for their recognition capacity

and performance, so as to deliver increased accuracy in the recognition per-

formance and ad-hoc reduction in the multi-dimensionality of the feature

space.

Following the aforementioned challenges of several subdomains in the field

of behavioural biometrics, the challenges posed for the rest of this disserta-

1Some slight improvements over state of the art gait recognition systems will be also
proposed.
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tion thesis are listed below:

� The exploitation of novel activity related biometrics that are at least

comparable, if not superior, with the current state-of-art behavioural

biometrics, in terms of recognition performance and applicability.

� The development of a beyond state of the art framework for multi-

biometrics that is in line with recent research trends.

� The definition of application scenarios that ensure context indepen-

dency.

� The delivery of algorithms, methodologies and technologies that could

be utilized in other scientific fields, will open new horizons in the

research community and will ignite relevant future work in the same

field.
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3. Activity related application

scenarios

The current chapter serves to familiarize the reader with the application

scenarios of the biometric approaches that are proposed in the next chapters.

Definition: Scenario is a sequence of interactions happening under cer-

tain conditions (i.e. context), to achieve the primary actor’s goal, and hav-

ing a particular result with respect to that goal. The interactions start from

the triggering action and continue until the goal is delivered or abandoned,

and the system completes whatever responsibilities it has with respect to the

interaction.

In this respect, a thorough description of the contextual specifications

for the designed scenarios will follow, along with the specifications and the

analytic description of the utilized datasets.

3.1. Context in activity-related biometrics

As suggested in several works of Rosenbaum et al., the context (i.e. both the

environmental setting and the temporal order of ongoing events) in which a

movement based human identification takes place, may significantly affect

its outcome, either by influencing the perception of the identifier [314] or

by affecting the planning and execution of the prehension movement of the

person to be identified [315] [316].

Following this, it becomes evident that behaviour analysis and context are

in close relation with each other. Thus, in order to proceed with the analysis

of someone’s behaviour, the context has to be known, in which the observed

behavioural signal has been displayed. In this respect, the definition of

the context should be provided either via the W4 (where, what, when and

who) or even better via the W5+ (where, what, when, who, why and how)

methodology.
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However, provided that the problem of context-sensing is extremely dif-

ficult to solve, especially for a general case, answering the “why” and the

“how” questions in a W4-context-sensitive manner is virtually unexplored

area of research [43]. Thus, without loss of generality, in the current work

only the apparent perceptual aspect of the context (W4) in which HCI takes

place, will be dealt with.

Based on the W4 approach, in order to design a prehension-based recog-

nition system that will work circumventing the context dependency of pre-

hension, the following requirements should be fulfilled:

1. The relative position of the actor performing the prehension movement

should be fixed with respect to the interaction object (i.e. object to

be reached and grasped).

2. The space between the actor and the interaction object should remain

similar as during the registration procedure (e.g. no obstacles should

interfere, etc.)

3. The actor should be at a similar affective state, as the time he/she

has been registered to the system.

4. The interaction object should remain the same, in terms of shape and

size.

5. The order of the movements in a specific scenario should stay un-

changed, so as the initial and the final position of the body parts that

participate in the prehension movement, are the same as during the

registration.

To this extent, possible applications where such application specific sce-

narios can be successfully designed are listed below:

� Restricted areas in military bases

� Sensitive infrastructures where classified data are stored (e.g. personal

data, medical data, war plans, etc.)

� Highly secure areas in nuclear power plants (e.g. control rooms, etc.)

� Control rooms of surveillance/security companies

� Administrator rooms in the central servers of companies managing big

amounts of data.
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3.2. Activity related datasets

Provided the scope of the current thesis, the specifications of the utilized

datasets have to be explicitly defined. Namely the following list contains

the most important aspects that should be fulfilled by the datasets:

1. Prehension biometrics should be seamlessly incorporated in regular

everyday movements, so that the recognition process to be transparent

and thus, unobtrusive to the user.

2. Multiple authentication within the same time session should be sup-

ported.

3. Apart from prehension, further activity related movements should be

recorded as well (e.g. gait).

4. Gait recordings should cover most real case walking scenarios.

5. Anthropometric and soft biometric traits should be able to be ex-

tracted.

6. In case of missing data from one dataset, virtual subjects should be

able to be generated either via statistic analysis or via merging of

different datasets.

7. The size of the datasets should be adequately large, while the recorded

subjects should form a representative sample of real population.

8. Recording in different time session should be performed, so as to verify

the permanence of the biometric traits in time.

9. It would be beneficial if contextual information could be extracted.

3.2.1. Discussion on the recorded datasets

Prehension biometrics, just like most of the known activity related biomet-

rics, are still at their infantry. Thus, unlike established biometric traits like

fingerprint, they are initially meant to be validated in small datasets. Addi-

tionally, provided the fact that context plays a significant role, it has been

decided that a good experimental application use case of such biometric

traits would be the AmI environment of high security areas (e.g. military
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bases, nuclear plants, etc.) or companies (e.g. surveillance/security compa-

nies, etc.), where only a few people (i.e. small dataset) would be allowed to

have access to certain installations.

In this respect, both ACTIBIO datasets (i.e. one for prehension based

recognition DB.P.1 and one for gait recognition DB.G.2) that were recorded

within the framework of the European funded ACTIBIO project [136] have

been the guideline also for the rest of the dataset created within the current

thesis.

In particular, both ACTIBIO dataset was created only after a thorough

survey that was conducted on ∼ 64 professionals from different disciplines,

i.e. Company representatives, Security controllers and Control Room opera-

tors, regarding the acceptability of vision based prehension/gait biometrics,

their usability and the level of realism, the easiness in use and the level

of unobtrusivess, as well as the integratibility and the impact they would

have in the aforementioned working environments. Thus, both ACTIBIO

datasets were recorded simulating a real case working environment, accord-

ing to their indications, as described below.

Apart from the HUMABIO gait related dataset DB.G.1, which has been

recorded by following the same procedure (e.g. a distinct survey was con-

ducted on professionals, etc.), as with the ACTIBIO dataset, all the record-

ings of the other datasets mentioned below have remained consistent to the

same principles, in terms of application scenarios, demographics and utilized

movements.

Specifically, regarding the prehension related recordings, the movements

that better resembled a full prehension movement were chosen (i.e. phone

conversation and interaction with an office panel) out of a wide variety

of office related ones. Further, regarding the gait recordings, as many as

possible scenarios of real case contextual walking alternatives have been

simulated, while the walking tempo was considered constant. Last but not

least, regarding the demographics issues of the recorded datasets, attention

has been given to the following issues:

� All recorded subjects were healthy, did not report any disabilities

and were capable of performing all prehension- and gait- related ac-

tions/movements.

� A balanced proportion between male and female participants was at-
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tempted to be kept.

� Unavoidably, the age related demographics did not cover a wide range

of ages. Namely, most of the recorded participants were within 24−40

years old, while there were some exceptions of 5 persons being at their

fifth decade of their life.

� Anonymised data policy was followed in all recordings

It should be noted, that despite being relatively small - due to time,

money and effort consuming issues - the size of the recorded datasets can

be considered adequate for the case of the simulated application scenario.

However, in order to cover this issue in prehension related analysis, a vir-

tual dataset has been generated based on statistical analysis of real ones.

Moreover, both ACTIBIO and HUMABIO datasets include recordings in

different time sessions.

Finally, it should be noted that the case of recognition retrials is covered,

as well, in the Proprietary Multiple Reaching Dataset. Last but not least,

the face related dataset DB.F.1, was selected not only due to the challeng-

ing fact that it contained low resolution colour and depth images, captured

by a low cost commercial depth sensor, but also in order to demonstrate

the general applicability of the proposed soft biometric framework on phys-

iological biometric systems. Demographics, were more balanced this time,

containing an almost uniform distribution of ages between 20-55 years of 25

males and 20 female users.

3.2.2. Datasets description

For the prehension related biometric approach of Chapter 4, three distinct

datasets have been used, i.e. two average sized real ones and a large one

consisting exclusively of virtual subjects, while for the exhibiting the generic

applicability of the probabilistic framework of Chapter 5, two large gait-

related datasets and one relatively small but demanding 3D face related

dataset have been utilized.

In this context, the prehension related datasets follow below:

1. ACTIBIO Reaching Dataset (DB.P.1): This database was cap-

tured in an ambient intelligence indoor environment. There are two
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available sessions that were captured with a difference of almost six

months. The first session consists of 35 subjects, while the second in-

cludes 33 subjects, that have also participated in the first session. The

collection protocol defines that each person seats at the desk and act

naturally, as if he/she is working. In this respect, ”NORMAL” activ-

ities, such as answering the phone, drinking water from glass, writing

with a pen, interacting with a keyboard panel, etc. and ”ALARM-

ING” ones, such as raising the hands, etc. were performed repeatedly

by the user, according to the ongoing environmental triggering (e.g.

phone ringing) and captured by the surrounding sensors. Although

five calibrated cameras have been constantly recording the scene, only

one zenithal USB cameras and a Bumblebee (Point Grey) stereo cam-

era for office activity recognition.

Figure 3.1.: Screenshots of several subjects from the ACTIBIO Reach-
ing Dataset (DB.P.1) performing the “Phone Conversation”
activity.

Following the findings of the EU-funded research project ACTIBIO

[136], it should be noted that among a series of possible office related

movements that have been studied, the “Phone Conversation” and the

“Interaction with the Microphone Panel” have exhibited the highest

recognition potential. Thus, the current work will mainly deal with

recognition results from these activities. Namely, the “Phone Conver-

sation” activity (Figure 3.1) includes the picking of the phone (Fig-
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ure A.21), its narrowing to the ear and its placing back on the base.

Similarly, the “Interaction with the Microphone Panel” includes the

leaning of the user towards a fixed microphone, the pressing of the ON

button and the returning of the user to its initial pose. Some other

scenarios include the typing of a short text in the keyboard, an inter-

action with the mouse, etc. However, such activities do not exhibit

high recognition potential, since they do not request significant move-

ment from the user (i.e. during typing there is only a short movement

of the fingers) and they do not indicate an exact moving pattern (i.e.

moving the mouse can be executed in infinitely many ways). This

way, inadequate and non standardized activity-related information is

delivered.

A propriety annotator tool was developed, so as to generate complete

activity segments and to perform single and multiple searches for all

annotated activities sequences, using any possible criterion.

2. Proprietary Prehension Dataset (DB.P.2): This dataset was

based on two scenarios of the ACTIBIO dataset, including two test-

ing activities performed by 29 subjects. The difference, herein, is that

the current dataset contains information captured by the CyberGlove

during the grasping activity. In particular, each user has been asked

to perform an activity denoted as a raw “Reaching and Grasping” ac-

tivity (Experiment 1): The user had to lean forward and grasp a lamp

standing on the desk. This activity is identical with the “Interaction

with the Microphone Panel” activity described in DB.P.1 above, as

far as the movement of the arm is concerned. The second activity

was a short “Phone Conversation” (Experiment 2). In particular, the

user had to pick up the ringing phone with his/her right hand, bring

it next to the ear, hold a short conversation and then place it back on

its base.

Each experiment was repeated by each user 6 times. The first 3 were

used for the enrollment of the user (gallery), while the 4th and the 5th

repetitions were used for testing. The 6th repetition of each user was

kept as backup for corrupted recordings. The users had been advised

1The figures and equations labelled as “0.X” refer to the Annexes in the end of the
current manuscript.
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to act free and no special constraints were imposed. Repetition 4 was

recorded immediately after the enrollment sessions. As such, there

is a high resemblance in both the attitude and the movement of the

user. On the contrary, the 5th repetition was recorded in a later time

session (i.e. 1 week after the gallery recordings), in order to test the

permanence of the proposed traits over time.

Regarding Experiment 2, a post processing algorithm was applied on

the extracted trajectories in order to compensate for the following

issue. Given that the duration of a phone conversation may be of

arbitrary length, the meantime between the moment the phone reaches

the ear and the moment the phone leaves the ear is rejected from the

trajectory.

3. Virtual Prehension Dataset (DB.P.3): Finally, the proposed

method was evaluated in a new database of 100 virtual subjects that

was created as follows. Let us define the “mean” trajectory and the

“mean” velocity for each limb as the average trajectory-velocity of

all available enrollments (black line in Figure 3.2). Given the es-

timated first and second order statistics among all users’ activity

curves (minter(t), σinter(t)) from the Proprietary Prehension Dataset

(DB.P.2) above, 100 new “base-features” were created, as indicated

below.

s∗l (t) = minter
s,l (t) + ns,l(t) , (3.1)

where ns,l(t) was a random number drawn from a normal distribution

with 0 mean and standard deviation σinters,l (t), regarding the lth joint.

In order to minimize the effect of flickering along a feature signal,

generated this way, we used a low-pass filtering method via a moving

average window. Finally, new “Repetitions” (see Figure 3.2) of each

virtual subject were generated by using the detected intra-variance

(mintra(t), σintra(t)) of each subject. Similarly, virtual velocity vec-

tors can be generated, i.e. v∗v,l(t) = minter
v (t) + nv,l(t) and the cor-

responding intra-parameters.

This way, given a set of virtual activity curves and the corresponding

velocity vector, one can easily estimated the virtual activity’s duration
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t∗. The rest of the features were then extracted for each subject as

described in Sections 4.1 and 4.2. In Figure 3.2, one can see some

samples of virtual features from different users. It can be noticed that

the physical notion of the activity curves is preserved.

In total, 5 virtual activity curves that have been created for each of the

100 virtual subjects. Namely, 4 of them have been used as the gallery

set, while the remaining one has been utilized for the generation of

the testing signature.

Figure 3.2.: Multiple Repetitions of several features of the Virtual Subjects.

4. Proprietary Multiple Reaching Dataset (DB.P.4): This refers

to a proprietary dataset that has been created within the Information

Technology Institute (ITI) of the Centre for Research and Technology

Hellas (CeRTH). The database was captured in an indoor environment

and consists of 25 healthy subjects playing a customized version of the

Stroop Colour Word test [243].

In particular, during the experiment, a Microsoft Kinect sensor has

been constantly recording the movements of each subject, while the

pointing gesture was translated in screen coordinates, so that the user

was able to control the mouse cursor along the whole range of the

screen. In parallel, GSR and ECG sensors were attached on the fin-

gers and chest of each subject, respectively, so as to record the corre-

sponding physiological and emotional traits, as shown in Figure 3.3.

During the whole gameplay time (i.e. 15 minutes), a vast number
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Figure 3.3.: A user playing the Stroop test. The real world coordinates
of the his/her joints are automatically provided by the Mi-
crosoft SDK [5] (skeleton), while the Galvanic Skin Response
(GSR) and the ElectroCardioGram (ECG) signal are concur-
rently recorded via the attached sensors.

of signatures for each subject was extracted. Regarding the affective

state estimation, 1064 intervals of 20sec each were recorded. Half of

these recordings can be used for modelling affective response of the

average user (i.e. train-dataset) during the game, while the remaining

time-intervals have been used for the evaluation of the recognition

capabilities of the system (i.e. test-dataset).

The Stroop test, as well as variations of it have been recently used

for stress induction purposes [41] [244]. Herein, a modified version

of the Stroop colour word test has been used, resembling as accu-

rately as possible a series of movements that are actually performed

in commercial games, such as pointing and manipulation gestures, as

shown in Figure 3.4. In particular, the current version of the Stroop

test utilized five colours (i.e. red, green, blue, yellow and pink), in a

question-answer game with 3 Sessions, each consisting of a number of

Stroop questions that had to be answered.

At each question, five buttons, each labeled with one of the aforemen-

tioned colours, appeared in distinct regions of the screen Figure 3.5.
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At the same time a colour name appeared in the middle of the screen,

whose font colour varied within the aforementioned colour set. The

scope of the game was to pick the button that matched the font colour

of the colour name that was displayed in the middle of the screen, just

by driving the cursor on it. The question was only then answered,

when the gamer managed to press the correct button within a given

time frame, which varied among different rounds.

Figure 3.4.: Illustration of the 5 different possible manipulation gestures of
the user during the game. The screenshot of the Game Layout
refers to the (1st Trial): The buttons are fixed and the reference
font colour matches the displayed colour name (waiting time=4
seconds). In the current snapshot, the correct answer is se-
lected by Movement #1. It should be noted that the presented
curves do not necessarily represent real movements, in terms of
curvature , but they are drawn so for illustrative reasons.

As it can be seen on both Figure 3.4 and Figure 3.5, the buttons were

placed in such positions, that the user was forced to actively interact

with the game, in order to achieve a high score. In order to make sure

that the user would perform distinct and whole movements (i.e. the

movement starts when the hand of the user lies relaxed next to his/her

body, goes on until the cursor is moved to the indicated button and

ends when the hand is back to its initial position), a short break of

two seconds was forced between two successive questions.
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(a) (b)

Figure 3.5.: Game instances - (a) Trial 2: The buttons are fixed but the
reference font colour does not match the displayed colour name
(waiting time=3 seconds) - (b) Trial 3: The buttons are not
fixed and the reference font colour does not match the displayed
colour name (waiting time=2 seconds).

5. Proprietary Anthropometric Dataset (DB.A.1): In order to ac-

quire the appropriate recordings for the OpenNI algorithms, a custom

dataset has been recorded by the Microsoft Kinect® range sensor.

This dataset consists of 35 (testing) and 14 (training) subjects per-

forming the activities indicated in the two selected scenarios of the

ACTIBIO Reaching Dataset (DB.P.1) in 3 repetitions. 200 frames

from each of the first two repetitions have been used for extracting

the user’s anthropometric profile, by which each user was registered

to the database. Similarly, the anthropometric profile that has been

used for authentication was formed by averaging the results of 200

sequential frames from the third repetition.

In the same respect, the gait and face related datasets, used for the eval-

uation of the probabilistic framework proposed in Chapter 5, follow below:

1. HUMABIO Gait Dataset (DB.G.1): The HUMABIO database,

extensively described in [178], was captured in an indoor environment.

Briefly, it consists of 75 subjects in the first and 51 in the second cap-

ture session. The collection protocol had each person walk multiple

times naturally along a predefined straight path, so that the view is

approximately fronto-parallel. The differences between different ex-

periments mainly include variations in the clothing of the subjects

(e.g. wearing jackets, high heels, carrying a bag, etc.).
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2. ACTIBIO Gait Dataset (DB.G.2): The ACTIBIO database is a

proprietary activity recognition dataset that also includes two sessions

of gait sequences with the same 29 subjects each, captured in two

months difference. The subjects were asked to walk several times

following patterns of increased complexity (e.g. fronto-parallel, small

or progressive deviation in walking direction).

In particular, the recordings of the current dataset, used for gait

recognition, include people walking in various paths within the en-

vironment, while performing various activities. The main course of

walking is around 6m and the distance from the stereoscopic camera

varies from 2− 6 meters. The maximum detected intercycle angle dif-

ferentiation with respect to the front-parallel view was found at 26o,

while the intracycle walking angle variations ranged from 0o to 52o.

Among other experiments recorded for 29 subjects, such as the “nor-

mal”, the “briefcase/bag”, the “coat” experiments, the “view-stop”

condition is mobilized, whereby the subject performs a random path

and stops in order to do specific work activities (e.g. operate the main

room panel, press buttons, etc).

3. Proprietary Activity & Gait Dataset (DB.P.G.3): Similarly

to the ACTIBIO Gait Dataset - DB.G.2 dataset, in the current one,

each of the 14-subjects included is walking again in a random path and

stops for performing a dual activity. Specifically, each user should type

a pin in a panel and then apply a card on a card reader. Both the gait

sequences and the rest activities (prehension activities, such as lifting

the hands so as to “type on a keyboard panel” and to “insert a ID

card” to the appropriate slot) are also included in the current dataset)

have been captured by stereo cameras. Hereby, the size and quality

of the gait recording were identical to the ACTIBIO dataset DB.G.2,

while the recorded images were of lower resolution (320×240×24BPP )

with 15fps compared to the ACTIBIO dataset DB.P.1.

4. BIOTAFTOTITA 3D Face Dataset (DB.F.1): This dataset was

captured in an indoor environment and consists of video sequences (i.e.

successive frames) from 54 subjects. It includes, various poses, angles

(e.g. −90o, 45o), and grimaces (e.g. neutral, smile, scream, etc.) of

the 3D recorded faces, under different lightning conditions, for both
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enrollment (“gallery”) and authentication (“probe”) procedures, all

annotated and split in different time sessions on the same day (Figure

3.6). All 3D related recordings have been exclusively performed via

the Microsoft Kinect Sensor®.

Figure 3.6.: Screenshots of several subjects from the BIOTAFTOTITA 3D
Face Dataset (DB.F.1) during the probe recordings of their faces
under several poses/angles/conditions.

Concluding, Table 3.1 summarizing some important information regard-

ing the aforedescribed datasets.
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3.3. Conclusion

In the current chapter, a link between the possible application scenarios of

the activity related technologies that will be proposed in the current thesis

and the utilized datasets, on which these technologies will be experimentally

evaluated. In this respect, the definition of the context has been given, while

all requirements for lifting the context dependency of the recorded datasets

have been specified. The main scope herein is both the setting up of the

framework of the work that will presented in the next chapters, as well as

the familiarization of the reader with some real case scenarios to which the

core of the thesis is targeting to have an impact.

After a short discussion regarding the properties of the utilized datasets

(i.e. demographics, the size, the selected actions/movements, etc.) and the

pros and cons they exhibit, a detailed description of each dataset follows.

The chapter ends with an overview presentation of the main properties of

the utilized datasets (Table 3.1).
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4. User Recognition using

Prehension Biometrics

The current chapter deals an extensive study on prehension-based dynamic

features and their use for recognition purposes. The term prehension de-

scribes the combined movement of reaching, grasping and manipulating ob-

jects. The motivation behind the proposed study derives from both previous

works related to the human physiology and human motion, as well as from

the intuitive assumption that different body types and different behaviours

would produce distinguishable, and thus valuable for biometric verification,

activity-related traits.

As mentioned in Section 1.3, following Hoff’s principle [189], a prehen-

sion activity will be analyzed hereafter as the temporal succession of two

distinct movements: (i) A novel approach for analyzing the arm movement

is presented herein, based on the generation of an activity related manifold,

the so-called Activity hyper-Surface (Section 4.1), and (ii) the finger/palm

movement will be analyzed complementarily, in terms of the so called spa-

tiotemporal Activity Curves formed at the finger/palm joints (Section 4.2).

Finally, the authentication capacity of the extracted features is evaluated in

terms of their relative entropy and their mutual information (Section 4.3)

within a complete framework targeting user verification (Section 4.4).

4.1. Reaching - Feature Extraction using Activity

hyper-Surfaces

Provided that the open access Microsoft Kinect Tracker was released, only

after the current study was conducted and the databases were captured,

a proprietary upper-body tracker has been developed, so as to cover the

needs of feature extraction from the collected data. In this context, the

current section introduces a novel descriptor for the representation of the
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arm movement, based on the trajectories formed by the arm’s end effector

(i.e. location of the palm) keeping as reference the initial position of the

head. The aforementioned trajectories are unobtrusively detected via the

proprietary tracker described below that requires a depth sensor camera (i.e.

in our case the stereo Bumblebee camera of Point Gray Inc. [159], while

the PrimeSense® advanced depth-sensor in combination with the OpenNI

[160] library has also been utilized providing improved results, due to the

improved depth accuracy it offers.)

4.1.1. Tracking of Reaching Movement

A detailed description of the tracking algorithm can be found in Annex

A, while it is briefly described in the following for the convenience of the

reader. In the same concept an overview of the building blocks of the

proposed tracker is presented in the block diagram of Figure 4.1.

The movements of the users are recorded by a stereo camera and the

raw captured images are processed, in order to track their head and hands

via the successive application of filtering masks on the captured image. In

particular, given the nth frame Fn of the recorded image sequence, a skin-

colour mask S(Fn) [195] combined with background extraction Bhead(F
n)

with respect to the position of the head can offer an initial approximation

of the possible location of the palms. The head can be efficiently tracked

via the Viola Jones based head detection algorithm [201] enhanced by a

mean-shift object tracking [212]. Thus, it can be written that the derived

filtered image D(Fn) is given as D(Fn) = S(Fn) ∩ Bhead(Fn). In all case,

the origin of the axes at each repetition, is the head’s initial location.

Then, by defining as M(Fn) the pixel-wise subtraction of two sequential

filtered images D(Fn) and D(Fn+1)

M(Fn) ≡ D(Fn)−D(Fn+1) (4.1)

the remaining blobs on the image Inf provide a good estimation of the palms’

positions under the assumption that the right/left hand are expected to be

found on the right/left side of the head, respectively.
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Figure 4.1.: The block diagram architecture of the tracker, that is realized
by the sequential application of filtering masks and an enhanced
Viola-Jones based face detection algorithm. Initially, the input
frame is filtered by a skin mask and the face of the user is lo-
calized within the captured image. The input of the face local-
ization is fed to the background removal building block, while
a motion detection is applied, so as to exclude all remaining
non-moving (i.e. background) objects. Finally, the application
of specific bodymetric restrictions (i.e. the right/left hand are
expected to be found on the right/left side of the head) results
to the localization of the hands as the last remaining blobs on
the incoming frame.

Inf (x, y) =

2, if M(Fn(x, y)) = 1

max(0, In−1
f (x, y)− 1), otherwise

(4.2)

As it can be easily perceived from the analysis above, it should be noted

that a smooth function of the proposed tracker can be verified only when

the following list of assumptions is fulfilled:

1. The users are allowed to turn their head to any direction during the

movement. However, they have to look straight to the camera for at

least one frame, so that their face is detected by the utilized Viola-
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Jones algorithm.

2. If both hands are detected simultaneously the left/right one is assigned

to the left/right hand of the user. If only one hand is detected, then

it is assigned to the left/right corresponding hand of the user based,

on which side of the image it has been detected with respect to the

(see Body Restriction related block in Figure 4.1 and Figure A.2(e))

3. The palms of the user (i.e. the skin colour) have to be visible to the

camera, in order to be detected by the tracker.

4. If no hands are detected, their last valid detected position is considered

as valid.

Trajectory Filtering

The real 3D values are acquired taking into account the disparity estimation

from the aforementioned 2.5D head and palm locations via the intrinsic

parameters of the utilized cameras. In order to reduce the effect of noise

in the calculation of sensitive high order derivatives, to filter out unwanted

artifacts and to make the signature robust, the motion trajectories undergo

a multiple pre-processing steps. Moreover, by applying a set of trimming

algorithms the length of these trajectories can be improved in terms of

homogenization among different users, and the shape can be smoothed in

order to represent natural movements (Figure 4.2).

First, short-term fluctuations or perturbations of the exact spot of the

hands, due to the shift of the center of gravity of the remaining hand-blob

(see Figure A.2(e)), to possible occlusions and/or increased shattering, are

discarded via a smoothing window based on the Moving Average Window:

sl(n) =
sraw
l (tn) + . . .+ sraw

l (tn+k)

k
(4.3)

whereby sraw
l(t) = (xl(t), yl(t), zl(t)) with t ∈ t1, . . . tN represents the 3D

coordinates of a tracked point of a single trajectory and k is the width of

the window utilized.

Next, each sl undergoes a Kalman filtering process [161]; a very powerful

recursive estimator performing low-pass filtering. Since only two points are

of interest on each frame, (i.e. the head and the hand), a six-dimensional
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(nine-dimensional in case of simultaneous tracking of both hands according

of the utilized scenario) Kalman filter is needed. It has to be noted that

depending on the utilized scenario/case either the combination of one hand

and the head or both hands and the head are taken into account.

Figure 4.2.: Processing of the tracked locations of the user’s palm (i.e. blue
colour) and head(i.e. red colour) towards the extraction of con-
tinuous and smooth motion trajectories. The radius of each
coloured circle on the images is proportional to the distance of
the current location from the camera.

Last but not least, each set of trajectories is resized to a pre-defined length

by utilizing a modified cubik Hermite spline algorithm, which among others

preserves the initial temporal information of the signal.

