Imperial College London

Total Synthesis of the Macroline-related Alkaloid

(\pm)-Alstonerine

Richard Pett

June 2013

Thorpe Laboratory 860, Department of Chemistry, Imperial College London, London, SW7 2AZ, United Kingdom

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy, Imperial College London.

Abstract

This thesis examines the total synthesis of the macroline-related indole alkaloid alstonerine and related compounds. It is divided into three sections:

The first section provides a review of the total synthesis efforts reported by Cook, Martin, Kuethe, and Kwon, as well previous work within the Craig group.

The second section discusses the results of our investigations. The optimisation of the synthesis of key intermediate α, β-unsaturated lactam alcohol via directed-aziridine ring-opening is presented in detail. Our progress towards the synthesis of macroline-related alkaloids macroline, alstolactone, anhydromacrosalhine-methine and alstonerinal, as well as their N_{4}-tosyl derivatives, from the key intermediate is discussed. The findings from these studies are presented en route to the total synthesis of alstonerine.

The third section contains experimental procedures and characterisation data for compounds synthesised.

Table of contents

Abstract 2
Table of contents 3
Copyright and Originality Declarations 5
Acknowledgements 6
List of abbreviations 8
Stereochemical notation 10
Chapter 1. Introduction 11
1.1 Introduction to macroline, sarpagine and ajmaline-related indole alkaloids 12
1.2 Cook's approach to (-)-alstonerine and related compounds 15
1.3 Kuethe's aza-Diels-Alder approach 25
1.4 Kwon's phosphine-catalysed [4+2] annulation synthesis 27
1.5 Martin's Pauson-Khand Synthesis 29
1.6 The Craig group's previous approaches to alstonerine 33
Chapter 2. Results and Discussion 48
2.1 Synthesis of key intermediate α, β-unsaturated lactam alcohol 90 51
2.1.1 Synthesis of aziridine ring-opening reaction substrates 51
2.1.2 Synthesis of hydroxymethyl-substituted aziridine $\mathbf{8 2}$ 51
2.1.3 Synthesis of sulfone $\mathbf{8 8}$ 52
2.1.4 Recyrstallisation of sulfone 99 53
2.1.5 Optimisation of dichlorocyclopropanation synthesis of $\mathbf{9 8}$ 54
2.1.6 Initial work towards the synthesis of key intermediate lactam-alcohol 90 57
2.1.7 Substrate stability and mechanistic investigation 58
2.1.8 Sulfone stability 59
2.1.9 Aziridine 82 reactivity towards sulfone nucleophiles 61
2.1.10 Orthoester hydrolysis in the synthesis of $\mathbf{1 0 2}$ 62
2.1.11 O-TBS protected aziridine 96 ring-opening strategy 65
2.1.12 Deprotection of ring-opening product 102 67
2.1.13 Esterification of sulfonamidoalcohol 89 and TMA mediated cyclisation 69
2.1.14 Final synthesis of synthesis of α, β-unsaturated lactam-alcohol 90 72
2.2 Synthesis of Macroline-related alkaloids from lactam-alcohol 90 76
2.2.1 Synthesis of lactam-lactone 91 76
2.2.2 Synthesis of 85 via C-ring forming Pictet-Spengler cyclisation 78
2.2.3 Attempts at N_{4}-and O-functionalisation of 91 82
2.2.4 Ketalisation of pentacyclic lactone 85 86
2.2.5 Reduction of pentacyclic lactone 85 89
2.2.6 Alternative routes to the alstonerine E-ring 92
2.2.7 Total synthesis of type A macroline-related alkaloid alstonerinal 138 95
2.2.8 Synthesis of N_{4}-tosyl-macroline 152 99
2.2.9 Towards the synthesis of (\pm)-alstolactone 101
2.2.10 Synthesis of N_{4}-tosyl-(\pm)-anhydromacrosalhine-methine 7 103
2.2.11 Total synthesis of (\pm)-alstonerine 106
2.2.12 Improved route to N_{4}-tosylanhydromacrosalhine-methine 157 113
2.2.13 Extension of methodology 114
2.2.14 Conclusion 118
2.2.15 Future Work 120
Chapter 3. Experimental 123
3.1. General experimental procedures 124
3.1.1 Procedures from the synthesis of hydroxymethyl-substituted aziridine $\mathbf{8 2}$ 125
3.1.2 Procedures from the synthesis of sulfone $\mathbf{8 8}$ 131
3.1.3 Procedures from sulfone stability and aziridine reactivity (Sections 2.1.7-2.1.9) 135
3.1.4 Procedures from initial work towards the synthesis of key intermediate 138lactam-alcohol 90 (Sections 2.1.6-2.1.13)3.1.5 Procedures from final synthesis of key intermediate lactam-alcohol 90150
(Sections 2.1.14)
3.1.6 Procedures from synthesis of pentacyclic lactone $\mathbf{8 5}$ (Sections 2.2.1 and 2.2.2) 156
3.1.7 Procedures from attempted synthesis of functionalised pentacyclic lactone 165
(Sections 2.2.3-2.2.6)
3.1.8 Procedures from total synthesis of type A macroline-related alklaloid 175alstonerinal 138 (Section 2.2.8)
3.1.10 Procedures from progress towards total synthesis of alstolactone
4.1.1 108a 206
4.1.2 108b 212
$\begin{array}{lll}\text { 4.1.3 } & 118 & 218\end{array}$
$\begin{array}{lll}\text { 4.1.4 } 133 & 247\end{array}$
4.2 References 253

Copyright Declaration

'The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work'

Originality Declaration

I certify that the work presented in this thesis is solely my own, except where explicitly stated and appropriately referenced.

Richard Pett

Acknowledgments

I would firstly like to thank Professor Donald Craig for giving me the opportunity to undertake my postgraduate research under his guidance. It has been a genuine pleasure to work for such an enthusiastic and knowledgeable supervisor, whose door was always open, and whose company was always fantastic when enjoying an occaisonal beer with us! I should also use this opportunity to thank Doctor Chris Braddock, who was an exceptional second mentor and provided useful feedback throughout my Ph.D. Thanks too, to Doctor Fred Goldberg, especially for his efforts in organising my CASE placement and providing guidance whilst at AZ, but also for taking Don and myself out for the occasional lunch!

I would like to thank my family for their continued love and support. I hope that they are aware that I would have been completely lost without the three of them over the duration of my studies, especially whilst in transit and when needing to release a little bit of chemistry-related anger over the phone! I consider myself very lucky to have such an amazing Mum, Dad and Dog (Bruno), I love you all very much. I suppose at this point I should mention my wonderful sister too, she has always been there for me and is also a really great friend.

Moving on to the DC group, I should say that I have enjoyed the company of every DC group member that I have ever met. Those that I have had the pleasure of sharing the Thorpe lab with will always be fondly remembered, particularly for their appalling tastes in music, excellent ability to orgainse fun and, in one instance, for a love of a particular glass instrument that came to a horrible death whilst in my care. It was a pleasure introducing you to the music that 'the kids' are listening to these days, and I will miss listening to Westlife: The Greatest Hits whilst working late! This CD has now been passed down to Honey Boo Boo Tobes, to whom I hope it will bring hope in moments of despair as it has done for me. From the moment I arrived in the DC group, Niels, Simon and the three-headed monster were brilliant company, I believe that I had visited the Holland Club with Niels and met Coco long before I had seen the NMR machines. Simon was deliciously inappropriate from day one, and continues to produce moments of filthy genius to this day. Jenny Lachs is certainly a lucky lady! Having already mentioned the three heads collectively, I feel that I should thank each one of them individually for being such great companions throughout our days in the DC group. In no particular order, here goes: I quickly learnt that apart from at concerts and, on rare occasions, Champions League matches,
that Claire is actually is great fun!! Although not my favourite Doyle, I was always glad to see her when forced into taking tea breaks. Moving on to Shu, as I am currently making a wage from being her whipping boy I will keep it positive. I feel that Shu has shown all of the attributes that a chemist should possess, the ability to consume large quanitites of meat, coffee-proof footwear, a taste for bitter lemon, a brown pooh-car that is usually in desperate need of a wash and possession of an incredible JoJo 'Hiiiyaaaa' impersonation. I sincerely thank you for being a great friend throughout our days in the Thorpe lab. This brings us on to the final head. I would like to thank her for adopting the 'suns out buns out' policy whenever possible; many a DC group sailor was lost at sea to that blue top! She was also responsible for such things as the DC group bondage calendar, the muurrdumps wiigstouunn, cheeseman and introducing me to drum n' bass Friday! As with the other two, I am genuinely grateful to you for looking after me during my Ph.D, it would not have been the same without you!

Now to the young'uns, namely Madamme JoJo, HBBT, Lee 'Sm***y D**K Walsh, Alex and Lewis. Joe, as well as being a fashion and chemistry icon to so many, you also managed to find time to introduce me to pie balms and other sayings/traditions that the southern softies within the group could not handle! My thanks to you for being a fabulous laugh, chemist and friend, ever since I informed you about how great the lab was innit during your open day. I am glad that I leave you in the company of the talented HBBT. Any man that is willing to rip a good pair of Chino's to squat a colleague is a winner in my book, even if that success eluded you on the flash tennis court!! Lee should be congratulated on his efforts in this field, although he always better at flash pennas than tennis. I will always remember his boring stories, lad nights out, odours appendage. Thank you to the remaing PP group members for adding to the fond memories of the lab for me, including Professor Phil Parsons, who was especially good fun after a viva lunch.

Finally I would like to thank those that have been unfortunate enough to cohabit with me during the past few years. Thank you to Jack and James for being great housemates and teaching me about purchase and how not to deal with pigeons! Thanks to Sheena and Dave for offering me shelter for the jip storms, and finally to Becca, my rock, my world..... Ha! In all seriousness I would probably still love you even if you stopped bringing home the bacon and putting a roof over my head, although I wouldn't risk it.

List of abbreviations

Ac	acetyl
app.	apparent
Ar	aryl
aq.	aqueous
BBN	9-borabicyclo[3.3.1]nonane
br.	broad
bp	boiling point
Bn	benzyl
Boc	tert-butyloxycarbonyl
Bu	butyl
Bz	benzyl
Cbz	benzyloxycarbonyl
cat.	catalytic
CI	chemical ionisation
CSA	camphorsulfonic acid
d	doublet
DBU	1,8 -diazobicyclo[5.4.0]undec-7-ene
DCC	N, N '-dicyclohexylcarbodiimide
dd	doublet of doublets
ddd	doublet of doublet of doublets
DIBAL	diisobutylaluminium hydride
DMAP	4 -dimethylaminopyridine
DME	dimethoxyethane
DMF	N, N-dimethylformamide
DMS	dimethylsulfide
DMSO	dimethylsulfoxide
dr	diastereomeric ratio
dt	doublet of triplets
EDG	electron donating group
ee	enantiomeric excess
EI	electrical ionisation
equiv.	equivalents

ESI	electrospray ionisation
Et	ethyl
EtOAc	ethyl acetate
EtOH	ethanol
EWG	electron withdrawing group
h	hour(s)
hex	hexyl
HMBC	heteronuclear multiple bond correlation
HMDS	hexamethyl disilazide
HOMO	highest occupied molecular orbital
i	iso-
IR	infra-red
LDA	lithium diisopropylamide
LUMO	lowest occupied molecular orbital
m	multiplet
m-CPBA	meta-chloroperbenzoic acid
Me	methyl
MeOH	methanol
min	minute(s)
m.p.	melting point
Ms	methanesulfonyl
n	пео-
Np	naphthalene
NCS	N-chlorosuccinimide
NMR	nuclear magnetic resonance
Ns	2- or 4-nitrobenzenesulfonyl
o -	ortho-
p -	para-
Ph	phenyl
PTAB	phenyltrimethylammonium tribromide
Pr	propyl
PrOH	propanol
q	quartet
R_{f}	retention factor

rt	room temperature
S	singlet
s	sec-
t	triplet
tt	triplet of triplets
t	tert-
TBAF	tetrabutylammonium fluoride
TBS	tert-butyldimethylsilyl
td	triplet of doublets
Tf	trifluoromethanesulfonate (triflate)
TFA	trifluoroacetic acid
THF	tetrahydrofuran
TLC	thin layer chromatography
TMA	trimethylaluminium
Tol	tolyl
Ts	para-toluenesulfonyl
tt	triplet of triplets
$v_{\text {max }}$	infrared absorption maximum
wt	weight

Stereochemical notation

Throughout this report, the Maehr convention of indicating relative and absolute stereochemistry has been adopted. ${ }^{1}$ Hence, solid and broken lines are used to denote racemates, whilst solid and broken wedges are used to denote absolute configuration. Furthermore, the narrowing of both solid and broken wedges implies increasing distance from the viewer.

Illustration of the Maehr convention

Racemate
Relative stereochemistry

Single enantiomer
Absolute stereochemistry

Chapter 1

Introduction

1.1 Introduction to macroline, sarpagine and ajmaline-related indole alkaloids

A huge variety of indole alkaloids are known, ${ }^{2}$ and to date there is still a great deal of interest in their synthesis. ${ }^{3}$ Although synthetic approaches towards alstonerine are the main focus of this report, frequent reference will be made to the synthesis and structures of other members of this class of alkaloid, which can be categorised into three families, those related to macroline $\mathbf{1}$, sarpagine $\mathbf{2}$ or ajmaline $\mathbf{3}$ (Figure 1).

Figure 1. Skeletal numbering of parent alkaloids according to LeMen and Taylor.

The biogenetic skeletal numbering proposed by LeMen and Taylor ${ }^{4}$ is used throughout this report (Figure 1). The most significant structural similarity shared by all three families in this class of alkaloids is the indole-annulated azabicyclo[3.3.1]nonane structure.

Macroline-related alkaloids are defined as those having the same skeletal connectivity as macroline 1. They crucially do not possess an $N_{4}-\mathrm{C} 21$ linkage.

Sarpagine-related alkaloids are defined as those having the same skeletal connectivity as sarpagine 2, specifically with an $N_{4}-\mathrm{C} 21$ linkage and the C16-(R) configuration shown.

Ajmaline-related alkaloids are defined as those having the same skeletal connectivity as ajmaline 3, also with an $N_{4}-\mathrm{C} 21$ linkage and with $\mathrm{C} 16-(S)$ configuration epimeric to that of sarpagine as shown.

Alkaloids that contain substituents at the C 16 position are known, as are spirocyclic alkaloids that contain C7-C17 bonds and thus saturated C2-C7 indole bonds. These compounds may contain both N_{1} - and N_{4}-substitution, and possess indole ring oxygenation to give spirocyclic oxindole alkaloids, which can be considered an important class of natural products in their own
right. ${ }^{5,6}$ Dimeric alkaloids that contain at least one macroline, sarpagine or ajamaline subunit are commonly referred to as bis(indole) alkaloids.

Whereas ajmaline and sarpagine have both been isolated from Rauvolfia serpentina, ${ }^{7}$ macroline itself has never been isolated from natural sources. However it is believed that macroline is a likely biosynthetic precursor of various macroline- and sarpagine-related alkaloids.

The field of macroline, sarpagine and ajmaline-related alkaloids was reviewed extensively by Cook in 1994^{8} and 1995^{9}, by Lounasmaa in 1999^{10} and 2001^{11}, and by Lewis in 2006^{12}. These provide synthetic endeavours relevant to the field in addition to an introduction to the species from which these alkaloids are isolated (mostly Rauvolfia and Alstonia species).

The focus of this report will be the macroline-related indole alkaloid alstonerine 4 , whose previous syntheses are herein discussed.

1.1.1 Alstonerine

Alstonerine 4 is a macroline-related indole alkaloid which has shown cytotoxic activity against human lung cancer cell lines, ${ }^{13}$ and can be isolated from numerous species of Malayan Alstonia, including Alstonia mycrophylla, Alstonia muelleriana and Alstonia angustifolia. It was first isolated in 1959 from the bark of Alstonia mycrophylla by Elderfield and Gilman. ${ }^{14}$

The absolute configuration of (-)-alstonerine 4 was confirmed by the biomimetic synthesis of LeQuesne et al. in 1969. ${ }^{15}$ Here, a sample of macroline was converted into alstonerine using an epoxidation, Michael reaction, and dehydration. As these reactions had ample biochemical precedent, the synthesis was regarded as biomimetic and, since the absolute configuration of macroline was known (from that of villalstonine), the absolute configuration of alstonerine $\mathbf{4}$ was inferred.

Scheme 1. Biomimetic synthesis of alstonerine 4 from macroline 5.

a) ${ }^{\mathrm{t}} \mathrm{BuOOH}$ (excess) in MeOH, benzene, then Triton B; b) Freshly prepared $\mathrm{P}_{2} \mathrm{O}_{5}, 24 \mathrm{~h}$.

Alstonerine has since been the subject of significant total synthesis effort, most notably by Cook and co-workers, ${ }^{3}$ with significant contributions also from the groups of Martin ${ }^{3}$ and others. ${ }^{3}$ These synthetic approaches, as well as those previously attempted within the Craig group, are discussed in this section.

The aim of this introduction is to highlight the methods used previously to construct both the azabicyclo[3.3.1]nonane core and the adjoining C20 acylated glycal E-ring, so that comparisons can be drawn to our synthesis, whose details are reported in chapter 2 .

1.2 Cook's approach to (-)-alstonerine and related compounds

Central to Cook's work in this area of alkaloid synthesis was tetracyclic ketone intermediate $\mathbf{6}$ (Figure 2), which was used to synthesise numerous macroline/sarpagine/ajmaline-related alkaloids, including $(-)$-alstonerine $\quad 4,{ }^{16} \quad(-)$-anhydromacrosalhine-methine $\quad 7,{ }^{17}$ $(-)$-macrocarpamine 8, ${ }^{18}(-)$-ajamaline $\mathbf{3},{ }^{19,20,21}$ and alkaloid G 9. ${ }^{21}$ Although the synthesis of tetracyclic ketone $\mathbf{6}$ has been reviewed previously, ${ }^{3,9}$ we will discuss why its synthesis allowed Cook to access so many members of this natural product family.

Figure 2. Selection of alkaloids synthesised from Cook's common intermediate 6.

9

1.2.1 The tetracyclic ketone intermediate

For the synthesis of tetracyclic ketone 6 from D-tryptophan 10, Cook and co-workers used sequential Pictet-Spengler ${ }^{22}$ and Dieckmann cyclisations to build the C- and D-rings in the $4^{\text {th }}$ and $5^{\text {th }}$ steps respectively. ${ }^{16}$ As the first three reactions of the synthesis were protection steps, the azabicyclo[3.3.1]nonane motif was established at the very beginning of the synthesis. The
synthesis of tetracyclic ketone 6a is outlined below (Scheme 2, below). It is worth noting that intermediate $\mathbf{6}$ includes the same (S)-configuration at the C 5 position that is found in natural L-tryptophan. However it was synthesised using the unnatural amino acid D-tryptophan, which contains the (R)-configuration at this position. D-Tryptophan was used as a variety of bulky aldehydes had previously entered into stereoselective Pictet-Spengler cyclisations with $N_{4}{ }^{-}$ benzyltryptophan methyl esters, to give only the corresponding trans-1,3-disubstituted-1,2,3,4- β carbolines. ${ }^{23}$ Having noted this preference, Cook purposely used the (R)-configured PictetSpengler substrate $\mathbf{1 1}$ to install the correct C3 stereochemistry in tetrahydro- β-carboline methyl esters 12.

Scheme 2. Key intermediate in Cook's approaches to macroline-related indole alkaloids.

a) $\mathrm{Na} / \mathrm{NH}_{3(1)}$, MeI; b) $\mathrm{HCl}, \mathrm{MeOH}, 80 \%$ over two steps; c) $\mathrm{PhCHO}, \mathrm{MeOH}$, then $\mathrm{NaBH}_{4},-5^{\circ} \mathrm{C}, 88 \%$; d) 14, benzene/dioxane, Δ, then $\mathrm{HCl}, \mathrm{MeOH}$ reflux, 80%; e) NaH , MeOH , toluene, reflux, 92%; f) aqueous $\mathrm{HCl}, \mathrm{AcOH}$, reflux, 91%.

The first stage of Cook's synthesis of the tetracyclic ketone intermediate was to form the C-ring and install the correct C3 stereochemistry. D-Tryptophan derivative 11 was heated with 2-ketoglutaric acid 14, which gave a disappointing diastereomeric ratio of cis- and trans-tetrahydro- β-carboline monoacids (42:58 12a:12b, $\mathbf{R}=\mathbf{H}$, Scheme 3, below). ${ }^{24,25}$ An enhanced diastereomeric ratio in favour of trans-tetrahydro- β-carboline methyl esters $\mathbf{1 2}$ (28:72 12a:12b, $\mathbf{R}=\mathbf{M e}$, Scheme 3) was achieved using methyl 3-formylpropionate 15. ${ }^{26}$ This
also removed a trivial esterification step from the synthesis; however the trans-selectivity remained insufficient for large scale synthesis.

Scheme 3. Cook's strategy level C-ring forming Pictet-Spengler.

a) As before, 2-ketoglutaric acid 14, benzene, 80%; b) methyl-3-formylpropionate $\mathbf{1 5}$, benzene .

A large-scale enantiospecific route to the desired trans-diastereomer 12b was eventually achieved using a post-Pictet-Spengler acid-mediated C3 isomerisation. ${ }^{3}$ This allowed the cis-diastereomer of either monoacid $\mathbf{1 2 a}(\mathbf{R}=\mathbf{H}$, Scheme $\mathbf{3})$, or diester $(\mathbf{R}=\mathbf{M e}$, Scheme $\mathbf{3})$ to be epimerised into the more stable trans-isomer 12b. This was achieved by heating 12a in methanolic HCl , which caused fragmentation of the $\mathrm{N} 4-\mathrm{C} 3$ bond and gave stabilised 'allylic' C3 carbocation 16 that could undergo rotation and recyclisation. This allowed unfavourable (1,3)-diaxial interactions to be minimised, as shown below (Figure 3).

Figure 3. Acid-mediated epimerisation of $\mathrm{C} 3, \mathrm{C} 5$-cis-tetrahydro- β-carboline 12a.

Having devised an efficient route to intermediate 12b from D-tryptophan, it remained to invert the C5 stereochemistry in order to attain the cis-1,3-disubstituted carboline methyl ester $\mathbf{1 7}$ (Scheme 4, below), that was required for the Dieckmann cyclisation to complete the azabicyclo[3.3.1]nonane motif. The C5 epimerisation and Dieckmann cyclisation steps were achieved in a one-pot process by treating trans-12b with sodium methoxide. ${ }^{16}$ This effected reversible formation of the less favourable cis-diastereomer 17, whose cis-configuration allowed an irreversible Dieckmann cyclisation to occur. This forced the equilibrium to the right and
favoured formation of the desired tetracyclic β-keto esters 13. The synthesis was completed by acid-mediated decarboxylation, which yielded Cook's ubiquitous intermediate, tetracyclic ketone 6a in 47% over seven steps.

Scheme 4. C5 epimerisation and Dieckmann cyclisation of 12b.

a) NaOMe , toluene, reflux, 92%; b) aqueous $\mathrm{HCl}, \mathrm{AcOH}$, reflux, 91%; c) MeOTf , then $\mathrm{H}_{2} / \mathrm{Pd} / \mathrm{C}, 80 \%$ over two steps.

1.2.2 Cook's first approach to (-)-alstonerine

In Cook's first approach, (-)-alstonerine was synthesised from tetracyclic ketone 6 using a 10 -step sequence that utilised the C 16 ketone functionality in $\mathbf{6}$ as a reactive handle to access the E-ring. ${ }^{16}$ Excluding the required functional group interconversion (N_{4}-deprotection and methylation), the azabicyclic core motif remained untouched from its synthesis in steps 4 and 5 .

The preinstalled azabicyclo[3.3.1]nonane structure of the tetracyclic ketone intermediate $\mathbf{6}$ was used to direct a stereospecific Claisen rearrangement and hydroboration, which generated the required C15 and C16 stereochemistry respectively.

Figure 4. Key intermediates in Cook's first synthesis of the alstonerine E-ring.

The synthesis of the Claisen rearrangement substrate is outlined below (Scheme 5, Page 20). N_{4}-Benzyl protected tetracyclic ketone $\mathbf{6 a}$ was first converted into the N_{4}-methyl derivative $\mathbf{6}$ using methyl triflate and palladium-catalysed debenzylation conditions. ${ }^{28}$ At this stage, the C16 ketone functional group was homologated to α, β-unsaturated aldehyde 20 and reduced to the corresponding allylic alcohol using LiAlH.

The homologation was achieved by reacting 6 with the anion of α-chloromethyl phenyl sulfoxide, generating a chlorohydrin intermediate that gave spirooxirane phenyl sulfoxide 19 upon base-induced cyclisation. It was the spiroepoxide 19 that was homologated using lithium perchlorate and tri-n-butylphosphine oxide. The synthesis of the Claisen substrate was completed by alkylation with butyn-3-one 21, which gave enone 18 in 60% yield over four steps from tetracyclic ketone.

For the Claisen rearrangement, enone $\mathbf{1 8}$ was converted into the desired β-keto aldehyde $\mathbf{2 2}$ with the natural C 15 stereochemistry, by heating $\mathbf{1 8}$ in benzene in a sealed tube at $145^{\circ} \mathrm{C} .{ }^{27}$ The stereoselectivity of the rearrangement was rationalised by presuming a chair-like transition state

18a, with attack occurring from the α-face of the azabicyclo[3.3.1]nonane system (Scheme 5, below).

Scheme 5. Elaboration of tetracyclic ketone by Claisen rearrangement

a) $\mathrm{PhS}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{Cl}, \mathrm{LDA}$, THF then $\mathrm{KOH}, 86 \%$; b) $\mathrm{LiClO}_{4}, \mathrm{Bu}_{3} \mathrm{P}(\mathrm{O})$, toluene, reflux, 84%; c) $\mathrm{LiAlH}, \mathrm{Et}_{2} \mathrm{O},-20^{\circ} \mathrm{C}$, 90%; d) $\mathrm{Et}_{3} \mathrm{~N}, \mathbf{2 1}$, dioxane, dark, 90%; e) benzene, $145^{\circ} \mathrm{C}$, sealed tube, 65%.

Following the success of the Claisen rearrangement, a variety of approaches at completing the E-ring synthesis by chemoselective reduction proved difficult. ${ }^{28}$ Numerous attempts at protecting the two carbonyl groups as acetal derivatives failed, as did attempted chemoselective reductions of the β-keto aldehyde to the corresponding β-hydroxy ketone using various borane reagents. Oxidation of the aldehyde functionality to the carboxyl equivalent also proved futile. Following numerous failed attempts at protecting or chemoselectively oxidising or reducing the β-dicarbonyl functionality, it was decided instead to attempt a hydroboration-oxidation of the exomethylene group to yield a triol intermediate (Scheme 6, below).

Eventually, β-dicarbonyl 22 was reduced to triol 23 in two steps, by firstly reducing the β-dicarbonyl using sodium borohydride, followed by hydroboration-oxidation of the exocyclic methylene function with $9-\mathrm{BBN}, \mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{NaOH}$ which was presumed to have occurred from the top face of the alkene. ${ }^{28}$

With triol 23 in hand, the E-ring skeleton was achieved by a one-pot tosylation and base-induced cyclisation process that gave tetrahydropyrans 24 . These were converted into an approximately $1: 1$ mixture of dihydroalstonerine 25 and alstonerine 4, via a modified Swern oxidation. The poor selectivity of this reaction could be improved to a certain extent, by reducing the ketone functionality of dihydroalstonerine $\mathbf{2 5}$, and resubmitting the resulting tetrahydropyrans 24 with the C19 alcohol to the modified Swern reaction. This allowed for an increase of up to 51% and gave alstonerine in an overall yield of 4.2% over 18 steps from D-tryptophan. Of these steps, ten had been required to synthesise the E-ring from N_{4}-benzyl tetracyclic ketone $\mathbf{6 a}$, in 6.2% yield. ${ }^{16}$

Scheme 6. Conclusion of Cook's first E-ring synthesis via selective hydroboration and oxidation level manipulation.

a) $\mathrm{NaBH}_{4}, \mathrm{EtOH}, 80 \%$; b) $9-\mathrm{BBN}, \mathrm{THF}$, rt, 20 h then $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}_{2}, 40^{\circ} \mathrm{C}, 2 \mathrm{~h}, 85 \%$; c) TsCl , pyridine then $\mathrm{Et}_{3} \mathrm{~N}$, rt, 60%; d) COCl_{2}, DMSO, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C} \rightarrow-10^{\circ} \mathrm{C}$, then $\mathrm{Et}_{3} \mathrm{~N}, 51 \%$ after recycling SM.

From Cook's first synthesis, it can be seen that whilst the azabicyclic[3.3.1]nonane core was readily accessed using successive Pictet-Spengler and Dieckmann cyclisations, the adjoining C20 acylated glycal E-ring was a challenging motif to synthesise, with multiple oxidation level adjustments required to complete its synthesis via Cook's Claisen approach.

1.2.3 Cook's second approach

In 2005, Cook published a second approach to alstonerine that again used tetracyclic ketone 6a as an advanced intermediate. ${ }^{29}$ However the construction of the E-ring was achieved by a completely novel approach that also provided a route to macroline, and allowed entry to sarpagine-related alkaloids.

Azabicyclic tetracyclic ketone 6a was converted into alstonerine via naturally occurring sarpagine related alkaloid N_{1}-methylvellosimine 26, which was then converted into the Tsuji-Wacker substrate 27 using a six-step sequence (Scheme 7, below). This approach used a novel modification of Tsuji-Wacker oxidation conditions to convert the α-substituted α, β-unsaturated ketone 27 into alstonerine. The overall synthesis again required a total of 18 steps, and provided the natural product in an improved 10% overall yield from D-tryptophan.

Figure 5. Key intermediates in Cook's second approach.

Cook's second approach again used a 10 -step sequence to convert tetracyclic ketone 6a into the penultimate intermediate, which in this case was the Tsuji-Wacker substrate 27. Advantageous to this synthesis was the selectivity of the final oxidation step. Whereas the final step in Cook's first approach produced the natural product $\mathbf{4}$ and related dihydroalstonerine $\mathbf{2 5}$ in an approximately $1: 1$ ratio, the Tsuji-Wacker reaction gave alstonerine as the only product in 60% yield. ${ }^{29,30}$

The first stage of Cook's second E-ring synthesis was to convert tetracyclic ketone into affinisine 28 via N_{1}-methylvellosimine 26, both of which have the same skeletal connectivity as sarpagine 2, including the $N_{4}-\mathrm{C} 21$ linkage and (R)-configuration at the C16 position. This was achieved using the procedure outlined by Liu in 2002 (Scheme 7, below). ${ }^{31,32}$

Tetracyclic ketone 6a was converted into Heck substrate $\mathbf{3 0}$ using the previously successful catalytic hydrogenation debenzylation, followed by treatment with (Z)-1-bromo-2-iodo-2-butene 29. This gave alkylated ketone $\mathbf{3 0}$ in 85% yield over two steps. ${ }^{33} \mathbf{3 0}$ was converted into N_{1}-methylvellosimine 26, by palladium-catalysed α-vinylation using modified Buchwald-Hartwig arylation conditions as reported by Muratake and Natsume. ${ }^{34}$ This enolate-driven cyclisation took place stereospecifically and afforded $N_{4}-\mathrm{C} 21$ fused 26 in 82\% yield. ${ }^{33}$ Having established the sarpagine skeleton, N_{1}-methylvellosimine 26 was converted into affinisine $\mathbf{2 8}$ using Wittig conditions followed by borohydride aldehyde reduction (Scheme 7). ${ }^{35}$

Following O-silyl protection, the ethylidene moiety in affinisine $\mathbf{2 8}$ was converted into ketone $\mathbf{3 1}$ by hydroboration-oxidation and then Dess-Martin oxidation. 31 was converted into O-silyl protected macroline by N_{4}-methylation and elimination. This gave the Tsuji-Wacker substrate 27 in an overall yield of 21% from tetracyclic ketone $\mathbf{6 a}$.

Scheme 7. Cook's second approach to alstonerine.

31

28
a) $\mathrm{H}_{2} / \mathrm{Pd} / \mathrm{C}$, then $\mathrm{HCl}, \mathrm{EtOH}$; b) Z-1-bromo-2-iodo-2-butene 29, $\mathrm{K}_{2} \mathrm{CO}_{3}$, reflux, 85% over two steps; c) $\mathrm{Pd}(\mathrm{dba})_{2}$ ($2 \mathrm{~mol} \%$), DPEphos (2.2 equiv.), ${ }^{\mathrm{t}} \mathrm{BuONa}, \mathrm{THF}, 70^{\circ} \mathrm{C}, 82 \%$; d) $\mathrm{MeOCH}_{2} \mathrm{Ph}_{3} \mathrm{PCl}, \mathrm{KO}^{\mathrm{t}} \mathrm{Bu}$, benzene, rt, 24 h ; e) HCl , THF, $55^{\circ} \mathrm{C}, 5 \mathrm{~h}, 65 \%$ over two steps; $\mathrm{NaBH}_{4}, \mathrm{EtOH}, 0^{\circ} \mathrm{C}$; f) TIPSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; g) $\mathrm{BH}_{3} / \mathrm{Me}_{2} \mathrm{~S}$ (9.0 equiv.), THF, rt, 3 h , then $\mathrm{NaOH} / \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{rt}, 2 \mathrm{~h}$; HOAc, THF, reflux; h) Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$, 63% over three steps; i) MeI, THF, then ${ }^{\text {t }} \mathrm{BuOK}, \mathrm{EtOH}, \mathrm{THF}$, reflux, 90%.

The synthesis was completed using a novel modification of the Tsuji-Wacker oxidation to convert α-substituted α, β-unsaturated ketone 27 into (-)-alstonerine. Importantly, this one-pot cascade reaction gave alstonerine as the only product, in 60% yield (Scheme 8).

Scheme 8. Oxidation of O-protected macroline to (-)-alstonerine 4.

a) $\mathrm{Na}_{2} \mathrm{PdCl}_{4},(40 \mathrm{~mol} \%),{ }^{\mathrm{t}} \mathrm{BuOOH}\left(1.1\right.$ equiv.), $\mathrm{HOAc}: \mathrm{H}_{2} \mathrm{O} ;{ }^{\mathrm{t}} \mathrm{BuOH}(1: 3: 3), 80^{\circ} \mathrm{C}, 60 \%$.

Cook's second approach to alstonerine led to an improved overall yield of 10% from D-tryptophan. Although the E-ring was synthesised in the same number of steps as the first approach, Cook's second approach provided access to the sarpagine related alkaloids as well as using a more versatile late stage intermediate 27 , which could be converted into both macroline and alstonerine. This in turn provided access into the bis(indole) alkaloids, as highlighted by the improved synthesis of macralstonine 32 (Scheme 9). ${ }^{36}$

Scheme 9. Synthesis of bis(indole) alkaloid macralstonine 32.

33 alstophylline
a) Alstophylline $\mathbf{3 3}, 0.2 \mathrm{~N} \mathrm{HCl}$.

1.3 Kuethe's aza-Diels-Alder approach

In 2002, Kuethe et al. reported an approach to the tetrahydro- β-carboline skeleton of the ajmaline/sarpagine alkaloids that used as key steps an aza-Diels-Alder and intramolecular Heck cyclisation to synthesise the D - and C-rings respectively. ${ }^{37}$ This approach provided relatively rapid access to the azabicyclo[3.3.1]nonane motif, with tetracyclic intermediate $\mathbf{3 7}$ being synthesised in just 4 steps from 2-(1-methylindol-3-yl)- ethanol 34, in an overall yield of 28% (Scheme 10).

Scheme 10. Kuethe's aza-Diels-Alder/Heck based synthesis of the C- and D-rings.

37
a) n-BuLi, MTBE, reflux, then $\mathrm{I}_{2}, 0^{\circ} \mathrm{C}$; b) Dess-Martin, 47% over two steps; c) 38 (1.3 equiv.), $\mathrm{Zn}(\mathrm{OTf})_{2}$ (1.1 equiv.), BnNH_{2} (1.1 equiv.), $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 3 \mathrm{~h}, 70 \% ; \mathrm{d}\right) \mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$ (1.0 equiv.), ${ }^{\mathrm{t}} \mathrm{Bu}_{3} \mathrm{P}$ (2.0 equiv.), MeCN, reflux, 85\%.

Having established a short, but moderate-yielding synthesis of 37, an attempt to extend the methodology by introducing the E-ring was investigated. To this end the C16 hydroxymethylsubstituent was introduced by an aldol reaction with formaldehyde prior to the Heck cyclisation. Presumably this was attempted prior to formation of the C-ring, as the analogous reaction of tetracyclic substrate 40 suffers from a facile retro-aldol, as we have found in the Craig group (Scheme 21, Page 39). Kuethe was able to introduce the hydroxymethyl substituent in the C16
position by reacting the lithium enolate of $\mathbf{3 6}$ with paraformaldehyde, which gave β-hydroxy substituted pyridone in 67% yield and mentioned no observation of C 2 lithium halogen exchange. β-Hydroxymethyl substituted pyridone 39 was converted into $\mathrm{a} \sim 1: 1$ mixture of tetracyclic 40 (33\%) and exomethylene compound 41 (29\%) using Heck conditions. (Scheme 11)

Scheme 11. Kuethe's aza-Diels-Alder/Heck based synthesis of the C- and D-rings.

41
a) $\mathrm{LiHMDS},\left(\mathrm{CH}_{2} \mathrm{O}\right)_{n},-20^{\circ} \mathrm{C}, 67 \%$; b) $\mathrm{Pd}_{2}(\mathrm{dba})_{3},{ }^{\mathrm{t}} \mathrm{Bu}_{3} \mathrm{P}, \mathrm{DMF}, 100^{\circ} \mathrm{C}, 33 \%+4129 \%$.

Using this approach, Kuethe was able to synthesise β-hydroxymethyl substituted pyridone 40 from 2-(1-methylindol-3-yl)-ethanol $\mathbf{3 4}$ in 6.8% yield over 5 steps. Thus, this approach offers rapid access to the azabicyclo[3.3.1]nonane motif. However, previous work within the Craig group (as discussed later on Page 39) had shown that converting β-hydroxymethyl pyridone 40 into (-)-alstonerine was difficult.

1.4 Kwon's phosphine-catalysed [4+2] annulation synthesis

Also published in 2005, Kwon reported a formal synthesis of (\pm)-alstonerine ${ }^{38}$ that used a strategy based upon a series of phosphine-catalysed [4+2] annulation reactions between imines 42a and allenes 43a that had been reported by the group in 2003 (Scheme 12). ${ }^{39}$

Scheme 12. Kwon's phosphine-catalysed [4+2] annulation approach to tetrahydropyridines 44a.

a) $\mathrm{Bu}_{3} \mathrm{P}(20 \mathrm{~mol} \%), \mathrm{CH}_{2} \mathrm{Cl}_{2}, 86-98 \%$ depending on R group variant.

This methodology was used to synthesise the intermediate $\mathbf{4 5}$ that contained the carbon skeleton of the azabicyclo[3.3.1]nonane motif (Scheme 13, below). ${ }^{38}$

Scheme 13. Kwon's phosphine-catalysed [4+2] annulation approach to tetrahydropyridine 44.

a) $\mathrm{Bu}_{3} \mathrm{P}(30 \mathrm{~mol} \%), \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 73% d.r. $3: 1$; b) HCl , $\mathrm{EtOAc}, 90 \%$.

Tetracyclic intermediate $\mathbf{4 5}$ was converted into Cook's allylic alcohol intermediate by reducing the carbonyl moieties and N_{4}-deprotection-methylation. The D-ring was synthesised using the [4+2] annulation methodology by reacting imine 42 with allene 43 . This gave diastereomeric esters 44 with correct C 3 stereochemistry in good yield. The azabridged C-ring was formed via acid-catalysed intramolecular Friedel-Crafts acylation, which gave tetracyclic $\mathbf{4 5}$ in excellent yield.

Having established the azabicyclic core motif, tetrahydropyridine 45 was converted into Cook's intermediate 47 in a yield of 66% over 5 steps. (Scheme 14, below) The N_{4}-nosyl
deprotection-methylation sequence was completed using Fukuymama denosylation conditions ${ }^{40}$ followed by Eschweiler-Clarke methylation. ${ }^{41}$ The chemoselective reductive deoxygenation of the C6 ketone group was eventually achieved using zinc-modified cyanoborohydride conditions. This gave a N_{4}-cyanoborane complex that was converted into the tertiary amine by refluxing in ethanol. The sequence was completed by reducing the α, β-unsaturated ester to allylic alcohol 47, which had been converted (Cook's first approach) into a mixture of dihydroalstonerine and alstonerine in 6 steps. (Scheme 5, Page 20) This equated to a 9-step synthesis of the alstonerine E-ring from Kwon's N_{4}-methylated tetracyclic intermediate 46 (Scheme 14).

Scheme 14. Completion of Kwon's formal synthesis.

a) $\mathrm{PhSH}, \mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, 99%; b) 35% aqueous HCHO and 88% aqueous $\mathrm{HCO}_{2} \mathrm{H}$, reflux, 99%; c) $\mathrm{NaBH}_{3} \mathrm{CN} / \mathrm{ZnI}_{2}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 74%; d) EtOH , reflux, 98%; e) DIBAL, toluene, $-73^{\circ} \mathrm{C}, 92 \%$.

1.5 Martin's Pauson-Khand Synthesis

In 2007 the group of Prof. Martin at the University of Texas published a synthesis of alstonerine ${ }^{42}$ that stemmed from their interest in alkaloid synthesis via transition metal-catalysed cascade reactions. ${ }^{43}$ Whilst working on an enyne metathesis approach to a range of alkaloids containing azabicyclic core motifs, they became interested in the Pauson-Khand reactivity of their enyne metathesis substrates. The feasibility of such an approach was quickly proven using enyne 48a, which gave the azabicyclo[3.3.1]nonane system 49a as a single diastereomer. (Scheme 15)

Scheme 15. Pauson-Khand azabicyclo[3.3.1]nonane synthesis 49a.

a) $\mathrm{Co}_{2}(\mathrm{CO})_{8}$, DMSO, THF, $65^{\circ} \mathrm{C}, 89 \%$.

Having established the viability of his Pauson-Khand approach, Martin built his total synthesis of alstonerine around the construction of the indole annelated azabicyclo[3.3.1]nonane core motif from enyne 48 (Scheme 16, below). Whereas Cook's approaches had required additional epimerisation reactions to synthesise the azabicyclo motif as a single enantiomer, Martin was able to achieve this in a single high yielding step as a single enantiomer via his strategy level Pauson-Khand reaction (Scheme 16).

Scheme 16. Martins key step. The Pauson-Khand reaction of enyne 48.

a) $\mathrm{Co}_{2}(\mathrm{CO})_{8}, \mathrm{DMSO}, \mathrm{THF}, 65^{\circ} \mathrm{C}, 94 \%$.

This powerful reaction allowed Martin to synthesise alstonerine in just fifteen steps from L-tryptophan. This was a shorter route than either of those reported by Cook, but the overall yield of his synthesis was diminished by the disappointing yields of the two sequences adjoining the high yielding and selective Pauson-Khand step.

The first problem that Martin faced was the synthesis of the Pauson-Khand substrate, enyne 48 (Scheme 17, below). This was synthesised from natural L-tryptophan using a four-step sequence, in which the C-ring was synthesised in the very first step of his total synthesis. Martin used a Bischler-Napieralski-like reaction, whereby L-tryptophan was first acylated with acetic anhydride and then heated with excess formic acid and concentrated HCl , to give carboline $\mathbf{5 0}$ in 63\% (crude yield) as a single enantiomer. With the C-ring established, diastereomeric aminals 51 were produced in one pot by treating 50 with benzylchloroformate and methanol in the presence of triethylamine. BF_{3}-mediated allylation gave a 5.5:1 mixture in favour of cis-carboline 52. At this stage, a novel one-pot partial DIBAL reduction/Ohira-Bestmann reaction was used covert methyl ester 52 into enyne 48. This provided the Pauson-Khand substrate in 18% yield from L-tryptophan.

Scheme 17. Synthesis of Pauson-Khand substrate enyne 48.

a) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{HCO}_{2} \mathrm{H}$, rt, then conc. $\mathrm{HCl}, 55^{\circ} \mathrm{C}, 63 \%$; b) $\mathrm{Cbz}-\mathrm{Cl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}$, then $\mathrm{MeOH}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{rt}, 76 \%$;
c) allyl-TMS, $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 72 \%$; d) DIBAL, toluene, $-78^{\circ} \mathrm{C}$, then $\mathrm{MeOH}, \mathrm{NaOMe}$ and $\mathrm{O}-\mathrm{B}$ reagent, $-78^{\circ} \mathrm{C} \rightarrow \mathrm{rt}, 55 \%$.

Having established a short synthetic sequence to pentacyclic enone 49, and with the correct azabicyclo[3.3.1]nonane motif in place, it remained to synthesise the fifth and final E-ring. However this again proved difficult, and presented Martin with his second obstacle in the total synthesis. When numerous attempts at the ring expansion and oxidation of the cyclopentenone 49 by Baeyer-Villiger conditions failed, an alternative oxidative cleavage route was envisaged.

If we again focus on the construction of the E-ring, as illustrated below (Scheme 18), significant manipulation was required to elaborate the cyclopentenone moiety in 49 to the C20 acylated glycal structure 56 that was required for the natural product. Following N_{1}-protection, the enone moiety was converted into silyl enol ether $\mathbf{5 3}$ by a stereoselective hydrosilylation using a platinum divinyltetramethyl disiloxane complex 57 (Karstedt's catalyst) and five equivalents of bulky triisopropylsilane. Interestingly, less bulky silanes led to the formation of significant amounts of the parent cyclopentenone. The required oxidative cleavage of $\mathbf{5 3}$ had failed under ozonolysis conditions and instead silyl enol ether $\mathbf{5 3}$ was converted into δ-lactone 54 using Johnson-Lemieux conditions, followed by borohydride reduction of the intermediate aldehyde-ester and acid-induced lactonisation. The oxidation, reduction and lactonisation steps were carried out sequentially without purifying intermediates, giving rise to a moderate 55% yield. δ-Lactone 54 was first reduced using DIBAL to give an intermediate lactol, which gave dihydropyran 55 following O-mesylation and elimination. The final stage required for the E-ring synthesis was the C20 acylation. As Friedel-Craft type conditions led to competing indole acylation products, $N_{1^{-}}$and N_{4}-protected dihydropyran $\mathbf{5 5}$ was converted into N_{1-} and N_{4}-protected alstonerine $\mathbf{5 6}$ using trichloroacetyl chloride followed by reduction of the trichloroacetyl moiety of the intermediate.

The synthesis was completed by carbamate deprotection using iodotrimethylsilane and a sequential $N_{4^{-}}$and N_{1}-methylation. Thus, the total synthesis was completed in 15 steps from L-tryptophan in an overall yield of 4.4%. (Scheme 18, below)

Scheme 18. Martin's oxidative cleavage approach to the alstonerine E-ring.

49

4
 $\stackrel{i, j}{\rightleftarrows}$

56

54

55
a) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{DMAP}, \mathrm{MeCN}, 99 \%$; b) 57, ${ }^{\mathrm{i}} \mathrm{PrSiH}$, toluene, $80^{\circ} \mathrm{C}, 93 \%$; c) $\mathrm{OsO}_{4}(10 \mathrm{~mol} \%), \mathrm{NaIO}_{4}$, acetone: $\mathrm{H}_{2} \mathrm{O}(3: 1)$;
d) $\mathrm{NaBH}_{4}, \mathrm{MeOH}$, then $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 55 \%$ over two steps; e) DIBAL, toluene, $-78^{\circ} \mathrm{C}$; f) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 61 \%$ over two steps; g) $\mathrm{ClCOCCl}_{3}$, pyridine, $65^{\circ} \mathrm{C}$; h) $\mathrm{Zn}, \mathrm{AcOH}, 75 \%$ over two steps; i) TMSI, MeCN, 78%; j) MeI, THF, then NaH , MeI, 72%.

This synthesis represented the first use of the Pauson-Khand reaction to synthesise the azabicyclic motif of $(-)$-alstonerine. This step arguably provided a more selective route to the azabicyclo[3.3.1]nonane core than those previously reported by Cook, which required epimerisations to allow for the enantioselective synthesis of this motif. This approach, although shorter than those previously reported by Cook et al., had a significantly lower overall yield, due largely to the difficulty in synthesising the required enyne Pauson-Khand substrate 48, and the number of steps required to convert the cyclopentenone into the alstonerine E-ring.

1.6 The Craig group's previous approaches to alstonerine

1.6.1 Background

The aziridine motif is highly valuable in the synthesis of nitrogen containing natural products. ${ }^{44}$ Structurally analogous to epoxides and readily synthesised as single enantiomers, ${ }^{44}$ they have found widespread use in asymmetric synthesis due to their ability to undergo both regio- and stereoselective nucleophilic ring-opening reactions. ${ }^{45}$ Early work within the Craig group focused on using aziridines derived from α-amino acids in the assembly of pyrrolidines ${ }^{46}$ and piperidines. ${ }^{47}$ The antifungal agent (+)-preussin $58,{ }^{48}(+)$-monomorine 59 (a trail pheromone of the widespread pharoah's worker ant ${ }^{49}$ Monomorium pharaonis) and cytotoxic marine alkaloid ${ }^{50}$ lepadiformine 60, are among those natural products synthesised within the Craig group using aziridine chemistry. ${ }^{46,51,52}$

Figure 6. Synthesis of nitrogen containing natural products within the Craig group.

During these early synthetic endeavours, aziridine-derived heterocycles, in particular the 1,4-bis(tolylsulfonyl)tetrahydropyridines 61a synthesised from α-amino acids (Figure 7, below), were found to be useful substrates for an extensive range of synthetic transformations. Their utility is enhanced by the simple nature of their preparation via aziridine ring-opening reactions between arylsulfonyl-substituted acetals 62 and α-amino acid-derived N-tosylaziridines 63a, followed by cyclocondensation (Figure 7).

Figure 7. Synthesis of 1,4-bis(tolylsulfonyl)tetrahydropyridines 61a.

Tetrahydopyridines 61a have been applied in highly stereoselective, $\mathrm{S}_{\mathrm{N}} 1$ and $\mathrm{S}_{\mathrm{N}} 1$, reactions, ${ }^{53,47(\mathrm{a})}$ acid-catalysed reduction, ${ }^{47(\mathrm{c})}$ homo- and hetero-Diels-Alder reactions, ${ }^{54}$ syn-dihydroxylation ${ }^{47(\mathrm{c})}$ and intramolecular cyclisation processes, ${ }^{55,47(\mathrm{~b}), 68}$ and as such, their usefulness as building blocks in organic synthesis has been proven, as outlined below (Figure 8).

Figure 8. Synthetic applications of 1,4-bis(tolylsulfonyl)tetrahydropyridines 61a.

Having shown tetrahydropyridines 61a to be useful in piperidine synthesis, the Craig group became interested in the synthesis of the piperidine containing alkaloid natural products, particularly benzylisoquinoline alkaloid morphine 64, and the macroline-related alkaloids alstonerine 4 and suaveoline 65 (Figure 9, below).

Figure 9. Possible applications of tetrahydropyridine chemistry in alkaloid synthesis.

64 (-)-morphine

4 (-)-alstonerine

65 (-)-suaveoline

In particular, it was envisaged that the L-tryptophan derived bis(tolylsulfonyl)tetrahydropyridine 61 could be used as an advanced intermediate in the total synthesis of macroline-related alkaloids, alstonerine 4 and suaveoline 65 (Figure 10, below). For progress on the synthesis of suaveoline 65, see the theses of Lewis ${ }^{56}$ and Tholen. ${ }^{57}$

Figure 10. Original strategy for bis(tolylsulfonyl)tetrahydropyridine 61 as intermediate in (-)-alstonerine $\mathbf{4}$ synthesis.

The following discussion describes previous synthesis approaches towards alstonerine as investigated in the Craig group.

1.6.2 The Craig group's first approach to (-)-alstonerine

The approach to alstonerine anticipated that the azabicyclo[3.3.1]nonane containing tetracyclic ketone intermediate 67 would be synthesised via an acid-catalysed Pictet-Spengler cyclisation of the L-tryptophan-derived 1,4-bis(tolylsulfonyl)tetrahydropyridine 61. The E-ring would be installed by a regio- and stereospecific aldol, β-ketoesterification and Knoevenagel reaction of 69. Oxidation level adjustment and FGI would furnish (-)-alstonerine 4.

Figure 11. Retrosynthetic analysis (-)-alstonerine 4.

Forward Synthesis

In the first attempted total synthesis of (-)-alstonerine 4, Ioannidis ${ }^{58}$ successfully synthesised tetracyclic intermediate 66, (Scheme 19, below) without the need to isolate bis(tolylsulfonyl)tetrahydropyridine 61. This was achieved via a modification of the previously discussed tetrahydropyridine chemistry, whereby the tetrahydropyridine formation and PictetSpengler cyclisation steps (b and c, Scheme 19) were combined into a tandem process (d, Scheme 19). Ring-opened intermediate 70 was obtained in $>80 \%$ yield, by treating L-tryptophan-derived aziridine 63b with the lithiated carbanion of sulfonyl acetal 62 (Scheme 19).

Various conditions were investigated for the tandem tetrahydropyridine-Pictet-Spengler cyclisation, starting with those previously reported for the Pictet-Spengler cyclisation of tetrahydropyridine 61^{58} (c, Scheme 19). However, TMSI, ${ }^{59}$ catalytic sulfuric acid ${ }^{47}$ and TFA gave only low yields of the desired tetracyclic intermediate 66. Extensive N_{1} TBS deprotection was also observed under these conditions. The desired tetracycle 66 was eventually made in good yield, by treating 70 with stoichiometric $(\pm)-\mathrm{CSA}$ in $\mathrm{CH}_{2} \mathrm{C1}_{2}$ or $p \mathrm{TSA}$ in acetone. ${ }^{58}$

Scheme 19. Tandem tetrahydropyridine formation and Pictet-Spengler cyclisation of 70.

66
a) $\mathbf{6 2 +} n-\operatorname{BuLi}\left(1.1\right.$ equiv.), THF-TMEDA, $0^{\circ} \mathrm{C} \rightarrow \mathrm{rt}, 1 \mathrm{~h},>80 \%$; b) (\pm)-CSA (1.0 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 1 \mathrm{~h},>85 \%$ or para-TsOH (1.0 equiv.), acetone, $\mathrm{rt}, 30 \mathrm{~min},>85 \%$.

Having successfully optimised the tandem tetrahydropyridine-Pictet-Spengler cyclisation that installed the C- and D-rings of the azabicyclic core in a single step, and allowed rapid access to tetracyclic intermediate 66 from L-tryptophan, the final phase of the synthesis required installation of a C15 ketone moiety in place of the epimeric sulfone group to allow introduction of the E-ring. Numerous oxidative desulfonylation conditions were investigated. ${ }^{58}$ The use of bis(trimethylsilyl)peroxide ${ }^{60}$ and chlorodimethoxyborane ${ }^{58}$ both failed. The possibility of Lewis acid-mediated thionium ion formation followed by hydrolysis was also explored. The α-sulfonyl anion derived from 66 was quenched with both PhSSPh or $\mathrm{PhSSO}_{2} \mathrm{Ph}$ (sources of PhS^{+}), however no dithioketal intermediate 71 was observed. Dithioketal 71 was eventually synthesised by installing the dithioketal functionality prior to the tandem tetrahydropyridine-Pictet-Spengler cyclisation.

Ring opened intermediate 70 was converted into dithioketal $\mathbf{7 2}$ in only 40% yield, by treating 70 with n-BuLi and $\mathrm{PhSSO}_{2} \mathrm{Ph}$. At this stage, dithioketal 72 was converted into the desired tetracyclic ketone 67 by tandem tetrahydropyridine-Pictet-Spengler cyclisation and aluminiummediated diphenylthioketal formation, followed by treatment of 71 with mercury(II)chloride in the presence of proton scavenger $\mathrm{CaCO}_{3} .{ }^{58}$

Scheme 20. Failed oxidative desulfonylation of tetracyclic intermediate 66.

a) n - BuLi (2.2 equiv.), $\mathrm{PhSSO}_{2} \mathrm{Ph}$ (1.5 equiv.), THF-TMEDA, $0^{\circ} \mathrm{C}, 40 \%$; b) (\pm)-CSA (1.0 equiv.), $\mathrm{CH}_{2} \mathrm{C1}_{2}, \mathrm{rt}, 1 \mathrm{~h}$, 80%; c) $\mathrm{Me}_{2} \mathrm{AlSPh}$ (3.0 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, $4 \mathrm{~h}, 55 \%$; d) HgCl_{2} (2.2 equiv.), CaCO_{3} (2.2 equiv.), acetone- $\mathrm{H}_{2} \mathrm{O}$, reflux, $12 \mathrm{~h}, 93 \%$.

With conditions for the challenging oxidative desulfonylation established, attention turned to installing the alstonerine E-ring. Unfortunately, the aldol reaction of tetracyclic ketone 67 with formaldehyde (retrosynthesis, Page 36) was plagued by a facile retro-aldol reaction that was ultimately responsible for the failure of this approach (Scheme 21, below). Starting material recovery was always observed under standard aldol conditions. The facile nature of the retroaldol was due to the axial orientation of the C 16 hydroxymethyl-substituent in $\mathbf{6 8}$, which allowed $\pi_{\mathrm{C}=\mathrm{o}} \rightarrow \sigma^{*}{ }_{\mathrm{C}-\mathrm{C}}$ donation and made tetracyclic ketone 67 energetically favourable. Hydroxymethylation could be achieved using milder conditions outlined by Yamamoto et al. ${ }^{61}$ whereby TMSOTf and $\mathrm{Et}_{3} \mathrm{~N}$ were used to form the TMS enol ether of 67 , which reacted with methylaluminium $\operatorname{bis}(2,6$-diphenylphenoxide)-formaldehyde complex to give β-hydroxymethylketone 68 in moderate yield. β-Ketoesterification of $\mathbf{6 8}$ using diketene and dioxinone failed, instead returning tetracyclic ketone 67 via the facile retro-aldol previously highlighted. ${ }^{58}$ At this stage, due to the difficulty of the aldol and β-ketoesterification steps required, this approach towards the E-ring synthesis was abandoned.

Scheme 21. Unavoidable facile retro-aldol of 68.

a) $\mathrm{Et}_{3} \mathrm{~N}$ (4.0 equiv.), TMSOTf (2.0 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 15 \mathrm{~min}$, then MAPH-formaldehyde (1.5 equiv.), $-78^{\circ} \mathrm{C}, 2 \mathrm{~h}, 54 \%$.

1.6.3 Hetero-Diels-Alder approach

In the original approach, the required azabicyclo[3.3.1]nonane core had very successfully been installed via a tandem tetrahydropyridine-Pictet-Spengler cyclisation. The limitations of this approach had all arisen whilst attempting to synthesise the E-ring, namely the oxidative desulfonylation of 66, subsequent aldol of tetracyclic ketone 67 and β-ketoesterification reactions, thus an alternative strategy was envisaged that retained the previous synthesis of the azabicyclic core via tandem tetrahydropyridine-Pictet-Spengler cyclisation, but included a revised hetero-Diels-Alder approach to the E-ring (Figure 12, below).

Figure 12. Possible synthesis of the E-ring via hetero-Diels-Alder.

For this approach to be successful the Diels-Alder reaction of $\mathbf{7 3}$ with formaldehyde would have to occur from the bottom face of the diene; this would install the correct C16 stereochemistry and provide pentacyclic substrate $\mathbf{7 4}$ from which to complete the synthesis.

The retrosynthesis established for the synthesis of the Diels-Alder diene substrate $\mathbf{7 3}$ is shown below (Figure 13). The azabicyclic core of diene 73 would be synthesised as previously from di-aldehyde 77 via the acid-catalysed tandem tetrahydropyridine-Pictet-Spengler cyclisation that had been employed in the previous approach. The tandem cyclisation would be followed by base-mediated sulfone elimination and protection to give diene 73. The synthesis of intermediate di-aldehyde 77 would require an alternative nucleophile for the aziridine ring-opening reaction. Work by Ioannidis ${ }^{58}$ during the original approach found that sulfonyl nucleophiles were effective partners for aziridine 63b, and as such cyclopentenyl sulfone $\mathbf{8 0}$ was chosen. The double bond in 80 would be used to introduce the di-aldehyde functionality when required.

Figure 13. Retrosynthetic analysis (-)-alstonerine 4.

Forward Synthesis

Both Rahn ${ }^{62}$ and Ioannidis ${ }^{58}$ showed that intermediate 75 could be obtained via nucleophilic ring-opening of L-tryptophan-derived aziridine 63b by the sulfonyl anion derived from bis(phenylsulfonyl)cyclopentene 80. Treatment of bis(phenylsulfonyl)cyclopentene 80 with freshly prepared lithium naphthalenide solution, followed by addition of aziridine 63b gave intermediate 75 in 55-64\% yield. Dihydroxylation of the cyclopentene containing ring-opening product 75 using KMnO_{4} gave the corresponding diol in 61% yield (Scheme 22). Oxidative cleavage of the resulting 1,2-diol and the acid-mediated tetrahydropyridine-Pictet-Spengler cyclisation under anhydrous conditions gave the azabicyclo[3.3.1]nonane containing tetracyclic aldehydes 78 in 94\% yield over two steps (Scheme 22).

Scheme 22. Synthesis of tetracyclic aldehyde 78.

a) $\mathrm{Li} \cdot \mathrm{Np}$ (4.0 equiv.), THF, $-20^{\circ} \mathrm{C}, 1,1$-bis-(phenylsulfonyl)cyclopent-3-ene $\mathbf{8 0}$ (1.2 equiv.), $\mathrm{THF},-78^{\circ} \mathrm{C}$, then aziridine 63b (1.0 equiv.), DMPU (3.0 equiv.), THF, $-78^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$, $\mathrm{o} / \mathrm{n}, 55-64 \%$; b) KMnO_{4} (1.5 equiv.), TBAB (1.6 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$, o/n, 61%; c) $\mathrm{Pb}(\mathrm{OAc})_{4}$ (1.1 equiv.), NaHCO_{3} (7.0 equiv.), 1,2-dichloroethane, $0^{\circ} \mathrm{C}, 30$ $\min ; d)$ TFA (1.1 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 30 \mathrm{~min}, 94 \%$ over two steps (c and d).

Tetracyclic aldehyde 78 was converted into O-silyl protected diene 73 in 95% yield using DBU, DMAP and TBDPSCl. Extensive investigations into the hetero-Diels-Alder reaction between diene 73 and formaldehyde were attempted. Diene 73 was exposed to a variety of formaldehyde sources in the presence of Lewis acid. A combination of monomeric formaldehyde, obtained using a modified Schlosser method, ${ }^{63}$ in the presence of dimethylaluminium chloride gave pentacycle 74 in moderate yield. ${ }^{62}$

At this stage, whilst attempting to hydrogenate the allylic double bond in silyl ether 74 under standard conditions only complete desilylation was observed. When carried out immediately after the hetero-Diels-Alder reaction, this gave allylic alcohol $\mathbf{8 1}$ in an improved 66% yield over
two steps. ${ }^{62}$ The C16 stereochemistry of alcohol 81 was established by X-ray crystallography and proved that the dienophile had preferentially attacked from the bottom face of diene $\mathbf{7 3}$.