As shown in Figure 4.3, the horizontal axis stands for time t and has

been divided in equally long periods of ∆t. The blue spots stand for the

raw points that have been actually detected by the tracker while the green

circles form the temporally uniform resampled signal. In particular, this is

achieved, by applying the following polynomial equation for the estimation

of each resampled point p(t)

p(t∗) = h00(t∗)p0 + h10(t∗)m0 + h01(t∗)p1 + h11(t∗)m1 (4.4)

where the elements h00, h10, h01 and h11 are given as following

h00(t) = (1 + 2t∗)(1− t∗)2

h10(t) = t∗(1− t∗)2

h01(t) = t∗2(3− 2t∗)

h11(t) = t∗2(t∗ − 1)

(4.5)
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while mk is estimated as shown below

mk =
pk+1 − pk

2(t∗k+1 − t∗k)
+

pk − pk−1

2(t∗k − t∗k−1)
(4.6)

It has to be noted that the used time variable t∗ refers to the normalized

for each set of {pk−1, pk, pkk + 1} as t∗k = ∆t
tk+1−tk .

Figure 4.3.: A practical example of a raw and uniformally re-sampled tra-
jectory is shown herein. The blue points refer to the ini-
tially tracked ones, while the green circles refer to the re-
sampled trajectory. It is becomes obvious that the veloc-
ity/acceleration/jerk information at any time remains intact.

To process these signals with the most rich content and asses them, in

order to quantify the shared information between two distributions, uniform

of trajectories are created. The uniform interpolation ensures a temporally

uniform distribution of the points in the final signature. The re-sampled

points of the final trajectory are drawn in such a way that a the velocity

vector between two actually detected locations is also preserved. This results

to optimized and clean trajectories with a slightly different signature data

set, without loss of the initial motion information [215]. With this, the

output signals have the form of a continuous trajectory description, rather

than a sequence of discretely sampled points.

Tracking Evaluation

The accuracy of the proposed vision-based tracker was evaluated via the

Magnetic Motion Tracker of Ascension Technology Corp. Specifically, two
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small magnetic sensors were mounted on the user’s head and hand as in-

dicated by the coloured spots in Figure A.2 in Annex B and Figure 4.4,

during the execution of the experiments. Simultaneously, the user’s head

and hand were tracked by the aforementioned colour/depth sensors.

Figure 4.4.: Simultaneous data recording from three tracking sources during
a Reach and Grasp activity.

The comparison between the derived motion trajectories in Figure 4.5

demonstrates the capabilities of the proposed tracker. The small offset that

can be seen in the trajectories of the camera tracker was mainly caused by

the fact that the magnetic tracker was mounted at the user’s wrist, while

the camera tracker detects the gravity center of the blob of the palm. It

turns out that, although not being able to capture the motion in a detail

as the magnetic tracker, the performance of the proposed visual tracker is

satisfactory enough for the needs of the current experiment, as it will also

be shown in Section 6.1.

In order to provide a measure for this assumption, the Mean Squared

Errors between these two signals (i.e. magnetic tracker and vision-based

tracker) for five different persons, as measured by the corresponding sensors

are indicatively presented in Table 4.1, below. The low values derived prove

the accuracy of the vision based tracker lies within acceptable ranges.

4.1.2. Activity hyper-Surfaces & Feature Extraction

A novel descriptor for the reaching part of a prehension movement is pre-

sented herein. Specifically, the arm’s movement will be described via the

novel concept of Activity hyper-Surfaces (AhS). However, in order to in-
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Figure 4.5.: Comparison between vision-based tracker and ground truth
(magnetic tracker)

troduce the AhS, the concept of Activity Curve (AC) has to be defined. In

particular, an AC describes the spatial displacement of the head or an arm’s

joint during the prehension movement. Thus, an AC is defined for a certain

limb l as the curve made up by the position vector sl(t) of the limbs in the

3D space:

sl(t) = (xl(t), yl(t), zl(t)) (4.7)

As time t is sampled with N points, this curve is made up from N consec-

utive points.

Similarly, the series of points sh(t) = (xh(t), yh(t), zh(t)) of the position

of the head h forms the corresponding AC of the head.

An Activity hyper-Surface (AhS) is defined as the surface made up from

the points with position vectors rA = (1− µ)sh + µsl, where 0 ≤ µ ≤ 1 (see

Figure 4.6(a)).

The area A of such a surface is given by

A =

∫
AhS

[(1− µ)sh(t) + µsl(t)] ds (4.8)
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Table 4.1.: The Mean Squared Error values when comparing the tracking
accuracy of the vision based tracker, having as ground truth the
response of the magnetic tracker.

Subject ID Mean Squared Error (MSE)

X-axis Y-axis Z-axis Overall

Subject 1 0.7932 0.48832 0.5156 1.0646

Subject 2 0.6354 0.61771 0.78512 1.1839

Subject 3 0.8752 0.65879 0.39782 1.1654

Subject 4 0.8348 0.51478 0.52798 1.1138

Subject 5 0.7425 0.43955 0.67421 1.0950

where ds = dtdµ stands for the infinitesimal surface element.

In this respect, three AhSs can be extracted from an arm’s movement:

a) the head-to-shoulder AhS, b) the head-to-elbow AhS and c) the head-to-

palm AhS. Without loss of generality, the term AhS will refer only to the

head-to-palm for the rest of the thesis. This simplification is justified by the

facts that the movement of the elbow’s joint is significantly correlated with

the palm’s movement ( [191]) and that the shoulder’s and head’s movements

exhibit high dependency on each other.

The proposed AhS is a four dimensional (4D) manifold that is not only

difficult to be perceived visually, but also inappropriate to be analysed by

the approach presented in the next paragraphs of the current Section. Thus,

following the assumption that during a prehension activity, the movement

is mainly concentrated on a 2D plane [185], dimensionality reduction prin-

ciples can be applied in order to simplify the calculations. In this respect,

axis rotation is performed in the (x, y, z) subspace of the AhS via Principal

Components Analysis (PCA) and the eigenvector with the smallest eigen-

value is removed. The remaining two dimensions together with the time

axis as an extra dimension form a 3D space in which the original AhS man-

ifold is represented by a surface, characteristic of the ongoing activity, as

illustrated in Figure 4.6(b).

Definition: The simplified Activity Surface AS comprises the union of

all points that lie on the lines connecting these representative points of the

head and hand trajectories, that are closest neighbours with respect the time

dimension Geometrically, the surface is defined as the area within the spatial

bounds of the head’s and hand’s Activity Curves and the temporal limits of
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Figure 4.6.: (a) Construction of an Activity Surface. O is the origin of
the axes. The two black curves represent the trajectories of
vectors sh(t) and sl(t) parameterized by time t. Point A is any
point of segment HL defined by the position of the head H
and the limb L at a specific time, with position vector rA. (b)
Trajectories of the head and the palm in space and time after
dimensionality reduction via PCA of the spatial coordinates.
Joining the corresponding points of the two curves forms the
characteristic surface.

the activity’s duration (Figure 4.7).

As already mentioned, the utilization of the PCA algorithm on the 3D

trajectories has been chosen, so as to simplify the complexity induced by

the relative position the user-camera position during the movement. This is

a necessary step in order to downgrade the visual complexity of the Activity

hyper Surface with negligible information loss, based on Flash et al. work,

to form a surface perceivable by the human eye and most important to be

able to process it with existing 3D modelling techniques. Although any

linear dimensionality reduction algorithm would fit herein, PCA has been

preferred due to its general application and its relative low computational

complexity.

This way, the view-variance of each trajectory drawn by a single body

joint (i.e. head or hand) is lifted. However, since the Activity Surface

(AS) is a combination of two trajectories, its view in-variance can not be

guaranteed at this step. For this reason, the utilization of a view-invariant

method (i.e. Spherical Harmonics Analysis is utilized, herein, as it will be

described later in the current chapter) for the analysis of the generated

surface is needed.
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As time increases monotonically, this definition means that the Activity

Surface is made up by a series of line segments, parallel to the plane de-

fined by the spatial coordinates. So this representation explicitly encodes

the relative distance between the head and the hand during the ongoing

activity, additionally to the information provided by the original shape of

the motion trajectories. Moreover, the movements’ velocity distribution is

also encoded implicitly by this representation, given that the movement’s

duration is mapped on a separate axis. In Figure 4.7, the reader can notice

pairs (vertically) of the Activity Surface of the different users. The intra-

similarities and the inter-variances of the shape of the Activity Surfaces

between several users are visually illustrated. Inspired by this, an analysis

of the shape of the surface is expected to have good potential in providing

discriminative features for recognizing between different users.

Figure 4.7.: Eight Activity Surfaces exhibiting visually intra-similarity and
inter-variances. The surfaces in different columns correspond
to different people, all executing the same action. The labels of
the axes are similar to the ones of Figure 4.6(b) and are omitted
here for reasons of visual simplicity.

In the following, a series of activity related features will be extracted based

on several subspaces of the introduced AhSs. In particular, each consisting

Activity Curve will form both a set of features itself and the basis for further

feature extraction, while the Activity Surfaces will be processed, so as to

produce novel features in terms of Spherical Harmonic Analysis (SHA) [213].

At this point it should be noted that the analysis in terms of Spherical

Harmonis and not a different tool for 3D shapes, has been preferred due
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to the following reason. Namely, due to the fact that the tracked trajecto-

ries (i.e. forming the boundaries of the Activity Surface) are already noisy,

as explained before, gradient analysis and high order derivatives in general

have experimentally shown to amplify the noise. Moreover, despite the fact

that high order Spherical Harmonic Coefficients do also encode noisy infor-

mation, only the lower, and thus, noise-free bands/ranks are kept within

the proposed approach. Last but not least, the lower bands/ranks of Spher-

ical Harmonic Coefficient which are practically noise-free contain the higher

amounts of energy.

Spherical Harmonic Coefficients as biometric descriptors

As any surface in a 3D space, the generated Activity Surfaces can be

uniquely described in terms of Spherical Harmonic Coefficients (SHC) via

Spherical Harmonic Analysis (SHA). For their calculation, the Activity Sur-

face AS has to be expressed in terms of spherical coordinates (ρ, θ, φ), tri-

angulated and resampled with a constant sampling density ds = (dφs , dθs) in

the two angular coordinates. The reference point R, i.e. the origin of the

spherical coordinates, for which ρ = 0, has to be carefully selected. Given

the limitations of the SH algorithm, that only one value of r can be as-

signed to a (θ, φ) pair, it is critical to select the aforementioned reference

point R in our coordinate system, so as to minimize the amount of inter-

sections of the various radii with the surface. Since no special method is

available for defining such an optimal origin point, multiple reference points

(R = {Ri|i ∈ [1, 7]}) are proposed for the optimal description of the whole

surface, as explained in Table 4.2 and shown in Figure 4.8. This way, the

uncertainty introduced from a single-view SH coefficient extraction will be

minimized.

Let fRi : R3 → S2 denote the function that performs the mapping of the

surface to the corresponding Ri. Specifically, fRi(ω̄) : {ω̄ ∈ R3 : fRi(ω̄) ∈
S2)}, whereby ω̄ is a point {P1, P2, t} of the AS in spherical coordinates.

fRi(θ, φ) = min
k=1,. . . ,K

{d(Ri, vk)} (4.9)

whereby vk = vk(Ri, θ, φ) is the kth intersection of the AS with the ray that

starts from the Ri point for a given pair of values of θ and φ. K is the total

number of intersections in the particular direction, while d(Ri, vk) stands
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Table 4.2.: (P1P2t) coordinates of each utilized reference point. CoGP2t,
CoGP1t and CoGP1P2 stand for the Center of Gravities for
each of the following planes P2 − t, P1 − t and P1 − P2, re-
spectively. min(ASP1), min(ASP2), min(ASt) and max(ASP1),
max(ASP2), max(ASt) denote the minimum and maximum
value of the AS in the corresponding dimension, respectively.

Point No. P1-location P2-location t-location

R1 CoGP2t CoGP1t min(ASt)

R2 CoGP2t min(ASP2) CoGP1P2

R3 min(ASP1) CoGP1t CoGP1P2

R4 CoGP2t CoGP1t CoGP1P2

R5 CoGP2t CoGP1t max(ASt)

R6 CoGP2t max(ASP2) CoGP1P2

R7 max(ASP1) CoGP1t CoGP1P2

for the Euclidean distance between Ri and vk.

The Spherical Harmonic Coefficients cml for each fRi(θ, φ) can then be

calculated by utilizing the orthonormalized spherical harmonics, multiplying

them with the aforementioned function, and integrating the product over

the solid angle dθdφ.

cml =

√
2l + 1

4π

(l −m)!

(l +m)!

∫ 2π

0

∫ π

0
fRi(θ, φ)Pml (cos θ)ejmφdθdφ (4.10)

whereby Pml is the associated Legendre polynomial. As it can be seen, the

Legendre polynomial takes two integer arguments l and m. In particular,

l is used as the Spherical Harmonic Band (SHB) index to divide the class

into bands of functions, resulting in a total of (l + 1)l polynomials for a

lth SHB series, while m ∈ [−l, l]. It should be noted that between any Pml
and a Pm

′
l′ for different m values on the same SHB, the polynomials are

orthogonal with each other, unless neither m = m′ nor l = l′ holds [184].

Next, in order to transform the extracted harmonics to comparable, rotation-

and thus, view-invariant indicators, the following normalizations should be

successively applied:

c∗l =

Kl∑
m=−Kl

|cml | (4.11)
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Figure 4.8.: Each Activity Surface (AS) is analyzed with respect to the
seven highlighted different reference points. Hereby, the sam-
pling of the surface with respect to R5 ≡ RP5 is illustrated.

whereby c∗l denotes the lth SHB coefficient, that is rotation invariant by

definition, and Kl stands for the total number of SHs for the given SHB

index l, while m = 2l−1. For more details regarding the spherical harmonic

analysis, the reader is referred to the report of V. Schonefeld [214].

Orientation as biometric descriptor

By further studying the previously constructed Activity Surface, two new

invariant descriptors can be derived during each movement. Namely, these

are the state vectors θarm,l and φarm,l that can be produced for each joint

of the arm that performs the movement. These two state vectors describe

the orientation of the joint l with respect to the head of the user (i.e. origin

of the axis), for the whole duration of the movement, as shown below

θ(t) = arctan(
yhead(t)− ylimb(t)
xhead(t)− xlimb(t)

) (4.12)

ϕ(t) = arccos(
zhead(t)− zlimb(t)

r(t)
) (4.13)
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r(t) =
√

(xhead(t)− xlimb(t))2 + (yhead(t)− ylimb(t))2 + (zhead(t)− zlimb(t))2

and t a certain time instance within the duration of the movement.

The meaning of this transformation is graphically explained in Figure 4.9.

Thereby, the straight line (i.e. vector in the 3D space) that connects the

points H (i.e. the position of the head at time t) and L (i.e. the position of

joint l at time t) has a certain orientation in the 3D space. In particular,

it forms the relative angle with which the joint l is positioned in the space

that has its origin in the current position of the head. The orientation of

the axis (θ0, φ0) is selected so that they are aligned to the direction, where

the limb l is found at the beginning of the movement.

Figure 4.9.: The extraction of the orientation vectors of each joint of the
arm is calculated with reference to the user’s head. The ori-
gin of the axis is aligned with the initial pose of the user (i.e.
Hx′// ¯OHOL). As such, two orientation vectors (θ,φ) are gen-
erated for each joint of the arm, describing the changes of the
movement’s orientation in the 3D space.

This way, some sample orientation vectors of the horizontal θ-angle vec-

tors and the vertical φ-angle vectors are presented in Figure 4.10.

Speed, Acceleration and Jerk

In [191] it was reported that fluctuations of hand’s speed during a prehension

activity are generally described by a bell shaped distribution and that the

movement is independent from the speed. Yet, speed, acceleration and

jerk are not only affected by behavioural habits of the user, but they also

contribute in describing the temporal dimension of the activity. Thus, they

will be included as indicative, behavioural traits in the evaluation performed

within the current study.

In particular, by utilizing each bounding AC of the aforementioned AhS,
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Figure 4.10.: The distinctiveness between the orientation vectors of different
users is clearly exhibited by illustrating several recordings of
(a) the θ-angle vectors and (c) the vertical φ-angle vectors.

a notion of the movement’s speed and the instant speed variances at which

an activity has been performed can be obtained as the distance between two

successive sampling points. Given the spatial transitions and the temporal

information, the speed, acceleration and jerk vectors of the head and palm

during a prehension movement can be trivially calculated using the central

differences of the well-known formulae

vx,y,z(t) =
sx,y,z(t+ 1)− sx,y,z(t− 1)

2∆t
(4.14)

αx,y,z =
vx,y,z(t+ 1)− vx,y,z(t− 1)

2∆t
(4.15)

jx,y,z =
αx,y,z(t+ 1)−αx,y,z(t− 1)

2∆t
(4.16)

Curvature & Torsion Trajectories

Working with the bounding ACs of the Activity hyper-Surface, a further set

of four characteristic view invariant traits can be extracted. Namely, they

are the curvature κ, torsion τ and their first order derivatives (κs and τs)

with respect to the Euclidean arc-length parameter which is expressed by

the position vector s(t) of the points along the curve, as follows

κ(t) =
s(t)× s̈(t)

||ṡ(t)||3
; τ(t) =

(s(t)× s̈(t)) · ...s (t)

||ṡ(t)× s̈(t)||2
(4.17)

for t ∈ [1, T ], where T the total number of samples of the curve. Similarly,

the corresponding derivatives are employed to construct the signature
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κs(t) =
dκ(t)

ds
=
dκ(t)

dt

dt

ds
=
dκ(t)

dt

1

||ṡ(t)||
(4.18)

τs(t) =
dτ(t)

ds
=
dτ(t)

dt

dt

ds
=
dτ(t)

dt

1

||ṡ(t)||
(4.19)

The intra-similarities and the inter-dissimilarity of some extracted curva-

ture and torsion traits from three arbitrary experiments (Section 6.1) are

illustrated in Figure 4.11(a) and Figure 4.11(b).

Figure 4.11.: The distinctiveness between the (a) Curvature (Phone Con-
versation Experiment) and (b) Torsion (Reach & Grasp Ex-
periment) vectors of different users is clearly exhibited by the
illustrated traits.

The analytical methodology, that has been followed herein for the estima-

tion of the aforementioned quaternion of activity-related traits (i.e. curva-

ture, torsion and the corresponding derivatives), is based on differential in-

variants. In particular, the signature components that depend on high order

derivatives are sensitive to noise and round-off errors. In order to reduce this

effect and to make the extracted traits robust, the straight-forward calcula-

tion of the high order derivatives (i.e. single point calculation) is avoided by

involving multiple neighboring points. In other words, the aforementioned

traits are numerically approximated from s(t) by using the joint Euclidean

invariants (inter-point Euclidean distances), as described in [215].

Dynamic Spatial Cost

According to Rosenbaum et al. [190], motion planning and especially human

movements are governed by two task-relevant costs; the spatial error cost

and the travel cost. The travel cost, which depends on the changes in the
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angles at joints, cannot be applied as a descriptor for the arm’s movement,

since the joint angles are not provided by the tracker. However, the spatial

cost dscp can be extended so as to form a useful descriptor that describes the

total distance that is covered by the limb l during the activity. Originally,

the travel cost was defined as

dscp =
√

(Xo −Xc)2 + (Yo − Yc)2 + (Zo − Zc)2 (4.20)

where (X0, Y0, Z0) and (Xc, Yc, Zc) are the Cartesian coordinates of the tar-

get object o and the contact point c, respectively. In other words, this

feature describes the absolute distance between the initial and the final po-

sition of a joint during a movement. Although this distance metric is of

limited discrimination capacity, it can be easily extended to a valuable and

meaningful dynamic trait, the Dynamic Spatial Cost (DSC), which indicates

the covered distance at a given time-instant, as described by the following

recursive equation:

dscp(t) = dscp(t− 1)+√
(xl(t)− xl(t− 1))2 + (yl(t)− yl(t− 1))2 + (zl(t)− zl(t− 1))2

(4.21)

In this respect the dscp(T ) stands for the total distance covered by the joint

during the activity.

Under these observations, it can be concluded that the motion towards an

object is context specific, when described by the spatial error cost of equa-

tion (4.21) and thus, dependents on the surrounding environment. Thus,

the repeatability can be considered valid only for a fixed environment, which

will be the case in the performed experiment (Section 6.1.1). On the con-

trary, the end position and posture of the user’s hand is reported to be

governed by the target and exhibits very low variation over time for the

same user, therefore satisfying the Permanence requirement.

Activity Curves

Last but not least, all extracted Activity Curves s(t) are concatenated, so

as to form a single state vector:
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S(t) = (shead(t), sshoulder(t), selbow(t), shand(t)) (4.22)

The full set of extracted features, regarding the reaching movement, con-

sists of the activity curves, the 7 sets of Spherical Harmonic coefficients,

the speed, acceleration and jerk vector, the curvature, torsion and deriva-

tives vector, as well as the dynamic Spatial Cost vector as functions of time

(V = {S(t), c∗l ,v(t),α(t),θarm,l,φarm,l, c(t),dsc(t)}).
The aforementioned set V of biometric feature vectors was constructed

empirically in order to describe the person’s movement as it contains temporal-

related features (i.e. velocity v(t) and acceleration α(t)), spatial-related

features (i.e. spherical harmonics c∗l ) in terms of reconstruction of the sur-

face, view-invariant global features (i.e. orientation of the movement θarm,l

φarm,l) and local features such as the dynamic spatial cost of the curves

(i.e. dsc(t)).

4.2. Grasping - Feature Extraction using Activity

Curves

In order to provide a complete analysis of the prehension movement, an ap-

proach to the study of the palm and finger movement for recognition reasons,

during a grasping movement is presented in the current section. Provided

that no robust, vision based and unobtrusive method for the tracking of

these movements is proposed up to now in the literature, and considering

the fact that its development would be out of the scope of the current the-

sis, the tracking on the grasping movement has been exclusively based on

the a wired glove sensor. Similarly to the approach followed in Section 4.1,

the movement of the palm’s base and the finger’s phalanxes will be stud-

ied via the introduction of the corresponding Activity Curves, as described

hereafter.

4.2.1. Tracking the Grasping Movement

In order to cover the second part of a prehension movement (i.e. grasping),

the tracking of the fingers during the grasping activity is required. The

device that has been utilized for this scope is the CyberGlove [252]. It pro-

vides the current angles between the phalanxes of the hand and their shifts
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over time by translating the changes of the flowing current on the surface

of the glove, caused by the bent deformations of integrated thin metallic

layers, into real angle values, according to linear transformation. In this

respect, the 3D reconstruction of the hand is possible for visual verification

of the tracking. Specifically, each finger has been assigned 4 Degrees of Free-

dom (DoF), while they consist of 3 phalanxes, as it is illustrated in Figure

4.13(a). A further short illustration of them is also provided in the right

side of Figure 4.12 and Figure 4.4, as well as in Figure 4.13(b)). Similarly,

another 3 DoFs have been assigned to the joint in the base (i.e. wrist) of

the palm.

At this point, it should be noted that according to the authors knowledge,

there is no available vision-based tracker for detecting and recognizing the

palm gestures accurately over time. Moreover, the development of such a

tracker is a complicated task that is out of the scope of the current work.

Thus, the dynamics of the palm and finger movements will be studied only

via the utilization of the CyberGlove sensor. However, this fact does not

reduce the level of unobtrusiveness in future prehension based biometric sys-

tems, when appropriate trackers will become available. Last but not least, it

should be noted that finger based biometrics are studied hereby, for reasons

of completeness of the prehension based movements and act supportively to

the authentication potential of the aforementioned arm based movements.

Figure 4.12.: Simultaneous data recording from three tracking sources dur-
ing a Phone Conversation activity.

Herein, a set of postprocessing actions is performed on the data derived

by the CyberGlove device. In particular, the raw data underwent some
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filtering and processing on the timeseries information, such as resampling,

smoothing via low-pass filtering for the removal of artificially generated

peaks.

The most typical feature regarding grasping is the posture of the user’s

hand after the grasping equilibrium has been reached. The posture P is then

defined as the set of angles θj of each joint j with respect to the predefined

reference angles in the equilibrium position. Thus, the posture feature space

can be defined as P = {θ1, θ2, . . . , θN}, where N stands for the total number

of the utilized fingers’ joints.

Figure 4.13.: (a) Raw Angles of the Finger Phalanxes, (b) Notation of Fin-
ger Names.

However, the grasping biometrics introduced herein aim to encode the ha-

bitual behaviour of humans performing grasping actions (i.e. how they are

used to grasp objects), along with the corresponding anatomical character-

istics (i.e. the grasping posture depends on the shape, size and kinematics of

each individual’s palm). Following this, the aforementioned static features

P can be extended to biometric features of dynamic nature by defining a

sequence of successive postures over time P(t). In this respect, the feature

space of the dynamic hand posture P(t) can be described by a set of N

Activity Curves and can now be written as

P(t) = {θ1(t), θ2(t), . . . , θN (t)|t ∈ [te − t0, te]} (4.23)

where te refers to the grasping equilibrium time and t0 is a timing offset
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appropriately defined and sufficiently large, so as to include the transitional

motion of the hand just before grasping, but also relatively small, so that

the corresponding motion in the interval [te − t0, te] should not be prone

to variance due to environmental parameters, such as interfering objects.

Because we have 4 Degrees of Freedom (DoF) for each finger and another 3

for the palm’s base (Section 4.2.1), N = 23.

4.2.2. Angular Speed, Angular Acceleration and Angular

Jerk

The 1st, 2nd and 3rd time derivatives of each angle θi, i ∈ {1, . . . , 22} be-

tween the finger phalanxes describe the angular velocity ωθ, the angular

acceleration αθ and the angular jerk, respectively:

ωθ =
dθ

dt
αθ =

dω

dt
=
d2θ

dt2
βθ =

dαθ
dt

=
d2ω

dt2
=
d2θ

dt2
(4.24)

4.2.3. Dynamic Travel Cost

Rosenbaum et al. [190] introduced in their study the total travel cost dtcp(t) =∑N=23
j=1 dtcj(θj(t), Tj), where θj is the angular displacement of the jth joint

from its starting to its end angle posture p and Tj denotes the time needed

for the absolute angular displacement. In addition, the Dynamic Travel

Cost (DTC) dtcj(θj(t), Tj) is going to be utilized as a descriptor of the

hand movements.

Specifically, the cost dtcj(θj , Tj) of moving joint j through an angle of

size θj in a time Tj that may or may not equal the joint’s optimal time,

T ∗j (θj), for that same angular displacement is defined as:

dtcj(θj(t), Tj) = kjθj(1 + [Tj − T ∗j (θj)]
2) (4.25)

where θj is measured in degrees, Tj in ms2, while the optimal time is defined

as

T ∗j (θj(t)) = kjln(θj + 1), kj ≥ 0 (4.26)

whereby kj is the joint expense factor that is assigned a value from 0 to 1,

according to the angles’ relative entropy value (see Section 4.3).

It is expected that distinctive variations will be extracted by equation
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(4.25) due to the unique finger size and articulation characteristics of each

user. Thus, the Hard to circumvent requirement will be also satisfied (see

Section 4). More evidence on this issue will be also presented in the recog-

nition capacity analysis that follows in Section 4.3.

The total set of extracted features, regarding the grasping movement,

consists of the angle vectors for each finger, the angular speed, angular

acceleration and angular jerk vector and the Dynamic Travel Cost vector

as functions of time W = {θ(t),ω(t),αθ(t),βθ(t),dtc(t)}.

4.3. Evaluation of Prehension related Features

Authentication Potential

This section deals with the evaluation of the authentication potential of the

extracted features. Specifically, two measures are presented herein, that will

quantify to a certain extent the features’ authentication capacity, in terms

of both their distinctiveness and their mutual dependency. These are the

Relative Entropy, a metric for distinctiveness, and the Mutual Information,

a metric for independency between distinct distributions. The outcomes of

this analysis will lead to the final selection of the most independent features

that exhibit high authentication capacity for the proposed biometric system.

4.3.1. Relative Entropy and Mutual Information

Initially, it is assumed that for each of the aforementioned dynamic biomet-

ric features i there are two different probability density functions f intrai (r)

and f interi (r) for the intra and inter variances of the discrete random vari-

ables F intrai and F interi , respectively. In this context, the relative entropy

[219] between the inter-individual (f interi ) and intra-individual (f intrai ) prob-

ability distributions of an entire population S is defined as follows:

D(f intrai ||f interi ) =

∫
f intrai log

f intrai

f interi

dr (4.27)

For the relative entropy, also known as Kullback and Leibler divergence

[219], D(f intrai ||f interi ) is describing the “distance” of f intrai from f interi .

However, the term “distance” is not intended to be taken in its most lit-

eral sense, since is not a metric. From the information theory viewpoint,
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D(fi||fj) can be interpreted as a measure for the expected discrimination

information for fi over fj .

Still, since relative entropy is asymmetric,

i.e D(f intrai ||f interi ) 6= D(f interi ||f intrai ) , (4.28)

a notion of symmetry is usually inserted by the mean relative entropy:

Dsym(f intrai ||f interi ) = Dsym(f interi ||f intrai ) =
D(f intrai ||f interi ) +D(f interi ||f intrai )

2
(4.29)

Mutual information measures the information that is shared between two

distributions. It is expected that the mutual information of independent

distributions is zero. On the contrary, the mutual information between two

identical distributions is as high, as the actual entropy H(Fi) ≡ H(Fj) of

each.

The mutual information value for each possible pair of features is calcu-

lated and normalized over the sum of both features’ entropies, in order to

obtain a standardized measure for the features’ intra-dependency:

Inorm(F inter
i , F inter

j ) =
I(F inter

i , F inter
j )

H(F inter
i ) +H(F inter

j )
(4.30)

whereby, I(f interi , f interj ) is calculated as

I(F interi , F interj ) =
∑

f inter
i ∈R

∑
f inter
j ∈R

f interi,j log
f interi,j

f interi f interj

(4.31)

4.4. Classification and User Authentication

The current section deals with the algorithms that will be utilized in Sec-

tion 6, in order to realize the final step of a recognition process, i.e. the

comparison of the incoming signature with the ones stored in the database

(i.e. enrollment), towards the classification of the corresponding user to a

client or an impostor.

Two very commonly used modelling methods in machine learning and

in robotics are the Gaussian Mixture Models (GMM) and its spatiotempo-

ral extension, the Hidden Markov Models (HMM), are presented in Section
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4.4.1 and Section 4.4.2. In general, model-based recognition and classi-

fication has been extensively used in applications such as action recogni-

tion [205], sports video analysis [206], speech/speaker recognition [207], etc.

In this section, we present the GMM-based modeling, wherein the proba-

bility density function (PDF) corresponding to the data matrices V and W

(see Section 4.1.2 and Section 4.2.3) for each activity is represented using

Gaussian mixtures. The successful static PDF estimation using GMMs is

further extended to robustly model temporal variations using continuous-

density HMMs.

The extracted features for each user render traits of his behavioural char-

acteristics towards a certain action and can thus include discrimination ca-

pacity. In order to utilize features from different enrolments and thus, to

produce a more robust and more invariant signature, statistical models will

be trained from the activity-related traits. Similarly, other signatures can

later be evaluated and classified when compared with the trained statistical

model. The cluster signature has two merits. First, it is a model-based

abstract representation of a motion class. Thus, a motion pattern can be

described more efficiently in terms of a signature model. Second, the clus-

ter signature is not sensitive to trajectory length and thus the preprocessing

step for . Even the matching of two full signatures requires that the metric

must be able to account for the inconsistency in trajectory length and point

distribution.

Herein, although GMM based signature classification has not been ex-

ploited, since it does not efficiently handle the temporal information of the

extracted features, it is briefly described in Section 4.4.1, since it forms an

integral part of the HMM algorithm.

On the other hand, clustered signatures may exhibit drawbacks, such as

increased processing time and overfitting issues. For this reason an alter-

native efficient comparison method that requires no training and takes into

account the spatiotemporal information of the input signals is the Dynamic

Time Warping, as presented in 4.4.3.

4.4.1. Gaussian Mixture Model

An efficient way to cluster two or more signatures in a statistical model

is provided by the Gaussian Mixture Model method [208], which has been
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mobilized in similar case studies in [215] and in [209]. Gaussian mixture

models (GMM) are used to learn a model for a motion class by the density

estimation for a cluster of full or optimized signatures.

Following the principle of a model-based method, we model each motion

class by a probability distribution model. Moreover we classify the trajec-

tories into different classes. The word “class” refers to a type of activity

(represented by its full set of trajectories) for each user, for which we have

sufficient number of samples to train the system.

Assuming that the number of all motion classes for all users is C, C mod-

els will be learned via training which will be characterized by respective

model parameters {Θi}Ci=1. Moreover, Si contains M signature samples

(Si = {Si,m}Mm=1), which serve as the training samples to train an indi-

vidual model i. After we have rearranged these samples in the form of

Si = [Si,1, Si,2, . . . , Si,m, . . . , Si,M ], the underlying probability density func-

tion (pdf) of Si can be modeled by a mixture of Gaussian functions in the

following form:

P (Si|Θ) =
K∑
k=1

wkN(Sc;µk,Σk) (4.32)

whereby Si the input trajectory signal, K is the number of mixing Gaussian

components, wk are the mixing weights with wk = P (k|Θi) obeying
K∑
k=1

wk =

1, and N(Sc;µk,Σk) denotes the multivariate Gaussian function.

The mixture is completely specified by parameters Θ = {wk, µk,Σk}Kk=1.

Since the parameter estimation phase is identical for each class and the

training is performed on the disjoint dataset of these classes, the class in-

dexing subscript will be omitted hereafter from our notation for brevity.

Now, given a training set of trajectories with length T for a particular

class {st}Tt=1, the mixture parameters can be estimated using the maximum

likelihood:

∗
Θ = arg max

[
T∏
t=1

P (st|Θ)

]
(4.33)

This estimation problem can be solved using the EM algorithm [210].

The initial parameters of the EM algorithm, which is an iterative algo-

rithm, are provided by the utilization of the k −means method [208]. The
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EM algorithm transfers a single and difficult optimization problem into a

sequence of smaller and simpler problems. Specifically, it seeks to maximize

the likelihood function by the gradient descent technique. Here instead of

the likelihood function, the log-likelihood is used:

L(Sc|GMMn,k) =
T∑
t=1

log

(
K∑
k=1

wjP (j|µj ,Σj)

)
(4.34)

T the size of the incoming trajectory vector, the wj the weight factor of

the jth cluster, µj and Σj are the mean value and the variation of the

distribution in the jth cluster.

Once the GMMs for all activities have been learnt, the classification of

new trajectories can be performed by computing the likelihood for each

GMM. For this purpose, each new incoming vector of the input trajectory

is posed as an observation sequence to each GMM. During this computation,

the likelihood is computed as shown in Eq. (4.34) and the corresponding

weights are applied to generate the likelihood of the Gaussian mixture. The

trajectory is declared to belong to the subject represented by the GMM

with the highest likelihood.

4.4.2. Hidden Markov Models

Despite their usefulness and their simple implementation, Gaussian Mixture

Models (GMM) have been proven in the past inadequate for capturing the

temporal relations and ordering of the successive tracked locations during

a movement. For this reason, they have not been used in the current thesis

for classification means. However, they form an integral part of the Hidden

Markov Model (HMM) algorithm, and thus they have been presented in

Section 4.4.1. In this respect, given that the extracted trajectories sl(t)

exhibit a strong dependence on temporal ordering, the HMM algorithm

has been utilized for both the training and the authentication/recognition

session of the current recognition module, as described below.

It should be noted that due to the similarities of the experiments carried

out in the evaluation Sections of the thesis, whenever an experiment engages

the training of an HMM model, the parameters defined at this stage remain

unaltered.

In this respect, the first parameter specified for an HMM is the number of
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states. The number of states of the utilized HMM has been set equal to the

maximum number of changes in the direction of the palms and head during

the performance of an activity. Thus, a five-state, left-to-right, fully con-

nected HMM is trained from several enrollment sessions of the same user for

the given activity. In other words, the observation data, which are no other

than the 3D points of the detected positions of the head/arm/elbow/palm

during the performed movement, are assigned to one of the hidden states of

the Hidden Markov Model. This way, not only the spatial position is evalu-

ated, but also the transitions between these states over time (i.e. temporal

information).

In order to verify the aforementioned assumption also 3−, 4−, 5− 6− and

7−state HMMs have been trained and experimentally utilized in subsets of

the available datasets (see Section 3.2.2). The results have not only shown

that the 5−state formulation of the HMM algorithm achieved the best per-

formance it terms of distinctiveness between different HMM models, for the

same incoming genuine trajectory, but they also exhibited the a sparse dis-

tribution of matching probabilities between incoming genuine and impostor

trajectories. For instance, the following table (i.e. Table 4.4.2) exhibits the

results derived by producing Hidden Mark Models of different amount of

states at their training phase, as biometric signatures. The experiment that

has been carried out to prove the aforementioned statement is the same

with the one described in Section 6.1.3.

Table 4.3.: Authentication Performance, measured as EER scores for differ-
ent amount of utilized states in the training of the HMM based
signature.

Movement
ID 3 States 4 States 5 States 6 States 7 States

Phone Con-
versation 37.4% 22.6% 16.7% 18.3% 25.0%

Interaction
with the
Microphone
Panel 31.7% 19.2% 10.3% 13.3% 19.8%

Once the number of states is fixed, the complete set of model parameters

describing the HMM is given by:
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λ = {πj , αij , bj} (4.35)

where πj is the probability of the jth state being the first state among

all the trajectories, αij denotes the probability of the jth state occurring

immediately after the ith state, and bj denotes the PDF of the jth state.

A Gaussian mixture-based representation is used for each state PDF as

indicated in equation 4.32. Then, the state variable qt, which corresponds

to the tth state of the utilized HMM, takes one of T values qt ∈ {s1, ..., sT }.
Since a Markovian process is assumed, the probability distribution of qt+1

depends only on qt. This is described by the state transition probability

matrix A whose elements aij represent the probability that qt+1 corresponds

to state sj given that qt corresponds to si. The initial state probabilities

are denoted by πj , namely that the probability q1 corresponds to state s1.

The observational data Ot from each state of the HMM are generated

according to a PDF dependent on the instant of tth state, denoted by bj(Ot).

This state-conditional observation PDF is modeled as a Gaussian mixture

as indicated below:

bj(Ot) =
K∑
k=1

wjk
1

(2π)P/2|Σjk|1/2
exp

{
−1

2
(O − µjk)TΣ−1

jk (O − µjk)
}
(4.36)

whereby wjk, µjk and Σjk denote the scalar mixing parameter, P -dimensional

mean vector and P × P covariance matrix of the kth Gaussian component

in the jth state. Here, each Gaussian component is a multivariate normal

distribution of the same dimensionality, since all trajectories are described

with three dimensions. The parameters of the HMM are initialized to ran-

dom values and the BaumWelch algorithm is used for estimation using the

forward-backward procedure [211].

At this point, the selection of the fully connected HMM should be justi-

fied. The main reason for this choice is to allow the training algorithm to

form those transition for each HMM that best describe the movement of the

joints over time. However, in typical movement of the hand during any of

the scenarios in the utilized datasets (see Section 3.2.2), only a few of the

interconnections between the different states of the HMMs are enabled, as

shown in the transition matrices in Eq. (4.37), Eq. (4.38 and Eq. (4.39) for
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the average user, indicatively.

Tphone =


8.96 ∗ 10−1 1.03 ∗ 10−1 0.00 ∗ 10−0 0.00 ∗ 10−0 0.00 ∗ 10−0

0.00 ∗ 10−0 9.42 ∗ 10−1 5.81 ∗ 10−2 0.00 ∗ 10−0 0.00 ∗ 10−0

0.00 ∗ 10−0 0.00 ∗ 10−0 9.27 ∗ 10−1 7.32 ∗ 10−2 0.00 ∗ 10−0

0.00 ∗ 10−0 0.00 ∗ 10−0 0.00 ∗ 10−0 9.41 ∗ 10−1 5.89 ∗ 10−2

0.00 ∗ 10−0 0.00 ∗ 10−0 0.00 ∗ 10−0 0.00 ∗ 10−0 9.99 ∗ 10−1


(4.37)

Tpanel =


8.37 ∗ 10−1 1.62 ∗ 10−1 0.00 ∗ 10−0 0.00 ∗ 10−0 0.00 ∗ 10−0

0.00 ∗ 10−0 8.22 ∗ 10−1 1.78 ∗ 10−1 0.00 ∗ 10−0 0.00 ∗ 10−0

0.00 ∗ 10−0 0.00 ∗ 10−0 8.59 ∗ 10−1 1.40 ∗ 10−1 0.00 ∗ 10−0

0.00 ∗ 10−0 0.00 ∗ 10−0 0.00 ∗ 10−0 9.08 ∗ 10−1 9.17 ∗ 10−2

0.00 ∗ 10−0 0.00 ∗ 10−0 0.00 ∗ 10−0 0.00 ∗ 10−0 1.00 ∗ 10−0


(4.38)

Tcombined =


9.59 ∗ 10−1 4.05 ∗ 10−2 0.00 ∗ 10−00.00 ∗ 10−0 0.00 ∗ 10−0

0.00 ∗ 10−0 9.39 ∗ 10−1 6.00 ∗ 10−20.00 ∗ 10−0 0.00 ∗ 10−0

0.00 ∗ 10−0 0.00 ∗ 10−0 9.50 ∗ 10−24.94 ∗ 10−2 0.00 ∗ 10−0

0.00 ∗ 10−0 0.00 ∗ 10−0 0.00 ∗ 10−09.19 ∗ 10−1 8.10 ∗ 10−2

0.00 ∗ 10−0 0.00 ∗ 10−0 0.00 ∗ 10−00.00 ∗ 10−0 1.00 ∗ 10−0


(4.39)

Once the training phase has been completed, new trajectories are cat-

egorized as one of the learned users for the specific activity based on the

maximum likelihood criterion (ML) principle. Given HMMs for the L en-

rolled subjects, λ1, λ2, ..., λL, and the new trajectory vectors s′l(t) of the

incoming trajectory vectors from the new recording (i.e. the observation se-

quence) O1, O2, ..., Om, we assign user label m as the HMM that maximizes

the likelihood given the new trajectory [211]:

m = arg max
i∈[1,...,L]

∑
j

P (Ot+1:k|qit = j,O1:t)P (qit = j,O1:k) (4.40)

The above computation can be efficiently performed using the forward

117



recursion procedure in the BaumWelch algorithm [211].

Figure 4.14.: a) Graphical representation of the utilized 5-state, left-to-right
and fully connected Hidden Markov Model. b) Estimation
of the matching score between the “gallery” and the “probe”
vectors using a DTW-Grid. The plotted diagonal presents the
(optimal) path with the least difference cost, i.e. “gallery” and
“probe” vectors are identical. The value for Ac is calculated as
the area enveloped between the optimal and the actual path
on the DTW-Grid, as described in [4].

4.4.3. Dynamic Time Warping

The format of the extracted features is a set of M state vectors obtained

via frequent measurements of the interaction, whereby M is the number

of simultaneously observed features. Although these state vectors provide

quantitative snapshots of the interaction, only a subset M ′ of the total

number of features will contribute towards the users’ final verification.

Given that all features, apart from the Spherical Harmonics Coefficients

(SHC), exhibit a strong dependence on temporal relations and ordering, it

is essential that classification is performed via some appropriate spatiotem-

poral means. The Dynamic Time Warping (DTW) algorithm [4] has been

utilized as the classifier in the present scheme, since it sufficiently man-

ages to capture the spatiotemporal information of the biometric traits. The

SHC-related features are compared with each other via the L1− norm.

Used for calculating a metric about the dissimilarity between two (feature)

vectors, DTW is based on the difference cost that is associated with the
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matching path computed via dynamic programming, namely the Dynamic

Time Warping (DTW ) algorithm. The DTW algorithm can provide either

a valuable tool for stretching, compressing or aligning time shifted signals

( [4]) or a metric for the similarity between two vectors ( [237]). Specifically,

it has been widely used in a series of matching problems, varying from speech

processing ( [4]) to biometric recognition applications ( [39]). A possible

implementation basis on estimating the closed area formed by the path

around the diagonal of the rectangular DTW-grid (Figure 4.14(b)). The

total dissimilarity dDTW between the vectors under comparison is defined

as the product of the area Ac and the minimum difference cost Dmin(T, T ),

that are calculated via dynamic programming [4]. Its main advantages

are its simple implementation and its satisfactory performance given the

required processing time.

A short description of the functionality of DTW algorithm for comparing

two one-dimensional vectors (probe & gallery signal) is presented below:

The probe vector p of length L is aligned along the X-axis while the

gallery vector g of length L′ is aligned along the Y-axis of a rectangular

grid respectively. In our case L ≡ L′ as a result of the preprocessing steps

(Section 4.1.1 or Section 4.1.2). Each node (i,j) on the grid represents a

match of the ith element of p with the jth element of g. The matching

values of each p(i),g(j) pair are stored in a cost matrix CM associated with

the grid. c(1, 1) = 0 by definition and all warping paths are a concatenation

of nodes starting from node (1, 1) to node (L,L).

The main task is to find the path for which the least cost is associated.

Thus the difference cost between the two feature vectors is provided. In this

respect, let (xk, yk) represent a node on a warping path at the instance k of

matching. The full cost D(xk, yk) associated to a path starting from node

(1, 1) and ending at node (xk, yk) can be calculated as:

D(xk, yk) = D(x(k−1), y(k−1)) + c(xk, yk) =
k∑

m=1

c(xm, ym) (4.41)

Accordingly, the problem of finding the optimal path can be reduced to

finding this sequence of nodes (xk, yk), which minimizes D(xk, yk) along the

complete path.
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As stated by Sakoe and Chiba in ( [4]), a good path is unlikely to wander

very far from the diagonal. Thus, the path with minimum difference cost,

would be the one that draws the thinnest surface around the diagonal as

shown by the dashed lines in Figure 4.14(b). In the ideal case of perfect

matching between two identical vectors, the area of the drawn surface would

be eliminated. The closed area around the diagonal can be calculated by

counting the nodes between the path and the diagonal at every row ( [110])

as indicated by the following equation.

V (pi, qj) =



1 , if (i > j) of N(pi, qj)

for j = j, j + 1, ..., j + d, where d = i− j

1 , if (i < j) of N(pi, qj)

for i = i, i+ 1, ..., i+ d, , where d = i− j

1 , if (i = j) of N(pi, qj)

0 , otherwise

(4.42)

Thus, the value V (pi, qj) = 1 to these nodes. On the contrary, all other

nodes lying outside the closed area will be assigned the value V (pi, qj) = 0.

Then, the total area S created by the path is mathematically stated as

following:

Ac =

T∑
i=1

L∑
j=1

V (pi, qj) (4.43)

whereby

Finally the total dissimilarity measure dDTW between vector p and g

(Equation 4.43) can be computed as the product of area size Ac and the

minimum full cost D(T, T ) (Equation 4.41):

dDTW = Ac ·Dmin(T, T ) (4.44)

The general process that is followed is that each “probe” feature vector or

feature vector set is compared with the “gallery” template of the claimed ID,

that are stored in the database. In order to combine authentication scores

from different modalities so as to derive an authentication metric for the full

prehension movement, the scores from each tracking device have to be fused.
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It should be noted that the camera-based and sensor-based tracking devices

are used in turns, in combination with the glove-based tracking device. The

fusion of scores from different tracking devices is performed via score-level

fusion:

Dtot =
∑

j∈{C,M,G}

wjdj,DTW (4.45)

whereby dj,DTW stands for the score provided by each tracking device j

(C:Camera; M :Magnetic; G:Glove), while wj is the corresponding weight

coefficient and is proportional to the total number of bits of information of

the utilized features.

wj =
bits of information for all features of device j

total Number of bits for all utilized features
(4.46)

4.5. Summary

Summarizing, in the current section a novel biometric module has been pro-

posed, exploiting the dynamic characteristics of the movements of the arm

and the finger. The feature extraction procedures for each of the two body-

parts can be schematically seen in Figure 4.15 and Figure 4.16, respectively.

Figure 4.15.: Flow Chart diagram of the procedure followed for the extrac-
tion of dynamic features from the movement of the arm.

Specifically, the movement of the arm of the user is initially recorded

by two different types of trackers, i.e. an proprietary vision-based tracker

that manages to effectively capture the movement of the head and the palm

in the 3D space, and a 4-point wired sensor-based tracker that accurately

detects the location of the head, shoulder, elbow and palm of the user

in short timesteps (Figure 4.15). Next, the aforementioned locations are

used for the description of the performed movement via generating the so-
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Figure 4.16.: Flow Chart diagram of the procedure followed for the extrac-
tion of dynamic features from the movement of the fingers.

Figure 4.17.: Flow Chart diagram of the procedure followed for the selection
of the most indicative activity related features.

called “Activity Surface” and “Activity Curves” descriptors. Finally, the

last building block refers both to the direct processing and the processing via

transformations of these descriptors towards the extraction of these activity

related features that are indicative for user recognition.

Similarly, the movement of the fingers of the hand of the user are tracked

in means of angles between the phalanxes (i.e. via the translation of de-

formation of the integrated thin metallic layers on the surface of the glove,

into real angle values). In the next step, the so-called “Activity Curves”

are generated from the successive tracked angles and are used as the de-

scriptors of the movements of the hand. Lastly, the activity related features

that are characterized by adequate recognition capacity, are extracted via

the corresponding processing.

Following the aforementioned activity-related feature extraction approach,

the proposed feature selection methodology is illustrated in Figure 4.17. Ini-

tially, each feature is evaluated in terms of its relative entropy value, while

the mutual information between all possible pairs of features are estimated

in a confusion matrix. Based on these values, an iterative algorithm, run on

a training dataset (i.e. a subset of the utilized dataset), is applied, in order

to exclude the redundant and noisy features by aiming at the lowest EER

value.

The proposed end-to-end recognition approach is depicted in Figure 4.18
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for both enrollment (i.e. training) and recognition modes, respectively. In

particular, the high level flow chart diagrams of the followed process consist

of the aforementioned tracking module (i.e. Figure 4.15 and Figure 4.16)

and are followed by the filtering out of the least indicative features for

user recognition, as concluded in the module in Figure 4.17. The final

decision, regarding the validity of the identity of the user is taken in the

last building block via the utilization of two efficient classification algorithms

that effectively handle the comparison between the incoming signature and

the stored template.

Figure 4.18.: High Level flow chart diagram of the procedure followed for
the enrollment/training and recognition phase of the novel bio-
metric system.

An analytical evaluation of the proposed methodology regarding both the

validity of the feature selection methodology and the classification results

will be presented in Chapter 6.
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5. Enhancement of Biometric

Systems using Anthropometric

and Soft Characteristics

As it has already been mentioned, activity related and behavioural biomet-

rics systems lack in recognition performance when compared to traditional

ones. This way, however, the advantages they impose in terms of unob-

trusiveness and easy integration characteristics are compensated by their

relatively limited accuracy. Thus, innovative solutions have to be found

out, so as to transparently narrow the gap with traditional biometrics.

In this respect, following the literature review performed in Chapter 1

and specifically in Section 2.3, multi-biometrics have the potential to offer a

promising solution in the aforementioned direction. In particular, the cur-

rent Chapter deals with the enhancement of existing biometric systems via

the incorporation in the recognition process of static anthropometric traits

(Section 5.1) and other soft biometric (Section 5.2) that can be extracted si-

multaneously during the recognition process of the user. This way, no extra

sensors are required, while the fact that principally there is no correlation

between soft biometrics and the originally extracted behavioural biomet-

ric traits, no redundant information is processed, improving thus, both the

recognition performance and the accuracy of the initial system.

Hereafter, Section 5.1 deals initially with the evaluation of the static

anthropometrics (i.e. length of the sections of the upperbody) of the user

and then with their contribution to the original activity related recognition

process presented in Chapter 4.

Moreover, in order to avoid the concept of late fusion in multi-biometrics,

which can be both computationally expensive and rather ineffective, and in

order to propose a generic approach for the incorporation of soft biometrics

in any any biometric system, a probabilistic framework for enhancing the
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performance of the latter via the utilization of continuous soft biometric

traits is proposed in Section 5.2.

5.1. Static Anthropometric Profile

A significant enhancement to the authentication performance of the system

described in Section 4.1 can be achieved by exploiting the static anthropo-

metric information of each user, i.e. a user-specific skeleton model. At this

point, it should be clarified that the development or the improvement of

an gesture recognition technique is out of the scope of the current thesis.

Specifically, the goal herein is to exhibit the potential of static anthropo-

metric features towards biometric recognition.

Thus, two state-of-the-art methods are utilized in the current section for

the extraction of the users’ static biometric profile. The first is described

in [42], whereby hierarchical particle filtering is utilized towards the accu-

rate shape adjustment of an articulated model to the user’s body. The

multi-camera environment requested by this approach is provided by two

calibrated cameras: a stereo frontal camera and a usb-simple camera, which

is placed on top of the user.

Figure 5.1.: Adjusted skeleton model based on: a) hierarchical filtering, b)
OpenNI algorithms

Alternatively to the aforementioned method, a faster and more accurate

method has been lately released. The latter utilizes the PrimeSense® ad-

vanced depth-sensor in combination with the OpenNI [160] library. Thus,

the human form is segmented automatically from the high precision depth
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image, while 48 essential points of the human body are simultaneously

tracked in the 3D space.

The core of the OpenNI library is a machine learning algorithm that has

been statistically trained by millions of images of people in different poses.

The statistical compilation of all these data allows OpenNI to adjust the

most appropriate skeleton model to each human body in terms of size and

pose. The implemented methodology is covered by an international patent

and is described in [199].

When comparing these two approaches, one could notice that in the cur-

rent setting the particle filtering algorithm utilized in [42] requires ∼15

seconds for the processing of a single shot (1 shot ≡ 1 frame
camera). However, it

has been found out that an initial approximate manual annotation of the

user’s joints may significantly increase the performance of the algorithm

with respect to the achieved accuracy.

On the other hand, the OpenNI algorithm exhibits much lower computa-

tional requirements ( 30fps), with a slight decrease in accuracy. A compar-

ison in terms of biometric recognition performance between the aforemen-

tioned methods, as well as their contribution to the carried out experiments

follow in Section 6.1.3.

Once the location of all body’s joints have been estimated, the extracted

user’s skeleton model can represented by an Attributed Relational Graph

(ARG) G = {V,E, {A}, {B}} [200], whereby V are the nodes, E the edges,

and A and B the corresponding attributes, respectively. The nodes and the

edges stand for the joints and the limbs of the actual body, respectively, as

shown in Figure 5.2. Attribute matrix A is not used, since no attributes for

the joints are utilized in the current framework, while attribute matrix B

corresponds to the lengths of the limbs (≡ distances between the adjacent

joints).

5.1.1. Attributed Graph Matching

Possible noisy estimation of the limbs’ lengths is compensated when calcu-

lating the mean value of each anthropometric attribute among several en-

rollment sessions. However, there are some cases, where partially connected

anthropometric graphs may be generated. This may be due to either partial

occlusions of specific limbs from other foreground objects or low confidence
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Figure 5.2.: Anthropometric Graphs’ Comparison.

tracking (i.e. bad illumination). The Attributed Graph Matcher (AGM)

based on Kronecker Graphs [200] has been utilized, whereby comparison

between fully and partially connected graph is possible.

Let us assume two random anthropometric Graphs G and G′ as shown

below:

G = {V,E, {B}ni=1}, where n := |V |

G′ = {V ′, E′, {B′}n′i=1}, where n′ := |V ′|
(5.1)

where Bk carries the lengths of the user’s upper-body limbs.

The case of n 6= n′ indicates a Sub-Graph Matching (SGM), while n = n′

a Full-Graph Matching (FGM). In any case, Graph G is claimed to match

to a sub-graph of G′, if there exists an n×n′ permutation sub-matrix P so

that the following equation is fulfilled.

Bj = P0B′jP
T
0 + (εMj), where j = 1, ..., r (5.2)

where Mj is an n × n noise vector and ε is related to the noise power and

is assumed to be independent of the indices i and j.

To accommodate inexactness in the modelling process due to noise, the

AGM problem can be expressed as the combinatorial optimization problem

of equation:

ε = min
p

(∑s

j=1
Wj+r||Bj −PB′jP

T||2
)

(5.3)
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where || · || represents some norm P ∈ Per(n, n0) denotes the set of all

n×n0 permutation submatrices and {Wi}r+sk=1} is a set of weights satisfying

0 ≤Wk ≤ 1, k = 1, ..., r + s and
∑r+s

k=1 Wk = 1.

In this respect, the minimum error ε stands for a metric for the similarity

between the graphs under comparison.