Scheme 23. Synthesis of pentacyclic intermediate 81a with correct C16 stereochemistry.

a) TBDPSC1 (1.5 equiv.), DMAP (0.2 equiv.), DBU (5.0 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1.5 \mathrm{~h}, 95 \%$; b) monomeric-HCHO (1.5 equiv.), $\mathrm{Me}_{2} \mathrm{AlCl}$ (3.0 equiv.), THF, $0^{\circ} \mathrm{C} \rightarrow \mathrm{rt}, 3 \mathrm{~h}$; c) $\mathrm{H}_{2} / \mathrm{Pd} / \mathrm{C}\left(10 \mathrm{~mol} \%\right.$), NaHCO_{3} (1.6 equiv.), $\mathrm{CHCl}_{3}, \mathrm{o} / \mathrm{n}, 66 \%$ over two steps; d) $\mathrm{Na} \cdot \mathrm{Np}$ (0.5 M in THF; 8.0 equiv.), THF, $-78^{\circ} \mathrm{C}, 59 \%$; e) aqueous $\mathrm{HCHO}\left(37 \%\right.$ in $\mathrm{H}_{2} \mathrm{O} ; 50.0$ equiv.), $\mathrm{NaBH}_{3} \mathrm{CN}$ (5.0 equiv.), AcOH (6.0 equiv.), $2.5 \mathrm{~h}, 98 \%$.

Although detosylation of $\mathbf{8 1}$ followed by N_{4} - methylation gave O - alkylated 81a in 58% yield, elaboration of the E-ring in pentacycle $\mathbf{8 1}$ proved difficult. ${ }^{62}$ The alcohol moiety in $\mathbf{8 1}$ proved unreactive towards standard oxidation conditions such as Dess-Martin periodinane, Swern, PDC, PCC, TPAP, DDQ, $\mathrm{AgCO}_{3}, \mathrm{SO}_{3}$-py and Jones. The double bond proved unreactive to hydrogenation and isomerisation using rhodium(I) catalyst, $\mathrm{RhCl}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3}$. Attempts at radical isomerisation of the double bond had inverted the stereochemistry of the C16 hydrogen, and as such another approach towards the final oxygen heterocyclic E-ring was investigated.

1.6.4 Conjugated iminium approach towards (\pm)-alstonerine

Following the failure to install the E-ring oxygen heterocycle of $(-)$-alstonerine via either of the previously outlined aldol or hetero-Diels-Alder approaches, it became clear that a change in strategy was required.

A modified approach was envisaged, whereby the hydroxymethyl-C16 substituent of the E-ring would be incorporated earlier in the sequence. This would be achieved via a directed nucleophilic ring-opening reaction of hydroxymethyl-aziridine $\mathbf{8 2} .^{64,65}$ This strategy-level transformation would increase the level of convergence in the sequence, by implementing the entire carbon skeleton of alstonerine from three parent substrates. The three components $\mathbf{6 2}, \mathbf{8 2}$ and 86 would be combined to give cyclisation substrate 84 , which contained all of the necessary carbon atoms required for the carbon skeleton of alstonerine (Figure 14, below).

Figure 14. Retrosynthetic analysis (\pm)-alstonerine 4.

The synthesis would be completed by combining the tandem tetrahydropyridine-Pictet-Spengler cyclisation with an intramolecular Michael-type addition. The ambitious triple cyclisation would be followed by FGI and oxidation level adjustment. The order of ring formation in the tandem
triple cyclisation would be pivotal to its success. Crucially, tetrahydropyridine 84a must be formed first (Step a, Figure 15). Michael-type addition must then follow (Step c, Figure 2), which would allow the Pictet-Spengler cyclisation to take place (Step d, Figure 2).

Figure 15. Lewis acid-catalysed tandem cyclisation of 84 in synthesis of (\pm)-alstonerine.

84

84a

84b

84c

From the retrosynthesis (Page 44), it can be seen that this approach required the synthesis of the new aziridine $\mathbf{8 2}$ that already possessed the hydroxymethyl-substituent required for the eventual C16 position. For the initial work, racemic hydroxymethyl-substituted $\mathbf{8 2}$ was synthesised in favour of the single enantiomer, as racemic $\mathbf{8 2}$ could be achieved from commercially available Z-2-butene-1,4-diol in a relatively short sequence. The synthesis of $\mathbf{8 2}$ is discussed later (Scheme 25, Page 51, Chapter 2).

Forward Synthesis

When treated with n-BuLi, O-lithiated hydroxymethyl-substituted aziridine $\mathbf{8 2}$ was found to undergo completely regioselective and stereospecific ring-opening with the sulfone-stabilised carbanion of 1-phenylsulfonyl-3,3-dimethoxypropane 62. ${ }^{67} \beta$-Ketoesterification of the resulting alcohol $\mathbf{8 3}$ using either NaOAc or DMAP as catalyst with diketene gave cyclisation precursor $\mathbf{8 4}$ in 54% yield. At this stage, numerous Lewis acidic cyclisation conditions were attempted. ${ }^{66}$

In all cases, tetrahydropyridine formation was immediately followed by intramolecular Pictet-Spengler cyclisation to give tetracyclic 87, which prevented the synthesis of the alstonerine E-ring, as the premature Pictet-Spengler cyclisation removed the required 1,4-conjugation and meant that conjugated iminium intermediate $\mathbf{8 4 b}$ could not be formed.

Scheme 24. Failed Lewis acid-catalysed tandem cyclisation of $\mathbf{8 4}$ in the synthesis of alstonerine.

84d
a) 62 (1.5 equiv.) $+n$-BuLi, THF, $-78^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$, o/n, 83%; b) Diketene (1.3 equiv.), DMAP ($10 \mathrm{~mol} \%$), THF, rt, 2 h , 51%; c) TMSI (6.0 equiv.), MeCN, $0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 86 \%$.

It is important to note that during this approach, nucleophilic ring-opening reactions carried out on the MOM-protected derivative of aziridine $\mathbf{8 2}$ with the sulfone-stabilised anion of $\mathbf{6 2}$ showed
little regioselectivity, and as such the hydroxymethyl-substituent was identified as vital in directing the approach of the nucleophile.

Chapter 2

Results \&
 Discussion

Introduction to the final approach

Having discussed previous endeavours towards the total synthesis of alstonerine in Chapter 1, the focus of this chapter will be to present the final approach, which culminated in an aziridine-based synthesis of (\pm)-alstonerine. The final approach relied heavily on the successful aspects of the Craig group's previous approaches, ${ }^{67,68}$ notably the regioselective, stereospecific ring-opening of hydroxymethyl-substituted aziridine $\mathbf{8 2}$ and a reductive modification of the Pictet-Spengler cyclisation (Retrosynthesis, Figure 16, below). The approach will be discussed in two sections.

Section 2.1 The synthesis of key intermediate α, β-unsaturated lactam alcohol 90

The premature Pictet-Spengler cyclisation of 84d observed by Wildman (Scheme 24, Page 46), ${ }^{66}$ would be addressed by altering the order in which the E- and C-rings were constructed. We would ensure that the Pictet-Spengler cyclisation could not occur before the E-ring is synthesised by synthesising an equivalent intermediate to the tetrahydropyridine $84 \mathbf{c}$ used previously. The new intermediate $\mathbf{9 0}$ will contain an α, β-unsaturated lactam ring in-place of the tetrahydropyridine motif employed previously. This would act as a masked tetrahydropyridine and would remain unreactive to Pictet-Spengler cyclisation until partial reduction of the lactam carbonyl group. The E-ring would then be introduced, by stepwise β-ketoesterification of lactam alcohol 90 and diastereoselective intramolecular Michael addition of the resulting β-ketoester.

The masked tetrahydropyridine lactam-alcohol 90 would be synthesised by directed ring-opening of hydroxymethyl-substituted aziridine 82, as discussed in the conjugated iminium approach, but the sulfone nucleophile would contain the orthoester moiety $\mathbf{8 8}$, this would allow access into the lactam-oxidation level of 90 .

Section 2.2 Synthesis of Macroline-related alkaloids from lactam-alcohol 90

Following E-ring formation, the second stage of the synthesis would begin with partial reduction of the lactam carbonyl to unmask tetrahydropyridine 84c and affect the Pictet-Spengler cyclisation. This would be followed by oxidation level adjustment of the E-ring and FGI to complete the synthesis of alstonerine. The synthesis of related indole alkaloids will also be discussed in this section.

Figure 16. Retrosynthesis for the final approach (\pm)-alstonerine 4.

2.1 Synthesis of key intermediate α, β-unsaturated lactam-alcohol 90

2.1.1. Synthesis of strategy-level directed aziridine ring-opening reaction substrates

In order to optimise the aziridine ring-opening reaction, we had first to carry out the synthesis of hydroxymethyl-substituted aziridine $\mathbf{8 2}$ and trimethyl 3-(phenylsulfonyl)orthopropionate $\mathbf{8 8}$ in a concise and efficient manner, such that large quantities of each would be readily accessible.

2.1.2. Synthesis of hydroxymethyl-substituted aziridine $\mathbf{8 2}$

Previous work within the group by Mathie ${ }^{66}$ and Tholen ${ }^{57}$ had established a robust route, by which hydroxymethyl-substituted aziridine $\mathbf{8 2}$ was prepared on multi-gram scale from Z-2-butene-1,4-diol 92, in an overall yield of 50% over six steps. (Scheme 25)

Scheme 25. Synthesis of hydroxymethyl-substituted aziridine $\mathbf{8 2}$.

a) NaH (0.98 equiv.), THF, $0^{\circ} \mathrm{C} \rightarrow \mathrm{rt}, 24 \mathrm{~h}$, then TBSCl (0.98 equiv.), $\mathrm{rt}, 24 \mathrm{~h}, 98 \%$; b) Chloramine-T (1.2 equiv.), PTAB (0.1 equiv.), MeCN, rt, $48 \mathrm{~h}, 76 \%$; c) NaH (4.0 equiv.), THF, $0^{\circ} \mathrm{C} \rightarrow \mathrm{rt} 4 \mathrm{~h}$, then cooled to $-78^{\circ} \mathrm{C}$ and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (excess), 94%; d) 1-methylindole (2.0 equiv.), $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (1.1 equiv.), anhydrous NaHCO_{3} (4.0 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 6 \mathrm{~h}, 87 \%$; e) DIAD (1.5 equiv.), $\mathrm{Ph}_{3} \mathrm{P}$ (1.2 equiv.), THF, rt, $16 \mathrm{~h}, 86 \%$; f) TBAF• $3 \mathrm{H}_{2} \mathrm{O}$ (1.1 equiv.), THF, $0^{\circ} \mathrm{C} \rightarrow \mathrm{rt}, 16 \mathrm{~h}, 95 \%$.

Monoprotection of Z-2-butene-1,4-diol 92 as the TBS silyl ether and subsequent hydroxylassisted aziridination ${ }^{69}$ afforded syn-configured aziridine 93. Sodium or potassium hydridemediated aza-Payne rearrangement of 93 ensued stereospecifically with inversion of configuration at the C 2 carbon via an $\mathrm{S}_{\mathrm{N}} 2$ type mechanism, to give epoxide 94 in excellent yield.

Boron trifluoride etherate-assisted ring-opening of epoxide 94 by N_{1}-methylindole occurred at the less hindered position to give anti-amino alcohol 95. The syn-aziridine motif in 96 was reformed using Mitsunobu aziridination conditions. ${ }^{70} O$-Silyl deprotection using TBAF completed the synthesis of the hydroxymethyl-substituted aziridine $\mathbf{8 2}$.

2.1.3. Synthesis of sulfone 88

Although Ghosez and co-workers had described the synthesis of trimethyl 3-(phenylsulfonyl)orthopropionate $\mathbf{8 8}$ from the methanolysis of the β-sulfonylnitrile derivative of acrylonitrile, ${ }^{71}$ the work of Parham had been used previously within the group. ${ }^{72,73,74}$ Dichlorocyclopropanation of phenyl vinyl sulfide $\mathbf{9 7}$ followed by S-oxidation to sulfone 99 and basic methanolysis gave orthoester $\mathbf{8 8}$ in $\sim 50 \%$ yield on small scale (Scheme 26).

Scheme 26. Original synthesis of orthoester 88.

a) $\mathrm{CCl}_{3} \mathrm{CO}_{2} \mathrm{Et}$ (1.3 equiv.), NaOMe (1.5 equiv.), Petrol ${ }^{80},-20^{\circ} \mathrm{C} \rightarrow \mathrm{rt}, 18 \mathrm{~h}, 61 \%$ following the method outlined by Tholen ${ }^{57}$; b) $\mathrm{H}_{2} \mathrm{O}_{2}$ (4.0 equiv.), $\mathrm{HOAc}, 100^{\circ} \mathrm{C}, 3 \mathrm{~h}, 90 \%$; c) NaOMe (3.5 equiv.), MeOH, $65^{\circ} \mathrm{C}, 3 \mathrm{~h}, 98 \%$.

Although yields were generally acceptable for the preparation of $\mathbf{8 8}$ on a small scale ($\sim 2.5 \mathrm{~g}$), the expense of phenyl vinyl sulfide, duration of the sequence and poor cyclopropanation reaction led to an investigation into a more practical route for multi-gram synthesis.

Our first step was to find a scalable synthesis of phenyl vinyl sulfide. This was achieved by following the method of Carr and co-workers, whereby we were able to synthesise a 23 g batch of phenyl vinyl sulfide 97 in 68% yield from benzenethiol using a one-pot procedure. ${ }^{75}$ Of the many reported syntheses of phenyl vinyl sulfide, ${ }^{76,77,78,79}$ this method was chosen in order to avoid handling the powerful alkylating agent 1-phenylthio-2-bromoethane $\mathbf{1 0 0}$ and gaseous halogens (Scheme 27, below).

Scheme 27. Scalable synthesis of phenyl vinyl sulfide 97.

a) NaOEt (1.0 equiv.), $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}$ (1.5 equiv.), $\mathrm{EtOH},-30^{\circ} \mathrm{C} \rightarrow \mathrm{rt}, 30 \mathrm{~min}$, then $\mathrm{NaOEt}, 95^{\circ} \mathrm{C}, 24 \mathrm{~h}, 68 \%$.

With a scalable route to phenyl vinyl sulfide in hand, optimisation of the dichlorocyclopropanation reaction would lead to a practical and scalable route to orthoester $\mathbf{8 8}$.

2.1.4 Recrystallisation of sulfone 99

The conditions outlined previously for the dichlorocyclopropanation of phenyl vinyl sulfide gave poor yields of purified 2,2-dichlorocyclopropyl phenyl sulfide 98, due to product degradation during purification by distillation. To avoid this, the viability of S-oxidising the crude material obtained from dichlorocyclopropanation of phenyl vinyl sulfide was investigated. We knew that the resulting 2,2-dichlorocyclopropyl phenyl sulfone 99 was a crystalline solid. Therefore, we envisaged that upon S-oxidation, sulfone 99 could be separated from residual ethyl methyl carbonate, (produced from ethyl trichloroacetate during the cyclopropanation) by crystallisation. Investigations into a suitable solvent system found that a $2: 1$ petrol:ethanol solvent system allowed recovery of 2,2-dichlorocyclopropyl phenyl sulfone 99 from a mixture containing 50\% ethyl methyl carbonate. Critically, S-oxidation of phenyl vinyl sulfide remaining from the dichlorocyclopropanation step resulted in phenyl vinyl sulfone, which could not be separated from the desired product via recrystallisation. Thus, in order purify 2,2-dichlorocyclopropyl phenyl sulfone 99 by recrystallisation on large scale, the dichlorocyclopropanation reaction required optimisation.

2.1.5 Optimisation of dichlorocyclopropanation synthesis of 98

Initial attempts using petrol distilled from calcium hydride and ethyl trichloroacetate as supplied from the manufacturer showed no conversion (Entry 1, Table 1). We suspected that this complete lack of reactivity was due to a competitive reaction between any olefinic impurities in the petrol and the reactive intermediate dichlorocarbene (Entry 2, Table 1). With this in mind, ethyl trichloroacetate was added at a rate of $6.0 \mathrm{~mL} \mathrm{~min}^{-1}$ to a solution of 97 and excess NaOMe in olefin free petrol ${ }^{80}$ at $-20^{\circ} \mathrm{C}$. After warming to room temperature overnight and work-up, ${ }^{1} \mathrm{H}$ NMR analysis showed complete consumption of starting material (Entry 3, Table 1). Although these conditions were viable for small-scale synthesis, the difficulties involved in removing olefin impurities by washing litres of petrol with concentrated sulfuric acid and KMnO_{4} led to the search for an alternative solvent for large scale synthesis. Concurrent dichlorocyclopropanation reactions were run in toluene, cyclohexane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ (Entries 4, 5 and 6 respectively, Table 1). Analysis by TLC after 1 h showed that the rate of reaction was hugely increased in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reaching completion after 1 h (Entry 6, Table 1). The reaction temperature was decreased to $-78^{\circ} \mathrm{C}$, and the addition of ethyltrichloroacetate carried out dropwise via dropping funnel on large scale (Entry 7, Table 1). This eliminated the potentially dangerous temperature spike that was observed during small-scale reactions.

Table 1. Dichlorocyclopropanation of phenyl vinyl sulfide.

Entry	Conditions	Time	Temp.	Conversion\%
1	$\mathrm{CCl}_{3} \mathrm{CO}_{2} \mathrm{Et}$ (1.3 equiv.), ${ }^{\mathrm{a}}$ NaOMe (1.5 equiv.), Petrol ${ }^{\text {b }}$	24 h	$-20^{\circ} \mathrm{C}$	0
2	$\mathrm{CCl}_{3} \mathrm{CO}_{2} \mathrm{Et}$ (1.3 equiv.), ${ }^{\mathrm{a}}$ NaOMe (1.5 equiv.), $\mathrm{Petrol}^{\mathrm{c}}$	24 h	$-20^{\circ} \mathrm{C}$	$50-60$
3	$\mathrm{CCl}_{3} \mathrm{CO}_{2} \mathrm{Et}$ (1.3 equiv.), ${ }^{\mathrm{d}}$ NaOMe (1.5 equiv.), $\mathrm{Petrol}^{\mathrm{c}}$	24 h	$-20^{\circ} \mathrm{C}$	90
4	$\mathrm{CCl}_{3} \mathrm{CO}_{2} \mathrm{Et}$ (1.3 equiv.), ${ }^{\mathrm{a}}$ NaOMe (1.5 equiv.), PhMe	24 h	$0^{\circ} \mathrm{C}$	~ 60
5	$\mathrm{CCl}_{3} \mathrm{CO}_{2} \mathrm{Et}$ (1.3 equiv.), ${ }^{\text {a }}$ NaOMe (1.5 equiv.), $\mathrm{C}_{6} \mathrm{H}_{12}$	24 h	$0^{\circ} \mathrm{C}$	0
6	$\mathrm{CCl}_{3} \mathrm{CO}_{2} \mathrm{Et}$ (1.3 equiv.), ${ }^{\mathrm{a}}$ NaOMe (1.5 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	1 h	$0^{\circ} \mathrm{C}$	100
7	$\mathrm{CCl}_{3} \mathrm{CO}_{2} \mathrm{Et}$ (1.3 equiv.), ${ }^{\mathrm{a}}$ NaOMe (1.5 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	4 h	$-78 \rightarrow 0^{\circ} \mathrm{C}$	100

${ }^{\text {a }}$ ethyl trichloroacetate added in one portion dropwise; ${ }^{\mathrm{b}}$ petrol distilled over $\mathrm{CaH}_{2} ;{ }^{\mathrm{c}}$ olefin free petrol ${ }^{80} ;{ }^{\mathrm{d}}$ ethyl trichloroacetate added at rate of $6.0 \mathrm{~mL} \mathrm{~min}^{-1}$.
S-Oxidation of crude dichlorocyclopropane 98 obtained using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Entry 7, Table 1), was achieved using peracetic acid generated in situ from acetic acid and hydrogen peroxide. Recrystallisation from 2:1 petrol:ethanol yielded 2,2-dichlorocyclopropyl phenyl sulfone 98 in $>90 \%$ over two steps.

2,2-Dichlorocyclopropyl phenyl sulfone 99 was converted into trimethyl 3(phenylsulfonyl)orthopropionate $\mathbf{8 8}$ in 98% yield, by treating $\mathbf{9 9}$ with sodium methoxide in anhydrous methanol under reflux for 3 hours. Even trace acidic impurities remaining from the S oxidation, led to complete hydrolysis and gave methyl-3-(phenylsulfonyl)propionate $\mathbf{1 0 1}$ in
quantitative yield. In order to avoid the formation of $\mathbf{1 0 1}$ during large scale production of sulfone 88, dichlorocyclopropane $\mathbf{9 8}$ was purified by chromatography prior to methanolysis.

Scheme 28. Scalable synthesis of orthoester 88.

a) $\mathrm{CCl}_{3} \mathrm{CO}_{2} \mathrm{Et}$ (1.5 equiv.), NaOMe (2.0 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C} \rightarrow \mathrm{rt}, 6 \mathrm{~h} ; \mathrm{b}$) $\mathrm{H}_{2} \mathrm{O}_{2}$ (4.0 equiv.), $\mathrm{HOAc}, 100^{\circ} \mathrm{C}, 4 \mathrm{~h}$, 91% over two steps; c) NaOMe (3.5 equiv.), $\mathrm{MeOH}, 65^{\circ} \mathrm{C}, 3 \mathrm{~h}, 98 \%$.

2.1.6 Initial work towards the synthesis of key intermediate lactam-alcohol 90

Initial investigations were based on the synthesis of methyl ester 102, as outlined previously by Tholen. ${ }^{81,57}$ Treatment of lithiated sulfone $\mathbf{8 8}$ with O-lithiated hydroxymethyl-substituted aziridine 82, followed by mildly acidic work-up, reportedly gave methyl ester 89 as a single diastereoisomer. However, during initial investigations into moving from milligram test reactions to multigram synthesis, methyl ester $\mathbf{8 9}$ proved difficult to isolate.

Scheme 29. Original four step synthesis of α, β-unsaturated lactam-alcohol 90.

a) n - BuLi (4.1 equiv.), sulfone $\mathbf{8 8}$ (2.5 equiv.), THF, $-40^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$ overnight, then 10% citric acid, typically $<30 \%$; b) TBSCl (1.5 equiv.), imidazole (1.5 equiv.), DMAP (0.1 equiv.), DMF, rt, $3 \mathrm{~h}, 49 \%$; c) 2 M TMA (1.1 equiv.), toluene, $\mathrm{rt}, 30 \mathrm{~min}$, then $80^{\circ} \mathrm{C}, 3 \mathrm{~h}, 49 \%$; d) $\mathrm{AcOH}: \mathrm{H}_{2} \mathrm{O}: \mathrm{THF}, \mathrm{rt}, 30 \mathrm{~h}, 65 \%$.

Although it was believed that the acidic orthoester hydrolysis conditions were responsible for the capricious nature and low yield of the aziridine ring-opening reaction, it was decided that the possibility of side reactions/starting material degradation should also be eliminated. To achieve this, basic stability/mechanistic studies were carried out on both sulfone $\mathbf{8 8}$ and hydroxymethyl-substituted aziridine $\mathbf{8 2}$, and the reactivity of aziridine $\mathbf{8 2}$ towards nucleophilic ring-opening was confirmed by reaction with lithiated methyl phenyl sulfone.

2.1.7 Substrate stability and mechanistic investigation

We envisaged that degradation of starting materials could be contributing to the low yields observed for the ring-opening reaction. We also hoped to provide evidence to support our claim that ring-opening occurs via directed addition of the sulfone nucleophile to hydroxymethyl substituted aziridine 82a (Path A, Figure A, below), rather than the possible alternative, whereby an aza-Payne rearrangement occurs, followed by addition to the resulting epoxide 106 (Path B, Figure 17).

Figure 17. Plausible mechanisms for nucleophilic ring-opening of 82.

In order to probe its reactivity towards aza-Payne rearrangement, hydroxymethyl-aziridine $\mathbf{8 2}$ was treated with excess n - BuLi in various solvents, and the reaction followed by NMR over a prolonged time period. For reference, the suspected aza-Payne by-product 106 was first synthesised by treating hydroxymethyl-aziridine $\mathbf{8 2}$ with NaH in THF at $0^{\circ} \mathrm{C}$ (for experimental procedure, see Page 137). This gave epoxide 106 in 77\% yield.

To solutions of hydroxymethyl-aziridine $\mathbf{8 2}$ in THF, toluene and DME at $-78^{\circ} \mathrm{C}$ was added n - BuLi . Small aliquots of reaction mixture were then taken at varying temperatures, subjected to identical aqueous work-up and analysed by ${ }^{1} \mathrm{H}$ NMR. (Figure 18,
below) The spectra were then compared to that of epoxide 106. ${ }^{1} \mathrm{H}$ NMR analysis (Figure 18) provided evidence that hydroxymethyl substituted aziridine $\mathbf{8 2}$ does not undergo aza-Payne rearrangement in THF at temperatures below $-30^{\circ} \mathrm{C}$. The formation of the new doublet of doublets at 4.26 ppm in the DME and toluene reactions can be assigned to the product of aziridine ring-opening by water, due to trace amounts in the solvent or upon work-up.

Figure 18. ${ }^{1} \mathrm{H}$ NMR analysis after 3 h at $-30^{\circ} \mathrm{C}$ showing no aza-Payne rearrangement of $\mathbf{8 2}$.

2.1.8 Sulfone stability

We also needed to assess the stability of lithiated sulfone $\mathbf{8 8}$ to hydrolysis under our reaction conditions. The suspected by-product was again synthesised for reference. Sulfonyl orthoester $\mathbf{8 8}$ was stirred in HCl :THF solution for 16 hours, yielding methyl ester 101 in 97% yield. No ringopening products were observed when ester 101 was reacted with aziridine $\mathbf{8 2}$ under standard ring-opening conditions.

Scheme 30. Synthesis of suspected sulfone by-product 101 and attempted ring-opening of $\mathbf{8 2}$.

a) aqueous 2 M HCl (5.0 equiv.), THF, rt, $1 \mathrm{~h}, 97 \%$; b) Standard aziridine ring-opening conditions.

To assess the extent of orthoester hydrolysis occurring during the ring-opening reaction, $n-\mathrm{BuLi}$ was added to solutions of sulfonyl orthoester $\mathbf{8 8}$ in THF, toluene and DME at $-78^{\circ} \mathrm{C}$. The reaction mixtures were allowed to warm slowly from $-78^{\circ} \mathrm{C}$ to room temperature over a period of 24 hours, and small aliquots were again taken at varying temperatures, subjected to identical aqueous work-up and ${ }^{1} \mathrm{H}$ NMR (Figure 19, below).

Figure 19. ${ }^{1} \mathrm{H}$ NMR analysis after 3 h at $-35^{\circ} \mathrm{C}$ showing orthoester hydrolysis of $\mathbf{8 8}$.

Analysis by ${ }^{1} \mathrm{H}$ NMR showed no trace of orthoester hydrolysis after 3 hours at $-35^{\circ} \mathrm{C}$ in THF. Both reactions in toluene and DME showed considerable hydrolysis at this temperature. The reactions were allowed to warm slowly from $-35^{\circ} \mathrm{C}$ to room temperature overnight. Following work-up and NMR, the spectra of the THF reaction showed negligible formation of methyl ester 101. This provided evidence that orthoester hydrolysis was not responsible for the poor reaction yield.

2.1.9 Aziridine 81 reactivity towards sulfone nucleophiles

Having demonstrated that neither of our ring-opening reactants $\mathbf{8 2}$ or $\mathbf{8 8}$ was being consumed by side-reactions, and provided evidence to support the hydroxymethyl-directed aziridine ring-opening mechanistic hypothesis, it remained to confirm the reactivity of O-lithio hydroxymethyl-substituted aziridine $\mathbf{8 2}$ towards ring-opening. This was achieved by reacting O-lithio hydroxymethyl-substituted aziridine $\mathbf{8 2}$ with an analogue of the sulfone nucleophile. The lithio anion of phenyl methyl sulfone $\mathbf{1 0 5}$ was chosen as a model nucleophile. Importantly, $\mathbf{1 0 5}$ had previously been shown to undergo regio- and stereoselective ring-opening reactions with aziridines by the Craig group. ${ }^{52}$ The combination of lithiated phenyl methyl sulfone $\mathbf{1 0 5}$ with the O-lithiated 82 and work-up with 10% aqueous citric acid effected stereospecific and completely regioselective aziridine ring-opening. Sulfonamidoalcohol 107 was isolated in 73% yield as a single diastereomer.

Scheme 31. Ring-opening reaction of hydroxymethyl-substituted aziridine $\mathbf{8 2}$ with model nucleophile 105.

a) $n-\mathrm{BuLi}$ (2.5 equiv.), $\mathrm{MeSO}_{2} \mathrm{Ph} 105$ (2.0 equiv.), THF, $-40^{\circ} \mathrm{C}, 2 \mathrm{~h}$, then 10% aqueous citric acid, 73%.

2.1.10 Orthoester hydrolysis in the synthesis of $\mathbf{8 9}$

Having proven aziridine $\mathbf{8 2}$ was a suitably reactive electrophile and stable to degradation under the reaction conditions, and that sulfone $\mathbf{8 8}$ was not being consumed by side-reactions, our attention turned to evaluating the conditions required for the hydrolysis of the orthoester moiety in the ring-opened product 108.

Figure 20. Problematic acid-induced hydrolysis of orthoester 108.

Unfortunately, forming the desired methyl ester 89 proved less straightforward than expected. Initial attempts showed that use of excess saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ to quench the ring-opening reaction (Entries 1 and 2, Table 2, below) provided an insufficiently acidic medium to effect hydrolysis of the orthoester moiety. Switching to aqueous 10% citric acid provided complex mixtures of products 89 and 108 (Entry 3, Table 2), without complete orthoester hydrolysis. Increasing the acidity by using saturated aqueous citric acid solution, gave mixtures of 109 and 89 (Entries 4-6, Table 2), but importantly no 108 meaning that complete hydrolysis had occurred. The next attempt used concentrated aqueous HCl solution and gave α, β-unsaturated δ-lactone 110 as the single product in good yield (Entry 8, Table 2). The use of 2 M aqueous HCl solution also gave complete hydrolysis, giving lactones 109 as a mixture of sulfone epimers in good yield (Entry 7, Table 2). Attempts using acetic acid and TFA also failed to give 89 in reliable yield, and as such an alternative to the ring-opening of $\mathbf{8 2}$ was investigated.

Table 2. Hydroxymethyl-substituted aziridine 82 ring-opening optimisation.

In order to confirm that the ring-opening reaction was occurring with complete regioselectivity for the aziridine carbon atom proximal to the hydroxymethyl moiety, the structures of sulfones 109a and 109b were established by X-ray crystallography (Figures 21 and 22, below). Pleasingly, the structures show that the ring-opening occurred with clean inversion of the aziridine carbon atom under attack, and illustrates the anti-relationship of the indolymethyl- and hydroxymethyl-substitutents (labelled $\mathrm{C}(12)$ and $\mathrm{C}(13)$ respectively, below).

Figure 21. The molecular structure of 109a.

Figure 22. The molecular structure of $\mathbf{1 0 9 b}$.

2.1.11 O-TBS protected aziridine 96 ring-opening strategy

With the unwanted lactonisation proving persistent, the possibility of using O-silyl protected hydroxymethyl-substituted aziridine 96 in the ring-opening reaction was briefly revisited. Previous work within the Craig group had found that when MOM-protected, ${ }^{67}$ the regioselectivity of ring-opening reactions of hydroxymethyl-substituted aziridine $\mathbf{8 2}$ by the lithioanion of 1-phenylsulfonyl-3,3-dimethoxypropane $\mathbf{6 2}$ was severely eroded.

We rationalised that although O-silylation of hydroxymethyl-aziridine $\mathbf{8 2}$ was likely to decrease the regioselectivity of the ring-opening reaction, lactonisation of the resulting product $\mathbf{1 0 2}$ would be avoided. This would lead to a robust route to intermediate $\mathbf{9 0}$, without altering the overall number of steps in the synthesis. Importantly, the regioisomers 111 must be separable. Lactam formation would give 104, which would be deprotected to give α, β-unsaturated lactam-alcohol 90.

Figure 23. Route to α, β-unsaturated lactam-alcohol 90 via O-TBS hydroxymethyl-substituted aziridine 96.

O-TBS protected hydroxymethyl-substituted aziridine $\mathbf{9 6}$ was treated with a solution of lithiated trimethyl 3-(phenylsulfonyl)orthopropionate $\mathbf{8 8}$ at $-78^{\circ} \mathrm{C}$ for 2 hours. Work-up with 2 M aqueous HCl and chromatography gave a mixture of epimeric regioisomers ($\sim 15: 10: 6: 5$ 102a:111a:111b:102b) in good yield. This equated to a synthesis of O-TBS ringopened regioisomer 102 in approximately 41% yield as a $3: 1$ mixture of sulfone epimers (Scheme 32, below).

Scheme 32. Ring-opening reaction of O-TBS hydroxymethyl-substituted aziridine 96.

a) $n-\mathrm{BuLi}$ (2.0 equiv.), sulfone $\mathbf{8 8}$ (1.8 equiv.), $\mathrm{THF},-78^{\circ} \mathrm{C} \rightarrow \mathrm{rt} \mathrm{o} / \mathrm{n}$, then aqueous $2 \mathrm{M} \mathrm{HCl}, 41 \%$.

Although this route provided a reliable route to O-TBS-protected sulfonamidoalcohol 102, the loss of regioselectivity in the ring-opening reaction was unacceptable for the final synthesis. The ring-opening of O-TBS 96, did however provide us with significantly improved quantities of 102. This allowed us to attempt the synthesis of the D- and E-rings, as well as providing material with which to investigate alternative routes to key intermediate lactam-alcohol $\mathbf{9 0}$ that did not require the need for O-silylation prior to lactamisation. In order to investigate these alternatives, we first required reliable desilylation conditions to convert O-TBS 102a and 102b into the target of the on-going aziridine ring-opening optimisation, sulfonamidoalcohol 89.

2.1.12 Deprotection of ring-opening product 102

With a route to larger quantities of O-TBS protected ester intermediate $\mathbf{1 0 2}$ established via ringopening of O-TBS hydroxymethyl-substituted aziridine 96, and with a view to removing the need for O-TBS protection prior to lactamisation from the eventual synthesis, we decided to investigate the selectivity of Lewis acid-catalysed cyclisation of intermediate $\mathbf{1 1 2}$ (Figure 24, below). For these investigations, the cyclisation precursor 112 would be synthesised by deprotecting O-TBS ring-opening product 102 and subsequent β-ketoesterification of sulfonamidoalcohol 89.

Figure 24. Route to β-ketoester lactam 113 via selective cyclisation of 112.

113
We initially attempted a one-pot simultaneous aziridine ring-opening of 96 and O-silyl deprotection by quenching with $10 \% \mathrm{HCl}$ in MeOH . However, this proved unsuccessful and led to further investigations into conditions for the silyl deprotection of O-TBS 102. Standard fluoride conditions were used for our initial attempts, but both TBAF^{82} and HF-pyridine ${ }^{83}$ gave trans- α, β-unsaturated ester 114 in 76 and 68% yields respectively. Therefore, alternative acidic
conditions ${ }^{84}$ were attempted. This would avoid the unwanted elimination reaction that occurred rapidly in the presence of basic fluoride. When O-TBS $\mathbf{1 0 2}$ was stirred in a $1 \% \mathrm{HCl}: \mathrm{EtOH}$ solution, clean deprotection was observed, but acid-catalysed transesterification gave the ethyl ester derivative of $\mathbf{8 9}$ in quantitative yield. When repeated with a solution of $1 \% \mathrm{HCl}: \mathrm{MeOH}$ followed by neutralisation with solid NaHCO_{3}, filtration and concentration, deprotected methyl ester 89 was obtained in 63% yield. By decreasing the concentration to 0.01 M and increasing the reaction time, complete conversion was observed by TLC analysis, although the low yield remained. Investigations into the method of quenching the reaction led to an increased yield of 98% when NH_{3} in MeOH was used (Table 3).

Table 3. Silyl ether $\mathbf{1 0 2}$ deprotection

Entry	a) Conditions	Ratio	Yield\%
1	TBAF $3 \mathrm{H}_{2} \mathrm{O}$ (1.1 eq.), THF, $0^{\circ} \mathrm{C}, 15 \mathrm{~min}$	114	76
2	HF-pyridine (1.1 eq.), THF, $0^{\circ} \mathrm{C}, 2 \mathrm{~h}$	114	68
3	$1 \% \mathrm{HCl}$ in $\mathrm{MeOH}, 0.1 \mathrm{M}, \mathrm{rt}, 6 \mathrm{~h}$, aqueous NaHCO_{3} (mg scale)	89	93
4	$1 \% \mathrm{HCl}$ in $\mathrm{MeOH}, 0.01 \mathrm{M}, \mathrm{rt}, 16 \mathrm{~h}$, aqueous $\mathrm{NaHCO}_{3}(>100 \mathrm{mg}$ scale)	$\begin{gathered} 5: 1 \\ \mathbf{8 9 : 1 1 4} \end{gathered}$	88
5	$1 \% \mathrm{HCl}$ in $\mathrm{MeOH}, 0.01 \mathrm{M}, \mathrm{rt}, 16 \mathrm{~h}$, then NH_{3} in $\mathrm{MeOH},-78^{\circ} \mathrm{C}, 15$ min	89	98
6	$1 \% \mathrm{HCl}$ in $\mathrm{MeOH}, 0.01 \mathrm{M}, \mathrm{rt}, 16 \mathrm{~h}, \mathrm{MgSO}_{4}$	89	67

2.1.13 Esterification of sulfonamidoalcohol 89 and subsequent TMA mediated cyclisation

The next stage of this approach was to synthesise the carbon skeletons of the D- and E-ring. As shown previously (Scheme 29, Page 57), ring-opened protected alcohol 102 was converted into α, β-unsaturated lactam-alcohol 90 (Scheme 33, below). Although this route provided lactam-alcohol 90 which contained the core of the D-ring, the lactamisation suffered from a competing facile sulfone elimination reaction, as highlighted previously (Table 3, Page 68), which gave an inseparable mixture of O-TBS lactam 104 and eliminated O-TBS-trans- α, β-unsaturated ester 104a. The unwanted trans-ester 104a could be separated from the desired lactam-alcohol following O-TBS deprotection (Scheme 33, below). Attempts to effect cyclisation of the trans- α, β-unsaturated ester 114 failed under prolonged thermal and microwave conditions, due to its rigid geometry (Scheme 33, below).

Scheme 33. Original route to lactam-alcohol 90 and facile sulfone elimination of O-TBS 102.

a) 2 M TMA (1.1 equiv.), toluene, rt, 30 min , then $100^{\circ} \mathrm{C}, 3 \mathrm{~h}, 69 \%$; b) $\mathrm{AcOH}: \mathrm{H}_{2} \mathrm{O}: \mathrm{THF}, \mathrm{rt}, 30 \mathrm{~h}, 65 \%$.

With sulfonamidoalcohol 89 in hand as shown in the previous section (Table 3, Page 68), our attentions turned to removing the two protecting group steps by instead converting sulfonamidoalcohol 89 into the corresponding β-ketoester 112. Both Wildman ${ }^{66}$ and Tholen ${ }^{57}$ had carried out similar transformations previously within the group, using either diketene or 4 H -

2,2,6-trimethyl-1,3-dioxin-4-one. For the β-ketoesterification of $\mathbf{8 9}$ we chose the latter conditions, as we feared that the base-required in the diketene reaction would bring about the corresponding trans- α, β-unsaturated ester 112a via the aforementioned facile sulfone elimination. Under thermal conditions (Entries 1-4, Table 4, below), only moderate yields of 112 were obtained as the prolonged reflux led to formation of trans-112a. ${ }^{85}$ Decreasing the temperature to $90^{\circ} \mathrm{C}$ failed to improve the yield of 112 , however heating alcohol 89 with 4H-2,2,6-trimethyl-1,3-dioxin-4-one $\mathbf{1 1 5}$ under microwave conditions significantly increased the yield of 112 (Entries 5-7, Table 4). Decreasing the duration of the microwave reaction provided 112 in 76% yield, with only trace amounts of $\mathbf{1 1 2 a}$ (Entry 8, Table 4).

Table 4. β-ketoesterification of 89 .

Entry	a) Conditions	Time	Temp.	Ratio 112:112a	Yield 112
1	$\mathbf{1 1 5}$ (1.1 equiv.), toluene	24 h	${ }^{\mathbf{a}} 110^{\circ} \mathrm{C}$	$3: 1$	$\sim 30-50 \%$
2	$\mathbf{1 1 5}$ (2.0 equiv.), toluene	24 h	${ }^{\mathbf{a}} 110^{\circ} \mathrm{C}$	$3: 1$	$\sim 30-50 \%$
3	$\mathbf{1 1 5}$ (2.0 equiv.), toluene	2 h	${ }^{\mathbf{a}} 110^{\circ} \mathrm{C}$	$2: 1$	58%
4	$\mathbf{1 1 5}$ (1.5 equiv.), toluene	24 h	${ }^{\mathbf{a}} 90^{\circ} \mathrm{C}$	$4: 1$	35%
5	$\mathbf{1 1 5}$ (1.5 equiv.), toluene	30 min	${ }^{\mathbf{b}} 150^{\circ} \mathrm{C}$	$>90: 1$	75%
6	$\mathbf{1 1 5}$ (1.5 equiv.), toluene	30 min	${ }^{\mathbf{b}} 130^{\circ} \mathrm{C}$	trace 112a	69%
7	$\mathbf{1 1 5}$ (1.5 equiv.), toluene	30 min	${ }^{\mathbf{b}} 120^{\circ} \mathrm{C}$	trace 112a	68%
8	$\mathbf{1 1 5}$ (1.5 equiv.), toluene	30 min	${ }^{\mathbf{b}} 150^{\circ} \mathrm{C}$	trace 112a	76%

${ }^{a}$ Standard heating under reflux ${ }^{b}$ Microwave heating in sealed tube
Having established conditions for the synthesis of β-ketoester 112, the cyclisation to α, β-unsaturated lactam β-ketoester $\mathbf{1 1 3}$ was attempted using the previously established
trimethylaluminium conditions. β-Ketoester 112 was converted into $\mathbf{1 1 3}$ via Lewis acidcatalysed lactamisation in 26% yield when using 2.0 equivalents of TMA. The reaction was selective in forming the desired $N_{4}-\mathrm{C} 3$ linked $\mathbf{1 1 3}$ over the possible $N_{4}-\mathrm{C} 21$ linked amide, however significant amounts of the corresponding trans- α, β-unsaturated ester were also formed, which was inseparable from the product. The yield of $\mathbf{1 1 3}$ was increased to 61% by decreasing the amount of TMA to 1.1 equivalents, but due to the persistence of the facile sulfone elimination, which persisted throughout the deprotection, β-ketoesterification and lactamisation steps of this approach, an alternative approach to the synthesis of the D-ring in lactam 113 was sought.

Scheme 34. Synthesis of the D-ring via lactamisation of β-ketoester 112.

a) TMA (1.1 equiv.), toluene, $100^{\circ} \mathrm{C}, 1 \mathrm{~h}$, saturated aqueous Rochelle salt, 26-61\%.

2.1.14 Final synthesis of $\boldsymbol{\alpha}, \boldsymbol{\beta}$-unsaturated lactam-alcohol 90

At this stage, the synthesis of key intermediate α, β-unsaturated lactam-alcohol 90 via ring-opening hydroxymethyl-aziridine $\mathbf{8 2}$ had been hampered by lactone formation that gave almost exclusively lactones $\mathbf{1 0 9}$ a and $\mathbf{1 0 9 b}$, instead of the desired methyl ester 89.

The most reliable route to lactam-alcohol 90 had been via the ring-opening reaction of O-TBS protected aziridine 96 . This reaction had shown complete consumption of aziridine starting material; however the regioselectivity had suffered to such an extent that its use was not viable in the final route to alstonerine. Sulfone elimination during both the attempted deprotection of O-TBS ring opened intermediate 102 and D-ring-forming lactamisaton of O-TBS 102 or β-ketoester 113 had led to significant amounts of the corresponding trans- α, β-unsaturated methyl esters, whose geometry prevented lactam formation. As such, attention was focused on using lactones 109a and 109b as intermediates in our synthesis. This decision had a huge impact on the final approach to alstonerine.

The possibility of Lewis acid mediated intramolecular $O-\rightarrow N$-transacylation was investigated. We considered that subjecting lactone $\mathbf{1 1 0}$ to modified Friedel-Crafts type conditions may give rise to reactive acylium intermediate 116; Subsequent cyclisation should favour the more thermodynamically stable lactam $\mathbf{9 0}$.

Figure 25. Lewis acid mediated intramolecular $O-\rightarrow$-transacylation.

α, β-Unsaturated lactone $\mathbf{1 1 0}$ was chosen as the substrate for initial experiments. We rationalised that treatment with oxaphilic trimethylaluminium would form acylium intermediate 116. We hoped that the cis-geometry of the starting lactone $\mathbf{1 1 0}$ would be transferred to intermediate $\mathbf{1 1 6}$
and that this may increase the rate of lactamisation. When 1.1 equivalents of Lewis acidic trimethyl aluminium in solution was added to α, β-unsaturated lactone $\mathbf{1 1 0}$ in toluene at room temperature, then heated at $100^{\circ} \mathrm{C}$ for 1 hour, complete O - to N -transacylation was observed and α, β-unsaturated lactam-alcohol $\mathbf{9 0}$ was isolated in excellent yield.

Scheme 35. Synthesis of 90 by intramolecular $O-N$-transacylation.

a) TMA (1.1 equiv.), toluene, $\mathrm{rt}, 1 \mathrm{~h}$, then $100^{\circ} \mathrm{C}, 15 \mathrm{~min}, 91 \%$.

We hoped to repeat this intramolecular transacylation lactamisation on sulfone-containing lactones 109a and 109b. This would provide the lactam oxidation level analogue of the previously discussed tetrahydropyridine intermediate 118, and subsequent sulfone elimination would give α, β-unsaturated lactam-alcohol 90 . We also rationalised that were sulfone elimination to occur prior to O - to N-transacylation, then α, β-unsaturated lactone $\mathbf{1 1 0}$ would be formed, whose cis-geometry would allow cyclisation.

Scheme 36. Synthesis of α, β-unsaturated lactam 90 via intramolecular lactamisation-elimination.

90

a) TMA (1.5 equiv.), toluene, $120^{\circ} \mathrm{C}, 2 \mathrm{~h}$, saturated aqueous Rochelle salt, 97%; b) TMA (1.1 equiv.), toluene, $0^{\circ} \mathrm{C}$, 1 h , saturated aqueous, $\mathrm{NH}_{4} \mathrm{Cl}, 73 \%$.

That $O-\rightarrow N$-acyl transfer preceded elimination was indicated by the isolation of δ-lactam 118 in good yield when lactone 109a was exposed to trimethylaluminium at $0^{\circ} \mathrm{C}$. The structure of $\mathbf{1 1 8}$ was confirmed by X-ray crystallography. Importantly, the anti-relationship between the indolylmethy- and hydroxymethyl substituents of 118 can clearly be seen (Figure 26, below). Sulfonyllactam 118 was converted into α, β-unsaturated lactam 90 by resubmission to the trimethylaluminium reaction conditions. When applied to the large scale synthesis, we were able to reliably synthesis multigram batches of α, β-unsaturated lactam 90 in just two steps from hydroxymethyl-substituted aziridine 82 (Scheme 37, below). In addition, by isolating lactones 109 from the ring-opening reaction of 82 and subsequently carrying out an O - to N transacylation, we had removed the tedious and labour intensive protection and deprotection steps from our total synthesis.

Scheme 37. Optimised route to α, β-unsaturated lactam 90.

a) Sulfone 88 (1.5 equiv.), $n-\mathrm{BuLi}$ (2.8 equiv.), THF, $-78^{\circ} \mathrm{C} \rightarrow \mathrm{rt} \mathrm{o} / \mathrm{n}$, then aqueous $2 \mathrm{M} \mathrm{HCl}, 80 \%$; b) TMA (1.5 equiv.), toluene, $120^{\circ} \mathrm{C}, 2 \mathrm{~h}$, saturated aqueous Rochelle salt, 94%.

Figure 26. Molecular structure of δ-lactam intermediate 118.

2.2 Synthesis of Macroline-related alkaloids from lactam-alcohol 90

2.2.1 Synthesis of lactam-lactone 91

We now aimed to use lactam-alcohol 90, in the total synthesis of (\pm)-alstonerine. Previous attempts to construct the pentacyclic core of alstonerine $\mathbf{8 5}$ via an iminium ion-initiated cascadestyle reaction had failed (Scheme 24, Page 46), as the facile Pictet-Spengler cyclisation had occurred prior to E-ring formation. ${ }^{66}$ This had led to tetracycle 87 , from which point the E-ring could not be incorporated. Therefore an alternative approach, whereby the E-ring fragment was installed prior to the Pictet-Spengler cyclisation using stepwise β-ketoesterification and intermolecular Michael addition had been investigated by Tholen (Scheme 38). ${ }^{57}$ Our current approach retained the idea of building the E-ring prior to PictetSpengler cyclisation, due in part to the facile nature of the DBU-catalysed cyclisation, but more significantly, because we were aware of possible Michael-type indole addition (see below).

Scheme 38. Initial synthesis of pentacyclic lactone $\mathbf{8 5}$.

a) Diketene (1.3 equiv.), KOAc (0.1 equiv.), THF, $70^{\circ} \mathrm{C}, 1.25 \mathrm{~h}, 78 \%$; b) DBU (0.2 equiv.), THF, rt, $3 \mathrm{~h}, 83 \%$;
c) DIBAL (1.1 equiv.), THF, $-78^{\circ} \mathrm{C}$, then TFA (0.1 equiv.), 78%.

Due to supply problems, an alternative reagent to diketene was investigated for the β-ketoesterification of lactam-alcohol 90. During earlier studies towards the synthesis of the D-ring via β-ketoesterification of the aziridine ring-opening product (Table 4, Page 70), we found that β-ketoesterification occurred cleanly under microwave heating with 4H-2,2,6-trimethyl-1,3-dioxin-4-one. Multi-gram quantities of β-ketoester 113 were reliably made using this process. On larger scales, we found that an increase from sub-stoichiometric
base to 2.0 equivalents of DBU was required to convert β-ketoester 113 into tetracyclic 91 in comparable yields to those reported for small-scale reactions. ${ }^{57}$

Scheme 39. Optimised, scalable synthesis of key intermediate lactam-lactone 91.

a) $4 H-2,2,6$-trimethyl-1,3-dioxin-4-one (1.5 equiv.), toluene, $150^{\circ} \mathrm{C} \mu \mathrm{W}, 20 \mathrm{~min}, 97 \%$; b) DBU (2.0 equiv.), THF, rt, $12 \mathrm{~h}, 93 \%$.

Having established a reliable and scalable synthesis of lactam-lactone 91, our attentions turned to completing the assembly of the azabicyclo[3.3.1]nonane core motif via Pictet-Spengler cyclisation.

2.2.2 Synthesis of pentacyclic lactone 85 via C-ring forming Pictet-Spengler cyclisation

Previous investigations within the Craig group, ${ }^{57,66-68}$ as well as significant precedent from Cook ${ }^{3,8,9}$ and Bailey, ${ }^{3}$ had shown that treatment of the hemiaminal derivative of lactam-lactone 91 with either Lewis or Brønsted acid facilitated the required stereospecific intramolecular Pictet-Spengler cyclisation. This formed the C2-C3 bond and provided the azabicyclic core motif as a single diastereomer.

Initially, we attempted to isolate hemiaminal 119 in order to investigate its reactivity towards Brønsted acids of varying pKa (Scheme 40, below). The C3 carbonyl was partially reduced by treating lactam-lactone 91 with a stoichiometric quantity of DIBAL. Non-acidic work-up gave hemiaminal 119 in reasonable yield, which proved to be stable to saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and silica gel. For the iminium ion formation and subsequent cyclisation, sub-stoichiometric quantities of TFA were sufficiently acidic to effect the conversion of purified hemiaminal 119 into pentacyclic lactone 85 in 91% yield.

Scheme 40. Interrupted Pictet-Spengler cyclisation of 91.

a) DIBAL (1.5 equiv.), THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$ then wet EtOAc and saturated Rochelle salt, $-78^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$, overnight, 51%; b) TFA (0.1 equiv.), THF, $-78^{\circ} \mathrm{C}, 2 \mathrm{~h}, 91 \%$.

However, when attempting to combine the partial reduction and Pictet-Spengler cyclisation in a single step by quenching the DIBAL reaction with strong acid, the use of TFA gave negligible cyclised pentacycle 85, instead yielding a complex mixture of reduced products (Scheme 41, below). Whilst it was rationalised that hemiaminal 119 and tetrahydropyridine 84 c were a result of using insufficiently acidic conditions to quench the reaction, we were keen to establish the origin of unexpected tetrahydropyridine $\mathbf{1 2 0}$.

Scheme 41. Initial by-products from Pictet-Spengler cyclisation of 91.

a) DIBAL (1.2 equiv), THF, $-78^{\circ} \mathrm{C}, 2 \mathrm{~h}$ then wet EtOAc and TFA (1.0 equiv.), THF, $-78^{\circ} \mathrm{C} \rightarrow \mathrm{rt}, 30 \mathrm{~min},(\sim 3: 2: 2: 1$ 119:84c:85:120), 80\%.

The cleavage of an N-Bn-protected indole residue whilst attempting the triethylsilane-mediated indole reduction of $\mathbf{1 2 1}$ was reported by Guo (Scheme 42). ${ }^{86}$ Although the mechanism for the disconnection of the indole unit was stated as being unclear, we believed that a similar mode of action was leading to our by-product 120. It was rationalised that under acidic conditions, iminium ion 121a was produced by thermodynamic protonation of the indole substituent. This was subsequently intercepted in an $\mathrm{S}_{\mathrm{N}} 2$ ' type 1,4-manner by hydride.

Scheme 42. Loss of indole moiety in 121.

a) $\mathrm{Et}_{3} \mathrm{SiH}$ (20.0 equiv.), TFA (excess), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 94 \%$.

In our case, intermediate iminium 123 (Scheme 43, below) was intercepted by ethanol in a similar fashion to that seen by Guo. The ethanol resulted from quenching the DIBAL reduction reaction with ethyl acetate. Thus we hoped to avoid the formation of $\mathbf{1 2 3}$ by switching from wet ethyl acetate to non-nucleophilic wet diethyl ether to quench the DIBAL reaction.

Scheme 43. Mechanism for loss of indole moiety via 123 and optimised synthesis of pentacyclic lactone 85.

a) DIBAL (1.2 equiv.), THF, $-78^{\circ} \mathrm{C}, 2 \mathrm{~h}$ then wet EtOAc and TFA (1.0 equiv.), THF, $-78^{\circ} \mathrm{C} \rightarrow \mathrm{rt}, 30 \mathrm{~min}, 19 \% \mathbf{8 4 c}$; b) Triflic acid (0.1 equiv.), THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}, 100 \%$; c) DIBAL (2.0 equiv.), THF, $-78^{\circ} \mathrm{C}, 3 \mathrm{~h}$ then wet $\mathrm{Et}_{2} \mathrm{O}$ and triflic acid (1.0 equiv.), $\mathrm{THF},-78^{\circ} \mathrm{C} \rightarrow \mathrm{rt}, 30 \mathrm{~min}, 91 \%$.

As tetrahydropyridine 84c was similar to Wildman's intermediate (Scheme 24, Page 46), we rationalised that treatment with a strong acid would lead to rapid Pictet-Spengler cyclisation. In practice, treating tetrahydropyridine 84c with sub-stoichiometric quantities of triflic acid gave
pentacyclic lactone 85 in quantitative yield. When the wet diethyl ether quench followed by triflic acid mediated Pictet-Spengler cyclisation conditions were applied to the DIBAL reduction of lactam-lactone 91, pentacyclic lactone $\mathbf{8 5}$ was isolated in excellent yield as the sole product (c, Scheme 43, above). Although alternative conditions were attempted for the quench of the DIBAL reduction, both 2.0 M and concentrated HCl , acetic acid and TFA all gave mixtures of aminal 119 , tetrahydropyridine 84 c and pentacycle 85 , with only triflic acid providing 85 cleanly and in 91%.

2.2.3 Attempts at \boldsymbol{N}_{4}-and \boldsymbol{O}-functionalisation of 91

Having successfully synthesised pentacyclic lactone $\mathbf{8 5}$ our attention turned to adjusting the oxidation level of the E-ring. Our initial aim was to N_{4}-and O-functionalise lactam-lactone 91, so a one-pot C3 and C21 carbonyl reduction combined with acid-mediated Pictet-Spengler cyclisation and lactol elimination could be accomplished. This would pave the way to complete the total synthesis (Figure 27).

Figure 27. Proposed completion of alstonerine via Pictet-Spengler of N_{4}-and O-methylated 124.

Our investigations began with the synthesis of both N_{4}-and O-methylated lactam-lactone 124. The N_{4}-desulfonylation was completed as previously, by treating N_{4}-tosyl lactam-lactone 91 with 8.0 equivalents of sodium naphthalenide at $-78^{\circ} \mathrm{C}$. ${ }^{87}$ This provided the free amine in good yield. For the N - and O-methylation, we hoped that treatment of 2.0 equivalents of base, followed by excess iodomethane would provide bis-methylated 124. However in practice, treating 125 with either lithium or sodium bases gave no reaction (Entries $\mathbf{1}$ and 2, Table 5, below, due to the stability of the metalated enol intermediate. A switch to potassium bis(trimethylsilyl)amide (Entries 3-6, Table 5) provided a more reactive potassium enolate and led to the formation of mono-methylated $\mathbf{1 2 6 b}$ and bis-methylated 126a. Analysis by HMBC and NOESY NMR showed that C-methylation had been favoured under these conditions. That C-methylation was favoured over N_{4}-functionalisation was shown by isolation of mono-methylated 126b, and despite increasing reaction duration and equivalents of both base and methylating agent, complete conversion to bis-methylated 126 was never achieved.

Table 5. Attempted N4-and O-methylation of lactam-lactone 124.

a) $\mathrm{Na} \cdot \mathrm{Np}$ (8.0 equiv.), THF, $-78^{\circ} \mathrm{C}, 2$ h, sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}, 99 \%$; b) See Table 5.
$\left.\begin{array}{llccc}\hline \text { Entry } & \text { b) Conditions } & \text { Tim } & \text { Ratio } \\ \text { (26a:126b }\end{array}\right]$ Yield\%

Having failed to synthesise O - and N-methylated Pictet-Spengler precursor 124 due to preferential C - rather than O-alkylation and low amine nucleophilicity, we decided to investigate the individual steps of the desired deprotection-reduction process. We rationalised that desulfonylation of pentacyclic lactone $\mathbf{8 5}$ would provide a secondary amine that should be highly reactive to N_{4}-methylation. For the reduction of the E-ring, we rationalised that O-silylation would occur preferentially to C-silylation, which would provide us with a substrate for final reduction of the E-ring. For the detosylation, sodium naphthalenide conditions were again used, ${ }^{87}$ these gave the free $N_{4}-\mathrm{H}$ amine 127 in 92% yield. Analysis by ${ }^{1} \mathrm{H}$ NMR showed that approximately 60% of the resulting compound existed as the zwitterion in CDCl_{3}. However, when treated with the methylating conditions used in the synthesis of alstonerinal, amine $\mathbf{1 2 7}$ proved resistant to alkylation (Entry 3, Table 6, below). Starting amine was also recovered using
reductive amination and strongly basic conditions (Entries $\mathbf{1}$ and 2, Table 6) leading us to attempt the O -functionalisation prior to N_{4}-desulfonylation (Entries 4-11, Table 6).

Table 6. Detosylation and attempted $N 4$-and O-methylation of pentacyclic lactone $\mathbf{8 5}$.

a) $\mathrm{Na} \cdot \mathrm{Np}$ (8.0 equiv.), THF, $-78^{\circ} \mathrm{C}, 2$ h, sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}, 92 \%$; b) See Table 6 .

Entry b) Conditions	Time	Yield \%
Attempted N_{4}-methylation of $\mathbf{1 2 7}$		
1 HCHO (50 equiv.), $\mathrm{NaBH}_{3} \mathrm{CN}$ (5.0 equiv.), AcOH (6.0 equiv.), MeCN, rt	16 h	-
2 Hünig's (3.0 equiv.), MeI (2.0 equiv.), DMF, $-78^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$	16 h	SM
3 NaH (3.0 equiv.), MeI (1.0 equiv.), THF, $-78^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$ Attempted O-silylation of $N_{4}-H 127$	16 h	SM
4 TBSOTf (1.5 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (2.0 equiv.), $\mathrm{CDCl}_{3}, 0^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$	16 h	SM
5 TBSOTf (1.5 equiv.), DMAP (0.1 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (2.0 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$ Attempted O-silylation of $N_{4}-T s \mathbf{8 5}$	16 h	SM
$6 \quad \text { TBSOTf (1.5 equiv.), } \mathrm{Et}_{3} \mathrm{~N} \text { (2.0 equiv.), DMAP (0.1 equiv.), }$	74 h	SM
7 TBSCl (1.5 equiv.), imidazole (1.5 equiv.), DMF, rt	16 h	SM
8 KHMDS (1.1 equiv.), TBSOTf (1.5 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$	16 h	SM
9 KHMDS (1.1 equiv.), TBSOTf (1.5 equiv.), THF, $-30^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$	16 h	SM
10 KHMDS (2.5 equiv.), TBSOTf (3.0 equiv.), THF, $60^{\circ} \mathrm{C}$	32 h	trace
11 TBSOTf (1.8 equiv.), 2,6-lutidine (3.0 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}$	48 h	SM

From the table, is can be seen that O-functionalisation also proved difficult. Pentacyclic lactones $\mathbf{1 2 7}$ and $\mathbf{8 5}$ were unreactive to standard O-silylation conditions (Entries 4-11, Table 6, above),
even when forcing conditions such as extended heating with KHMDS and TBSOTf were applied, only trace amounts of O-TBS $\mathbf{1 2 8}\left(\mathrm{R}_{1}=\mathrm{Ts}\right)$ could be seen in the ${ }^{1} \mathrm{H}$ NMR of the crude material. At this stage, with pentacyclic lactone $\mathbf{8 5}$ showing unusual stability towards standard O-silylation conditions, and having already shown that C-rather than O-methylation was favoured, we decided to search for an alternative approach to the appropriately functionalised E-ring.

However, during these studies we had shown that both lactam-lactone 91 and pentacyclic lactone $\mathbf{8 5}$ could be deprotected using mild sodium naphthalenide conditions. We speculated also that the free amine derivative of $\mathbf{8 5}$ existed partially as the zwitterion $\mathbf{8 5 a}$ in solution, rendering the secondary amine unreactive to N_{4}-methylation (see below).

Figure 28. Zwitterionic 85a.

For the O-functionalisation, we had found that the enolate derived from deprotonation of $\mathbf{8 5}$ with either lithium or sodium bases was an unreactive nucleophile in alkylation reactions, due to the increase stability gained by interaction with the lactone carbonyl. This could be overcome by synthesising the potassium enolate, however this was susceptible to C-methylation. At this stage, we attempted the partial reduction of $N_{4^{-}}$and C20-methylated compound 126a, and although the products were not isolated, ${ }^{1} \mathrm{H}$ NMR and IR analysis of the crude material obtained strongly suggested that once the conjugated enol system had been broken by C 19 methylation, the C 21 carbonyl was readily reduced using similar DIBAL conditions to those used in our Pictet-Spengler cyclisation step.

2.2.4 Ketalisation of pentacyclic lactone 85

Following failed attempts to synthesise either O-methyl or O-silyl versions of pentacyclic lactone 85, investigations into ketalisation of the C 19 carbonyl moiety in pentacyclic lactone were carried out. Although all attempts at O-functionalisation using basic conditions had failed, whilst attempting to protect pentacyclic lactone $\mathbf{8 5}$ as the dimethylacetal equivalent, we had found $\mathbf{8 5}$ to be a suitable substrate for acid-catalysed Michael-type additions, as discussed later in our syntheses of alstonerinal and macroline (Scheme 49, Page 98).

As with our attempted dimethylketal formation, under standard ketalisation Dean Stark conditions using 3.0 equivalents of ethylene glycol, sub-stoichiometric quantities of PTSA and refluxing in toluene, an acid-catalysed Michael-addition-elimination occurred, giving rise to the corresponding enol ether instead of the desired ketal. Application of Noyori conditions ${ }^{88}$ to enol 85 gave clean conversion into the corresponding enol ether 129 (Scheme 44, below).

Scheme 44. Attempted C19 ketalisation of lactones $\mathbf{8 5}$ and 91.

a) 1,2-bis(trimethylsiloxy)ethane (2.0 equiv.), TMSOTf (1 drop), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 93 \%$.

After various C19 ketalisation conditions had instead converted either the pre-Pictet-Spengler lactam-lactone $\mathbf{9 1}$ or pentacyclic lactone $\mathbf{8 5}$ to the corresponding enol ether, we decided to attempt the C 19 protection of β-ketoester $\mathbf{1 1 3}$ prior to the lactone E-ring formation. We rationalised that since $\mathbf{1 1 3}$ had been shown by ${ }^{1} \mathrm{H}$ NMR to exist predominantly as the β-keto tautomer, the lack of 1,4-conjugation may favour ketalisation rather than the Michael additionelimination reaction that favoured formation of enol ethers $\mathbf{1 2 9}$.

Figure 29. Proposed synthesis of the E-ring via Michael addition of 130.

During the initial optimisations, Noyori conditions gave almost quantitative conversion of β-ketoester 123 to dioxolane 130. When these conditions were repeated on larger scale, a complex mixture of $\mathbf{1 3 0}, \mathbf{1 3 2}$ and $\mathbf{1 3 3}$ was isolated in good yield (Scheme 45, below). Although the desired dioxolane was the major product, significant quantities of 132, which resulted from the loss of the indole residue via the acid-mediated $\mathrm{S}_{\mathrm{N}}{ }^{\prime}$ ' type mechanism was observed (Scheme 43, Page 80). Interestingly, a 1,4-intramolecular Michael-type cyclisation had also occurred between the C 2 position of the indole and the $\mathrm{C} 15 \alpha, \beta$-unsaturated lactam position.

Scheme 45. Attempted Noyori ketalisation of 113.

113

130

132

133
a) 1,2-bis(trimethylsiloxy)ethane (2.0 equiv.), TMSOTf (1 drop), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C} \rightarrow \mathrm{rt}, 16 \mathrm{~h}, 83 \% \mathbf{1 3 0}: \mathbf{1 3 2}: 133$.

That cyclisation had occurred was proven by X-ray crystal structure of 133 (Figure 30, below). Although it was not useful for the synthesis of macroline-related indole alkaloids, we were particularly pleased to note the acid-mediated cyclisation due to the formation of the 2 azabicyclo[3.3.1]nonane motif that is present in many pharmaceutically important compounds, ${ }^{89,90}$ notably the pentacyclic curans of the strychnos alkaloids ${ }^{91,92,}$ and is a motif that is still a popular target. ${ }^{93}$

Figure 30. 1,4-Michael-type cyclisation following attempted Noyori ketalisation of 113.

2.2.5 Reduction of pentacyclic lactone 85

With efforts towards O-functionalisation of pentacyclic lactone $\mathbf{8 5}$ thwarted, initial investigations into the synthesis of the (\pm)-alstonerine E-ring 4 via partial reduction of the C 21 lactone carbonyl in 85 were revisited. As with the previous approaches, it was rationalised that were we able to suitably adjust the oxidation of the C 21 carbonyl to the required lactol, subsequent dehydration would furnish the carbon skeleton of the natural product. However, initial investigations into the reduction of pentacyclic lactone 85 had shown it to be completely unreactive towards standard reagents and conditions, such as DIBAL, ${ }^{94}$ Red- Al^{\circledR}, ${ }^{97}$ lithium aluminium hydride, ${ }^{95}$ L-selectride ${ }^{\circledR 96}$ and superhydride. ${ }^{\circledR 97}$ We envisaged that solvent choice and increased temperatures may attenuate the stabilising influence of the intramolecular hydrogen bond between the enol OH and the C 21 carbonyl oxygen atom of pentacyclic lactone $\mathbf{8 5}$ and thus facilitate partial reduction.

Figure 31. Proposed synthesis of of alstonerine 4 from pentacyclic lactone 85.

During initial attempts, the reducing agent was added to a solution of pentacyclic lactone $\mathbf{8 5}$ in THF at $-78^{\circ} \mathrm{C}$. The reaction mixture was then allowed to warm to room temperature overnight. Although there are numerous procedures reported for the partial reduction of δ-lactones in total syntheses, ${ }^{98,99,100}$ whilst using standard conditions we observed no consumption of starting material in all cases. At this point, with a view to combining this reduction with our previously optimised Pictet-Spengler cyclisation, we decided to focus our efforts on effecting this transformation using DIBAL under more forcing conditions. We envisaged that switching from the ethereal solvent THF to a non-coordinating solvent such as $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or toluene should increase the reactivity of DIBAL by decreasing the stability of the DIBAL complex. However, in practice, no reduction was observed in either of these solvents at room temperature.

At this point, with numerous attempts to reduce the pentacyclic lactone $\mathbf{8 5}$ having returned starting material at room temperature, the viability of heating was investigated. Although we feared a loss of selectivity, and thus over-reduction, the reduction was attempted by refluxing pentacyclic lactone $\mathbf{8 5}$ with 2.0 equivalents of DIBAL in THF. After work-up and chromatography, diol 135 was obtained in 46% yield. Despite numerous attempts at varying reducing agent, solvent, temperature and reagent concentration, either starting material or over-reduced diol $\mathbf{1 3 5}$ were always achieved.

Scheme 46. Over-reduction of pentacyclic lactone 85.

a) DIBAL (2.0 equiv.), $\mathrm{THF}, 70^{\circ} \mathrm{C}, 1 \mathrm{~h}, 46 \%, E$-geometric isomer.

With diol $\mathbf{1 3 5}$ persisting in the attempts at partial reduction, the idea of continuing our synthesis from diol $\mathbf{1 3 5}$ was briefly entertained. This would be achieved by re-establishing the E-ring via oxidation level adjustments. Selective allylic oxidation would give unsaturated aldehyde compound 136, which may provide a route to either type A macrolines alstonerine and anhydromacrosalhine-methine 7, or type B macroline alstonerinal (Scheme 47, below).

Scheme 47. Proposed use of diol 135 in alkaloid synthesis.

135 was added to a solution of $\mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N}$ and COCl_{2}, which led to oxidation of the allylic alcohol moiety. In addition to allylic oxidation, elimination of the C 17 alcohol occurred. This gave exocyclic methylene compound $\mathbf{1 3 7}$ as the major product in 97% yield. Although, it was feasible that $\mathbf{1 3 7}$ could have been converted into alstonerine, ${ }^{3}$ the route would have involved numerous oxidation level adjustments, and, as such, this approach was abandoned.

2.2.6 Alternative routes to the alstonerine E-ring

After numerous unsuccessful attempts at O-functionalisation of pentacyclic lactone 85, and having failed to find suitable conditions to adjust the oxidation of its E-ring to that required for alstonerine, an alternative approach to the synthesis was briefly investigated. The aim was to install the correct E-ring via either base-mediated Michael-type addition to 3-butyn-2-one 21 or acid-catalysed addition to trans-4-methoxy-3-buten-2-one 142 (Figure 32, below).

Figure 32. Proposed synthesis of the E-ring via Michael-type addition to either 21 or 142.

The former approach, although very similar to that applied in Cook's first synthesis (Scheme 5, Page 20) was quickly abandoned, as polymerisation side-reactions were difficult to avoid, both during the synthesis of 3-butyn-2-one 21 and during the Michael-addition with 90.

During early investigations into the latter approach, Lactam-alcohol 90 was converted into β-keto acetal 141a by reaction of 90 with trans-4-methoxy-3-buten-2-one 142 and sub-stoichiometric quantities of triflic acid at $-78^{\circ} \mathrm{C}$ (Table 7, below). This gave epimeric β-keto acetals 141a in 97% yield, and provided evidence to suggest that the desired enol intermediate 141 (Figure 32, above) had been formed during the course of the reaction, although
the second Michael-type addition cyclisation had not occurred under these conditions. It was envisaged that a second intramolecular Michael-type addition may be induced either basic conditions, or by heating in the presence of acid. We also hoped that heating the initial acidcatalysed intermolecular Michael-type reaction of 90 with trans-4-methoxy-3-buten-2-one 142 may bring about an irreversible cyclisation and complete the tandem double Michael-addition Ering synthesis.

For the optimisation, we found that treating intermediate acetal 141 with sodium methoxide gave no reaction at either $-78^{\circ} \mathrm{C}$ or room temperature (Table 7, below). The trans-4-methoxy-3-buten-2-one $\mathbf{1 4 2}$ substrate had been synthesised by heating acetylacetaldehyde dimethyl acetal with sodium methoxide in methanol. Interestingly, when 141 was heated in methanol with excess sodium methoxide under microwave conditions, ${ }^{1} \mathrm{H}$ analysis of the crude material suggested that N_{4}-deprotected lactam 143 was the major product, however this was not isolated by chromatography. At this stage, we hoped that heating $\mathbf{1 4 3}$ under acidic conditions would facilitate the required 1,4-addition. However, C2-C15-cyclisations had also been shown to be possible under these conditions (Scheme 45, Page 87).

Table 7. Michael addition of 90 to trans-4-methoxy-3-buten-2-one 142.

a) trans-4-methoxy-3-buten-2-one (10.0 equiv.), TfOH (1 drop), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C} \rightarrow \mathrm{rt}, 2 \mathrm{~h}, 97 \%$; b) see Table 7 .

Entry	a) Conditions	Product
1	KHMDS (0.5 equiv.), THF, $-78^{\circ} \mathrm{C} \rightarrow \mathrm{rt}, 24 \mathrm{~h}$	-
2	$\mathrm{NaOMe}\left(1.0\right.$ equiv.), $\mathrm{MeOH}, 140^{\circ} \mathrm{C} \mu \mathrm{W}, 0.5 \mathrm{~h}$	$\mathbf{1 4 3}$
3	$\mathrm{NaOMe}\left(0.1\right.$ equiv.), $\mathrm{MeOH},-78^{\circ} \mathrm{C} \rightarrow \mathrm{rt}, 24 \mathrm{~h}$	-
4	$\mathrm{TMSOTf}\left(0.1\right.$ equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C} \rightarrow \mathrm{rt}, 16 \mathrm{~h}$	-

Although at this stage we had failed to complete the double Michael-type addition, we had isolated $N_{4}-\mathrm{H}$ vinylogous ester 143 in moderate yield, from which we envisaged the synthesis of the E-ring could be completed by a Baylis-Hillman-type cyclisation.

Figure 33. Baylis-Hillman approach to alstonerine E-ring in 144.

Although we were optimistic that treatment with nucleophilic amine base would bring about the E-ring cyclisation, before we could begin our optimisations, we found that the alstonerine carbon skeleton could be synthesised from lactam-lactone 91 in two steps, and therefore our Baylis-Hillman approach was abandoned in favour of the final approach to alstonerine.

2.2.7 Total synthesis of type A macroline-related indole alkaloid alstonerinal 138

During our continued attempts to synthesise the E-ring of type B macroline indole alkaloid alstonerine 4, we became interested in the corresponding type A macroline alstonerinal 138. Compound 138 can also be found in the stem-bark extract of both Alstonias angustifolia ${ }^{101}$ and macrophylla ${ }^{102}$ and is an isomer of both our target compound alstonerine 4, and the lactone containing alkaloid alstolactone 145, whose synthesis is discussed later. Alstonerinal 138 differs only from alstonerine in the E-ring, which contains a $\mathrm{C} 17-\mathrm{O}-\mathrm{C} 19$ linkage rather than the $\mathrm{C} 17-O-\mathrm{C} 21$ linkage of alstonerine 4 . Whereas it is hard to imagine the transformation of alstolactone 145 to alstonerine $\mathbf{4}$ occurring in a single step, we thought it feasible that under certain conditions, the interconversion of type A and B macrolines may be achieved.

Figure 34. Structural relationship of type B macroline alstonerine 4 its type A isomer 138.

We first observed the type A macroline structure whilst attempting to tautomerise pentacyclic enol 85, and protect the C19 carbonyl of the consequent β-ketoester as the corresponding dimethyl ketal 145 (Figure 35, below). Upon successful protection, treatment of 143 with DIBAL would effect the desired partial 1,2-reduction of the C21 lactone carbonyl, rendering the tosyl protected natural product 134. Desulfonylation and methylation would complete the synthesis of (\pm)-alstonerine 4 (Figure 35, below).

For the synthesis of dimethyl ketal 145 we predicted that treating pentacyclic lactone 85 with sub-stoichiometric quantities of Brønsted acid in excess methanol would lead to the β-keto tautomer, the addition of dehydrating agent trimethyl orthoformate would then drive the equilibrium towards the formation of dimethyl ketal 145.

Figure 35. Proposed synthesis of (\pm)-alstonerine.

Initial attempts at ketalisation using $3 \AA$ molecular sieves as the dehydrating agent showed no conversion at room temperature. Switching from sieves to trimethyl orthoformate as the dehydrating agent led to the formation of two isomeric compounds (isomer ratio 2:1) in 91\% yield. Based on interpretation of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra, these were initially considered to be geometric isomers of type B macroline methyl ester 147. However, analysis of the IR spectra and comparison to known compounds ${ }^{101,102}$ suggested that the major isomer was the result of a rearrangement in the E-ring, ${ }^{103}$ corresponding to type A macroline methyl ester 148. The minor isomer was assigned as type B macroline E-methyl ester 147 (Scheme 48, below). These assignments were confirmed by HMBC NMR.

Scheme 48. Acid-catalysed rearrangement of pentacyclic lactone 85 to type A analogue 148.

a) $\mathrm{CSA}\left(0.1\right.$ equiv.), $\mathrm{HC}(\mathrm{OMe})_{3}\left(1.5\right.$ equiv.), $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, $16 \mathrm{~h}, 91 \%$ ($2: 1$ ratio of $\mathbf{1 4 8 : 1 4 7}$); b) CSA (0.1 equiv.), $\mathrm{HC}(\mathrm{OMe})_{3}$ (2.0 equiv.), $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, $72 \mathrm{~h}, 67 \% 148$.

We expected that decreasing the reaction temperature would influence this ratio in favour of the desired type B compound 147 . Unfortunately the $(2: 1 \mathbf{1 4 8} / 147)$ ratio persisted when the reaction was carried out at room temperature over extended time periods of over three days. In turn extended reflux at $70^{\circ} \mathrm{C}$ for 72 hours favoured the rearrangement product 148 in 67% yield (3:1 148/147). We envisaged the ratio may yet be inverted by decreasing the temperature to $-78^{\circ} \mathrm{C}$ and using catalytic super acidic reagent, such as triflic acid, to increase the reactivity, however at this point we chose to investigate the potential reductions of $\mathbf{1 4 8}$ and 147 to give the carbon skeletons of alstonerinal and alstonerine respectively.

For the conversion of $\mathbf{1 4 8}$ into alstonerinal, sodium naphthalenide was again chosen as our first attempt at the N_{4}-detosylation (Scheme 49, below). Treatment of type A macroline methyl ester 148 with a $\sim 2 \mathrm{M}$ solution of sodium naphthalenide in THF at $-78^{\circ} \mathrm{C}$ gave the free N_{4} - H amine 149 in 92% yield. Previous attempts at N_{4}-methylation using reductive amination with formaldehyde had failed, thus similar conditions to those outlined in Martin's alstonerine synthesis were chosen (Scheme 18, Page 32). ${ }^{3}$ The addition of excess Hünig's base and iodomethane at $-78^{\circ} \mathrm{C}$ in THF and warming to room temperature overnight gave alstonerinal precursor 150 in 87% yield. At this stage we faced the often problematic task of the partially reducing the C 21 methyl ester functionality of $\mathbf{1 5 0}$. Initial attempts carried out using both Red-Al and DIBAL failed to give the natural product 138, but gave the over reduced allylic alcohol 151 in good yield, and L-selectride showed no reaction. Literature precedent for the reduction of vinylogous carbonates such as $\mathbf{1 5 0}$ often favours a two-step process, presumably due to the relative ease of the complete reduction and allylic oxidation. ${ }^{104,105} \mathrm{We}$ were also encouraged as alcohol 151 was a known compound, and was reported as the result of NaBH_{4} reduction of alstonerinal 138. Allylic alcohol $\mathbf{1 5 1}$ had also been oxidised to alstonerinal using MnO_{2} by Kam et. al. in the isolation paper. ${ }^{102}$ However, initial attempts at the oxidation using MnO_{2} proved difficult, therefore Dess-Martin oxidation conditions ${ }^{106}$ were used, giving rise to alstonerinal, albeit in minute quantities (Scheme 49, below).

Scheme 49. Completion of the (\pm)-alstonerinal synthesis.

151
a) $\mathrm{Na} \cdot \mathrm{Np}$ (8.0 equiv.), THF, $-78^{\circ} \mathrm{C}, 2 \mathrm{~h} 30 \mathrm{~min}, 92 \%$; b) Iodomethane (1.4 equiv.), Hünig's (3.0 equiv.), THF , $-78^{\circ} \mathrm{C}$ $\rightarrow \mathrm{rt}, 16 \mathrm{~h}, 81 \%$; c) DIBAL (1.0 equiv.), toluene, $-92^{\circ} \mathrm{C}, 1 \mathrm{~h}, 99 \%$; d) Dess-Martin Periodinane (1.5 equiv.), pyridine (3.0 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 2 \mathrm{~h}, 13 \%+\mathbf{S M}$ recovery.

2.2.8 Synthesis of \boldsymbol{N}_{4}-tosyl-macroline 152

With type B macroline E-methyl ester 147 in hand, albeit in disappointing yield, we attempted the final steps of our original approach to alstonerine 4.

Figure 36. Proposed alstonerine synthesis from type B methyl ester 147.

We again hoped that partial 1,2-reduction of the C21 lactone carbonyl followed by acid-catalysed hydrolysis would give tosyl protected alstonerine 134. We rationalised that the N_{4}-desulfonylation and methylation required to complete the synthesis would be achievable either pre- or post-reduction. For the reduction we again turned to previously successful conditions. After treatment with DIBAL in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$ for 1 hour, TLC assay showed the formation of a new product. Following work-up with Rochelle salt and chromatography, NMR analysis showed the appearance of two new low field singlets at $\sim \delta 6.00$ and 5.60 corresponding to the methylene protons of $N_{4}-T s$-macroline 152 . Comparison of the IR with that of the known compound confirmed the presence of the ring-opened unsaturated ketone in the E-ring. ${ }^{3}$

Scheme 50. DIBAL reduction of methyl ester 147 to give $N_{(4)}-T s$-macroline 152.

a) $\mathrm{CSA}\left(0.1\right.$ equiv.), $\mathrm{HC}(\mathrm{OMe})_{3}$ (1.5 equiv.), $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 16 \mathrm{~h}, 91 \%$ (2:1 ratio of $\mathbf{1 4 8 : 1 4 7}$); b) DIBAL (1.1 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 1 \mathrm{~h}, 32 \%+\mathbf{S M}$ recovery.

The N_{4}-methyl macroline precursor 153 was prepared using sodium naphthalenide desulfonylation conditions, followed by treatment with iodomethane and Hünig's base. This gave macroline precursor 153 in excellent yield over two steps.

Scheme 51. Synthesis of macroline precursor 153.

a) $\mathrm{Na} \cdot \mathrm{Np}$ (5.0 equiv.), THF, $-78^{\circ} \mathrm{C}, 2 \mathrm{~h}, 86 \%$; b) Iodomethane (1.4 equiv.), Hünig's (3.0 equiv.), THF, $-78^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$, 16 h, 81\%.

With macroline precursor 153 in hand, repeating the reduction conditions that had been carried out on the N_{4}-tosyl equivalent would provide macroline 1 . However, at this late stage of the project, all efforts were focused on the synthesis of alstonerine.

2.2.9 Towards the synthesis of (\pm)-alstolactone

Alstolactone $\mathbf{1 4 5}$ is a macroline-related indole obtained from the leaf extract of Alstonia angustifolia var. Latifolia., ${ }^{101}$ and is the only example from the macroline indole family to contain a lactone functionality in the E-ring. As such it's synthesis was investigated as a possible precursor to alstonerine 4.

With pentacyclic lactone $\mathbf{8 5}$ in hand, activation of the C-19 carbonyl as the corresponding enol triflate 154 and subsequent hydrogenolysis would give N_{4}-tosyl-alstolactone 155, and desulfonylation would deliver the desired $N_{4}-H$ natural product 145 (Figure 36).

Figure 36. Proposed synthesis of alstolactone 155 and possible entry to sarpagine-related 28.

85

154

155

<-- -

145 (\pm)-alstolactone

Although early work focused on their use as precursors to vinyl cations and alkylidene carbenes, vinyl triflates have since been found to be excellent cross-coupling partners. This has led to extensive reviews on their synthesis from carbonyl groups and subsequent applications. ${ }^{107}$ The synthesis of enol triflate $\mathbf{1 5 4}$ was initially carried out by treating pentacyclic lactone $\mathbf{8 5}$ directly with trifluoromethanesulfonic anhydride in the presence of non-nucleophilic base. ${ }^{108}$ When $\mathrm{Et}_{3} \mathrm{~N}$ was used as the base in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature a mixture of geometric isomers was obtained (3:2 154/155) in 32% yield (Entry 1, Table 8). Switching base from $\mathrm{Et}_{3} \mathrm{~N}$ to Hünig's
base had little effect on the (Z-:E-) ratio. An improved ratio of ($2: 1$ 154/155) in 63% yield was obtained by decreasing the equivalents of triflic acid, reaction concentration and temperature (Entry 3, Table 8).

Table 8. Synthesis of β-ketoester enol triflates 154/155.

Entry	a) Conditions	Ratio 154:155	Yield 154
1	$\mathrm{Et}_{3} \mathrm{~N}$ (3.0 equiv.), $\mathrm{Tf}_{2} \mathrm{O}$ (1.5 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 1 \mathrm{~h}$.	$\sim 3: 2$	32
2	Hünig's (3.0 equiv.), $\mathrm{Tf}_{2} \mathrm{O}$ (1.5 equiv.), $-50^{\circ} \mathrm{C}, 30$	$\sim 3: 2$	55
	min.		
3	$\mathrm{Et}_{3} \mathrm{~N}\left(2.0\right.$ equiv.), $\mathrm{Tf}_{2} \mathrm{O}$ (1.5 equiv.), $-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$.	$\sim 2: 1$	63

A more detailed optimisation of this reaction can be found on pages 108 to 110.
There are two approaches that dominate literature procedures for the palladium-catalysed reduction of vinyl triflates. The transformation can be achieved using either tributyltin hydride, ${ }^{109}$ or triethylsilane ${ }^{109}$ as the hydrogen donor, with catalytic Pd^{0} in the presence of lithium chloride. Conditions using $\mathrm{Et}_{3} \mathrm{~N}$ and formic acid together with catalytic $\mathrm{Pd}(\mathrm{OAc})_{2}$ and $\mathrm{Ph}_{3} \mathrm{P}$ are also prevalent. ${ }^{110}$ We chose the latter for the hydrogenolysis of enol triflate $\mathbf{1 5 4}$ into the N_{4}-tosyl protected natural product 155.

Microwave modified conditions similar to those of Trudell were used. ${ }^{111}$ Enol triflate 154 was heated in the microwave for 20 minutes at $80^{\circ} \mathrm{C}$ with sub-stoichiometric $\mathrm{Pd}(\mathrm{OAc})_{2}$, and $\mathrm{Ph}_{3} \mathrm{P}$ in excess $\mathrm{Et}_{3} \mathrm{~N}$, formic acid and DMF. Filtration over celite, followed by washing with aqueous $5 \% \mathrm{LiCl}$ solution and chromatography gave N_{4}-tosyl-alstolactone 155 in 44% yield. This was improved to 73% when chromatography was carried out immediately upon reaction completion (Scheme.

Scheme 52. Hydrogenolysis of enol triflate 155 and desulfonylation to alstolactone 145.

a) $\mathrm{Pd}(\mathrm{OAc})_{2}$ (0.1 equiv.), $\mathrm{Ph}_{3} \mathrm{P}$ (0.3 equiv.), $\mathrm{HCO}_{2} \mathrm{H}$ (2.0 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (3.0 equiv.), $\mathrm{DMF}, 80^{\circ} \mathrm{C}, 20 \mathrm{~min}, 73 \%$;
b) Desulfonylation conditions.

At this stage, all that remained to complete the synthesis was to remove the N_{4}-tosyl protecting group. Strongly acidic conditions reported for this transformation, such as HBr and phenol in refluxing acetic acid, ${ }^{112}$ or $\mathrm{HClO}_{4}{ }^{113}$ were avoided in order to alleviate rearrangement of the E-ring. The previously successful sodium naphthalenide conditions gave no conversion into the natural product, and led to degradation of 155. The competitive reduction of the α, β-unsaturated lactone E-ring was suspected as causing the poor reactivity. Several other recently documented methods of sulfonamide cleavage also failed to complete the synthesis alstolactone. These were: SmI_{2} /amine and water in THF, ${ }^{114}$ magnesium in anhydrous methanol under ultrasonic conditions ${ }^{115}$ and TBAF in THF, under both prolonged reflux and microwave heating. ${ }^{116}$ In all cases starting material was recovered in quantitative yield.

2.2.10 Synthesis of \boldsymbol{N}_{4}-tosyl-(\pm)-anhydromacrosalhine-methine 7

As multiple attempts at the deprotection of N_{4}-tosyl-alstolactone had failed, focus was returned to synthesising of the alstonerine E-ring. With $\mathbf{1 5 5}$ in hand, we hoped to probe the reactivity of the cyclic conjugated oxonium ion intermediate 156 that would result from a 1,2-reduction of its lactone carbonyl and subsequent acid-catalysed dehydration. We expected that under aqueous conditions, intermediate 156 may react with hydroxide to give epimeric allylic alcohol 158 and that a Swern oxidation (Cook ${ }^{3}$ Scheme 6, Page 21) and desulfonylation/methylation would give alstonerine. Alternatively, anhydrous acidic conditions may effect a 1,4-elimination to give conjugated diene 157. At which point, desulfonylation/methylation would give (\pm)-anhydromacrosalhine-methine 7 and Wacker-Tsuji oxidation of $\mathbf{1 5 7}$ may provide access to alstonerine E-ring.

Figure 37. Proposed use of N_{4}-tosyl alstolactone 155 as an intermediate for alkaloid synthesis.

The synthesis of anhydromacrosalhine-methine 7 would also offer a potential synthetic route to antiamoebic bis(indole) alkaloids, and is a known intermediate ${ }^{17}$ in Cook's total synthesis of macrocarpamine ${ }^{117} 8$ (the most potent of the Alstonia angustifolia bis(indole)s used against amoebic dysentery by the people of Malaya ${ }^{118}$).

Figure 38. Cook's partial synthesis of macrocarpamine 8 from 7.

In practice, when N_{4}-tosyl alstolactone $\mathbf{1 5 5}$ was treated with DIBAL in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$ for 3 hours, TLC assay of the crude material showed that multiple new products had been formed. Four products were separated using preparative TLC, however ${ }^{1} \mathrm{H}$ NMR analysis illustrated that all four products had undergone further reaction during purification, to give a single new product. The ${ }^{1} \mathrm{H}$ NMR analysis showed that the unusually low field quartet of doublets at $\delta 7.11$ and the methyl doublet at $\delta 1.45$ of $\mathbf{1 5 5}$ had been replaced with a new doublet of doublets at $\delta 6.00$ and doublets at $\delta 4.57$ and $\delta 4.38$. These corresponded to the olefinic protons of N_{4}-tosyl(\pm)-anhydromacrosalhine-methine 157.

Scheme 53. DIBAL reduction of N_{4}-tosyl-alstolactone 155.

a) DIBAL (1.1 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 3 \mathrm{~h}, 94 \%$; b) Silica, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 15 \mathrm{~min}, 100 \%$.

Having found reducing N_{4}-tosyl alstolactone 155 with DIBAL gave only the conjugated diene 157 and no epimeric allylic alcohols 158 that we had hoped to isolate, the Swern approach to alstonerine was abandoned. For the oxidation of diene 157, Wacker-Tsuji oxidation conditions ${ }^{119}$ were attempted. However, extended reflux led only to loss of the terminal alkene, with no formation of the C19 ketone of alstonerine.

Scheme 54. Attempted Wacker-Tsuji oxidation of 157.

a) PdCl_{2} (0.1 equiv.), CuCl_{2} (2.1 equiv.), DMF: $\mathrm{H}_{2} \mathrm{O}(5: 1), 95^{\circ} \mathrm{C}, 16 \mathrm{~h}$.

2.2.11 Total synthesis of (\pm)-alstonerine

At this stage the utility of the hydroxymethyl-substituted aziridine based approach to macrolinerelated indole alkaloids had been proven by the total synthesis of alstonerinal 138. Pentacyclic lactone $\mathbf{8 5}$ had also been be converted into the N_{4}-tosyl protected derivatives of alstolactone $\mathbf{1 5 5}$, anhydromacrosalhine-methine 157 and macroline 152 (the compound after which the family of alkaloids is named), however it remained to complete our alstonerine $\mathbf{4}$ synthesis.

Figure 39. The Craig group's approach to macroline-related indole alkaloids.

Pentacyclic 85 was found to be readily available by partial reduction of the C 3 carbonyl in lactam-lactone 91 using DIBAL, followed by triflic acid mediated Pictet-Spengler cyclisation.

The C19 carbonyl of $\mathbf{8 5}$ had been reduced using palladium-catalysed hydrogenolysis of the enol triflate 154, and the C21 lactone carbonyl had also been reduced by first converting $\mathbf{8 5}$ into the corresponding methyl enol ether. This negated the stabilising effect of the intramolecular hydrogen bond, and lead to the synthesis of the ring-opened macroline E-ring.

Therefore, despite numerous attempts, the partial reduction of the C21 lactone carbonyl group and subsequent C20-C21 double bond-forming acid-catalysed dehydration was yet to be accomplished.

For the final approach to the E-ring, we reasoned that functionalisation of the C 19 enol with an electron-withdrawing group may render the C21 lactone carbonyl more electron-deficient, and therefore more reactive towards partial reduction. In addition, optimisation studies of the Pictet-Spengler cyclisation (Scheme 43, Page 80) had shown that stoichiometric quantities of triflic acid were required to convert partially reduced lactam-lactone 91 into pentacyclic lactone 85. With this in-mind, it was hoped that on partial reduction of enol triflate 161 (Figure 40, below) and hydrolysis of partially reduced triflate intermediate 162, an equivalent of triflic acid would be released, which would in turn mediate the Pictet-Spengler cyclisation, as shown below.

Figure 40. Proposed synthesis of alstonerine 4.

Pentacyclic triflate $\mathbf{1 5 4}$ was chosen to initially probe what would constitute the final stages of the envisaged reduction-Pictet-Spengler reaction. 154 was converted into lactol intermediate $\mathbf{1 6 3}$ using DIBAL. At this stage we were delighted to observe that only a proton NMR of an intermediate, assumed to be $\mathbf{1 6 3}$, could be obtained before a colour change from colourless to dark brown was observed in the NMR sample. ${ }^{1} \mathrm{H}$ NMR analysis of the sample following the colour change showed that spontaneous triflate hydrolysis had occurred, facilitating the C20C21 double bond-forming acid-catalysed dehydration. N_{4}-Tosylalstonerine was isolated in quantitative yield following chromatography.

Scheme 55. DIBAL reduction of enol triflate 154.

a) DIBAL (1.5 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 3 \mathrm{~h}$; b) $\mathrm{CDCl}_{3}, 1 \mathrm{~h}, 100 \%$.

Encouraged by finally having established the alstonerine E-ring, we attempted to combine this reduction with the Pictet-Spengler cyclisation, in a one-pot reduction-Pictet-Spengler cyclisation of enol triflate $\mathbf{1 6 1}$ that would provide the polycyclic core of alstonerine. During the reaction the enol triflate would serve the multiple purposes of protecting the C19 ketone from reduction whilst simultaneously activating the C21 carbonyl, and as a latent reagent for the Pictet-Spengler cyclisation and acid-catalysed dehydration.

For the synthesis of enol triflate 161, our first attempt returned to those conditions used in our synthesis of N_{4}-tosyl-alstolactone 155 . Lactam-lactone 91 was treated with triflic anhydride in the presence of non-nucleophilic amines Hünig's base and triethylamine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at low temperatures (Entries $\mathbf{1}$ and 2, Table 10, below). The ${ }^{1} \mathrm{H}$ NMR spectra of the crude material obtained from both reactions showed that two products had been formed, yet both gave low yields of $\mathbf{1 6 1}$ following chromatography. In an attempt to improve on this yield, the reaction was run in various solvents. Triflic anhydride reacted with THF to give bis-triflylbutane, with complete starting material return (Entry 15, Table 10). The combination of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as a solvent
and organic bases gave poor Z - selectivity (Entries 1-4, Table 10). Interestingly the E-isomer was never isolated. Instead its existence in the crude material was assumed via a process of elimination. During early attempts at enol triflate formation (Entries 1-4, Table 10), complete conversion of starting material was observed by TLC assay, and confirmed by ${ }^{1} \mathrm{H}$ NMR analysis of the crude material obtained which showed that a mixture of two products had been formed. However following chromatography, only mixtures of the desired Z-isomer 161 and starting enol 91 were isolated. It was assumed that mixtures of geometric isomers were formed during the reaction, but the E-isomer was unstable towards hydrolysis on silica. This assumption was further supported by attempts to isolate both the sodium and potassium enolates of $\mathbf{9 1}$. When enol 91 was subjected to exact repeats of the triflylation conditions (Entries 8 and 9 , Table 10) without triflylating agent, ${ }^{1} \mathrm{H}$ NMR analysis of the crude material obtained from identical workups to those used in the synthesis of 161, showed only clean starting material 91. The next attempt was to switch to KHMDS, in order to form a potassium enolate that was previously shown to be reactive to C-alkylation (Table 5, Page 83). This led to increased reactivity, and favoured the desired Z-isomer, yet the yield was still poor. We hoped that switching to coordinating ethereal THF may increase the reactivity of the enolate intermediate; therefore we required an alternative triflylating agent to triflic anhydride, as this had been shown to react with THF. Lactam-lactone 91 was converted cleanly into Z-enol triflate 161 using 1.1 equivalents of KHMDS and N-phenyl-bis(trifluoromethanesulfonamide). ${ }^{120}$ Importantly, no E-isomer was observed in the ${ }^{1} \mathrm{H}$ NMR of the crude material. Notably, when DMF was used as the solvent, allene 165 was achieved as the major product after 15 minutes at $-78^{\circ} \mathrm{C}$ (Entry 13, Table 10). When treated with DIBAL, allene 165 was converted into inseparable mixtures of N_{4}-tosylalsoterinal and the N_{4}-tosyl derivative of alstonerinal precursor allylic alcohol 151 in good yield. When aqueous conditions were applied to lactam-lactone 91 (Entry 17, Table 10), ${ }^{121}$ only starting material was obtained, possibly due to the formation of only the E-isomer.

Table 10. Synthesis of enol triflate 161.

Entry	a) Conditions	Temp	\sim Ratio $^{\text {a }}$	
			Yield b	
1	Hünig's (3.0 eq.), $\mathrm{Tf}_{2} \mathrm{O}$ (1.2 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.5 \mathrm{~h}$	$-78^{\circ} \mathrm{C}$	$1: 5: 1$	$\mathbf{1 6 5}$

[^0]Having established a reliable method for converting lactam-lactone 91 into Z-enol triflate 161, the stage was set for our postulated one-pot reduction-dehydration-Pictet-Spengler cyclisation. Previously, we had shown that the enol-triflate E-ring of 154 was converted into the appropriately functionalised E-ring for alstonerine in tosyl protected 134 (Scheme 55, Page 108). We had also shown that an equivalent of triflic acid was required to complete the PictetSpengler cyclisation of 91 to pentacyclic lactone $\mathbf{8 5}$ (c, Scheme 43, Page 80). We were delighted to observe that treatment Z-enol triflate $\mathbf{1 6 1}$ with 2.25 equivalents DIBAL, followed by wet $\mathrm{Et}_{2} \mathrm{O}$-Rochelle salt work-up gave an unstable intermediate, presumed to be the crude hemiaminal-lactol 162. Upon stirring in wet $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $\mathrm{K}_{2} \mathrm{CO}_{3}$ treated $\mathrm{CDCl}_{3}, \mathbf{1 6 2}$ underwent triflic acid elimination and instantaneous Pictet-Spengler cyclisation, to give cleanly N_{4}-tosylalstonerine $\mathbf{1 3 4}$ in excellent yield and as the sole product, as observed by ${ }^{1} \mathrm{H}$ NMR.

Overjoyed with the success of our one-pot reduction-dehydration-Pictet-Spengler cyclisation, ${ }^{122}$ all that remained to complete the synthesis was desulfonylation and alkylation. Having achieved this transformation during our total synthesis of alstonerinal, we first turned to sodium naphthalenide conditions. Treatment of N_{4}-tosylalstonerine with 8.0 equivalents sodium naphthalenide solution in THF at $-78^{\circ} \mathrm{C}$ gave N_{4}-demethylalstonerine in 57% yield. A loss of the dark green colour during this reaction indicated that over reduction of the enone moiety in the Ering may be occurring due to the excess reducing agent. When the concentration of sodium naphthalenide was reduced to 5.0 equivalents, $\mathbf{1 3 4}$ was converted into N_{4}-demethylalstonerine 166 in 83% yield. Various alternative desulfonylation conditions were attempted, however all failed to improve on this yield. The synthesis was completed using the methylation conditions outlined previously (Scheme 49, Page 98). Iodomethane was added to N_{4}-demethylalstonerine 166 and excess Hünig's base in THF at $-78^{\circ} \mathrm{C}$, giving alstonerine 4 in 91% yield (Scheme 56, below). This led to the synthesis of alstonerine in just 8 steps from hydroxymethyl substituted aziridine $\mathbf{8 2}$ and in an overall yield of 37%. Aziridine $\mathbf{8 2}$ and sulfone $\mathbf{8 8}$ were previously shown to be readily accessible (Schemes $\mathbf{2 5}$ and 28 respectively).

Scheme 56. Final FGI and completed total synthesis of alstonerine 4.

a) Sulfone $\mathbf{8 8}$ (1.5 equiv.), $n-\mathrm{BuLi}$ (2.8 equiv.), THF, $-78^{\circ} \mathrm{C} \rightarrow \mathrm{rt} \mathrm{o} / \mathrm{n}$, then aqueous $2 \mathrm{M} \mathrm{HCl}, 80 \%$; b) TMA (1.5 equiv.), toluene, $120^{\circ} \mathrm{C}, 2 \mathrm{~h}$, saturated aqueous Rochelle salt, 94%; c) $4 H-2,2,6$-trimethyl-1,3-dioxin-4-one (1.5 equiv.), toluene, $150^{\circ} \mathrm{C} \mu \mathrm{W}, 20 \mathrm{~min}, 97 \%$; d) DBU (2.0 equiv.), THF, rt, $12 \mathrm{~h}, 93 \%$; e) KHMDS (1.2 equiv.), $\mathrm{Tf}_{2} \mathrm{NPh}$ (1.1 equiv.), THF, $-78^{\circ} \mathrm{C} \rightarrow \mathrm{rt}, \mathrm{o} / \mathrm{n}, 74 \%$; g) DIBAL (2.5 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 2.25 \mathrm{~h}$, then wet $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1$ h, 98%; g) $\mathrm{Na} \cdot \mathrm{Np}$ (5.0 equiv.), THF, $-78^{\circ} \mathrm{C}, 2 \mathrm{~h}, 83 \%$; h) Iodomethane (2.0 equiv.), Hünig's (3.0 equiv.), THF, $78^{\circ} \mathrm{C} \rightarrow \mathrm{rt}, 16 \mathrm{~h}, 91 \%$.

2.2.12 Improved route to $\boldsymbol{N}_{\mathbf{4}}$-tosylanhydromacrosalhine-methine 157

As with our total synthesis of alstonerine, we envisaged the synthesis of (\pm)-anhydromacrosalhine-methine 7 via a reduction-Pictet-Spengler cyclisation of intermediate 167. The E-ring of intermediate 167 would be synthesized by hydrogenolysis of enol triflate 161.

Scheme 57. Proposed synthesis of N4-Tosylanhydromacrosalhine-methine 157.

Enol triflate 161 was converted into Pictet-Spengler cyclisation precursor 167 in an improved yield of 85%. We now envisaged that DIBAL reduction followed by acid-catalysed dehydration would give us N_{4}-tosylanhydromacrosalhine-methine 157. However, in practice, when 167 was reacted with DIBAL and subjected to acidic work-up with triflic acid, a complex mixture of pentacyclic products was isolated. The conjugated diene E-ring of 157 is known to be acid-sensitive, thus in order to complete our improved synthesis of anhydromacrosalhinemethine, optimisation of the acidic Pictet-Spengler and 1,4-elimination conditions is required.

Scheme 58. Failed tandem reduction-Pictet-Spengler cyclisation of $\mathbf{1 6 7 .}$

a) KHMDS (1.2 equiv.), $\mathrm{Tf}_{2} \mathrm{NPh}$ (1.1 equiv.), $\mathrm{THF},-78^{\circ} \mathrm{C} \rightarrow \mathrm{rt} \mathrm{o} / \mathrm{n}, 74 \%$; b) $\mathrm{Pd}(\mathrm{OAc})_{2}$ (0.1 equiv.), $\mathrm{Ph}_{3} \mathrm{P}$ (0.3 equiv.), $\mathrm{HCO}_{2} \mathrm{H}$ (4.0 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (3.0 equiv.), DMF, $80^{\circ} \mathrm{C}, 20 \mathrm{~min}, 85 \%$; c) DIBAL (2.0 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 3$ h, then TfOH (2.5 equiv.), rt, 15 min , degradation.

2.2.13 Extension of methodology

Having successfully applied our aziridine ring-opening based synthesis of α, β-unsaturated- δ-lactam 90 to the total synthesis of alstonerine 4, our attention turned to extending the scope of this sequence, by synthesising optically pure lactams 168a. We hoped to show that, α, β-unsaturated- δ-lactams 168, in addition to themselves being useful building blocks in organic synthesis, can be partially reduced which allows them to participate in tetrahydropyridine-like chemistry, as outlined previously (Figure 8, Page 34).

We also hoped that the ring opening of optically pure hydroxymethyl-substituted aziridines $\mathbf{1 6 9}$ would allow access to bis-substituted lactams 168b. In addition, by altering the configuration of aziridines $\mathbf{1 6 9}$, an enantiospecific route to each of the four possible enantiomers of lactam $\mathbf{1 6 8}$ would be possible.

Figure 41. Synthesis of optically pure amino acid-derived lactams 168.

We began by investigating the synthesis of optically pure D-leucine-derived α, β-unsaturated δ-lactam 171. L-leucine was first converted into aziridine 172 in 56% yield using a sequence previously reported by the Craig group. ${ }^{123}$ Aziridine 172 was then reacted with the lithiated anion of nucleophile trimethyl 3-(phenylsulfonyl)orthopropionate 88. Acidic work-up gave epimeric sulfones $\mathbf{1 7 3}$ in excellent yield. Compound $\mathbf{1 7 3}$ was then treated with trimethylaluminium under the microwave conditions, as outlined in our alstonerine total synthesis. This gave a mixture of the desired α, β-unsaturated lactam 171, the intermediate piperidine 174 and trans- α, β-unsaturated non-cyclised methyl ester 175, which as previously, could not be converted into the desired heterocycle 171.

Scheme 59. Synthesis of optically pure α, β-unsaturated lactam 171.

a) trimethyl 3-(phenylsulfonyl)orthopropionate $\mathbf{8 8} 2.0$ (equiv.), n - BuLi (4.0 equiv.), $\mathrm{THF},-78^{\circ} \mathrm{C} \rightarrow \mathrm{rt}, 16 \mathrm{~h}, 82 \%$ (7:3 sulfone epimers); b) TMA (1.1 equiv.), toluene, $150^{\circ} \mathrm{C}, 30 \mathrm{~min}$, saturated aqueous Rochelle salt, 93% conversion as a mixture of $\mathbf{1 7 1}, 174$ and 175.

Importantly, intermediate 174 was converted into the desired compound $\mathbf{1 7 1}$ by resubmission to the original reaction conditions. At this stage, having shown that optically pure mono-substituted lactam 171 was available from the L-leucine, the synthesis of bis-substituted lactams $\mathbf{1 6 8 b}$ was briefly investigated. Racemic anti-substituted aziridine $\mathbf{1 7 6}$ was chosen as our first substrate, as we hoped to provide evidence to support our assumption that anti-substituted aziridine 176 would provide syn-substituted α, β-unsaturated lactam 177.

In practice, anti-substituted $\mathbf{1 7 6}$ was converted into the corresponding lactones $\mathbf{1 7 8}$ as a $2: 1$ mixture of sulfone epimers. Lactones $\mathbf{1 7 8}$ were then converted into α, β-unsaturated lactam $\mathbf{1 7 7}$ in good yield using the previously established trimethylaluminium microwave conditions. Importantly the corresponding α, β-unsaturated ester $\mathbf{1 7 9}$ was avoided by isolating lactones $\mathbf{1 7 8}$ in place of the open-chain methyl ester. We hope that exposing 177 to acidic conditions will bring about a similar cyclisation similar to that seen with our indole containing substrate (Scheme 45, Page 87). This will provide a selective route to the benzomorphan containing alkaloids, which include numerous important pharmaceutical compounds. ${ }^{124}$

Scheme 60. Synthesis of syn-substituted racemic α, β-unsaturated lactam 177.
anti-relationship

a) trimethyl 3-(phenylsulfonyl)orthopropionate $\mathbf{8 8} 2.0$ (equiv.), $n-\mathrm{BuLi}$ (4.0 equiv.), THF, $-78^{\circ} \mathrm{C} \rightarrow \mathrm{rt}, 16 \mathrm{~h}, 87 \%$ ($2: 1$ sulfone epimers); b) TMA (1.5 equiv.), toluene, $150^{\circ} \mathrm{C}, 10 \mathrm{~min}$, saturated aqueous Rochelle salt, 56% and $\mathbf{S M}$ recovery.

We also aimed to investigate selectivity the nucleophilic ring-opening reaction of aziridine $\mathbf{1 8 0}$ which contains both our directing hydroxymethyl-substituent and a phenyl-substituent that also has a directing effect (Scheme 61, below).

Figure 42. Selectivity of aziridine $\mathbf{1 8 0}$ with both phenyl- and hydroxymethyl-directing groups.

Aziridine 180 was synthesised from cinnamyl alcohol using Sharpless conditions ${ }^{69}$ and subjected to our standard aziridine ring-opening condition. Unfortunately, this gave a very complicated mixture of products, from which only those products of phenyl-directed aziridine ring-opening 183 were isolated in suitable yield for complete characterisation (Scheme 61, below).

Scheme 61. Ring-opening of aziridine 180.

a) trimethyl 3 -(phenylsulfonyl)orthopropionate 2.0 (equiv.), n - BuLi (4.0 equiv.), THF, $-78^{\circ} \mathrm{C} \rightarrow \mathrm{rt}, 16 \mathrm{~h}, 67 \%$ of complex mixture of Phenyl-directed aziridine ring-opening.

2.2.14 Conclusion

We report the concise aziridine-based total syntheses of macroline-related indole alkaloids (\pm)-alstonerine ${ }^{122} 4$ and (\pm)-alstonerinal 138, which were achieved in eight and ten steps respectively from hydroxymethyl-substituted aziridine $\mathbf{8 1}$. We also showed our approach to be amenable to the synthesis of related compounds macroline 1, alstolactone $\mathbf{1 4 5}$ and anhydromacrosalhine-methine 7 by synthesising their N_{4}-tosyl derivatives 152,155 and 157 , the latter of which provides access to the bis-indole alkaloids, particularly macrocarpamine 8 .

Figure 43. Alkaloids synthesised from lactam-lactone intermediate 91.

Late-stage intermediate lactam-lactone 91 was rapidly assembled from three simple components in four high-yielding steps, those being hydroxymethyl-substituted aziridine 82, and trimethyl 3(phenylsulfonyl)orthopropionate 88 and 4H-2,2,6-trimethyl-1,3-dioxin-4-one 115.

Figure 44. Late stage intermediate 91 synthesised from three simple components.

We have also shown this approach to macroline-related alkaloids to be amenable to the synthesis of the indolomorphan motif, by an intramolecular acid-mediated Michael-type addition that was used to synthesise 133 (Figure 45, below).

Figure 45. Synthesis of the indolomorphan motif, by an intramolecular acid-mediated Michael-type addition.

In addition, α, β-unsaturated lactam 177 was also synthesized, from which we hope that acid-catalysed cyclisation would provide access to benzomorphan related alkaloids.

We also proved that optically pure α, β-unsaturated lactams can be synthesised using this method, by the synthesis of L-leucine-derived 171. Our initial probes into the directing effect of the hydroxymethyl substituent showed that when a phenyl-substituted aziridine $\mathbf{1 8 0}$ was subjected to our ring-opening conditions, the directing effect of the $\pi_{(\mathrm{C}-\mathrm{C})} \rightarrow \sigma^{*}{ }_{(\mathrm{C}-\mathrm{N})}$ donation from the phenyl ring led to only phenyl-directed ring-opening products being isolated 183.

2.2.15 Future Work

Having carried out initial studies into the synthesis of optically pure amino acid-derived lactams, there remains scope to synthesise a series of amino acid-derived lactams, so that particularly their 1,4-acid induced Michael-type cyclisations as well as Pictet-Spengler reactivity could be assessed. This would provide a complementary lactam oxidation level alternative to the Craig group's previous tetrahydropyridine work. Of particular interest would be the synthesis of tryptophan-derived 63 which would provide access to the indolomorphan motif following our methodology.

Figure 46. Synthesis of optically pure lactams.

For the synthesis of macroline-related alkaloids, specifically the Michael-type addition of β-ketoester 112, future preparations may seek to combine this addition with the formation of enol triflate 161, by simply using KHMDS as the base for the Michael addition and then adding N-phenyl-bis(trifluoromethanesulfonamide) to the potassium enolate product. This should remove a step from the synthesis by producing enol triflate $\mathbf{1 6 1}$ in place of enol $\mathbf{9 1}$.

Figure 47. Revised one-pot synthesis of enol triflate 161.

113
161

Suggested conditions: a) KHMDS (1.5 equiv.), $T H F,-78^{\circ} \mathrm{C} \rightarrow r t, 12 \mathrm{~h}$, then $T f_{2} N P h$ (2.0 equiv.), $T H F-78^{\circ} \mathrm{C} \rightarrow r t, 16$ h.

Having established a concise route to racemic alstonerine, the synthesis of optically pure aziridine 93 (Figure 48, below) should provide rapid access to large quantities of macroline-related alkaloids. ${ }^{65}$ This in turn could be applied to the synthesis of bis(indole)alkaloids and sarpagine-related alkaloids as shown below. As an intermediate in our racemic synthesis, optically pure aziridine 93 would provide naturally occurring (-)-alstonerine in 12 steps (or 11 using the aforementioned revision of the synthesis of enol triflate 161), which offers a significantly shorter route to those previously reported.

Figure 48. Known optically pure 93.

Due to the convergent nature of our synthesis, alkaloids containing indole oxidation could be rapidly accessed, by using the equivalent methoxy substituted indole (Figure 49, below). For example the synthesis of alstophylline $\mathbf{3 3}$ and in turn bis(indole) macralstonine $\mathbf{3 2}$ should be readily achieved by introducing N_{1}-methyl-6-methoxyindole $\mathbf{1 8 6}$ into our previous synthetic route in the place of N_{1}-methylindole.

Figure 49. Synthesis of bis(indole) alkaloid macralstonine 32.

Chapter 3

Experimental

3.1. General experimental procedures

Standard laboratory techniques were employed when handling air-sensitive reagents. All reactions were performed under a nitrogen atmosphere unless otherwise stated. Melting points were determined using a Stuart Scientific SMP1 or Büchi B-545 melting point apparatus and are uncorrected. Infrared spectra were recorded on Perkin-Elmer Spectrum RX FT-IR or Spectrum One FT-IR spectrometers. All ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Ultra-Shield AV-400 or AV-500 spectrometers. Chemical shifts (δ_{H} and δ_{C}) are expressed in parts per million (ppm), referenced to the appropriate residual solvent peak. Mass spectra (CI, EI and FAB) were recorded using a Micromass AutoSpec-Q, Micromass Platform II or Micromass AutoSpec Premier spectrometer. Elemental analyses were performed at the microanalytical laboratories of the London Metropolitan University. Thin-layer chromatography was performed on aluminium plates pre-coated with silica gel (0.2 mm , Merck Kieselgel 60 F254), which were developed using standard visualising agents: ultraviolet fluorescence (254 nm) and/or potassium permanganate and/or vanillin. Chromatography refers to flash column chromatography performed using BDH flash chromatography silica gel ($40-63 \mu \mathrm{~m}$) unless otherwise stated. Standard solvents were distilled under nitrogen prior to use: THF was distilled from sodiumbenzophenone ketyl, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{3} \mathrm{~N}$ and Hünig's base from CaH_{2} and MeOH from $\mathrm{Mg} / \mathrm{MeOH}$. Hexane refers to the fraction of petroleum boiling between $67-70^{\circ} \mathrm{C}$. All other solvents and reagents were used as received from the supplier unless otherwise noted.

For the purposes of reporting NMR data, all compounds herein reported are numbered such that the skeletal numbering corresponds to the final position of each carbon atom in the final natural product, (\pm)-alstonerine 4 (Figure 50).

Figure 50. Compound numbering

3.1.1 Procedures from the synthesis of hydroxymethyl-substituted aziridine $\mathbf{8 2}$

(Z)-4-(tert-Butyldimethylsilyloxy)but-2-en-1-ol (187)

92
187

To a suspension of $60 \mathrm{wt} \% \mathrm{NaH}\left(22.2 \mathrm{~g}, 556.2 \mathrm{mmol}, 0.98\right.$ equiv.) in THF (500 mL) at $0^{\circ} \mathrm{C}$, was added a solution of cis-but-2-ene-1,4-diol 92 ($46.6 \mathrm{~mL}, 567.5 \mathrm{mmol}, 1.0$ equiv.) in THF (300 mL) slowly via dropping funnel. The resulting cloudy white suspension was allowed to stir slowly from $0^{\circ} \mathrm{C}$ to rt overnight. The solution was then cooled to $0^{\circ} \mathrm{C}$ and a solution of TBSCl ($84.0 \mathrm{~g}, 556.2 \mathrm{mmol}, 0.98$ equiv.) in THF (300 mL) was added dropwise via dropping funnel and the reaction mixture stirred at rt for 24 h .