5.2. Systematic Error Analysis of Soft Biometrics

Similarly to the anthropometric traits, soft biometrics belong to this cat-

egory of human characteristics that are representative of individuals, but

are not yet unique and discriminative enough to distinguish them within a

large group. Following the previous chapter, where

This section presents a more generic probabilistic framework for augment-

ing the recognition performance of biometric systems with information from

continuous soft biometric traits. In particular, by partitioning the soft bio-

metric feature space in proximity-related similar cluster and by modelling

the systematic error induced by the estimation of the soft biometric traits,

a modified efficient recognition probability can be extracted including infor-

mation related both to the hard and soft biometric traits.

Inspired from the works presented in [6] and [220], the author of the cur-

rent thesis attempts to extend and generalize the idea of quantizing the

multidimensional soft biometric feature space, that has been initially pro-

posed in [221], into a generic framework for boosting the matching score of

the basic biometric recognition system, via a probabilistic approach and a

more efficient clustering of the feature space.

Improving the aforementioned concept, the current thesis addresses some

serious open issues that have been raised in both aforementioned works. In

particular, despite its seemingly smooth function, the bayesian framework

proposed in [6] is based on the false assumption of independent conditional

probabilities of the geometric trait when multiple soft biometrics are avail-

able. Moreover, only a naive separation of the feature space takes place

thereby.

It should be emphasized that the proposed approach does not aim at the

fusion of different traits [220], including also soft biometrics, at the score

level as performed in [222] that exhibits some disadvantages like the need of

the computation of a soft biometric score or weighting functions for fusion
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at the score level based usually on posterior probabilities.

5.2.1. Modelling Soft Biometrics

The present thesis proposes a novel and highly efficient probabilistic frame-

work for the integration of one or more soft biometric traits in any biometric

recognition system, by taking advantage of the error induced by the system

when measuring each soft biometric characteristic.

At this point it should be emphasized, that, similarly to [220] and [6] and

contrary to [222], no fusion between the conventional biometric recognition

score and the soft biometric matching score takes place. As such, there is

no need for computation of a soft biometric score, weighting functions or

posterior probabilities.

Let Ω be the set of all identities in the M -sized user population Ω =

{ω1, ω2, . . . , ωM}, xc be the hard biometric information (e.g. geometric gait)

and xs be a continuous soft biometric trait (i.e. the height of the user) from

a set X with N available soft biometrics X = {xs1 , xs2 , . . . , xsN }. As such,

p(ω|xc) = 1 − p(ω̄|xc) is the matching score of the conventional biometric

system.

Partitioning the feature space

In both previous referenced works [220] and [6], the boosting is only aug-

menting the final recognition performance when applied to specific user

groups. Specifically, in [220], users are categorized into “minority” and

“majority” groups, according to the frequency of appearance of their soft

biometric traits, while in [6], only extreme cases of soft biometric traits are

boosted. Another drawback of these approaches lies in the fact, that an

“extreme” or “minority” case is only defined in a single dimension. This

leads to a uniform, linear quantization of the feature space, which is not the

case in most real scenarios.

Contrary to the simple 3-stage partitioning (i.e. small-, normal- and

large-sized population) [6] [220], a more sophisticated spatial partitioning

of the feature space F in NC clusters Ci, that exhibit notable variation in

terms of their defining soft biometrics, is proposed herein. This way, the

authentication probability of a client user is augmented, when the incoming

soft biometric traits refer to the same cluster as the claimed ID. In all other
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cases, the matching probability p(ω|xc) remains untouched and is solely

based hard biometric trait of the user. Although there is no actual limitation

in the dimensionality of the clusters, the simple case of 2D clusters will be

studied herein, without loss of generality.

In this respect, a cluster Ci of the multidimensional soft biometric feature

space, associated to a subset Si ∈ Ω of the set of identities Ω, is characterized

as a valid cluster iff the following hold.

In particular, the a-priori probability of an identity ω to belong to a

cluster has to be low:

0 < p(ω ∈ Ci|xs1 , . . . , xsN ) = pi(ω) << 1

and there should exist a subset Si of Ω, so as

∃Si ⊂ Ω

{
∀ω ∈ Si, p(xs ∈ Ci|ω) > α

∀ω /∈ Si, p(xs ∈ Ci|ω) ≈ pi(ω)

where α is a minimum non-zero value, C is the union of all clusters whose

number NC should be significantly lower than the size |Ω| of the identity

set Ω:
C = ∪Ci, ∀i = 1, . . . , NC

NC << |Ω|

Three different partitioning alternatives have been implemented herein,

all of which fulfil the requirements of a cluster:

Orthogonal Grouping (OG): A linear and possibly the simplest way of

clustering the feature space its partitioning into uniform orthogonal clusters

(Figure 5.3a). This kind of partitioning has been proposed in [220] and [6].

Using a brute force iterative algorithm on an adequately large reference

soft biometric feature dataset, the dimensions of the prototype orthogonal

cluster can be optimally defined. However, the major drawback of the cur-

rent clustering method, as it has been implemented in [220] and [6], is the

fact that it does not consider combined extreme cases of soft biometrics.

On the contrary, it deals with each biometric feature separately. This way,

some clusters are expected to be “left empty”, while others will possibly be

“overcrowded”.
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Figure 5.3.: a) Orthogonal Cluster - b) Hexagonal Cluster - c) Gaussian
Cluster

Hexagonal Cell Grouping (HCG): A more efficient alternative for

clustering the feature space is to partition it into adjacent identical hexag-

onal cells (Figure 5.3b). This way, isotropy is preserved along the whole

feature space, while increased nonlinearity introduced, compared with the

orthogonal grouping in Section 5.2.1.

In this case, the only parameter that has to be estimated and optimized

is the hexagon’s radius. Similarly, to the orthogonal grouping case, this can

be experimentally specified on an adequately large reference soft biometric

feature dataset of the same dimensionality. Hereby, all soft biometric data

at each dimension have to be normalized using their corresponding standard

deviation before being assigned to the hexagonal cluster, in order to conform

to the isotropy of the current grouping.

Similarly to Section 5.2.1, neither the issue of possible empty nor that of

overcrowded clusters is solved hereby, despite the increased non-linearity.

Gaussian Grouping (GG): Theoretically, the less linear the clustering

is the more efficiently it will cover the feature space. In this respect, creat-

ing multidimensional gaussian clusters on the feature space is expected to

provide increased flexibility in grouping similar users.

To this direction, an unsupervised clustering approach is utilized. Ini-

tially, the optimal number of clusters is estimated by utilizing the ISODATA

clustering algorithm [223]. Then again, by exploiting the expectation-

maximization (EM) algorithm [224], the soft biometric feature space can be

easily described as a mixture of multidimensional (Figure 5.3c) Gaussian,

whereby each Gaussian is described as
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N (fω|µk,Σk) =
1

(2π)Z/2|Σk|1/2
e−

1
2

(fω−µk)T Σ−1
k (fω−µk) (5.4)

Vector fω includes the soft biometric trait values, fω = {xsn,1(ω), . . . , xsn,Z(ω)},
while µk and Σk are the Z-dimensional mean vector and the and Z ×Z co-

variance matrix of the kth Gaussian, respectively.

At the authentication stage, the assignment of a user’s incoming soft

biometric feature vector to a cluster occurs according to the maximum like-

lihood (ML) criterion.

Modelling the Noise

Let us now define the ground truth value xgsn as the soft biometric trait

n of user ω and x̃sn as the lth value measured by the system (X̃sn(ω) =

{x̃sn,1(ω), . . . , x̃sn,L(ω)}, where L is the total number of measurements. For

an adequately large number T = M × L of measurements, the noise dis-

tribution that is induced as error in the measurement (i.e. noise) by the

system can be estimated as described hereafter.

As long as T is large enough for reliable statistical estimates, the normal-

ized values esn,l(ωm) = x̃sn,l(ωm)−xgsn(ωm) can be produced. Having these

data for the whole registered population, it is trivial to fit the normalized

values distribution by a 1D Gaussian Mixture of the following type:

p(es|ω) =
K∑
k=1

πkNp(es|µk, σk)

where Np(es|µk, σk) stands for the kth single Gaussian distribution that

contributes to the mixture. The values πk, µk and σk can be easily computed

by utilizing the iterative Expectation-Maximization (EM) algorithm on the

data’s histogram, until convergence.

The initial parameter regarding the number K of single Gaussian distri-

butions in the 1D mixture model is experimentally selected, as the one that

produces an acceptable error value in the χ2 − test:

χ2 ≡
B∑
b=1

(Ob − Eb)2

Eb
, (5.5)

where B is the total number of bins in the histogram, Ob the actual number
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of samples in each bin and Eb ≡ Tp(xs). Once the two parameters, namely

the degrees of freedom and the minimum allowed confidence f are set for

the test, the value of χ2 is cross-checked in the corresponding statistical

tables. If it is below the corresponding threshold, it can be claimed that

the data are compatible with the imposed mixture model with confidence

f [225].

Consequently, p(es|ω) can be calculated as

p(es|ω̄) =
p(es)− p(ω)p(es|ω)

1− p(ω)
(5.6)

where p(ω) = 1
M and p(es) = 1

L are priors.

It should be noted that the augmentation process is applied only to these

users, whose soft biometric traits resemble the claimed ones. Yet, it is

important to highlight that the previous frameworks for augmenting bio-

metric recognition with soft biometrics assumed independence between the

soft biometrics in an ad-hoc manner, which does not hold per se. On the

contrary, the independence between the inserted systematic error for each

soft biometric is guaranteed by definition, since the distribution models re-

fer to the measurement errors (not to the soft biometric traits) that are

produced from independent measurement processes.

In this context, the goal herein is to find a generic expression of the con-

ditional probability p(ω|xc, es1 , . . . , esN ) that denotes the final recognition

score:

p(ω̄|xc, es1 , . . . , esN ) = 1− p(ω|xc, es1 , . . . , esN ) (5.7)

while according to Bayes’ theorem

p(ω̄|xc, es1 , es2 , . . . , esN ) =
p(xc, es1 , es2 , . . . , esN |ω̄)

p(xc, es1 , es2 , . . . , esN )
p(ω̄) (5.8)

The nominator can be analyzed as following:

p(xc, es1 , es2 , . . . , esN |ω̄) ∝ p(xc, es1 , es2 , . . . , esN−1 |ω̄, esN )p(esN |ω̄)

= p(xc, es1 , es2 , . . . , esN−1 |ω̄)p(esN |ω̄)

= p(xc, es1 , es2 , . . . , esN−2 |ω̄, esN−1)p(esN−1 |ω̄)p(esN |ω̄)

= p(xc, es1 , es2 , . . . , esN−2 |ω̄)p(esN−1 |ω̄)p(esN |ω̄)

= p(xc|ω̄)p(es1 |ω̄)p(es2 |ω̄) . . . p(esN−1 |ω̄)p(esN |ω̄)

(5.9)
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While regarding the denominator the following holds:

p(xc, es1 , es2 , . . . , esN ) = p(xc)p(es1)p(es2)...p(esN ) (5.10)

since by definition the geometric gait signature is uncorrelated to the soft

biometric error measurements

p(xc, es1 , es2 , . . . , esN ) = p(xc)p(es1 , es2 , . . . , esN ) (5.11)

and provided that the latter stem from distinct measurement processes and

thus variables esn are held as i.i.d.

p(es1 , es2 , . . . , esN ) = p(es1)p(es2)...p(esN ) (5.12)

In this context, Equation (5.8) can be expressed as the combination of

Equation (5.9) with Equation (5.10), as

(5.8) =
(5.9)

(5.10)
p(ω̄) (5.13)

which results to

p(ω̄|xc, es1 , es2 , . . . , esN ) =
p(es1 |ω̄)p(es2 |ω̄) . . . p(esN |ω̄)p(xc|ω̄)

p(xc)p(es1)p(es2)...p(esN )
p(ω̄) (5.14)

This way, provided that

p(ω̄|xc) =
p(xc|ω̄)

p(xc)
p(ω̄) (5.15)

Equation (5.14) can be written as following

p(ω̄|xc, es1 , es2 , . . . , esN ) =
p(es1 |ω̄)p(es2 |ω̄)...p(esN |ω̄)

p(ω̄|xc)
p(ω̄)

p(xc)

p(xc)p(es1 )p(es2 )...p(esN ) p(ω̄)

=
p(es1 |ω̄)p(es2 |ω̄)...p(esN |ω̄)p(ω̄|xc)

p(es1 )p(es2 )...p(esN )

= 1
p(es1 )p(es2 )...p(esN )p(es1 |ω̄)p(es2 |ω̄) . . . p(esN |ω̄)p(ω̄|xc)

= 1
p(es1 )p(es2 )...p(esN )

N∏
n=1

p(esn |ω̄)p(ω̄|xc)

(5.16)

Where the term
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A =
1

p(es1)p(es2)...p(esN )
(5.17)

consists of priors and is constant for any users ω. This way,

p(ω̄|xc, es1 , es2 , . . . , esN ) = A
N∏
n=1

p(esn |ω̄)p(ω̄|xc) (5.18)

where the term fb =
∏N
n=1 p(esn |ω̄) is the attenuation factor.

5.3. Summary

The work presented in the current chapter is a significant contribution in the

field of multi-biometric systems. In particular, the current chapter aims at

highlighting the contribution derived by the combination of soft anthropo-

metric traits, that can be captured unobtrusively. Herein, two alternatives

are delivered for the enhancement of existing biometric systems via the uti-

lization of anthropometric or soft biometric traits that can be efficiently

captured, without requiring any additional sensors and without imposing

any significant processing encumbering on top of the baseline biometric sys-

tem.

In particular, the chapter was divided in two main sections. Initially,

it has been attempted to further evaluate the recognition capacity of the

features that can be extracted from the upperbody. In particular, the static

lengths of the limbs of the upperbody of each user (i.e. the length of the

arm sections, the length of the shoulders and the height of the head) are

estimated and their recognition potential is evaluated. In particular, an

attributed graph matching based methodology has been proposed for the

validation of the skeleton lengths of the person requesting authentication.

Although the aforementioned anthropometric characteristics of the up-

perbody can be easily represented as a fully connected graph, this is not

the general case for other soft biometric traits. Moreover, the graph based

approach treats the static biometrics as a separate biometric modality, the

result of which should be then fused with the baseline biometric system.

However, fusion of biometrics is a computationally expensive process, while

given the limited recognition capacity of soft biometrics in general in large

dataset [222] [66], the final result may not always be in favour of the recog-
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nition performance.

For this reason, and a generic probabilistic framework for boosting the

client recognition has been presented, utilizing continuous soft biometric

traits. In order, to exhibited the general applicability of the p Indicatively,

it can be mentioned that the improvements in the given datasets (see Section

3.2.2) are characterized by an improvement of ∼ 2.5% and > 20% on average

for the two aforementioned approaches, respectively.
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6. Experimental Evaluation of

Prehension Biometrics

The current chapter deals with the experimental evaluation of the method-

ologies presented in Chapter 4. As it is described below, by utilizing the

appropriate datasets, described in Section 3.2.2, the results of the carried

out experiments are presented in Section 6.1 and in Section 6.2 for the

unimodal and the multimodal case, respectively.

In particular, Section 6.1 starts with the classification of the extracted

activity-related features, in terms of their recognition capacity, via the esti-

mation of their relative entropy and their mutual entropy. Next, the section

goes on with the evaluation of the recognition performance when several

combinations of these features are utilized. The experiments regard two

basic scenarios (i.e. activities) from three distinct, but similar, datasets.

Finally, Section 6.2 presents the potential of the proposed prehension

based concept by evaluating it in a multimodal scenario with a slightly en-

hanced -compared to the current state of the art- gait recognition algorithm,

as described in Section B.1 in Section B.

6.1. Experimental Results of the Prehension

based User Recognition

The application and the evaluation of the approach described in Chapter 4,

regarding the reaching and grasping activities, is presented in the current

section.

6.1.1. Experimental Setup

An experiment containing two different kinds of everyday movements/activities

has been conducted, in order to evaluate the performance of activity related
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traits (i.e. movement of the arm and of the fingers) in practice. Namely,

each user was instructed to perform both a simple Reaching and Grasping

activity (i.e. Interaction with a Microphone Panel) and a more complex

one, a short Phone Conversation, as is also presented in the description of

the dataset DB.P.2 in Section 3.2.2.

The complete framework that is proposed herein includes the tracking of

the user’s head, arm’s and fingers’ joints via the described equipment (Sec-

tion 4.1.1 and Section 4.2.1). In particular, the system that has been set up

for the execution of the experiments is a three-layered system (i.e. Track-

ing, Feature Extraction and Decision Taking) and is described in Figure 6.1,

exploiting a series of motion-related features for user authentication.

Figure 6.1.: Overview of the proposed system

Following both Hoff’s assumption [189] about the two distinct phases of

a prehension movement and the theoretical background provided in Section

4.1 and Section 4.2, a two-fold approach is followed here.

6.1.2. Feature Classification

An analysis was conducted in order to investigate the recognition capacity

of the content of the extracted activity-related features (Section 4.1 and

Section 4.2), in terms of the evaluating tools presented in Section 4.3.

For the current study, the dataset DB.P.2 has been utilized and as it

is also mentioned in its extended description in Section 3.2.2, the 3 first

recorded repetitions of 29 enrolled users performing each movement have

been used for the extraction of the features (i.e. in total 3× 29 = 87 signals

per movement for each extracted feature) that are classified in the following

Section (i.e. Section 6.1.2).
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Figure 6.2.: Relative Entropy Values from features extracted by the Camera
Tracker for the “Reaching and Grasping” experiment

More specifically, the general intra-individual f intrai probability distribu-

tion was constructed, by using all measurements of feature i from all users.

Similarly, the probability distribution f interi was constructed, as well, by

using all measurements of feature i from the training sessions of a single

user, as described in Section 4.3.

The extracted biometric traits were grouped with reference to the tracker

used for each experiment. The relative entropy (Section 4.3.1) values are

exhibited in Figure 6.2, Figure 6.3, Figure 6.4, Figure 6.5, Figure 6.6 and

Figure 6.7, respectively. Regarding what the relative entropy values stand

for, it could be mentioned that they refer to the overlapping percentage of

the distribution of the values of a subset over the distribution of the values

of the whole set, as shown in Eq. (4.27). Thus, the relative entropy values

can not only be used as a metric indicating the distinctiveness, but also the

recognition capacity of certain biometric variables.

Notable is the high discriminative capacity of both the raw Activities

Curves and the most of the Spherical Harmonic Coefficients as activity-

related features. Given the low relative entropy values (in bits) of specific

reference points, one can conclude that these views of the Activity Surfaces

are characterized by a large number of intersections (see Section 4.1.2).

Equally interesting is the fact that the spatial cost of the hand is of high
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Figure 6.3.: Relative Entropy Values from features extracted by the Mag-
netic Tracker for the “Reaching and Grasping” experiment

Figure 6.4.: Relative Entropy Values from features extracted by the
CyberGlove for the “Reaching and Grasping” experiment
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Figure 6.5.: Relative Entropy Values from features extracted by the Camera
Tracker for the “Phone Conversation” experiment

Figure 6.6.: Relative Entropy Values from features extracted by the Mag-
netic Tracker for the “Phone Conversation” experiment
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Figure 6.7.: Relative Entropy Values from features extracted by CyberGlove
for the “Phone Conversation” experiment

discriminative capacity. Intuitively, it can be claimed that the larger the

total spatial cost (i.e. blue DSC feature in Figure 6.2, Figure 6.3, Figure

6.5 and Figure 6.6) , the taller (i.e. bigger the arm of the user) the user and

vice versa.

Regarding the Cyberglove features, one can see that the most indicative

features are the angles and the Dynamic Travel Costs (DTC) of each finger,

while angular velocity and acceleration of some phalanxes may provide en-

hanced distinctiveness among users. The red line stands for the total DTC,

summed up over all fingers.

6.1.3. Authentication Capacity of Activity Curves during

the Reaching movement

As an initial approach towards the issue of biometric recognition from ac-

tivity related traits of the movements of the upperbody of the user, the

Activity Curves (Section 4.1.2) of the end effector of the arm (i.e. palm),

have been utilized (Figure 6.5 and Figure 6.6).

Apart from reasons of simplicity, the selection of this subset of features

(i.e. Activity Curves) has been based on their high relative entropy values

(Figure 6.2, Figure 6.3, Figure 6.5 and Figure 6.6). It should be noted, that

the Activity Curve of the head throughout each movement is only used as

reference point (i.e. spatial normalization) for the Activity Curve of the
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palm.

Another reason for the utilization of this simplified signature of the user

is the evaluation of the enhancement that can be introduced by the incorpo-

ration of the static anthropometric model (Section 5.1) and some ergonomy

related factors in the recognition process. In particular, the anthropometric

model of the user is verified against the one that corresponds to the claimed

ID and the results are normalized and fused at a score level, while move-

ments that are characterized by a low ergonomic factor are discarded from

the recognition process.

Similarly to the study performed in the previous section (i.e. Section

6.1.2), 3 “gallery” 1 recordings of 29 subjects of the DB.P.1 dataset have

been used for the training of an HMM signature template, while 1 record-

ing for each subject as “probe”. The red lines in the ROC curves of Figure

6.8 and Figure 6.9 present the authentication performance, in terms of ROC

curves and the corresponding Equal Error Rate (EER) scores, of the “Phone

Conversation” and the “Reach & Grasp” (i.e.“Interaction with the Micro-

phone Panel”), respectively.

It should be noted, that given that the proposed approach does not aim

at applications for user identification, mainly authentication results will be

discussed hereby. In order to compensate for the fact that the ACTIBIO

dataset DB.P.1 does not contain anthropometric information, synthetic sub-

jects have been created by merging ACTIBIO dataset DB.P.1 and the 29

subjects from the proprietary Anthropometric dataset DB.A.1.

Following this, the improvements achieved, when incorporating the skeleton-

related anthropometric characteristics via the utilization of Attributed Graph

Matching (AGM), can be noted in the reduced EER values of the blue and

green curves on the same Figures, for the two methods proposed in Section

5.1, respectively. It should be noted that the fusion between the recogni-

tion results of the dynamic Activity Curves and the AGM approach has

been realized at score level via the utilization of a standard Support Vector

Machines (SVM) algorithm, trained on the data acquired from the manual

annotation of skeleton on the extra 14 subjects of the Proprietary Anthro-

pometric Dataset DB.A.1.

As expected, when combining both static and dynamic extracted informa-

1The term “gallery” refer to the set of reference recorded sequences, whereas the term
“probe” stands for the test sequences to be verified or identified.
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Figure 6.8.: Phone Conversation - ROC Curves for the fused scores.

Figure 6.9.: Interaction with the Microphone Panel - ROC Curves for the
fused scores.

tion the authentication performance of the system improves further. Specif-

ically, the fusion performed by the SVM achieved an EER score of 8.3% and

7.2%, for the two activities, respectively, when the fully automatic detection

was utilized. The EER scores are even lower in the case the semi-automatic

particle filtering method has been utilized as shown in Table 6.1.

Moreover, the multicamera environmental setting (i.e. a calibrated frontal

stereo-camera with a top monocular camera) of ACTIBIO Dataset DB.P.1

(see Section 3.2.2) allows for the estimation and incorporation of the Er-
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gonomic Zones (Section 1.4.1) in the recognition procedure as a quality

factor for the recognition capacity of the ongoing movement. In order to

calculate the distance dtorso,object, both the torso and each object have to

be first detected on the recording setting. Given that the head position is

detected as described in Section 4.1.1, the underlying body part refers to

the user’s torso. On the other hand, each object can be detected by the top

camera as shown in Figure 6.10. Generally, objects are coarsely described

in a rotation-invariant way based on their contours (Figure 6.10b). Specif-

ically, each object is described by its aspect ratio, the area it occupies and

its colour.

Figure 6.10.: Object detection: a)Top camera view, b)Contour extraction
c)Objects’ area detection, d)Tagging of objects.

Since the two cameras are calibrated with each other, the distance dtorso,object

can be easily calculated as illustrated by the red dotted lines shown in Figure

6.10(d).

In this respect, an important metric about the quality and the evaluation

of the extracted signature is proposed and is defined in equation (6.1) as

the product of the tracking quality factor fq (equation (6.2)), enhanced by

a user-object distance factor b (0 ≤ b ≤ 1), which changes over the human

ergonomic spheres (equation (6.3)).

fq,final = b · fq (6.1)
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fq = 1− NmissHead +NmissRHand +NmissLHand

3Nframes
(6.2)

whereNmissHead, NmissRHand, NmissLHand are the amount of frames in which

the Head, the right and the left Hand were not detected, respectively.

Nframes is the total number of frames of the sequence.

b =


0.1 · dtorso,object + 0.5, if dtorso,object < 5cm

1, if 5cm ≤ dtorso,object ≤ 35cm

−0.02 · dtorso,object + 1.7, if dtorso,object > 35cm

(6.3)

It should be noted that the abstract values presented in this equation refer

to a male user of average height (i.e. 1.75m) and have been adjusted via

several trials among a set 17 subjects.

The lower the quality factor the less probable the extracted dynamic

features to contain valuable biometric information for authentication. Ac-

cordingly, if fq,final ≤ 0.5 the extracted features are discarded and no au-

thentication process takes place.

The quality factor can be used so as to augment the of the authentication

performance of the system in the following manner: “Forced” movements2

that include the stretching of the user have been noticed to exhibit inher-

ent deviations from regular ones (i.e. within the convenient zone of the

user). Thus, no authentication potential is expected to be found in such

movements, given that in the current study the user is expected to act un-

der regular, relaxed conditions, similar to the ones during the enrollment

session. In this respect, the quality factor described above contributes to

the implicit detection of such movements, in order to be excluded from

classification.

In the table below, the reader can notice the improvements in the authen-

tication potential when also the ergonomy-based quality factor is enabled.

The EERs are summarized in Table 6.1, whereby the improvements of the

proposed ergonomy-based quality factor are included. The “Dynamic” col-

umn refers to the recognition performance of the proposed technique when

only dynamic information is used, while the “Static” column refers to the

recognition performance exclusively based on the static anthropometric in-

2As “forced” are defined these movements that involve an interaction with an environ-
mental object outside the convenient zone of the user
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Table 6.1.: Authentication Performance (EER) of Activity Curves

Dynamic Static Fusion Fus. & Ergon.
[42] [160] [42] [160] [42] [160]

Phone Con-
versation 16.7% 11.3% 13.23% 8.3% 10.8% 7.9% 10.1%

Reach and
Grasp (i.e.
Interaction
with Mic.
Panel) 10.32% 11.3% 13.23% 7.2% 9.12% 6.7% 8.4%

formation of the user. The score-level fused results of these aforementioned

techniques are presented under the “Fusion” column, while under the last

column exhibits the authentication performance when ergonomy restrictions

come into play. As it can be noticed by the reader, the ergonomy restric-

tions ignite a fall in the EER score of 0.6% in both experimental scenarios,

as it can be seen from the comparison between the last four columns of the

table. Given the size of the testing dataset, such a decrease corresponds

to the correct classification of two falsely classified subjects. This improve-

ment stems from the fact that specific repetitions have been excluded from

evaluation in the authentication step, since they exhibited low ergonomic

confidence. Thus, a reduced false rejection rate has been achieved.

6.1.4. Authentication Capacity of Activity Curves for

multiple Authentication

Next, provided the nature of the proposed biometric module, experiments

have been carried out regarding the recognition potential of this method in

multiple authentication scenarios.

Although the Proprietary Continuous Reaching Dataset (DB.P.4) (see

Section 3.2.2) has been originally recorded for experimenting on the affective

state of the users, towards the investigation of the effect of stress induction

in activity-related user recognition cases, in the current experiment, only the

vision-based recordings will be used, so as to evaluate the improvements of

multiple authentication when compared to instantaneous one.

In this context, provided that during the game session, 25 individuals

(i.e. players) are indirectly forced to perform the same movement (i.e. via

pressing the same button on the screen), this information can be used as a

147



repeating signature. Game related movements, such as pointing gestures,

that are drawn along the full area of the screen, cover most of the cases that

may come up in game. The movements that are performed in the ergonomic

3D space in the transverse, sagittal and coronal human anatomy planes have

been selected, which force him/her to extend to both the corners and the

middle of the screen.

Similarly to Section 6.1.3 and without loss of generality, only the Activity

Curves (Section 4.1.2) of the head and the right or left arm are taken into

consideration. However, extending the experiment in Section 6.1.3, whereby

only the position of the palm was taken into account, hereby all the joints

of the arm have been utilized (i.e. head, shoulder, elbow, hand), so as to

better capture the individual differences in movement (Figure 6.11)

In particular, given the vast majority of extracted movements that are

available in this dataset, 5 enrollment sets of trajectories for each of the

described movements (see Section 3.2.2) are used for the generation of a

signature for each player (i.e. user), while the rest (typically > 10 sets of

trajectories) is used as probe, contributing to the multiple authentication

scenario, as describe below.

Figure 6.11.: Extracted motion trajectories from the user’s head (black),
shoulder (green), elbow (red) and palm (blue) during a specific
movement: (a) The intra-similarities in the motion trajectories
between different repetitions of the same user are obvious. -
(b) The inter-variances in the motion trajectories between the
same movement performed by different users are obvious.

At this point, it should be noted that each movement is normalized with

reference to the position of the head of the user at the first frame of the

movement, so as to retrieve position invariant biometric traits. This way, it
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becomes evident that Sc is a set of 4 normalized state vectors. Given that

Sc exhibits a strong dependence on temporal relations and ordering, it is

essential that its processing is performed via the appropriate spatiotemporal

means. For this reason, a robust classification tool that is able to efficiently

cope with the spatiotemporal information of the signatures can be provided

by the Hidden Markov Model (HMM) algorithm.

The authentication performance of the biometric system, when based

on the Activity Curves of the players are illustrated in Figure 6.12 for all

movements, in terms of ROC curves along with the corresponding EER

values (i.e. as indicated by the cross-section of the curves with the diagonal

line).

Figure 6.12.: The authentication results for each movement when each user
is at the normal stress level.

These EER values are also summed up in Table 6.2 along with the cor-

responding overall authentication EER score, when the authentication ca-

pacity of all movements is taken into account in a weighted average scheme.

The weighting factor assigned to the authentication score of each movement

is estimated as follows

wi =
EERi∑5
k=1EERk

(6.4)

whereby i stands for the label of each movement.
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Table 6.2.: EER Scores for each single movement (see Figure 3.4).

Movement ID 1 2 3 4 5 Overall (Eq. 6.4)

Normal State 16.6% 8.6% 8.6% 8.6% 12.5% 7.8%

6.1.5. Authentication Capacity of Spherical Harmonics

during the Reaching Movement

The authentication capacity of only the features based on Spherical Har-

monics analysis is evaluated. Specifically, provided the high relative entropy

values of the group of the Spherical Harmonics as activity-related features

(Figure 6.5 and Figure 6.6), extracted from the Activity hyper-Surface (Sec-

tion 4.1.2), the evaluation of the recognition performance of a system that is

explicitly based on them (i.e. Spherical Harmonics) is presented hereafter.

For this reason, the “Phone Conversation” of the ACTIBIO dataset DB.P.1

has been utilized. Similarly to the experiment described in Section 6.1.3,

herein the 29 subjects of DB.P.1 are utilized. In particular, the training

set is formed by 4 gallery sessions, while 1 movement performed by each

subject out of the remaining ones is used as the testing data.

In order to provide an overall matching score result between the user

requesting access and the corresponding claimed ID, based on the authenti-

cation performance of each unity surface, a fusion of these partial matching

distances for each RP has to be performed. However, given the general

structure of the extracted simplified Activity Surface (Section 4.1.2), it is ex-

pected that the authentication capacity is higher for some Reference Points

(RPs) than for some others (see Table 4.2 in Section 4.1.2 for correspon-

dence) . Thus, the optimal fusion score, that would combine unequally

amounts of information from each RP is defined as follows

Stot =
N∑
j=1

wjSj = w1S1 + w2S2 + . . . + wNSN (6.5)

whereby wj is the weight coefficient for each of the N RPs and Sj the

corresponding partial matching distance.

For the current biometric system, N = 7 and the values for each wj are
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defined according to the following equation:

wj = 1− EERj∑N
j=1EERj

(6.6)

where EERj stands for the Equal Error Rate score for the jth RP Spherical

Harmonics Coefficients.

Prior to any processing towards fusion, all scores have been normalized

according to their corresponding z-score:

czl =
c∗l − µy
σy

(6.7)

whereby the mean value µy and the variance σy for each RP have been

calculated separately.

At this point, it should be noted that the estimation of the weights wj

has been performed, based on different sessions of the ACTIBIO Reaching

Dataset (DB.P.1) (see Section 3.2.2), than the ones used for the evaluation

of the authentication performance.

As it has already been mentioned, the performance of the proposed sys-

tem improves the authentication capacity of the system presented in Section

6.1.3. Specifically, the results, acquired by utilizing a Hidden Markov Model

(HMM) as classifier (Section 4.4.2), exhibited an Equal Error Rate (EER)

score of 15%. Within the current work, this outcome is further verified, by

evaluating the authentication capacity of the raw trajectories by a differ-

ent classifier, based on dynamic programming. Namely, the Dynamic Time

Warping (DTW) algorithm (Section 4.4.3) has been implemented and uti-

lized for classifying the probe motion trajectories with respect to the gallery

ones. In this case, the EER score has been found at 17.24%.

All reported results are summed in Table 6.3, along with the authentica-

tion capacity for each of the proposed Reference Points (RPs), that form

the axis-origins for Spherical Harmonics Analysis. As it has been explained,

the authentication performance of a single surface mapping with respect to

its RP provides moderate authentication performance. However, the fusion

of all these results is capable of authenticating a user with much higher ro-

bustness and confidence. The interpretation of this can be stated with the

fact that although activity surfaces from different users may resemble from

one point of view (RP), they will exhibit significant differentiations from
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Table 6.3.: Authentication results based on Spherical Harmonics.

HMM DTW SH

RP1 N/A N/A 23.07%

RP2 N/A N/A 19.56%

RP3 N/A N/A 19.17%

RP4 N/A N/A 15.38%

RP5 N/A N/A 17.24%

RP6 N/A N/A 16.51%

RP7 N/A N/A 15.64%

Overall/Fusion Score 15% 17.24 % 11.76%

almost any other RP. On the contrary, activity surfaces derived from same

users would exhibit increased average similarity for all RPs.

Figure 6.13.: ROC Curves comparing the authentication performance of the
proposed SH method and SoA.

The reader can notice that the proposed surface descriptor is superior to

the previously proposed methods, both in terms of authentication perfor-

mance (Figure 6.13), but also in terms of invariance, given that the spherical

harmonics analysis is by definition rotationally invariant. This would mean

that the authentication performance remains unaffected by the angle the

camera is turned with respect to the user. The provided view-invariance

stems directly from the inherent property of Spherical Harmonics Analysis

for rotational invariance and is the main reason for improving the authen-

tication performance.
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6.1.6. Authentication Capacity of the full Prehension

movement

The full signature, as formed after the application of the proposed feature

selection method (Section 4.3), is herein evaluated in terms of recognition

performance. Similarly to Section 6.1.2, the dataset, on which the current

study has been based, contains the 29 subjects of the DB.P.2. Thereby, 3

sessions have been used as training data, while the 4th and the 5th recording

are used as the testing data in the present and at a later time session (see

the full description of the current dataset in Section 3.2.2), respectively, so

as to provide an estimation of the performance potential of the proposed

approach over time.

Initially, the findings of the results of algorithm are presented. Moreover,

the authentication capacity of the features extracted from the movement

of the fingers are also exhibited, following a similar approach for feature

selection.

Thus, following the findings of Section 6.1.2, it should be noted that

among the most indicative features, there may till be redundancy, given

that it is very likely that some feature are not independent. In order to

detect them, the extracted features are evaluated with respect to their inter-

dependency, via their mutual information I(F interi , F interj ).

Given the vast number of utilized features, a representation via Confu-

sion Matrices would be meaningless. However, the most important findings

are discussed hereby. First, a high dependency value is exhibited between

the features associated with elbow and hand movement. Similar quite high

dependence has been detected between the shoulder’s and the head’s move-

ment, as it is expressed via the extracted features (i.e. activity curves,

orientation vectors, curvature, etc.). These findings verify Lacquaniti et

al.’s assumption [191] about the strong correlation of all the joints of the

arm during a prehension movement. Finally, the full spatial Cost is highly

related with the hand’s spatial cost, especially in the Phone Conversation

Experiment.

Regarding the fingers’ movement, let us first assign the following iden-

tification letters to each finger: a-thumb, b-pointer, c-middle, d-ring and

e-pinky. During both experiments, it was noticed that there was high de-

pendency in the angles’ movement of all joints of fingers d and e. An equally
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high dependency was detected in the movement of the base’s angles of fin-

gers b, c, d and e during the Reaching and Grasping movement, while the

movement of the pointer’s base was differentiated significantly during the

Phone Conversation experiment. Similarly, to the above, the full travel cost

of all fingers was roughly the same.

Finally, in order to estimate the optimal number of most indicative fea-

tures that should be used for authentication, the following process was at-

tempted. In particular, an alternative approach to a classification prob-

lem following the basic principles of typical classification techniques (e.g.

minimum redundancy maximum relevance (mRMR) [193], etc.) is utilized

herein, taking into account both the Kullback-Leibner divergence (i.e. rela-

tive entropy) for evaluating each feature individually and the mutual entropy

for co-evaluating the correlations between all features.

For each experiment (i.e. Reach & Grasp and Phone Conversation)

and for each tracking device (i.e. Camera Tracker, Magnetic Tracker and

CyberGlove) the Equal Error Rate value was calculated, as a function of

utilized features (Figure 6.14, Figure 6.15 and Figure 6.16), starting from

1 to the total number of extracted features Nmovement,tracker, with respect

to the tracker and the movement studied. Based on a confusion matrix

including the mutual entropies, the nimovement,tracker features are preserved

that have the highest relative entropy value and are not strongly correlated

with others. The index i denotes the number of the current iteration of

the algorithm (i.e. ni+1
movement,tracker = nimovement,tracker + 1). Each utilized

feature had undergone a min-max normalization, while the classification at

this stage was performed with the Dynamic Time Warping Algorithm (see

Section 4.4). This way an EER score is estimated in the testing dataset and

noted down, while the algorithm proceeds to the next iteration.

It has been noted that after a certain number nmovement,tracker of uti-

lized features, the authentication performance decreases (i.e. EER score

increases accordingly in Figure 6.14, Figure 6.15 and Figure 6.16), since the

use of less distinctive features has a negative effect to the performance of the

system. Thus, the features, that are indicated as unimportant/redundant,

will be discarded from the authentication procedure, since their utilization

has a negative contribution. This way, features with high mutual informa-

tion values with others can be discarded, without serious loss in the overall

discrimination capacity of the system.
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Figure 6.14.: The EER value as a function of the utilized features applied in
decreasing order of relative entropy for the Camera Tracker.

Figure 6.15.: The EER value as a function of the utilized features, applied in
decreasing order of relative entropy for the Magnetic Tracker.

Figure 6.16.: The EER value as a function of the utilized features applied
in decreasing order of relative entropy for the CyberGlove.
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In this respect, Table 6.5 on page 161 includes the features per activity

that are maintained, as the most valuable ones. The feature names men-

tioned in this table correspond to Figure 6.2, Figure 6.3, Figure 6.4, Figure

6.5, Figure 6.6 and Figure 6.7, while the notations for fingers of the human

are analytically illustrated in 4.13(b) and shortly presented in Figure 4.4.

Additionally in Figure 6.14, the reader can notice that the minimum

authentication error of the camera tracker is significantly larger than the

one derived from the magnetic tracker. This is to be explained by the fact

that sometimes the camera tracker fails to capture accurately the velocity

and acceleration information of the movement, by being more sensitive to

noise from variable illumination and shadows. Although this does not affect

the general form of the trajectory, it causes some unavoidable flickering

around the tracked point (head and hand) along the frame sequence, which

is crucial for capturing the velocity, acceleration and jerk information.

In order to verify the Permanence in Time requirement of our biometric

approach, the same users were asked to perform the same activities in a

different time session. The aforementioned findings regarding the optimal

number of preserved, most discriminative features, were utilized herein and

the results are shown with the help of ROC Curves (Figure 6.17, Figure

6.18 and Figure 6.19). Similar ROC Curves generated from non-optimal

amounts of indicative features are suggestively illustrated, as well, in order

to exhibit the system’s non-optimal performance.

Figure 6.17.: ROC Curves for the performed activities in Session 5 as
recorded by the Camera Tracker.
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Figure 6.18.: ROC Curves for the performed activities in Session 5 as
recorded by the Magnetic Tracker.

Figure 6.19.: ROC Curves for the performed activities in Session 5 as
recorded by the CyberGlove Tracker.

The reader can notice a degradation of < 5%, for the optimal number of

features per tracking device. However, this performance is improved when

the authentication scores of both phases of the prehension movement are

used simultaneously (see Table 6.4), as expected.
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6.1.7. Experimental results in a realistic environment with

the ACTIBIO Database

The findings regarding the most indicative features for authentication pur-

poses (Section 6.1.6) were applied to the real environment of the ACTIBIO

databaseDB.P.1. Although a detailed description of this dataset is included

in Section 3.2.2, it should be noted at this point, that the dataset contains

29 subjects, whereby 3 repetitions of the movements have been utilized as

training data for each user, while a 4th one was used as probe data. Unfor-

tunately, however, the ACTIBIO database does not include measurements

with Cyberglove. Thus, the evaluation of our framework was based only on

the proposed camera tracker (Section 4.1.1).

Following this, only the most significant features, (see Table 6.5 in Sec-

tion 6.1.2), were extracted. Figure 6.20 illustrates the variations of the

system’s performance in terms of EER scores for different numbers of the

most indicative features (Table 6.5).

Figure 6.20.: ROC Curves for the performed activities in the ACTIBIO Dat-
base, as they were recorded by the Camera Tracker

6.1.8. Experimental results in a large synthetic Database

Finally, the proposed approach (Section 6.1.6) was evaluated in the large

Virtual Prehension Dataset (DB.P.3), so as to verify the validity of the

proposed method in a large scale dataset.
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Following a similar setup as the experiments performed in the previous

two dataset (i.e. ACTIBIO database DB.P.1 and Proprietary Prehension

Dataset (DB.P.2)), the training data set included 100 virtual users (see

Section 3.2.2 for a detailed description regarding the generation of the traits

of these users), whereby 4 virtual repetitions have been used for training

the virtual biometric signatures, while a extra repetition has been used as

the testing/probe set.

In this respect, the changes of the EER scores for different number of

utilized features are presented in Figure 6.21 and Figure 6.22 for the two

proposed activities.

Figure 6.21.: ROC Curves for the performed activities in the synthetic
Database as recorded by the Camera tracking device.

It should be noted that the results from the synthetic database should be

compared with the ones of Session 2 (Figure 6.17, Figure 6.18 and Figure

6.19), given that the generated trajectories for the virtual subjects were

based on statistics from all sessions.

Finally, the fused results of the proposed framework are presented in Table

6.4. It should be noted that the fusion was performed as described at the

end of Section 4.4.
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Figure 6.22.: ROC Curves for the performed activities in the synthetic
Database as recorded by the Magnetic tracking device.

Figure 6.23.: ROC Curves for the performed activities in the synthetic
Database as recorded by the CyberGlove tracking device.

Table 6.4.: Overall Authentication Errors after final Fusion
Phone Conversation Reaching & Grasping

Session 1 Session 2
Virtual
Subjects Session 1 Session 2

Virtual
Subjects

Camera
Tracker &
Cyberglove 1.1% 3.9% 4.7% 6.8% 7.7% 8.2%
Magnetic
Tracker &
Cyberglove 0.8% 3.3% 3.6% 2.6% 6.2% 6.4%

160



T
a
b

le
6
.5

.:
R

em
ai

n
in

g
-

M
os

t
va

lu
ab

le
F

ea
tu

re
s

p
er

T
ra

ck
in

g
D

ev
ic

e

C
a
m

e
ra

T
ra

ck
e
r

M
a
g
n

e
ti

c
T

ra
ck

e
r

C
y
b

e
rg

lo
v
e

Initiallyextractedfeatures

6
fo

r
th

e
ra

w
tr

a
je

ct
or

ie
s,

7
fo

r
S

p
h

er
i-

ca
l

H
ar

m
on

ic
s

C
o
effi

ci
en

ts
,
2

fo
r

o
ri

en
-

ta
ti

on
,
8

fo
r

th
e

cu
rv

at
u

re
/t

or
si

o
n

a
n

d
d

er
iv

at
iv

es
,
6

fo
r

th
e

ve
lo

ci
ty

,
a
cc

el
er

a
-

ti
on

an
d

je
rk

of
ea

ch
jo

in
t

an
d

2
+

1
fo

r
th

e
D

y
n

am
ic

S
p

at
ia

l
C

os
t

1
2

fo
r

th
e

ra
w

tr
a
je

ct
o
ri

es
,
7

fo
r

S
p

h
er

-
ic

a
l
H

a
rm

o
n

ic
s

C
o
effi

ci
en

ts
,
2

fo
r

o
ri

en
-

ta
ti

o
n

,
1
6

fo
r

th
e

cu
rv

a
tu

re
/
to

rs
io

n
a
n

d
d

er
iv

a
ti

v
es

,
1
2

fo
r

th
e

v
el

o
ci

ty
,

a
cc

el
er

-
a
ti

o
n

a
n

d
je

rk
o
f

ea
ch

jo
in

t
a
n

d
4
+

1
fo

r
th

e
D

y
n

a
m

ic
S

p
a
ti

a
l

C
o
st

2
3

fo
r

th
e

p
h

a
la

n
x
es

a
n
g
le

s,
6
9

th
e

a
n

-
g
u

la
r

ve
lo

ci
ty

,
a
n

g
u

la
r

a
cc

el
er

a
ti

o
n

a
n

d
a
n

g
u

la
r

je
rk

a
n

d
2
3
+

6
+

1
fo

r
th

e
d

y
-

n
a
m

ic
tr

av
el

Finallypreservedfeatures

P
h

o
n

e
C

o
n
v
e
rs

a
-

ti
o
n

R
e
a
ch

&
G

ra
sp

P
h

o
n

e
C

o
n
v
e
rs

a
-

ti
o
n

R
e
a
ch

&
G

ra
sp

P
h

o
n

e
C

o
n
v
e
rs

a
-

ti
o
n

R
e
a
ch

&
G

ra
sp

Y
,Z

T
ra

je
ct

or
ie

s
fo

r
H

ea
d

;
X

,Y
,Z

T
ra

je
ct

or
ie

s
fo

r
H

an
d

;
5

S
p

h
er

ic
al

H
ar

m
on

ic
s;
θ

an
gl

e
fo

r
or

ie
n
ta

ti
on

;
D

S
C

fo
r

H
an

d
;

H
an

d
ve

lo
ci

ty
;

H
an

d
to

rs
io

n
.

Y
,Z

T
ra

je
ct

or
ie

s
fo

r
H

ea
d

;
X

,Y
,Z

T
ra

je
ct

o
ri

es
fo

r
H

an
d

;
4

S
p

h
er

ic
al

H
ar

m
on

ic
s;
θ

an
g
le

fo
r

o
ri

en
ta

ti
on

;
D

S
C

fo
r

H
a
n

d
;

H
an

d
ve

lo
ci

ty
;

H
an

d
to

rs
io

n
.

X
,Y

,Z
T

ra
je

ct
o
ri

es
fo

r
H

ea
d

;
X

,Y
,Z

T
ra

je
ct

o
ri

es
fo

r
H

a
n

d
;

4
S

p
h

er
ic

a
l

H
a
rm

o
n

ic
s;
θ

a
n

g
le

fo
r

o
ri

en
ta

ti
o
n

fo
r

P
a
lm

;
P

a
lm

tr
a
je

c-
to

ry
fo

r
d

y
n

a
m

ic
S

p
a
ti

a
l

C
o
st

;
P

a
lm

ve
lo

ci
ty

;
P

a
lm

je
rk

;
cu

rv
a
tu

re
o
f

H
a
n

d
T

ra
je

ct
o
ry

.

X
,Y

,Z
T

ra
je

ct
o
ri

es
fo

r
H

ea
d

;
X

,Y
,Z

T
ra

je
ct

o
ri

es
fo

r
H

a
n

d
;

4
S

p
h

er
ic

a
l

H
a
rm

o
n

ic
s;

P
a
lm

o
ri

en
ta

ti
o
n

;
P

a
lm

D
y
n

a
m

ic
S
p

a
ti

a
l

C
o
st

;
P

a
lm

cu
rv

a
-

tu
re

;
P

a
lm

to
rs

io
n

;
1
s
t

D
er

iv
a
ti

v
e

o
f

P
a
lm

to
rs

io
n

.

F
in

g
er

a
:
W

0
,
W

2

a
n

d
W

3
a
n

g
le

s;
W

2
to

ta
l

tr
av

el
co

st
.

F
in

g
er

b
:
W

4
,

W
5

a
n

d
W

6
fo

r
a
n

g
le

s,
W

5
je

rk
,

to
ta

l
tr

av
el

co
st

;
F

in
g
er

c:
W

8
,
W

9

a
n

d
W

1
0

fo
r

a
n

g
le

s,
W

1
0

fo
r

ve
lo

ci
ty

,
to

ta
l

tr
av

el
co

st
;

F
in

g
er

d
:

W
1
2
,

W
1
3
,
W

1
4

fo
r

a
n

-
g
le

s,
to

ta
l

tr
av

el
co

st
;

F
in

g
er

e:
-;

P
a
lm

:
W

1
9

fo
r

a
n

-
g
le

s
(i

.e
.

tr
a
n

sv
er

se
p

a
lm

m
ov

em
en

t)
,

W
1
9

tr
av

el
co

st
.

F
in

g
er

a
:
W

2
a
n

d
W

3
a
n

g
le

s,
W

3
a
n

d
to

ta
l

tr
av

el
co

st
;

F
in

g
er

b
:
W

5
,
W

6

a
n

d
W

6
a
n

g
le

s,
to

-
ta

l
fo

r
to

ta
l

tr
av

el
co

st
;

F
in

g
er

c:
W

9
,

W
1
0

a
n

d
W

1
1

fo
r

a
n

g
le

s,
W

1
1

fo
r

v
e-

lo
ci

ty
,

to
ta

l
tr

av
el

co
st

;
F

in
g
er

d
:
W

1
2

a
n

d
W

1
3

fo
r

a
n

-
g
le

s,
W

1
3

a
n

d
to

-
ta

l
fo

r
tr

av
el

co
st

;
F

in
g
er

e:
-;

P
a
lm

:
W

1
9

a
n

d
W

2
0

fo
r

a
n

g
le

s
(i

.e
.

tr
a
n

s-
ve

rs
e

a
n

d
sa

g
it

ta
l

p
a
lm

m
ov

em
en

t)
.

161



6.2. Experimental results of Prehension based

biometrics in a multimodal approach

In order to evaluate the effectiveness of the proposed Prehension biometric

feature (Section 4.1) in multimodal systems, an experiment has been set up,

utilizing the concept of the so-called “on-the-move” biometry [90], which sets

as the final objective the non-stop authentication in a very unobtrusive and

transparent manner, where the user is not requested to perform any special

action. In particular, a novel scheme for the integration of two activity-

related traits in a multimodal biometric recognition system (i.e. prehension

and gait based recognition) is presented, using a score level fusion of the

individual modalities. The selected modalities are chosen so as to satisfy

the unobtrusiveness constraints of the framework.

Regarding the activity related biometric module, the activities of the

user are captured and the corresponding Activity Curves, as described in

Section 4.1.2 are extracted (Figure 6.24). Finally, they are used as input

to a Hidden Markov Model (HMM) algorithm, both for training and for

classification (Section 4.4.2).

Figure 6.24.: Extracted motion trajectories from (a) User 1 and (b) User
2 during the combined movement of Insterting a Card and
Typing a pinword.

In parallel, a feature-based gait recognition system is proposed that can

handle realistic events, such as user stops (Section B.3 and random walking

paths (Section B.4. Thus, the gait system can be adopted for environments,

where the user can freely move within the working space and perform ev-

eryday activities.

A detailed description of the utilized gait recognition algorithm is pro-

vided in Section B. However, for reasons of consistency and for the con-
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venience of the reader, a short description is included hereafter. Following

the architecture illustrated in the upper part of the building blocks diagram

in Figure 6.25, the reader can notice that initially the user’s silhouette is

extracted from each frame (i.e. every colour frame is accompanied by the

corresponding depth information of the recorded scene) individually. Once

a gait cycle is detected, all silhouettes within it are collected and processed,

so as to form the so-called Gait Energy Image (GEI) [246]. It should be

noted that any silhouette depicting a non-walking user (i.e. stop detection)

has been removed from the frame sequence of the gait cycle, as proposed

in Section B.3, while any silhouette that deviates from the fronto-parallel

walking direction, with respect to the camera, as proposed in Section B.4.

Finally, three well known 2D transforms (i.e. the Radial Integration, the

Circular Integration and the Krawtchouk Moments transforms) are applied

on the GEI, as described in Section B.1 and their outcome forms the user

signature.

The fusion between the two modalities is performed at the score level

optimally and is parameterized via a Genetic Algorithm (see Section B.5 of

Section B). The architecture of the proposed biometric recognition frame-

work is illustrated in Figure (6.25).

Figure 6.25.: Architecture of the proposed gait recognition framework.

The application scenario expects that the user walks along a corridor in

arbitrary walking paths. In the middle of the path, there exists a control

panel, where the user is supposed to stop, in order to insert his authorization

card and to type his personal pin. Then, the user continues his way to the
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door at the other end of the corridor. The whole scene is constantly recorded

by two stereoscopic cameras.

6.2.1. Gait Recognition results

The aforementioned scenario has been conducted, based on the combina-

tion of the datasets ACTIBIO Gait Dataset (DB.G.2), including 29 sub-

jects, and the Proprietary Gait Dataset (DB.P.G.3), including 14 subjects,

regarding the gait recordings and the ACTIBIO Reaching Dataset (DB.P.1)

and Proprietary Activity & Gait Dataset (DB.P.G.3) again with 29 and 14

subjects, respectively, regarding the Activity-related recordings. Despite

the high amount of recordings included in both gait datasets (see detailed

description in Section 3.2.2), only two recordings of the “normal” walk-

ing repetitions are used for the construction of the training set. Following

this, the probe set contains 1 recording from each of the “normal” and the

“view-stop” scenario.

The pixel-wise differences in the extracted Gait Energy Images (GEI),

as described in Section B.1 of Section B, between the non-stop-detection

approach and the proposed framework are demonstrated in Figure 6.26.

The reader can notice the significant denaturation of the GEI image in

the absence of the stop detection, due to the contribution of those frames,

whereby the user has been standing still.

Figure 6.26.: 1st row: Great variations between the gallery and the probe
even between a client user, when stop detection is disabled. -
2nd row: Low denaturation rate of the probe GEI, when stop
detection is enabled at the probe sample.
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The improvements of the proposed gait recognition modality (i.e. stop

detection & silhouette rotation) when the RIT and KRM algorithms are

utilized as classifiers can be seen in Figure 6.27.

Figure 6.27.: Improvements in Gait due to silhouette rotation & stop detec-
tion algorithm (29 Subjects) - Left: (RIT classifier) / Right:
(KRM classifier).

Specifically, the reader can notice the significant contribution of the rota-

tion algorithm to the method proposed in [178]. In particular, the identifi-

cation rates (red line in Figure 6.27) are increased by a mean ratio of 20%

(peek ratio improvement 35%)in the case of the RIT -classifier. Similarly,

as far as KRM features are concerned, an improvement of a mean ratio

of 10% (peek ratio improvement 23%) can be observed. In addition, when

stop detection algorithm was enabled, the identification rates increased even

more by a mean ratio value of 25% and 20%, in both the RIT and KRM

classifier cases, respectively.

The proposed algorithms have been also tested in terms of their resistance

against noise. For this reason, Additional White Gaussian Noise (AWGN)

with a Peak Signal-to-Noise Ratio (PSNR) of 24.1237dB has been added

to the extracted gait silhouettes, by the successive down-scaling to 25% of

the original size of their resolution and up-scaling them back [226], prior to

the generation of each GEI (see Figure 6.28). The derived results (Figure

6.27) caused only a small degradation in the module’s recognition perfor-

mance, which proved the robustness of the proposed approach under noisy

environments.