The resulting creamy suspension was diluted with $\mathrm{Et}_{2} \mathrm{O}(500 \mathrm{~mL})$ and poured onto ice cold saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(500 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 500 \mathrm{~mL})$, the combined organics dried over MgSO_{4}, filtered and concentrated under reduced pressure. Distillation under reduced pressure yielded (Z)-4-(tert-butyldimethylsilyloxy)but-2-en-1-ol 187 $(110 \mathrm{~g}, 98 \%)$ as a colourless oil (b.p. $92-95^{\circ} \mathrm{C}$ at 2.4 mbar$) ; \mathrm{R}_{f} 0.51$ (30% EtOAc-hexane); FTIR (film) $U_{\max }: 3400,2928,2961,2857,1474,1465,1253,1082,1029,833,774 \mathrm{~cm}^{-1} ; m / z(\mathrm{CI}) 220$ $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 203[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}$, 203.1465. $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O}_{2}$ Si requires $[\mathrm{M}+\mathrm{H}]^{+}$, 203.1467);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.75-5.58(2 \mathrm{H}, \mathrm{m}, 5$ and 16), $4.25(2 \mathrm{H}, \mathrm{d}, J 5.0 \mathrm{~Hz}, \mathbf{6}), 4.19(2 \mathrm{H}, \mathrm{d}, J 5.5$ $\mathrm{Hz}, \mathbf{1 7}), 2.10(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{OH}), 0.90\left(9 \mathrm{H}, \mathrm{s}, \mathbf{M e}_{3} \mathrm{CSi}\right), 0.08\left(6 \mathrm{H}, \mathrm{s}, \mathbf{M e}_{2} \mathrm{Si}\right)$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 131.1$ (C5), 120.9 ($\mathbf{C 1 6}$), 59.6 (C6), 58.8 ($\mathbf{C 1 7}$), 25.7 ($\mathbf{M e}_{3} \mathrm{CSi}$), $18.3\left(\mathrm{Me}_{3} \mathbf{C S i}\right),-5.3\left(\mathbf{M e}_{2} \mathrm{Si}\right)$. Data is in accordance with that previously reported. ${ }^{57}$

((2R*,3S*)-3-((tert-Butyldimethylsilyloxy)methyl)-1-tosylaziridin-2-yl)methanol (93)

To a solution of olefin $187(54.8 \mathrm{~g}, 270.9 \mathrm{mmol}, 1.0$ equiv.) and chloramine-T ($91.6 \mathrm{~g}, 325.1$ mmol, 1.2 equiv.) in $\operatorname{MeCN}(1300 \mathrm{~mL})$ at rt was added $\operatorname{PTAB~(10.2~g,~} 27.0 \mathrm{mmol}$, 0.1 equiv.), and the resulting cloudy yellow suspension stirred at rt for 48 h . The reaction mixture was concentrated under reduced pressure and the solid impurities triturated with $\mathrm{Et}_{2} \mathrm{O}(2 \times 250$ mL). The residue was filtered, (washing with $\mathrm{Et}_{2} \mathrm{O}$) and concentrated under reduced pressure. Chromatography $\quad\left(30 \%\right.$ EtOAc-hexane) yielded ($\left.2 R^{*}, 3 S^{*}\right)$-3-(tert-butyldimethylsilyloxy)methyl)-1-tosylaziridin-2-yl)methanol 93 ($72.4 \mathrm{~g}, 76 \%$) as a colourless oil; $\mathrm{R}_{f} 0.61$ (50\% EtOAc-heptane); FTIR (film) $v_{\max }: 3500,2933,2861,1601,1466,1324,1264$, 1159, 1089, 948, 834, $669 \mathrm{~cm}^{-1} ; m / z(\mathrm{CI}) 372[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}$, 372.1431. $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{SSi}$ requires $\left.[\mathrm{M}+\mathrm{H}]^{+}, 372.1587\right)$;
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.82(2 \mathrm{H}$, app. d, $J 8.0 \mathrm{~Hz}$, ortho- $\mathbf{T s}), 7.33(2 \mathrm{H}$, app. d, $J 8.0 \mathrm{~Hz}$, meta-Ts), $3.91(1 \mathrm{H}, \mathrm{dd}, J 11.5,5.5 \mathrm{~Hz}, \mathbf{5}), 3.79-3.55(3 \mathrm{H}, \mathrm{m}, \mathbf{1 6}, \mathbf{6 a}$ and $\mathbf{6 b}), 3.09(2 \mathrm{H}, \mathrm{dt}, J$ $30.0,14.5 \mathrm{~Hz}, \mathbf{1 7 a}$ and 17b), $2.45(3 \mathrm{H}, \mathrm{s}, T s \mathbf{M e}), 0.87\left(9 \mathrm{H}, \mathrm{s}, \mathbf{M e}_{3} \mathrm{CSi}\right), 0.05\left(3 \mathrm{H}, \mathrm{s}, \mathbf{M e}_{2} \mathrm{Si}\right), 0.04$ (3H, s, Me $\mathbf{M e}_{2}$) ;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 135.3$ (para-Ts) 134.5 (ipso-Ts), 129.8 (ortho-Ts), 128.0 (meta-Ts), 60.38 (C6), 59.2 (C17), 44.0 (C5), 42.9 (C16), 25.7 ($\left.\mathbf{M e}_{3} \mathrm{CSi}\right), 21.4$ (TsMe), 18.2 ($\mathrm{Me}_{3} \mathbf{C S i}$), $-5.5\left(\mathbf{M e}_{2} \mathrm{Si}\right)$. Data is in accordance with that previously reported. ${ }^{57}$
N-((R^{*})-2-(tert-Butyldimethylsilyloxy)-1-(($\left.S^{*}\right)$-oxiran-2-yl)ethyl)-4methylbenzenesulfonamide (94)

93
94

To a suspension of $60 \mathrm{wt} \% \mathrm{NaH}$ in mineral oil ($35.7 \mathrm{~g}, 643.8 \mathrm{mmol}, 4.0$ equiv.) in THF (300 mL) at $0^{\circ} \mathrm{C}$ was added dropwise, a solution of aziridine 93 ($59.8 \mathrm{~g}, 160.9 \mathrm{mmol}, 1.0$ equiv.) over 30 min . The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 4 h then cooled to $-78^{\circ} \mathrm{C}$ and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (250 mL) added dropwise. On warming to rt , the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 300 \mathrm{~mL})$, the combined organics dried over MgSO_{4} and filtered. Concentration under reduced pressure and chromatography (30\% EtOAc-heptane) yielded $N-\left(\left(R^{*}\right)\right.$-2-(tert-butyldimethylsilyloxy)-1-((S*)-oxiran-2-yl)ethyl)-4-methylbenzenesulfonamide 94 (56.2 g, 94\%) as a colourless oil; $\mathrm{R}_{f} 0.51$ ($30 \% \mathrm{EtOAc}$-hexane); FTIR (film) $v_{\text {max }}: 2928,2857,1600,1474,1336,1253,1163,1092,899,836,814 \mathrm{~cm}^{-1 ;} \mathrm{m} / \mathrm{z}(\mathrm{CI})$ $372[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}, 372.1667 . \mathrm{C}_{17} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{SSi}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 372.1587$);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.78(2 \mathrm{H}$, app. d, $J 8.0 \mathrm{~Hz}$, ortho-Ts), $7.33(2 \mathrm{H}$, app. d, $J 8.0 \mathrm{~Hz}$, meta-Ts), $4.72\left(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, N_{4} \mathbf{H T s}\right), 3.60-3.46(3 \mathrm{H}, \mathrm{m}, \mathbf{1 6}, \mathbf{1 7 a}$ and $\mathbf{1 7 b}), 3.17-3.14(1 \mathrm{H}$, $\mathrm{m}, \mathbf{5}), 2.66(1 \mathrm{H}, \mathrm{dd}, J 4.5,4.0 \mathrm{~Hz}, \mathbf{6 a}), 2.57(1 \mathrm{H}, \mathrm{dd}, J 4.5,3.0 \mathrm{~Hz}, \mathbf{6 b}), 2.45(3 \mathrm{H}, \mathrm{s}, T s \mathbf{M e}), 0.87$ ($9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{CSi}$), 0.02 ($6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}$);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 144.8$ (para-Ts) 134.5 (ipso-Ts), 129.8 (meta-Ts), 128.0 (ortho-Ts), 60.3 (C17), 59.5 (C16), 51.2 (C5), 43.4 (C6), 25.7 ($\mathbf{M e}_{3} \mathrm{CSi}$), 21.7 ($\operatorname{Ts} \mathbf{M e}$), 18.2 ($\mathrm{Me}_{3} \mathbf{C S i}$), $-5.5\left(\mathbf{M e}_{2} \mathrm{Si}\right)$. Data is in accordance with that previously reported. ${ }^{57}$

N-((2R*,3R*)-1-(tert-Butyldimethylsilyloxy)-3-hydroxy-4-(1-methylindol-3-yl)butan-2-yl)-4methylbenzenesulfonamide (95)

94

95

To a suspension of epoxide $94(7.00 \mathrm{~g}, 18.84 \mathrm{mmol}, 1.0$ equiv.), 1-methylindole ($4.70 \mathrm{~mL}, 37.68 \mathrm{mmol}, 2.0$ equiv.) and anhydrous $\mathrm{NaHCO}_{3}(6.33 \mathrm{~g}, 75.36 \mathrm{mmol}, 4.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(2.56 \mathrm{~mL}, 20.78 \mathrm{mmol}, 1.1$ equiv.) dropwise and the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 6 h . Water (20 mL) was added slowly and the resulting suspension allowed to warm from $-78^{\circ} \mathrm{C}$ to rt . The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$, the combined organics dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. Concentration under reduced pressure and chromatography (33\% EtOAc-hexane) yielded $N-\left(\left(2 R^{*}, 3 R^{*}\right)-1\right.$-(tert-butyldimethylsilyloxy)-3-hydroxy-4-(1-methylindol-3-yl)butan-2-yl)-4-methylbenzenesulfonamide 95 ($8.61 \mathrm{~g}, 94 \%$) as a colourless amorphous solid; $\mathrm{R}_{f} 0.24$ (33% EtOAc-hexane); FTIR (film) $U_{\max }: 3507,3288,2954,2929,2857,1616,1474,1330,1160,1092,1073,838,734 \mathrm{~cm}^{-1} ; m / z$ (CI) $520\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 503[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}, 503.2322 . \mathrm{C}_{26} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{4}$ SSi requires $[\mathrm{M}+\mathrm{H}]^{+}$, 503.2415);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.78(2 \mathrm{H}$, app. d, $J 8.0 \mathrm{~Hz}$, ortho-Ts), $7.48(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, \mathbf{1 2})$, $7.33-7.24(3 \mathrm{H}, \mathrm{m}, 9$ and meta-Ts), $7.22(1 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, 11), 7.09(1 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, \mathbf{1 0}), 6.66$ $(1 \mathrm{H}, \mathrm{s}, 2), 5.32\left(1 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz}, N_{4} \mathbf{H T s}\right), 4.24(1 \mathrm{H}, \mathrm{t}, J 6.5 \mathrm{~Hz}, 5), 3.73\left(3 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}\right), 3.68(1 \mathrm{H}$, dd, $J 10.0,5.0 \mathrm{~Hz}, 17 \mathrm{a}), 3.63(1 \mathrm{H}, \mathrm{dd}, J 10.0,3.0 \mathrm{~Hz}, 17 \mathrm{~b}), 3.41-3.34(1 \mathrm{H}, \mathrm{m}, 16), 2.76(2 \mathrm{H}$, $\mathrm{qd}, J 11.0,7.0 \mathrm{~Hz}, \mathbf{6 a}$ and $\mathbf{6 b}), 2.45(3 \mathrm{H}, \mathrm{s}, \operatorname{TsMe}) 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathbf{M e}_{3} \mathrm{CSi}\right),-0.01\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}\right)$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 143.4$ (para-Ts), 138.7 (ipso-Ts), 137.1 ($\mathbf{C 1 3}$), 129.9 (ortho-Ts), 128.0 (meta-Ts), 127.7 (C2), 127.3 (C8), 121.8 (C11), 119.0 (C10), 119.0 (C12), 110.0 (C9), 109.3 (C7), 72.1 (C5), 65.7 (C17), 55.4 (C16), 32.6 ($N_{1} \mathbf{M e}$), 29.5 (C6), 25.8 ($\mathbf{M e}_{3} \mathrm{CSi}$), 21.5 (TsMe), $18.1\left(\mathrm{Me}_{3} \mathbf{C S i}\right),-5.7\left(\mathbf{M e}_{2} \mathrm{Si}\right)$. Data is in accordance with that previously reported. ${ }^{57}$

3-(((2S*, 3S*)-3-((tert-Butyldimethylsilyloxy)methyl)-1-tosylaziridin-2-yl)methyl)-1methylindole (96)

95

96

To a solution of hydroxysulfonamide $95\left(7.10 \mathrm{~g}, 14.12 \mathrm{mmol}, 1.0\right.$ equiv.) and $\mathrm{Ph}_{3} \mathrm{P}$ (4.45 g , $16.95 \mathrm{mmol}, 1.2$ equiv.) in THF (150 mL) at rt was added DIAD ($4.20 \mathrm{~mL}, 21.19 \mathrm{mmol}, 1.5$ equiv.) dropwise and the reaction mixture stirred at rt for 16 h . Concentration under reduced pressure and chromatography (30\% EtOAc-hexane) yielded 3-(($\left.2 S^{*}, 3 S^{*}\right)$-3-((tert-butyldimethylsilyloxy)methyl)-1-tosylaziridin-2-yl)methyl)-1-methylindole 96 ($5.91 \mathrm{~g}, 86 \%$) as a pale yellow oil; $\mathrm{R}_{f} 0.44$ (20\% EtOAc-hexane); FTIR (film) $\mathrm{v}_{\max }$: 2953, 2929, 2884, 1725, 1598, 1474, 1330, 1160, $1122838,734 \mathrm{~cm}^{-1} ; m / z(\mathrm{CI}) 485[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}, 485.2309$. $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SSi}$ requires $\left.[\mathrm{M}+\mathrm{H}]^{+}, 485.2294\right)$;
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.64(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}$, ortho-Ts), $7.48(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, \mathbf{1 2})$, 7.27-7.20 (2H, m, 9 and 11), 7.12 ($2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}$, meta-Ts), $7.13-7.06$ ($1 \mathrm{H}, \mathrm{m}, \mathbf{1 0}$), 6.85 $(1 \mathrm{H}, \mathrm{s}, \mathbf{2}), 3.90(1 \mathrm{H}, \mathrm{dd}, J 11.0,5.5 \mathrm{~Hz}, \mathbf{1 7 a}), 3.78(1 \mathrm{H}, \mathrm{dd}, J 11.0,6.5 \mathrm{~Hz}, \mathbf{1 7 b}), 3.68(3 \mathrm{H}, \mathrm{s}$, $N_{1} \mathbf{M e}$), $3.18(1 \mathrm{H}$, app. q, $J 6.5 \mathrm{~Hz}, 16), 3.11(1 \mathrm{H}$, app. q, $J 6.5 \mathrm{~Hz} 5), 2.99(1 \mathrm{H}$, dd $J 15.5,5.5$ $\mathrm{Hz}, \mathbf{6 a}), 2.89(1 \mathrm{H}$, dd $J 15.5,7.5 \mathrm{~Hz}, \mathbf{6 b}), 2.40(3 \mathrm{H}, \mathrm{s}, T s \mathbf{M e}), 0.88$ ($9 \mathrm{H}, \mathrm{s}, \mathbf{M e}_{3} \mathrm{CSi}$), 0.04 ($6 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}_{2} \mathrm{Si}$);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 143.9$ (para-Ts), 136.8 (ipso-Ts), 134.9 ($\mathbf{C 1 3}$), 129.2 (ortho-Ts), 127.9 (meta-Ts), 127.5 (C2), 126.9 (C8), 121.6 (C11), 118.9 (C10), 118.6 (C12), 110.1 (C9), 109.1 (C7), 60.3 (C17), 44.8 (C5), 44.6 (C16), 32.6 ($N_{1} \mathbf{M e}$), 25.9 ($\mathbf{M e}_{3} \mathrm{CSi}$), 22.9 (C6), 21.6 ($T s \mathbf{M e}$), $\left(\mathrm{Me}_{3} \mathbf{C S i}\right),-5.53\left(\mathrm{Me}_{2} \mathrm{Si}\right)$. Data is in accordance with that previously reported. ${ }^{57}$

((2S*, 3S*)-3-((1-Methylindol-3-yl)methyl)-1-tosylaziridin-2-yl)methanol (82)

96

82

To a solution of O-TBS protected aziridine $96(5.90 \mathrm{~g}, 12.17 \mathrm{mmol}, 1.0$ equiv.) in THF (50 mL) at $0^{\circ} \mathrm{C}$ was added TBAF $\cdot 3 \mathrm{H}_{2} \mathrm{O}(4.22 \mathrm{~g}, 13.39 \mathrm{mmol}, 1.1$ equiv.) and the reaction mixture allowed to warm slowly from $0^{\circ} \mathrm{C}$ to rt overnight. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ was added, the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$, the combined organics dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. Concentration under reduced pressure and chromatography ($50 \% \mathrm{EtOAc}-\mathrm{hexane}$) yielded ($\left(2 S^{*}, 3 S^{*}\right)$-3-((1-methylindol-3-yl)methyl)-1-tosylaziridin-2-yl)methanol 82 (4.28 g , 95%) as a pale yellow oil; $\mathrm{R}_{f} 0.31$ (50% EtOAc-hexane); FTIR (film) $\cup_{\text {max }}: 3508,3364,2933$, 1810, 1783, 1598, 1325, 1184, 1091, $739 \mathrm{~cm}^{-1} ; m / z(\mathrm{CI}) 371[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}, 371.1351$. $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 371.1351$);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.64(2 \mathrm{H}$, app. d, $J 8.0 \mathrm{~Hz}$, ortho-Ts), $7.48(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, \mathbf{1 2})$, $7.27-7.20(2 \mathrm{H}, \mathrm{m}, 9$ and 11), $7.12(2 \mathrm{H}$, app. d, $J 8.0 \mathrm{~Hz}$, meta-Ts), $7.12-7.06(1 \mathrm{H}, \mathrm{m}, \mathbf{1 0})$, $6.78(1 \mathrm{H}, \mathrm{s}, \mathbf{2}), 3.90(1 \mathrm{H}$, ddd, $J 11.0,7.5,5.5 \mathrm{~Hz}, 17 \mathrm{a}), 3.78(1 \mathrm{H}, \mathrm{dd}, J 11.0,6.5 \mathrm{~Hz}, 17 \mathrm{~b}), 3.68$ $\left(3 \mathrm{H}, \mathrm{s}, N_{1} \mathrm{Me}\right), 3.18(1 \mathrm{H}$, app. q, $J 6.5 \mathrm{~Hz}, 5), 3.11(1 \mathrm{H}$, app. q, $J 6.5 \mathrm{~Hz}, 16), 2.99(1 \mathrm{H}, \mathrm{dd}, J$ $15.5,5.5 \mathrm{~Hz}, \mathbf{6 a}), 2.89(1 \mathrm{H}, \mathrm{dd}, J 15.5,7.5 \mathrm{~Hz} \mathbf{6 b}), 2.40(3 \mathrm{H}, \mathrm{s}, T s \mathbf{M e})$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 144.2 (para-Ts), 136.8 (ipso-Ts), 134.4 ($\mathbf{C 1 3}$), 129.9 (ortho-Ts), 128.1 (meta-Ts), 127.8 (C2), 127.3 (C8), 121.7 (C11), 119.0 (C10), 118.5 (C12), 109.9 (C9), 109.2 (C7), 62.4 (C17), 45.5 (C5), 43.8 (C16), 32.7 ($N_{1} \mathbf{M e}$), 22.9 (C6), 21.6 (TsMe). Data is in accordance with that previously reported. ${ }^{67}$
3.1.2 Procedures from the synthesis of sulfone $\mathbf{8 8}$

Phenyl vinyl sulfide (97)

To ethanol (400 mL) in a 1 L three-necked round-bottomed flask fitted with a condenser was added sodium metal ($23 \mathrm{~g}, 1000 \mathrm{mmol}, 1.0$ equiv.) in small pieces. Once the sodium had dissolved, benzenethiol ($102 \mathrm{~mL}, 1000 \mathrm{mmol}, 1.0$ equiv.) was added via dropping funnel. The resulting solution was then transferred via cannula into a 2 L three-necked round-bottomed flask containing a stirred solution of 1,2-dibromoethane ($124 \mathrm{~mL}, 1450 \mathrm{mmol}, 1.45$ equiv.) in ethanol (28 mL) dropwise over 45 min . The reaction temperature was maintained at $25-30^{\circ} \mathrm{C}$ throughout the addition. The resulting slurry was then allowed to stir at rt for 30 min , before ethanolic sodium ethoxide prepared from dissolving sodium ($40 \mathrm{~g}, 1740 \mathrm{mmol}, 1.74$ equiv.) in ethanol (800 mL) was added and the reaction mixture stirred under reflux for 8 h . The reaction mixture was then cooled, before toluene $(750 \mathrm{~mL})$ and water $(750 \mathrm{~mL})$ were added. The aquesous layer was extracted with toluene $(3 \times 500 \mathrm{~mL})$ and the organics phases were combined, washed with water $(2 \times 50 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$. Concentrated under reduced pressure and distillation gave phenyl vinyl sulphide 97 ($92.6 \mathrm{~g}, 68 \%$) as a colourless oil; (b.p. $93^{\circ} \mathrm{C}$ at 33.3 mbar); Data is in accordance with that previously reported. ${ }^{75}$

(2,2-Dichlorocyclopropylsulfonyl)benzene (99)

To a slurry of freshly prepared sodium methoxide ($15.9 \mathrm{~g}, 293.7 \mathrm{mmol}, 2.0$ equiv.) and phenyl vinyl sulfide $97\left(20.0 \mathrm{~g}, 146.8 \mathrm{mmol}\right.$, 1.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added dropwise via dropping funnel ethyl trichloroacetate ($30.5 \mathrm{~mL}, 220.2 \mathrm{mmol}, 1.5$ equiv.) and the solution allowed to warm slowly from $-78^{\circ} \mathrm{C}$ to rt over $6 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(300 \mathrm{~mL})$ was then added, and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 300 \mathrm{~mL})$, dried over MgSO_{4} and filtered. Concentration under reduced pressure yielded crude intermediate (2,2dichlorocyclopropyl)phenylsulfide 98 as a dark brown oil.

To a solution of crude intermediate (2,2-dichlorocyclopropyl)phenylsulfide 98 ($47.8 \mathrm{~g}, 219.3$ mmol, 1.0 equiv.) and AcOH ($354 \mathrm{~mL}, 5886 \mathrm{mmol}, \sim 25$ equiv.) was added aqueous $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ solution ($103 \mathrm{~mL}, 907 \mathrm{mmol}, \sim 4.0$ equiv.) dropwise. The solution was then stirred under reflux at $100^{\circ} \mathrm{C}$ for 4 h , after which the reaction mixture was partitioned over $\mathrm{Et}_{2} \mathrm{O}(3 \times 500 \mathrm{~mL})$, neutralised with $\mathrm{K}_{2} \mathrm{CO}_{3}$, washed with brine $(500 \mathrm{~mL})$ and filtered over a pad of silica.

Concentration under reduced pressure and flash column chromatography ($30 \% \mathrm{EtOAc}-\mathrm{hexane}$) yielded (2,2-dichlorocyclopropylsulfonyl)benzene 99 ($33.4 \mathrm{~g}, 91 \%$, over two steps) as a crystalline solid; $\mathrm{R}_{f} 0.45$ (50% EtOAc-hexane); m.p. $=88^{\circ} \mathrm{C}$ (lit..72,73,74 m.p. $87-88^{\circ} \mathrm{C}$); $\mathrm{v}_{\max }$ (film) $3112,3033,1446,1322,1214,1158,1087,723 \mathrm{~cm}^{-1} ; m / z(\mathrm{CI}) 268\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$(Found $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 267.9970 . \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 267.9966$);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.01\left(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}\right.$, ortho- $\left.\mathbf{P h S O}_{2}\right), 7.73\left(1 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}\right.$, para- $\left.\mathrm{PhSO}_{2}\right)$, $7.62(2 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}$, meta-PhSO 2$), 3.20(1 \mathrm{H}, \mathrm{dd}, J 10.5,2.5 \mathrm{~Hz}, \mathbf{1 4 a}), 2.45(1 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}, \mathbf{1 5})$, 2.17 (1H, dd, $J 10.5,2.5 \mathrm{~Hz}, 14 b)$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 139.6$ (para- PhSO_{2}), 134.3 (ipso- PhSO_{2}), 129.5 (ortho- PhSO_{2}), 128.1 (meta-PhSO 2), 55.4 (C3), 47.9 ($\mathbf{C 1 5}$), 26.3 (C14). Data is in accordance with that previously reported. ${ }^{72,73,74}$

(2,2-Dichlorocyclopropylsulfonyl)benzene (99) - Small Scale Prep.

Sodium metal ($63.30 \mathrm{mg}, 27.53 \mathrm{mmol}$, 1.5 equiv.) was dissolved in dry methanol (10 mL). Concentration under reduced pressure yielded sodium methoxide ($1.49 \mathrm{~g}, 27.53 \mathrm{mmol}, 1.5$ equiv.), to which was added olefin-free petrol ${ }^{80}(14 \mathrm{~mL})$ and phenyl vinyl sulphide $97(2.4 \mathrm{~mL}$, $18.35 \mathrm{mmol}, 1.0$ equiv.) and the reaction mixture cooled to $-20^{\circ} \mathrm{C}$. Ethyl trichloroacetate (3.3 $\mathrm{mL}, 23.86 \mathrm{mmol}, 1.3$ equiv.) was added at a rate of $6 \mathrm{~mL} / \mathrm{min}$ via syringe pump addition, and the reaction mixture stirred at $-20^{\circ} \mathrm{C}$ for 6 h , before being allowed to warm to rt slowly overnight. $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ was then added, and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30$ mL), dried over MgSO_{4} and filtered. Concentration under reduced pressure and distillation yielded crude intermediate compound $98(5.16 \mathrm{~g})$ as a dark brown oil.

To a solution of crude intermediate $98(10.05 \mathrm{~g}, 45.86 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{AcOH}(70 \mathrm{~mL}$, $1177 \mathrm{mmol}, 25$ equiv.) was added $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ solution ($20.5 \mathrm{~mL}, 181.5 \mathrm{mmol}, 4.0$ equiv.) dropwise. The solution was then stirred under reflux at $100^{\circ} \mathrm{C}$ for 3 h , after which the reaction mixture was partitioned over $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$, neutralised with $\mathrm{K}_{2} \mathrm{CO}_{3}$ over, washed with brine $(100 \mathrm{~mL})$ and filtered. Concentration under reduced pressure and flash column chromatography (30\% EtOAc-hexane) yielded (2,2-dichlorocyclopropylsulfonyl)benzene 99 ($7.74 \mathrm{~g}, 84 \%$, over two steps) as a crystalline solid;
N.B. For the original synthesis of $\mathbf{9 8}$ (as outlined in Scheme 26), see the thesis of Tholen. ${ }^{57}$

Trimethyl 3-(phenylsulfonyl)orthopropionate (88)

To dry $\mathrm{MeOH}(200 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added sodium ($3.68 \mathrm{~g}, 153.3 \mathrm{mmol}, 3.5$ equiv.) portionwise. Following formation of in situ sodium methoxide, dichloro-sulfone $99(11.0 \mathrm{~g}, 43.80 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{MeOH}(100 \mathrm{~mL})$ was added and the reaction mixture stirred under reflux at $65^{\circ} \mathrm{C}$ for 3 h , cooled to rt and concentrated under reduced pressure. The concentrate was then partitioned over $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$, and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 300 \mathrm{~mL})$. The organic phases were combined, dried over NaSO_{4}, and filtered. Concentration under reduced pressure and chromatography yielded trimethyl 3-(phenylsulfonyl)orthopropionate $8 \boldsymbol{8}$ (11.8, 98\%) as a colourless oil; $\mathrm{R}_{f} 0.50$ (66% EtOAc-hexane); $v_{\max }(f i l m)$ 2947, 2840, 1446, 1284, 1240, 1143, 1076, $100 \mathrm{~cm}^{-1} ; m / z(\mathrm{CI}) 292\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$(Found $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, 292.1219. $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{~S}$ requires $\left.\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 292.1219\right)$;
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.90\left(2 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}\right.$, ortho- $\left.\mathrm{PhSO}_{2}\right), 7.67(1 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}$, para-PhSO 2$)$, $7.58(2 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}$, meta-PhSO 2$), 3.17(9 \mathrm{H}, \mathrm{s}, 3 \times O \mathbf{M e}), 3.13(2 \mathrm{H}, \mathrm{dt}, J 16.5,4.0 \mathrm{~Hz}, 15), 2.17$ (2H, dt, J 16.5, $4.0 \mathrm{~Hz}, 14$);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 138.9$ (para- PhSO_{2}), 134.1 (ipso- PhSO_{2}), 129.4 (ortho- PhSO_{2}), 128.1 (meta- PhSO_{2}), 114.28 ($\mathbf{C 3}$), 51.4 (OMe), 49.6 ($\mathbf{C 1 5) , ~} 23.9$ ($\mathbf{C 1 4}$). Data is in accordance with that previously reported. ${ }^{72,73,74}$
3.1.3 Procedures from sulfone stability and aziridine reactivity (Sections 2.1.7-2.1.9)

Methyl 3-(phenylsulfonyl)propanoate (101)

To a solution of orthoester $\mathbf{8 8}(30 \mathrm{mg}, 0.109 \mathrm{mmol}, 1.0$ equiv.) in THF (2 mL) was added aqueous $\mathrm{HCl}(2 \mathrm{M} ; 0.5 \mathrm{~mL}, 1.00 \mathrm{mmol}, 10$ equiv.) and the solution stirred at rt overnight. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ was added, and the aqueous layer extracted with $\mathrm{EtOAc}(3 \times 20$ mL). The organic layers were combined, washed with brine, dried over MgSO_{4}, and filtered. Concentration under reduced pressure yielded methyl 3-(phenylsulfonyl)propanoate 101 (24.1 $\mathrm{mg}, 97 \%$) as a colourless amorphous solid; $\mathrm{R}_{f} 0.51$ (30% EtOAc-hexane); $v_{\max }(f i l m) 2955$, 1736, 1586, 1586, 1447, 1439, 1148, $\mathrm{cm}^{-1} ; m / z(\mathrm{CI}) 246\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 229[\mathrm{M}+\mathrm{H}]^{+}$.
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.92\left(2 \mathrm{H}\right.$, app. d, $J 7.5 \mathrm{~Hz}$, ortho- $\left.\mathrm{PhSO}_{2}\right), 7.69(1 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}$, para$\mathbf{P h S O}_{2}$), $7.58\left(2 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}\right.$, meta- PhSO_{2}), $3.64(3 \mathrm{H}, \mathrm{s}, O \mathbf{M e}), 3.44(2 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, \mathbf{1 5}), 2.79$ ($2 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, 14$);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 170.5$ (C3), 138.4 (ipso- $\mathbf{P h S O}_{2}$), 134.1 (para- $\mathbf{P h S O}_{2}$), 129.5 (ortho- $\mathbf{P h S O}_{2}$), 128.2 (meta- $\mathbf{P h S O}_{2}$), 52.3 ($\mathbf{C 1 5}$), 51.5 (OMe), $27.6(\mathbf{C 1 4})$. Data is in accordance with that previously reported. ${ }^{57}$
N-((2S*, 3R*)-4-Hydroxy-1-(1-methylindol-3-yl)-3-(phenylsulfonylmethyl)butan-2-yl)-4methylbenzenesulfonamide (107)

82

107

To a solution of methyl phenyl sulfone 105 ($165.3 \mathrm{mg}, 1.058 \mathrm{mmol}, 2.5$ equiv.) in THF (0.5 mL) at $-40^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(2.48 \mathrm{M}$ in hexanes; $0.44 \mathrm{~mL}, 1.058 \mathrm{mmol}, 2.5$ equiv.) and the solution stirred at $-40^{\circ} \mathrm{C}$ for 30 min . A solution of hydroxymethyl-aziridine $\mathbf{8 2}$ (0.85 M in THF; $0.5 \mathrm{~mL}, 0.423 \mathrm{mmol}, 1.0$ equiv.) was added and the reaction mixture stirred at $-40^{\circ} \mathrm{C}$ for 2 h . 10% Aqueous citric acid (1 mL) was added and the aqueous layer extracted with EtOAc (3×10 mL). The combined organics layers were washed with brine, dried over MgSO_{4} and filtered. Concentration under reduced pressure and chromatography (20% EtOAc-hexane) yielded N-((2S*, 3R*)-4-hydroxy-1-(1-methylindol-3-yl)-3-(phenylsulfonylmethyl)butan-2-yl)-4methylbenzenesulfonamide 107 ($162.0 \mathrm{mg}, 73 \%$) as a colourless oil; $\mathrm{R}_{f} 0.35(50 \% \mathrm{EtOAc}-$ hexane); FTIR (film) $u_{\max }: 3505,3299,3054,2928,1598,1447,1304,1152 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}$ (CI) 527 $[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}$, 527.1667. $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 527.1597);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.92\left(2 \mathrm{H}\right.$, app. d, $J 7.5 \mathrm{~Hz}$, ortho- $\left.\mathrm{PhSO}_{2}\right), 7.60(1 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}$, para- PhSO_{2}), $7.50\left(2 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}\right.$, meta- PhSO_{2}), 7.45 (2 H , app. d, $J 8.0 \mathrm{~Hz}$, ortho-Ts), $7.19-7.06(3 \mathrm{H}, \mathrm{m}, \mathbf{1 2}, 11$ and 9), $7.00-6.91(3 \mathrm{H}, \mathrm{m}$, meta-Ts and $\mathbf{1 0}), 6.69(1 \mathrm{H}, \mathrm{s}, \mathbf{2}), 5.52$ $\left(1 \mathrm{H}, \mathrm{d}, J 7.5 \mathrm{~Hz}, N_{4} \mathbf{H T s}\right), 3.84(2 \mathrm{H}, \mathrm{m}, \mathbf{1 7 a}$ and $\mathbf{1 7 b}), 3.73(1 \mathrm{H}, \mathrm{m}, 5), 3.56\left(3 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}\right), 3.40$ ($1 \mathrm{H}, \mathrm{dd}, J 15.0,4.5 \mathrm{~Hz}, \mathbf{1 5 a}$), 3.27 (1 H , dd, $J 15.0,7.0 \mathrm{~Hz}, \mathbf{1 5 b}$), 2.97 (1 H , br. s, $O \mathbf{H}$), 2.83 ($1 \mathrm{H}, \mathrm{dd}, J 15.0,6.5 \mathrm{~Hz}, \mathbf{6 a}$), $2.70(1 \mathrm{H}, \mathrm{dd}, J 15.0,8.0 \mathrm{~Hz}, \mathbf{6 b}), 2.53(1 \mathrm{H}, \mathrm{br} . \mathrm{m}, \mathbf{1 6}), 2.31(3 \mathrm{H}, \mathrm{s}$, $T_{s} \mathbf{M e}$);
$\delta_{\mathrm{C}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 143.1$ (para-Ts), 139.2 (para- PhSO_{2}), 136.9 ($\mathbf{C 1 3}$), 136.6 (ipso-Ts), 133.9 (ipso- $\mathbf{P h S O}_{2}$), 129.4 (ortho- $\mathbf{P h S O}_{2}$), 129.2 (meta-Ts), 128.0 (meta- PhSO $_{2}$), 127.4 (C8), 126.7 (ortho-Ts), 126.6 (C2), 121.5 (C11), 119.0 (C10), 118.4 (C12), 109.2 (C9), 108.7 (C7), 62.5 (C17), 54.4 (C15), 53.7 (C5), 39.3 ($\mathbf{C 1 6}$), 32.5 ($N_{1} \mathbf{M e}$), 28.3 (C6), 21.6 ($\left.T s M e\right)$.

4-Methyl- N-(($\left.S^{*}\right)$-2-(1-methylindol-3-yl)-1-(($\left.R^{*}\right)$-oxiran-2-yl)ethyl)benzenesulfonamide (106)

To a suspension of $60 \mathrm{wt} \% \mathrm{NaH}$ in mineral oil ($86.30 \mathrm{mg}, 2.158 \mathrm{mmol}, 3.0$ equiv.) in THF $(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added via cannula, a solution of hydroxymethyl-aziridine $\mathbf{8 2}(260 \mathrm{mg}, 0.719$ mmol, 1.0 equiv.). The reaction mixture was allowed to warm slowly from $0^{\circ} \mathrm{C}$ to rt over 5 h , cooled to $0^{\circ} \mathrm{C}$ and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ added dropwise. On warming to rt, the aqueous layer was extracted with EtOAc $(3 \times 12 \mathrm{~mL})$ and the combined organics were dried over MgSO_{4}. Concentration of the filtrate under reduced pressure and flash column chromatography $\left(20 \%\right.$ EtOAc-hexane) yielded $4-m e t h y l-N-\left(\left(S^{*}\right)\right.$-2-(1-methylindol-3-yl)-1-(($\left.R^{*}\right)$-oxiran-2yl)ethyl)benzenesulfonamide $106(66.5 \mathrm{mg}, 77 \%)$ as a colourless gum; $\mathrm{R}_{f} \quad 0.51$ (20% EtOAc-hexane); FTIR (film) $v_{\max }$: 2928, 2857, 1600, 1474, 1336, 1253, 1163, 1092, 899, $836,814 \mathrm{~cm}^{-1 ;} \mathrm{m} / \mathrm{z}(\mathrm{CI}) 371[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}, 371.1351 . \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$ S requires $[\mathrm{M}+\mathrm{H}]^{+}$, 371.1351);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.56(2 \mathrm{H}$, app. d, $J 8.0 \mathrm{~Hz}$, ortho-Ts), $7.33(1 \mathrm{H}$, app. d, $J 8.0 \mathrm{~Hz}, \mathbf{9})$, $7.24-7.18(2 \mathrm{H}, \mathrm{m}, 12$ and 11), $7.11(2 \mathrm{H}$, app. d, $J 8.0 \mathrm{~Hz}$, meta-Ts), $7.06(1 \mathrm{H}, \mathrm{dt}, J 8.0,2.0 \mathrm{~Hz}$, 10), $6.81(1 \mathrm{H}, \mathrm{s}, \mathbf{2}), 4.70\left(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, N_{4} \mathbf{H T s}\right), 3.78(1 \mathrm{H}, \mathrm{dt}, J 8.0,2.0 \mathrm{~Hz}, 5), 3.68(3 \mathrm{H}, \mathrm{s}$, $N_{1} \mathbf{M e}$), $3.09(1 \mathrm{H}, \mathrm{dt}, J 4.0,2.0 \mathrm{~Hz}, \mathbf{1 6}), 3.03-2.89(2 \mathrm{H}, \mathrm{m}, \mathbf{6 a}$ and $\mathbf{6 b}), 2.74(1 \mathrm{H}$, dd, $J 4.5,4.0$ $\mathrm{Hz}, \mathbf{1 7 a}), 2.68(1 \mathrm{H}, \mathrm{t}, J 4.5 \mathrm{~Hz}, \mathbf{1 7 b}), 2.37(3 \mathrm{H}, \mathrm{s}, T s \mathbf{M e}) ;$
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 143.1$ (para-Ts), 137.4 (ipso-Ts), 137.0 ($\mathbf{C 1 3}$), 129.4 (ortho-Ts), 127.8 (C2), 127.6 (C8), 126.8 (meta- $\mathbf{T s}$) 121.7 (C11), 119.1 (C10), 118.6 (C12), 109.3 (C9), 108.9 (C7), 53.0 ($\mathbf{C 1 7}$), 52.9 ($\mathbf{C 1 6}$), 44.8 (C5), 32.7 ($N_{1} \mathbf{M e}$), 29.5 (C6), 21.6 (TsMe).
3.1.4 Procedures from initial work towards the synthesis of key intermediate lactam-alcohol 90 (Sections 2.1.6-2.1.13)
($3 R^{*}, 4 R^{*}, 5 S^{*}$)-Methyl 4-(hydroxymethyl)-6-(1-methylindol-3-yl)-5-(4-methylphenylsulfonamido)-3-(phenylsulfonyl)hexanoate (89)

82

89

To a solution of trimethyl 3-(phenylsulfonyl)orthopropionate $\mathbf{8 8}(141.8 \mathrm{mg}, 0.518 \mathrm{mmol}, 2.5$ equiv.) in THF (2 mL) at $-40^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(2.48 \mathrm{M}$ in hexanes; 0.27 mL , $0.673 \mathrm{mmol}, 3.3$ equiv.) and the solution stirred for 1 h at $-40^{\circ} \mathrm{C}$.

Meanwhile, n-BuLi (2.48 M in hexanes; $0.1 \mathrm{~mL}, 0.227 \mathrm{mmol}, 1.1$ equiv.) was added to a solution of hydroxymethyl-aziridine $\mathbf{8 2}(76.5 \mathrm{mg}, 0.207 \mathrm{mmol}, 1.0$ equiv.) in THF (1 mL) at $-40^{\circ} \mathrm{C}$ and the solution stirred for 1 h at $-40^{\circ} \mathrm{C}$.

The dark red solution of deprotonated $\mathbf{8 8}$ was added dropwise via cannula to the dark green solution of O-lithio hydroxymethyl-aziridine $\mathbf{8 2}$, maintaining both solutions at $-40^{\circ} \mathrm{C}$ throughout the addition. The reaction mixture was allowed to warm slowly from $-40^{\circ} \mathrm{C}$ to rt overnight. Aqueous 10% citric acid (1 mL) was added and the solution stirred for 3 h at rt . The aqueous layer was then extracted with $\operatorname{EtOAc}(3 \times 30 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$, the organic layers combined, dried over MgSO_{4} and filtered. Concentration under reduced pressure and flash column chromatography $\left(20 \%\right.$ EtOAc-hexane) yielded $\left(3 R^{*}, 4 R^{*}, 5 S^{*}\right)$-methyl 4-(hydroxymethyl)-6-(1-methylindol-3-yl)-5-(4-methylphenylsulfonamido)-3-
(phenylsulfonyl)hexanoate 89 ($33.4 \mathrm{mg}, 27 \%$) as an amorphous solid; $\mathrm{R}_{f} 0.16$ ($66 \% \mathrm{EtOAc}$ hexane); FTIR (film) $u_{\max }: 3528,3305,3060,2952,1738,1156 \mathrm{~cm}^{-1} ; m / z(\mathrm{CI}) 599[\mathrm{M}+\mathrm{H}]^{+}$ (Found $[\mathrm{M}+\mathrm{H}]^{+}, 599.1862 . \mathrm{C}_{30} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}_{2}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 599.1870$);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.92\left(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}\right.$, ortho- $\left.\mathrm{PhSO}_{2}\right), 7.70-7.63(1 \mathrm{H}, \mathrm{m}, \mathbf{1 1}), 7.60-7.53$ $\left(3 \mathrm{H}, \mathrm{m}\right.$, meta $-\mathrm{PhSO}_{2}$ and para- $\left.\mathrm{PhSO}_{2}\right), 7.24-7.15(2 \mathrm{H}, \mathrm{m}$, ortho-Ts and $\mathbf{1 2}), 7.07(2 \mathrm{H}, \mathrm{d}, J 8.0$

Hz, meta-Ts), $7.04-6.94(2 \mathrm{H}, \mathrm{m}, 10$ and $\mathbf{9}), 6.80(1 \mathrm{H}, \mathrm{s}, \mathbf{2}), 5.84\left(1 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz}, N_{4} \mathbf{H T s}\right), 4.32$ $(1 \mathrm{H}, \mathrm{dt}, J 3.0,6.0 \mathrm{~Hz}, 15), 4.14-3.88\left(3 \mathrm{H}, 5\right.$ and 17), $3.64\left(3 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}\right), 3.40(3 \mathrm{H}, \mathrm{s}, O \mathbf{M e})$, $3.07(2 \mathrm{H}, \mathrm{dd}, J 14.5,7.0 \mathrm{~Hz}, \mathbf{6}), 2.93-2.81(2 \mathrm{H}, \mathrm{m}, 14), 2.54-2.46(1 \mathrm{H}, \mathrm{m}, 16), 2.37(3 \mathrm{H}, \mathrm{s}$, TsMe);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; 170.7(\mathbf{C 3}), 142.9$ (para-Ts), 137.8 (ipso- PhSO_{2}), 137.6 (ipso-Ts), 134.2 (C13), 129.8 (ortho-Ts), 129.3 (ortho- $\mathbf{P h S O}_{2}$), 129.2 (meta-Ts), 129.0 (meta- $\mathbf{P h S O}_{2}$), 128.8 (ortho- PhSO_{2}), 127.7 (C2), 126.8 (ortho-Ts), 121.7 (C11), 119.1 (C10), 118.5 (C12), 109.0 (C9), 107.5 (C7), 60.1 (C17), 59.2 (OMe), 53.2 (C15), 52.2 (C5), 46.8 (C16), 34.1 (C14), 32.5 $\left(N_{1} \mathbf{M e}\right), 29.0(\mathbf{C 6}), 21.6\left(T_{s} \mathbf{M e}\right)$. Data is in accordance with that previously reported. ${ }^{57}$
($\left.3 R^{*}, 4 R^{*}, 5 S^{*}\right)$-Methyl 4-((tert-butyldimethylsilyloxy)methyl)-6-(1-methylindol-3-yl)-5-(4-methylphenylsulfonamido)-3-(phenylsulfonyl)hexanoate (102a) - Small Scale Original Prep.

To a stirred solution of amino alcohol $89 \quad(96.5 \mathrm{mg}, 0.161 \mathrm{mmol}$, 1.0 equiv.), imidazole ($16.0 \mathrm{mg}, 0.242 \mathrm{mmol}, 1.5$ equiv.) and $\mathrm{TBSCl}(36.5 \mathrm{mg}, 0.242 \mathrm{mmol}, 1.5$ equiv.) in DMF (0.2 mL) was added DMAP ($2.0 \mathrm{mg}, 0.016 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and the reaction mixture stirred at rt for $3 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added and the reaction mixture was poured onto aqueous 10% citric acid. The aqueous layer was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$) and the organic phases combined, washed with brine, dried over MgSO_{4} and filtered. Concentration under reduced pressure and chromatography (33\% EtOAc-hexane) yielded $\left(3 R^{*}, 4 R^{*}, 5 S^{*}\right)$-methyl 4-((tert-butyldimethylsilyloxy)methyl)-6-(1-methylindol-3-yl)-5-(4-methylphenylsulfonamido)-3-(phenylsulfonyl)hexanoate $102 a(56.1 \mathrm{mg}, 49 \%$) as a pale yellow oil; $\mathrm{R}_{f} 0.90$ (66% EtOAc-hexane); FTIR (film) $v_{\max }$: 2928, 2859, 1742, $1156 \mathrm{~cm}^{-1} ; m / z$ (CI) 713
$[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}$, 713.2740. $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}_{2} \mathrm{Si}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 713.2672$). For data, please refer to O-TBS ring-opening reaction (Page 143).

(5R*, 6S*)-5-((tert-Butyldimethylsilyloxy)methyl)-6-((1-methylindol-3-yl)methyl)-1-tosyl-

 5,6-dihydropyridin-2(1H)-one (104) - Small Scale Original Prep.

To a stirred solution of O-TBS protected amino alcohol 102 a ($32.9 \mathrm{mg}, 0.046 \mathrm{mmol}, 1.0$ equiv.) in toluene $(1 \mathrm{~mL})$ was added trimethylaluminium $(2.0 \mathrm{M}$ in hexane; $26 \mu \mathrm{~L}, 0.051 \mathrm{mmol}, 1.1$ equiv.) and the solution stirred at rt for 30 min . After 30 min at rt , the reaction mixture was heated to $80^{\circ} \mathrm{C}$ for 3 h and cooled to rt . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $(1 \mathrm{~mL})$ was added and the aqueous layer extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The organic phases were combined, washed with brine, dried over MgSO_{4} and filtered. Concentration under reduced pressure and chromatography (33\% EtOAc-hexane) yielded $\left(5 R^{*}, 6 S^{*}\right)$-5-((tert-butyldimethylsilyloxy)methyl)-6-((1-methylindol-3-yl)methyl)-1-tosyl-5,6-dihydropyridin-2(1H)one 104 ($56.1 \mathrm{mg}, 49 \%$) as a pale yellow oil; $\mathrm{R}_{f} 0.65$ (33% EtOAc-hexane); FTIR (film) $\mathrm{u}_{\text {max }}$: 3050, 2953, 2856, $1687 \mathrm{~cm}^{-1} ; m / z(\mathrm{CI}) 538[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}$, 538.2383. $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SSi}$ requires $\left.[\mathrm{M}+\mathrm{H}]^{+}, 539.2322\right)$.
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.01(2 \mathrm{H}$, app. d, $J 8.0 \mathrm{~Hz}$, ortho-Ts) $7.69(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, \mathbf{9})$, $7.33-7.18(3 \mathrm{H}, \mathrm{m}, 12$ and meta-Ts), $7.24(1 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}, \mathbf{1 1}), 7.14(1 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}, \mathbf{1 0}), 6.92$ $(1 \mathrm{H}, \mathrm{s}, 2), 6.50(1 \mathrm{H}, \mathrm{ddd}, J 10.0,6.0,1.5 \mathrm{~Hz}, 15), 5.90(1 \mathrm{H}, \mathrm{d}, J 10.0 \mathrm{~Hz}, 14), 5.21(1 \mathrm{H}, \mathrm{dd}, J$ $11.5,4.0 \mathrm{~Hz}, 5), 3.75\left(3 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}\right), 3.45(1 \mathrm{H}, \mathrm{dd}, J 10.0,5.5 \mathrm{~Hz}, 17 \mathrm{a}), 3.33(1 \mathrm{H}, \mathrm{dt}, J 10.0,4.0$ $\mathrm{Hz}, \mathbf{1 7 b}) 3.26(1 \mathrm{H}, \mathrm{t}, J 14.0 \mathrm{~Hz}, 6 \mathbf{a}), 3.14(1 \mathrm{H}, \mathrm{dd}, J 14.0,12.0 \mathrm{~Hz}, \mathbf{6 b}), 2.65(1 \mathrm{H}, \mathrm{dt}, J 10.0,5.5$ $\mathrm{Hz}, 16), 2.42(3 \mathrm{H}, \mathrm{s}, T s \mathbf{M e}), 0.77\left(9 \mathrm{H}, \mathrm{s}, \mathbf{M e}_{3} \mathrm{CSi}\right),-0.05$ (3H, s, MeSi),-0.19 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}$);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 161.6(\mathbf{C 3}), 145.0$ (para-Ts), 142.4 (C15), 137.2 (C13), 136.6 (ipso-Ts), 129.7 (meta-Ts), 129.4 (ortho-Ts), 127.9 (C2), 127.5 (C8), 125.7 (C14), 122.0 (C11), 119.5 (C10), 119.1 (C12), 109.5 (C7), 109.3 (C9), 62.9 (C17), 56.9 (C5), 39.8 ($\mathbf{C 1 6}$), 32.9 ($N_{1} \mathbf{M e}$), 30.1 (C6), $25.9\left(\mathbf{M e}_{3} \mathrm{CSi}\right), 21.7(T s \mathbf{M e}), 18.0\left(\mathrm{Me}_{3} \mathbf{C S i}\right),-5.6\left(\mathrm{Me}_{2} \boldsymbol{C S i}\right)_{2}$. Data is in accordance with that previously reported. ${ }^{57}$

(5R*, $6 S^{*}$)-5-(Hydroxymethyl)-6-((1-methylindol-3-yl)methyl)-1-tosyl-5,6-dihydropyridin-

 2(1H)-one (90) - Small Scale Original Prep.

To a stirred solution of O-TBS protected lactam $104(32.9 \mathrm{mg}, 0.046 \mathrm{mmol}, 1.0$ equiv. $)$ in THF $(1 \mathrm{~mL})$ at rt was added $\mathrm{AcOH}: \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL}: 1 \mathrm{~mL})$ and the reaction mixture stirred at rt for 30 h . Water (1 mL) was added and the aqueous layer extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The organic phases were combined, washed with brine, dried over MgSO_{4} and filtered. Concentration under reduced pressure and chromatography (66% EtOAc-hexane) yielded (5R $\left.{ }^{*}, 6 S^{*}\right)-5$ -(hydroxymethyl)-6-(1-methylindol-3-yl)methyl)-1-(4-methylphenylsulfonamido)-5,6-dihydropyridine-2(1H)-one 90 ($20.3 \mathrm{mg}, 65 \%$) as an amorphous solid; $\mathrm{R}_{f} 0.25$ ($66 \% \mathrm{EtOAc}$ hexane); For data, please refer to the final approach to alstonerine (Page 153).

Procedure for ring-opening of O TBS-hydroxymethyl-substituted aziridine (96)

To a solution of trimethyl 3-(phenylsulfonyl)orthopropionate $\mathbf{8 8}(1.90 \mathrm{~g}, 6.93 \mathrm{mmol}, 1.8$ equiv.) in THF (2 mL) at $-78^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(2.44 \mathrm{M}$ in hexanes; $3.3 \mathrm{~mL}, 8.05 \mathrm{mmol}, 2.0$ equiv.) and the solution stirred for 1 h at $-78^{\circ} \mathrm{C}$.

The dark red solution of deprotonated $\mathbf{8 8}$ was then added dropwise via cannula to a solution of O-TBS hydroxymethyl-aziridine 96 (3.9 M in THF; $1.0 \mathrm{~mL}, 3.90 \mathrm{mmol}, 1.0$ equiv.), maintaining both solutions at $-78^{\circ} \mathrm{C}$ throughout the addition. The reaction mixture was allowed to warm slowly from $-78^{\circ} \mathrm{C}$ to rt overnight. Aqueous $\mathrm{HCl}(2 \mathrm{M} ; 20 \mathrm{~mL}, 40.0 \mathrm{mmol}, \sim 10$ equiv.) was added and the solution stirred for 1 h . The aqueous layer was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$) and the combined organic layers washed with brine, dried over MgSO_{4} and filtered. Concentration under reduced pressure and chromatography ($10 \rightarrow 25 \%$ EtOAc-hexane) yielded ($3 R^{*}, 4 R^{*}, 5 S^{*}$)-methyl 4-((tert-butyldimethylsilyloxy)methyl)-6-(1-methylindol-3-yl)-5-(4-methylphenylsulfonamido)-3-(phenylsulfonyl)hexanoate (102a) and ($3 S^{*}, 4 R^{*}, 5 S^{*}$)-methyl 4-((tert-butyldimethylsilyloxy)methyl)-6-(1-methylindol-3-yl)-5-(4-methylphenylsulfonamido)-3(phenylsulfonyl)hexanoate (102b) as amorphous solids $(1.17 \mathrm{~g}, 41 \%$) and the unwanted regioisomers $\quad\left(3 R^{*}, 4 S^{*}, 5 R^{*}\right)$-methyl 6 -(tert-butyldimethylsilyloxy)-4-((1-methylindol-3-yl)methyl)-5-(4-methylphenylsulfonamido)-3-(phenylsulfonyl)hexanoate (111a) and $\left(3 S^{*}, 4 S^{*}, 5 R^{*}\right)$-methyl 6-(tert-butyldimethylsilyloxy)-4-((1-methylindol-3-yl)methyl)-5-(4-methylphenylsulfonamido)-3-(phenylsulfonyl)hexanoate (111b) as amorphous solids (~15:10:6:5 102a:111a:111b:102b ratio obtained by ${ }^{1} \mathrm{H}$ NMR analysis of the crude material);
$\left(3 R^{*}, 4 R^{*}, 5 S^{*}\right)$-Methyl 4-((tert-butyldimethylsilyloxy)methyl)-6-(1-methylindol-3-yl)-5-(4-methylphenylsulfonamido)-3-(phenylsulfonyl)hexanoate (102a)

$\mathrm{R}_{f} 0.41$ (20% EtOAc-hexane). FTIR (film) $v_{\max }: 2928,2859,1742,1156 \mathrm{~cm}^{-1} ; m / z$ (CI) 713 $[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}$, 713.2747. $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}_{2}$ Si requires $[\mathrm{M}+\mathrm{H}]^{+}, 713.2750$).
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.67-7.60\left(4 \mathrm{H}, \mathrm{m}\right.$, ortho-Ts and ortho- $\left.\mathrm{PhSO}_{2}\right), 7.57(1 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}$, para- PhSO_{2}), $7.41\left(2 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}\right.$, meta- $\left.\mathrm{PhSO}_{2}\right), 7.29-7.21(2 \mathrm{H}, \mathrm{m}, \mathbf{1 2}$ and 9$), 7.21(1 \mathrm{H}$, t, $J 8.0 \mathrm{~Hz}, 11) 7.16(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}$, meta-Ts), $7.01(1 \mathrm{H}, \mathrm{td}, J 8.0,1.0 \mathrm{~Hz}, 10), 6.83(1 \mathrm{H}, \mathrm{s}, \mathbf{2})$, $5.91\left(1 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz}, N_{4} \mathbf{H}\right), 4.23(1 \mathrm{H}, \mathrm{dt}, J 8.5,4.0 \mathrm{~Hz}, 15), 3.79-3.71(1 \mathrm{H}, \mathrm{m}, 5)$, $3.71-3.65(4 \mathrm{H}, \mathrm{s}, O \mathbf{M e}$ then $\mathbf{1 7 a}), 3.53(1 \mathrm{H}, \mathrm{dd}, J 10.55 .5 \mathrm{~Hz}, \mathbf{1 7 b}), 3.45\left(3 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}\right), 3.10$ ($1 \mathrm{H}, \mathrm{dd}, J 14.5,6.5 \mathrm{~Hz}, \mathbf{6 a}$), 2.98 (1 H , dd, $J 18.0,3.0 \mathrm{~Hz}, 14 \mathrm{a}$), 2.87 (1 H , dd, $J 14.5,6.5 \mathrm{~Hz}, \mathbf{6 b}$), $2.76(1 \mathrm{H}, \mathrm{dd}, J 18.0,9.0 \mathrm{~Hz}, \mathbf{1 4 b}), 2.60(1 \mathrm{H}, \mathrm{m}, \mathbf{1 6}), 2.39(3 \mathrm{H}, \mathrm{s}, T s \mathbf{M e}), 0.75\left(9 \mathrm{H}, \mathrm{s}, \mathbf{M e}_{3} \mathrm{CSi}\right)$, $-0.09(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}),-0.13(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi})$;
$\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 171.1$ ($\mathbf{C 3}$), 142.9 (para-Ts), 138.2 (ipso- PhSO_{2}), 138.0 (ipso-Ts), 136.9 (C13), 133.7 (para- $\mathbf{P h S O}_{2}$), 129.4 (meta-Ts), 129.1 (meta- $\mathbf{P h S O}_{2}$), 128.8 (ortho- PhSO $_{2}$), 128.2 (C2), 128.1 (C8), 126.8 (ortho-Ts), 121.5 (C11), 119.1 (C10), 118.6 (C12), 109.2 (C9), 108.8 (C7), 62.8 ($\mathbf{C 1 7}$), 61.0 ($\mathbf{C 1 5}$), 52.4 ($\mathbf{C 5}$), 51.9 (OMe), 42.9 ($\mathbf{C 1 6}$), 32.6 ($N_{1} \mathbf{M e}$), 30.9 ($\mathbf{C 1 4}$), 29.5 (C6), $25.6\left(\mathbf{M e}_{3} \mathrm{CSi}\right), 21.5(T s \mathbf{M e}), 17.9\left(\mathrm{Me}_{3} \mathbf{C S i}\right),-5.8(\mathbf{M e S i}),-5.9(\mathbf{M e S i})$.
($3 S^{*}, 4 R^{*}, 5 S^{*}$)-Methyl 4-((tert-butyldimethylsilyloxy)methyl)-6-(1-methylindol-3-yl)-5-(4-methylphenylsulfonamido)-3-(phenylsulfonyl)hexanoate (102b)

$\mathrm{R}_{f} 0.14$ (20\% EtOAc-hexane); $U_{\max }($ film $) 2928,2858,1734,1471,1447,1152 \mathrm{~cm}^{-1} ; m / z$ (ES) $735[\mathrm{M}+\mathrm{Na}]^{+}$(Found $[\mathrm{M}+\mathrm{Na}]^{+}, 735.2568 . \mathrm{C}_{36} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}_{2} \mathrm{Si}$ requires $[\mathrm{M}+\mathrm{Na}]^{+}, 735.2570$);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.86\left(2 \mathrm{H}\right.$, app. d, $J 8.0 \mathrm{~Hz}$, ortho- $\left.\mathrm{PhSO}_{2}\right), 7.54(1 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}$, para$\mathbf{P h S O}_{2}$), $7.45\left(2 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}\right.$, meta- PhSO_{2}), $7.39(2 \mathrm{H}$, app. d, $J 8.0 \mathrm{~Hz}$, ortho-Ts), $7.15(2 \mathrm{H}, \mathrm{d}$, $J 3.5 \mathrm{~Hz}, 12$ and $\mathbf{9}), 7.04-6.91(4 \mathrm{H}, \mathrm{m}, \mathbf{1 0}, 11$ and meta-Ts), $6.66(1 \mathrm{H}, \mathrm{s}, \mathbf{2}), 4.66(1 \mathrm{H}, \mathrm{d}, J 8.0$ $\left.\mathrm{Hz}, N_{4} \mathbf{H}\right), 4.05(1 \mathrm{H}, \mathrm{dt}, J 8.0,2.5 \mathrm{~Hz}, 15), 4.00(1 \mathrm{H}, \mathrm{dd}, J 7.0,3.0 \mathrm{~Hz}, 5), 3.94(1 \mathrm{H}, \mathrm{dd}, J 10.0$, $3.0 \mathrm{~Hz}, \mathbf{1 7 a}), 3.85(1 \mathrm{H}, \mathrm{dd}, J 10.0,4.0 \mathrm{~Hz}, \mathbf{1 7 b}), 3.62\left(3 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}\right), 3.57(3 \mathrm{H}, \mathrm{s}, O \mathbf{M e}), 3.15$ ($1 \mathrm{H}, \mathrm{dd}, J 18.0,3.0 \mathrm{~Hz}, 14 \mathrm{a}), 2.86(1 \mathrm{H}, \mathrm{dd}, J 18.0,8.5 \mathrm{~Hz}, 14 \mathrm{~b}), 2.86(1 \mathrm{H}, \mathrm{dd}, J 14.5,6.5 \mathrm{~Hz}$, 6a), $2.65-2.56\left(2 \mathrm{H}, \mathrm{m}, \mathbf{6 b}\right.$ and 16), $2.31(3 \mathrm{H}, \mathrm{s}, T s \mathbf{M e}), 0.82\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{CSi}\right), 0.06(3 \mathrm{H}, \mathrm{s}$, MeSi), 0.00 (3H, s, MeSi);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 171.9(\mathbf{C 3}), 143.0$ (para-Ts), 137.3 (ipso- PhSO_{2}), 136.9 ($\mathbf{C 1 3}$), 136.3 (ipso-Ts), 133.9 (para-PhSO 2), 129.1 (meta- and ortho- $\mathbf{P h S O}_{2}$), 127.5 (C8), 127.4 (C2), 127.0 (ortho- and meta-Ts), 121.6 (C11), 119.0 (C10), 118.5 (C12), 109.1 (C9), 108.8 (C7), 59.8 (C17), 59.3 ($\mathbf{C 1 5}$), 53.0 (C5), 52.4 (OMe), 41.5 ($\mathbf{C 1 6}$), 32.5 ($N_{1} \mathbf{M e}$), 30.2 (C14), 28.9 (C6), 25.8 ($\mathbf{M e}_{3} \mathrm{CSi}$), 23.9, 21.6 (TsMe), $18.0\left(\mathrm{Me}_{3} \mathbf{C S i}\right),-5.5(\mathbf{M e S i}),-5.6(\mathbf{M e S i})$.
(3R*, $\left.4 S^{*}, 5 R^{*}\right)$-Methyl 6-(tert-butyldimethylsilyloxy)-4-((1-methylindol-3-yl)methyl)-5-(4-methylphenylsulfonamido)-3-(phenylsulfonyl)hexanoate (111a)

$\mathrm{R}_{f} 0.36\left(20 \%\right.$ EtOAc-hexane); $v_{\max }($ film $) 2928,2859,1742,1156 \mathrm{~cm}^{-1} ; m / z(\mathrm{ES}) 713[\mathrm{M}+\mathrm{H}]^{+}$ (Found $[\mathrm{M}+\mathrm{H}]^{+}, 713.2750 . \mathrm{C}_{36} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}_{2}$ Si requires $[\mathrm{M}+\mathrm{H}]^{+}, 713.2755$);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.97(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, \mathbf{1 2}), 7.93\left(2 \mathrm{H}\right.$, app. d, $J 8.0 \mathrm{~Hz}$, ortho- $\left.\mathrm{PhSO}_{2}\right)$, $7.68\left(2 \mathrm{H}\right.$, app. d, $J 8.0 \mathrm{~Hz}$, ortho-Ts), $7.62\left(1 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}\right.$, para- $\left.\mathrm{PhSO}_{2}\right), 7.51(2 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}$, meta- $\mathbf{P h S O}_{2}$), $7.30-7.20(4 \mathrm{H}, \mathrm{m}, \mathbf{9}, 11$ and meta-Ts), $7.18-7.12(2 \mathrm{H}, \mathrm{m}, \mathbf{1 0}$ and $\mathbf{2}), 5.16(1 \mathrm{H}$, d,
$\left.J 9.5 \mathrm{~Hz}, N_{4} \mathbf{H}\right), 4.31(1 \mathrm{H}, \mathrm{dd}, J 8.0,2.5 \mathrm{~Hz}, \mathbf{1 5}), 3.78\left(3 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}\right), 3.61-3.56(1 \mathrm{H}, \mathrm{m}, 5), 3.48$ $(3 \mathrm{H}, \mathrm{s}, O \mathbf{M e}), 3.29-3.21(2 \mathrm{H}, \mathrm{m}, \mathbf{1 4 a}$ and $\mathbf{6 a}), 3.13(1 \mathrm{H}, \mathrm{dd}, J 10.5,2.5 \mathrm{~Hz}, \mathbf{1 7 a}), 3.01-2.86$ $(4 \mathrm{H}, \mathrm{m}, \mathbf{1 7 b}, \mathbf{1 4 b}, 16$ and $\mathbf{6 b}), 2.39(3 \mathrm{H}, \mathrm{s}, T s \mathbf{M e}), 0.71\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{CSi}\right), 0.24$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}$), -0.26 (3H, s, MeSi);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 172.0(\mathbf{C 3}), 143.6$ (para-Ts), 137.8 (ipso-Ts), 137.8 (para- $\mathbf{P h S O}_{2}$), 137.2 (C13), 133.7 (ipso-PhSO 2), 129.8 (meta-Ts), 129.1 (ortho- PhSO_{2}), 129.1 (meta-PhSO ${ }_{2}$), 128.6 (C2), 127.8 (C8), 127.0 (ortho-Ts), 121.5 (C11), 119.9 (C12), 119.1 (C10), 111.7 (C7), 108.9 (C9), 65.0 ($\mathbf{C 1 7}$), 60.0 ($\mathbf{C 1 5}$), 54.0 ($\mathbf{C 5}$), 52.2 (OMe), 39.5 ($\mathbf{C 1 6}$), 32.6 ($N_{1} \mathbf{M e}$), 30.3 (C14), 25.7 ($\mathbf{M e}_{3} \mathrm{CSi}$), 24.2 ($\mathbf{C 6}$), 21.5 (TsMe), 18.2 ($\mathrm{Me}_{3} \mathbf{C S i}$), -5.5 ($\mathbf{M e S i}$), -5.6 ($\mathbf{M e S i}$).
$\left(3 S^{*}, 4 S^{*}, 5 R^{*}\right)$-Methyl 6-(tert-butyldimethylsilyloxy)-4-((1-methylindol-3-yl)methyl)-5-(4-methylphenylsulfonamido)-3-(phenylsulfonyl)hexanoate (111b)

$\mathrm{R}_{f} 0.23$ (20\% EtOAc-hexane); $v_{\max }($ film $) 2955,2931,2860,1734,1471,1444,1157 \mathrm{~cm}^{-1} ; m / z$ (ES) $713[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}, 713.2750 . \mathrm{C}_{36} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}_{2}$ Si requires $[\mathrm{M}+\mathrm{H}]^{+}, 713.2755$);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.85(2 \mathrm{H}$, app. d, $J 8.0 \mathrm{~Hz}$, ortho-Ts), $7.40(2 \mathrm{H}$, app. d, $J 8.0 \mathrm{~Hz}$, ortho$\mathbf{P h S O} 2), 7.36-7.26\left(3 \mathrm{H}, \mathrm{m}\right.$, meta-Ts and para- $\left.\mathrm{PhSO}_{2}\right), 7.14-7.08(3 \mathrm{H}, \mathrm{m}, \mathbf{9}, 11$ and 12), $6.98-6.88\left(3 \mathrm{H}, \mathrm{m}\right.$, meta- PhSO_{2} and $\left.\mathbf{1 0}\right), 6.72(1 \mathrm{H}, \mathrm{s}, \mathbf{2}), 6.31\left(1 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz}, N_{4} \mathbf{H}\right), 4.25(1 \mathrm{H}$, dd, $J 8.0,3.5 \mathrm{~Hz}, 15), 3.87(1 \mathrm{H}, \mathrm{dd}, J 10.5,1.5 \mathrm{~Hz}, 17 \mathbf{a}), 3.76-3.70(1 \mathrm{H}, \mathrm{m}, 17 \mathrm{~b}), 3.63(2 \times 3 \mathrm{H}$, $\mathrm{s}, N_{1} \mathbf{M e}$ and $O \mathbf{M e}$), $3.56-3.48(1 \mathrm{H}, \mathrm{m}, \mathbf{5}), 3.00-2.88(2 \mathrm{H}, \mathrm{m}, \mathbf{1 4 a}$ and $\mathbf{6 a}), 2.81(1 \mathrm{H}, \mathrm{dt}, J 10.0$, $3.5 \mathrm{~Hz}, \mathbf{1 6}), 2.50-2.36(5 \mathrm{H}, \mathrm{m}, \mathbf{1 4 b}, \mathbf{6 b}$ and $3 \mathrm{H}, \mathrm{s}, T s \mathbf{M e}), 0.91$ ($9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{CSi}$), $0.03(3 \mathrm{H}, \mathrm{s}$, MeSi), -0.03 (3H, s, MeSi);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 172.1(\mathbf{C 3}), 143.4$ (para-Ts), 139.1 (ipso-Ts), 137.8 (para-PhSO 2), 137.0 (C13), 132.9 (ipso- $\mathbf{P h S O}_{2}$), 129.9 (meta-Ts), 126.6 (C2), 128.0 (ortho- $\mathbf{P h S O}_{2}$), 127.9 (C8), 127.0 (meta- PhSO_{2}), 126.9 (ortho-Ts), 121.5 ($\mathbf{C 1 1}$), 118.8 (C12), 118.7 (C10), 110.3 (C7), 109.2 (C9), 63.1 ($\mathbf{C 1 7}$), 61.3 ($\mathbf{C 1 5) , ~} 55.8$ (C5), 52.3 (OMe), 38.6 ($\mathbf{C 1 6}$), 32.5 ($N_{1} \mathbf{M e}$), 29.3 (C14), 26.4 (C6), 26.0 ($\left.\mathbf{M e}_{3} \mathrm{CSi}\right), 21.5$ ($T s \mathbf{M e}$), 18.3 ($\left.\mathrm{Me}_{3} \mathbf{C S i}\right),-5.50\left(\mathbf{M e}_{2} \mathrm{Si}\right)$.
($\left.4 R^{*}, 5 S^{*}, E\right)$-Methyl 4-(hydroxymethyl)-6-(1-methylindol-3-yl)-5-(4-methylphenylsulfonamido)hex-2-enoate (114)

To a solution of O TBS-amino alcohol $102(58.3 \mathrm{mg}, 0.081 \mathrm{mmol}, 1.0$ equiv. $)$ in THF (3 mL) at $0^{\circ} \mathrm{C}$ was added TBAF $3 \mathrm{H}_{2} \mathrm{O}(28.4 \mathrm{mg}, 0.090 \mathrm{mmol}, 1.1$ equiv.) and the reaction mixture allowed to stir for 15 min . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ was added and the aqueous layer extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The organic layers were combined, dried over MgSO_{4} and filtered. Concentration under reduced pressure and flash column chromatography (50% EtOAc-hexane) yielded $\quad\left(4 R^{*}, 5 S^{*}, E\right)$-methyl 4-(hydroxymethyl)-6-(1-methylindol-3-yl)-5-(4-methylphenylsulfonamido)hex-2-enoate $114(36.9 \mathrm{mg}, 76 \%)$ as a pale yellow gum; $\mathrm{R}_{f} 0.32$ (50\% EtOAc-hexane); $v_{\max }(f i l m) 3508,3364,2933,1810,1783,1598,1325,1184$, 1091, $739 \mathrm{~cm}^{-1} ; m / z$ (CI) $457[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}$, 457.1790. $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ requires $\left.[\mathrm{M}+\mathrm{H}]^{+}, 457.1751\right)$;
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.45(2 \mathrm{H}$, app. d, $J 8.0 \mathrm{~Hz}$, ortho-Ts), $7.20-7.10(3 \mathrm{H}, \mathrm{m}, \mathbf{9}, \mathbf{1 2}$ and 11), $7.04-6.97(3 \mathrm{H}, \mathrm{m}$, meta-Ts and 10), $6.91(1 \mathrm{H}, \mathrm{dd}, J 16.0,9.0 \mathrm{~Hz}, 15), 6.63(1 \mathrm{H}, \mathrm{s}, \mathbf{2}), 5.99(1 \mathrm{H}$, d, $J 16.0 \mathrm{~Hz}, 14), 5.02\left(1 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz}, N_{4} \mathbf{H T s}\right), 4.00-3.89(2 \mathrm{H}, \mathrm{m}, \mathbf{1 7 a}$ and $\mathbf{1 7 b}), 3.77(3 \mathrm{H}, \mathrm{s}$, $\left.N_{1} \mathbf{M e}\right), 3.59(3 \mathrm{H}, \mathrm{s}, O \mathbf{M e}), 3.03(1 \mathrm{H}, \mathrm{dd}, J 8.0,6.0 \mathrm{~Hz}, 5), 2.80-2.69(2 \mathrm{H}, \mathrm{m}, \mathbf{6 a}$ and $\mathbf{1 6}), 2.61$ ($1 \mathrm{H}, \mathrm{dd}, J 14.5 \mathrm{~Hz}, \mathbf{6 b}$), 2.34 (3H, s, TsMe);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 166.6(\mathbf{C 3}), 144.1(\mathbf{C 1 5}), 143.0$ (para-Ts), 136.9 (ipso-Ts and C13), 129.8 (ortho-Ts), 129.1 (meta-Ts), 127.4 (C8), 127.3 (C2), 126.6 (C9), 125.3 (C14), 121.6 (C11), 119.0 ($\mathbf{C 1 0}$), 118.4 (C12), 109.2 (C7), 61.9 ($\mathbf{C 1 7}$), 53.3 (C5), 51.8 (OMe), 48.1 (C16), 32.5 ($N_{1} \mathbf{M e}$), 29.7 (C6), 21.6 ($T s \mathbf{M e}$).
($3 R^{*}, 4 R^{*}, 5 S^{*}$)-Methyl 4-(hydroxymethyl)-6-(1-methylindol-3-yl)-5-(4-methylphenylsulfonamido)-3-(phenylsulfonyl)hexanoate (89)

To a solution of O TBS-amino alcohol $102(23.0 \mathrm{mg}, 0.032 \mathrm{mmol}, 1.0$ equiv.) in MeOH (3 mL) at rt was added concentrated $\mathrm{HCl}(1 \mathrm{drop})$ and the solution stirred for 16 h . The reaction mixture was then cooled to $-78^{\circ} \mathrm{C}$ and $\mathrm{NH}_{3}(\sim 0.1 \mathrm{M}$ in $\mathrm{MeOH} ; 0.50 \mathrm{~mL}, 0.05 \mathrm{mmol}, \sim 1.5$ equiv.) and the solution stirred for 15 minutes. Concentration under reduced pressure and flash column chromatography (33% EtOAc-hexane) yielded ($3 R^{*}, 4 R^{*}, 5 S^{*}$)-methyl 4-(hydroxymethyl)-6-(1-methylindol-3-yl)-5-(4-methylphenylsulfonamido)-3-(phenylsulfonyl)hexanoate $\mathbf{8 9}(18.7 \mathrm{mg}$, 98%) as a pale yellow oil; $\mathrm{R}_{f} 0.32$ (50% EtOAc-hexane). Data is in accordance with that previously reported (Page 138).
$\left(3 R^{*}, 4 R^{*}, 5 S^{*}\right)$-Methyl 6-(1-methylindol-3-yl)-5-(4-methylphenylsulfonamido)-4-((3-oxobutanoyloxy)methyl)-3-(phenylsulfonyl)hexanoate (112)

89

112

To a solution of amino alcohol $\mathbf{8 9}(250 \mathrm{mg}, 0.418 \mathrm{mmol}, 1.0$ equiv.) in toluene (1 mL) at rt was added 2,2,6-trimethyl-4H-1,3-dioxin-4-one ($0.11 \mathrm{~mL}, 0.884 \mathrm{mmol}, 2.0$ equiv.) and the reaction mixture heated under reflux at $110^{\circ} \mathrm{C}$ for 2 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$ was added and
the aqueous layer extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The organic phases were combined, dried over MgSO_{4} and filtered. Concentration under reduced pressure and chromatography (20% EtOAc-hexane) yielded $\quad\left(3 R^{*}, 4 R^{*}, 5 S^{*}\right)$-methyl 6-(1-methylindol-3-yl)-5-(4-methylphenylsulfonamido)-4-((3-oxobutanoyloxy)methyl)-3-(phenylsulfonyl)hexanoate 112 $(151.7 \mathrm{mg}, 58 \%)$ as an amorphous solid; $\mathrm{R}_{f} 0.55$ ($66 \% \mathrm{EtOAc}-$ hexane); $\mathrm{R}_{f} 0.24$ (50\% EtOAchexane); $v_{\max }$ (film) 2925, 1734, 1275, $1156 \mathrm{~cm}^{-1} ; m / z(\mathrm{CI}) 683[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}$, 683.2041. $\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}_{2}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 683.2019);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.86(2 \mathrm{H}$, app. d, $J 8.0 \mathrm{~Hz}$, ortho- $\mathbf{T s}$), $7.71-7.59(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $7.25-7.10(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.06-6.95(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.90(1 \mathrm{H}, \mathrm{s}, 2), 5.70(1 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz}$, $\left.N_{4} \mathbf{H}\right), 4.40(1 \mathrm{H}, \mathrm{dd}, J 11.5,6.5 \mathrm{~Hz}, \mathbf{1 5}), 4.22(1 \mathrm{H}, \mathrm{dt}, J 6.0,3.0 \mathrm{~Hz}, \mathbf{1 7 a}), 4.05-3.83(3 \mathrm{H}, \mathrm{m}, 5$ and 17b), $3.68\left(3 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}\right), 3.38(3 \mathrm{H}, \mathrm{s}, O \mathbf{M e}), 3.21-3.11(2 \mathrm{H}, \mathrm{m}, 14 \mathbf{a}$ and $\mathbf{1 4 b})$, $2.93-2.81(2 \mathrm{H}, \mathrm{m}, \mathbf{6 a}$ and $\mathbf{6 b}), 2.54-2.46(1 \mathrm{H}, \mathrm{m}, \mathbf{1 6}), 2.38(3 \mathrm{H}, \mathrm{s}, T s \mathbf{M e}), 2.14(3 \mathrm{H}, \mathrm{s}, \mathbf{1 8})$, 2.04 (2H, s, 20);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; 205.3$ (19), 170.7 (21), 166.6 (C3), 142.9 (para-Ts), 137.8 (ipso- PhSO_{2}), 137.6 (ipso-Ts), 136.9 (C13), 134.2 (para- $\mathbf{P h S O}_{2}$), 129.6 (C8), 129.3 (meta-Ts), 129.2 (meta$\mathbf{P h S O}_{2}$), 129.0 (ortho- $\mathbf{P h S O}_{2}$), 128.8 (ortho- $\mathbf{T s}$), 127.7 (C2), 121.7 (C11), 119.1 ($\mathbf{C 1 0}$), 118.5 (C12), 109.0 (C9), 107.5 (C7), 60.1 (C17), 59.2 (OMe), 53.2 (C15), 52.2 (C5), 46.8 (C16) 37.2 (C14), 35.9 ($\mathbf{C 1 8}$), 34.1 (C20), 32.5 ($N_{1} \mathbf{M e}$), 29.0 (C6), 21.6 (TsMe).