In the same respect, the proposed enhancements exhibit significant im-

provements regarding the authentication performance of the gait module,

as indicated by the EER results in Table 6.6. Similarly, the degradation

165



Figure 6.28.: a) Noise free vS. Noisy (PSNR = 24.1237dB) Silhouettes.

caused by noise insertion can be considered rather low.

Table 6.6.: Activity (ACTIBIO Dataset) - Equal Error Rates

RIT KRM RIT (AWGN) KRM (AWGN)

EER (29 Subjects) 15.9% 16.5% 16.8% 17.7%

6.2.2. Activity-Related recognition results

For the Activity-related part of the experiment, the 29-subject ACTIBIO

Reaching Dataset (DB.P.1) and the 14-subject Proprietary Activity & Gait

Dataset (DB.P.G.3) have been utilized. In particular, for the evaluation of

the recognition performance on both datasets, 3 recordings have been used

for the construction of the signature for each user, while 1 - different form

the one utilized for the training of the genetic algorithm - was used as probe.

In this respect, the recognition performance, as well as in the Equal Error

Rate (EER) score are exhibited in Table 6.7.

Table 6.7.: Activity (ACTIBIO Dataset) - Recognition Performance

Identification (CMS) Authentication

Rank-1 Rank-5 Equal Error Rate

DB.P.1 - 29 Subjects 67% 96% 14.7%
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6.2.3. Fusion results

The score level fusion between the three classification approaches (i.e. RIT

(Section B.1), KRM (Section B.1), and HMM (Section 4.4.2)) is performed,

as described in Section 6.2.3. The recognition and verification performance

of the final improved multimodal system, as they have been derived from

tests carried out on the 29-subject ACTIBIO database, can be seen in Figure

6.29a and in Table 6.8, respectively.

Specifically, the significantly increased Rank-1 identification rate of the

multimodal system has reached a score of 83%, while at Rank-5 the identi-

fication rate has correctly recognized all the users. Additionally, the score-

level combination of the two activity related traits (i.e. trajectory based

activity recognition & gait recognition) has managed to decrease the overall

EER score of the system to 9% as indicated in the last column of the Table

6.8. In the same respect, the system exhibited strong resilience in both

authentication and identification performance, even during the “noisy” ex-

periment, as shown in the Figure 6.29 and in Table 6.8.

Figure 6.29.: CMS Diagram of the final multimodal system - Left: (29-
Subjects dataset) / Right: (14-Subjects dataset).

Similarly, the corresponding CMS curves and the EER scores for the

custom dataset including 14-subject are depicted in Figure 6.29b, and along

the second row of Table 6.8 respectively.

The utilization of the genetic algorithm (see Section B.5), towards weighted

fusion, has driven to an overall performance improvement of the system of

5%, compared to the case, where uniformly distributed weights (wRIT =

0.33, wKRM = 0.33, wHMM = 0.33) have been assigned to each of the

derived modality scores.
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Table 6.8.: Multimodal System (ACTIBIO Dataset) - Equal Error Rates

RIT KRM HMM Fusion Fusion (noise)

EER (29 Subjects) 15.9% 16.5% 14.7% 10.4% 11.3%

EER (14 Subjects) 14.3% 17.2% 12.1% 8.9% 9.7%

Fusion results

The fusion methodology that is proposed herein has its basis on the Genetic

Algorithm (GA) initially presented in [245] and requires the normalization

of the derived scores to a common basis. For this reason the following

normalization formula has been utilized:

dnorm = (
0.5

TL
)e(− d

dmax ) (6.8)

where dnorm is the normalized score value, d the non-normalized score, dmax

the maximum possible score value and TL an experimentally set threshold

for the modality L. Variable d refers to both dE for the RIT and KRM ,

as well as for dH for HMM classification scores.

In general, a GA is selected to do the fusion between the proposed biomet-

ric modalities in the cases that there is absence of a priori knowledge regard-

ing the distribution of the estimated similarity scores. GAs are very efficient

optimization methods, since they are capable of detecting near global opti-

mum solutions without the need of a priori knowledge of the premise space

and of any non-convexities within it. Thus, in order to optimize the perfor-

mance of the multimodal gait biometric system and supplementary fuse the

activity-related biometric traits, the genetic algorithm described in [245] is

estimating the optimal weights for the three biometric descriptors.

At this point, it should be noted that the utilized genetic algorithm

has been trained via the the 14-subject DB.P.G.3 dataset, but using dif-

ferent repetitions than the ones used for the aforementioned authentica-

tion/identification experiments.

In particular, the optimal weights used for score fusion based on a simple

weighted averaging scheme are estimated using the genetic algorithm de-

scribed in Section B.5 of Section B. For the training of the fusion algorithm,

the recording of the 14 subjects contained in the Proprietary Gait Dataset
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(DB.G.3) (see Section 3.2.2) has been utilized. Specifically, the used gallery

and the corresponding probe sequences stem from different repetitions than

the ones that have later been used for the actual recognition purposes.

The experimental tests with the aforementioned genetic algorithm (Sec-

tion B.5) resulted in the following optimal weighted values:

wRIT = 0.34075, wKRM = 0.21425, wHMM = 0.445 (6.9)

The final weighted distance between the probe x and the gallery y is

estimated as Dtotal(x, y) = 1
Sim(x,y) , whereby Sim(x, y) is defined as

Sim(x, y) =
∑
n∈T

wn
Dn

=
wRIT

DRIT (x, y)
+

wKRM
DKRM (x, y)

+
wHMM

DHMM (x, y)
(6.10)

whereby x ranges from 1 to NP number of probes to identify, y denotes

all the subjects in the training database y = {1, . . . , NG} and Dn(x, y) =

1/Simn(x, y) denotes the total dissimilarity, between the probe subject x

and the gallery subject y given the feature set n ∈ Efull, where Efull =

{RIT,KRM,HMM}.
The proposed fusion method is only used to estimate the optimal weights

once and then the trained algorithm is applied as is, for the online identifi-

cation of individuals with no further training or altering of the weights. The

final results are presented in Table 6.8, whereby a noticeable improvement

in the
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7. Evaluation Static

Anthropometric Trait related

Enhancements

In this chapter follows the experimental evaluation of the methodologies

presented in Chapter 5. By utilizing the appropriate datasets of Section

3.2.2, the results of the carried out experiments per case follow in Section

7.1 for the enhancement in performance accuracy via anthropometric and

soft biometric traits, respectively. In particular, the algorithms presented

in Section 5.2 are significantly augmenting biometric systems (i.e. gait and

face recognition systems) of the current state of the art, as shown in Section

7.1.

7.1. Experimental results of the Soft Biometrics

based enhancements

The application and the evaluation of the probabilistic framework described

in Section 5.2, regarding the enhancement of biometric systems via the in-

corporation of continuous soft biometric traits, is presented hereafter. In

particular, in order to verify the generic application of the proposed ap-

proach, two experiments have been conducted. The first one refers to the

enhancement of a well known gait related biometric approach that has been

initially presented in [178], while the second one regards a state of the art

method for pose invariant 3D face recognition, proposed by Beretti et al.

in [251].

7.1.1. Enhancing Gait Recognition with Soft Biometrics

In order to carry out the evaluation of the probabilistic framework, pro-

posed in Section 5.2, on top of a known gait recognition system, two similar
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gait related datasets have been utilized, i.e. the HUMABIO Gait Dataset

(DB.G.1) and the ACTIBIO Gait Dataset (DB.G.2). In particular, the

first one includes the recordings of 75 subjects walking in several scenarios

and in different time sessions, as described in Section 3.2.2. Similarly, the

second dataset includes 29 subjects walking in front of the camera under

an equivalent variety of scenarios. In any case, however, the training set

is formed by 2 recordings for each subject, when he/she is performing the

“normal” fronto-parallel walking scenario, as it is described in Section 3.2.2,

while for the testing set 1 different recording is used per case, as shown later

in the current Section. Similarly, the time-related experiment regards the

comparison of an incoming gait signature, as recorded at a later time than

the registration period, with the user’s template in the gallery dataset.

The application of the framework of Section 5.2 in a gait recognition

scenario requires first of all the development of a geometric gait recognition

algorithm. Moreover, the height and stride length soft biometric features

should be extracted. Finally, the feature space has to be partitioned and

the probabilities p(es|ω) (Equation (5.5)) have to be modelled, as indicated

in Section 5.2.1 and Section 5.2.1, respectively, for each soft biometric trait

s.

Herein, the feature vector xc (see Section 5.2.1), that refers to the dynamic

gait features (i.e. hard biometric), is extracted using two gait recognition

algorithms. The first algorithm is presented in [178] and is based on the two

well know Radon Transforms that are applied to gait sequence silhouettes

(i.e. BS−RIT and BS−CIT ). The second algorithm is based on matching

spatiotemporal descriptors of the human gait, the so-called Gait Energy

Images [246] and is based on matching spatiotemporal images of human

gait (i.e. GEI − RIT and GEI − CIT ). In order to make the current

thesis self-contained, a short description of the aforementioned algorithms

are described in Section B.1.

Moreover, the “height” and “stride length” soft biometric features should

be extracted. This is trivially achieved from the stereoscopic gait sequences,

as the highest-lowest part of the subject and to the largest distance between

the legs within a gait cycle, respectively. It becomes evident that the process

followed for the estimation of the stride length is prone to bad illumination

and the corresponding shadows that are created on the walking floor, which

may have as result the occlusion of the edges of the feet. On the other
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hand, since the height is estimated as the mean height value of all recorded

frames is robust to illumination changes along the walking path. Thus, the

errors in measurements mainly stem from possible variations in the types

of shoes/hills worn by the users and from the natural hopping of humans

during walking. A more detailed analysis for the estimation of “height” and

“stride” can also be found in Section B.2.

The claim that the error measurements of the utilized soft biometrics are

i.i.d. with each other is based on the fact that they stem from independent

measurement processes, as described in [178].

Thereby, the process followed for the estimation of the stride length is

prone to bad illumination and the corresponding shadows that are created

on the walking floor, which may have as result the occlusion of the edges of

the feet, as shown in Figure 7.1.

Figure 7.1.: The estimation of the stride length is very sensitive to the shad-
ows that are created on the floor walking level of the user’s
walking path.

On the other hand, since the height is estimated as the mean height value

of all recorded frames and is thus, robust to illumination changes along

the walking path. In this case, the measurement error mainly stems from

possible variations in the types of shoes/hills worn by the users, as well as

due to the natural hopping of humans during walking.

The aforementioned claim can be easily verified by the following diagrams,

which prove that in our experiments the measurement errors between the

utilized soft biometrics can be held as i.i.d. variables. In particular, the

correlation factor between the calculated error values (see Figure 7.2) was

found 0.0755.
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Figure 7.2.: The correlation factor between the error measurements of the
utilized soft biometrics is found 0.0755. Thus, these error mea-
surements can be characterized as i.i.d. variables, without loss
of generality. The x-axes of all presented diagrams are aligned,
so as to correspond to the soft biometric values of the same user
( 6 soft biometric values per user).

Modeling minor Clusters and a-priori Probabilities

A significant task towards applying the proposed boosting framework is to

model the probability density function (pdf) of the noise induced by the

system when measuring the soft biometric traits.

In this respect, following the steps in Section 5.2.1, the parameters of the

Gaussian Mixture that best fits the normalized data are presented in Table

7.1.

Alternatively, a visual illustration of the aforementioned fitting can be

found in Figure 7.3(a).

In the same context, the pdf that best fits the stride measurement’s error

is a single Gaussian distribution with a mean value µ = 1.64228 and a

standard deviation σ = 0.09276, as shown in Figure 7.3(b).

Next, following the methodologies presented in paragraphs 5.2.1, 5.2.1

and 5.2.1, the partitioning of the feature space is shown in Figure 7.4.
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Table 7.1.: Gaussian Mixture fitting the Height Distribution

Cluster No. k πk Mean µk Standard Deviation σk

1 0.06746 1.45382 0.04130

2 0.01190 1.22333 0.01599

3 0.18452 1.57194 0.02717

4 0.29960 1.65682 0.02291

5 0.13095 1.85379 0.02816

6 0.30556 1.74110 0.02387

Figure 7.3.: Distribution of the Systematic Error in (a) Height and (b) Stride
Measurements and the corresponding fitting curve.

Experimental results of the proposed approach

The proposed framework was tested both in terms of state of the art curves

(i.e. ROC, CMS and score distributions) and experimental evaluation on

well known datasets, whereby sequences from different recording sessions are

used for enrolment (“gallery”) and identification/authentication (“probe”).

The proposed algorithms have been tested in both the HUMABIO Gait

Dataset (DB.G.1) and ACTIBIO Gait Dataset (DB.G.2) databases (Sec-

tion 3.2.2) that include gait sequences captured with stereoscopic cameras.

Herein, only the gallery measurements of the HUMABIO Gait Dataset

(DB.G.1) database (Section 3.2.2) have been used as the reference for both

error modelling (Figure 7.3) and feature space partitioning (Figure 7.4). The

performance of the system was evaluated via the probe recordings. Simi-

larly, the ground truth values for the Soft Biometric data of each user have

been measured by a manual annotator on the recorded 3D data. More-

over, these measurements have been verified via actual (i.e. real world)
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Figure 7.4.: Three alternatives for partitioning the feature space are studied:
(a) UOG, (b) UHG and (c) non-linear 2D GG.

measurements and questionnaires during the capturing of the databases.

Identification Results: Figures 7.5, 7.6 and 7.7 present the comparative

identification results on both datasets for the GEI-RIT, BS-RIT and BS-CIT

experiments, respectively, as they are described in Section B.1 of Section

B. All aforementioned diagrams illustrate the efficiency of the proposed

approach using different algorithms for gait feature extraction and different

databases. Four curves are displayed in each figure that correspond to the

Cumulative Matching Scores (CMS) using solely the geometric gait features

described in Section B, and different clustering techniques that boost the

geometric gait feature with soft biometrics (i.e. gait, height and stride). As

expected, the more non-linear the partitioning of the soft biometrics feature

space is, the more significant is the increase in gait recognition efficiency. It

should be also emphasized that from a theoretical point of view, the pro-

posed framework is expected to advance the recognition rate for incorrect

identification cases for subjects that exhibit soft biometric features of sub-

stantial discrimination power, i.e. for subjects that lie within the minor

clusters.
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Figure 7.5.: Cumulative Matching Scores (CMS) for the GEI −RIT algo-
rithm described in Section B.1 as evaluated on both databases.

Figure 7.6.: Cumulative Matching Scores (CMS) for the Baseline RIT algo-
rithm described in Section B.1 as evaluated on both databases.

Authentication Results: Concerning the authentication performance of

the proposed approach, the False Acceptance (FAR) and False Rejection

Rates (FRR) are extracted and illustrated in Figures 7.8, 7.9 and 7.10 for the

GEI-RIT, BS-RIT and BS-CIT experiments on both databases, respectively.

It should be mentioned that the proposed framework manages to decrease

the FAR and FRR in the equal error rate EER point from 12.16% to 2.7% in

the (BS-RIT Experiment) HUMABIO database in the Gaussian clustering

case, while sightly lower improvements can be noticed in the orthogonal and

the hexagonal partitioning cases. Similar improvements can be noticed in

the ACTIBIO database (GEI-RIT experiment), where the EER falls from

15.28% to 3.57%. It should be noted that the increment in performance

becomes more notable for difficult application scenarios, where the state-

of-the-art gait recognition and authentication scenarios cannot achieve very

high recognition and authentication rates (e.g. the Time-Scenarios [178]).
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Figure 7.7.: Cumulative Matching Scores (CMS) for the Baseline CIT algo-
rithm described in Section B.1 as evaluated on both databases.

Figure 7.8.: Receiver Operating Characteristics (ROC) for the GEI-RIT
algorithm described in Section B.1 as evaluated on both
databases.

A direct, quantitative comparison with the boosting framework that has

been proposed by Moustakas et al. in [6] can be found in Table 7.2 and Table

7.3 for the authentication and the identification performance, respectively.

Thereby, the superiority of the currently proposed scheme can be easily

concluded by the corresponding advances of Equal Error Rates (EER) and

the identification scores within first three ranks (i.e. Rank-1 and Rank-3).

Last but not least, it can be easily derived that the current framework

provides significantly improved performance, given the fact the experimental

results in [6] prove the superiority - in terms of recognition performance -

of that approach over the one presented in [222].

Score Distributions: Following the aforementioned advancements in both

identification and authentication performance of the proposed framework,
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Figure 7.9.: Receiver Operating Characteristics (ROC) for the GEI-RIT
algorithm described in Section B.1 as evaluated on both
databases.

Figure 7.10.: Receiver Operating Characteristics (ROC) for the GEI-RIT
algorithm described in Section B.1 as evaluated on both
databases.

it is worth highlighting the improvements that are introduced in the distri-

bution of scores between clients and impostors. A more difficult experiment

than that has been herein utilized concerns the human recognition on a

different date from the one he/she has been registered to the system. In

particular, the recognition process in the current experiment has been at-

tempted 6 months after the enrollment day for both databases (for further

details see [178]).

As it can be seen in Figure 7.11a and 7.12a, the genuine scores are com-

pletely mixed with the ones of the impostors. However, after the application

of the proposed framework, a significant separation of them can be noticed

in Figures 7.11b and 7.12b.
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Table 7.2.: EER Scores Comparison between the proposed method and [6]

Experiment Initial [6] OG HCG GG

ACTIBIO - BS/RIT 28% 16% 11% 8.5% 4.3%

HUMABIO - BS/RIT 19% 16% 13.5% 9% 3.25%

ACTIBIO - GEI/RIT-Time 25% 15% 18.5% 14.8% 11.1%

ACTIBIO - BS/RIT-Time 28% 15.2% 17.3% 14.8% 11.5%

HUMABIO - BS/CIT-Time 17.5% 15% 8.07% 6.9% 5.2%

Table 7.3.: Identification Performance Comparison between the proposed
method and [6]

Experiment Initial [6] OG HCG GG
R-1 R-3 R-1 R-3 R-1 R-3 R-1 R-3 R-1 R-3

ACTIBIO -
BS/RIT 58% 82% 70% 94% 70% 90% 79% 96% 79% 100%
HUMABIO -
BS/RIT 87% 91% 91% 93% 89% 94% 91% 94% 91% 94%
ACTIBIO -
GEI/RIT-
Time 68% 83% 75% 91% 76% 79% 76% 86% 79% 96%
ACTIBIO
- BS/RIT-
Time 50% 72% 63% 79% 69% 82% 68% 85% 69% 89%
HUMABIO
- BS/CIT-
Time 45% 67% 65% 77% 75% 84% 61% 87% 76% 86%

7.1.2. Enhancing Face Recognition with Soft Biometrics

In order to exhibit the generic nature and applicability of the framework

presented in Section 5.2, in the current Section the state of the art 3D face

recognition system presented by Berretti et al. in [251] is herein utilized, as

the baseline algorithm.

The proposed approach has been evaluated on the BIOTAFTOTITA 3D

Face Dataset (DB.F.1) (see Section 3.2.2), that contains facial recordings of

54 subjects under different scenarios. Although the utilized 3D face match-

ing algorithm exhibits high robustness in difficult environmental conditions

and strange poses, within the current work, frames form the simple case of

neutral pose in 0o have been selected pose has selected for both gallery and

probe.

In particular, only the first 5 most discriminative frames of each person

have been selected to form the gallery signatures. The distinctiveness is
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Figure 7.11.: Scores Distribution before and after the application of the pro-
posed framework (Gaussian Clusters) in the HUMABIO RIT-
Time experiment.

Figure 7.12.: Scores Distribution before and after the application of the pro-
posed framework (Gaussian Clusters) in the ACTIBIO RIT-
Time experiment.

evaluated by creating a confusion matrix with the similarity measure, de-

scribed below, between all frames of the recorded (gallery) session. This

way, 5 frames of this session are selected to be included in the biometric sig-

nature, while another session regarding a neutral pose in 0o for each subject

has been used only for testing.

Similarly to the approach followed in Section 7.1.1, the proposed proba-

bilistic framework is applied, while the performance of the combined system

is evaluated and compared to similar state-of-the-art augmenting frame-

works, that use soft biometric traits.

In order to remove the noisy information from the facial images, such as

areas with hairs or background areas, the work of Beretti et al. has been

enriched with a preprocessing step for drawing face-specific ellipses (first

180



row in Figure 7.14). In particular, by using as the center of the ellipse

the exact location of the nosetip, the axes of the ellipse are calculated as a

function of the distance between the eyes [339].

The step for the detection of the nose tip precedes the background seg-

mentation and is initially based on an initial detection of the location of

the nose tip (Nkinect
t ) from the coloured image, as delivered by the Kinect

SDK toolkit. However, since the detection accuracy of this algorithm is

not sufficient (red spots in Figure 3) a post processing algorithm has been

initiated. In particular, all points within a sphere of 4cm around Nkinect
t

undergo PCA transformation and the new nose tip location is calculated

as the median value of the closest points to the origin of the depth axis.

Then, by mapping this depth value on the initial surface, one can easily es-

timate a good approximation of the actual nose tip location (Nt(x0, y0, z0)),

as indicated by the blue spots in Figure 7.13.

Figure 7.13.: The red spots indicate the location of the nose tip as detected
by processing the colour related information of the face, while
the blue ones point the location estimated by processing the
depth information.

Then, the Dijkstra algorithm is applied on all facial points within the

ellipse, all geodesic distances are normalized to the eyes-to-nose distance

and this way, isogeodesic stripes of equal width (i.e. 1cm) can be esti-

mated, concentric and centered on the nose tip (see third row in Figure

7.14). Thereafter, the so-called 3D weighted walkthroughs (3DWWs) are

computed between pairs of isogeodesic stripes (interstripe 3DWW ) and be-

tween each stripe and itself (intrastripe 3DWW ), as described in [251]. In

particular, the 3DWWs are computed aggregate measures (i.e. directional

indices) that provide a representation for the mutual displacement between
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the set of points of two spatial entities (i.e. isogeodesic stripes). Finally,

the computed 3DWWs are cast to a graph representation where stripes are

used to label the graph nodes and 3DWWs to label the graph edges.

Figure 7.14.: First Row: Face-specific ellipses are drawn on the facial images
so as to exclude any noisy, non-facial. points from processing;
Second Row: 3D reconstruction of the extracted facial image;
Third Row: The extracted isogeodesic stripes are drawn within
the boundaries defined by each face-specific ellipse.

This way, the face recognition problem is reduced to an efficient graph

matching issue that is suited to being employed in very large data sets

with the support of appropriate index structures. Thus, the measure of

the similarity p(ω|xc) between two face models represented through their

corresponding graphs is a combination of both the intrastripe and interstripe

3DWWs similarity measure, and the second summation.

All geodesic distances are normalized with respect to the Euclidean eyes-

to-nose distance in [251], so as to maintain a common reference for all com-

parisons. This way, significant information regarding the actual size of the

face is discarded in favour of efficiency in processing. However, providing the

distances between the so-called “nodal points” (i.e. eyes, nose and mouth),

and the structural proportions of the face of the average user, the afore-

mentioned lost information can be retrieved and significantly contribute to

the recognition performance. In particular, herein the a) eye-to-eye xs1 , b)
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eyes-to-nose xs2 and c) nose-to-mouth xs3 distances for the set X of the

available soft biometrics X = {xs1 , xs2 , xs3}.
In the current work the detection of the these nodal points is performed

via the utilization of the Face Tracking algorithm included in the “Kinect

for Windows SDK” that is able to locate and track the movement and the

orientation of the face and all its corresponding nodal points (i.e. eyes,

eyebrows, mouth) with sufficient accuracy. However, small fluctuations in

the distances between the measured aforementioned points are very likely to

occur. This can be easily interpreted as the systematic error introduced in

each measurement. Similarly to the analysis performed in Section 7.1.1, the

independence between the errors of the utilized soft biometric traits can be

easily proven by a similar analysis with the one presented in Section 7.1.1.

Based on the methodology described in Section 5.2 and as it was proven

by the analysis presented in Section 7.1.1, the Gaussian Clustering performs

better than the rest. This way, provided that the ISODATA algorithm indi-

cated a number of 13 clusters, the soft biometric feature space is described as

a Gaussian mixture (Figure 7.15) via the expectation-maximization (EM)

algorithm.

Figure 7.15.: The 3D soft biometric feature space has been partitioned in 13
Gaussian Clusters, according to the spatial proximity of the
features.
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Thereby each 3D Gaussian is described as

N (fω|µk,Σk) =
1

(2π)Z/2|Σk|1/2
e−

1
2

(fω−µk)T Σ−1
k (fω−µk) (7.1)

where µk and Σk are the 3D mean vector and the and 3×3 covariance matrix

of the kth Gaussian, respectively, and Vector fω includes all utilized soft

biometric trait values, fω = {xsn,1(ω), . . . , xsn,Z(ω)}. At the authentication

stage, the assignment of a user to a cluster is performed via the maximum

likelihood (ML) criterion.

In the same context, the modelling of the noise induced for each utilized

soft biometric feature can be seen in Figure 7.16.

Figure 7.16.: Distribution of the induced noise during in (a) Eye-to-Eye
distance (b) Nose-to-Eye distance (c) Nose-to-Mouth distance
and the corresponding fitting curves.

Experimental results of the proposed approach

Concerning the authentication and identification performance of the

proposed approach, the Receiver Operating Characteristics (ROC) curves

and the corresponding Cumulative Matching Scores (CMS) curves are illus-

trated in Figure 7.17(a) and Figure 7.17(b), respectively.

The reader can easily notice a significant fall in the equal error rate EER

point from 6% to 1.9% in the demanding BIOTAFTOTITA database, after

the application of the proposed algorithm, while the approach proposed by

Moustakas et al. [6] and Marcialis et al. [220] achieves only a 4.8% of EER.

Similar improvements are concluded by the experimental results regarding

the identification performance of the system, where the proposed algorithm

converges to 100% of correct identifications at Rank-2, while the approach

suggested in citeMoustakas10 and in [220] starts with a lower identification

rate (i.e. 89% at Rank-1) and converges to 100% only at Rank-3.
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Figure 7.17.: (a) Cumulative Matching Scores (CMS) and (b) Receiver Op-
erating Characteristics (ROC) for the 3D Face Recognition al-
gorithm with and without counting in the contribution of the
Soft Biometric Traits.

As it can be seen in Figure 7.18(a), the genuine scores are completely

mixed with the ones of the impostors. However, once applying the proposed

enhanced matching probability (Equation (5.18)), a significant separation

of them can be noticed in Figures 7.18(b).

Figure 7.18.: Scores Distribution with and without counting in the contri-
bution of the Soft Biometric Traits.
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8. Conclusions

The presented thesis dealt with the development and the investigation of

novel concepts regarding the challenging field of emerging behavioural bio-

metrics (i.e. unobtrusive on-the-move-biometry), including the introduction

of a completely new biometric trait, based on prehension activities, as well

as the efficient exploitation of anthropometric and soft biometric traits for

the enhancement of the performance in user recognition. In the next few

sections, a summary of the current thesis follows in Section 8.1, along with

a critical discussion (Section 8.2) and a few ideas for future work (Section

8.3).

8.1. Summary of the Thesis

The thesis started with a thorough analysis and reference to psychologically

related studies in order to form a solid motivation as for the reason that the

prehension related biometrics can form a trustful biometric trait. Namely,

the different outcomes of the motor behaviour in respect with inherent in-

dividual differences and the indirect coupling between the perception and

the reproduction of actions are referenced, in order to exhibit the mapping

of behaviour onto movements serves complementarily to the psychologically

proven ability of humans of differentiating behaviours and identities via

subtle visual changes in movements.

Following this, an introduction in the state of the art (SoA) approaches in

biometric recognition, attempting, this way, to clarify the need for and the

advantages of transiting from the traditional biometric recognition methods

to the so-called activity-related (i.e. behavioural) ones. After presenting and

briefly analyzing the most significant works regarding existing behavioural

biometrics, the extension of current SoA and the motivation towards the

introduction of a new activity related trait (i.e. Prehension biometrics)

extracted during everyday movements (e.g. Phone Conversation, etc.) is in
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depth analyzed thoroughly justified (see Section 2.2.2 and Section 1.3).

In particular, an extension in the activity-related, unobtrusive authentica-

tion framework has been presented, that is related to prehension biometrics

and includes the dynamic information of the movement of the head, the

arm, the palm and the fingers derived when performing short everyday ac-

tivities, without any special predefined scenario. The proposed approach

refers to various activities, which include the reaching, grasping or interact-

ing with an object in the vicinity of a user. The quality of the tracking of

the movement is verified with respect to both the accuracy of the tracking

algorithm and the ergonomic zones of the user.