Microwave Prep. For (112)

To a solution of amino alcohol $89(15.0 \mathrm{mg}, 0.025 \mathrm{mmol}, 1.0$ equiv.) in toluene (1 mL) in a microwave vial was added 2,2,6-trimethyl-4H-1,3-dioxin-4-one $(0.005 \mathrm{~mL}, 0.038 \mathrm{mmol}, 1.5$ equiv.) and the reaction mixture heated in the microwave at $150^{\circ} \mathrm{C}$ for 30 min . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$ was added and the aqueous layer extracted with EtOAc ($3 \times 5 \mathrm{~mL}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 5 \mathrm{~mL})$. The organic phases were combined, dried over MgSO_{4} and filtered. Concentration under reduced pressure and chromatography (20% EtOAc-hexane) yielded ($3 R^{*}, 4 R^{*}, 5 S^{*}$)methyl 6-(1-methylindol-3-yl)-5-(4-methylphenylsulfonamido)-4-((3-oxobutanoyloxy)methyl)-3(phenylsulfonyl)hexanoate 112 (14.1 mg, 76\%) as an amorphous solid.
$\left(\left(2 S^{*}, 3 R^{*}\right)-2-((1-M e t h y l i n d o l-3-y l) m e t h y l)-6-o x o-1-t o s y l-1,2,3,6-t e t r a h y d r o p y r i d i n-3-~\right.$ yl)methyl 3-oxobutanoate (113)

To 112 ($31.0 \mathrm{mg}, 0.045 \mathrm{mmol}, 1.0$ equiv.) in toluene (1 mL) was added trimethylaluminium (2.0 M in hexanes; $0.025 \mathrm{~mL}, 0.05 \mathrm{mmol}, 1.1$ equiv.) and the reaction heated under reflux at $100^{\circ} \mathrm{C}$ for 1 hour. The reaction mixture was then cooled to rt and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ was added. The aqueous layer was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The organic layers were combined, washed with brine, dried over MgSO_{4} and filtered. Concentration under reduced pressure and chromatography (33% EtOAc-hexane) yielded ($5 R^{*}, 6 S^{*}$) -5 -(hydroxymethyl)-6-((1-methylindol-3-yl)methyl)-1-tosyl-5,6-dihydropyridin-2(1H)-one 90 as an amorphous solid (14.1 mg, 61\%); Data is in accordance with that reported later (Page 154).
3.1.5 Procedures from final synthesis of key intermediate lactam-alcohol 90 (Sections 2.1.14)

4-Methyl- N-(($\left.S^{*}\right)$-2-(1-methyl-1 H -indol-3-yl)-1-((3R*,4R*)-6-oxo-4-

(phenylsulfonyl)tetrahydro-2H-pyran-3-yl)ethyl)benzenesulfonamide (109a) and 4-methyl-N-($\left(S^{*}\right)$-2-(1-methyl-1 H-indol-3-yl)-1-($\left(3 R^{*}, 4 S^{*}\right)$-6-0xo-4-(phenylsulfonyl)tetrahydro-2H-pyran-3-yl)ethyl)benzenesulfonamide (109b)

82

109

To a solution of trimethyl 3-(phenylsulfonyl)orthopropionate $\mathbf{8 8}(7.43 \mathrm{~g}, 27.08 \mathrm{mmol}, 1.5$ equiv.) in THF (30 mL) at $-78{ }^{\circ} \mathrm{C}$ was added $n-\operatorname{BuLi}(2.48 \mathrm{M}$ in hexanes; $12.0 \mathrm{~mL}, 29.80 \mathrm{mmol}, 1.7$ equiv.) and the solution stirred for 1 h at $-78^{\circ} \mathrm{C}$.

Meanwhile, $n-\operatorname{BuLi}(2.48 \mathrm{M}$ in hexanes; $8.0 \mathrm{~mL}, 19.9 \mathrm{mmol}$, 1.1 equiv.) was added to a solution of hydroxymethyl aziridine $82(6.69 \mathrm{~g}, 18.05 \mathrm{mmol}$, 1.0 equiv.) in THF (10.0 mL) at $-78^{\circ} \mathrm{C}$ and the solution stirred for 1 h at $-78^{\circ} \mathrm{C}$.

The dark red solution of deprotonated $\mathbf{8 8}$ was added dropwise via cannula to the dark green solution of O-lithio hydroxymethyl aziridine $\mathbf{8 2}$, maintaining both solutions at $-78^{\circ} \mathrm{C}$ throughout the addition. The reaction mixture was allowed to warm slowly from $-78^{\circ} \mathrm{C}$ to rt overnight. Aqueous $\mathrm{HCl}(2 \mathrm{M} ; 50 \mathrm{~mL}, 100.0 \mathrm{mmol}, 100$ equiv.) was added and the solution stirred for 3 h . The aqueous layer was extracted with EtOAc $(3 \times 200 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$, and the combined organic layers washed with brine, dried over MgSO_{4} and filtered. Concentration under reduced pressure and chromatography (50\% EtOAc-hexane) yielded lactones 109 ($8.18 \mathrm{~g}, 80 \%$) as a $2: 1$ mixture of sulfone epimers.

4-Methyl- N-($\left(S^{*}\right)$-2-(1-methylindol-3-yl)-1-(($\left.3 R^{*}, 4 R^{*}\right)$-6-oxo-4-(phenylsulfonyl)tetrahydro-2H-pyran-3-yl)ethyl)benzenesulfonamide (109a)

109a
$\mathrm{R}_{f} 0.25$ (50% EtOAc-hexane); 225.9-226.6 ${ }^{\circ}$; FTIR (film) $\cup_{\text {max }}: 3297,2921,1739,1599 \mathrm{~cm}^{-1}$; $m / z(\mathrm{CI}) 567[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}$, 567.1614. $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 567.1624); (Found C, 61.38; H, 5.40; N, 5.05\%. $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}$ requires C, 61.46; H, 5.34; N, 4.94\%);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.00\left(2 \mathrm{H}, \mathrm{dd}, J 8.0,1.0 \mathrm{~Hz}\right.$, meta- $\left.\mathrm{PhSO}_{2}\right), 7.84(2 \mathrm{H}, \mathrm{dd}, J 8.0,1.0 \mathrm{~Hz}$, ortho- $\mathbf{P h S O}_{2}$), $7.66\left(1 \mathrm{H}, \mathrm{tt}, J 7.5,1.0 \mathrm{~Hz}\right.$, para $\left.-\mathrm{PhSO}_{2}\right), 7.45(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}$, ortho-Ts), $7.24-7.22(2 \mathrm{H}, \mathrm{m}, 9$ and 11), $7.11-7.01(4 \mathrm{H}, \mathrm{m}$, meta-Ts, 12 and $\mathbf{1 0}), 6.72(1 \mathrm{H}, \mathrm{s}, 2)$, $4.70\left(1 \mathrm{H}, \mathrm{d}, J 7.5 \mathrm{~Hz}, N_{4} \mathbf{H}\right), 4.49(1 \mathrm{H}, \mathrm{dd}, J 12.5,4.0 \mathrm{~Hz}, 17 \mathrm{a}), 4.31(1 \mathrm{H}, \mathrm{dd}, J 12.5,4.0 \mathrm{~Hz}$,

17b), $3.81-3.76(1 \mathrm{H}, \mathrm{m}, \mathbf{1 5}), 3.69\left(3 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}\right), 3.66-3.60(1 \mathrm{H}, \mathrm{m}, 5), 2.97(1 \mathrm{H}, \mathrm{dd}, J 15.0$, $5.0 \mathrm{~Hz}, \mathbf{6 a}), 2.82-2.74(2 \mathrm{H}, \mathrm{m}, \mathbf{6 b}$ and $\mathbf{1 4 a}), 2.61(1 \mathrm{H}, \mathrm{dd}, J 16.0,7.0 \mathrm{~Hz}, \mathbf{1 4 b}), 2.36(3 \mathrm{H}, \mathrm{s}$, $T s \mathbf{M e}$);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 168.7$ (C3), 143.5 (para-Ts), 137.0 ($\mathbf{C 1 3}$), 136.2 (ipso- PhSO_{2}), 135.6 (ipso-Ts), 134.5 (para- PhSO_{2}), 129.6 (ortho- PhSO_{2}), 129.5 (meta-Ts), 129.1 (meta- $\mathbf{P h S O}_{2}$), 127.8 (C8), 127.4 (C2), 126.7 (ortho-Ts), 122.1 ($\mathbf{C 1 1}$), 119.6 ($\mathbf{C 1 0}$), 118.2 (C12), 109.5 (C9), 107.2 (C7), 66.5 (C17), 56.8 (C15), 53.7 (C5), 36.6 (C16), 32.7 ($N_{1} \mathbf{M e}$), 29.0 ($\mathbf{C 1 4}$), 28.1 (C6), 21.6 ($T s \mathbf{M e}$).

4-Methyl- N-(($\left.S^{*}\right)$-2-(1-methylindol-3-yl)-1-((3R*,4S*)-6-oxo-4-(phenylsulfonyl)tetrahydro-2H-pyran-3-yl)ethyl)benzenesulfonamide (109b)

$\mathrm{R}_{f} 0.15$ (50\% EtOAc-hexane); 214.5-215.0 ${ }^{\circ} \mathrm{C}$ FTIR (film) $v_{\text {max }}: 3297,2921,1739,1599 \mathrm{~cm}^{-1}$; $m / z(\mathrm{CI}) 567[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}$, 567.1614. $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 567.1624). (Found C, 61.38; H, 5.40; N, 5.05\%. $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}$ requires C, 61.46; H, 5.34; N, 4.94\%);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.03-7.98\left(2 \mathrm{H}, \mathrm{m}\right.$, ortho- $\left.\mathrm{PhSO}_{2}\right), 7.71(1 \mathrm{H}, \mathrm{tt}, J 7.5,1.0 \mathrm{~Hz}$, para- PhSO_{2}), $7.61\left(2 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}\right.$, meta- PhSO_{2}), $7.42-7.35(3 \mathrm{H}, \mathrm{m}$, ortho-Ts and 12), 7.17 $(2 \mathrm{H}, \mathrm{d}, J 4.0 \mathrm{~Hz}, 9$ and 11), $7.01-6.95(1 \mathrm{H}, \mathrm{m}, 10), 6.92(2 \mathrm{H}, J 8.0 \mathrm{~Hz}$, meta-Ts), $6.71(1 \mathrm{H}, \mathrm{s}$, 2), $5.35\left(1 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}, N_{4} \mathbf{H}\right), 5.03(1 \mathrm{H}, \mathrm{dd}, J 12.0,8.0 \mathrm{~Hz}, \mathbf{1 7 a}), 4.43-4.21(2 \mathrm{H}, \mathrm{m}, \mathbf{1 7 b}$ and 5), $4.03-3.96(1 \mathrm{H}, \mathrm{m}, \mathbf{1 5}), 3.63\left(3 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}\right), 3.18-3.02(2 \mathrm{H}, \mathrm{m}, 6 \mathbf{a}$ and 16), $2.92-2.74(2 \mathrm{H}$, m, $\mathbf{6 b}$ and 14a), $2.51(1 \mathrm{H}, \mathrm{dd}, J 18.0,7.0 \mathrm{~Hz}, \mathbf{1 4 b}), 2.29(3 \mathrm{H}, \mathrm{s}, T s \mathbf{M e})$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 166.9(\mathbf{C 3}), 143.2$ (para-Ts), 137.7 (para- PhSO_{2}), 137.0 ($\mathbf{C 1 3}$), 135.8 (ipso-Ts), 134.7 (ipso- $\mathbf{P h S O}_{2}$), 129.8 (ortho- $\mathbf{P h S O}_{2}$), 129.2 (meta-Ts), 128.8 (meta$\mathbf{P h S O}_{2}$), 127.4 (C8), 127.2 (C2), 126.7 (ortho-Ts), 121.9 (C11), 119.4 (C10), 118.6 (C12),
109.3 (C9), 108.3 (C7), 68.8 (C17), 57.3 (C15), 52.7 (C5), 38.9 (C16), 32.6 ($N_{1} \mathbf{M e}$), 31.6 (C14), 28.1(C6), 21.6 ($T s \mathbf{M e}$).
($\left.4 S^{*}, 5 R^{*}, 6 S^{*}\right)$-5-(hydroxymethyl)-6-((1-methylindol-3-yl)methyl)-4-(phenylsulfonyl)-1-tosylpiperidin-2-one (118)

109a

118

To a stirred solution of 4-Methyl-N-((S*)-2-(1-methylindol-3-yl)-1-((3R*,4R*)-6-oxo-4-(phenylsulfonyl)tetrahydro-2H-pyran-3-yl)ethyl)benzenesulfonamide 109a ($1.5 \mathrm{~g}, 2.65 \mathrm{mmol}, 1.0$ equiv.) in toluene (9 mL) at $0^{\circ} \mathrm{C}$ was added trimethyl aluminium (2.0 M in hexanes; $1.6 \mathrm{~mL}, 3.18$ mmol, 1.2 equiv.) and the reaction mixture stirred at $0^{\circ} \mathrm{C}$ for 1 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10$ $\mathrm{mL})$ was added and the aqueous layer extracted with $\mathrm{EtOAc}(3 \times 50 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The organic layers were combined, washed with brine, dried over MgSO_{4} and filtered. Concentration under reduced pressure and chromatography (33% EtOAc-hexane) yielded ($4 S^{*}, 5 R^{*}, 6 S^{*}$)-5-(hydroxymethyl)-6-((1-methylindol-3-yl)methyl)-4-(phenylsulfonyl)-1-tosylpiperidin-2-one 118 as a crystalline white solid ($0.99 \mathrm{~g}, 30 \%$) and ($5 R^{*}, 6 S^{*}$)-5-(hydroxymethyl)-6-((1-methylindol-3-yl)methyl)-1-tosyl-5,6-dihydropyridin-2(1H)-one 90 as an amorphous solid ($1.49 \mathrm{~g}, 69 \%$); 266.0-269.0 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f} 0.75$ ($66 \% \mathrm{EtOAc}-$ hexane); FTIR (film) $\mathrm{v}_{\max }$: 3529, 2925, 1704, $1162 \mathrm{~cm}^{-1} ; m / z(E S) 567[M+H]^{+}$(Found $[M+H]^{+}$, 567.1711. $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 567.1739$). Found C, $61.53 ; \mathrm{H}, 5.27 ; \mathrm{N}, 4.92 \% . \mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ requires C, 61.46; H, 5.34; N, 4.94\%;
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.02-7.89\left(3 \mathrm{H}, \mathrm{m}\right.$, ortho- PhSO_{4} and para- $\left.\mathrm{PhSO}_{4}\right), 7.89-7.79(2 \mathrm{H}, \mathrm{m}$, ortho-Ts), $7.69(1 \mathrm{H}, \mathrm{tt}, J 8.0,1.0 \mathrm{~Hz}, \mathbf{1 0}), 7.57(2 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}$, meta-PhSO 4$), 7.34(1 \mathrm{H}, \mathrm{d}, J 8.0$ $\mathrm{Hz}, \mathbf{1 1}), 7.31-7.15\left(4 \mathrm{H}, \mathrm{m}\right.$, meta-Ts, 9 and 12), $5.10(1 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}, 5), 3.80\left(3 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}\right)$, $3.48-3.36(2 \mathrm{H}, \mathrm{m}, \mathbf{1 7 a}$ and $\mathbf{1 5}), 3.35-3.17(3 \mathrm{H}, \mathrm{m}, \mathbf{6 a}, \mathbf{6 b}$ and $\mathbf{1 7 b}), 3.10(1 \mathrm{H}, \mathrm{dd}, J 15.5,13.0$
$\mathrm{Hz}, \mathbf{1 4 a}), 2.98(1 \mathrm{H}, \mathrm{td}, J 7.0,4.5 \mathrm{~Hz}, 16), 2.41(3 \mathrm{H}, \mathrm{s}, T s \mathbf{M e}), 2.36(1 \mathrm{H}, \mathrm{dd}, J 15.5,7.0 \mathrm{~Hz}, 14 b)$, $1.76(1 \mathrm{H}, \mathrm{dd}, J 7.0,5.0 \mathrm{~Hz}, O \mathbf{H})$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 166.8(\mathbf{C 3}), 145.3$ (para-Ts), 137.3 (para- PhSO_{2}), $136.8(\mathbf{C 1 3}), 135.4$ (ipso-Ts), 134.6 (ipso- $\mathbf{P h S O}_{2}$), 129.7 (ortho- $\mathbf{P h S O}_{2}$), 129.3 ($\mathbf{C 2}$ and meta-Ts), 129.2 (ortho-Ts), 128.6 (meta- $\mathbf{P h S O}_{2}$), 127.5 (C8) 121.9 (C11), 119.5 (C10), 119.3 (C12), 109.4 (C9), 108.7 (C7), 64.9 ($\mathbf{C 1 7}$), 58.1 ($\mathbf{C 1 5}$), 57.5 (C5), 35.5 ($\mathbf{C 1 6}$), 33.2 ($\mathbf{C 1 4}$), 32.8 ($N_{1} \mathbf{M e}$), 32.1 (C6), 21.7 (TsMe).

(5R*,6S*)-5-(Hydroxymethyl)-6-((1-methylindol-3-yl)methyl)-1-tosyl-5,6-dihydropyridin-2(1H)-one (90)

109

90

To a solution of lactones $109(7.76 \mathrm{~g}, 13.71 \mathrm{mmol}, 1.0$ equiv.) in toluene (50 mL) was added trimethylaluminium (2.0 M in hexanes; $10.5 \mathrm{~mL}, 21.0 \mathrm{mmol}, 1.5$ equiv.) and the reaction mixture heated under reflux at $120^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was cooled to rt before saturated aqueous Rochelle salt (10 mL) and EtOAc (10 mL) were added, and the resulting suspension was stirred vigorously at rt overnight. Saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ was added and the aqueous layer extracted with EtOAc $(3 \times 100 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The organic layers were washed with brine, dried over MgSO_{4} and filtered. Concentration under reduced pressure and chromatography (33% EtOAc-hexane) yielded (5R*, $6 S^{*}$)-5-(hydroxymethyl)-6-((1-methylindol-3-yl)methyl)-1-tosyl-5,6-dihydropyridin-2(1H)-one 90 as a colourless, amorphous solid (5.66 g, 94\%); $\mathrm{R}_{f} 0.25$ (66\% EtOAc-hexane); FTIR (film) $\mathrm{v}_{\text {max }}: 3530,3056,2917,1687$ $\mathrm{cm}^{-1} ; m / z(\mathrm{CI}) 425[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}$, 425.1530. $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 425.1535). Found C, $64.94 ; \mathrm{H}, 5.63$; N, $6.57 \% . \mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ requires $\mathrm{C}, 65.07 ; \mathrm{H}, 5.70 ; \mathrm{N}$, 6.60\%;
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.99(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}$, meta-Ts), $7.68(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, \mathbf{1 2}), 7.33-7.21$ (4H, m, ortho-Ts, 9 and 11), $7.15(1 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}, \mathbf{1 0}), 6.90(1 \mathrm{H}, \mathrm{s}, \mathbf{2}), 6.57(1 \mathrm{H}$, ddd, $J 10,8.0$, $1.5 \mathrm{~Hz}, 15), 5.94(1 \mathrm{H}, \mathrm{d}, J 10.0 \mathrm{~Hz}, 14), 5.16(1 \mathrm{H}, \mathrm{dd}, J 11.0,4.0 \mathrm{~Hz}, 5), 3.75\left(3 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}\right)$, $3.57(1 \mathrm{H}, \mathrm{dd}, J 11.0,6.0 \mathrm{~Hz}, \mathbf{1 7 a}), 3.38(1 \mathrm{H}, \mathrm{t}, J 9.0 \mathrm{~Hz}, \mathbf{1 7 b}), 3.31(1 \mathrm{H}, \mathrm{dd}, J 14.0,4.0 \mathrm{~Hz}, \mathbf{6 a})$, 3.14 (1 H , dd, $J 14.0,11.0 \mathrm{~Hz}, \mathbf{6 b}$), 2.69 ($1 \mathrm{H}, \mathrm{dt}, J 7.5,6.0 \mathrm{~Hz}, 16$), 2.42 ($3 \mathrm{H}, \mathrm{s}, T s \mathbf{M e}$), 1.59 (1 H , br. s, $O \mathbf{H}$);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 161.6(\mathbf{C 3}), 144.7$ (para-Ts), 142.4 (C15), 137.0 (C13), 136.4 (ipso-Ts), 129.3 (meta-Ts), 129.1 (ortho-Ts), 127.94 (C2), 127.85 (C8), 125.9 (C14), 121.9 (C11), 119.4 (C10), 118.9 (C12), 109.5 (C7), 109.4 (C9), 62.9 (C17), 57.0 (C5), 39.9 (C16), 32.7 ($N_{1} \mathbf{M e}$), 29.9 (C6), 21.7 (TsMe).

Experimental procedure for $\mathrm{O} \rightarrow \boldsymbol{N}$-transacylation of sulfone (110)

110

90

To a solution of crude lactone $110(366.2 \mathrm{mg}, 0.863 \mathrm{mmol}, 1.0$ equiv.) in toluene (2 mL) was added trimethylaluminium (2.0 M in hexanes; $0.5 \mathrm{~mL}, 0.95 \mathrm{mmol}, 1.1$ equiv.) and the reaction mixture stirred at rt for 1 h . The reaction mixture was then heated to $100^{\circ} \mathrm{C}$ for 15 min in the microwave, cooled to rt and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ was added. The aqueous layer was extracted with $\mathrm{EtOAc}(3 \times 20 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The organic layers were combined, washed with brine, dried over MgSO_{4} and filtered. Concentration under reduced pressure and chromatography (33\% EtOAc-hexane) yielded (5R*,6S*)-5-(hydroxymethyl)-6-((1-methylindol-3-yl)methyl)-1-tosyl-5,6-dihydropyridin-2(1H)-one 90 as an amorphous solid ($334 \mathrm{mg}, 91 \%$); Data is in accordance with that previously reported (Page 154).
3.1.6 Procedures from synthesis of pentacyclic lactone 85 (Sections 2.2.1 and 2.2.2)

$\left(\left(2 S^{*}, 3 R^{*}\right)\right.$-2-((1-Methylindol-3-yl)methyl)-6-oxo-1-tosyl-1,2,3,6-tetrahydropyridin-3-

yl)methyl 3-oxobutanoate (113) - Small Scale Original Prep.

90
113

To a stirred solution of lactam alcohol $90(10.9 \mathrm{mg}, 0.026 \mathrm{mmol}, 1.0$ equiv.) and KOAc (0.25 $\mathrm{mg}, 0.003 \mathrm{mmol}, 0.1$ equiv.) in THF $(0.15 \mathrm{~mL})$ at rt was added diketene $(0.66 \mathrm{M}$ in THF; 0.05 $\mathrm{mL}, 0.033 \mathrm{mmol}, 1.3$ equiv.) and the reaction mixture heated under reflux at $70^{\circ} \mathrm{C}$ for 1.25 h . After cooling to rt, water (0.5 mL) was added and the aqueous layer extracted with EtOAc (3×10 mL). The organic layers were combined, washed with brine, dried over MgSO_{4} and filtered. Concentration under reduced pressure chromatography (40% EtOAc-hexane) yielded (($\left.2 S^{*}, 3 R^{*}\right)$-2-((1-methylindol-3-yl)methyl)-6-oxo-1-tosyl-1,2,3,6-tetrahydropyridin-3-yl)methyl 3-oxobutanoate 113 ($17.1 \mathrm{mg}, 100 \%$) as an amorphous solid; For data, please refer to optimised route (Page 162).

($4 \mathrm{a} R^{*}, 6 R^{*}, 8 S^{*}, 8 \mathrm{a} R^{*}, Z$)-6-Hydroxy-4-(1-hydroxyethylidene)-8-((1-methylindol-3-

 yl)methyl)-7-tosylhexahydro-1H-pyrano[3,4-c]pyridin-3(4H)-one (119)

91

119

To a solution of enol 91 ($54.7 \mathrm{mg}, 0.108 \mathrm{mmol}, 1.0$ equiv.) in THF (1 mL) at $-78^{\circ} \mathrm{C}$ was added DIBAL (1.0 M in toluene; $0.22 \mathrm{~mL}, 0.215 \mathrm{mmol}, 2.0$ equiv.) and the solution stirred at $-78^{\circ} \mathrm{C}$ for 3 h . $\mathrm{MeOH}(1 \mathrm{~mL})$ was added and the reaction mixture was allowed to warm slowly from $-78^{\circ} \mathrm{C}$ to rt . Saturated aqueous Rochelle salt $(5 \mathrm{~mL})$ and EtOAc $(15 \mathrm{~mL})$ were added and the resulting suspension stirred vigorously at rt overnight. The aqueous phase was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$ and the organic phases were combined, dried over MgSO_{4} and filtered. Concentration under reduced pressure and preparative thin layer chromatography (50% EtOAc-hexane) yielded (4aR*, $\left.6 R^{*}, 8 S^{*}, 8 a R^{*}, Z\right)-6-h y d r o x y-4-(1-h y d r o x y e t h y l i d e n e)-8-((1-m e t h y l i n d o l-3-y l) m e t h y l)-7-$ tosylhexahydro-1H-pyrano[3,4-c]pyridin-3(4H)-one 119 ($28.0 \mathrm{mg}, 51 \%$) as a white amorphous solid; $\mathrm{R}_{f} 0.61$ (50\% EtOAc-hexane); FTIR (film) $v_{\text {max }}: 3481,2925,1631,1614,1477,1439 \mathrm{~cm}^{-}$ ${ }^{1} ; m / z(E S) 509[\mathrm{M}-\mathrm{H}]^{-}$(Found $[\mathrm{M}-\mathrm{H}]^{-}$, 509.1754. $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$ requires $[\mathrm{M}-\mathrm{H}]^{-}$, 509.1746);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.85(1 \mathrm{H}, \mathrm{s}, 19-\mathrm{OH}), 7.69(2 \mathrm{H}$, app. d, $J 8.0 \mathrm{~Hz}$, ortho-Ts), $7.37-7.23$ $(3 \mathrm{H}, \mathrm{m}, \mathbf{9}, 11$ and 12), $7.17(1 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}, \mathbf{1 0}), 6.89(1 \mathrm{H}, \mathrm{s}, \mathbf{2}), 5.53(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathbf{3}), 3.96(1 \mathrm{H}, \mathrm{dd}$, $J 12.0,3.0, \mathrm{~Hz}, \mathbf{5}), 3.77\left(3 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}\right), 3.69-3.55(3 \mathrm{H}, \mathrm{m}, \mathbf{1 7 a}, 17 \mathrm{~b}$ and 6a) $3.51-3.38(2 \mathrm{H}, \mathrm{m}$, 6b and 15), $3.17(1 \mathrm{H}, \mathrm{s}, \mathbf{3}-\mathrm{OH}), 2.46(3 \mathrm{H}, \mathrm{s}, T s \mathbf{M e}), 2.37-2.28(1 \mathrm{H}, \mathrm{m}, \mathbf{1 6}) 2.20(3 \mathrm{H}, \mathrm{s}, \mathbf{1 8})$, $1.91(1 \mathrm{H}, \mathrm{dd}, J 14.0,4.5 \mathrm{~Hz}, 14 \mathrm{a}), 1.49(1 \mathrm{H}, \mathrm{td}, J 14.0,3.5 \mathrm{~Hz}, 14 \mathrm{~b})$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 176.8(\mathbf{C 1 9}), 171.8(\mathbf{C 2 1}), 144.2$ (para-Ts), 137.3 ($\mathbf{C 1 3}$), 137.2 (ipso-Ts), 130.1 (meta-Ts), 129.2 (C8), 127.5 (C2), 126.6 (ortho-Ts), 122.0 (C11), 119.4 (C10), 119.2
(C12), 111.2 (C9), 109.4 (C7), 96.6 (C20), 67.1 (C17), 54.3 (C5), 32.7 ($N_{1} \mathbf{M e}$), 32.5 (C6), 31.3 (C16), 22.1 ($\mathbf{C 1 5) , ~} 21.6$ ($T_{s} \mathbf{M e}$), 18.2 ($\mathbf{C 1 8) . ~}$

Pentacyclic lactone (85)

119

85

To a solution of aminol $119\left(20 \mathrm{mg}, 0.049 \mathrm{mmol}, 1.0\right.$ equiv.) in THF $(1 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added TFA (1 drop) and the solution stirred at $-78^{\circ} \mathrm{C}$ for 2 h . Saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ was added, and the aqueous phase extracted with EtOAc $(3 \times 5 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$. The organic phases were washed with brine, combined, dried over MgSO_{4}, and filtered. Concentration under reduced pressure and chromatography (33% EtOAc-hexane) yielded pentacyclic lactone 85 ($21.9 \mathrm{mg}, 91 \%$) as an amorphous solid; $\mathrm{R}_{f} 0.60$ ($66 \% \mathrm{EtOAc}-$ hexane); FTIR (film) $\cup_{\max }: 3049,2924,2854,1634,1610,1468 \mathrm{~cm}^{-1} ; m / z(\mathrm{CI}) 493[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}$, 493.1779. $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 493.1797);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.04(1 \mathrm{H}, \mathrm{s}, \mathbf{1 9 - O H}), 7.36(2 \mathrm{H}$, app. d, J 8.0 Hz , ortho-Ts), $7.28-7.15(3 \mathrm{H}, \mathrm{m}, \mathbf{9}, 11$ and 12), $7.04(1 \mathrm{H}, \mathrm{t}, J 7.0 \mathrm{~Hz}, \mathbf{1 0}), 6.81(2 \mathrm{H}$, app. d, $J 8.0 \mathrm{~Hz}$, meta-Ts), $5.30(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathbf{3}), 4.70(1 \mathrm{H}, \mathrm{t}, J 12.0 \mathrm{~Hz}, \mathbf{1 7 a}), 4.41(1 \mathrm{H}$, ddd, $J 12.0,4.5,1.0 \mathrm{~Hz}$, 17b), $4.32(1 \mathrm{H}, \mathrm{br} . \mathrm{d}, J 7.5,5), 3.68\left(3 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}\right), 2.94(1 \mathrm{H}, \mathrm{dd}, J 16.5,8.0 \mathrm{~Hz}, 6 \mathrm{a})$, $2.75(1 \mathrm{H}, \mathrm{dt}, J 12.52 .5 \mathrm{~Hz}, 15), 2.50(1 \mathrm{H}, \mathrm{d}, J 16.5 \mathrm{~Hz}, \mathbf{6 b}), 2.26-2.15(2 \mathrm{H}, \mathrm{m}, \mathbf{1 4 a}$ and 16), $2.03(3 \mathrm{H}, \mathrm{s}, T s \mathbf{M e}), 1.74(1 \mathrm{H}, \mathrm{ddd}, J 14.0,4.5,3.0 \mathrm{~Hz}, 14 \mathrm{~b}), 1.65(3 \mathrm{H}, \mathrm{s}, 18)$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 176.8$ (C19), 172.0 (C21), 143.7 (para-Ts), 136.9 (C13), 135.9 (ipso-Ts), 131.4 (C2), 128.9 (meta-Ts), 126.4 (ortho-Ts), 126.0 (C8) 121.9 (C11), 119.4 (C10), 118.0 (C12), 109.0 (C9), 107.2 (C7), 95.7 (C20), 67.5 (C17), 49.3 (C3), 48.1 (C5), 39.7
(C16), 32.7 (C14), 29.3 ($N_{1} \mathbf{M e}$), 26.1 (C15), 25.3 (C6), 21.1 ($T s \mathbf{M e}$), 18.1 (C18). Data is in accordance with that previously reported. ${ }^{57}$
($4 \mathrm{a} R^{*}, 8 R^{*}, 8 \mathrm{a} R^{*}, Z$)-8-(Ethoxymethyl)-4-(1-hydroxyethylidene)-7-tosyl-4,4a,8,8a-tetrahydro$1 H$-pyrano[3,4-c]pyridin- $3(7 H)$-one (120) and ($\left.4 a R^{*}, 8 S^{*}, 8 a R^{*}, Z\right)-4-(1-H y d r o x y e t h y l i d e n e)-$ 8-((1-methylindol-3-yl)methyl)-7-tosyl-4,4a,8,8a-tetrahydro-1H-pyrano[3,4-c]pyridin-3(7H)-one (84c)

To a solution of lactam-lactone 91 ($50.0 \mathrm{mg}, 0.098 \mathrm{mmol}, 1.0$ equiv.) in THF (5 mL) at $-78^{\circ} \mathrm{C}$ was added DIBAL (1.0 M in toluene; $0.12 \mathrm{~mL}, 0.12 \mathrm{mmol}, 1.2$ equiv.) and the solution stirred at $-78^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was quenched with wet EtOAc (1 mL) before trifluoroacetic acid ($0.08 \mathrm{~mL}, 0.10 \mathrm{mmol}, 1.0$ equiv.) was added and the reaction mixture was allowed to warm slowly from $-78^{\circ} \mathrm{C}$ to rt over 30 min . EtOAc (30 mL) and saturated aqueous Rochelle salt (10 mL) were added, and the resulting suspension stirred vigorously at rt overnight. Saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added, and the aqueous phase extracted with EtOAc $(3 \times 50 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The organic phases were washed with brine, combined, dried over MgSO_{4}, and filtered. Concentration under reduced pressure and chromatography (33% EtOAc-hexane) gave (4aR*, $\left.6 R^{*}, 8 S^{*}, 8 a R^{*}, Z\right)-6-H y d r o x y-4-(1-h y d r o x y e t h y l i d e n e)-8-((1-$ methylindol-3-yl)methyl)-7-tosylhexahydro-1H-pyrano[3,4-c]pyridin-3(4H)-one 119 (16.3 mg,

33\%), (4aR*, $\left.8 S^{*}, 8 a R^{*}, Z\right)-4-(1-H y d r o x y e t h y l i d e n e)-8-((1-m e t h y l i n d o l-3-y l) m e t h y l)-7-t o s y l-$ 4,4a,8,8a-tetrahydro-1H-pyrano[3,4-c]pyridin-3(7H)-one $84 c$ ($8.86 \mathrm{mg}, 19 \%$), pentacyclic lactone 85 ($8.40 \mathrm{mg}, 17 \%$) and ($4 a R^{*}, 8 R^{*}, 8 a R^{*}, Z$)-8-(Ethoxymethyl)-4-(1-hydroxyethylidene)-7-tosyl-4,4a,8,8a-tetrahydro-1H-pyrano[3,4-c]pyridin-3(7H)-one 120 (4.48 mg, 11\%).

($4 \mathrm{a} R^{*}, 8 R^{*}, 8 \mathrm{a} R^{*}, Z$)-8-(Ethoxymethyl)-4-(1-hydroxyethylidene)-7-tosyl-4,4a,8,8a-tetrahydro-

 1H-pyrano[3,4-c]pyridin-3(7H)-one (120)

120
$\mathrm{R}_{f} 0.50$ (50\% EtOAc-hexane). FTIR (film) $v_{\max }: 3055,1693,1598,1448, \mathrm{~cm}^{-1} ; m / z$ (CI) 408 $[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}$, 408.1465. $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{6}$ S requires $[\mathrm{M}+\mathrm{H}]^{+}, 408.1797$);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.01(1 \mathrm{H}, \mathrm{s}, \mathbf{1 9 - O H}), 7.67(2 \mathrm{H}$, app. d, J 8.0 Hz , ortho-Ts), $7.34(2 \mathrm{H}$, app. d, $J 8.0 \mathrm{~Hz}$, meta-Ts), $6.81(1 \mathrm{H}$, dd, $J 8.5,1.5 \mathrm{~Hz}, 3), 4.62(1 \mathrm{H}, \mathrm{dt}, J 8.5,1.5 \mathrm{~Hz}$, 14), $3.86(1 \mathrm{H}, \mathrm{ddd}, J 10.0,5.0,1.5 \mathrm{~Hz}, 5), 3.68(1 \mathrm{H}, \mathrm{dd}, J 10.0,5.0 \mathrm{~Hz}, 22 \mathrm{a}), 3.71-3.44(3 \mathrm{H}, \mathrm{m}$, 6a, 6b and 22b), $3.30-3.21(2 \mathrm{H}, \mathrm{m}, \mathbf{1 5}$ and 17a), $3.12(1 \mathrm{H}, \mathrm{t}, J 12.0 \mathrm{~Hz}, \mathbf{1 7 b}), 2.56-2.48(1 \mathrm{H}$, m, 16), $2.45(3 \mathrm{H}, \mathrm{s}, T s \mathbf{M e}), 2.10(3 \mathrm{H}, \mathrm{s}, \mathbf{1 8}), 1.19(3 \mathrm{H}, \mathrm{t}, J 7.0 \mathrm{~Hz}, \mathbf{2 3})$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 178.2$ (C19), 172.2 (C21), 144.8 (para-Ts), 135.6 (ipso-Ts), 130.2 (meta-Ts), 126.8 (ortho-Ts), 122.5 (C3), 106.5 (C14), 95.2 (C20), 69.4 (C22), 66.9 (C6), 66.4 (C17), 52.3 (C5), 28.6 ($\mathbf{C 1 6}$), 26.6 ($\mathbf{C 1 5) , ~} 21.7$ (TsMe), 18.7 (C18), 15.1 ($\mathbf{C 2 3}$).
($\left.4 \mathrm{a} R^{*}, 8 S^{*}, 8 \mathrm{a} R^{*}, Z\right)$-4-(1-Hydroxyethylidene)-8-((1-methylindol-3-yl)methyl)-7-tosyl-4,4a,8,8a-tetrahydro-1H-pyrano[3,4-c]pyridin-3(7H)-one (84c)

$\mathrm{R}_{f} 0.40$ (50\% EtOAc-hexane); FTIR (film) $v_{\max }: 3055,2931,1691,1598,1447, \mathrm{~cm}^{-1} ; m / z(\mathrm{ES})$ $493[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}$, 493.1799. $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5}$ S requires $[\mathrm{M}+\mathrm{H}]^{+}$, 493.1797);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 14.02(1 \mathrm{H}, \mathrm{s}, \mathbf{1 9 - O H}), 7.84(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, \mathbf{9}), 7.72(2 \mathrm{H}$, app. d, $J 8.0$ Hz , ortho- $\mathbf{T s}$), $7.37-7.20(5 \mathrm{H}, \mathrm{m}, \mathbf{1 0}, \mathbf{1 1}, \mathbf{1 2}$ and meta-Ts), $6.88(1 \mathrm{H}, \mathrm{s}, \mathbf{2}), 6.77(1 \mathrm{H}, \mathrm{dd}, J 8.5$, $1.5 \mathrm{~Hz}, 14), 4.69(1 \mathrm{H}, \mathrm{dt}, J 8.5,1.5 \mathrm{~Hz}, \mathbf{3}), 4.01(1 \mathrm{H}, \mathrm{br} . \mathrm{d}, J 10.5 \mathrm{~Hz}, 5), 3.77\left(3 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}\right)$, $3.45-3.37(2 \mathrm{H}, \mathrm{m}, \mathbf{6 a}$ and $\mathbf{1 5}), 3.17-2.97\left(3 \mathrm{H}, \mathrm{m}, \mathbf{6 b}, \mathbf{1 7 a}\right.$ and 17b), $2.42\left(3 \mathrm{H}, \mathrm{s}, T_{s} \mathbf{M e}\right), 2.16$ (3H, s, 18);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 178.1(\mathbf{C 1 9}), 172.3(\mathbf{C 2 1}), 144.6$ (para-Ts), $137.2(\mathbf{C 1 3}), 136.1$ (ipso-Ts), 130.2 (meta-Ts), 127.6 (C2), 126.7 (ortho-Ts), 122.5 (C3), 122.1 ($\mathbf{C 1 1}$), 119.5 (C10), 119.0 (C9), 109.6 (C12), 109.1 (C7), 105.9 (C14), 95.4 (C20), 66.7 (C17), 53.9 (C5), 32.8 ($N_{1} \mathbf{M e}$), 29.8 (C6), 29.4 (C16), 26.4 (C15), 21.7 (TsMe), 18.8 (C18).
(($\left.2 S^{*}, 3 R^{*}\right)-2-((1-M e t h y l i n d o l-3-y l) m e t h y l)-6-o x o-1-t o s y l-1,2,3,6-t e t r a h y d r o p y r i d i n-3-~$ yl)methyl 3-oxobutanoate (113)

A solution of alcohol $90(3.53 \mathrm{~g}, 8.33 \mathrm{mmol}, 1.0$ equiv.) and 4H-2,2,6-trimethyl-1,3-dioxin-4one 115 ($1.66 \mathrm{~mL}, 12.49 \mathrm{mmol}, 1.5$ equiv.) in toluene (15 mL) was heated to $150^{\circ} \mathrm{C}$ in the microwave for 20 min in a sealed tube. On cooling to rt , saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ was added and the aqueous layer extracted with EtOAc $(3 \times 50 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The organic layers were washed with brine, combined, dried over MgSO_{4} and filtered. Concentration under reduced pressure and chromatography ($20 \rightarrow 50 \%$ EtOAc-hexane) yielded ($\left(2 S^{*}, 3 R^{*}\right)$-2-((1-methylindol-3-yl)methyl)-6-oxo-1-tosyl-1,2,3,6-tetrahydropyridin-3-yl)methyl 3oxobutanoate $113(4.11 \mathrm{~g}, 97 \%)$ as a colourless, amorphous solid; $\mathrm{R}_{f} 0.63$ ($66 \% \mathrm{EtOAc}-$ hexane); FTIR (film) $v_{\text {max }}: 2923,1747,1717,1690,1596,1351 \mathrm{~cm}^{-1}$; (New C=O, no OH); $m / z(\mathrm{CI}) 509$ $[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}, 509.1735 . \mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6}$ S requires $[\mathrm{M}+\mathrm{H}]^{+}$, 509.1746). Found C, 63.80; $\mathrm{H}, 5.63 ; \mathrm{N}, 5.37 \% . \mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$ requires C, 63.76; H, 5.55; N, 5.51\%;
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.03(2 \mathrm{H}$, app. d, $J 8.5 \mathrm{~Hz}$, meta-Ts), $7.79(1 \mathrm{H}$, app. d, $J 8.0 \mathrm{~Hz}, \mathbf{1 2})$, $7.38-7.23(4 \mathrm{H}, \mathrm{m}$, ortho-Ts, 9, and 11), $7.17(1 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, \mathbf{1 0}), 6.88(1 \mathrm{H}, \mathrm{s}, 2)$, 6.49 (1H, ddd, $J 10.0,6.0,1.5 \mathrm{~Hz}, 15), 5.98(1 \mathrm{H}, \mathrm{d}, J 10.0 \mathrm{~Hz}, 14), 5.14(1 \mathrm{H}, \mathrm{dd}, J 11.5,4.0 \mathrm{~Hz}$, 5), $4.08(1 \mathrm{H}, \mathrm{dd}, J 11.5,4.5 \mathrm{~Hz}, \mathbf{1 7 a}), 3.84(1 \mathrm{H}, \mathrm{dd}, J 11.5,8.5 \mathrm{~Hz}, \mathbf{1 7 b}), 3.76\left(3 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}\right)$, $3.36(1 \mathrm{H}, \mathrm{dd}, J 14.0,4.0 \mathrm{~Hz}, \mathbf{6 a}), 3.23-3.03(3 \mathrm{H}, \mathrm{m}, \mathbf{2 0 a}, \mathbf{2 0 b}$ and $\mathbf{6 b}), 2.89-2.82(1 \mathrm{H}, \mathrm{m}, \mathbf{1 6})$, 2.43 (3H, s, TsMe), 2.10 ($3 \mathrm{H}, \mathrm{s}, 18$);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 200.3$ ($\mathbf{C 1 9)}$, 166.6 ($\mathbf{C 2 1}$), 161.2 ($\mathbf{C 3}$), 145.0 (para- $\mathbf{T s}$), 140.0 ($\mathbf{C 1 5) , ~}$ 137.2 (C13), 136.2 (ipso-Ts), 129.4 (meta-Ts), 129.2 (ortho-Ts), 127.9 (C2), 127.5 (C8), 126.7
(C14), 122.0 (C11), 119.5 (C10), 119.1 (C12), 109.5 (C9), 109.3 (C7), 63.6 (C17), 56.9 (C5), 49.2 (C20), 36.6 ($\mathbf{C 1 6}$), 32.9 ($N_{l} \mathbf{M e}$), 30.3 (C6), 30.1 ($\mathbf{C 1 8) , ~} 21.7$ ($T s \mathbf{M e}$).
($\left.4 \mathrm{a} R^{*}, 8 S^{*}, 8 \mathrm{a} R^{*}, Z\right)$-4-(1-Hydroxyethylidene)-8-((1-methylindol-3-yl)methyl)-7-tosyltetrahydro-1 H-pyrano[3,4-c]pyridine-3,6(4H,7H)-dione (91)

113

91

To a solution of malonate ester 113 ($3.48 \mathrm{~g}, 6.85 \mathrm{mmol}, 1.0$ equiv.) in THF (23 mL) at rt was added DBU ($2.0 \mathrm{~mL}, 13.7 \mathrm{mmol}, 2.0$ equiv.). The reaction mixture was allowed to stir at rt for 12 h , saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ was added and the aqueous layer extracted with EtOAc $(3 \times 30 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The organic layers were washed with brine, combined, dried over MgSO_{4} and filtered. Concentration under reduced pressure and chromatography (33% EtOAc-hexane) yielded $\left(4 a R^{*}, 8 S^{*}, 8 a R^{*}, Z\right)-4-(1-h y d r o x y e t h y l i d e n e)-8-((1-m e t h y l i n d o l-3-$ yl)methyl)-7-tosyltetrahydro-1H-pyrano[3,4-c]pyridine-3,6(4H,7H)-dione $91(3.34 \mathrm{~g}, 93 \%)$ as an amorphous solid; $\mathrm{R}_{f} 0.24$ (33% EtOAc-hexane); FTIR (film) $v_{\max }: 3058$, 2923, 2855, 2252, 1690, 1636, 1612, $1597 \mathrm{~cm}^{-1} ; m / z(\mathrm{CI}) 509[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}$, 509.1741. $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 509.1746$);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.72(1 \mathrm{H}, \mathrm{s}, \mathbf{1 9 - O H}), 7.94(2 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}$, meta-Ts), $7.72(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, \mathbf{9}), 7.38-7.30(3 \mathrm{H}, \mathrm{m}$, ortho-Ts and 12), $7.27(1 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}, \mathbf{1 1})$, $7.17(1 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}, \mathbf{1 0}), 6.94(1 \mathrm{H}, \mathrm{s}, \mathbf{2}), 4.78(1 \mathrm{H}, \mathrm{ddd}, J 8.0,3.0,2.0 \mathrm{~Hz}, 5)$, $4.21(1 \mathrm{H}$, ddd, $J 11.5,4.51 .5 \mathrm{~Hz}, \mathbf{1 7 a}), 4.03(1 \mathrm{H}, \mathrm{t}, J 12.0 \mathrm{~Hz}, \mathbf{1 7 b}), 3.78$ ($3 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}$), $3.54(1 \mathrm{H}, \mathrm{dd}, J 15.0,4.0 \mathrm{~Hz}, 6 \mathbf{6}), 3.21(1 \mathrm{H}, \mathrm{dd}, 15.0,10.0 \mathrm{~Hz}, \mathbf{6 b}), 3.16-3.07(1 \mathrm{H}, \mathrm{m}, \mathbf{1 5})$, $2.61-2.46(2 \mathrm{H}, \mathrm{m}, 14 \mathbf{a}$ and 16), $2.45(3 \mathrm{H}, \mathrm{s}, T s \mathbf{M e}), 2.17(1 \mathrm{H}, \mathrm{dd}, J 19.0,10.5 \mathrm{~Hz}, 14 \mathrm{~b})$, 1.74 (3H, s, 18);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 177.3(\mathbf{C 1 9}), 171.0(\mathbf{C 2 1}), 167.4(\mathbf{C 3}), 145.4$ (para-Ts), $137.0(\mathbf{C 1 3})$, 135.7 (ipso-Ts), 129.5 (meta-Ts), 129.1 (ortho-Ts), 128.2 (C2), 127.7 (C8), 122.3 (C11), 119.8 (C10), 118.6 (C12), 109.7 (C9), 108.3 (C7), 96.2 (C20), 66.9 (C17), 57.3 (C5), 36.6 ($\mathbf{C 1 4}$), 32.9 ($N_{1} \mathbf{M e}$), 31.5 (C6), 26.0 ($\mathbf{C 1 5}$), 21.7 ($T s \mathbf{M e}$), 18.0 (C18).

Pentacyclic lactone (85)

91

85

To a solution of lactam-lactone $91(0.87 \mathrm{~g}, 1.71 \mathrm{mmol}, 1.0$ equiv.) in THF (5.7 mL) at $-78^{\circ} \mathrm{C}$ was added DIBAL (1.0 M in toluene; $3.4 \mathrm{~mL}, 3.40 \mathrm{mmol}, 2.0$ equiv.) and the solution stirred at $-78^{\circ} \mathrm{C}$ for 3 h . The reaction was quenched with wet $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ and allowed to warm to rt , then trifluoromethanesulfonic acid ($0.16 \mathrm{~mL}, 1.71 \mathrm{mmol}, 1.0$ equiv.) was added and the solution allowed to stir for 30 minutes. Saturated aqueous Rochelle salt (10 mL) and EtOAc (30 mL) were added, and the resulting suspension stirred vigorously at rt overnight. Saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added, and the aqueous phase extracted with EtOAc $(3 \times 50 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The organic phases were washed with brine, combined, dried over MgSO_{4}, and filtered. Concentration under reduced pressure and chromatography ($33 \% \mathrm{EtOAc}-$ hexane) yielded pentacyclic lactone $85(0.77 \mathrm{~g}, 91 \%)$ as an amorphous solid. Data is in accordance with that previously reported (Page 158). ${ }^{57}$

3.1.7 Procedures from attempted synthesis of functionalised pentacyclic lactone (Sections 2.2.3-

2.2.6)

($4 \mathrm{a} R^{*}, 8 S^{*}, 8 \mathrm{a} R^{*}, Z$)-4-(1-Hydroxyethylidene)-8-((1-methylindol-3-yl)methyl)tetrahydro- $\mathbf{H} \boldsymbol{H}$ -pyrano[3,4-c]pyridine-3,6(4H,7H)-dione (124)

91

124

To a solution of naphthalene ($0.91 \mathrm{~g}, 7.01 \mathrm{mmol}, 8.0$ equiv.) in THF (24 mL) at rt was added sodium ($163 \mathrm{mg}, 7.01 \mathrm{mmol}, 8.0$ equiv.) and the reaction mixture stirred at rt for 2 h . The resulting dark green \backslash blue solution was cooled to $-78^{\circ} \mathrm{C}$ and added to a solution of lactam-lactone $91\left(450 \mathrm{mg}, 0.890 \mathrm{mmol}, 1.0\right.$ equiv.) in THF $(5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(12 \mathrm{~mL})$ was added and the solution allowed to warm slowly from $-78^{\circ} \mathrm{C}$ to rt . The aqueous layer was then extracted with EtOAc ($3 \times 50 \mathrm{~mL}$), the organic layers were washed with brine, combined, dried over MgSO_{4} and filtered. Concentration under reduced pressure and chromatography (100% EtOAc) yielded ($4 a R^{*}, 8 S^{*}, 8 a R^{*}, Z$)-4-(1-hydroxyethylidene)-8-((1-methylindol-3-yl)methyl)tetrahydro-1H-pyrano[3,4-c] pyridine$3,6(4 H, 7 H)$-dione 124 ($312 \mathrm{mg}, 99 \%$) as a pale yellow oil; $\mathrm{R}_{f} 0.10$ ($100 \% \mathrm{EtOAc}$); FTIR (film) $v_{\max }: 3212,2917,2247,1635,1475,1423,1240,1328 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}(\mathrm{ES}) 355[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}, 355.1642 . \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 355.1658$);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 13.84(1 \mathrm{H}, \mathrm{s}, \mathbf{2 1}), 7.51(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, \mathbf{9}), 7.33(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, \mathbf{1 2})$, $7.26(1 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}, \mathbf{1 1}), 7.13(1 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}, \mathbf{1 0}), 6.93(1 \mathrm{H}, \mathrm{s}, 2), 6.35\left(1 \mathrm{H}, \mathrm{s}, N_{4} \mathbf{H}\right), 4.38(1 \mathrm{H}$, $\mathrm{t}, J 12.0 \mathrm{~Hz}, \mathbf{1 7 a}), 4.22(1 \mathrm{H}, \mathrm{ddd}, J 12.0,5.0,1.5 \mathrm{~Hz}, 17 \mathrm{~b}), 3.78\left(3 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}\right), 3.56-3.48(1 \mathrm{H}$, $\mathrm{m}, \mathbf{5}), 3.12-3.00(3 \mathrm{H}, \mathrm{m}, \mathbf{6 a}, \mathbf{6 b}$ and $\mathbf{1 5}), 2.54(1 \mathrm{H}, \mathrm{dd}, J 18.0,6.0 \mathrm{~Hz}, \mathbf{1 4 a}), 2.47-2.40(1 \mathrm{H}, \mathrm{m}$, 16), 2.24 ($1 \mathrm{H}, \mathrm{dd}, J 18.0,12.0 \mathrm{~Hz}, 14 b), 1.99(3 \mathrm{H}, \mathrm{s}, 18)$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 176.9(\mathbf{C 1 9}), 171.4$ (C21), 169.5 (C3), 137.2 ($\mathbf{C 1 3}$), 127.9 (C2), 127.3 (C8), 122.3 (C11), 119.5 (C10), 118.3 (C12), 109.7 (C9), 108.6 (C7), 96.4 (C20), 67.1 (C17), 52.4 (C5), 34.1 (C6), 33.5 (C16), 32.8 ($N_{1} \mathbf{M e}$), 26.8 ($\mathbf{C 1 5) , ~} 18.2$ (C18).
$\left(4 S^{*}, 4 \mathrm{a} R^{*}, 8 S^{*}, 8 \mathrm{a} R^{*}\right)-4$-Acetyl-4-methyl-8-((1-methylindol-3-yl)methyl)tetrahydro-1H-pyrano[3,4-c]pyridine-3,6(4H,7H)-dione (126a) and ($4 S^{*}, 4 \mathrm{a} R^{*}, 8 S^{*}, 8 \mathrm{a} R^{*}$)-4-acetyl-4,7-dimethyl-8-((1-methylindol-3-yl)methyl)tetrahydro-1H-pyrano[3,4-c]pyridine-3,6(4H,7H)dione (126b)

To a solution of deprotected $N_{4} \mathrm{H}$ lactam $124(31.0 \mathrm{mg}, 0.061 \mathrm{mmol}, 1.0$ equiv.) in THF $(1 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added $\mathrm{KHMDS}(0.5 \mathrm{M}$ in toluene; $0.15 \mathrm{~mL}, 0.073 \mathrm{mmol}, 1.2$ equiv.) and the solution stirred at $-78^{\circ} \mathrm{C}$ for 1 h . Iodomethane ($0.5 \mathrm{~mL}, 0.067 \mathrm{mmol}, 1.1$ equiv.) was added and the solution allowed to warm slowly from $-78^{\circ} \mathrm{C}$ to rt overnight. The reaction was quenched with wet $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL}), 10 \%$ aqueous citric acid (5 mL) was added and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$ and EtOAc $(3 \times 30 \mathrm{~mL})$. The organic layers were washed with brine, combined, dried over MgSO_{4} and filtered. Concentration under reduced pressure and chromatography ($25 \rightarrow 50 \%$ EtOAc-hexane) yielded ($4 S^{*}, 4 a R^{*}, 8 S^{*}, 8 a R^{*}$)-4-acetyl-4-methyl-8-((1-methylindol-3-yl)methyl)tetrahydro-1H-pyrano[3,4-c]pyridine-3,6(4H,7H)-dione 126a and $\left(4 S^{*}, 4 a R^{*}, 8 S^{*}, 8 a R^{*}\right)-4-a c e t y l-4,7-d i m e t h y l-8-((1-m e t h y l i n d o l-3-y l) m e t h y l) t e t r a h y d r o-1 H-$ pyrano[3,4-c]pyridine-3,6(4H,7H)-dione $\mathbf{1 2 6 b}(28.8 \mathrm{mg}, 93 \%)$ as amorphous solids;
$\left(4 S^{*}, 4 a R^{*}, 8 S^{*}, 8 a R^{*}\right)-4-A c e t y l-4-m e t h y l-8-((1-m e t h y l i n d o l-3-y l) m e t h y l) t e t r a h y d r o-1 H-$ pyrano[3,4-c]pyridine-3,6(4H,7H)-dione (126a)

$\mathrm{R}_{f} 0.65$ (50\% EtOAc-hexane); FTIR (film) $v_{\max }$: 3284, 2918, 2249, 1736, 1706, 1659, 1474 $\mathrm{cm}^{-1} ; m / z$ (ES) $369[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}, 369.1800 . \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 369.1814);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.51(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, 9), 7.34(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, 12), 7.27(1 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}$, 11), $7.15(1 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}, \mathbf{1 0}), 6.93(1 \mathrm{H}, \mathrm{s}, \mathbf{2}), 6.10\left(1 \mathrm{H}, \mathrm{s}, N_{4} \mathbf{H}\right), 4.41(1 \mathrm{H}, \mathrm{dd}, J 12.0,6.5 \mathrm{~Hz}$, 17a), $4.30(1 \mathrm{H}, \mathrm{t}, J 12.0 \mathrm{~Hz}, \mathbf{1 7 b}), 3.77\left(3 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}\right), 3.76-3.70(1 \mathrm{H}, \mathrm{m}, 5), 3.03(1 \mathrm{H}, \mathrm{dd}$, $J 14.5,5.5 \mathrm{~Hz}, \mathbf{6 a}), 2.87(1 \mathrm{H}, \mathrm{dd}, J 14.5,9.0 \mathrm{~Hz}, \mathbf{6 b}), 2.66(1 \mathrm{H}, \mathrm{dd}, J 15.5,11.5 \mathrm{~Hz}, \mathbf{1 4 a})$, $2.60-2.34(3 \mathrm{H}, \mathrm{m}, \mathbf{1 6}, 15$ and 14b), $2.31(3 \mathrm{H}, \mathrm{s}, \mathbf{2 2}), 1.54(3 \mathrm{H}, \mathrm{s}, \mathbf{1 8})$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 205.9(\mathbf{C 1 9}), 171.1$ (C21), 170.3 (C3), 137.3 (C13), 127.7 (C2), 127.3 (C8), 122.4 ($\mathbf{C 1 1}$), 119.6 ($\mathbf{C 1 0}$), 118.3 ($\mathbf{C 1 2) , ~} 109.7$ (C9), 108.0 (C7), 67.7 (C17), 58.0 (C20), 51.8 (C5), 36.0 (C15), 33.9 ($\mathbf{C 1 6}$), 32.8 ($N_{1} \mathbf{M e}$), 31.0 (C6), 30.9 ($\mathbf{C 1 4}$), 28.9 (C22), 23.1 ($\mathbf{C 1 8}$).
$\left(4 S^{*}, 4 a R^{*}, 8 S^{*}, 8 a R^{*}\right)$-4-Acetyl-4,7-dimethyl-8-((1-methylindol-3-yl)methyl)tetrahydro-1 \boldsymbol{H} -pyrano[3,4-c]pyridine-3,6(4H,7H)-dione (126b)

$\mathrm{R}_{f} 0.65$ (50\% EtOAc-hexane). FTIR (film) $u_{\max }: 2922,1732,1707,1659,1468 \mathrm{~cm}^{-1} ; m / z$ (ES) $383[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}, 383.1958 . \mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 383.1971$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.53(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, 9), 7.36(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, 12), 7.29(1 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}$, 11), $7.16(1 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}, 10), 6.88(1 \mathrm{H}, \mathrm{s}, \mathbf{2}), 4.35(1 \mathrm{H}, \mathrm{t}, J 12.0 \mathrm{~Hz}, 17 \mathrm{a}), 4.16(1 \mathrm{H}, \mathrm{dd}, J 12.0$, $6.5 \mathrm{~Hz}, \mathbf{1 7 b}), 3.79\left(3 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}\right), 3.43(1 \mathrm{H}, \mathrm{dd}, J 10.5,4.0 \mathrm{~Hz}, 5), 3.37(1 \mathrm{H}, \mathrm{dd}, J 14.5,4.0 \mathrm{~Hz}$, 6a), $3.14\left(3 \mathrm{H}, \mathrm{s}, N_{4} \mathbf{M e}\right), 2.86(1 \mathrm{H}, \mathrm{dd}, J 14.5,10.5 \mathrm{~Hz}, \mathbf{6 b}), 2.61-2.54(2 \mathrm{H}, \mathrm{m}, 15$ and $\mathbf{1 6}), 2.50$ (1H, dd, $J 17.5,6.0 \mathrm{~Hz}, 14 \mathrm{a}), 2.33(3 \mathrm{H}, \mathrm{s}, \mathbf{2 2}), 2.29(1 \mathrm{H}, \mathrm{dd}, J 17.5,12.0 \mathrm{~Hz}, \mathbf{1 4 b}), 1.41(3 \mathrm{H}, \mathrm{s}$, 18);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 206.2(\mathbf{C 1 9}), 171.2$ (C21), 166.5 (C3), 137.2 ($\mathbf{C 1 3}$), 127.2 (C2), 122.4 (C11), 119.5 (C10), 118.2 (C12), 109.8 (C9), 109.0 (C7), 68.1 (C17), 60.0 (C5), 57.6 (C20), 34.6 (C16), 34.6 ($N_{4} \mathbf{M e}$), 32.8 ($N_{1} \mathbf{M e}$), 31.3 (C14), 30.3 (C22), 28.8 (C15), 28.3 (C14), 24.5 (C18).