In this context, a novel descriptor for prehension movements was pre-

sented. Based on this, a series of activity related features were extracted

which capture the dynamic characteristics of reaching and interacting with

objects to be used for biometric authentication. The authentication poten-

tial of these features was estimated according to their relative entropies,

with inter-dependencies detected via the mutual information between the

features.

Although the presented study has shown promising results regarding the

authentication potential, the application of such biometrics in real case sce-

narios, as well as the level of unobtrusiveness it offers is highly depended on

the quality of tracking, as it has been observed from the comparison between

the vision-based and the sensor-based arm tracker. Thus, future trackers

are expected to be significantly valuable for the actual incorporation of the

proposed modality in actual biometric systems.

The proposed modalities (i.e. Reaching related and Grasping related

modalities) have been evaluated via their corresponding extracted features

on 4 datasets (Section 3.2.2), explicitly designed for the needs of prehension

based recognition systems. For this reason, 4 different scenarios have been

designed, including unimodal recognition and multimodal fusion based on-

the-move recognition cases, as well as the exploitation of multiple authen-

tication experiments. All experimental results exhibited very promising

recognition rates in real time, achieving high authentication and identifica-

tion rates even under difficult environmental conditions.

Extending the aforementioned uni-biometric recognition concept, the im-

portance of the utilization of multi-biometric recognition becomes evident,

while the advantages using soft-biometric traits instead of other physical or
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dynamic traits are illustrated and supported by existing state-of-art works.

In this respect, of high significance is the contribution of the current

thesis in the incorporation of static anthropometric characteristics in the

recognition process of existing biometric systems towards the improvements

in performance and the secure storage of the biometric template. The pro-

posed static anthropometric profile is seen to have a significant contribution

to the overall authentication capacity, when small datasets are regarded.

A more generic and novel probabilistic framework for augmenting biomet-

ric recognition algorithms via soft biometrics was also proposed. Hereby,

the soft biometrics related partitioning of the feature space and the proba-

bilistic modelling of the independent systematic error during soft biometric

measurements are seamlessly combined with gait biometrics, so that fusion

at score level is avoided.

Experimental validation in biometric recognition regarding the contri-

bution of soft biometric systems proved significant improvements in effi-

ciency, authentication and identification potential. Two experiments have

been conducted, so as to prove the general applicability of the proposed

approach and its advantages over other SoA relevant works. Namely, one

using 3 known gait related dataset and one proprietary (3D) face related

one, validating the initial assumptions regarding the expected impact. In

particular, the prehension based biometric system has exhibited significant

improvements when anthropometric information was taken into account,

while SoA face and gait recognition systems were significantly augmented

via the integration of the soft biometric based probabilistic framework. This

way, it can be claimed that the latter has the ability to be directly applied

to any biometric system detecting at least one soft biometrics trait.

Remaining in the context of multi-biometric approach, a multi-biometric

approach based on two behavioural biometrics (i.e. prehension and gait)

has been attempted. Although some improvements in gait recognition have

been suggested, including the integration of a stop detection algorithm and

a silhouette rotation algorithm for compensating for small divergence of the

user from a straight path, the main scope was the investigation of such a

purely behavioural biometric system.

Although the prehension based biometric trait may not be that accurate

from itself to form a stand alone biometric system yet, it can be integrated

along with other types of features in a user authentication system, so as
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to improve its overall efficiency. For instance, prehension biometrics can

offer a robust modality for both those who are unwilling to be exposed to

inconvenient processes (e.g. iris scan, fingerprint scan, etc.), as well as an

integral part of an “on-the-go” authentication system. In any case, prehen-

sion biometrics are recommended for transparent, multiple authentication,

so as to renew the validity of the claimed ID of the user transparently, while

soft biometrics have been proven to form a significant boosting factor for

any biometric system.

8.2. Critical Discussion

The current one starts with a list summarizing the most significant achieve-

ments of the current thesis, while a more detailed discussion follows there-

after.

� The intuitive assumption that prehension biometrics can form a solid

biometric trait has been stated, based on a series of psychological

researches.

� The high potential of prehension biometrics has been proved via ex-

perimental validation.

� Application of the proposed prehension biometric trait in multiple

authentication scenarios.

� The feature classification showed that different features are suitable

for different movements.

� Prehension biometrics are currently applicable only for verification

purposes or as a complementary modality.

� High impact of anthropometric soft biometric characteristics in multi-

biometric applications regarding accuracy and recognition performance.

As it has already been claimed, emerging biometrics, in general, can-

not compete existing and widely adopted static biometric systems, such as

fingerprint or iris, in terms of recognition performance. In this context, pre-

hension biometrics (or other existing activity-related biometrics) do not aim

at replacing these modalities. More preferably, they are intended to act in a
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complementary and unobtrusive way to existing approaches, when no other

biometric can be collected, when an additional level of security is demanded

or when multiple authentication is supported by the environmental setting

and the scenario.

Contrary to traditional biometrics, it is in the nature of behavioural ones

(e.g. prehension, gait, etc), not only to be highly dependent on the con-

text, but also to be able to exploit contextual information via the captured

data. This can be easily perceived, by confronting the “isolated” data cap-

turing environment of static biometrics (e.g. fingerpring/iris scanner, etc.)

to the open environment for data capturing of activity related biometrics

(e.g. office, workplace, airport, etc.). This way, it becomes evident that

methodologies, similar to the one presented regarding the ergonomic zones,

have to be developed, addressing further environmental influences on the

biometric procedure.

Time persistence and lasting robustness are further critical issues of bio-

metric traits. In this respect, it can be claimed that biometric signatures

stemming from behavioural biometric modalities, in general, are more ro-

bust and persistent in time than simple static biometrics. For instance,

although static biometrics, such as fingerprint, may easily be duplicated or

degraded over time due to several reasons (e.g. friction, scratches, etc.),

behavioural and habitual reactions and patterns, expressed by personalized

behaviour traits are difficult to be changed, imitated or forgotten.

Last but not least, a significant advantage of the vision-based approaches

proposed in the current thesis is the unobtrusive way they exploit for ac-

quiring the required data. However, this seemingly positive feature may

turn in a serious drawback when referring to privacy, ethical and legal is-

sues. In particular, in traditional biometric systems, where the users have

to undergo a specific procedure, so as to provide their biometric data (i.e. in

fingerprint recognition the user has to place his finger in a special scanner),

they are aware of being recognized and they are indirectly submitting their

consent to this procedure. On the contrary, privacy issues and issues of

annoyance may arise when the user could find himself under a recognition

procedure anytime, despite not being always in line with this.
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8.3. Future Work

A possible plan for future work based on the outcomes and the achievements

of the current thesis regards the investigation of the items presented in the

following list:

� Context-aware biometrics: influence of the spatiotemporal setting and

the environmental conditions.

� Affective-aware behavioural biometrics.

� Activity hyper-Surface for activity recognition.

� Soft biometric keys replacing the PINs for secure template storage,

revocability and cancelability.

More analytically, the current thesis delivers an extensive study regarding

the recognition potential of a highly non-intrusive novel biometric modal-

ity, i.e. the Prehension biometrics. The demonstrated results indicated

a notable recognition capacity of the extracted features, while significant

improvements via multiple authentication methods and multimodal ap-

proaches ignite further research in the field of unobtrusive behavioural bio-

metrics. In particular, future work in this domain could include the involve-

ment and the corresponding study of more modalities, with high authen-

tication capacity, enhanced environmental invariance and low correlation

with each other, so as to minimize possible redundancy issues. A possible

extension can also regard the recognition capacity of further daily activities.

For instance, being inspired from the periodical nature of gait or the default

way a short phone conversation is executed in an office environment, further

patternized activities can be detected for various environments of use and

accordingly investigated.

Moreover, it is strongly believed that the development of a more robust

body tracker that will be able to cover the movements of the full body, both

in terms of a skeleton model but also as shape, will significantly contribute

to the amount of extracted features and thus, to the overall recognition

performance, since it would take advantage of enhanced dynamic and static

anthropometric information about the movements of the user. In general,

future work in the topics addressed in the current thesis also includes the
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benchmarking of the system in larger databases, so as to verify the of the

proposed approaches robustness for real-world applications.

Regarding the enhancements suggested by the utilization of soft biometric

traits in existing biometric systems of both dynamic and static recognition

nature, an expansion to a higher dimensionality of the soft biometrics fea-

ture space is expected to further improve performance, while the proposed

approach has the potential to be integrated in a series of other biometric

systems. In the same respect, an issue that could also be of scientific interest

is the lifting of the assumption for independency in the error measurements

of the biometric traits, providing thus, a framework able to exploit any com-

bination of soft biometric characteristics. Furthermore, the introduction of

biometric keys, replacing of traditional PINs seems to gain wide acceptance

towards secure template storage, since it not only offers improvements in

performance, but it also expedites the users from the inconvenient noting

and remembering of passwords. Of course, hereby issues regarding revoca-

bility and cancellability have to be thoroughly studied.

Last but not least, and always with respect to the emerging behavioural

biometric technologies, the influence of the environmental context on differ-

entiations on behavioural patterns should be highlighted. In this respect,

being inspired by the effect of ergonomic factors on the recognition perfor-

mance of the proposed system, it is strongly believed that significant efforts

should be laid towards the investigation of context-aware biometrics. This

way, the time, the location, the level of noise, the history of recent activi-

ties, the weather, the illumination level, etc. can be considered as contextual

conditions, able to provide valuable assisting quality- or significance-related

information about the recorded traits. Similar information can be also ex-

ploited by advanced biometric fusion modules, so as to improve the overall

efficiency.
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Related Data Sets for Context Recognition”, in Proc. Workshop on

’Benchmarks and a Database for Context Recognition’, pp. 1-6, 2004.

[175] I. Bouchrika and M. Nixon, “Exploratory factor analysis of gait recog-

nition, in proc. IEEE Int. Conf. Autom. Face Gesture Recog., pp. 1-6,

2008.

[176] M. Goffredo, I. Bouchrika, J. N. Carter, and M. S. Nixon, “Self-

Calibrating View-Invariant Gait Biometrics”, IEEE Trans. Syst., Man,

Cybern. B, Cybern., vol. 40, no. 4 pp. 997–1008, 2010.
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and H. Abut, “Multi-modal person recognition for vehicular applica-

tions”, Lecture Notes in Computer Science, vol. 3541, pp. 366–375,

2005.

219



[267] R. Brause, T. Langsdorf, and M. Hepp, “Neural data mining for credit

card fraud detection”, 1999.

[268] A. A. E. Ahmed and I. Traore, “Anomaly intrusion detection based

on biometrics”, 2005.

[269] A. A. E. Ahmed and I. Traore, “Detecting computer intrusions using

behavioral biometrics”, Security, 2005.

[270] Y. Li, N. Wu, S. Jajodia and X.S. Wang, “Enhancing profiles for

anomaly detection using time granularities,”, Journal of Computer Se-

curity, 2002.

[271] C. Varenhorst, “Passdoodles: a lightweight authentication method”,

retrieved from http://people.csail.mit.edu/emax/papers/varenhorst.pdf,

2004.

[272] T. Westeyn, P. Pesti, K. Park and T. Starner, “Biometric identifica-

tion using song-based eye blink patterns”, Human Computer Interac-

tion International (HCII), 2005.

[273] C. Hilas and J. Sahalos, “User profiling for fraud detection in telecom-

munication networks,” 5th International Conference on Technology and

Automation (ICTA 2005), Greece, 2005.

[274] T. Goldring, “User profiling for intrusion detection in Windows NT,”,

Computing Science and Statistics, vol. 35, 2003.

[275] A. Toney, B. H. Thomas, “Considering Reach in Tangible and Table

Top Design,” 1st IEEE international workshop on horizontal interactive

human-computer systems, pp. 2, 2006.

[276] S. Jahanbin, C. Hyohoon and A.C. Bovik, “Passive Multimodal 2-

D+3-D Face Recognition Using Gabor Features and Landmark Dis-

tances,”, IEEE Trans.Inf. Forensics Security, vol. 6, no. 4, pp.1287–

1304, 2011.

[277] M.D. Cordea, E.M. Petriu and D.C. Petriu, “Three-Dimensional Head

Tracking and Facial Expression Recovery Using an Anthropometric

Muscle-Based Active Appearance Model,” in IEEE Trans. Instrum.

Meas., vol. 57, no. 8, pp. 1578–1588, 2008.

220



[278] K. Kaufman, G. Cervone and R.S. Michalski, “An application of sym-

bolic learning to intrusion detection: preliminary results from the LUS

methodology”, Reports of the Machine Learning and Inference Labora-

tory, MLI 03-2, George Mason University, 2003.

[279] J-F. Mainguet, “Biometrics”, retrieved July 28, 2006 from

http://perso.orange.fr/fingerchip/biometrics/biometrics.htm, 2006.

[280] S. Pamudurthy, E. Guan, K. Mueller and M. Rafailovich, “Dynamic

approach for face recognition using digital image skin correlation”, Au-

dio and Video-based Biometric Person Authentication (AVBPA), New

York, 2005.

[281] S.J. Stolfo, S. Hershkop, K. Wang, O. Nimeskern and C-W. Hu, “A

behaviour-based approach to securing e-mail systems”, Mathematical

Methods, Models and Architectures for Computer Networks Security,

Springer Verlag, 2003.

[282] S.J. Stolfo, C-W. Hu, W-J. Li, S. Hershkop, K. Wang

and O. Nimeskern, “Combining behaviour models to se-

cure e-mail systems”, CU Tech Report, retrieved from

http://www1.cs.columbia.edu/ids/publications/EMT-weijen.pdf, 2003.

[283] R.V. Yampolskiy and V. Govindaraju, “Use of behavioural biomet-

rics in intrusion detection and online gaming”, Biometric technology

for human identification III, SPIE Defense and Security Symposium,

Orlando, 2006.

[284] R.V. Yampolskiy and V. Govindaraju, “Dissimilarity functions for

behaviour-based biometrics,”, Biometric Technology for Human Iden-

tification IV, SPIE Defense and Security Symposium, Orlando, 2007.

[285] M. Orozco, Y. Asfaw, S. Shirmohammadi, A. Adler and A.E. Saddik,

“Haptic-based biometrics: a feasibility study,”, IEEE Virtual Reality

Conference, Alexandria, Virginia, 2006.

[286] J. Ilonen, “Keystroke dynamics,”, retrieved July 12, 2006) from

www.it.lut.fi/kurssit/03-04/010970000/seminars/Ilonen.pdf, 2006.

[287] S.D. Bella and C. Palmer, “Personal identifiers in musicians”, Finger

movement dynamics, Journal of Cognitive Neuroscience, vol. 18, 2006.

221



[288] O. Shipilova, “Person recognition based on lip move-

ments”,, retrieved July 15, from http://www.it.lut.fi/kurssit/03-

04/010970000/seminars/Shipilova.pdf, 2006.

[289] S. Lyu, D. Rockmore and H. Farid, “A digital technique for art au-

thentication”, Proceedings of the National Academy of Sciences, 2004.

[290] F. Apap, A. Honig, S. Hershkop, E. Eskin and S. Stolfo, “Detect-

ing malicious software by monitoring anomalous windows registry ac-

cesses,”, Technical Report, CUCS Technical Report, 2001.

[291] S. Kalyanaraman, “Biometric authentication sys-

tems: a report,”, retrieved July 26, 2006 from

http://netlab.cs.iitm.ernet.in/cs650/2006/TermPapers/sriramk.pdf,

2006.

[292] Z. Ciota, “Speaker verification for multimedia application”, IEEE

International Conference on Systems, Man and Cybernetics, vol. 3,

pp. 2752–2756, 2004.

[293] K. Wheaton, J. Thompson , A. Syngeniotis, D. Abbott and A. Puce,

“Viewing the motion of human body parts activates different regions

of premotor, temporal, and parietal cortex”, Neuroimage vol. 22, no. 1

pp. 277–288, 2004.

[294] J. Thompson, M. Clarke, T. Stewart and A. Puce, “Configural pro-

cessing of biological motion in human superior temporal sulcus”, The

Journal of Neuroscience, vol. 25, pp. 9059-9066, 2005.

[295] E. Bonda, M. Petrides, D. Ostry and A. Evans, “Specific involvement

of human parietal systems and the amygdala in the perception of bi-

ological motion”, The Journal of Neuroscience, vol. 16, pp.3737-3744,

1996.

[296] F. Loula, S. Prasad, K. Harber and M. Shiffrar, “Recognizing People

From Their Movement”, Journal of Experimental Psychology, vol. 31,

no. 1, pp. 210-220, 2005.

[297] G. Johannson, “Visual perception of biological motion and a model

for its analysis”, Perception and Psychophysics, vol. 14, pp. 201-211,

1973.

222



[298] G. Bingham, R. Schmidt, L. Rosenblum, “Dynamics and the Orienta-

tion of Kinematic Forms in Visual Event Recognition”, Jurnal of Ex-

perimental Psychology: Human Perception and Performance, vol. 21,

no. 6, pp. 1473–1493, 1995.

[299] S. Stevenage, M. Nixon and K. Vince, “Visual analysis of gait as a cue

to identity”, Applied Cognitive Psychology, vol. 13, no. 6, pp. 513-526,

1999.

[300] W. Wong and E. Rogers, “Recognition of Temporal Patterns: From

Engineering to ”, Psychology and Back Again, vol. 61, no. 2, pp.159–

167, 2007.

[301] S. Brownlow, A. Dixon, C. Egbert and R. Radcliffe, “Perception

of movement and dancer characteristics from point-light displays of

dance”, Psychological Record, vol. 47, pp.411-421, 1997.

[302] W. Dittrich, T. Troscianko, S. Lea and D. Morgan, “Perception of

emotion from dynamic point-light displays represented in dance”, Per-

ception, vol. 25, pp. 727-738, 1996.

[303] S. Runeson and G. Frykholm, “Kinematic specification of dynamics

as an informational bias for person-and-action perception: Expecta-

tion, gender recognition, and deceptive intent”, Journal of Experimen-

tal Psychology: General, vol. 112, pp. 585-615, 1983.

[304] G. Mather and L. Murdoch, “Gender discrimination in biological mo-

tion displays based on dynamic cues”, Proceedings of the Roya l Society

of London. Series B: Biologica l Sciences, vol. 258, pp. 273–279, 1994.

[305] N. Ambady, M. Hallahan and B. Conner, “Accuracy of judgments of

sexual orientation from thin slides of behavior”, Journal of Personality

and Social Psychology, vol. 77, pp. 538547, 1999

[306] M. Shiffrar and J. Pinto, “The visual analysis of bodily motion. In

W. Prinz and B. Hommel (Eds.)”, Common mechanisms in perception

and action: Attention and performance XIX Oxford, England: Oxford

University Press, pp. 381-399, 2002.

223



[307] M. Giese and T. Poggio, “Neural mechanisms for the recognition of

biological movements”, Nature Reviews Neuroscience, vol.4, 179-192,

2003.

[308] J. Cutting and L. Kozlowski, “Recognizing friends by their walk: Gait

perception without familiarity cues”, Bulletin of the Psychonomic So-

ciety, vo;. 9, pp. 353-356, 1977.

[309] F. Pollick, J. Kay, K. Heim and R. Stringer, “A review of gender

recognition from gait”, Perception ECVP Abstracts, 2002.

[310] T. Beardsworth and T. Buckner, “The ability to recognize oneself

from a video recording of ones movements without seeing ones body”,

Bulletin of the Psychonomic Society, vol. 18, pp. 19-22, 1981.

[311] W. Prinz, “Perception and action planning. European Journal of Cog-

nitive Psychology”, vol. 9, pp. 129-154, 1997.

[312] M. Wilson, “Perceiving imitatible stimuli: Consequences of isomor-

phism between input and output”, Psychological Bulletin, vol. 127,

pp. 543-553, 2001.

[313] H.V. Halteren, “Linguistic profiling for author recognition and verifi-

cation”, Proceedings of ACL, 2004.

[314] L. Brown, C. Moore and D. Rosenbaum, “Feature-Specific Perceptual

Processing Dissociates Action From Recognition”, Journal of Experi-

mental Psychology: Human Perception and Performance, vol. 28, no. 6,

pp.1330-1344, 2002

[315] A. Churchill, B. Hopkins, L. Roennqvist and S. Vogt, “Vision of the

hand and environmental context in human prehension”, Exp Brain Res,

vol. 134, pp.81-89, 2000.

[316] J. Vaughan, D. Rosenbaum and R. Meulenbroek, “Planning Reach-

ing and Grasping Movements : The Problem of Obstacle Avoidance”,

Motor Control, vol. 2, pp. 116–135, 2001.

[317] D. Rosenbaum, C. Coelho, J. Rhode and J. Santamaria, “Psycho-

logically Distinct Classes of Motor Behavior Inferred from Individual

224



Differences: Evidence from a Sequential Stacking Task”, Journal of

Motor Behavior, vol. 42, no. 3, 2010.

[318] M. Oram and D. Perrett, “Responses of Anterior Superior Temporal

Polysensory Neurons to Biological Motion Stimuli”, Journal of Cogni-

tiveNeuroscience, vol. 6, no. 2, pp. 99-116, 1994.

[319] E. Grossman, M. Donnelly, R. Price, D. Pickens, V. Morgan, G. Neigh-

bor and R. Blake, “Brain areas involved in perception of biological mo-

tion”, Journal of Cognitive Neuroscience, vol. 12, no. 5, pp. 711-720,

2000.

[320] T. Allison, A. Puce and G. McCarthy, “Social perception from visual

cues: role of the STS region”, Trends in Cognitive Sciences, vol. 4,

no. 7, pp. 267-278, 2000.

[321] G. Rizzolatti, L. Fogassi and V. Gallese, “Neurophysiological mecha-

nisms underlying the understanding and imitation of action”, Nature

Reviews Neuroscience, vol. 2, no. 9, pp. 661-670, 2001.

[322] N. Troje, “Decomposing biological motion: A framework for analy-

sis and synthesis of human gait patterns”, Journal of Vision, vol. 2,

pp. 371-387, 2002.

[323] F. Pollick, “The Features People Use to Recognize Human Movement

Style”, Gesture-Based Communication in Human-Computer Interac-

tion, vol. 2915, pp. 10–19, 2004.

[324] Y. Zhang and D. Wang, “Research on object storage-based intrusion

detection”, in Proc. of 12th International Conference on Parallel and

Distributed Systems (ICPADS), vol. 1, pp. 68-78, 2006.

[325] N. Muralidharan and S. Wunnava, “Signature verification: a popular

biometric technology”,, Second LACCEI International Latin American

and Caribbean Conference for Engineering and Technology (LACCEI

2004), 2004.

[326] S. Argyropoulos, D. Tzovaras, D. Ioannidis, and M. G. Strintzis, “A

Channel Coding Approach for Human Authentication From Gait Se-

quences”, IEEE Trans.Inf. Forensics Security., vol. 24, no. 3, pp. 428–

440, 2009.

225



[327] T. Wadayama, “An authentication scheme based on a low-density

parity check matrix”, in Int. Symp. Information Theory, pp. 2266–

2269, 2005.

[328] G. I. Davida, Y. Frankel, and B. J. Matt, “On enabling secure applica-

tions through off-line biometric identification”, in IEEE Symp. Security

and Privacy, (Oakland, CA), pp. 148–157, 1998.

[329] A. Juels and M. Sudan, “A fuzzy vault scheme”, Designs Codes Cryp-

tography, vol. 38, no. 2, pp. 237–257, 2006.

[330] J. D. Slepian and J. K. Wolf, “Noiseless coding of correlated informa-

tion sources”, IEEE Trans. Inf. Theory, vol. 19, pp. 471–480, 1973.

[331] E. Martinian, S. Yekhanin, and J. Yedidia, “Secure biometrics via syn-

dromes”, in 43rd Annual Allerton Conf. on Communications, Control,

and Computing, pp. 1–11, 2005.

[332] S. C. Draper, A. Khisti, E. Martinian, A. Vetro, and J. Yedidia, “Us-

ing distributed source coding to secure fingerprint biometrics”, in Int.

Conf. Acoustics, Speech and Signal Processing, (Honolulu, HI), pp. 129–

132, 2007.

[333] L. Yao-Chung, D. Varodayan, and B. Girod, “Image authentication

based on distributed source coding”, in Int. Conf. on Image Processing,

(San Antonio, TX), pp. 5–8, 2007.

[334] G. Cohen and G. Zemor, “Generalized coset schemes for the wire-tap

channel: application to biometrics”, in IEEE International Carnahan

Conference on Security Technology (ICCST)Symposium on Informa-

tion Theory, (Chicago, IL), p. 46, 2004.

[335] S. S. Pradhan and K. Ramchandran, “Distributed source coding us-

ing syndromes (discus): Design and construction”, IEEE Trans. Inf.

Theory, vol. 49, no. 3, pp. 626–643, 2003.

[336] B. Girod, A. M. Aaron, S. Rane, and D. Rebollo-Monedero, “Dis-

tributed video coding”, Proc. IEEE, vol. 93, pp. 71–89, 2005.

[337] W. Stallings, Cryptography and Network Security: Principles and

Practices. 2006.

226
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A. Vision-based UpperBody

Tracking Algorithm

The movements of the users are recorded by a depth enabled camera and

the raw captured images are processed in order to track the their head

and hands via the successive application of filtering masks on the captured

image. Specifically, a skin-colour mask (see Section A.2) combined with

a motion-mask (section A.4) can provide the location of the palms, while

the head can be accurately tracked via a combination of a head detection

algorithm combined with an object tracking algorithm (Section A.1). The

3D spatial information can be easily retrieved from the provided depth

images, while the temporal information is derived from the timestamps at

the moment each frame is recorded.

A.1. Face Detection - Tracking

The detection of a face in an image is the first step towards the behavioural

tracking of a user. The face detection problem has been a major issue in the

fields of image processing and computer vision for the last decades. At the

core, face detection requires an effective discrimination function between fa-

cial and non-facial patterns. Generally speaking, there are nowadays mainly

two methodologies for a face detection task:

� Knowledge-based methods [69] attempt to describe all the face pat-

terns using rules based on human knowledge such as the fact that all

faces have two eyes and a mouth. However, they are difficult to use to

detect faces in real images as the translation of human knowledge into

well formed rules is nontrivial. If the rules are too restrictive, many

faces will be ruled out, resulting in false negatives; on the other hand,

if the rules are too general, non-facia patterns will be included in the

face class, resulting in false positives.
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� The learning-based methodology, examples of which are Osuna et al.’s

SVM method [70] and Kanade’s Bayesian-rule method [71], tries to

model the face pattern with distribution functions or discriminant

functions under the probabilistic framework. Methods of this kind are

not limited by our describable knowledge on faces but determined by

the capability of learning model and training samples, hence being able

to deal with more complex cases compared with the knowledge-based

approach. Specifically, the breakthrough of learning-based methodol-

ogy happened in 2001 when Viola and Jones proposed a novel boosted

cascade framework [201]. This work showed amazing real-time speed

and high detection accuracy, due to the fast calculation of Haar-like

features via the integral image and the cascade structure of classifiers

learned by AdaBoost.

Thus, the aforementioned algorithm of Viola and Jones has been imple-

mented and further enhanced within the framework of the current research.

Face detection is a rather difficult task due to the variability of the object of

interest itself and the environment. In particular, the following requirements

need to be considered [72] for a robust face detector:

� Size: A face detector should be able to detect faces in different sizes.

� Position: The detection of faces at different positions within the image

is usually achieved by sliding a window over the image and applying

the detection step at each window position.

� Number: An important issue here is to handle partially overlapping

faces. The standard way to solve this problem is to apply a post-filter

to remove multiple overlapping faces and derive a single representative

face.

� Expressions: The changes in the appearance of a face for different

facial expressions are usually considered within the training process

of the face detector.

� Orientation: Faces can appear in different orientations within the im-

age plane depending on the angle of the camera and the face.

� Illumination: Varying illumination and shadows can cause big prob-

lems to face detection since they change the color and the appearance
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of the face depending on the color and the direction of the light.

The first four requirements, namely the Size, Position, Number and Ex-

pression requirements, are explicitly handled by the Viola and Jones face de-

tector (see Section A.1.1). The Orientation and Illumination requirements

have been further augmented by the Mean Shift algorithm (see Section

A.1.2) and a skin detection algorithm (Section A.2), as it will be explained

next.