N_{4}-Demethyl pentacyclic lactone (85a)

85

85a

To a solution of naphthalene ($157 \mathrm{mg}, 1.23 \mathrm{mmol}, 8.0$ equiv.) in THF (2 mL) at rt was added sodium ($28.2 \mathrm{mg}, 1.23 \mathrm{mmol}, 8.0$ equiv.) and the reaction mixture stirred at rt for 2 h . The resulting dark greenlblue solution was cooled to $-78^{\circ} \mathrm{C}$ and added to a solution of pentacyclic lactone $\mathbf{8 5}$ ($75.4 \mathrm{mg}, 0.153 \mathrm{mmol}, 1.0$ equiv.) in THF (1 mL) at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(12 \mathrm{~mL})$ was added and the solution allowed to warm slowly from $-78^{\circ} \mathrm{C}$ to rt . The aqueous layer was then extracted with EtOAc ($3 \times 50 \mathrm{~mL}$), the organic layers were washed with brine, combined, dried over MgSO_{4} and filtered. Concentration under reduced pressure and chromatography ($50 \rightarrow 100 \%$ EtOAc-hexane) yielded N_{4}-demethyl pentacyclic lactam $85 \boldsymbol{a}(47.6 \mathrm{mg}, 92 \%)$ as a pale yellow gum; $\mathrm{R}_{f} 0.10(100 \%$

EtOAc); FTIR (film) $v_{\max }: 2928,2247,1729,1635,1469,1420 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 356\left[\mathrm{M}^{2}+\mathrm{NH}_{4}\right]^{+}$ (Found $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 356.1969 . \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 356.1974$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.47(1 \mathrm{H}, \mathrm{dd}, J 12.5,8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.31(1 \mathrm{H}, \mathrm{dd}, J 8.0,5.5 \mathrm{~Hz}, \mathrm{ArH})$, $7.28-7.20(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.13(1 \mathrm{H}, \mathrm{q}, J 8.0 \mathrm{~Hz}, \mathrm{ArH}), 6.12\left(0.6 \mathrm{H}, \mathrm{t}, J 3.0 \mathrm{~Hz}, \mathbf{3}_{\mathrm{a}}\right), 5.18(0.4 \mathrm{H}$, $\left.\mathrm{t}, J 3.0 \mathrm{~Hz}, \mathbf{3}_{\mathbf{b}}\right), 5.06\left(0.4 \mathrm{H}, \mathrm{d}, J 7.5 \mathrm{~Hz}, \mathbf{5}_{\mathbf{b}}\right), 4.55-4.26(2 \mathrm{H}, \mathrm{m}, \mathbf{1 7 a}$ and $\mathbf{1 7 b}), 4.18(0.6 \mathrm{H}, \mathrm{d}, J$ $\left.7.0 \mathrm{~Hz}, \mathbf{5}_{\mathbf{a}}\right), 3.71\left(1.2 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}_{\mathbf{b}}\right), 3.70\left(1.8 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}_{\mathbf{a}}\right), 3.40(1 \mathrm{H}, \operatorname{ddd}, J 17.0,10.0,7.5 \mathrm{~Hz}$, 6a), $2.86\left(0.6 \mathrm{H}, \mathrm{d}, J 16.0 \mathrm{~Hz}, \mathbf{6} \mathbf{b}_{\mathbf{a}}\right), 2.73\left(0.4 \mathrm{H}, \mathrm{d}, J 16.0 \mathrm{~Hz}, \mathbf{6 b}_{\mathbf{b}}\right), 2.57(1 \mathrm{H}$, ddd, $J 18.0,11.5$, $\left.6.5 \mathrm{~Hz}, \mathbf{1 4 a} \mathbf{a}_{\mathbf{a}}\right), 2.37-2.21\left(3 \mathrm{H}, \mathrm{m}, \mathbf{1 4} \mathbf{a}_{\mathbf{a}}\right.$ and $\left.\mathbf{1 4 b}\right), 2.20\left(1.2 \mathrm{H}, \mathrm{s}, T_{s} \mathbf{M e}_{\mathbf{b}}\right), 2.11\left(1.8 \mathrm{H}, \mathrm{s}, T_{s} \mathbf{M e}_{\mathbf{a}}\right)$, $2.08-1.91\left(1.2 \mathrm{H}, \mathrm{m}, \mathbf{1 8}_{\mathbf{a}}\right), 1.74-1.62\left(1.8 \mathrm{H}, \mathrm{m}, \mathbf{1 8}_{\mathbf{b}}\right)$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 169.6$ ($\left.\mathbf{C 1 9}\right)$, 169.4 ($\mathbf{C 1 9}$), 168.9 (C21), 168.4 (C21), 137.2 (C13), 137.1 (C13), 133.2 (C2), 131.8 (C2), 125.8 (C8), 125.8 (C8), 122.2 (C11), 121.9 (C11), 119.8 (C10), 119.6 ($\mathbf{C 1 0}$), 118.4 ($\mathbf{C 1 2}$), 117.9 ($\mathbf{C 1 2) , ~} 109.3$ (C9), 109.2 (C9), 108.8 (C7), 106.8 (C7), 68.4 (C17), 68.0 (C17), 50.1 (C5), 49.0 (C3), 43.8 (C5), 43.0 (C3), 38.2 (C16), 37.7 (C16), 34.3 (C15), 34.2 (C15), 31.7 (C14), 30.5 ($\mathbf{C 1 4}$), 29.4 ($N_{1} \mathbf{M e}$), 29.4 ($N_{1} \mathbf{M e}$), 27.5 (C6), 26.0 (C6), 24.5, 21.6 (C18), 21.1 (C18).
($\left(2 S^{*}, 3 R^{*}\right)$-2-((1-Methylindol-3-yl)methyl)-6-oxo-1-tosyl-1,2,3,6-tetrahydropyridin-3yl)methyl 2-(2-methyl-1,3-dioxolan-2-yl)acetate (130)

113

130

To a stirred solution of β-ketoester $113(48.0 \mathrm{mg}, 0.094 \mathrm{mmol}, 1.0$ equiv.) and 1,2-bis(trimethylsiloxy)ethane ($0.05 \mathrm{~mL}, 0.190 \mathrm{mmol}, 2.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added trimethylsilyl trifluoromethanesulfonate (1 drop) and the reaction mixture was stirred
at $-78^{\circ} \mathrm{C}$ for 3 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ was added and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The organic layers were washed with brine, combined, dried over MgSO_{4} and filtered. Concentration under reduced pressure and chromatography (50\% EtOAchexane) yielded ((2S*,3R*)-2-((1-Methylindol-3-yl)methyl)-6-oxo-1-tosyl-1,2,3,6-tetrahydropyridin-3-yl)methyl 2-(2-methyl-1,3-dioxolan-2-yl)acetate $130(48.3 \mathrm{mg}, 93 \%)$ as an amorphous solid; $\mathrm{R}_{f} 0.25$ (50% EtOAc-hexane); FTIR (film) $v_{\max }: 3059$, 2987, 1738. 1689. 1598, $1473 \mathrm{~cm}^{-1} ; m / z$ (ES) $575[\mathrm{M}+\mathrm{Na}]^{+}$(Found $[\mathrm{M}+\mathrm{Na}]^{+}$, 575.1804. $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}$ requires $\left.[\mathrm{M}+\mathrm{Na}]^{+}, 575.1828\right) ;$
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.02(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}$, meta-Ts), $7.77(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, \mathbf{1 2}), 7.73-7.20$ ($4 \mathrm{H}, \mathrm{m}$, ortho-Ts, 11 and 9) $7.16(1 \mathrm{H}, \mathrm{td}, J 7.5,1.0 \mathrm{~Hz}, \mathbf{1 0}), 6.89(1 \mathrm{H}, \mathrm{s}, 2), 6.49(1 \mathrm{H}$, ddd, $J 10.0,6.0,1.5 \mathrm{~Hz}, 15), 5.95(1 \mathrm{H}, \mathrm{dd}, J 10.0,0.5 \mathrm{~Hz}, 14), 5.16(1 \mathrm{H}, \mathrm{dd}, J 11.0,4.0 \mathrm{~Hz}, 5)$, $4.04-3.71\left(10 \mathrm{H}, \mathrm{m}, N_{1} \mathrm{Me}, \mathbf{1 7 a}, 17 \mathrm{~b}, \mathbf{2 2 a}, 22 \mathrm{~b}, \mathbf{2 3 a}\right.$ and 23b$), 3.37(1 \mathrm{H}, \mathrm{dd}, J 14.0,4.0 \mathrm{~Hz}, \mathbf{6 a})$, $3.12(1 \mathrm{H}, \mathrm{dd}, J 14.0,11.0 \mathrm{~Hz}, \mathbf{6 b}), 2.84(1 \mathrm{H}, \mathrm{dt}, J 14.0,5.0 \mathrm{~Hz}, 16), 2.45-2.30(5 \mathrm{H}, \mathrm{m}, T s \mathbf{M e}$, 20a and 20b), 1.36 ($3 \mathrm{H}, \mathrm{s}, \mathbf{1 8}$);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 169.0(\mathbf{C 2 1}), 161.2$ (C3), 144.9 (para-Ts), 140.3 ($\mathbf{C 1 5}$), 137.2 (C13), 136.3 (ipso-Ts), 129.3 (ortho-Ts), 129.2 (para-Ts), 127.8 (C2), 127.6 (C8), 126.6 (C14), 122.0 (C11), 119.4 (C10), 119.2 (C12), 109.4 (C7), 64.8 (C22), 64.7 (C23), 63.0 (C17), 57.0 (C5), 43.5 (C20), 36.4 (C16), 32.8 ($N_{1} \mathbf{M e}$), 30.4 (C6), 24.3 (C18), 21.7 ($T s \mathbf{M e}$).

Tetracyclic indolomorphan lactam (133)

133
$\mathrm{R}_{f} 0.15$ (50\% EtOAc-hexane); 279.0-283.6² ; FTIR (film) umax : $2989,1736,1695,1613,1597$, $1470 \mathrm{~cm}^{-1} ; m / z(\mathrm{CI}) 575[\mathrm{M}+\mathrm{Na}]^{+}$(Found $[\mathrm{M}+\mathrm{Na}]^{+}, 575.1840 . \mathrm{C}_{29} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}$ requires $[\mathrm{M}+\mathrm{Na}]^{+}$, 575.1828).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.85(2 \mathrm{H}$, app. d, $J 8.5 \mathrm{~Hz}$, ortho-Ts), $7.48(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, \mathbf{1 2})$, $7.30-7.20(4 \mathrm{H}, \mathrm{m}$, meta-Ts, 11 and 9$), 7.12(1 \mathrm{H}, \mathrm{td}, J 8.0,1.0 \mathrm{~Hz}, \mathbf{1 0}), 5.17(1 \mathrm{H}$, br. s, 5), 4.27 $(2 \mathrm{H}, \mathrm{d}, J 7.5 \mathrm{~Hz}, \mathbf{1 7 a}$ and $\mathbf{1 7 b}), 4.03(4 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathbf{2 2}, \mathbf{2 3}), 3.63\left(3 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}\right), 3.44(1 \mathrm{H}, \mathrm{dd}, J 17.0$, $1.5 \mathrm{~Hz}, \mathbf{6 a}), 3.36(1 \mathrm{H}, \mathrm{t}, J 4.0 \mathrm{~Hz}, \mathbf{1 5}), 3.19(1 \mathrm{H}, \mathrm{dd}, J 17.0,4.0 \mathrm{~Hz}, \mathbf{6 b}), 2.79-2.65(3 \mathrm{H}, \mathrm{m}, \mathbf{2 0 a}$, 20b and 16), $2.70(1 \mathrm{H}, \mathrm{dd}, J 18.5,5.5 \mathrm{~Hz}, \mathbf{1 4 a}), 2.48(1 \mathrm{H}, \mathrm{d}, J 18.5 \mathrm{~Hz}, \mathbf{1 4 b}), 2.37(3 \mathrm{H}, \mathrm{s}, T s M e)$, $1.56(3 \mathrm{H}, \mathrm{s}, 18)$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 169.3$ (C21), 168.1 (C3), 144.8 (para-Ts), 137.6 (C13), 136.3 (ipso-Ts), 136.2 (C2), 129.3, (ortho-Ts) 128.9 (meta-Ts), 126.6 (C8), 121.99 (C11), 119.6 (C10), 118.5 (C12), 109.1 (C9), 107.6 (C19), 104.0 (C7), 64.9 (22 and 23), 63.23 (C17), 53.6 (C5), 44.2 (C20), 37.6 (C16), 35.8 (C14), 30.5 (C6) 29.0 ($N_{1} \mathbf{M e}$), 26.6 (C15), 24.7 (C18), 21.66 (TsMe).
(($\left.2 R^{*}, 3 R^{*}\right)$-2-(2-Hydroxyethoxy)-6-oxo-1-tosyl-1,2,3,6-tetrahydropyridin-3-yl)methyl 2-(2-methyl-1,3-dioxolan-2-yl)acetate (132)

132
$\mathrm{R}_{f} 0.35$ ($50 \% \mathrm{EtOAc}$-hexane). FTIR (film $/ \mathrm{cm}^{-1}$) $\mathrm{v}_{\text {max }}: 2983,2885,1739,1691,1597,1349,1168$ $\mathrm{cm}^{-1} ; m / z(\mathrm{ES}) 506[\mathrm{M}+\mathrm{Na}]^{+}$(Found $[\mathrm{M}+\mathrm{Na}]^{+}$, 506.1265. $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{9} \mathrm{~S}$ requires $[\mathrm{M}+\mathrm{Na}]^{+}$, 506.1461).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.96(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}$, meta-Ts), $7.31(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}$, ortho-Ts), $6.54(1 \mathrm{H}, \mathrm{ddd}, J 10.0,6.0,1.5 \mathrm{~Hz}, 15), 5.91(1 \mathrm{H}, \mathrm{dd}, J 10.0,0.5 \mathrm{~Hz}, 14), 4.94(1 \mathrm{H}, \mathrm{ddt}, J 9.0$, $5.0,1.0 \mathrm{~Hz}, 5), 4.14(1 \mathrm{H}, \mathrm{dd}, J 11.5,4.5 \mathrm{~Hz}, \mathbf{1 7 a}), 4.02-3.98(4 \mathrm{H}, \mathrm{br} . \mathrm{m}, 22$ and 23$), 3.92(1 \mathrm{H}$, dd, $J 11.5,8.5 \mathrm{~Hz}, \mathbf{1 7 b}), 3.62(1 \mathrm{H}, \mathrm{dd}, J 10.0,5.0 \mathrm{~Hz}, \mathbf{6 a}), 3.59-3.44(3 \mathrm{H}, \mathrm{m}, \mathbf{6 b}$ and $\mathbf{2 4}), 3.15-$ $-3.07(1 \mathrm{H}, \mathrm{m}, 16), 2.67(2 \mathrm{H}, \mathrm{s}, \mathbf{2 0}), 1.60(1 \mathrm{H}, \mathrm{s}, O H), 1.53(3 \mathrm{H}, \mathrm{s}, 18), 1.18(3 \mathrm{H}, \mathrm{t}, J 7.0 \mathrm{~Hz}, 25)$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 169.2(\mathbf{C 2 1}), 161.1$ (C3), 145.0 (para-Ts), 140.5 (C15), 136.0 (ipso-Ts), 129.3 (ortho-Ts), 129.2 (para-Ts), 126.4 (C14), 107.4 (C19), 70.2 (C6), 66.8 (C24), 64.8 (C22 and C23), 63.1 (C17), 55.3 (C5), 43.9 (C20), 35.4 (C16), 24.5 ($\mathbf{C 1 8}$), 21.7 (TsMe), 15.1 (C25).

Allylic diol (135)

To a solution of pentacyclic lactone $85(34.0 \mathrm{mg}, 0.069 \mathrm{mmol}, 1.0$ equiv.) in THF (1 mL) at $-78^{\circ} \mathrm{C}$ was added DIBAL (1.0 M in toluene; $0.14 \mathrm{~mL}, 0.138 \mathrm{mmol}, 2.0$ equiv.) and the solution stirred under reflux at $70^{\circ} \mathrm{C}$ for 1 h . Saturated aqueous Rochelle salt (5 mL) and EtOAc (15 mL) were added and the resulting suspension stirred vigorously at rt overnight. The aqueous phase was extracted with $\operatorname{EtOAc}(3 \times 50 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$ and the organic phases were combined, dried over MgSO_{4} and filtered. Concentration under reduced pressure and preparative thin layer chromatography (50\% EtOAc-hexane) yielded allylic diol $135(15.2 \mathrm{mg}, 46 \%)$ as an amorphous solid; $\mathrm{R}_{f} 0.10$ (66% EtOAc-hexane); FTIR (film) $v_{\max }: 3401,2921,1469,1338,1160$ $\mathrm{cm}^{-1} ; m / z$ (ES) $481[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}$, 481.2092. $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 481.2161).
$\delta_{\mathrm{H}} 7.32(2 \mathrm{H}$, app. d, $J 8.0 \mathrm{~Hz}$, ortho-Ts), $7.28-7.22(1 \mathrm{H}, \mathrm{m}, \mathbf{9}), 7.19-7.13(2 \mathrm{H}, \mathrm{m}, 12$ and 11), $7.01(1 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, 10), 6.77(2 \mathrm{H}$, app. d, $J 8.0 \mathrm{~Hz}$, meta-Ts), $5.56(1 \mathrm{H}, \mathrm{q}, J 7.0 \mathrm{~Hz}, 19), 5.40$ (br. t, $J 3.5 \mathrm{~Hz}, \mathbf{3}), 4.59(1 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}, \mathbf{5}), 4.09-3.92(3 \mathrm{H}, \mathrm{m}, \mathbf{2 1 a}, 21 \mathrm{~b}$ and 17a), $3.70(1 \mathrm{H}$, dd, $J 11.0,5.0,17 \mathrm{~b}), 3.67\left(3 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}\right), 3.16-3.08(1 \mathrm{H}, \mathrm{m}, 14 \mathrm{a}), 2.84(1 \mathrm{H}, \mathrm{dd}, J 16.5,8.0 \mathrm{~Hz}$, 6a), $2.56(1 \mathrm{H}, \mathrm{td}, J 13.5,4.5 \mathrm{~Hz}, \mathbf{1 4 b}), 2.47-2.40(2 \mathrm{H}, \mathrm{m}, \mathbf{6 b}$ and $O \mathbf{H}), 2.02(3 \mathrm{H}, \mathrm{s}, T s \mathbf{M e})$ $1.73-1.63(2 \mathrm{H}, \mathrm{m}, 15$ and $O \mathbf{H}), 1.48(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}, 18)$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.3$ (para- $\mathbf{T s}$), 138.9 ($\mathbf{C 1 3}$), 136.7 ($\mathbf{C 2 0}$), 136.0 (ipso- $\mathbf{T s}$), 132.3 ($\mathbf{C 2}$), 128.8 (meta-Ts), 126.4 (ortho-Ts), 126.0 (C8) 125.8 (C19), 121.5 (C11), 119.1 (C10), 117.9 (C12), 108.8 (C9), 107.8 (C7), 66.7 (C21), 60.6 (C17), 49.4 (C5), 48.2 (C3), 47.9 (C15), 29.5 (C14), 29.0 ($N_{1} \mathbf{M e}$), 24.8 (C6), 21.1 ($T s \mathbf{M e}$), 13.4 (C18).

Exomethylene compound (137)

To a solution of oxalyl chloride (1.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 0.06 \mathrm{ml}, 0.059 \mathrm{mmol}, 1.4$ equiv.) at $-78^{\circ} \mathrm{C}$ was added DMSO ($0.01 \mathrm{~mL}, 0.12 \mathrm{mmol}, 2.8$ equiv.) and the solutions stirred at $-78^{\circ} \mathrm{C}$ for 15 min. Allylic diol 135 was added $\left(\sim 0.85 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 0.5 \mathrm{~mL}, 0.042 \mathrm{mmol}, 1.0$ equiv.) and the solution allowed to warm from $-78^{\circ} \mathrm{C}$ to $-10^{\circ} \mathrm{C}$ over $2 \mathrm{~h} . \mathrm{Et}_{3} \mathrm{~N}(0.1 \mathrm{~mL}$, excess) was added at $-10^{\circ} \mathrm{C}$ and the solution allowed to warm from $-10^{\circ} \mathrm{C}$ to rt over 15 min . Water (2 mL) was added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$, the organic layers were combined, washed with brine, dried over MgSO_{4} and filtered. Concentration under reduced pressure and chromatography (50\% EtOAc-hexane) yielded exomethylene aldehyde $137(18.8 \mathrm{mg}, 97 \%)$ as colourless amorphous solid; $\mathrm{R}_{f} 0.40$ (50% EtOAc-hexane); FTIR (film) $\mathrm{v}_{\max }$: 2921, 1706, 1469, 1338, $1160 \mathrm{~cm}^{-1} ; m / z$ (ES) $481[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}$, 461.1904. $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $\left.[\mathrm{M}+\mathrm{H}]^{+}, 461.1899\right)$.
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.89(1 \mathrm{H}$, br. t, 21), $7.37(2 \mathrm{H}$, app. d, $J 8.0 \mathrm{~Hz}$, ortho-Ts), $7.28-7.23$ $(2 \mathrm{H}, \mathrm{m}, 9$ and 12), $7.19-7.14(1 \mathrm{H}, \mathrm{m}, 11), 7.02(1 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, 10), 6.78(2 \mathrm{H}$, app. d, $J 8.0 \mathrm{~Hz}$, meta-Ts), $5.72(1 \mathrm{H}, \mathrm{q}, J 7.0 \mathrm{~Hz}, 19), 5.38$ (br. t, $J 3.5 \mathrm{~Hz}, \mathbf{3}), 4.92(1 \mathrm{H}$, br. d, $J 8.5 \mathrm{~Hz}, \mathbf{5}$), 4.34 ($1 \mathrm{H}, \mathrm{d}, J 11.0 \mathrm{~Hz}, \mathbf{1 7 a}$), 4.08 ($1 \mathrm{H}, \mathrm{d}, J 11.0 \mathrm{~Hz}, \mathbf{1 7 b}$), 3.68 ($3 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}$), $3.23-3.17$ ($1 \mathrm{H}, \mathrm{m}$, 14a), $3.08(1 \mathrm{H}, \mathrm{dd}, J 16.5,8.0 \mathrm{~Hz}, \mathbf{6 a}), 2.60-2.55(1 \mathrm{H}, \mathrm{m}, \mathbf{1 4 b}), 2.50(1 \mathrm{H}, \mathrm{d}, J 16.5 \mathrm{~Hz}, \mathbf{6 b})$, $2.05-2.01(1 \mathrm{H}, \mathrm{m}, 15), 1.98(3 \mathrm{H}, \mathrm{s}, T s \mathbf{M e}), 1.48(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}, 18)$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 201.8$ (C21), 143.7 (para-Ts), 136.7 (C13), 136.3 (ipso-Ts), 135.4 (C20), 132.0 ($\mathbf{C 1 9}$), 130.6 (C2), 128.7 (meta-Ts), 126.6 (ortho-Ts), 125.8 (C8), 121.8 (C11), 119.3 (C3), 117.8 (C12), 108.9 (C9), 106.9 (C7), 57.7 (C16), 49.1 (C5), 48.7 (C17), 48.1 (C3), 29.9 (C15), 29.2 (C14), 29.0 ($N_{1} \mathbf{M e}$), 24.6 (C6), 21.1 (TsMe), 13.7 (C18).

trans-4-Methoxy-3-buten-2-one (142)

To a solution of β-ketodimethylacetal 188 ($10.0 \mathrm{~mL}, 76.2 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{MeOH}(5 \mathrm{~mL})$ at rt was added sodium methoxide ($80.0 \mathrm{mg}, 1.54 \mathrm{mmol}, 0.02$ equiv.) and the solution heated to $120^{\circ} \mathrm{C}$ in the microwave for 1 h . Concentration under reduced pressure and distillation under reduced pressure yielded a 72:28 ratio of starting material 188 to trans-4-methoxy-3-buten-2-one 142 as colourless oil $(9.6 \mathrm{~mL})$ as a colourless oil. Data is in accordance with that previously reported by Brannock et al. ${ }^{125}$

$\left(5 R^{*}, 6 S^{*}\right)$-5-((1-Methoxy-3-oxobutoxy)methyl)-6-((1-methylindol-3-yl)methyl)-1-tosyl-5,6-dihydropyridin-2(1H)-one (141)

90

141

A solution of lactam alcohol $90(80.0 \mathrm{mg}, 0.185 \mathrm{mmol}, 1.0$ equiv.) and trans-4-methoxy-3-buten-2-one ($0.74 \mathrm{~mL}, 1.85 \mathrm{mmol}$, 10 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added 1 drop of triflic acid and the solution stirred at $-78^{\circ} \mathrm{C}$ for 2 h . Saturated $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ was added and the aqueous layer extracted with $\operatorname{EtOAc}(3 \times 10 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The organics were washed with brine, dried over MgSO_{4} and filtered. Concentration under reduced pressure and flash column chromatography ($40 \rightarrow 60 \%$ EtOAc-hexane) yielded the ($5 R^{*}, 6 S^{*}$)-5-((1-Methoxy-3-oxobutoxy)methyl)-6-((1-methylindol-3-yl)methyl)-1-tosyl-5,6-dihydropyridin-2(1H)-one 141 as a $1: 1$ mixture of epimers ($94.1 \mathrm{mg}, 97 \%$) as a colourless amorphous solid; $\mathrm{R}_{f} 0.31(66 \%$

EtOAc-hexane); FTIR (film) $\cup_{\max }: 2921,1712,1689,1472,1350,1168 \mathrm{~cm}^{-1} ; m / z$ (ES) 547 $[\mathrm{M}+\mathrm{Na}]^{+}$(Found $[\mathrm{M}+\mathrm{Na}]^{+}$, 547.1873. $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$ requires $[\mathrm{M}+\mathrm{Na}]^{+}$, 547.1879);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.06-7.99(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.77-7.68(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.35-7.21(4 \mathrm{H}, \mathrm{m}$, $\operatorname{ArH}), 7.18-7.12(1 \mathrm{H}, \mathrm{m}, \operatorname{ArH}), 6.88(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, \operatorname{ArH}), 6.54-6.47(1 \mathrm{H}, \mathrm{m}, 15)$, $5.93-5.88(1 \mathrm{H}, 2 \times \mathrm{d}, J 10.0 \mathrm{~Hz}, 14), 5.15(1 \mathrm{H}, 2 \times \mathrm{dd}, J 11.0,4.0 \mathrm{~Hz}, 5), 4.73(0.5 \mathrm{H}, \mathrm{t}, J 5.5 \mathrm{~Hz}$, $\mathbf{2 1}_{\mathrm{a}}$), $4.65\left(0.5 \mathrm{H}, \mathrm{t}, J 5.5 \mathrm{~Hz}, \mathbf{2 1}_{\mathrm{b}}\right), 3.76$ and $3.75\left(3 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}\right), 3.51(0.5 \mathrm{H}, \mathrm{dd}, J 10.0,5.5 \mathrm{~Hz}$, $\left.\mathbf{1 7} \mathbf{a}_{\mathbf{a}}\right), 3.42-3.28\left(2.5 \mathrm{H}, \mathrm{m}, \mathbf{1 7} \mathbf{a}_{\mathbf{b}}, \mathbf{1 7} \mathbf{b}_{\mathbf{a}}\right.$ and $\left.\mathbf{6 a}\right), 3.28-3.21\left(2 \mathrm{H}, \mathbf{1 7} \mathbf{b}_{\mathbf{b}}\right.$ and $\left.O \mathbf{M e}_{\mathbf{a}}\right), 3.16-3.05$ $\left(2.5 \mathrm{H}, \mathbf{6 b}\right.$ and $\left.O \mathbf{M e}_{\mathbf{b}}\right), 2.76(1 \mathrm{H}, \mathrm{dt}, J 10.0,6.0 \mathrm{~Hz}, \mathbf{1 6}), 2.58(1 \mathrm{H}, \mathrm{d}, J 6.0 \mathrm{~Hz}, \mathbf{2 0 a}), 2.54(0.5 \mathrm{H}$, d, $\left.J 5.5 \mathrm{~Hz}, \mathbf{2 0 b}_{\mathbf{a}}\right), 2.46\left(0.5 \mathrm{H}, \mathrm{d}, J 5.5 \mathrm{~Hz}, \mathbf{2 0 b}_{\mathbf{b}}\right), 2.43-2.41(3 \mathrm{H}, T s \mathbf{M e}), 2.09\left(1.5 \mathrm{H}, \mathrm{s}, \mathbf{1 8}_{\mathbf{a}}\right)$, $1.93\left(1.5 \mathrm{H}, \mathrm{s}, \mathbf{1 8}_{\mathrm{b}}\right)$;
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 205.4$ (C19), 205.3 (C19), 161.6 (C3), 161.5 (C3), 144.8 (para-Ts), 141.9 (C15), 137.1 (ArC), 136.5 (ipso-Ts), 129.3 (meta-Ts), 129.2 (meta-Ts), 127.8 (ArC), 125.9 (C14), 121.9 (ArC), 119.4 (ArC), 119.4 (ArC), 119.2 (ArC), 119.0 (ArC), 109.6 (ArC), 109.3 (ArC), 101.1 (C21), 100.7 (C21), 66.7 (C17), 66.0 (C17), 57.2 (C5), 56.7 (C5), 53.8 (OMe), 53.7 (OMe), 47.2 (C20), 47.0 (C20), 37.7 (C16), 37.5 (C16), 32.7 ($N_{1} \mathbf{M e}$), 31.1 (C18), 31.0 (C18), 30.1 (C6), 30.0 (C6), 21.7 ($T s \mathbf{M e}$).
3.1.8 Procedures from total synthesis of type A macroline-related alkaloid alstonerinal 138 (Section 2.2.8)

Type a methyl ester (148)

85

148

To a solution of the enol 85 ($281 \mathrm{mg}, 0.571 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1) (2 mL) at rt was added CSA ($13 \mathrm{mg}, 0.057 \mathrm{mmol}, 0.1$ equiv.) and trimethylorthoformate ($1.20 \mathrm{~mL}, 1.14$ mmol, 2.0 equiv.) and the reaction heated under reflux for 72 h . The reaction mixture was then cooled to rt after which saturated NaHCO_{3} was added dropwise. The aqueous layers were then
extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$, and the combined organics washed with brine, dried over MgSO_{4} and filtered. Concentration under reduced pressure and purification via preparative thin layer chromatography (50% EtOAc-Hexane) yielded $N_{4^{-}}(\pm)$-tosylalstonerinal precursor 148 (194 mg, 67\%) as an amorphous solid; $\mathrm{R}_{f} 0.50$ (50% EtOAc-hexane); FTIR (film) $\mathrm{u}_{\max }: 2935$, 1702, 1612, 1469, $1343 \mathrm{~cm}^{-1} ; m / z(E S) 507[M+H]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}$, 507.1970. $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ requires $\left.[\mathrm{M}+\mathrm{H}]^{+}, 507.1954\right)$;
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.41-7.33(2 \mathrm{H}$, app. d, $J 8.0 \mathrm{~Hz}$, ortho-Ts), $7.29-7.22(1 \mathrm{H}, \mathrm{m}, \mathbf{1 2})$, $7.22-7.09(2 \mathrm{H}, \mathrm{td}, J 8.0,1.5 \mathrm{~Hz}, 9$ and 11), $7.05-6.95(1 \mathrm{H}, \mathrm{td}, J 7.0,1.0 \mathrm{~Hz}, \mathbf{1 0})$, $6.83-6.76(2 \mathrm{H}$, app. d, $J 8.0 \mathrm{~Hz}$, meta-Ts), $5.26(1 \mathrm{H}$, br. t, $J 3.0 \mathrm{~Hz}, 3), 4.35-4.13(3 \mathrm{H}, \mathrm{m}$, 5, 17a and 17b), $3.67(3 \mathrm{H}, \mathrm{s}, O \mathbf{M e}), 3.51\left(3 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}\right), 2.90(1 \mathrm{H}, \mathrm{dd}, J 16.0,7.0 \mathrm{~Hz}, \mathbf{6 a})$, $2.72(1 \mathrm{H}$, br. dt, $J 12.0,3.0 \mathrm{~Hz}, \mathbf{1 5}), 2.47(1 \mathrm{H}, \mathrm{d}, J 16.0 \mathrm{~Hz}, \mathbf{6 b}), 2.19(3 \mathrm{H}, \mathrm{s}, T s \mathbf{M e})$ $2.08-2.16(1 \mathrm{H}, \mathrm{m}, 16), 2.01(3 \mathrm{H}, \mathrm{s}, 18), 1.92-2.01(2 \mathrm{H}, \mathrm{m}, 14)$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 168.2(\mathbf{C 1 9}), 165.5(\mathbf{C 2 1}), 143.4$ (para-Ts), 136.9 ($\mathbf{C 1 3}$), 136.2 (ipso-Ts), 132.1 ($\mathbf{C 2}$), 128.2 (meta-Ts), 126.4 (ortho-Ts), 126.2 (C8), 121.4 (C11), 119.0 (C10), 117.8 (C12), 108.9 (C9), 107.0 (C7), 104.1 (C20), 65.8 (C17), 50.9 (OMe), 49.6 (C5), 48.6 (C3), 38.5 (C16), 32.9 ($\mathbf{C 1 4}$), 29.2 ($N_{1} \mathbf{M e}$), 25.7 (C6), 25.4 ($\mathbf{C 1 5) , ~} 21.1$ (TsMe), 20.6 (C18).

$\mathrm{N}_{4} \mathrm{H}$-(土)-Alstonerinal precursor (191)

148

191

To a solution of naphthalene ($51 \mathrm{mg}, 0.40 \mathrm{mmol}, 8.0$ equiv.) in THF (1 mL) at rt was added sodium ($9.0 \mathrm{mg}, 0.40 \mathrm{mmol}, 8.0$ equiv.) and the reaction mixture stirred at rt for 1 h . The dark green\blue solution was then cooled to $-78^{\circ} \mathrm{C}$ and $(\sim 0.1 \mathrm{M}$ in THF; $1.00 \mathrm{~mL}, 0.400 \mathrm{mmol}, 8.0$ equiv.) was added to a solution of $N_{4}-T s$ protected type A macroline methyl ester $148(24 \mathrm{mg}$, 0.05 mmol , 1.0 equiv.) in THF (1 mL). The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . Saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ was added and the solution allowed to
warm slowly from $-78^{\circ} \mathrm{C}$ to rt over 2 hours. The aqueous layer was then extracted with EtOAc $(3 \times 30 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$, the organic layers were washed with brine, combined, dried over MgSO_{4} and filtered. Concentration under reduced pressure and chromatography (100% EtOAc) yielded $\mathrm{N}_{4} \mathrm{H}-(\pm)$-alstonerinal precursor 191 ($12.9 \mathrm{mg}, 92 \%$) as a pale yellow oil; $\mathrm{R}_{f} 0.45$ ($25 \% \mathrm{MeOH}-E t O A c$); FTIR (film) $v_{\max }: 3329,2923,1733,1704,1613,1469,1239 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}$ (ES) $353[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}, 353.1856 . \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 353.1865$);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.49(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, 12), 7.31(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, 9), 7.21(1 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}$, 11), $7.11(1 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}, \mathbf{1 0}), 4.40(1 \mathrm{H}, \mathrm{t}, J 11.5 \mathrm{~Hz}, 17 \mathrm{a}), 4.25(1 \mathrm{H}, \mathrm{t}, J 3.5 \mathrm{~Hz}, \mathbf{3}), 4.15(1 \mathrm{H}$, ddd, $J 10.5,4.0,1.5 \mathrm{~Hz}, \mathbf{1 7 b}), 3.64\left(3 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}\right), 3.52-3.44(4 \mathrm{H}, \mathrm{s}, O \mathbf{M e}$ and 5), $3.26(1 \mathrm{H}$, dd, $J 16.5,7.0 \mathrm{~Hz}, \mathbf{6 a}), 2.74-2.60(2 \mathrm{H}, \mathrm{m}, \mathbf{6 b}$ and $\mathbf{1 5}), 2.19(3 \mathrm{H}, \mathrm{d}, J 0.5 \mathrm{~Hz}, \mathbf{1 8}), 2.08-2.01$ ($1 \mathrm{H}, \mathrm{m}, \mathbf{1 4 a}$), 1.96-1.84 (2H, m, 16 and 14b);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 168.5(\mathbf{C 2 1}), 165.2$ (C19), 136.9 (C13), 126.8 (C2) 121.1 (C11), 118.9 (C10), 117.9 ($\mathbf{C 1 2}$), 108.9 (C9), 107.1 ($\mathbf{C 7}$), 105.1 ($\mathbf{C 2 0}$), 67.0 ($\mathbf{C 1 7) , ~} 50.8$ (OMe), 48.5 (C5), 46.7 (C3), 38.0 ($\mathbf{C 1 6}$), 32.1 ($\mathbf{C 1 4}$), 29.0 ($N_{1} \mathbf{M e}$), 28.8 (C6), 26.1 ($\mathbf{C 1 5) , ~} 20.5$ (C18).

N_{4}-Methyl-(\pm)-alstonerinal precursor (150)

To a stirred solution of secondary $N_{4} H$ amine $191(12.0 \mathrm{mg}, 0.034 \mathrm{mmol}, 1.0$ equiv.) in THF (0.5 mL) at $-78^{\circ} \mathrm{C}$ was added Hünig's Base ($0.02 \mathrm{~mL}, 0.102 \mathrm{mmol}, 3.0$ equiv.) and iodomethane ($0.002 \mathrm{~mL}, 0.05 \mathrm{mmol}, 1.4$ equiv.) and the solution allowed to warm slowly from $-78^{\circ} \mathrm{C}$ to rt overnight. Water (2 mL) was added to the resulting cloudy solution and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 10 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. Purification via preparative thin layer chromatography yielded N_{4}-Methyl-(\pm)-alstonerinal precursor 150 as a pale yellow oil ($9.9 \mathrm{mg}, 81 \%$); $\mathrm{R}_{f} 0.67$
($20 \% \mathrm{MeOH}-\mathrm{EtOAc}$); FTIR (film) $\mathrm{v}_{\max }: 2928,1703,1613,1469,1434,1076 \mathrm{~cm}^{-1} ; m / z$ (CI) 367 $[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}, 367.2032 . \mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 367.2022);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.51(1 \mathrm{H}$, br. d, $J 8.0 \mathrm{~Hz}, 12), 7.33(1 \mathrm{H}$, br. d, $J 8.0 \mathrm{~Hz}, \mathbf{9})$, $7.21(1 \mathrm{H}, \mathrm{td}, J 8.0,1.0 \mathrm{~Hz}, 11), 7.12(1 \mathrm{H}, \mathrm{td}, J 8.0,1.0 \mathrm{~Hz}, 10), 4.85(1 \mathrm{H}, \mathrm{t}, J 12.0 \mathrm{~Hz}, 17 \mathrm{a})$, $4.22(1 \mathrm{H}$, ddd, $J 12.0,4.0,2.0 \mathrm{~Hz}, \mathbf{1 7 b}), 3.90(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, 3), 3.65\left(3 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}\right)$, $3.50(3 \mathrm{H}, \mathrm{s}, O \mathbf{M e}), 3.32(1 \mathrm{H}, \mathrm{dd}, J 16.0,7.0 \mathrm{~Hz}, \mathbf{6 a}), 3.07(1 \mathrm{H}, \mathrm{br} . \mathrm{d}, J 7.0 \mathrm{~Hz}, 5), 2.88(1 \mathrm{H}, \mathrm{m}$, 15), $2.49(1 \mathrm{H}, \mathrm{d}, J 16.0 \mathrm{~Hz}, \mathbf{6 b}), 2.43\left(3 \mathrm{H}, \mathrm{d},{ }^{4} J 1.0 \mathrm{~Hz}, 18\right), 2.32\left(3 \mathrm{H}, \mathrm{br} . \mathrm{s} N_{4} \mathbf{M e}\right), 2.05(1 \mathrm{H}, \mathrm{m}$, 16), $1.99(2 \mathrm{H}, \mathrm{m}, 14 \mathrm{a}$ and $\mathbf{1 4 b})$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 170.1(\mathbf{C 1 9}), 167.2(\mathbf{C 2 1}), 137.1(\mathbf{C 1 3}), 133.2(\mathbf{C 2}), 127.6(\mathbf{C 2 0}), 126.7$ (C8), 120.8 (C11), 118.8 (C10), 118.0 (C12), 108.7 (C9), 106.3 (C7), 68.8 (C17), 62.1 (OMe), 54.8 (C22), 54.7 (C5), 53.7 (C3), 41.6 ($N_{4} \mathbf{M e}$), 39.8 ($\mathbf{C 1 6}$), 29.9 ($\mathbf{C 1 4}$), 29.0 ($N_{1} \mathbf{M e}$), 25.8 (C15), 22.5 (C6), 15.2 (C18).

Over-reduced-(\pm)-alstonerinal precursor (151)

To a solution of N_{4}-methyl-(\pm)-alstonerinal precursor $150(9.3 \mathrm{mg}, 0.025 \mathrm{mmol}, 1.0$ equiv.) in toluene $(0.5 \mathrm{~mL})$ at $-92^{\circ} \mathrm{C}$ was added DIBAL $(1.0 \mathrm{M}$ in toluene; $0.05 \mathrm{~mL}, 0.05 \mathrm{mmol}, 2.0$ equiv.). and the solution stirred at $-92^{\circ} \mathrm{C}$ for 1 h . Wet $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added and the reaction mixture was allowed to warm slowly from $-92^{\circ} \mathrm{C}$ to rt . Saturated aqueous Rochelle salt (10 mL) and EtOAc (10 mL) were added, and the resulting suspension stirred vigorously at rt overnight. The aqueous phase extracted with $\mathrm{EtOAc}(3 \times 20 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The organic phases were washed with brine (20 mL), combined, dried over MgSO_{4} and filtered. Concentrated under reduced pressure and purification via preparative thin layer chromatography ($3 \% \mathrm{MeOH}-\mathrm{EtOAc}$) yielded over-reduced-(土)-alstonerinal precursor 151 ($8.4 \mathrm{mg}, 99 \%$) as an amorphous solid; R_{f}
$0.39(5 \% \mathrm{MeOH}-\mathrm{EtOAc}) ;$ FTIR (film) $v_{\max }: 3350,2913,1670,1469,1380 \mathrm{~cm}^{-1} ; m / z(\mathrm{ES}) 339$ $[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}, 339.2079 . \mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 339.2073$);
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.49(1 \mathrm{H}$, br. d, $J 8.0 \mathrm{~Hz}, 9), 7.31(1 \mathrm{H}$, br. d, $J 8.0 \mathrm{~Hz}, \mathbf{1 2})$, $7.20(1 \mathrm{H}, \mathrm{td}, J 8.0,1.0 \mathrm{~Hz}, 11), 7.11(1 \mathrm{H}, \mathrm{td}, J 8.0,1.0 \mathrm{~Hz}, 10), 4.24(1 \mathrm{H}, \mathrm{t}, J 12.0 \mathrm{~Hz}, 17 \mathrm{a})$, $3.99(1 \mathrm{H}, \mathrm{ddd}, J 12.0,4.0,2.0 \mathrm{~Hz}, \mathbf{1 7 b}), 3.96-3.82(3 \mathrm{H}, \mathrm{m}, \mathbf{3}$ and 21a), $3.85(1 \mathrm{H}, \mathrm{d}, J 12.0 \mathrm{~Hz}$, 21b), $3.64\left(3 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}\right), 3.30(1 \mathrm{H}, \mathrm{dd}, J 16.0,7.0 \mathrm{~Hz}, \mathbf{6 a}), 3.09(1 \mathrm{H}, \mathrm{br} . \mathrm{d}, J 7.0 \mathrm{~Hz}, \mathbf{5}), 2.49$ $(1 \mathrm{H}, \mathrm{d}, J 16.0 \mathrm{~Hz}, \mathbf{6 b}), 2.33\left(3 \mathrm{H}, \mathrm{s}, N_{4} \mathbf{M e}\right), 2.08(1 \mathrm{H}, \mathrm{dt}, J 12.0,6.0 \mathrm{~Hz}, 15), 1.96-1.86(3 \mathrm{H}, \mathrm{m}$, 14a, 14b and 16), $1.83\left(3 \mathrm{H}, \mathrm{d}^{4} J 1.0 \mathrm{~Hz}, 18\right)$;
$\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 150.5(\mathbf{C 1 9}), 137.5(\mathbf{C 1 3}), 133.4(\mathbf{C 2}), 127.2(\mathbf{C 8}), 120.9(\mathbf{C 1 1}), 118.9$ (C10), 118.0 (C9), 109.9 (C20), 108.9 (C12), 106.2 (C7), 66.6 (C21), 62.0 (C17), 55.1 (C5), 53.7 (C3), 41.8 ($N_{4} \mathbf{M e}$), 40.6 ($\mathbf{C 1 6}$), 33.5 ($\mathbf{C 1 4}$), 29.1 ($N_{1} \mathbf{M e}$), 27.0 ($\mathbf{C 1 5) , ~} 22.9$ (C6), 16.3 $(\mathbf{C 1 8})$. Data is in accordance with that previously reported by T. Kam et al. ${ }^{101}$

(\pm)-Alstonerinal (138)

To a solution of alcohol $\mathbf{1 5 1},(9.0 \mathrm{mg}, 0.026 \mathrm{mmol}, 1.0$ equiv.) and pyridine ($0.007 \mathrm{~mL}, 0.079$ mmol, 3.0 equiv.) at $0^{\circ} \mathrm{C}$ was added Dess-Martin periodinane ($16.8 \mathrm{mg}, 0.040 \mathrm{mmol}, 1.5$ equiv.) and the solution stirred at $0^{\circ} \mathrm{C}$ for 2 h . Water (1 mL) was added and the aqueous phase extracted with EtOAc $(3 \times 10 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The organic phases were washed with brine (20 mL), combined, dried over MgSO_{4} and filtered. Concentrated under reduced pressure and purification via preparative thin layer chromatography ($5 \% \mathrm{MeOH}-\mathrm{EtOAc}$) yielded (\pm)alstonerinal 138 ($1.2 \mathrm{mg}, 13 \%$) as a colourless oil; $\mathrm{R}_{f} 0.2$ ($5 \% \mathrm{MeOH}-\mathrm{EtOAc}$);
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.65(1 \mathrm{H}, \mathrm{s}, 21), 7.44(1 \mathrm{H}, \mathrm{br} . \mathrm{d}, J 8.0 \mathrm{~Hz}, 9), 7.31(1 \mathrm{H}, \mathrm{br} . \mathrm{d}, J 8.0 \mathrm{~Hz}$, 12), $7.20(1 \mathrm{H}, \mathrm{td}, J 8.0,1.0 \mathrm{~Hz}, 11), 7.11(1 \mathrm{H}, \mathrm{td}, J 8.0,1.0 \mathrm{~Hz}, 10), 4.46(1 \mathrm{H}, \mathrm{t}, J 12.0 \mathrm{~Hz}, 17 \mathrm{a})$, $4.18(1 \mathrm{H}$, ddd, $J 12.0,4.0,2.0 \mathrm{~Hz}, \mathbf{1 7 b}), 3.86(1 \mathrm{H}, \mathrm{br} . \mathrm{d}, \mathbf{3}), 3.63\left(3 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}\right), 3.31(1 \mathrm{H}, \mathrm{dd}$,
$J 16.0,7.0 \mathrm{~Hz}, \mathbf{6 a}), 3.09(1 \mathrm{H}, \mathrm{br} . \mathrm{d}, J 7.0 \mathrm{~Hz}, 5), 2.61(1 \mathrm{H}, \mathrm{dt}, J 12.0,6.0 \mathrm{~Hz}, \mathbf{1 5}), 2.49(1 \mathrm{H}, \mathrm{d}$, $J 16.0 \mathrm{~Hz}, \mathbf{6 b}), 2.33\left(3 \mathrm{H}, \mathrm{s}, N_{4} \mathbf{M e}\right.$, $), 2.15(3 \mathrm{H}, \mathrm{s}, 18), 2.12(1 \mathrm{H}, \mathrm{ddd}, J 12.0,5.0,3.0 \mathrm{~Hz}, 14 \mathrm{a})$, $1.89-1.83(1 \mathrm{H}, \mathrm{m}, \mathbf{1 6}), 1.79(1 \mathrm{H}, \mathrm{td}, J 12.0,3.0 \mathrm{~Hz}, \mathbf{1 4 b})$. Data is in accordance with that previously reported by T. Kam et al. ${ }^{101}$

3.1.9 Procedures from synthesis of N_{4}-tosyl macroline 152 (Section 2.2.8)

Z-N4-(土)-Tosylmacroline precursor (147)

85

147

To a solution of the enol $\mathbf{8 5}\left(51 \mathrm{mg}, 0.104 \mathrm{mmol}, 1.0\right.$ equiv.) in $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)(0.5 \mathrm{~mL})$ at rt was added CSA ($3 \mathrm{mg}, 0.010 \mathrm{mmol}, 0.1$ equiv.) and trimethylorthoformate ($0.16 \mathrm{~mL}, 0.155$ mmol, 1.5 equiv.) and the reaction stirred for 16 h . Saturated NaHCO_{3} was added dropwise and the aqueous layers were then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$, and the combined organics washed with brine, dried over MgSO_{4} and filtered. Concentration under reduced pressure and purification via preparative thin layer chromatography (50\% EtOAc-Hexane) yielded Z-N4-(土)tosylmacroline precursor 147 as an amorphous solid ($16.3 \mathrm{mg}, 31 \%$) and $N_{4^{-}}(\pm)$tosylalstonerinal precursor 148 ($31.6 \mathrm{mg}, 60 \%$) as an amorphous solid; $\mathrm{R}_{f} 0.15(50 \% \mathrm{EtOAc}-$ Hexane); FTIR (film) $v_{\max }$: 2932, 1687, 1584, $1468 \mathrm{~cm}^{-1} ; m / z(E S) 507[M+H]^{+}$(Found $[M+H]^{+}$, 507.1941. $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 507.1954$);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.36(2 \mathrm{H}$, app. d, $J 8.0 \mathrm{~Hz}$, ortho-Ts), $7.24-7.29(1 \mathrm{H}, \mathrm{m}, \mathbf{1 2})$, $7.14-7.20(2 \mathrm{H}, \mathrm{m}, 9$ and 11), $7.02(1 \mathrm{H}, \mathrm{td}, J 8.0,1.0 \mathrm{~Hz}, \mathbf{1 0}), 6.80(2 \mathrm{H}$, app. d, $J 8.0 \mathrm{~Hz}$, meta-Ts), $5.27(1 \mathrm{H}$, br. t, $J 3.0 \mathrm{~Hz}, \mathbf{3}), 4.66(1 \mathrm{H}, \mathrm{t}, J 12.0 \mathrm{~Hz}, \mathbf{1 7 a}), 4.24-4.33(2 \mathrm{H}, \mathrm{m}, \mathbf{1 7 b}$ and 5), $3.67\left(3 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}\right), 3.51(3 \mathrm{H}, \mathrm{s}, O M \mathrm{e}), 3.02-3.10(1 \mathrm{H}, \mathrm{m}, 15), 2.90(1 \mathrm{H}, \mathrm{dd}, J 16.5,7.5 \mathrm{~Hz}$, 6a), $2.44-2.49(1 \mathrm{H}, \mathrm{m}, \mathbf{6 b}), 2.44(3 \mathrm{H}, \mathrm{s}, T s \mathbf{M e}), 1.97-2.15(6 \mathrm{H}, \mathrm{m}, \mathbf{1 8}, \mathbf{1 4 a}, \mathbf{1 4 b}$ and 16);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 170.8(\mathbf{C 1 9}), 166.4(\mathbf{C 2 1}), 143.4$ (para-Ts), 136.8 (C13), 136.0 (ipso-Ts), 132.1 ($\mathbf{C 2}$), 128.8 (meta-Ts), 126.4 (ortho-Ts), 126.2 (C8), 121.5 (C11), 119.1 (C10), 117.9 (C12), 108.8 (C9), 107.2 (C7), 104.6 (C20), 67.1 (C17), 55.1 (OMe), 49.6 (C5), 48.5 (C3), 39.2 (C16), 29.9 (C14), 29.1 ($N_{1} \mathbf{M e}$), 25.9 (C6), 25.3 (C15), 21.1 (TsMe), 15.3 (C18).

N_{4}-Tosyl-(土)-macroline (152)

147

152

To a solution of type B macroline methyl enol 147 ($39.0 \mathrm{mg}, 0.076 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(0.75 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added DIBAL (1.0 M in toluene; $0.084 \mathrm{~mL}, 0.084 \mathrm{mmol}, 1.1$ equiv.). and the solution stirred at $-78^{\circ} \mathrm{C}$ for 1 h . Wet $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added and the reaction mixture was allowed to warm slowly from $-78^{\circ} \mathrm{C}$ to rt . Saturated aqueous Rochelle salt (10 mL) and EtOAc (10 mL) were added, and the resulting suspension stirred vigorously at rt overnight. The aqueous phase extracted with $\operatorname{EtOAc}(3 \times 20 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The organic phases were washed with brine (20 mL), combined, dried over MgSO_{4} and filtered. Concentrated under reduced pressure and purification via preparative thin layer chromatography ($50 \% \mathrm{EtOAc}$ hexane) yielded N_{4}-tosyl-(土)-macroline $152(11.7 \mathrm{mg}, 32 \%+55 \% 147$ recovery) as an amorphous solid; $\mathrm{R}_{f} 0.10$ (50% EtOAc-hexane); FTIR (film) $v_{\max }$: 3480, 2928, 1674, 1469, 1339, $116 \mathrm{~cm}^{-1} ; m / z$ (ES) $479[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}$, 479.1985. $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ requires $\left.[\mathrm{M}+\mathrm{H}]^{+}, 479.2005\right)$;
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.31(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}$, ortho-Ts), $7.22(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, \mathbf{1 2}), 7.18(1 \mathrm{H}, \mathrm{d}$, $J 8.0 \mathrm{~Hz}, 9), 7.15(1 \mathrm{H}, \mathrm{td}, J 8.0,1.0 \mathrm{~Hz}, 11), 7.01(1 \mathrm{H}, \mathrm{dt}, J 8.0,1.0 \mathrm{~Hz}, 10), 6.77(2 \mathrm{H}, \mathrm{d}, J 8.0$ Hz , meta-Ts), $6.09(1 \mathrm{H}, \mathrm{d}, J 1.0 \mathrm{~Hz}, 21 \mathrm{a}), 5.66(1 \mathrm{H}, \mathrm{d}, J 1.5 \mathrm{~Hz}, 21 \mathrm{~b}), 5.44(1 \mathrm{H}, \mathrm{t}, J 3.5 \mathrm{~Hz}, \mathbf{3})$, $4.60(1 \mathrm{H}, \mathrm{br} . \mathrm{d}, J 8.0 \mathrm{~Hz}, 5), 3.90(1 \mathrm{H}, \mathrm{td}, J 11.0,5.5 \mathrm{~Hz}, 17 \mathrm{a}), 3.65\left(3 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}\right), 3.39(1 \mathrm{H}$, ddd, $J 11.0,7.0,4.5 \mathrm{~Hz}, 17 \mathrm{~b}), 3.20(1 \mathrm{H}, \mathrm{dt}, J 13.5,4.0 \mathrm{~Hz}, 15), 2.78(1 \mathrm{H}, \mathrm{dd}, J 16.5,8.0 \mathrm{~Hz}, \mathbf{6 a})$, $2.58(1 \mathrm{H}, \mathrm{d}, J 16.5 \mathrm{~Hz}, \mathbf{6 b}), 2.37(1 \mathrm{H}, \mathrm{td}, J 13.0,4.0 \mathrm{~Hz}, 14 \mathrm{a}), 2.26(3 \mathrm{H}, \mathrm{s}, 18), 2.19-2.14(2 \mathrm{H}$, $\mathrm{m}, 16$ and $O \mathbf{H}), 2.03(3 \mathrm{H}, \mathrm{s}, T s \mathbf{M e}) 1.45(1 \mathrm{H}, \mathrm{dt}, J 13.0,3.0 \mathrm{~Hz}, \mathbf{1 4 b})$;
$\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 198.6$ (C19), 149.2 (C21), 143.3 (para-Ts), 136.7 (C13), 136.0 (ipso-Ts), 132.0 (C2), 128.8 (meta-Ts), 126.3 (ortho-Ts), 126.1 (C8), 124.6 (C20), 121.4 (C11), 119.1 (C10), 118.3 (C12), 108.7 (C9), 108.1 (C7), 59.6 (C17), 48.5 (C5), 48.0 (C21), 44.5 (C16), 30.2 (C14), 29.3 (C15), 29.2 ($N_{1} \mathbf{M e}$), 26.3 ($\mathbf{C 1 8}$), 24.3 (C6), 21.1 ($T s \mathbf{M e}$).

Z-N4H-(土)-Macroline precursor (189)

147

189

To a solution of naphthalene ($40 \mathrm{mg}, 0.319 \mathrm{mmol}, 8.0$ equiv.) in THF (3 mL) at rt was added sodium ($8.0 \mathrm{mg}, 0.319 \mathrm{mmol}, 8.0$ equiv.) and the reaction mixture stirred at rt for 1 h .

The dark green lblue solution was then cooled to $-78{ }^{\circ} \mathrm{C}$ and $(\sim 0.1 \mathrm{M}$ in THF; $2.0 \mathrm{~mL}, 0.200$ mmol, 5.0 equiv.) was added to a solution of N_{4}-Ts protected type B macroline methyl enol 147 ($20.3 \mathrm{mg}, 0.040 \mathrm{mmol}, 1.0$ equiv.) in THF (1 mL). The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2 h . Saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ was added and the solution allowed to warm slowly from $-78^{\circ} \mathrm{C}$ to rt . The aqueous layer was then extracted with EtOAc ($3 \times 30 \mathrm{~mL}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \times 50 \mathrm{~mL})$, the organic layers were washed with brine, combined, dried over MgSO_{4} and filtered. Concentration under reduced pressure and chromatography ($100 \% \mathrm{EtOAc}$) yielded Z $\mathrm{N}_{4} \mathrm{H}$-(土)-macroline precursor 189 ($12.1 \mathrm{mg}, 86 \%$) as a pale yellow oil; $\mathrm{R}_{f} 0.11$ ($100 \% \mathrm{EtOAc}$); FTIR (film) $v_{\max }: 2935,1702,1612,1469,1343 \mathrm{~cm}^{-1} ; m / z(\mathrm{CI}) 353[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}$, 353.1856. $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 353.1685$);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.41-7.33(2 \mathrm{H}$, app. d, ortho-Ts), $7.29-7.22(1 \mathrm{H}, \mathrm{m}, \mathbf{1 2})$, $7.22-7.09(2 \mathrm{H}, \mathrm{td}, J 7.0,1.5 \mathrm{~Hz}, 9$ and 11), $7.05-6.95(1 \mathrm{H}, \mathrm{td}, J 7.0,1.0 \mathrm{~Hz}, \mathbf{1 0})$, $6.83-6.76(2 \mathrm{H}$, app. d, $J 8.0 \mathrm{~Hz}$, meta-Ts), $5.26(1 \mathrm{H}$, br. t, $J 3.0 \mathrm{~Hz}, \mathbf{3}), 4.35-4.13(3 \mathrm{H}, \mathrm{m}, 5$, $17 \mathbf{a}$ and $17 \mathbf{b}), 3.67(3 \mathrm{H}, \mathrm{s}, O \mathbf{M e}), 3.51\left(3 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}\right), 2.90(1 \mathrm{H}, \mathrm{dd}, J 16.0,7.0 \mathrm{~Hz}, 6 \mathbf{a})$, $2.72(1 \mathrm{H}$, br. dt, $J 12.0,3.0 \mathrm{~Hz}, \mathbf{1 5}), 2.47(1 \mathrm{H}, \mathrm{d}, J 16.0 \mathrm{~Hz}, \mathbf{6 b}), 2.19(3 \mathrm{H}, \mathrm{s}, T s \mathbf{M e})$ $2.08-2.16(1 \mathrm{H}, \mathrm{m}, \mathbf{1 6}), 2.01(3 \mathrm{H}, \mathrm{s}, \mathbf{1 8}), 1.92-2.01(2 \mathrm{H}, \mathrm{m}, \mathbf{1 4 a}$ and $\mathbf{1 4 b})$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 168.2(\mathbf{C 1 9}), 165.5(\mathbf{C 2 1}), 143.4$ (ortho-Ts), 136.9 (C13), 136.2 (ipso-Ts), 132.1 (C2), 128.2 (meta-Ts), 126.4 (ortho-Ts), 126.2 (C8), 121.4 (C11), 119.0 (C10), 117.8 (C12), 108.9 (C9), 107.0 (C7), 104.1 (C20), 65.8 (C17), 50.9 (OMe), 49.6 (C5), 48.6 (C3), 38.5 (C16), 32.9 (C14), 29.2 ($N_{1} \mathbf{M e}$), 25.7 (C6), 25.4 (C15), 21.1 (TsMe), 20.6 (C18).

N_{4}-Methyl-(土)-macroline precursor (153)

To a stirred solution of type B macroline methyl enol $N_{4} \mathrm{H}$ amine $189(12.0 \mathrm{mg}, 0.034 \mathrm{mmol}, 1.0$ equiv.) in THF (0.5 mL) at $-78^{\circ} \mathrm{C}$ was added Hünig's Base ($0.02 \mathrm{~mL}, 0.102 \mathrm{mmol}, 3.0$ equiv.) and iodomethane $(0.002 \mathrm{~mL}, 0.05 \mathrm{mmol}, 1.4$ equiv.) and the solution allowed to warm slowly from $-78^{\circ} \mathrm{C}$ to rt overnight. Water (2 mL) was added to the resulting cloudy solution and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 10 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. Purification via preparative thin layer chromatography yielded N_{4}-methyl-(土)-macroline precursor 153 compound as a pale yellow oil ($9.9 \mathrm{mg}, 81 \%$); $\mathrm{R}_{f} 0.67$ ($20 \% \mathrm{MeOH}-\mathrm{EtOAc}$); FTIR (film) $u_{\text {max }}$: 2921, 1701, 1613, 1469, 1379 $\mathrm{cm}^{-1} ; m / z$ (ES) $367[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}$, 367.2036. $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 367.2022);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.51(1 \mathrm{H}, \mathrm{br} . \mathrm{d}, J 8.0 \mathrm{~Hz}, 12), 7.33(1 \mathrm{H}$, br. d, $J 8.0 \mathrm{~Hz}, 9)$, $7.21(1 \mathrm{H}, \mathrm{td}, J 8.0,1.0 \mathrm{~Hz}, 11), 7.12(1 \mathrm{H}, \mathrm{td}, J 8.0,1.0 \mathrm{~Hz}, 10), 4.37(1 \mathrm{H}, \mathrm{t}, J 12.0 \mathrm{~Hz}, 17 \mathrm{a})$, $4.11(1 \mathrm{H}, \mathrm{ddd}, J 12.0,4.0,2.0 \mathrm{~Hz}, \mathbf{1 7 b}), 3.90(1 \mathrm{H}, \mathrm{br} . \mathrm{t}, 3), 3.65\left(3 \mathrm{H}, \mathrm{s}, N_{1} \mathrm{Me}\right)$, $3.50(3 \mathrm{H}, \mathrm{s}, ~ O M \mathrm{Me}), 3.32(1 \mathrm{H}, \mathrm{dd}, J 16.0,7.0 \mathrm{~Hz}, \mathbf{6 a}), 3.12(1 \mathrm{H}, \mathrm{br} . \mathrm{d}, J 7.0 \mathrm{~Hz}, 5)$, $2.47-2.59\left(2 \mathrm{H}, \mathrm{m}, \mathbf{1 5}\right.$ and 6b), $2.33\left(3 \mathrm{H}, \mathrm{d},{ }^{4} J 1.0 \mathrm{~Hz}, \mathbf{1 8}\right), 2.19\left(3 \mathrm{H}, \mathrm{br} . \mathrm{s}, N_{4} \mathbf{M e}\right)$, $2.05(1 \mathrm{H}, \mathrm{m}, \mathbf{1 6}), 1.86-1.97(2 \mathrm{H}, \mathrm{m}, \mathbf{1 4 a}$ and $\mathbf{1 4 b})$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 168.6(\mathbf{C 1 9}), 165.2$ (C21), 133.3 (C2), 126.7 (C8), 120.8 ($\mathbf{C 1 0}$), 118.8 (C11), 118.0 (C9), 108.9 (C12), 106.1 (C7), 67.4 (C17), 54.8 (C3), 53.9 (C5), 41.7 (C16), 38.5 (C14), 29.0 ($\left.N_{1} \mathbf{M e}\right), 25.4(\mathbf{C 1 5}), 24.9$ ($N_{4} \mathbf{M e}$), 22.8 (C6), 22.7 ($\mathbf{C 1 8}$).
3.1.10 Procedures from progress towards total synthesis of alstolactone (Section 2.2.9) and improved route to N_{4}-tosyl-anhydromacrosalhine-methine 157 (Section 2.2.12)

Z-Pentacyclic triflate (154)

85

154

To a solution of enol $\mathbf{8 5}\left(155 \mathrm{mg}, 0.315 \mathrm{mmol}, 1.0\right.$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added Hünig's base $(0.11 \mathrm{~mL}, 0.630 \mathrm{mmol}, 2.0$ equiv.) and triflic anhydride ($0.08 \mathrm{~mL}, 0.473 \mathrm{mmol}, 1.5$ equiv.) and the reaction mixture stirred at $-78^{\circ} \mathrm{C}$ for 30 min .
$\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organics were washed with brine, dried over MgSO_{4} and filtered. Concentration under reduced pressure and flash column chromatography (20% EtOAc-hexane) yielded the Z-pentacyclic triflate 154 (124 mg, 63\%) as a white amorphous solid; $\mathrm{R}_{f} 0.23$ (33\% EtOAc-hexane); FTIR (film) $\mathrm{v}_{\text {max }}: 3528,3305,3060,2952,1738,1156 \mathrm{~cm}^{-1} ; m / z(\mathrm{CI}) 625[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}$, 625.1300. $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}_{2}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 625.1290).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.36(2 \mathrm{H}$, app. d, $J 8.0 \mathrm{~Hz}$, ortho-Ts), $7.28-7.15(3 \mathrm{H}, \mathrm{m}, \mathbf{9}, 11$ and $\mathbf{1 2})$, $7.04(1 \mathrm{H}, \mathrm{td}, J 7.0,1.0 \mathrm{~Hz}, \mathbf{1 0}), 6.82(2 \mathrm{H}$, app. d, $J 8.0 \mathrm{~Hz}$, meta-Ts), 5.37 (1 H , br. s, 3), 4.78 $(1 \mathrm{H}, \mathrm{t}, J 12.0 \mathrm{~Hz}, \mathbf{1 7 a}), 4.47(1 \mathrm{H}, \mathrm{ddd}, J 12.0,5,1.0 \mathrm{~Hz}, \mathbf{1 7 b}), 4.29(1 \mathrm{H}, \mathrm{br} . \mathrm{d}, J 7.0,5), 3.68$ $\left(3 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}\right), 2.89-3.00(2 \mathrm{H}, \mathrm{m}, \mathbf{6 a}$ and $\mathbf{1 5}), 2.51(1 \mathrm{H}, \mathrm{d}, J 16.0 \mathrm{~Hz}, \mathbf{6 b}), 2.30-2.40(2 \mathrm{H}, \mathrm{m}$, 14a and 16), $2.03(3 \mathrm{H}, \mathrm{s}, T s \mathbf{M e}), 1.75(3 \mathrm{H}, \mathrm{s}, 18), 1.69(1 \mathrm{H}, \mathrm{ddd}, J 14.0,4.5,3.0 \mathrm{~Hz}, 14 b)$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 160.2$ ($\mathbf{C 2 1}$), 153.7 ($\mathbf{C 1 9}$), 143.9 (para-Ts), $137.0(\mathbf{C 1 3}), 135.5$ (C20), 130.8 (C8), 129.0 (meta-Ts), 126.4 (ortho-Ts), 125.8 (C8), 122.2 (C11), 120.1 (ipso-Ts), 119.6
(C10), 118.0 (C9), 109.1 (C12), 107.4 (C7), 67.7 (C17), 49.0 (C5), 47.6 (C3), 38.8 (C16), 30.3 (C14) 29.5 ($\mathbf{C 1 5}$), 29.3 ($N_{1} \mathbf{M e}$), 25.0 ($\mathbf{C 6}$), 21.2 (TsMe), 18.2 ($\mathbf{C 1 8) ; ~}$
$\delta_{\mathrm{F}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-74.49\left(\mathrm{CF}_{3}\right)$.

N_{4}-Tosyl-alstolactone (155)

154

155

To a solution of palladium(II)acetate $(4.0 \mathrm{mg}, 0.018 \mathrm{mmol}, 0.1$ equiv. $), \mathrm{Ph}_{3} \mathrm{P}(14.0 \mathrm{mg}, 0.054$ mmol, 0.3 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ ($0.08 \mathrm{~mL}, 0.537 \mathrm{mmol}, 3.0$ equiv.) and formic acid ($0.015 \mathrm{~mL}, 0.358$ mmol, 2.0 equiv.) in a microwave vial was added enol triflate $154(112 \mathrm{mg}, 0.0 .179 \mathrm{mmol}, 1.0$ equiv.) and the solution heated at $80^{\circ} \mathrm{C}$ for 20 min in the microwave.

Concentration under reduced pressure and chromatography (20% EtOAc-hexane) yielded $N_{4}{ }^{-}$ tosyl-alstolactone 155 ($52.8 \mathrm{mg}, 73 \%$) as a white amorphous solid; $\mathrm{R}_{f} 0.16$ ($66 \% \mathrm{EtOAc}-$ hexane); FTIR (film) $v_{\max }: 3051.2920,1710,1630,1597,1469,1159 \mathrm{~cm}^{-1} ; m / z$ (ES) 477 $[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}, 477.1849 . \mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 476.1848$);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.36(2 \mathrm{H}$, app. d, $J 8.0 \mathrm{~Hz}$, ortho-Ts), $7.33-7.10(4 \mathrm{H}, \mathrm{m}, \mathbf{9}, \mathbf{1 1}, 12$ and 19) $7.04(1 \mathrm{H}, \mathrm{td}, J 8.0,1.0 \mathrm{~Hz}, 10), 6.82(2 \mathrm{H}$, app. d, $J 8.0 \mathrm{~Hz}$, meta-Ts), $5.33(1 \mathrm{H}$ br. s, 3), 4.77 $(1 \mathrm{H}, \mathrm{t}, J 12.0 \mathrm{~Hz}, \mathbf{1 7 a}), 4.39(1 \mathrm{H}$, ddd, $J 12.0,5.0,2.0 \mathrm{~Hz}, \mathbf{1 7 b}), 4.30(1 \mathrm{H}, \mathrm{br} . \mathrm{d}, J 7.0 \mathrm{~Hz}, \mathbf{5})$, $3.69\left(3 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}\right), 2.89-3.00(2 \mathrm{H}, \mathrm{m}, \mathbf{6 a}$ and 15), $2.50(1 \mathrm{H}, \mathrm{d}, J 16.0 \mathrm{~Hz}, \mathbf{6 b}), 2.30-2.18(2 \mathrm{H}$, $\mathrm{m}, 14 \mathrm{a}$ and 16), $2.03(3 \mathrm{H}, \mathrm{s}, T s \mathbf{M e}), 1.74(1 \mathrm{H}$, ddd, $J 14.0,5.0,3.0 \mathrm{~Hz}, 14 \mathrm{~b}), 1.46(3 \mathrm{H}, \mathrm{d}, J 7.0$ Hz, 18);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 164.9$ (C21), 143.7 (C19), 143.3 (para-Ts), 136.9 (C13) , 135.9 (ipso-Ts), 131.3 (C2), 128.9 (meta-Ts), 127.6 (C20), 126.4 (ortho-Ts), 126.0 (C8) 121.9 (C11), 119.4 (C10), 118.0 (C12), 109.0 (C9), 107.5 (C7), 67.1 (C17), 49.2 (C5), 48.0 (C3), 39.0 (C16), 30.5 ($\mathbf{C 1 4}$), 29.3 ($N_{1} \mathbf{M e}$), 26.6 ($\mathbf{C 1 5) , ~} 25.3$ (C6), 21.1 ($T s \mathbf{M e}$), 13.9 ($\mathbf{C 1 8)}$.

$\left(4 a R^{*}, 8 S^{*}, 8 \mathrm{a} R^{*}, E\right)$-4-Ethylidene-8-((1-methylindol-3-yl)methyl)-7-tosyltetrahydro-1H-

 pyrano[3,4-c]pyridine-3,6(4H,7H)-dione (167)

161

167

To a solution of enol triflate 161 ($109 \mathrm{mg}, 0.17 \mathrm{mmol}, 1.0$ equiv.), palladium(II)acetate (4.0 mg , $0.017 \mathrm{mmol}, 0.1$ equiv.), $\mathrm{Ph}_{3} \mathrm{P}(14.0 \mathrm{mg}, 0.051 \mathrm{mmol}, 0.3$ equiv. $)$, and formic acid (0.04 mL , $0.068 \mathrm{mmol}, 4.0$ equiv.) in DMF (1 mL) in a microwave vial was added $\mathrm{Et}_{3} \mathrm{~N}(0.4 \mathrm{~mL}, 0.85$ $\mathrm{mmol}, 5.0$ equiv.) and the solution heated at $80^{\circ} \mathrm{C}$ for 30 min in the microwave.

Immediate chromatography (20% EtOAc-hexane), concentration under reduced pressure and DMF removal by washing a solution of the title compound in EtOAc (25 mL) sequentially with water (25 mL), 5% aqueous LiCl solution (25 mL), water (25 mL) and brine (25 mL) yielded (4aR*, $\left.8 S^{*}, 8 a R^{*}, E\right)$-4-ethylidene-8-((1-methylindol-3-yl)methyl)-7-tosyltetrahydro-1H-pyrano[3,4-c]pyridine-3,6(4H,7H)-dione $167(71.2 \mathrm{mg}, 85 \%)$ as a white amorphous solid; R_{f} 0.19 (50\% EtOAc-hexane); FTIR (film) $\cup_{\max }: 3057,2924,2855,1716,1695,1638,1612,1596$, $1477 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 493[\mathrm{M}+\mathrm{H}]+$ (Found $[\mathrm{M}+\mathrm{H}]+$, 493.1790. $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ requires $[\mathrm{M}+\mathrm{H}]+$, 493.1797).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.94(2 \mathrm{H}$, app. d, $J 8.0 \mathrm{~Hz}$, ortho-Ts), $7.73(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, \mathbf{9})$, $7.37-7.23(4 \mathrm{H}, \mathrm{m}$, meta-Ts and 12, then 11), $7.16(1 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}, \mathbf{1 0}), 7.08(1 \mathrm{H}, \mathrm{q}, J 8.0 \mathrm{~Hz}$, 19), $6.96(1 \mathrm{H}, \mathrm{s}, \mathbf{2}), 4.81-4.74(1 \mathrm{H}, \mathrm{m}, \mathbf{5}), 4.21-4.04(2 \mathrm{H}, \mathrm{m}, \mathbf{1 7 a}$ and $\mathbf{1 7 b}), 3.78(3 \mathrm{H}, \mathrm{s}$, $N_{1} \mathbf{M e}$), $3.56(1 \mathrm{H}, \mathrm{dd}, J 14.5,3.5 \mathrm{~Hz}, 6$ a), $3.46-3.37(1 \mathrm{H}, \mathrm{m}, 15), 3.20(1 \mathrm{H}, \mathrm{dd}, J 14.5,10.0 \mathrm{~Hz}$, 6b), $2.64-2.50(2 \mathrm{H}, \mathrm{m}, 16$ and 14a), $2.44(3 \mathrm{H}, \mathrm{s}, T s \mathrm{Me}), 2.19(1 \mathrm{H}, \mathrm{dd}, J 18.5,10.5 \mathrm{~Hz}, \mathbf{1 4 b})$, 1.63 (3H, d, J $7.0 \mathrm{~Hz}, 18$);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 167.3$ (C3), 164.2 (C21), 145.4 (para-Ts), 143.9 (C19), 137.1 ($\mathbf{C 1 3}$), 135.7 (ipso-Ts), 129.5 (ortho-Ts), 129.2 (meta-Ts), 128.1 (C2), 127.7 (C11), 127.3 (C8), 122.3 (C20), 119.8 (C10), 118.6 (C12), 109.7 (C9), 108.4 (C7), 66.7 (C17), 57.7 (C5), 34.6 (C14), 32.9 ($N_{1} \mathbf{M e}$), 32.4 (C16), 31.7 (C6), 26.5 ($\mathbf{C 1 5) , ~} 21.7$ ($\mathrm{TsMe}^{\mathbf{M}}$), 13.8 (C18).

$\left(4 a R^{*}, 8 S^{*}, 8 a R^{*}, E\right)$-4-Ethylidene-8-((1-methylindol-3-yl)methyl)-7-tosyltetrahydro-1H-pyrano[3,4-c]pyridine-3,6(4H,7H)-dione (167)

161

167

To a solution of enol triflate $161(109 \mathrm{mg}, 0.170 \mathrm{mmol}, 1.0$ equiv.), palladium(II) acetate (4.0 mg , $0.017 \mathrm{mmol}, 0.1$ equiv. $), \mathrm{Ph}_{3} \mathrm{P}(14.0 \mathrm{mg}, 0.051 \mathrm{mmol}, 0.3$ equiv. $)$, and formic acid (0.04 mL , 0.068 mmol , 4.0 equiv.) in DMF (1 mL) in a microwave vial was added $\mathrm{Et}_{3} \mathrm{~N}(0.4 \mathrm{~mL}, 0.850$ mmol, 5.0 equiv.) and the solution heated at $80^{\circ} \mathrm{C}$ for 30 min in the microwave.

Immediate chromatography (20% EtOAc-hexane), concentration under reduced pressure and DMF removal by washing a solution of the title compound in EtOAc $(25 \mathrm{~mL})$ sequentially with water (25 mL), 5% aqueous LiCl solution (25 mL), water (25 mL) and brine (25 mL) yielded (4aR*, $\left.8 S^{*}, 8 a R^{*}, E\right)$-4-ethylidene-8-((1-methylindol-3-yl)methyl)-7-tosyltetrahydro-1H-pyrano[3,4-c]pyridine-3,6(4H,7H)-dione $167(71.2 \mathrm{mg}, 85 \%)$ as a white amorphous solid; R_{f} 0.19 (50\% EtOAc-hexane); FTIR (film) $v_{\max }: 3057,2924,2855,1716,1695,1638,1612,1596$, $1477 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 493[\mathrm{M}+\mathrm{H}]+$ (Found $[\mathrm{M}+\mathrm{H}]+$, 493.1790. $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ requires $[\mathrm{M}+\mathrm{H}]+$, 493.1797).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.94(2 \mathrm{H}$, app. d, $J 8.0 \mathrm{~Hz}$, ortho-Ts), $7.73(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, \mathbf{9})$, $7.37-7.23(4 \mathrm{H}, \mathrm{m}$, meta-Ts and 12, then 11), $7.16(1 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}, \mathbf{1 0}), 7.08(1 \mathrm{H}, \mathrm{q}, J 8.0 \mathrm{~Hz}$, 19), $6.96(1 \mathrm{H}, \mathrm{s}, \mathbf{2}), 4.81-4.74(1 \mathrm{H}, \mathrm{m}, \mathbf{5}), 4.21-4.04(2 \mathrm{H}, \mathrm{m}, \mathbf{1 7 a}$ and $\mathbf{1 7 b}), 3.78(3 \mathrm{H}, \mathrm{s}$,
$N_{1} \mathbf{M e}$), $3.56(1 \mathrm{H}, \mathrm{dd}, J 14.5,3.5 \mathrm{~Hz}, 6 \mathbf{a}), 3.46-3.37(1 \mathrm{H}, \mathrm{m}, 15), 3.20(1 \mathrm{H}, \mathrm{dd}, J 14.5,10.0 \mathrm{~Hz}$, 6b), $2.64-2.50(2 \mathrm{H}, \mathrm{m}, 16$ and 14a), $2.44(3 \mathrm{H}, \mathrm{s}, T s \mathbf{M e}), 2.19(1 \mathrm{H}, \mathrm{dd}, J 18.5,10.5 \mathrm{~Hz}, \mathbf{1 4 b})$, $1.63(3 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}, 18)$;
 135.7 (ipso-Ts), 129.5 (ortho-Ts), 129.2 (meta-Ts), 128.1 (C2), 127.7 (C11), 127.3 (C8), 122.3 (C20), 119.8 (C10), 118.6 (C12), 109.7 (C9), 108.4 (C7), 66.7 (C17), 57.7 (C5), 34.6 (C14), 32.9 ($N_{1} \mathbf{M e}$), 32.4 ($\mathbf{C 1 6}$), 31.7 ($\mathbf{C 6}$), 26.5 ($\mathbf{C 1 5) , ~} 21.7$ ($T_{s} \mathbf{M e}$), 13.8 ($\mathbf{C 1 8)}$.
3.1.11 Procedures from synthesis of N_{4}-tosyl anhydromacrosalhine-methine 157 (Section 2.2.10)

\boldsymbol{N}_{4}-Tosyl-anhydromacrosalhine-methine (157)

To a solution of N_{4}-tosylalstolactone $154\left(28.6 \mathrm{mg}, 0.060 \mathrm{mmol}, 1.0\right.$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added DIBAL (1.0 M in toluene; $0.07 \mathrm{~mL}, 0.660 \mathrm{mmol}, 1.1$ equiv.) and the solution stirred at $-78^{\circ} \mathrm{C}$ for 3 h . Wet $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added and the reaction mixture was allowed to warm slowly from $-78^{\circ} \mathrm{C}$ to rt. Saturated aqueous Rochelle salt $(5 \mathrm{~mL})$ and EtOAc $(15 \mathrm{~mL})$ were added and the resulting suspension stirred vigorously at rt overnight. Saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added and the aqueous phase extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The organic phases were combined, dried over MgSO_{4} and filtered. Concentration under reduced pressure and preparative thin layer chromatography (50\% EtOAc-hexane) yielded N_{4}-tosyl-anhydromacrosalhine-methine 157 ($26.0 \mathrm{mg}, 94 \%$) as a white amorphous solid; $\mathrm{R}_{f} 0.35$ (50\% EtOAc-hexane); FTIR (film) $v_{\max }: 3420,2890,1630,1470$ $\mathrm{cm}^{-1} ; m / z(\mathrm{CI}) 461[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}$, 461.1895. $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 561.1899).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.40(2 \mathrm{H}$, app. d, $J 8.0 \mathrm{~Hz}$, ortho-Ts), $7.28-7.25(1 \mathrm{H}, \mathrm{m}, \mathbf{9})$, $7.20-7.15(2 \mathrm{H}, \mathrm{m}, 11$ and $\mathbf{1 2}), 7.03(1 \mathrm{H}, \mathrm{td}, J 8.0,1.0 \mathrm{~Hz}, \mathbf{1 0}), 6.84(2 \mathrm{H}$, app. d, $J 8.0 \mathrm{~Hz}$,
meta-Ts), $6.47(1 \mathrm{H}, \mathrm{s}, \mathbf{2 1}), 6.0 .0(1 \mathrm{H}, \mathrm{dd}, J 17.5,11.0 \mathrm{~Hz}, 19), 5.29(1 \mathrm{H}, \mathrm{br} . \mathrm{t}, J 3.5 \mathrm{~Hz}, \mathbf{3})$, $4.57(1 \mathrm{H}, \mathrm{dd}, J 11.5,0.5 \mathrm{~Hz}, 18 \mathrm{a}), 7.39(1 \mathrm{H}, \mathrm{d}, J 17.5 \mathrm{~Hz}, 18 \mathrm{~b}), 4.33(1 \mathrm{H}, \mathrm{d}, J 7.5 \mathrm{~Hz}, 5)$, $4.26(1 \mathrm{H}, \mathrm{t}, J 11.5 \mathrm{~Hz}, 17 \mathrm{a}), 4.11(1 \mathrm{H}, \mathrm{ddd}, J 11.5,4.0,1.5 \mathrm{~Hz}, 17 \mathrm{~b}), 3.67\left(3 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}\right)$, $2.93(1 \mathrm{H}, \mathrm{dd}, J 16.5,7.5 \mathrm{~Hz}, \mathbf{6 a}), 2.57(1 \mathrm{H}, \mathrm{t}, J 4.5 \mathrm{~Hz}, \mathbf{1 5}), 2.52(1 \mathrm{H}, \mathrm{d}, J 16.5 \mathrm{~Hz}, 6 \mathbf{b})$, 2.17 (1 H , ddd, $J 14.0,5.0,3.0 \mathrm{~Hz}, 14 \mathbf{a}$), $2.10-2.00(5 \mathrm{H}, \mathrm{m}, 14 \mathrm{~b}, 16, T s \mathbf{M e})$;
$\delta_{\mathrm{C}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 145.6(\mathbf{C 2 1}), 143.4$ (para-Ts), 136.9 ($\mathbf{C 1 3}$), 136.3 (ipso-Ts), 133.7 (C19), 132.0 (C2), 128.9 (meta-Ts), 126.4 (ortho-Ts), 126.2 (C8), 121.6 (C11), 119.2 (C10), 117.9 (C12), 115.9 (C20), 108.9 (C9), 107.4(C7), 106.7 (C18), 65.3 (C17), 49.7 (C5), 48.5 (C3), 38.5 (C16), 32.1 (C14), 29.2 ($N_{1} \mathbf{M e}$), 25.8 (C6), 23.5 (C15), 21.1 (TsMe).

3.1.12 Procedures from total synthesis of alstonerine 4 (Section 2.2.11)

N_{4}-Tosylalstonerine (134)

154

134

To a solution of pentacyclic triflate $154\left(26.0 \mathrm{mg}, 0.042 \mathrm{mmol}, 1.0\right.$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added DIBAL (1.0 M in toluene; $0.065 \mathrm{~mL}, 0.065 \mathrm{mmol}, 1.5$ equiv.) and the solution stirred at $-78^{\circ} \mathrm{C}$ for 3 h . Wet $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added and the reaction mixture was allowed to warm slowly from $-78^{\circ} \mathrm{C}$ to rt . Saturated aqueous Rochelle salt (10 mL) and EtOAc (10 mL) were added, and the resulting suspension stirred vigorously at rt overnight. Saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added, and the aqueous phase extracted with EtOAc $(3 \times 20 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The organic phases were washed with brine $(20 \mathrm{~mL})$, combined, dried over MgSO_{4}, filtered and concentrated under reduced pressure to yield the intermediate lactol as an amorphous, colourless solid.

Purification by chromatography (50\% EtOAc-hexane) yielded N_{4}-tosylalstonerine 134 (19.8 mg, 100%) as an amorphous solid. For data see final approach (Page 191).

(Z)-1-((4aR*, $\left.8 S^{*}, 8 a R^{*}\right)-8-((1-M e t h y l i n d o l-3-y l) m e t h y l)-3,6-d i o x o-7-t o s y l-1 H-p y r a n o[3,4-$

91

161

To a solution of enol 91 ($31.0 \mathrm{mg}, 0.061 \mathrm{mmol}, 1.0$ equiv.) in THF $(1 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added KHMDS (0.5 M in toluene; $0.15 \mathrm{~mL}, 0.073 \mathrm{mmol}, 1.2$ equiv.) and the solution stirred at $-78^{\circ} \mathrm{C}$ for 1 h . A solution of $\mathrm{PhNTf}_{2}(0.13 \mathrm{M}$ in THF; $0.5 \mathrm{~mL}, 0.067 \mathrm{mmol}, 1.1$ equiv.) was added and the solution allowed to warm slowly from $-78^{\circ} \mathrm{C}$ to rt overnight. The reaction was quenched with wet $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL}), 10 \%$ aqueous citric acid (5 mL) was added and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$ and $\mathrm{EtOAc}(3 \times 30 \mathrm{~mL})$. The organic layers were washed with brine, combined, dried over MgSO_{4} and filtered. Concentration under reduced pressure and chromatography ($25 \rightarrow 50 \%$ EtOAc-hexane) yielded the title compound ($28.8 \mathrm{mg}, 74 \%$) as an amorphous solid; $\mathrm{R}_{f} 0.65$ (50\% EtOAc-hexane); FTIR (film) $v_{\max }$: 2925, 1726, 1695, 1643, 1596, 1476, 1415, $1354 \mathrm{~cm}^{-1} ; m / z(\mathrm{CI}) 663[\mathrm{M}+\mathrm{Na}]^{+}$(Found $[\mathrm{M}+\mathrm{Na}]^{+}$, 663.1062. $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2} \mathrm{~F}_{3}$ requires $[\mathrm{M}+\mathrm{Na}]^{+}, 663.1059$);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.98(2 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}$, ortho-Ts), $7.83(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, \mathbf{1 2})$, $7.37-7.32(3 \mathrm{H}, \mathrm{m}$, meta-Ts, 9), $7.29(1 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}, \mathbf{1 1}), 7.19(1 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}, \mathbf{1 0})$, $6.99(1 \mathrm{H}, \mathrm{s}, \mathbf{2}), 4.87(1 \mathrm{H}, \operatorname{ddd}, J 8.0,3.0,2.0 \mathrm{~Hz}, \mathbf{5}), 4.20(1 \mathrm{H}, \operatorname{ddd}, J 11.5,4.51 .5 \mathrm{~Hz}, \mathbf{1 7 a})$, 4.15-4.06 (1H, m, 17b), 3.87-3.79 (1H, m, 15), 3.78 ($3 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}$), 3.65 (1 H , dd, $J 15.0,4.0$ $\mathrm{Hz}, \mathbf{6 a}), 3.00(1 \mathrm{H}, \mathrm{dd}, J 15.0,10.0 \mathrm{~Hz}, \mathbf{6 b}), 2.90(1 \mathrm{H}, \mathrm{dd}, J 19.0,8.0 \mathrm{~Hz}, \mathbf{1 4 a}), 2.55(1 \mathrm{H}, \mathrm{m}, \mathbf{1 6})$, $2.52(3 \mathrm{H}, \mathrm{s}, 18), 2.45(3 \mathrm{H}, \mathrm{s}, T s \mathbf{M e}), 2.34(1 \mathrm{H}, \mathrm{dd}, J 19.0,9.5 \mathrm{~Hz}, 14 \mathrm{~b})$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 166.5(\mathbf{C 3}), 161.8(\mathbf{C 2 1}), 159.8(\mathbf{C 1 9)}$, 145.5 (ipso-Ts), 137.3 (C13), 135.5 (para-Ts), 129.5 (meta-Ts), 129.3 (ortho-Ts), 128.0 (C2), 127.2 (C8), 122.3 (C11), 121.5
(C20), 119.7 (C10), 119.0 (C12), 109.6 (C9), 108.2 (C7), 67.8 (C17), 57.1 (C5),
34.2 ($\mathbf{C 1 4}$), 32.8 ($N_{1} \mathbf{M e}$), 31.9 (C6), 31.2 (C16) 28.2 (C15), 21.8 ($T s \mathbf{M e}$), 19.7 ($\mathbf{C 1 8) ; ~}$
$\delta_{\mathrm{F}} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-73.8\left(\mathrm{CF}_{3}\right)$.

N_{4}-Tosylalstonerine (134)

To a solution of the enol triflate derivative of 161 prepared as described above ($200 \mathrm{mg}, 0.312$ mmol, 1.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added DIBAL (1.0 M in toluene; 0.78 mL , 0.781 mmol , 2.5 equiv.) and the solution stirred at $-78^{\circ} \mathrm{C}$ for 2.25 h . Wet $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added and the reaction mixture was allowed to warm slowly from $-78^{\circ} \mathrm{C}$ to rt . Saturated aqueous Rochelle salt (10 mL) and EtOAc (10 mL) were added, and the resulting suspension stirred vigorously at rt overnight. Saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added, and the aqueous phase extracted with EtOAc $(3 \times 20 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The organic phases were washed with brine (20 mL), combined, dried over MgSO_{4}, filtered and concentrated under reduced pressure to yield the intermediate lactol as an amorphous, colourless solid.

The intermediate lactol was then taken up in wet $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and stirred at rt for 1 h . The dark brown solution was then filtered over basic alumina to give crude N_{4}-tosylalstonerine 134 as an amorphous, colourless solid. Purification by chromatography (50% EtOAc-hexane) yielded N_{4}-tosylalstonerine 134 ($146 \mathrm{mg}, 98 \%$) as an amorphous solid; R_{f} 0.56 (50% EtOAc-hexane); FTIR (film) $v_{\max }: 2988,2301,1619,1449,2338,2276,1261 \mathrm{~cm}^{-1}$; $m / z(\mathrm{CI}) 477[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}, 477.1838 . \mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 477.1848$);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.55(1 \mathrm{H}, \mathrm{s}, ~ 21), 7.35(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}$, ortho-Ts), $7.25(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, 9), 7.18-7.10(2 \mathrm{H}, \mathrm{m}, 12$ and 11$), 6.99(1 \mathrm{H}, \mathrm{td}, J 8.0,1.0 \mathrm{~Hz}, \mathbf{1 0})$, $6.79(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}$, meta-Ts), $5.24(1 \mathrm{H}$, br. t, $J 3.0 \mathrm{~Hz}, \mathbf{3}), 4.35-4.25(3 \mathrm{H}, \mathrm{m}, \mathbf{1 7 a}, 17 \mathrm{~b}$ and 5), $3.67\left(3 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}\right), 2.88(1 \mathrm{H}, \mathrm{dd}, J 16.5,8.0 \mathrm{~Hz}, \mathbf{6 a}), 2.84-2.76(1 \mathrm{H}, \mathrm{m}, \mathbf{1 5})$, $2.47(1 \mathrm{H}, \mathrm{d}, J 16.5,6 \mathrm{~b}), 2.17(1 \mathrm{H}, \mathrm{ddd}, J 12.0,5.0,3.0 \mathrm{~Hz}, \mathbf{1 4 a}), 2.10(3 \mathrm{H}, \mathrm{s}, 18)$, $2.00(3 \mathrm{H}, \mathrm{s}, T s \mathbf{M e}), 1.98-1.85(2 \mathrm{H}, \mathrm{m}, \mathbf{1 4 b}$ and 16);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 195.2$ (C19), 157.5 (C21), 143.4 (para-Ts), 136.9 (C13), 136.1 (ipso-Ts), 131.9 (C2), 128.8 (meta-Ts), 126.3 (ortho-Ts), 126.1 (C8), 121.5 (C11), 120.2 (C20), 119.0 (C10), 117.7 (C12), 108.9 (C9), 106.8 (C7), 66.2 (C17), 49.4 (C5), 48.5 (C3), 38.0 (C15), 32.3 (C14), 29.2 ($N_{1} \mathbf{M e}$), 25.6 (C6), 25.0 ($\mathbf{C 1 8) , ~} 22.8$ (C16), 21.1 (TsMe).

N_{4}-Demethylalstonerine (190)

134

190

To a solution of naphthalene ($200 \mathrm{mg}, 1.60 \mathrm{mmol}$) in THF $(16 \mathrm{~mL})$ at rt was added sodium $(40.0 \mathrm{mg}, 1.60 \mathrm{mmol})$ and the reaction mixture stirred at rt for 1 h . The resulting dark green \backslash blue solution was cooled to $-78^{\circ} \mathrm{C}$ and ($\sim 0.1 \mathrm{M}$ in THF; $0.33 \mathrm{~mL}, 0.031 \mathrm{mmol}, 5.0$ equiv.) was added to a solution of $134(31.3 \mathrm{mg}, 0.066 \mathrm{mmol}, 1.0$ equiv.) in THF (3 mL) at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2 h . Saturated aqueous NaHCO_{3} $(3 \mathrm{~mL})$ was added and the solution allowed to warm slowly from $-78^{\circ} \mathrm{C}$ to rt . The aqueous layer was then extracted with EtOAc $(3 \times 30 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$, the organic layers were washed with brine, combined, dried over MgSO_{4} and filtered. Concentration under reduced pressure and purification via chromatography $\left(2 \rightarrow 10 \%\right.$ MeOH- $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ yielded $\mathrm{N}_{4}-$ demethylalstonerine 190 ($17.6 \mathrm{mg}, 83 \%$) as a pale yellow oil; $\mathrm{R}_{f} 0.3\left(3 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; FTIR (film) $v_{\max }: 2923,1704,1651,1617,1470 \mathrm{~cm}^{-1} ; m / z(C I) 323[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}$, 3323.1774. $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 323.1760$);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.54(1 \mathrm{H}, \mathrm{s}, \mathbf{2 1}), 7.47(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, \mathbf{9}), 7.31(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, \mathbf{1 2}), 7.21$ $(1 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, 11), 7.09(1 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, 10), 4.45(1 \mathrm{H}, \mathrm{t}, J 11.5 \mathrm{~Hz}, \mathbf{1 7 a})$, $4.36-4.24(2 \mathrm{H}, \mathrm{m}, \mathbf{1 7 b}$ and 5$), 3.64\left(3 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}\right), 3.50(1 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}, 6 \mathbf{6})$, $3.27(1 \mathrm{H}, \mathrm{dd}, J 16.5,7.0 \mathrm{~Hz}, \mathbf{6 b}), 3.11\left(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, N_{4} \mathbf{H}\right), 2.77-2.66(1 \mathrm{H}, \mathrm{m}, \mathbf{1 5})$, $2.16-2.04(4 \mathrm{H}, \mathrm{s}, 18$ and $\mathbf{1 4 a}), 1.92(1 \mathrm{H}, \mathrm{dt}, J 12.0,4.5 \mathrm{~Hz}, \mathbf{1 6}), 1.81(1 \mathrm{H}, \mathrm{td}, J 12.0,4.5 \mathrm{~Hz}$, 14b);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 195.4$ ($\mathbf{C 1 9}$), 157.5 ($\mathbf{C 2 1}$), 136.9 ($\mathbf{C 1 3}$), 136.7 (C2), 126.8 (C8), 121.3 (C20), 121.1 (C11), 118.7 (C10), 117.8 (C9), 109.0 (C12), 107.1 (C7), 67.5 (C17), 48.3 (C3), 46.5 (C5), 37.4 (C16), 31.6 (C14), 29.0 ($N_{1} \mathbf{M e}$), 28.9 (C6), 25.0 (C18), $23.6(\mathbf{C 1 5})$. Data is in accordance with that previously reported by T. Kam et al. ${ }^{101}$

(土)-Alstonerine (4)

190

4

To a solution of N_{4}-demethylalstonerine $190(13.0 \mathrm{mg}, 0.040 \mathrm{mmol}, 1.0$ equiv.) in THF $(1 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added Hünig's Base ($0.02 \mathrm{~mL}, 0.120 \mathrm{mmol}, 3.0$ equiv.) and iodomethane ($0.005 \mathrm{~mL}, 0.080 \mathrm{mmol}, 2.0$ equiv.) and the solution allowed to warm slowly to rt overnight. To the resulting cloudy solution was added saturated aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 20 \mathrm{~mL})$ and $\mathrm{EtOAc}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and filtered. Concentration under reduced pressure and chromatography $\left(50 \rightarrow 75 \%\right.$ EtOAc-hexane) yielded (\pm)-alstonerine 4 as a pale yellow oil ($12.2 \mathrm{mg}, 91 \%$). $\mathrm{R}_{f} 0.3$ (100% EtOAc); FTIR (film) $u_{\max }: 1652,1618 \mathrm{~cm}^{-1} ; m / z(C I) 337[M+H]^{+}$(Found $[M+H]^{+}$, 337.1908. $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 337.1916$);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.53(1 \mathrm{H}, \mathrm{s}, \mathbf{2 1}), 7.48(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, \mathbf{9}), 7.32(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, \mathbf{1 2}), 7.20$ $(1 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, 11), 7.09(1 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, 10), 4.41(1 \mathrm{H}, \mathrm{t}, J 11.0 \mathrm{~Hz}, \mathbf{1 7 a})$, 4.17 (1 H , ddd, $J 11.0,4.0,1.5 \mathrm{~Hz}, \mathbf{1 7 b}$), $3.89(1 \mathrm{H}, \mathrm{br} . \mathrm{t}, J 3.5 \mathrm{~Hz}, \mathbf{3}), 3.65\left(3 \mathrm{H}, \mathrm{s}, N_{1} \mathbf{M e}\right)$,
$3.33(1 \mathrm{H}, \mathrm{dd}, J 16.5,7.0 \mathrm{~Hz}, 6 \mathbf{6}), 3.10(1 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}, 5)$, $2.66-2.58(1 \mathrm{H}, \mathrm{m}, 15)$, $2.51(1 \mathrm{H}, \mathrm{d}, J 16.5 \mathrm{~Hz}, \mathbf{6 b}), 2.33\left(3 \mathrm{H}\right.$, br. s, $\left.N_{4} \mathbf{M e}\right), 2.15(1 \mathrm{H}, \mathrm{dd}, J 5.0,3.0 \mathrm{~Hz}, \mathbf{1 4 a})$, $2.13-2.01(4 \mathrm{H}, \mathrm{m}, 14 \mathrm{~b}$ then 18), $1.91(1 \mathrm{H}, \mathrm{dt}, J 12.0,4.5 \mathrm{~Hz}, 16), 1.81(1 \mathrm{H}, \mathrm{td}, J 12.0,4.5 \mathrm{~Hz}$, 14);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 195.5$ (C19), 157.5 (C21), 137.1 (C13) 133.1 (C2), 126.6 (C8), 121.1 (C10), 120.8 (C20), 118.7 (C11), 117.9 (C9), 109.0 (C12), 105.9 (C7), 67.8 (C17), 54.7 (C3), 53.8 (C5), 41.8 (C16), 38.5 (C14), 32.4 ($\mathbf{C 1 5}$), 29.1 ($N_{1} \mathbf{M e}$), 25.1 ($N_{4} \mathbf{M e}$), 22.9 (C18), 22.8 (C6). Data is in accordance with that previously reported. ${ }^{3,101}$
$\left(4 a R^{*}, 8 S^{*}, 8 a R^{*}\right)-8-((1-M e t h y l i n d o l-3-y l) m e t h y l)-7-t o s y l-4-v i n y l i d e n e t e t r a h y d r o-1 H-$ pyrano[3,4-c]pyridine-3,6(4H,7H)-dione (165)

To a solution of lactam-lactone $91\left(34.0 \mathrm{mg}, 0.067 \mathrm{mmol}, 1.0\right.$ equiv.) and $\mathrm{PhNTf}_{2}(26.0 \mathrm{mg}$, 0.074 mmol , 1.1 equiv.) in DMF (1 mL) at rt was added Hünig's base ($0.35 \mathrm{~mL}, 0.200 \mathrm{mmol}$, 3.0 equiv.) and the reaction mixture stirred for 30 min at rt . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ was added and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The organic layers were washed with brine and water, combined, dried over MgSO_{4} and filtered. Concentration under reduced pressure and chromatography ($25 \rightarrow 50 \%$ EtOAc-hexane) yielded ($4 a R^{*}, 8 S^{*}, 8 a R^{*}$)-8-((1-methylindol-3-yl)methyl)-7-tosyl-4-vinylidenetetrahydro-1H-pyrano[3,4-c]pyridine$3,6(4 H, 7 H)$-dione 165 (19.2 mg, 88\%) as an amorphous solid; $\mathrm{R}_{f} 0.33$ (50\% EtOAc-hexane); FTIR (film) $v_{\max }: 1700,1345,1164 \mathrm{~cm}^{-1} ; m / z(E S) 491[\mathrm{M}+\mathrm{H}]^{+}, 513[\mathrm{M}+\mathrm{Na}]^{+}$, (Found $[\mathrm{M}+\mathrm{Na}]^{+}, 513.1465 . \mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ requires $\left.[\mathrm{M}+\mathrm{Na}]^{+}, 513.1460\right)$.
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.88(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}$, ortho-Ts), $7.69(1 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.38-7.30$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ and meta-Ts), $7.28(1 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, \mathrm{ArH}), 7.18(1 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, \mathrm{ArH}), 7.07(1 \mathrm{H}, \mathrm{s}$, 2), $5.12(1 \mathrm{H}, \mathrm{dd}, J 15.5,4.5 \mathrm{~Hz}, 18 \mathrm{a}), 4.95(1 \mathrm{H}, \mathrm{dt}, J 8.0,4.0 \mathrm{~Hz}, 5), 4.63(1 \mathrm{H}, \mathrm{dd}, J 15.5,4.5$
$\mathrm{Hz}, \mathbf{1 8 b}), 4.24(1 \mathrm{H}, \mathrm{dd}, J 12.0,3.5 \mathrm{~Hz}, \mathbf{1 7 a}), 4.11(1 \mathrm{H}, \mathrm{dd}, J 12.0,6.0 \mathrm{~Hz}, \mathbf{1 7 b}), 3.80(3 \mathrm{H}, \mathrm{s}$, $N_{1} \mathbf{M e}$), $3.48(1 \mathrm{H}, \mathrm{dd}, J 14.5,3.5 \mathrm{~Hz}, \mathbf{6 a}), 3.23(1 \mathrm{H}, \mathrm{dd}, J 14.5,8.5 \mathrm{~Hz}, \mathbf{6 b}), 3.10(1 \mathrm{H}, \mathrm{h}, J 5.0 \mathrm{~Hz}$, 15), $2.51(1 \mathrm{H}, \mathrm{tq}, J 9.5,5.5,4.5 \mathrm{~Hz}, 16), 2.43(3 \mathrm{H}, \mathrm{s}, T s \mathbf{M e}), 2.38(1 \mathrm{H}, \mathrm{dd}, J 17.5,5.0 \mathrm{~Hz}, 14 \mathrm{a})$, $2.16(1 \mathrm{H}, \mathrm{dd}, J 17.5,5.5 \mathrm{~Hz}, 14 \mathrm{~b})$.
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 214.2(\mathbf{C 1 9}), 168.0(\mathbf{C 3}), 163.3(\mathbf{C 2 1}), 145.0$ (para-Ts), $136.9(\mathbf{C 1 3})$, 135.4 (ipso-Ts), 129.4 (meta-Ts), 127.9 (ortho-Ts), 122.2 (C11), 119.8 (C10), 118.5 (C12), 109.7 (C9), 107.6 (C7), 96.5 (C20), 82.2 (C18), 69.3 (C17), 56.9 (C5), 36.7 (C14), 33.8 (C16), 32.9 ($N_{1} \mathbf{M e}$), 32.6 (C6), 30.6 ($\mathbf{C 1 5}$), 21.7 ($T s \mathbf{M e}$).

3.1.13 Procedures from extension of methodology (Section 2.2.13)

$N-\left(\left(S^{*}\right)\right.$-2-(4-Methoxyphenyl)-1-($\left.3 S^{*}, 4 R^{*}\right)$-6-oxo-4-(phenylsulfonyl)tetrahydro-2H-pyran-3-yl)ethyl)-4-methylbenzenesulfonamide (178a) and N-(($\left.S^{*}\right)$-2-(4-Methoxyphenyl)-1($\left(3 S^{*}, 4 S^{*}\right)$-6-oxo-4-(phenylsulfonyl)tetrahydro-2H-pyran-3-yl)ethyl)-4methylbenzenesulfonamide (178b)

178

178

To a solution of trimethyl 3-(phenylsulfonyl)orthopropionate $\mathbf{8 8}$ ($305 \mathrm{mg}, 1.11 \mathrm{mmol}, 2.0$ equiv.) in THF (1 mL) at $-78^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(2.48 \mathrm{M}$ in hexanes; $0.67 \mathrm{~mL}, 1.67 \mathrm{mmol}, 2.5$ equiv.) and the solution stirred for 1 h at $-78^{\circ} \mathrm{C}$.

Meanwhile, n - BuLi (2.48 M in hexanes; $0.34 \mathrm{~mL}, 0.840 \mathrm{mmol}$, 1.5 equiv.) was added to a solution of hydroxymethyl-aziridine 178 ($193 \mathrm{mg}, 0.556 \mathrm{mmol}, 1.0$ equiv.) in THF (1 mL) at $78^{\circ} \mathrm{C}$ and the solution stirred at $-78^{\circ} \mathrm{C}$ for 1 h .

The dark red solution of deprotonated $\mathbf{8 8}$ was added dropwise via cannula to the solution of O lithio hydroxymethyl-aziridine 178, maintaining both solutions at $-78^{\circ} \mathrm{C}$ throughout the addition. The reaction mixture was allowed to warm slowly from $-78^{\circ} \mathrm{C}$ to rt overnight.

Aqueous $\mathrm{HCl}(2 \mathrm{M} ; 6.0 \mathrm{~mL}, 12.0 \mathrm{mmol}, \sim 20$ equiv.) was added and the solution stirred for 2 h at rt . The aqueous layer was extracted with EtOAc $(3 \times 30 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over MgSO_{4} and filtered. Concentration under reduced pressure and chromatography (33\% EtOAc-hexane) yielded lactones 178 (120.7 $\mathrm{mg}, 82 \%$) as a $2: 1$ mixture of sulfone epimers.
$N-\left(\left(S^{*}\right)\right.$-2-(4-Methoxyphenyl)-1-(($\left.3 S^{*}, 4 R^{*}\right)$-6-0xo-4-(phenylsulfonyl)tetrahydro-2H-pyran-3-yl)ethyl)-4-methylbenzenesulfonamide (178a)

178a
$\mathrm{R}_{f} 0.50\left(50 \%\right.$ EtOAc-hexane); FTIR (film) $v_{\max }: 3266,2942,1751,1611,1514,1446 \mathrm{~cm}^{-1} ; m / z$ (CI) $544[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}$, 544.1447. $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{7} \mathrm{~S}_{2}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 544.1464).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.80\left(2 \mathrm{H}\right.$, app. d, $J 8.0 \mathrm{~Hz}$, ortho- $\left.\mathrm{PhSO}_{2}\right), 7.71-7.64(3 \mathrm{H}, \mathrm{m}$, ortho-Ts and para- $\mathbf{P h S O}_{2}$), $7.54\left(2 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}\right.$, meta- $\mathbf{P h S O}_{2}$), $7.23(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}$, meta-Ts), $6.69(4 \mathrm{H}$, ap. q, $J 9.0 \mathrm{~Hz}$, ortho- and meta-PMB), $5.82(1 \mathrm{H}, \mathrm{d}, J 9.5 \mathrm{~Hz}, \mathbf{2}), 4.42(1 \mathrm{H}, \mathrm{dd}, J 12.0,6.0 \mathrm{~Hz}$, 7a), 4.32 ($1 \mathrm{H}, \mathrm{dd}, J 12.0,4.5 \mathrm{~Hz}, 7 \mathrm{~b}), 4.25(1 \mathrm{H}, \mathrm{q}, J 13.0 \mathrm{~Hz}, 4), 3.75$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.69-3.61$ $(1 \mathrm{H}, \mathrm{m}, \mathbf{2}), 2.81(2 \mathrm{H}, \mathrm{dd}, J 7.0,1.5 \mathrm{~Hz}, \mathbf{5 a}$ and 5b$), 2.58-2.47(2 \mathrm{H}, \mathrm{m}, \mathbf{8 a}$ then $\mathbf{3}), 2.39(3 \mathrm{H}, \mathrm{s}$, $T s \mathbf{M e}), 2.30(1 \mathrm{H}, \mathrm{dd}, J 14.0,6.0 \mathrm{~Hz}, \mathbf{8 b})$;
$\delta_{\mathrm{C}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 169.9$ (C6), 158.6 (para-PMB), 143.9 (para-Ts), 136.6 (ipso-Ts), 136.2 (ipso- $\mathbf{P h S O}_{2}$), 134.3 (para- $\mathbf{P h S O}_{2}$), 129.9 (meta-Ts), 129.7 (meta-PMB), 129.6 (meta- mhSO $_{2}$), 129.1 (ortho- $\mathbf{P h S O}_{2}$), 127.7 (ipso-PMB), 127.2 (ortho-Ts), 114.3 (ortho-PMB), 64.9 (C7), 57.3 (C2), 56.9 (C4), 55.2 (OMe), 37.6 (C8), 34.7 (C3), 28.8 (C5), 21.6 (TsMe).
$N-\left(\left(S^{*}\right)\right.$-2-(4-Methoxyphenyl)-1-((3S*,4S*)-6-oxo-4-(phenylsulfonyl)tetrahydro-2H-pyran-3-yl)ethyl)-4-methylbenzenesulfonamide (178b)

178b
$\mathrm{R}_{f} 0.35$ (50\% EtOAc-hexane); FTIR (film) $v_{\max }: 3270,2925,1735,1615,1514,1448 \mathrm{~cm}^{-1} ; m / z$ (CI) $544[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}, 544.1457 . \mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{7} \mathrm{~S}_{2}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 544.1464$);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.87\left(2 \mathrm{H}\right.$, app. d $J 8.0 \mathrm{~Hz}$, ortho- $\left.\mathrm{PhSO}_{2}\right), 7.20(1 \mathrm{H}, \mathrm{td}, J 8.0,1.0 \mathrm{~Hz}$, para$\mathbf{P h S O}_{2}$), 7.64-7.55 (4H, m, ortho-Ts and meta-PhSO ${ }_{2}$), $7.20(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}$, meta-Ts), 6.91 (2H, d, J 8.0 Hz , meta-PMB), $6.68(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}$, ortho-PMB), $4.85(1 \mathrm{H}, \mathrm{d}, J 9.5 \mathrm{~Hz}, \mathbf{2}), 4.75$ $(1 \mathrm{H}, \mathrm{dd}, J 12.0,6.0 \mathrm{~Hz}, 7 \mathrm{a}), 4.58-4.44(1 \mathrm{H}, \mathrm{m}, 7 \mathrm{~b}), 3.75(4 \mathrm{H}, \mathrm{s}$, OMe and 4), 3.69-3.64$(1 \mathrm{H}$, m, 2), $3.00(1 \mathrm{H}, \mathrm{dd}, J 7.0,1.5 \mathrm{~Hz}, \mathbf{5 a}), 2.89-2.74(2 \mathrm{H}, \mathrm{m}, \mathbf{8 a}$ then $\mathbf{5 b}), 2.60-2.50(2 \mathrm{H}, \mathrm{m}, \mathbf{3}$ and 8b), $2.43(3 \mathrm{H}, \mathrm{s}, T s \mathbf{M e})$;
$\delta_{\mathrm{C}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 166.6$ ($\mathbf{C 6}$), 158.8 (para-PMB), 143.5 (para-Ts), 137.7 (ipso-Ts), 137.1 (ipso- $\mathbf{P h S O}_{2}$), 134.7 (para- $\mathbf{P h S O}_{2}$), 130.5 (meta-Ts), 130.0 (meta-PMB), 129.8 (meta- $\mathbf{P h S O}_{2}$), 129.7 (ortho- PhSO_{2}), 128.6 (ipso-PMB), 127.2 (ortho-Ts), 114.3 (ortho-PMB), 69.1 (C7), 58.0 (C2), 55.2 (C4), 53.1 (OMe), 39.9 (C8), 38.1 (C3), 31.5 (C5), 21.6 (TsMe).
($\left.5 S^{*}, 6 S^{*}\right)$-5-(Hydroxymethyl)-6-(4-methoxybenzyl)-1-tosyl-5,6-dihydropyridin-2(1H)-one (177)

To a solution of lactones $178(10.0 \mathrm{mg}, 0.018 \mathrm{mmol}, 1.0$ equiv.) in toluene $(1 \mathrm{~mL})$ was added trimethylaluminium (2 M in hexanes; $0.025 \mathrm{~mL}, 0.050 \mathrm{mmol}, 2.8$ equiv.) in a
sealed tube and the reaction mixture stirred at rt for 1 h , then heated to $50^{\circ} \mathrm{C}$ for 5 min in the microwave.

On cooling to rt, saturated aqueous Rochelle salt (5 mL) and EtOAc (10 mL) were added and the resulting suspension stirred vigorously at rt overnight. Saturated aqueous NaHCO_{3} $(5 \mathrm{~mL})$ was added and the aqueous layer extracted with EtOAc ($3 \times 20 \mathrm{~mL}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \times 30 \mathrm{~mL})$. The combined organics were washed with brine, dried over MgSO_{4} and filtered. Concentration under reduced pressure and chromatography (33% EtOAc-hexane) yielded (5S*,6S*)-5-(hydroxymethyl)-6-(4-methoxybenzyl)-1-tosyl-5,6-dihydropyridin-2(1H)-one 177 ($6.91 \mathrm{mg}, 96 \%$) as a colourless amorphous solid; $\mathrm{R}_{f} 0.35$ (50% EtOAc-hexane); FTIR (film) $v_{\max }: 3530,3056,2917,16873420,2890,1630,1470 \mathrm{~cm}^{-1} ; m / z(\mathrm{CI}) 424[\mathrm{M}+\mathrm{Na}]^{+}$(Found $[\mathrm{M}+\mathrm{Na}]^{+}, 424.1198 . \mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{~S}$ requires $\left.[\mathrm{M}+\mathrm{Na}]^{+}, 424.1195\right)$;
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.80(2 \mathrm{H}$, app. d, $J 8.0 \mathrm{~Hz}$, ortho-Ts), $7.23(2 \mathrm{H}$, app. d, $J 8.0 \mathrm{~Hz}$, meta-Ts), 7.18 (2 H , app. d, $J 8.0 \mathrm{~Hz}$, meta-PMB), $6.82(2 \mathrm{H}$, app. d, $J 8.0 \mathrm{~Hz}$, ortho-PMB), 6.49 $(1 \mathrm{H}, \mathrm{dt}, J 10.0,2.0 \mathrm{~Hz}, 4), 5.91(1 \mathrm{H}, \mathrm{dd}, J 10.0,3.0 \mathrm{~Hz}, \mathbf{3}), 5.29-5.25(1 \mathrm{H}, \mathrm{m}, \mathbf{6}), 3.80(3 \mathrm{H}, \mathrm{s}$, $O \mathbf{M e}), 3.67-3.62(2 \mathrm{H}, \mathrm{m}, 7 \mathrm{a}$ and 7b), $3.27-3.21(1 \mathrm{H}, \mathrm{m}, 5), 3.00(1 \mathrm{H}, \mathrm{dd}, J 14.0,8.0 \mathrm{~Hz}, 8 \mathbf{~})$, $2.91(1 \mathrm{H}, \mathrm{dd}, J 14.0,8.0 \mathrm{~Hz}, \mathbf{8 b}), 2.40(3 \mathrm{H}, \mathrm{s}, T s \mathbf{M e})$;
$\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 162.5 (C2), 158.9 (para-PMB), 144.5 (para-Ts), 143.2 (C4), 136.5 (ipso-Ts), 130.4 (meta-PMB), 129.2 (meta-Ts), 128.9 (ortho-Ts), 124.9 (ipso-PMB), 114.4 (meta-PMB), 61.5 (C7), 58.5 (C6), 55.2 (OMe), 43.6 (C5), 35.3 (C8), 21.6 (TsMe).

(S)-Methyl 7-methyl-5-(4-methylphenylsulfonamido)-3-(phenylsulfonyl)octanoate (173)

To a solution of trimethyl 3-(phenylsulfonyl)orthopropionate 88 ($305 \mathrm{mg}, 1.11 \mathrm{mmol}, 2.0$ equiv.) in THF (1 mL) at $-78^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(2.48 \mathrm{M}$ in hexanes; $0.67 \mathrm{~mL}, 1.67 \mathrm{mmol}, 2.5$ equiv.)
and the solution stirred for 1 h at $-78^{\circ} \mathrm{C}$. A solution of (S)-2-isobutyl-1-tosylaziridine $\mathbf{1 7 2}$ was added and the solution allowed to warm slowly from $-78^{\circ} \mathrm{C}$ to rt overnight.

Aqueous $\mathrm{HCl}(2 \mathrm{M} ; 6.0 \mathrm{~mL}, 12.0 \mathrm{mmol}, \sim 20$ equiv.) was added and the solution stirred for 2 h at rt . The aqueous layer was extracted with EtOAc $(3 \times 30 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over MgSO_{4} and filtered. Concentration under reduced pressure and chromatography (33% EtOAc-hexane) yielded (S)-methyl 7-methyl-5-(4-methylphenylsulfonamido)-3-(phenylsulfonyl)octanoate 173 (121 mg, 82\%) as a colourless oil and a 7:3 mixture of sulfone epimers; $\mathrm{R}_{f} 0.50$ ($50 \% \mathrm{EtOAc}-$ hexane); $[\alpha]_{\mathrm{D}}-6.6$ (c 0.73, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); FTIR (film) $v_{\max }: 3279,2955,1738,1598,1447,1305,1156 \mathrm{~cm}^{-1} ; m / z$ (ES) 482 $[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}, 482.1664 . \mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NO}_{6} \mathrm{~S}_{2}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 482.1671$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.95(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}$, ortho-Ts), $7.31(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}$, meta-Ts), 6.63 $(3 \mathrm{H}, \mathrm{br} . \mathrm{t}, J 8.0 \mathrm{~Hz}, \mathrm{ArH}), 5.86(2 \mathrm{H}, \mathrm{dd}, J 10.0,3.0 \mathrm{~Hz}, \mathrm{ArH}), 4.88(1 \mathrm{H}, \mathrm{dt}, J 10.5,5.0 \mathrm{~Hz}, \boldsymbol{6})$, 2.73 (1 H , ddt, $J 18.5,6.0,2.5 \mathrm{~Hz}, 5), 2.50-2.38(4 \mathrm{H}, \mathrm{m}, T s \mathbf{M e}), 1.72(1 \mathrm{H}, \mathrm{ddd}, J 14.0,10.0,4.5$ $\mathrm{Hz}, \mathbf{5 a}), 1.65-1.44(3 \mathrm{H}, \mathrm{m}, 5 \mathbf{b}, 4 \mathbf{a}$ and 4b$), 1.00(3 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}, i \operatorname{Pr}), 0.94(3 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}$, $i \operatorname{Pr}$);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 172.2(\mathbf{C O}), 141.7$ (para-Ts), 129.2 (meta-Ts), 129.0 (ortho-Ts), 124.9 (ipso-Ts), 53.6 (C6), 42.0 (C7), 28.4 (C5), 25.4 (C8), 23.4 (iPrMe), 21.7 (TsMe), 21.4 (iPrMe).