A.1.1. AdaBoost learning and cascade structure of classifiers

The Viola and Jones face detector is based on the AdaBoost algorithm.

AdaBoost is a general method of combining an ensemble of “weak classifiers”

whose accuracy may be poor, but still better than random guess. Given a

set T of weak classifiers, a “strong classifier” is obtained as a weighted linear

combination of the weak classifiers as follows:

H(F ) =

1, if
∑T

t=1 atht(I) ≥ δ

0, otherwise
(A.1)

where F is the input image F , ht(F ) is a weak classifier, at is the tth

corresponding weight, and δ represents a threshold value as it is calculated

in [201].

In the following, the weak classifiers are selected from a large number

of features, computed inside rectangular windows and treated as individual

weak classifiers. For simplicity we call these features hereafter “rectangle

features” Each weak classifier consists of a rectangle feature ft(F ), a parity

pt that indicates the direction of the inequality sign and a threshold θt:

ht(F ) =

1, if ptft(I) < ptθt

0, otherwise
(A.2)

To find the best weak classifier in every boosting round, an exhaustive

search is employed as in [73]. In Figure A.1 six types of rectangle feature

are shown, that have been used in this study.

Types (a)-(e) are similar to basic Haar-like features proposed by Viola

and Jones [201]. These features are computed by subtracting the sum of

the pixel values in the dark rectangle from the sum of the pixel values in

230



Figure A.1.: Types of rectangle features.

the bright rectangle. Specifically, the value of a two-rectangle feature is the

difference between the sum of the pixels within two rectangular regions.

The regions have the same size and shape and are horizontally or vertically

adjacent (Figures A.1a & A.1d). A three-rectangle feature computes the

sum within the two outside rectangles and subtracts it from the sum in

a central rectangle (Figures A.1b & A.1c) Finally a four-rectangle feature

computes the difference between diagonal pairs of rectangles (Figure A.1e).

Additionally, type (f) calculates the variance value of the pixels inside

the rectangle (Figure A.1f). Thus, type (f) indicates the variance feature

which expresses second-order statistics in the given region [74]. By utilizing

second order statistics more information is available to distinguish the face

pattern from the non-face pattern (Figure A.2a).

Further, the rectangle features can be calculated very rapidly using an

intermediate representation for the image, namely the integral image [73]:

IF (x, y) =
∑

x′≤x,y′≤y
I(x′, y′) (A.3)

where IF (x, y) is the integral image and F (x, y) is the original image.

After calculating the feature values, they are all normalized to minimize

the effect of illumination conditions, except type (f). Normalization is sim-

ply performed by dividing with the variance of the whole window.

Among the millions of possible subwindows, only very few subwindows

are classified as a face. Window scanning techniques are used in most view-

based detection methods. The potential frequency of faces and non-faces

should be considered for real-time performance.

Further, the cascade structure of a classifier is a good framework for im-
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plementing a fast face detector. Specifically, at each stage, a strong classifier

is trained to pass almost all face training data, while discarding a certain

portion (typically between 0.2 and 0.5) of non-face training data. The learn-

ing goal for the ith stage is to satisfy detection rate (pi) and false positive

rate (qi), i.e., the detection rate in each stage should be greater than or

equal to pi, and the false positive rate in each stage should be less than or

equal to qi.

Feature selection is performed until the strong classifier satisfies the learn-

ing goal. After a stage classifier is trained, a new negative training data set

is collected for the next stage and the AdaBoost algorithm is applied in the

same way.

In particular, given the current stage number s, the current stage classifier

Hs can be organized by adding the previous stage classifier as follows for

s > 1:

h(F ) =

1, if a0H
′
s−1(F ) +

∑T
t=1 atht(F ) > δs

0, otherwise
(A.4)

where H ′s−1 is the previous stage classifier with new threshold δ′s−1and a0

is a corresponding weight coefficient found by the AdaBoost algorithm. By

changing the threshold value from δs−1 to δ′s−1, the previous stage classifier

is employed with no additional computational cost. Since every feature

value is already computed at the previous stage, only the last threshold

needs to be compared to the new one, and replaced, if different.

A.1.2. Head Tracking

The continuous tracking of a person’s face is of vital importance for biomet-

ric monitoring of behaviour. The simplest idea to implement is the succes-

sive face detection in each frame. However, despite the maturity of frontal

face detection, it is often inadequate to meet the rigorous requirements of

general applications (e.g., visual surveillance systems, digital equipments

that need autofocus on faces, etc.), since human faces in real-life images are

seldom upright and frontal. Thus, there have been many works in recent

years that developed new methods to enhance Viola and Jones’ framework

in various respects.

For instance, the detector structure has been extended to Wu et al.’s

nesting cascade model [86] who transformed Viola and Jones’ loose cascade
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model into a more compact one. Moreover, a finer partition of the fea-

ture space was adopted in order to fit likelihoods more precisely through

finer partition granularity [87], as exhibited by the Wuet et al.’s piece-wise

function [86], and Mita et al.’s joint binarization of Haar-like features [88].

As for the type of feature, there have been the works of Liu and Shum’s

Kullback-Leibler features [155] and Baluja’s pair-wise points [89].

In the framework of the current research, the Viola and Jones algorithm

[73] has been extended by utilizing the Mean Shift algorithm. The idea

behind this extension lies in the fact that each time the implemented face

detector fails, the chromatic information of the last successful detected face

rectangle will be passed over to a rigid object tracker. Thus, the face will

be tracked as a simple object, using just the histogram information of the

rectangle. In all other cases, the tracking of the face exclusively depends on

the detection of the face on the successive images of the recorded sequence

(Figure A.2a).

In the following, a short description of the Mean-Shift algorithm [212] is

presented. Assuming that {x∗i }i=1,...,n represent the pixel locations centered

at x0 = 0, function b can be defined: R2 → 1, . . . ,m which associates

to the pixel at location F (x, y) the index b(F (x, y)) of the histogram bin

corresponding to the color of that pixel. The probability of a colour u

in the target model is derived by employing a convex and monotonically

decreasing kernel profile k which assigns a smaller weight to the locations

that are further away from the center of the target. Thus, the robustness of

the estimation is increased, since the peripheral pixels are the least reliable

ones, since they are often affected by occlusions or the background. So, we

can write:

q̂u = C

n∑
i=1

k(||F (x, y)||)δ(b(F (x, y))− u) (A.5)

whereby C is computed by imposing the condition
∑n

u=1 q̂u = 1, i.e. the

summation of delta functions for u = 1, . . . ,m is equal to one.

Further, when the target model is passed onto the next frame, we calculate

the probability of colour u in the target candidate with a center F0 =

F (x0, y0) and a radius h as:
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p̂u(F0) = Ck

nk∑
i=1

k

(
||F0 − F (x, y)

h
||2
)
δ(b(F (x, y))− u) (A.6)

The most probable location F (xa, ya) of the target pixel area in the cur-

rent frame is obtained by minimizing the distance d(F (xa, ya)) at a given

location Fa = F (xa, ya), which is described by:

d(Fa) =
√

1− ρ[p̂(Fa), q̂] =

√√√√1−
m∑
u=1

√
p̂u(F0)q̂u (A.7)

By defining now that p̂(y) = (p̂1(Fa), p̂2(Fa), . . . , p̂m(Fa)) and that q̂ =

(q̂1, q̂2, . . . , q̂m), the distance d(y) that is equivalent to maximizing the Bhat-

tacharyya coefficient [75] ρ(Fa), can be minimized as described in [76]:

ρ(Ia) ≡ ρ[p̂(Fa), q̂] =
m∑
u=1

√
p̂u(Fa)q̂u (A.8)

A.2. Skin Colour

Detecting human skin tone is of utmost importance in numerous applica-

tions, such as video surveillance, face and gesture recognition, human com-

puter interaction, human pose modelling, image and video indexing and

retrieval, image editing, vehicle drivers’ drowsiness detection, controlling

users’ browsing behaviour (e.g. surfing indecent sites, etc.), semantic filter-

ing of web contents and steganography [77]. Detection of human skin tone is

regarded as a two-class classification problem, and has received considerable

attention from researchers in recent years [78] [79], especially those who deal

with biometrics and computer vision aspects. Numerous techniques for skin

color modelling and detection have been proposed in [80].

Generally, methods for skin detection and segmentation can be divided

into the three following categories.

1. The first category of methods uses explicit rules on the color values and

a metric, which measures the distance/proximity between each pixel’s

colour and the pre-defined skin tone [195]. Although these methods

are very simple to implement and computationally inexpensive, they

cannot cope with the complexity of the problem.
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2. The second category uses a nonparametric model for skin color distri-

bution. These methods estimate the skin color distribution from the

training data without deriving an explicit model of the skin color [148].

Probability based classifiers are also developed to segregate skin tone

regions such as the Bayes classifier used in [81]. This category includes

methods that build and use the skin distribution map (the probabil-

ity distribution of observed skin colors). Although they are fast, these

methods require significant storage space and a careful selection of the

training set.

3. The third category uses parametric models for the skin color distri-

bution. These models usually consist of a Gaussian or a mixture of

Gaussians and offer a more compact skin representation along with

the ability to generalize and interpolate the training data [82].

An interesting approach of combining the problem of skin detection and

model learning for an image has been presented in [83]. In particular, us-

ing an initial skin color model, the authors estimate the actual skin color

distribution in an image and learn the non-skin distribution.

In general, apart from the methods in the first category, almost all other

methods build an extra non-skin model. In this case, the image pixels

are detected as skin by comparing their color’s probability of being skin

or non-skin, using the likelihood ratio. All these methods use a number of

images to build their models and thus require significant storage, application

specific adjustments and increased computational power in order to detect

skin pixels in an image.

Contrary to the model learning based methods, a real-time skin detection

algorithm has been implemented in the framework of the current tracker,

which utilizes explicit rules on the colour values of the white balanced im-

ages. Two critical issues for colour-based skin detection have to be an-

swered [84]: (1) “What colour space should be selected?” and (2) “What

segmentation method should be used?”

Driven from the outcomes of the survey on pixel-based skin color detection

techniques [80], we utilize a combination of two colour spaces, namely the

RGB and the HSV colour spaces, as a very promising answer to the first

question above. The problem that arises by the second question, however, is

partially answered by the location of the skin coloured pixels, augmented by
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both the existence of movement (see Section A.4) and the relative distance

between the detected head and the expected location of the hands.

Theoretically, the only skin coloured pixels in a regular image are the ones

of the face and the ones of the hands of all people. Practically, however,

this is almost impossible, since there can appear any arbitrary number of

objects, within the recorded area, with a skin tone very close to the actual

colour of the human skin.

The decision rules followed in the current approach, realize skin cluster

boundaries of two color-spaces. Namely a combination of the RGB [85] and

the HSV [144] colour spaces is utilized, which forms a very rapid classifier

with high recognition rates. Specifically, given that the r, g and b denotes

the normalized colour space:

r =
R

R+G+B
g =

G

R+G+B
b =

B

R+G+B
; (A.9)

the skin color classification of the pixels in each frame F is implemented by

setting constraints on the normalized values of both RGB and HSV color

spaces, according to [195]. This way, a skin-mask image S(F ) is acquired

(Figure A.2c):

R ≥ G and ||R−G|| > 11 S ≥ 0.12 and S ≤ 0.7

r ≥ 0.33 and r ≤ 0.6 V ≥ 0.3 and V ≤ 1.0

g ≥ 0.6 and r ≤ 0.37 H ≥ 340 and H ≤ 50

(A.10)

where the b component has the least representation of skin colour and there-

fore it is omitted in skin segmentation [145].

A.3. Background Removal

Another filtering towards the detection of the hands in the original frame

F includes 3D filtering and background extraction. Background extraction

methods are well known in silhouette extraction problems and usually re-

quire significant processing power, since they are based on segmentation or

other image processing techniques [146], [147]. Contrary to these, a simple,

real-time processing method for background isolation has been implemented
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herein, based on the depth information of the utilized camera.

The acquired depth images (Figure A.2b) are gray-scale images, whereas

the farthest objects are marked with darker tones while the closest ones

with brighter ones. Given that the face detection was successful, the depth

value of the head can be acquired. Any object with a depth value greater

than the one of the head can now be discarded and thus excluded from our

observation area. On the other hand, all objects in the foreground, including

the user’s hands, remain active. Thus, another mask image Bhead(F
n) is

obtained that corresponds to the active foreground. A major contribution of

this filtering will be the exclusion of all skin colored items in the background,

including other persons or surfaces in skin tones (wooden floor, shades, etc)

and other noise.

Figure A.2.: (a)Face detection, (b)Disparity Information, (c)Skin Colour
Filtering, (d)Motion Detection, (e)Detected Hand Positions
and (f)Tracking Result

A.4. Motion Detection

Given the nth frame Fn of the recorded image sequence, a skin-colour mask

S(Fn) (Section A.2) combined with background extraction Bhead(F
n) with

respect to the head’s position can offer an initial approximation of the pos-

sible location of the palms. The head can be efficiently tracked via the head

detection algorithm as described in Section A.1. Moreover, provided the

pre-calibrated set of colour/depth sensors mounted on the camera, the real
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depth information can be easily derived. Thus, it can be written that the

derived filtered image D(Fn) can be written as D(Fn) = S(Fn)∩Bhead(Fn).

Although the mask image D(Fn) has filtered out most of the unwanted in-

formation of the nth frame F, it still contains a lot of foreground noise, which

deteriorates the accuracy of the tracking. Given that the background has

been removed, we can predict with much confidence that the only moving

parts between the camera and the user are the user’s hands. Thus, skin-

coloured foreground objects, shadows, illumination variances, etc. could be

removed, if the moving objects on D(Fn) would be detected.

To this direction, the detection of the exact position of the two palms on

each frame is augmented by a motion detection algorithm. In particular,

the concept of Motion History Images (MHI) [196] is employed. Each MHI

is a static image template, where pixel intensity is a function of the recency

of motion in a sequence (recently moving pixels are brighter). Thus, by

defining as M(Fn) the pixel-wise subtraction of the two sequential filtered

images D(Fn) and D(Fn+1: M(In) ≡ D(Fn) − D(Fn+1), the remaining

blobs on the image Fnf provide a good estimation of the palms’ positions

(Figure A.2d).

Inf (x, y) =

2, if M(Fn(x, y)) = 1

max(0, In−1
f (x, y)− 1), otherwise

(A.11)

The remaining active regions in each frame MHIt, where t = 1, ...N , in-

dicate the locations of the palms of the user with high confidence (see figure

A.2e and A.2f), while the location of the head has already been estimated

from Section A.1 (Figure A.2a).

By filtering all images from the recorded video sequence successively, the

movements of the head and hands can be followed, while the user performs

any activity (Figure A.2f). Last, by defining some a priori rules about the

environmental setting (e.g. an office, where the users are expected to be

seated or a corridor, where the users are meant to stand) the proposed

tracking algorithm renders a very accurate system even under extreme con-

ditions (e.g. large moving skin coloured regions, in the case the user wears

a T-shirt).
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B. Geometric Gait Features

Extraction

The estimation of the Geometric Gait Descriptor is described herein, along

with the algorithm for the extraction of the gait related soft biometric char-

acteristics, i.e. “height” and “stride”.

B.1. Geometric Gait Recognition

Let the term “gallery” refer to the set of reference sequences, whereas the

term “probe” stands for the test sequences to be verified or identified, in

both presented modalities.

Assuming a static background and a moving foreground, the walking sub-

ject silhouette can be extracted by using a temporal median filter for the

background estimation on the image sequence. Next, the binary silhou-

ettes, BSil
k , are extracted by comparing each frame of the sequence with the

background. By using a pre-defined threshold, the silhouette areas can be

separated from the background. In order to denoise the silhouette sequences,

morphological filtering, based on antiextensive-connected operators [247], is

applied. Finally, potential shadows are removed by analyzing the sequence

in the HSV color space [248], thus resulting in the final binary silhouette

BSil
k .

Given the extracted binary gait silhouette images BSil
k at each gait cycles

k, the gray level GEI (Figures B.1a-B.1c) is defined over a gait cycle as:

GEIk =
1

CL

CycleEnd∑
k=CycleStart

BSil
k (B.1)

where CL is the length of the gait cycle and k refers to the gait cycles

extracted in the current gait image sequence.
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The feature extraction process of the gait sequences is based on the Ra-

dial Integration Transform (RIT ) and the Circular Integration Transform

(CIT ), but instead of applying those transforms on the binary silhouette

sequences themselves, the Gait Energy Images are utilized, which have been

proven on the one hand to achieve remarkable recognition performance and

on the other hand to speed up the gait recognition ( [249] [250]).

Figure B.1.: a-c) Gait Energy Images from several users; d) Estimation of
Height and Stride length from Silhouette Images

The RIT and CIT transforms are applied on the GEI (Figure B.2(a)

and Figure B.2(b), respectively), in order to construct the gait template for

each user, as shown below:

RIT (t∆θ) =
1

J

J∑
j=1

GEIk(x0 + j∆u · cos(t∆θ), y0 + j∆u · sin(t∆θ))

for t = 1, . . . , T with T = 360o/∆θ

(B.2)

where ∆u and ∆θ are the constant step sizes of the distance u and angle

θ, while J is the number of the pixels that coincide with the line that has

orientation R and are positioned between the Center of Gravity (x0, y0) of

the silhouette and the end of the image in the direction of θ.

Similarly, CIT is defined as the integral of a function f(x, y) along a circle

h(ρ) with center (x0, y0) and radius ρ. The CIT is computed using

CITf(ρ) =

∮
h(ρ)

GEIk(x0 + ρ cos θ, y0 + ρ sin θ)du (B.3)

where du is the arc length over the path of integration and θ is the corre-
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sponding angle. Hereby, the silhouette’s center of gravity is again used as

the origin for the CIT .

(a) (b)

Figure B.2.: Applying (a) the RIT and (b) CIT transforms on a Gait En-
ergy Image using the Center of Gravity as its origin.

In the same respect, the KRMn,m of order (n+m) transform is applied

as follows:

KRMn,m =

Nx−1∑
x=0

Ny−1∑
y=0

K̄n(x; p1, Nx − 1)·K̄m(y; p2, Ny − 1) ·GEIk(x, y)

(B.4)

whereby K̄n(x; p,N) = Kn(x; p,N)
√

w(x;p,N)
ρ(n;p,N)

Correspondingly, Kn(x; p,N) are the Krawtchouk polynomials, while the

variables w(x; p,N) and ρ(n; p,N) are given by the two following equations:

w(x; p,N) =

(
N

x

)
px(1− p)N−x (B.5)

ρ(x; p,N) = (−1)n
(

1− p
p

)n n!

(−N)n
(B.6)

whereby the symbol (−N)n in is the Pochhammer symbol given by (−N)n =

−N(−N + 1)(−N + 2)...(−N +n+ 1) = Γ(−N+n)
Γ(−N) , whereby Γ(n) = (n− 1)!

denotes the Gamma Function.

In the proposed framework the weighted 3D KRMs are estimated using
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the recurrent relations suggested in [340], since their direct estimation is of

heavy computational complexity O(n6).

The comparison between the number of gallery GGEI and probe PGEI gait

cycles for a specific feature E ∈ {RIT,CIT,KRM} is performed through

the dissimilarity score dE .

dE = min
i,j

(
||sGi − sPi ||

)
∀i, j; i ∈ [1, GGEI ] and j ∈ [1, PGEI ] (B.7)

|| · || is the L2-norm between the sG and sP values of the corresponding

extracted feature for the gallery and the probe collections, respectively.

For reasons of convenience, the direct application of the RIT , CIT or

KRM transformation of the silhouette images will be referred to as Baseline

BS−RIT and BS−CIT algorithm from now on, while the transformation

of the Gait Energy Images as GEI − RIT , GEI − CIT , GEI − KRM

algorithm, respectively.

B.2. Height and Stride-length Estimation

A comprehensive analysis on the height and stride length estimation is out of

the scope of this thesis. However, in order to make this thesis self contained,

a brief outline of the algorithms follow. The height and the stride length

soft biometric features are estimated by utilizing the calibrated stereoscopic

sequences that were obtained by capturing the HUMABIO Gait Dataset

(DB.G.1) and ACTIBIO Gait Dataset (DB.G.2) (see Annex 3). Since real

world coordinates and absolute distances can be extracted through cali-

brated stereoscopic sequences, the problem of the estimation of the height

and stride length features is trivially reduced to the selection of the features

that correspond to the highest-lowest part of the subject, concerning height,

and to the largest distance between the legs within a gait cycle (see Figure

B.1d).

The world coordinates (xwc,k, ywc,k, zwc,k) of the silhouette image of the

kth frame are calculated as

(xwc,k, ywc,k, zwc,k) = WC(x, y,Dk(x, y))BSil
k (x, y) , (B.8)
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where Dk stands for the gait disparity data sequence and WC converts a

disparity value D(x, y) to 3D coordinates in the world coordinate system,

using the already calibrated stereo-camera.

B.3. Detection of stops in a gait silhouette

sequence

Initially, the walking human binary silhouette is extracted as described

in [178]. Let Ii denote the ith binary human silhouette (2nd row in Fig-

ure B.3). In order to detect the stops during a gait sequence, motion esti-

mation through the calculation of a Motion History Image (MHI) [196] is

performed in the silhouette image sequence. Motion history template Mt at

time instance t is estimated by counting the number of non-zero pixels in

the difference image D(I) of two sequential silhouette frames (Ii, Ii−1), as

indicated by equation (B.9).

Mt(x, y) =

b, if D(I(x,y))=1

max(0,Mt−1(x, y)− 1), otherwise
(B.9)

where in the context of the proposed framework the value of b is experimen-

tally chosen to be b = 2.

The recording phase starts with the detection of silhouette motion in the

scene i.e. when the motion indicator function is over a fixed threshold ε1:

fmotion =

Nx∑
i=0

Ny∑
j=0

Mt > ε1 (B.10)

whereby Nx and Ny are the resolution dimensions of the image Mt and ε1 the

noise threshold of a non-motion image. Similarly, stops in the user’s walking

are detected, when the motion indicator fmotion regarding the lower 25% of

the silhouette image height -the part of the legs below the knees [176]- falls

below ε2 (3rd row in Figure B.3). The values of both ε1 and ε2 have been

experimentally defined.

Once the stop and (re)start frames are detected, the whole gait cycles

that include stop frames are removed from the recorded sequence. Thus,

a new set of silhouette sequence Ĩ is derived. In the following, the gait

243



periods are extracted, as described in [178], and the gait cycles indexes are

estimated accordingly.

Figure B.3.: 1st row: The user walks along the corridor, makes a short stop
(2 frames in the middle) and walks on - 2nd row: Silhouette ex-
traction for the corresponding frames - 3rd row: Motion History
Image (MHI) of two sequential silhouette images. The area of
interest is restricted to the lower 25% of the image height. The
upper region which covers 10% of the image, is considered
to include the head, which is used for the estimation of the
walking angle.

B.4. Walking angle estimation and compensation

Let the term “gallery” refer to the set of reference sequences, whereas the

term “probe” sequence stands for the test sequences to be verified or iden-

tified. As reported in the literature, the gait recognition systems achieve

high recognition rates when the gallery and the probe sequences demonstrate

similar walking angles [38], with respect to the observing camera local coor-

dinate system. On the contrary, in cases whereby people walk with arbitrary

view angles or different model-based types of angle transformations are ap-

plied [179]. However, the accuracy of angle view transformations at model

based approaches relies on small angle variations that are easily affected by

slightly noisy images.
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Thus, a novel feature-based method is introduced within the proposed

framework that applies, prior to the feature extraction phase, 3D recon-

struction on the silhouette itself, encoding at the same time shape infor-

mation about the user’s body. Specifically, range data are utilized for the

compensation of angular variation in the walking direction.

The first step is to estimate the relative walking angle. The walking

direction with respect to the camera (Figure B.4) can be estimated in a

straight forward manner under the assumption of straight gait within each

gait cycle. Given that the head of the silhouette image can be trivially

detected within the highest part of the silhouette (Figure B.3), the gait

direction v1 in the 3D space can be explicitly estimated from the position

of the subject’s head in the first h0 and last frame hL of the respective gait

cycle v1 = h0 − hL. It should clarified that the variance of the walking

direction within the same cycle is very rare in practice and thus, it is not

taken into consideration in the current context.

Thus, the walking angle, which is considered constant through each gait

cycle, is calculated using the equation below:

ϑ = arccos

(
v1 • v2

|v1| |v2|

)
(B.11)

where v1 denotes the walking direction vector and v2 the parallel to the

image plane vector.

Figure B.4.: The walking angle determination is calculated by the across
of the inner product of the walking direction vector and the
parallel to image plane vector.
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After estimating the walking angle, the silhouettes are rotated, so as

to register to the fronto-parallel view. This is achieved by extracting the

3D coordinates of each silhouette pixel, using the disparity data from the

stereoscopic camera. This way, a 3D cloud of points pi is generated and

their rotation is performed as follows:

p̃i = pi ·

 cos(ϑ) sin(ϑ) 0

− sin(ϑ) cos(ϑ) 0

0 0 1

 (B.12)

The points p̃i of the rotated point cloud are now reprojected on the

camera to create a new silhouette. The gait features are then extracted

from the new set of silhouettes I ′.

Figure B.5.: (a)Silhouette Image - (b)Depth Image of the Silhou-
ette - (c)Rotated Silhouette - (d)Rotated Silhouette after
Refinement.

Despite the notable simplicity of equation (B.12), its direct application in

the generation of the virtual view includes some inherent problems, i.e. the

reconstructed point clouds could generate non-consistent surfaces, including

holes and non-realistic edges, when projected on new virtual views (Figure

B.5c). Figures B.5a and B.5b depict the input and the depth silhouette of

the user.

Therefore, in the proposed framework a 3D surface is initially formed from

the 3D point cloud, so as to generate a consistent surface and silhouette

image in the synthesized virtual view (Figure B.5d). The surface is created

using only a subset of the points of the image, so as to reduce the redundancy

and size of the triangulated surface to be generated. Then, the silhouette
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for a particular view is generated by re-projecting it using the Z-buffering

principle so as to rapidly perform depth culling in the new rendered image.

At this point, it should be noted that the acceptable changes ∆θ in the

user’s waking angle are restricted within a range −20o ≤ ∆θ ≤ 20o with

respect to the front parallel view. This restriction is imposed by both the

relatively coarse precision in the depth information provided by the stereo-

scopic camera, but also by the fact that for wider angle changes significant

part of the user’s body is occluded. In the same respect, it has been ob-

served that the average gait cycle direction never exceeded an angle θ of 30o.

Thus, whenever theta ≥ 20o the corresponding gait cycle was discarded.

B.5. Genetic fusion algorithm

The genotypes or chromosomes for the current GA are provided by the

concatenation of wRIT , wKRM and wHMM . An initial population of m

chromosomes is generated. Each of them denotes the weight for the gait

features scores (RIT , KRM) and for the activity-related recognition scores

(HMM), respectively. They all range between 0 and 1, similarly to the

training patterns, which stand for the dissimilarity scores of the extracted

feature. Then, the total similarity Sim(x, y) of each person (gallery) in the

database to the client (probe) is given by equation (6.10).

The user’s ID that achieves the greatest matching score is notated as

C = arg max
y∈R

Sim(x, y) (B.13)

Following, the quality of a specific chromosome for the subject C is mea-

sured with respect to its fitness function ffitness, as follows:

ffitness =

Np∑
x=1

correct idx (B.14)

where x denotes the probe id. In this context, the correct idi is given by

the following
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correct idi =

1 , if Sim(x,C) = max(Sim(x, y)), y = {1, . . . , NG}

0 , if Sim(x,C) < max(Sim(x, y)), y = {1, . . . , NG}
(B.15)

The final weight scores have been taken after the generation of 300 new

generations of chromosomes, since thereafter the algorithm converged suf-

ficiently. Seemingly, the fitness maximizes through the evolution of the

population and so does the number of correctly identified individuals in the

database, as well.

In order to avoid overfitting and database-dependent weights, the pro-

posed fusion method was only used to estimate the optimal weights for each

modality. After their calculation, the weights have directly applied for the

online identification of individuals and no further training or altering of the

weights occurred for the database. Hence, here we only introduce a fusion at

the score level whereas leaving our feature extraction algorithms to execute

without any additional training procedures.
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