(S)-6-Isobutyl-1-tosyl-5,6-dihydropyridin-2(1H)-one (171)

To a stirred solution (S)-methyl 7-methyl-5-(4-methylphenylsulfonamido)-3(phenylsulfonyl)octanoate $173(305 \mathrm{mg}, 1.11 \mathrm{mmol}, 2.0$ equiv.) in toluene (1 mL) at $-78^{\circ} \mathrm{C}$ was added trimethylaluminium (2.0 M in toluene; $0.67 \mathrm{~mL}, 1.67 \mathrm{mmol}, 2.5$ equiv.) and
the solution allowed to warm slowly from $-78^{\circ} \mathrm{C}$ to rt overnight. The reaction mixture was then heated under reflux at $120^{\circ} \mathrm{C}$ for 1 h and cooled to rt.

Saturated aqueous Rochelle salt (2 mL) and EtOAc (5 mL) were added and the solution stirred vigorously for 2 h at rt . The aqueous layer was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over MgSO_{4} and filtered. Concentration under reduced pressure and chromatography (33% EtOAc-hexane) yielded (S)-6-isobutyl-1-tosyl-5,6-dihydropyridin-2(1H)-one 171 (121 mg, 82\%) as a colourless oil; $\mathrm{R}_{f} 0.50\left(50 \%\right.$ EtOAc-hexane); $[\alpha]_{\mathrm{D}}-17.0\left(c 0.47, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); FTIR (film) $\cup_{\max }$: 2956, 1736, 1686, 1597, 1384, 1345, $1167 \mathrm{~cm}^{-1} ; m / z$ (ES) $308[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}, 3081344$. $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}$ requires $\left.[\mathrm{M}+\mathrm{H}]^{+}, 308.1320\right)$.
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.95(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}$, ortho-Ts), $7.31(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}$, meta-Ts), 6.63 (1H, br. t, $J 8.0 \mathrm{~Hz}, 4), 5.86(1 \mathrm{H}, \mathrm{dd}, J 10.0,3.0 \mathrm{~Hz}, \mathbf{3}), 4.88$ (1H, dt, $J 10.5,5.0 \mathrm{~Hz}, \mathbf{6}$), 2.73 (1H, ddt, $J 18.5,6.0,2.5 \mathrm{~Hz}, 5), 2.50-2.38(4 \mathrm{H}, \mathrm{m}, T s M e$ and 7), $1.72(1 \mathrm{H}, \operatorname{ddd}, J 14.0,10.0,4.5 \mathrm{~Hz}$, 8), $1.65-1.44(3 \mathrm{H}, \mathrm{m}, i \operatorname{Pr}), 1.00(3 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}, i \operatorname{Pr}), 0.94(3 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}, i \operatorname{Pr})$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 141.7$ (para-Ts), 129.2 (meta-Ts), 129.0 (ortho-Ts), 124.9 (ipso-Ts), 53.6 (C6), 42.0 (C7), 28.4 (C5), 25.4 (C8), 23.4 (iPrMe), 21.7 (TsMe), 21.4 (iPrMe).

(S,E)-Methyl 7-methyl-5-(4-methylphenylsulfonamido)oct-2-enoate (175)

$\mathrm{R}_{f} 0.50$ (50% EtOAc-hexane); FTIR (film) $u_{\text {max }}: 3280,1723,1708,1658,1599,1327,1159 \mathrm{~cm}^{-}$ ${ }^{1} ; m / z(\mathrm{ES}) 340[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}, 340.1584 . \mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 340.1583$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.78(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}$, ortho-Ts), $7.33(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}$, meta-Ts), 6.78 ($1 \mathrm{H}, \mathrm{dt}, J 15.5,7.5 \mathrm{~Hz}, 4$), 5.76 (1 H , dt, $J 15.5,1.5 \mathrm{~Hz}, 5$), 4.30 (1H, d, $J 8.5 \mathrm{~Hz}, N H \mathrm{Ts}$), 3.75 $(3 \mathrm{H}, \mathrm{s}, O \mathbf{M e}), 3.46(1 \mathrm{H}, \mathrm{tq}, J 8.5,5.5 \mathrm{~Hz},)^{2} 2.46(3 \mathrm{H}, \mathrm{s}, T s \mathbf{M e}), 2.34(2 \mathrm{H}$, dddd, $J 15.0,12.5$,
$9.0,7.0 \mathrm{~Hz}, \mathbf{3}), 1.73-1.44(2 \mathrm{H}, \mathrm{m}, 7 \mathrm{a}$ and 7 b$), 1.38-1.09(2 \mathrm{H}, \mathrm{m}, 7), 0.83(3 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}$, Me), $0.70(3 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}, \mathbf{M e})$.
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 143.6$ (para-Ts), 137.8 (beta $\mathrm{C}=\mathrm{C}$), 129.8 (meta-Ts), 127.1 (ortho-Ts), 124.5 (ipso-Ts), 51.6 (OMe), 51.0 (C2), 44.0 (C7), 38.2 (C3), 24.4 (C8), 22.8 (iPrMe), 21.7 (iPrMe), 21.6 ($T s \mathbf{M e}$).
$\left(4 R^{*}, 6 S^{*}\right)$-6-Isobutyl-4-(phenylsulfonyl)-1-tosylpiperidin-2-one (174)

$\mathrm{R}_{f} 0.50$ (50\% EtOAc-hexane); FTIR (film) $v_{\text {max }}$: 2957, 1739, 1693, 1596, 1447, 1348, $1166 \mathrm{~cm}^{-}$ ${ }^{1} ; m / z(\mathrm{ES}) 450[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}, 450.1419 . \mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{~S}_{2}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 450.1409$). $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.95-7.80(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.79-7.65(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.59(2 \mathrm{H}, \mathrm{td}, J 7.5$, $4.0 \mathrm{~Hz}, \mathrm{ArH}), 7.30(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, \mathrm{ArH}), 4.78(1 \mathrm{H}, \mathrm{ddq}, J 10.0,5.0,3.0 \mathrm{~Hz}, 4), 3.56-3.29$ $(1 \mathrm{H}, \mathrm{m}, \mathbf{6}), 2.84-2.70(1 \mathrm{H}, \mathrm{m}, \mathbf{3 a}), 2.68-2.52(2 \mathrm{H}, \mathrm{m}, \mathbf{3 b}), 2.51-2.36(5 \mathrm{H}, \mathrm{m}, 5 \mathbf{a}, 7 \mathbf{b}$ and $T s M e), 1.95(1 \mathrm{H}, \operatorname{td}, J 13.5,4.5 \mathrm{~Hz}, 5 \mathbf{b}), 1.76(1 \mathrm{H}, \mathrm{dtd}, J 12.5,9.0,8.5,4.5 \mathrm{~Hz}, 7 \mathbf{a}), 1.71-1.50$ $(2 \mathrm{H}, \mathrm{m}),, 1.44(1 \mathrm{H}, \mathrm{ddd}, J 14.5,10.5,4.5 \mathrm{~Hz}, 8) .1 .04-0.91(6 \mathrm{H}, \mathrm{m} i \mathrm{Pr})$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 166.0,145.2,135.9,134.6,129.7,129.5,129.4,129.3,129.1,129.0$, $128.7,56.0,54.3,53.6,53.4,46.2,43.5,33.6,32.8,25.3,25.1,23.6,21.7,20.9$.
($3 R^{*}, 4 R^{*}, 5 S^{*}$)-Methyl 6-(tert-butyldimethylsilyloxy)-5-(4-methylphenylsulfonamido)-4-phenyl-3-(phenylsulfonyl)hexanoate (183a) and ($3 S^{*}, 4 R^{*}, 5 S^{*}$)-Methyl 6-hydroxy-5-(4-methylphenylsulfonamido)-4-phenyl-3-(phenylsulfonyl)hexanoate (183b)

To a solution of trimethyl 3-(phenylsulfonyl)orthopropionate $\mathbf{8 8}$ ($150 \mathrm{mg}, 0.456 \mathrm{mmol}, 2.0$ equiv.) in THF (5 mL) at $-78^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(2.48 \mathrm{M}$ in hexanes; $0.28 \mathrm{~mL}, 0.684 \mathrm{mmol}$, 1.5 equiv.) and the solution stirred for 1 h at $-78^{\circ} \mathrm{C}$.

Meanwhile, n-BuLi (2.48 M in hexanes; $0.14 \mathrm{~mL}, 0.342 \mathrm{mmol}$, 1.5 equiv.) was added to a solution of hydroxymethyl-aziridine $\mathbf{1 8 0}(70.0 \mathrm{mg}, 0.228 \mathrm{mmol}, 1.0$ equiv.) in THF (1 mL) at $78^{\circ} \mathrm{C}$ and the solution stirred at $-78^{\circ} \mathrm{C}$ for 1 h .

The dark red solution of deprotonated $\mathbf{8 8}$ was added dropwise via cannula to the solution of O lithio hydroxymethyl-aziridine 180, maintaining both solutions at $-78^{\circ} \mathrm{C}$ throughout the addition. The reaction mixture was allowed to warm slowly from $-78^{\circ} \mathrm{C}$ to rt overnight.

Aqueous $\mathrm{HCl}(2 \mathrm{M} ; 4.0 \mathrm{~mL}, 8.0 \mathrm{mmol}, \sim 10$ equiv.) was added and the solution stirred for 2 h at rt. The aqueous layer was extracted with EtOAc $(3 \times 30 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over MgSO_{4} and filtered. Concentration under reduced pressure and chromatography (33% EtOAc-hexane) yielded a complex mixture that included $\quad\left(3 R^{*}, 4 R^{*}, 5 S^{*}\right)$-methyl 6 -(tert-butyldimethylsilyloxy)-5-(4-methylphenylsulfonamido)-4-phenyl-3-(phenylsulfonyl)hexanoate $183 \boldsymbol{a}$ and ($3 S^{*}, 4 R^{*}, 5 S^{*}$)methyl 6-hydroxy-5-(4-methylphenylsulfonamido)-4-phenyl-3-(phenylsulfonyl)hexanoate 183b.
($3 R^{*}, 4 R^{*}, 5 S^{*}$)-Methyl 6-(tert-butyldimethylsilyloxy)-5-(4-methylphenylsulfonamido)-4-phenyl-3-(phenylsulfonyl)hexanoate (183a)

$\mathrm{R}_{f} 0.25$ (50\% EtOAc-hexane); FTIR (film) $v_{\max }: 3482,3249,2930,1731,1444,1160 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}$ (ES) $532[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}, 532.1442 . \mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NO}_{7} \mathrm{~S}_{2}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 532.1464$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.00-7.94\left(2 \mathrm{H}, \mathrm{m}\right.$, ortho- $\left.\mathrm{PhSO}_{2}\right), 7.82-7.77(2 \mathrm{H}, \mathrm{m}$, ortho-Ts$), 7.69-$ $7.63(1 \mathrm{H}, \mathrm{m}$, para-PhSO 2$), 7.60-7.54\left(2 \mathrm{H}, \mathrm{m}\right.$, meta- PhSO_{2}), $7.31(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}$, meta-Ts), $7.28-7.24\left(2 \mathrm{H}, \mathrm{m}\right.$, ortho- $\mathbf{P h}$), $7.18-7.12(2 \mathrm{H}, \mathrm{m}$, meta- $\mathbf{P h}), 4.83\left(1 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz}, N_{4} \mathbf{H}\right)$, $4.59-4.36(2 \mathrm{H}, \mathrm{m}, 4$ and 6), $3.81(1 \mathrm{H}, \mathrm{dd}, J 8.0,4.5 \mathrm{~Hz}, \mathbf{5}), 3.52-3.42(1 \mathrm{H}, \mathrm{m}, 7 \mathrm{a}), 3.31(3 \mathrm{H}, \mathrm{s}$, $O \mathbf{M e}), 3.28-3.17(1 \mathrm{H}, \mathrm{dd}, J 11.5,5.5 \mathrm{~Hz}, 7 \mathbf{b}), 2.52-2.41(4 \mathrm{H}, \mathrm{m}, \mathbf{3 a}$ and $T s \mathbf{M e}), 2.30-2.18$ ($1 \mathrm{H}, \mathrm{dd}, J 18.0,5.5 \mathrm{~Hz}, \mathbf{3 b}$);
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 170.4(\mathbf{C 2}), 143.7$ (para-Ts), 137.7 (ipso- PhSO_{2}), 137.1 (ipso-Ts), 135.3 (ipso-Ph), 134.1 (para- $\mathbf{P h S O}_{2}$), 130.3 ($\mathbf{P h}$), 129.8 (ortho- $\mathbf{P h}$), 129.3 (meta-Ts), 129.2 (meta$\mathbf{P h S O}_{2}$), 128.9 (ortho- $\mathbf{P h S O}_{2}$), 128.2 ($\mathbf{P h}$), 127.5 (ortho- $\mathbf{T s}$), 63.1 (C7), 59.9 (C4), 56.2 (C6), 52.0 (OMe), 44.7 (C5), 33.3 (C3), 21.6 ($7 s \mathbf{M e}$).
$\left(3 S^{*}, 4 R^{*}, 5 S^{*}\right)-$ Methyl 6-hydroxy-5-(4-methylphenylsulfonamido)-4-phenyl-3(phenylsulfonyl)hexanoate (183b)

$\mathrm{R}_{f} 0.18$ (50\% EtOAc-hexane); FTIR (film) $v_{\max }: 3484,3249,2930,1734,1447,1156 \mathrm{~cm}^{-1} ; m / z$ (ES) $532[\mathrm{M}+\mathrm{H}]^{+}$(Found $[\mathrm{M}+\mathrm{H}]^{+}$, 532.1434. $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NO}_{7} \mathrm{~S}_{2}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 532.1464$).
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.67-7.62(2 \mathrm{H}, \mathrm{m}$, ortho- $\mathbf{T s}$), $7.56-7.49(3 \mathrm{H}, \mathrm{m}$, ortho- and para$\mathbf{P h S O}_{2}$), $7.41-7.34\left(2 \mathrm{H}, \mathrm{m}\right.$, meta- PhSO_{2}), $7.32-7.25(2 \mathrm{H}, \mathrm{s}$, meta- $\mathbf{T s}$), $7.23-7.15(1 \mathrm{H}, \mathrm{m}$, para-Ph), 7.11-7.02 (4H, m, ortho- and meta-Ph), 4.44-4.33 (1H, m, 4), 4.21-4.10 (1H, m, 5), $3.75(3 \mathrm{H}, \mathrm{s}, O \mathbf{M e}), 3.69-3.60(1 \mathrm{H}, \mathrm{m}, \mathbf{6}), 3.60-3.50(1 \mathrm{H}, \mathrm{m}, 7 \mathrm{a}), 3.41-3.30(1 \mathrm{H}, \mathrm{q}, J 6.0$ $\mathrm{Hz}, 7 \mathbf{b}), 3.13(1 \mathrm{H}, \mathrm{dd}, J 17.5,5.0 \mathrm{~Hz}, \mathbf{3 a}), 2.99(1 \mathrm{H}, \mathrm{dd}, J 17.5,7.5 \mathrm{~Hz}, \mathbf{3 b}), 2.45(3 \mathrm{H}, \mathrm{s}, T s \mathbf{M e})$;
$\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 171.1(\mathbf{C 2}), 143.9$ (para-Ts), 139.8 (para- $\mathbf{P h S O}_{2}$), 137.1 (ipso- $\mathbf{T s}$), 134.9 (ipso-Ph), 133.2 (ipso- $\mathbf{P h S O}_{2}$), 129.9 (meta-Ts), 129.8 (ortho-Ph), 129.0 (meta-Ph), 128.7 (meta- $\mathbf{P h S O} 2$), 128.1 (para- $\mathbf{P h}$), 127.9 (ortho- $\mathbf{P h S O}_{2}$), 127.1 (ortho-Ts), 62.9 (C4), 62.8 (C7), 55.3 (C5), 52.4 (OMe), 45.7 (C6), 31.1 (C3), 21.6 ($T s \mathbf{M e}$).

Chapter 4

Appendix

4.1 X-Ray Crystallography data

4.1.1 4-Methyl- N -((S)-2-(1-methyl-1H-indol-3-yl)-1-((3R,4R)-6-oxo-4-(phenylsulfonyl)tetrahydro-2H-pyran-3-yl)ethyl)benzenesulfonamide (109a)

109a

Table 1. Crystal data and structure refinement for 109a.

Identification code

Formula

Formula weight

Temperature

Diffractometer, wavelength

DC1202

C29 H30 N2 O6 S2
566.67

173 K

OD Xcalibur 3, 0.71073 Å

Crystal system, space group	Monoclinic, P2(1)/n
Unit cell dimensions	$a=7.95229(13) \AA \quad \alpha=90^{\circ}$
	$\mathrm{b}=16.6978(3) \AA \quad \AA \quad \mathrm{A}=90.4896(17)^{\circ}$
	$\mathrm{c}=20.2810(4) \AA \quad \gamma=90^{\circ}$
Volume, Z	2692.93(8) $\AA^{3}, 4$
Density (calculated)	$1.398 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.245 \mathrm{~mm}^{-1}$
F(000)	1192
Crystal colour / morphology	Colourless blocky needles
Crystal size	$0.44 \times 0.17 \times 0.14 \mathrm{~mm}^{3}$
θ range for data collection	3.00 to 29.56°
Index ranges	$-10<=\mathrm{h}<=10,-22<=\mathrm{k}<=21,-26<=1<=22$
Reflns collected / unique	$22471 / 6598$ [R(int) $=0.0253]$
Reflns observed [F>4O(F)]	5366
Absorption correction	Analytical
Max. and min. transmission	0.970 and 0.929
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	6598 / 1 / 359
Goodness-of-fit on F^{2}	1.051
Final R indices [F>4O(F)]	$\mathrm{R} 1=0.0394, \mathrm{wR} 2=0.0933$
R indices (all data)	$\mathrm{R} 1=0.0530, \mathrm{wR} 2=0.0998$
Extinction coefficient	0.0015 (4)
Largest diff. peak, hole	$0.332,-0.379 e^{-3}$
	207

```
Mean and maximum shift/error 0.000 and 0.001
Table 2. Bond lengths [Å] and angles [ [^] for DC1202.
N(1)-C(9) 1.375(2)
N(1)-C(2) 1.377(2)
N(1)-C(10) 1.457(2)
C(2)-C(3) 1.363(2)
C(3)-C(4) 1.436(2)
C(3)-C(11) 1.500(2)
C(4)-C(5) 1.398(2)
C(4)-C(9) 1.420(2)
C(5)-C(6) 1.388(2)
C(6)-C(7) 1.400(3)
C(7)-C(8) 1.380(3)
C(8)-C(9) 1.396(2)
C(11)-C(12) 1.535(2)
C(12)-N(19) 1.4627(18)
C(12)-C(13) 1.5596(18)
C(13)-C(14) 1.522(2)
C(13)-C(18) 1.547(2)
C(14)-O(15) 1.454(2)
O(15)-C(16) 1.346(2)
C(16)-0(16) 1.200(2)
C(16)-C(17) 1.504(2)
C(17)-C(18) 1.535(2)
C(18)-S(30) 1.7949(15)
N(19)-S(20) 1.6142(13)
S(20)-O(22) 1.4274(13)
S(20)-O(21) 1.4379(13)
S(20)-C(23) 1.7643(15)
C(23)-C(24) 1.382(2)
```

```
C(23)-C(28) 1.392(2)
C(24)-C(25) 1.388(2)
C(25)-C(26) 1.381(2)
C(26)-C(27) 1.386(2)
C(26)-C(29) 1.513(2)
C(27)-C(28) 1.384(2)
S(30)-0(32) 1.4394(12)
S(30)-0(31) 1.4401(11)
S(30)-C(33) 1.7651(16)
C(33)-C(38) 1.387(2)
C(33)-C(34) 1.393(2)
C(34)-C(35) 1.383(2)
C(35)-C(36) 1.387(3)
C(36)-C(37) 1.377(3)
C(37)-C(38) 1.387(2)
C(9)-N(1)-C(2) 108.41(13)
C(9)-N(1)-C(10) 126.23(14)
C(2)-N(1)-C(10) 125.31(15)
C(3)-C(2)-N(1) 110.71(14)
C(2)-C(3)-C(4) 106.35(13)
C(2)-C(3)-C(11) 126.16(15)
C(4)-C(3)-C(11) 127.45(14)
C(5)-C(4)-C(9) 118.35(15)
C(5)-C(4)-C(3) 134.75(14)
C(9)-C(4)-C(3) 106.89(13)
C(6)-C(5)-C(4) 119.38(15)
C(5)-C(6)-C(7) 120.96(16)
C(8)-C(7)-C(6) 121.35(16)
C(7)-C(8)-C(9) 117.52(15)
N(1)-C(9)-C(8) 129.91(14)
```

$\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(4)$	107.64(13)
C (8) -C (9)-C(4)	122.43(15)
C (3) - C (11)-C(12)	114.92(12)
$\mathrm{N}(19)-\mathrm{C}(12)-\mathrm{C}(11)$	110.35(12)
N(19)-C(12)-C(13)	110.19(11)
$C(11)-C(12)-C(13)$	110.04(11)
$C(14)-C(13)-C(18)$	108.13(12)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	111.89(12)
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(12)$	112.02(11)
$\mathrm{O}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	111.06(12)
$\mathrm{C}(16)-\mathrm{O}(15)-\mathrm{C}(14)$	116.23(12)
$\mathrm{O}(16)-\mathrm{C}(16)-\mathrm{O}(15)$	119.47(15)
$O(16)-C(16)-C(17)$	124.92(16)
$\mathrm{O}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	115.61(14)
$C(16)-C(17)-C(18)$	111.69(12)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(13)$	113.65(12)
$C(17)-C(18)-S(30)$	110.81(10)
$C(13)-C(18)-S(30)$	109.08(10)
$\mathrm{C}(12)-\mathrm{N}(19)-\mathrm{S}(20)$	124.07(11)
$\mathrm{O}(22)-\mathrm{S}(20)-\mathrm{O}(21)$	119.57(8)
$\mathrm{O}(22)-\mathrm{S}(20)-\mathrm{N}(19)$	106.86(7)
$\mathrm{O}(21)-\mathrm{S}(20)-\mathrm{N}(19)$	106.25(7)
$\mathrm{O}(22)-\mathrm{S}(20)-\mathrm{C}(23)$	107.53(7)
$\mathrm{O}(21)-\mathrm{S}(20)-\mathrm{C}(23)$	107.72 (8)
$N(19)-S(20)-C(23)$	108.52(7)
$C(24)-C(23)-C(28)$	120.86(14)
$C(24)-C(23)-S(20)$	120.03(12)
$C(28)-C(23)-S(20)$	119.11(12)
$C(23)-C(24)-C(25)$	119.03(15)
$C(26)-C(25)-C(24)$	121.36(16)

```
C(25)-C(26)-C(27) 118.47(15)
C(25)-C(26)-C(29) 120.88(17)
C(27)-C(26)-C(29) 120.65(17)
C(28)-C(27)-C(26) 121.62(16)
C(27)-C(28)-C(23) 118.64(15)
O(32)-S(30)-O(31) 118.50(8)
O(32)-S(30)-C(33) 107.88(7)
O(31)-S(30)-C(33) 109.01(7)
O(32)-S(30)-C(18) 106.90(7)
O(31)-S(30)-C(18) 109.14(7)
C(33)-S(30)-C(18) 104.51(7)
C(38)-C(33)-C(34) 121.60(15)
C(38)-C(33)-S(30) 119.25(12)
C(34)-C(33)-S(30) 119.07(12)
C(35)-C(34)-C(33) 118.72(16)
C(34)-C(35)-C(36) 120.13(16)
C(37)-C(36)-C(35) 120.49(17)
C(36)-C(37)-C(38) 120.50(17)
C(33)-C(38)-C(37) 118.51(15)
```

4.1.2 4-methyl- N-((S)-2-(1-methyl-1H-indol-3-yl)-1-((3R,4S)-6-oxo-4-
(phenylsulfonyl)tetrahydro-2H-pyran-3-yl)ethyl)benzenesulfonamide (109b)

Table 1. Crystal data and structure refinement for $\mathbf{1 0 9 b}$.

Identification code

Formula

Formula weight

Temperature

Diffractometer, wavelength

DC1201

C29 H30 N2 O6 S2
566.67

173 K

OD Xcalibur 3, 0.71073 Å

Crystal system, space group	Triclinic, P-1
Unit cell dimensions	$\mathrm{a}=9.7991(3) \AA \quad \alpha=71.755(4)^{\circ}$
Volume, Z	1351.79(10) \AA^{3}, 2
Density (calculated)	$1.392 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.244 \mathrm{~mm}^{-1}$
F(000)	596
Crystal colour / morphology	Colourless needles
Crystal size	$0.47 \times 0.16 \times 0.09 \mathrm{~mm}^{3}$
θ range for data collection	3.10 to 32.73°
Index ranges	$-14<=\mathrm{h}<=13,-17<=\mathrm{k}<=17,-18<=1<=18$
Reflns collected / unique	$14838 / 8847$ [R(int) $=0.0170]$
Reflns observed [F>4O(F)]	7123
Absorption correction	Analytical
Max. and min. transmission	0.981 and 0.931
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	8847 / 1/358
Goodness-of-fit on F^{2}	1.055
Final R indices [F>4O(F)]	$\mathrm{R} 1=0.0420, \mathrm{wR} 2=0.1110$
R indices (all data)	$\mathrm{R} 1=0.0560, \mathrm{wR} 2=0.1195$
Largest diff. peak, hole	$0.497,-0.415 \mathrm{e}^{-3}$
Mean and maximum shift/error	0.000 and 0.001
	213

Table 2. Bond lengths [Å] and angles [${ }^{\circ}$] for DC1201.

N(1) - C (9)	1.370(2)
N(1) - C (2)	1.3753(18)
N(1) - C (10)	1.4533(19)
C (2) - C (3)	1.3681(19)
C (3) - C (4)	1.4375 (19)
C (3) - C (11)	1.4969(17)
C (4) - C (5)	1.399(2)
C (4)-C (9)	1.4233(19)
$C(5)-C(6)$	1.390 (2)
$C(6)-C(7)$	1.405 (3)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.361(3)
C (8) - C (9)	1.402 (2)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.5395 (17)
$\mathrm{C}(12)-\mathrm{N}(19)$	1.4654 (16)
C(12)-C(13)	1.5607(16)
C(13) - C (14)	1.5253(17)
C(13) - C (18)	1.5438(16)
C(14)-O(15)	1.4582(15)
O(15)-C(16)	1.3445 (16)
C(16)-O(16)	1.2123(15)
C(16)-C(17)	1.5079(18)
C(17)-C(18)	1.5286(16)
C(18) -S (30)	1.8069(13)
N(19) -S (20)	1.6074 (11)
S (20)-O(21)	1.4368 (10)
S (20)-O(22)	1.4403(10)
S (20)-C (23)	$1.7662(12)$
C (23) - C (24)	1.3844 (19)

$C(23)-C(28)$	1.3921(18)
$C(24)-C(25)$	1.3911(19)
C (25) -C (26)	1.387 (2)
$C(26)-C(27)$	1.390 (2)
$C(26)-C(29)$	1.5068 (19)
$C(27)-C(28)$	1.3853 (18)
S (30) - 0 (31)	1.4398(10)
S (30)-O(32)	$1.4403(10)$
$S(30)-C(33)$	1.7657 (13)
$C(33)-C(34)$	1.384(2)
$C(33)-C(38)$	1.387(2)
$C(34)-C(35)$	1.399 (2)
$C(35)-C(36)$	1.376(3)
$C(36)-C(37)$	1.376(3)
$C(37)-C(38)$	1.387 (2)
$\mathrm{C}(9)-\mathrm{N}(1)-\mathrm{C}(2)$	108.75(11)
$\mathrm{C}(9)-\mathrm{N}(1)-\mathrm{C}(10)$	125.86(14)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(10)$	125.37(14)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{N}(1)$	110.30(13)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	106.64(12)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(11)$	126.93(13)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(11)$	126.43(12)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(9)$	119.32(13)
$C(5)-C(4)-C(3)$	134.30(13)
$\mathrm{C}(9)-\mathrm{C}(4)-\mathrm{C}(3)$	106.37(12)
$C(6)-C(5)-C(4)$	118.49(15)
$C(5)-C(6)-C(7)$	120.98(16)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	121.93(15)
$C(7)-C(8)-C(9)$	117.79(15)

```
N(1)-C(9)-C(8) 130.59(14)
N(1)-C(9)-C(4) 107.93(12)
C(8)-C(9)-C(4) 121.49(15)
C(3)-C(11)-C(12) 112.96(10)
N(19)-C(12)-C(11) 109.87(10)
N(19)-C(12)-C(13) 108.53(9)
C(11)-C(12)-C(13) 113.05(9)
C(14)-C(13)-C(18) 109.13(10)
C(14)-C(13)-C(12) 115.45(10)
C(18)-C(13)-C(12) 114.27(9)
O(15)-C(14)-C(13) 111.94(10)
C(16)-O(15)-C(14) 123.17(10)
O(16)-C(16)-O(15) 117.51(12)
O(16)-C(16)-C(17) 121.59(12)
O(15)-C(16)-C(17) 120.69(11)
C(16)-C(17)-C(18) 115.44(10)
C(17)-C(18)-C(13) 107.96(9)
C(17)-C(18)-S(30) 109.13(9)
C(13)-C(18)-S(30) 113.13(8)
C(12)-N(19)-S(20) 124.57(9)
O(21)-S(20)-O(22) 119.42(6)
O(21)-S(20)-N(19) 108.67(6)
O(22)-S(20)-N(19) 105.31(6)
O(21)-S(20)-C(23) 106.09(6)
O(22)-S(20)-C(23) 107.22(6)
N(19)-S(20)-C(23) 109.96(6)
C(24)-C(23)-C(28) 120.36(12)
C(24)-C(23)-S(20) 119.71(10)
C(28)-C(23)-S(20) 119.60(10)
C(23)-C(24)-C(25) 119.22(13)
```

```
C(26)-C(25)-C(24) 121.44(13)
C(25)-C(26)-C(27) 118.28(13)
C(25)-C(26)-C(29) 120.54(14)
C(27)-C(26)-C(29) 121.18(14)
C(28)-C(27)-C(26) 121.30(13)
C(27)-C(28)-C(23) 119.38(12)
O(31)-S(30)-O(32) 118.90(7)
O(31)-S(30)-C(33) 109.37(6)
O(32)-S(30)-C(33) 108.32(7)
O(31)-S(30)-C(18) 108.42(6)
O(32)-S(30)-C(18) 107.82(6)
C(33)-S(30)-C(18) 102.81(6)
C(34)-C(33)-C(38) 121.76(13)
C(34)-C(33)-S(30) 119.81(11)
C(38)-C(33)-S(30) 118.42(11)
C(33)-C(34)-C(35) 118.34(16)
C(36)-C(35)-C(34) 120.28(17)
C(35)-C(36)-C(37) 120.51(15)
C(36)-C(37)-C(38) 120.46(17)
C(33)-C(38)-C(37) 118.62(16)
```

4.1.3 4-Methyl- N-((S)-2-(1-methyl-1 H-indol-3-yl)-1-((3R,4R)-6-oxo-4-(phenylsulfonyl)tetrahydro-2H-pyran-3-yl)ethyl)benzenesulfonamide (118)

118

The unit cell was found to be composed of six independent (highly similar) conformers (shown below)

Conformer 1:

Conformer 2:

Conformer 3:

Conformer 4:

Conformer 5:

Conformer 6:

Table 1. Crystal data and structure refinement for 118.

Identification code

Formula

Formula weight

Temperature

Diffractometer, wavelength

Crystal system, space group

Unit cell dimensions

DC1103

C29 H30 N2 O6 S2, $0.54(\mathrm{H} 2 \mathrm{O})$
576.43

173 K

OD Xcalibur 3, 0.71073 Å

Triclinic, P-1
$a=15.3984(12) \AA \quad \alpha=74.763(6)^{\circ}$

Volume, Z	8353.8(11) $\AA^{3}, 12$
Density (calculated)	$1.375 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.240 \mathrm{~mm}^{-1}$
F(000)	3641
Crystal colour / morphology	Colourless blocks
Crystal size	$0.21 \times 0.10 \times 0.06 \mathrm{~mm}^{3}$
θ range for data collection	2.97 to 28.49°
Index ranges	$-20<=\mathrm{h}<=19,-27<=\mathrm{k}<=27,-36<=1<=31$
Reflns collected / unique	62992 / 34197 [R(int) $=0.0782]$
Reflns observed [F>4 ${ }^{(F)}$]	7583
Absorption correction	Analytical
Max. and min. transmission	0.988 and 0.967
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	34197 / 156 / 2185
Goodness-of-fit on F^{2}	0.842
Final R indices [$\mathrm{F}>4 \sigma(\mathrm{~F})$]	$\mathrm{R} 1=0.0965, \mathrm{wR} 2=0.1666$
R indices (all data)	$\mathrm{R} 1=0.3302, \mathrm{wR} 2=0.2429$
Largest diff. peak, hole	$0.548,-0.364 \mathrm{e}^{-3}$
Mean and maximum shift/error	0.000 and 0.001
Table 2. Bond lengths [] and	es [${ }^{\circ}$] for DC1103.

$N(1 A)-C(2 A)$	1.364 (8)
$N(1 A)-C(6 A)$	1.505 (8)
$N(1 A)-S(7 A)$	1.694(6)
$\mathrm{C}(2 \mathrm{~A})-\mathrm{O}(2 \mathrm{~A})$	1.216(8)
C (2A) - C (3A)	1.514 (9)
C (3A) - C (4A)	1.528(8)
C (4A)-C (5A)	1.558(9)
$C(4 A)-S(17 A)$	1.777 (7)
$C(5 A)-C(26 A)$	1.515 (8)
C (5 A$)-\mathrm{C}(6 \mathrm{~A})$	1.535 (8)
$C(6 A)-C(28 A)$	1.540(8)
$S(7 A)-0(8 A)$	1.419 (5)
$S(7 A)-O(9 A)$	1.430 (5)
$S(7 A)-C(10 A)$	1.710 (8)
$C(10 A)-C(15 A)$	$1.382(10)$
C(10A) - C (11A)	1.387 (9)
$C(11 A)-C(12 A)$	1.387 (10)
$C(12 A)-C(13 A)$	1.379 (11)
$C(13 A)-C(14 A)$	1.379(10)
$C(13 A)-C(16 A)$	1.525 (10)
C (14A) - C (15A)	1.409 (9)
$S(17 A)-O(19 A)$	1.440 (5)
$S(17 A)-O(18 A)$	1.442 (5)
$S(17 A)-C(20 A)$	1.742 (8)
$C(20 A)-C(21 A)$	1.384(10)
$C(20 A)-C(25 A)$	1.419 (9)
C (21A) - C (22A)	$1.398(11)$
C (22A) - C (23A)	1.336 (11)
C (23A) - C (24 A)	1.371 (11)
$C(24 A)-C(25 A)$	1.418 (10)

```
C(26A) -O (27A)
C(28A)-C(29A)
C(29A)-C(30A)
C(29A)-C(37A)
C(30A)-N (31A)
N(31A) -C (32A)
N(31A)-C(38A) 1.460(9)
C(32A)-C(33A) 1.387(9)
C(32A)-C(37A)
C(33A) -C (34A)
C(34A)-C(35A)
C(35A)-C(36A)
C(36A)-C(37A)
N(1B) -C (2B)
N(1B) -C (6B)
N(1B) -S (7B)
C(2B) -O (2B)
C(2B)-C (3B)
C(3B) -C (4B)
C(4B)-C(5B)
C(4B)-S (17B)
C(5B)-C(6B)
C(5B)-C(26B)
C(6B)-C (28B)
S(7B)-O(9B)
S(7B)-O(8B)
S(7B)-C(10B)
C(10B)-C(15B)
C(10B)-C(11B)
C(11B)-C(12B)
    1.394(7)
    1.466(9)
    1.373(9)
    1.443(9)
    1.384(8)
    1.368(9)
    1.417(9)
    1.428(11)
    1.404(11)
    1.374(10)
    1.409(8)
    1.398(8)
    1.481(8)
    1.676(6)
    1.211(7)
    1.527(8)
    1.540(8)
    1.533(8)
    1.793(6)
    1.545(8)
    1.553(9)
    1.546(8)
    1.426(5)
    1.446(5)
    1.776(6)
    1.366(9)
    1.405(9)
    1.353(10)
```

$C(12 B)-C(13 B)$	1.385 (11)
C (13B) -C (14B)	1.417 (10)
$C(13 B)-C(16 B)$	1.510 (9)
$C(14 B)-C(15 B)$	1.340 (9)
$S(17 B)-O(19 B)$	1.436 (5)
$S(17 B)-O(18 B)$	1.443(5)
$S(17 B)-C(20 B)$	1.756 (7)
C (20B) -C (25B)	1.364 (9)
$C(20 B)-C(21 B)$	1.389 (10)
$C(21 B)-C(22 B)$	$1.408(11)$
C (22B) -C (23B)	$1.368(10)$
C (23B) -C (24B)	1.363 (10)
$C(24 B)-C(25 B)$	1.363 (10)
C (26B) -O (27B)	1.390 (9)
C (28B) -C (29B)	1.516(9)
$C(29 B)-C(30 B)$	1.380 (9)
C (29B) -C (37B)	1.392 (9)
$C(30 B)-N(31 B)$	1.385 (9)
$N(31 B)-C(32 B)$	1.383 (9)
$N(31 B)-C(38 B)$	1.471 (9)
C (32 B) - C (33 B)	1.395 (10)
C (32B) - C (37 B)	1.420 (9)
C (33B) -C (34 B)	1.367 (10)
C (34B) -C (35B)	1.414 (10)
$C(35 B)-C(36 B)$	1.393 (10)
C (36 B) -C (37 B)	1.381(9)
$N(1 C)-C(2 C)$	1.347 (9)
$N(1 C)-C(6 C)$	1.463(8)
$N(1 C)-S(7 C)$	1.682 (6)
$\mathrm{C}(2 \mathrm{C})-\mathrm{O}(2 \mathrm{C})$	1.226(8)

$C(2 C)-C(3 C)$	1.501(10)
$C(3 C)-C(4 C)$	1.546(9)
$C(4 C)-C(5 C)$	1.500 (9)
$C(4 C)-S(17 C)$	1.820 (8)
$C(5 C)-C(26 C)$	1.537 (8)
$C(5 C)-C(6 C)$	1.542 (9)
C (5C) - C (26I)	1.549 (9)
$C(6 C)-C(28 C)$	1.522 (8)
$S(7 C)-O(9 C)$	1.420 (5)
$S(7 C)-0(8 C)$	1.450 (5)
$S(7 C)-C(10 C)$	1.792(7)
$C(10 C)-C(15 C)$	1.370 (10)
$C(10 C)-C(11 C)$	1.391(9)
$\mathrm{C}(11 \mathrm{C})-\mathrm{C}(12 \mathrm{C})$	1.396 (10)
$C(12 C)-C(13 C)$	1.380 (11)
$C(13 C)-C(14 C)$	1.348 (10)
$C(13 C)-C(16 C)$	1.481 (10)
$C(14 C)-C(15 C)$	1.378 (10)
S (17C) - 0 (19C)	1.436(5)
$S(17 C)-0(18 C)$	1.437 (5)
$S(17 C)-C(20 C)$	1.774 (9)
$C(20 C)-C(25 C)$	1.372 (9)
$C(20 C)-C(21 C)$	1.373 (10)
C (21C) - C (22C)	1.380 (11)
C (22C) - C (23C)	$1.388(11)$
$C(23 C)-C(24 C)$	1.376(12)
C (24C) - C (25 C)	1.374 (12)
C (26C) - 0 (27 C)	1.401 (9)
C(26I) -O (27I)	$1.422(10)$
C (28C) - C (29C)	1.490 (9)

$C(29 C)-C(30 C)$	1.378 (9)
$C(29 C)-C(37 C)$	$1.436(10)$
$\mathrm{C}(30 \mathrm{C})-\mathrm{N}(31 \mathrm{C})$	1.369 (8)
$N(31 C)-C(32 C)$	1.394 (9)
$N(31 C)-C(38 C)$	1.460 (8)
C (32C) - C (37C)	$1.388(10)$
$C(32 C)-C(33 C)$	1.416 (10)
$C(33 C)-C(34 C)$	1.358 (11)
$C(34 C)-C(35 C)$	1.395 (11)
$C(35 C)-C(36 C)$	1.378 (10)
$C(36 C)-C(37 C)$	1.385(10)
N(1D) -C (2D)	1.382 (9)
$N(1 D)-C(6 D)$	1.510 (8)
$N(1 D)-S(7 D)$	1.707 (6)
C (2D) - O (2D)	1.270 (9)
C (2D) -C (3D)	$1.482(10)$
C (3D) - C (4D)	1.548 (9)
C (4D) -C (5D)	1.548 (10)
C (4D) -S (17D)	1.792 (8)
C (5D) - C (26 D)	1.525 (8)
$C(5 D)-C(26 J)$	1.533 (9)
C (5D) - C (6D)	1.534 (9)
C (6D) -C (28D)	1.527 (8)
S (7D) -O (8D)	1.410 (5)
S (7D) - O 9D)	1.421 (5)
$S(7 D)-C(10 D)$	1.741 (8)
C (10D) - C (15D)	1.376 (10)
C(10D) - C (11D)	1.385 (9)
C (11D) - C (12D)	$1.403(10)$
C(12D) - C (13D)	1.402 (11)

C (13D) -C (14D)	1.371(10)
C(13D) -C (16D)	1.497(10)
$C(14 D)-C(15 D)$	$1.398(10)$
S (17D) -O (19D)	1.435 (5)
S (17D) -O (18D)	1.444 (5)
$S(17 \mathrm{D})-\mathrm{C}(20 \mathrm{D})$	1.785 (8)
C (20D) -C (21D)	1.371(9)
C (20D) -C (25D)	1.404 (9)
C (21D) -C (22D)	1.399(11)
C (22D) -C (23D)	1.372 (10)
C (23D) -C (24D)	1.380 (10)
C (24D) -C (25D)	1.357 (10)
C (26D) -O (27D)	1.412 (9)
C (26J)-O(27J)	1.407 (9)
C (28D) -C (29D)	1.481 (9)
C (29D) -C (30D)	1.375 (9)
C (29D) -C (37D)	1.460 (10)
C (30D) -N (31D)	1.367 (9)
N(31D) -C (32D)	1.381(9)
$N(31 D)-C(38 D)$	1.453 (9)
C (32D) -C (37D)	1.405 (9)
C (32D) -C (33D)	1.427 (10)
C (33D) -C (34D)	1.339 (11)
C (34D) -C (35D)	$1.398(11)$
C (35D) -C (36D)	1.361 (11)
C (36D) -C (37D)	1.416 (11)
$N(1 E)-C(2 E)$	1.413 (9)
$N(1 E)-C(6 E)$	1.482 (8)
$N(1 E)-S(7 E)$	1.707 (6)
$\mathrm{C}(2 \mathrm{E})-\mathrm{O}(2 \mathrm{E})$	1.204 (8)

$C(2 E)-C(3 E)$	1.495 (9)
$C(3 E)-C(4 E)$	1.522 (9)
$C(4 E)-C(5 E)$	1.548(9)
$C(4 E)-S(17 E)$	1.819 (7)
C (5E) - C (6E)	1.515 (8)
C (5E) - C (26 E)	1.546(8)
C (6E) - C (28E)	1.562 (8)
S (7E)-O(9E)	1.419 (5)
S (7E)-O(8E)	1.433 (5)
$S(7 E)-C(10 E)$	1.752 (7)
$C(10 E)-C(11 E)$	1.378(9)
C(10E) -C (15E)	1.381(9)
$C(11 E)-C(12 E)$	1.384 (9)
C(12E) - C (13E)	1.383 (11)
C(13E) -C (14E)	1.411(10)
C(13E) -C (16E)	1.495(10)
$C(14 E)-C(15 E)$	1.365 (9)
S (17E) -O (18E)	1.421 (5)
S (17E) -O (19E)	1.440 (5)
$S(17 E)-C(20 E)$	1.717 (8)
$C(20 E)-C(21 E)$	1.369 (9)
C (20E) - C (25E)	1.387 (10)
$C(21 E)-C(22 E)$	1.387 (10)
C (22E) - C (23E)	1.377 (11)
C (23E) - C (24 E)	1.384(11)
$C(24 E)-C(25 E)$	1.382 (11)
C (26E) -O (27E)	1.370 (7)
C (28E) - C (29E)	1.475 (9)
C (29E) - C (30E)	1.397 (10)
C(29E) -C (37E)	1.422 (9)

$C(30 E)-N(31 E)$	1.404 (9)
$N(31 E)-C(32 E)$	1.350 (9)
$N(31 E)-C(38 E)$	1.473 (9)
C (32E) - C (33E)	1.362(10)
C (32E) - C (37E)	1.449 (9)
$C(33 E)-C(34 E)$	1.355 (10)
$C(34 E)-C(35 E)$	$1.398(10)$
$C(35 E)-C(36 E)$	1.380 (10)
C (36E) - C (37E)	1.392 (9)
N(1F)-C(2F)	1.324 (9)
N(1F) -C (6F)	1.474 (8)
$N(1 F)-S(7 F)$	1.689(6)
$\mathrm{C}(2 \mathrm{~F})-\mathrm{O}(2 \mathrm{~F})$	1.212 (8)
$C(2 F)-C(3 F)$	1.547 (10)
C(3F) - C (4F)	1.562 (9)
$C(4 F)-C(5 F)$	1.504 (9)
$C(4 F)-S(17 F)$	1.809 (7)
C(5F)-C(6F)	1.515 (9)
$C(5 F)-C(26 F)$	1.542(7)
C (5F) - C (26 L)	1.568 (9)
$C(6 F)-C(28 F)$	1.539 (8)
S (7F)-O(8F)	1.426 (5)
S (7F)-O(9F)	1.438 (5)
$S(7 F)-C(10 F)$	1.766 (7)
C(10F)-C(11F)	1.378 (9)
C(10F) - C (15F)	1.390 (10)
$C(11 F)-C(12 F)$	1.378(10)
C (12F)-C (13F)	1.363 (11)
C(13F) - C (14F)	$1.398(10)$
C(13F) - C (16F)	1.495 (10)

```
C(14F)-C(15F) 1.398(9)
S(17F)-O(18F) 1.434(5)
S(17F)-O(19F) 1.445(6)
S(17F)-C(20F) 1.749(8)
C(20F)-C(21F) 1.383(10)
C(20F)-C(25F) 1.387(10)
C(21F)-C(22F) 1.403(12)
C(22F)-C(23F) 1.322(12)
C(23F)-C(24F) 1.366(11)
C(24F)-C(25F) 1.393(11)
C(26F)-O(27F) 1.409(8)
C(26L)-O(27L) 1.431(10)
C(28F)-C(29F) 1.475(9)
C(29F)-C(30F) 1.355(10)
C(29F)-C(37F) 1.402(10)
C(30F)-N(31F) 1.373(9)
N(31F)-C(32F) 1.376(9)
N(31F)-C(38F) 1.474(9)
C(32F)-C(33F) 1.360(10)
C(32F)-C(37F) 1.395(9)
C(33F)-C(34F) 1.410(11)
C(34F)-C(35F) 1.416(11)
C(35F)-C(36F) 1.364(10)
C(36F)-C(37F) 1.420(10)
C(2A)-N(1A)-C(6A) 122.3(6)
C(2A)-N(1A)-S(7A) 118.7(5)
C(6A)-N(1A)-S(7A) 119.0(5)
O(2A)-C(2A)-N(1A) 123.8(7)
O(2A)-C(2A)-C(3A) 121.5(6)
```

```
N(1A)-C(2A)-C(3A) 114.5(6)
C(2A)-C(3A)-C(4A) 113.2(6)
C(3A)-C(4A)-C(5A) 116.6(5)
C(3A)-C(4A)-S(17A) 112.8(5)
C(5A)-C(4A)-S(17A) 111.0(5)
C(26A)-C(5A)-C(6A) 113.2(6)
C(26A)-C(5A)-C(4A) 108.0(5)
C(6A)-C(5A)-C(4A) 111.0(6)
N(1A)-C(6A)-C(5A) 108.8(5)
N(1A)-C(6A)-C(28A) 111.5(5)
C(5A)-C(6A)-C(28A) 112.7(6)
O(8A)-S(7A)-O(9A) 119.6(3)
O(8A)-S(7A)-N(1A) 105.2(3)
O(9A)-S(7A)-N(1A) 107.7(3)
O(8A)-S(7A)-C(10A) 108.2(3)
O(9A)-S(7A)-C(10A) 110.0(3)
N(1A) -S (7A) -C(10A) 105.0(3)
C(15A) -C(10A)-C(11A) 117.5(7)
C(15A)-C(10A)-S(7A) 120.7(6)
C(11A) -C (10A)-S(7A) 121.5(6)
C(12A)-C(11A)-C(10A) 120.5(8)
C(13A) -C (12A)-C(11A) 121.7(7)
C(14A)-C(13A)-C(12A) 118.6(7)
C(14A)-C(13A)-C(16A) 120.5(8)
C(12A)-C(13A)-C(16A) 120.8(7)
C(13A)-C(14A)-C(15A) 119.5(8)
C(10A) -C(15A)-C(14A) 121.9(7)
O(19A)-S(17A)-O(18A) 117.6(3)
O(19A)-S(17A)-C(20A) 108.2(3)
O(18A)-S(17A)-C(20A) 109.8(3)
```

```
O(19A)-S(17A)-C(4A) 107.7(3)
O(18A)-S(17A)-C(4A) 107.8(3)
C(20A) -S (17A)-C(4A) 105.0(3)
C(21A) -C (20A)-C(25A) 121.9(8)
C(21A)-C(20A)-S(17A) 120.6(6)
C(25A) -C (20A)-S(17A) 117.4(6)
C(20A)-C(21A)-C(22A) 117.2(8)
C(23A)-C(22A)-C(21A) 123.8(9)
C(22A)-C(23A)-C(24A) 118.8(9)
C(23A) -C (24A)-C(25A) 122.3(8)
C(24A)-C(25A)-C(20A) 115.9(7)
O(27A)-C(26A)-C(5A) 108.7(5)
C(29A)-C(28A)-C(6A) 113.0(5)
C(30A)-C(29A)-C(37A) 105.3(6)
C(30A) -C (29A)-C(28A) 125.3(7)
C(37A)-C(29A)-C(28A) 129.4(6)
C(29A) -C (30A)-N(31A) 109.8(6)
C(32A)-N(31A)-C(30A) 110.3(6)
C(32A)-N(31A)-C(38A) 124.8(7)
C(30A)-N(31A)-C(38A) 124.9(7)
N(31A) -C (32A) -C (33A) 132.0(7)
N(31A) -C (32A) -C (37A) 106.0(7)
C(33A)-C(32A)-C(37A) 122.0(7)
C(32A)-C(33A)-C(34A) 117.7(7)
C(35A) -C (34A)-C(33A) 119.7(8)
C(36A)-C(35A)-C(34A) 122.3(8)
C(35A) -C (36A)-C(37A) 118.8(7)
C(36A)-C(37A)-C(32A) 119.5(6)
C(36A) -C (37A) -C (29A) 131.8(7)
C(32A)-C(37A)-C(29A) 108.7(6)
```

```
C(2B)-N(1B)-C(6B) 121.6(6)
C(2B) -N (1B) -S (7B) 119.3(5)
C(6B)-N(1B)-S(7B) 119.1(5)
O(2B)-C(2B)-N(1B) 122.2(6)
O(2B)-C(2B)-C(3B) 123.1(7)
N(1B)-C(2B)-C(3B) 114.7(6)
C(2B)-C(3B)-C(4B) 112.5(6)
C(5B)-C(4B)-C(3B) 115.9(5)
C(5B)-C(4B)-S(17B) 109.8(4)
C(3B)-C(4B)-S(17B) 109.5(5)
C(4B)-C(5B)-C(6B) 113.5(5)
C(4B)-C(5B)-C(26B) 106.6(6)
C(6B)-C(5B)-C(26B) 111.3(6)
N(1B)-C(6B)-C(5B) 109.1(5)
N(1B)-C(6B)-C(28B) 110.0(5)
C(5B)-C(6B)-C(28B) 112.0(6)
O(9B)-S(7B)-O(8B) 120.4(3)
O(9B)-S(7B)-N(1B) 107.1(3)
O(8B)-S(7B)-N(1B) 104.9(3)
O(9B)-S(7B)-C(10B) 107.9(3)
O(8B)-S(7B)-C(10B) 108.1(3)
N(1B) -S (7B) -C (10B) 107.9(3)
C(15B)-C(10B)-C(11B) 121.2(6)
C(15B)-C(10B)-S(7B) 122.0(5)
C(11B)-C(10B)-S(7B) 116.8(6)
C(12B)-C(11B)-C(10B) 117.7(7)
C(11B)-C(12B)-C(13B) 122.3(7)
C(12B)-C(13B)-C(14B) 118.0(7)
C(12B)-C(13B)-C(16B) 121.8(7)
C(14B)-C(13B)-C(16B) 120.3(7)
```

```
C(15B)-C(14B)-C(13B) 120.3(7)
C(14B)-C(15B)-C(10B) 120.4(6)
O(19B)-S (17B)-O(18B) 118.4(3)
O(19B)-S (17B)-C(20B) 106.7(3)
O(18B)-S(17B)-C(20B) 109.9(3)
O(19B)-S(17B)-C(4B) 107.2(3)
O(18B)-S(17B)-C(4B) 110.0(3)
C(20B)-S(17B)-C(4B) 103.6(3)
C(25B)-C (20B) -C (21B) 118.1(7)
C(25B) -C (20B)-S(17B) 121.6(6)
C(21B)-C(20B)-S (17B) 120.2(5)
C(20B) -C (21B) -C (22B) 119.4(7)
C(23B)-C(22B)-C(21B) 119.2(8)
C(24B)-C (23B)-C(22B) 121.9(9)
C(23B) -C (24B)-C(25B) 117.8(7)
C(24B)-C(25B)-C(20B) 123.6(8)
O(27B)-C(26B)-C(5B) 106.8(6)
C(29B)-C(28B)-C(6B) 112.8(5)
C(30B)-C(29B)-C(37B) 106.1(6)
C(30B) -C (29B)-C (28B) 127.8(7)
C(37B)-C(29B)-C(28B) 126.1(6)
C(29B) -C (30B) -N (31B) 109.6(7)
C(32B) -N (31B)-C(30B) 109.1(6)
C(32B) -N (31B) -C (38B) 126.8(7)
C(30B)-N(31B)-C(38B) 124.1(7)
N(31B) -C (32B) -C (33B) 130.1(7)
N(31B) -C (32B)-C(37B) 105.4(6)
C(33B) -C (32B)-C(37B) 124.4(7)
C(34B)-C(33B)-C(32B) 117.7(7)
C(33B) -C (34B)-C(35B) 120.2(8)
```

```
C(36B)-C(35B)-C(34B) 120.4(8)
C(37B) -C (36B)-C(35B) 121.7(7)
C(36B)-C(37B)-C(29B) 134.7(7)
C(36B) -C (37B)-C(32B) 115.5(7)
C(29B) -C (37B)-C(32B) 109.8(6)
C(2C)-N(1C)-C(6C) 120.5(6)
C(2C)-N(1C)-S(7C) 120.1(5)
C(6C)-N(1C)-S(7C) 119.4(5)
O(2C)-C(2C)-N(1C) 123.0(8)
O(2C)-C(2C)-C(3C) 118.6(8)
N(1C)-C(2C)-C(3C) 118.3(7)
C(2C)-C(3C)-C(4C) 111.4(7)
C(5C)-C(4C)-C(3C) 115.6(6)
C(5C)-C(4C)-S(17C) 110.9(5)
C(3C)-C(4C)-S(17C) 110.3(5)
C(4C)-C(5C)-C(26C) 114.8(7)
C(4C)-C(5C)-C(6C) 114.3(6)
C(26C)-C (5C)-C(6C) 103.8(7)
C(4C)-C(5C)-C(26I) 105.1(6)
C(26C)-C(5C)-C(26I) 9.8(8)
C(6C)-C(5C)-C(26I) 109.4(9)
N(1C)-C(6C)-C(28C) 114.5(5)
N(1C)-C(6C)-C(5C) 107.6(5)
C(28C)-C(6C)-C(5C) 111.9(6)
O(9C)-S(7C)-O(8C) 118.6(3)
O(9C)-S(7C)-N(1C) 108.1(3)
O(8C)-S(7C)-N(1C) 104.6(3)
O(9C)-S(7C)-C(10C) 109.0(4)
O(8C)-S(7C)-C(10C) 109.7(3)
N(1C)-S(7C)-C(10C) 106.0(3)
```

```
C(15C)-C(10C)-C(11C) 122.4(7)
C(15C)-C(10C)-S(7C) 119.5(6)
C(11C)-C(10C)-S(7C) 118.1(6)
C(10C)-C(11C)-C(12C) 117.9(8)
C(13C)-C(12C)-C(11C) 120.2(7)
C(14C)-C(13C)-C(12C) 119.3(8)
C(14C)-C(13C)-C(16C) 121.7(9)
C(12C)-C(13C)-C(16C) 119.0(8)
C(13C)-C(14C)-C(15C) 123.3(8)
C(10C)-C(15C)-C(14C) 117.0(7)
O(19C)-S(17C)-O(18C) 118.4(4)
O(19C)-S(17C)-C(20C) 108.9(4)
O(18C)-S(17C)-C(20C) 108.5(4)
O(19C)-S(17C)-C(4C) 106.5(4)
O(18C)-S(17C)-C(4C) 108.9(3)
C(20C)-S(17C)-C(4C) 104.8(4)
C(25C) -C (20C)-C(21C) 121.9(8)
C(25C) -C (20C)-S(17C) 117.6(7)
C(21C)-C(20C)-S(17C) 120.4(6)
C(20C)-C(21C)-C(22C) 120.0(8)
C(21C)-C(22C)-C(23C) 117.5(9)
C(24C)-C(23C)-C(22C) 122.3(9)
C(25C) -C (24C)-C(23C) 119.1(9)
C(20C)-C(25C)-C(24C) 118.9(9)
O(27C)-C(26C)-C(5C) 115.7(9)
O(27I)-C(26I)-C(5C) 106.1(9)
C(29C)-C(28C)-C(6C) 115.4(5)
C(30C)-C(29C)-C(37C) 108.0(7)
C(30C)-C(29C)-C(28C) 127.0(7)
C(37C) -C (29C)-C(28C) 125.0(7)
```

```
N(31C)-C(30C)-C(29C) 109.7(7)
C(30C)-N(31C)-C(32C) 106.8(6)
C(30C)-N(31C)-C(38C) 125.5(7)
C(32C)-N(31C)-C(38C) 127.5(7)
C(37C)-C(32C)-N(31C) 110.5(7)
C(37C) -C (32C)-C(33C) 121.1(8)
N(31C) -C (32C) - C(33C) 128.3(8)
C(34C)-C(33C)-C(32C) 116.3(8)
C(33C)-C(34C)-C(35C) 123.0(8)
C(36C)-C(35C)-C(34C) 120.6(8)
C(35C)-C(36C)-C(37C) 117.8(8)
C(36C)-C (37C)-C(32C) 121.1(8)
C(36C)-C(37C)-C(29C) 134.0(8)
C(32C)-C(37C)-C(29C) 104.8(7)
C(2D)-N(1D)-C(6D) 119.6(6)
C(2D)-N(1D)-S(7D) 121.5(6)
C(6D)-N(1D)-S(7D) 118.7(5)
O(2D)-C(2D)-N(1D) 117.7(8)
O(2D)-C(2D)-C(3D) 124.7(7)
N(1D) -C(2D) -C(3D) 117.5(7)
C(2D)-C(3D)-C(4D) 110.9(7)
C(3D)-C(4D)-C(5D) 115.5(6)
C(3D)-C(4D)-S(17D) 110.3(5)
C(5D)-C(4D)-S(17D) 108.2(5)
C(26D) -C (5D) -C (26J) 10.2(8)
C(26D)-C(5D)-C(6D) 111.4(8)
C(26J) -C (5D) -C (6D) 101.4(7)
C(26D)-C(5D)-C(4D) 105.1(6)
C(26J)-C(5D)-C(4D) 112.1(9)
C(6D)-C(5D)-C(4D) 113.0(6)
```

```
N(1D)-C(6D)-C(28D) 111.5(5)
N(1D)-C(6D)-C(5D) 108.9(6)
C(28D) -C (6D) -C (5D) 112.7(6)
O(8D)-S(7D)-O(9D) 117.6(3)
O(8D)-S(7D)-N(1D) 106.0(3)
O(9D)-S(7D)-N(1D) 108.2(3)
O(8D)-S(7D)-C(10D) 109.3(3)
O(9D)-S(7D)-C(10D) 109.2(4)
N(1D) -S(7D) -C(10D) 105.9(3)
C(15D) -C(10D)-C(11D) 119.3(7)
C(15D)-C(10D)-S(7D) 120.6(6)
C(11D) -C (10D)-S(7D) 119.1(6)
C(10D)-C(11D)-C(12D) 120.8(7)
C(13D)-C(12D)-C(11D) 119.3(7)
C(14D)-C(13D)-C(12D) 118.8(8)
C(14D)-C(13D)-C(16D) 121.9(8)
C(12D) -C(13D)-C(16D) 119.3(8)
C(13D) -C(14D)-C(15D) 121.7(8)
C(10D) -C(15D)-C(14D) 119.8(8)
O(19D)-S(17D)-O(18D) 118.2(4)
O(19D)-S(17D)-C(20D) 108.9(4)
O(18D)-S(17D)-C(20D) 109.9(4)
O(19D)-S(17D)-C(4D) 106.6(4)
O(18D)-S(17D)-C(4D) 108.7(3)
C(20D)-S(17D)-C(4D) 103.6(3)
C(21D)-C(20D) -C (25D) 123.5(8)
C(21D) -C (20D)-S(17D) 120.4(6)
C(25D) -C (20D)-S(17D) 116.1(7)
C(20D) -C (21D)-C(22D) 117.0(7)
C(23D) -C (22D)-C(21D) 120.6(8)
```

```
C(22D) -C (23D)-C(24D) 120.1(8)
C(25D) -C (24D)-C(23D) 121.7(8)
C(24D)-C(25D)-C(20D) 116.9(8)
O(27D)-C(26D)-C(5D) 107.7(8)
O(27J)-C(26J)-C(5D) 119.7(11)
C(29D)-C(28D)-C(6D) 112.8(6)
C(30D) -C (29D)-C(37D) 105.6(7)
C(30D) -C (29D) -C (28D) 131.1(7)
C(37D)-C(29D)-C(28D) 123.3(7)
N(31D) -C (30D) -C(29D) 111.0(7)
C(30D)-N(31D)-C(32D) 108.3(7)
C(30D) -N (31D)-C(38D) 125.1(7)
C(32D)-N(31D)-C(38D) 126.5(7)
N(31D) -C (32D)-C(37D) 108.6(7)
N(31D) -C (32D)-C(33D) 128.6(7)
C(37D)-C(32D)-C(33D) 122.7(8)
C(34D) -C (33D)-C(32D) 115.4(8)
C(33D) -C (34D)-C(35D) 124.7(8)
C(36D)-C(35D)-C(34D) 119.4(8)
C(35D) -C (36D)-C(37D) 120.4(9)
C(32D)-C(37D)-C(36D) 117.4(8)
C(32D) -C (37D)-C(29D) 106.4(7)
C(36D) -C (37D)-C(29D) 136.2(8)
C(2E)-N(1E)-C(6E) 122.8(6)
C(2E)-N(1E)-S(7E) 116.2(5)
C(6E)-N(1E)-S(7E) 120.5(5)
O(2E)-C(2E)-N(1E) 122.8(7)
O(2E)-C(2E)-C(3E) 125.9(7)
N(1E)-C(2E)-C(3E) 110.9(7)
C(2E)-C(3E)-C(4E) 114.1(6)
```

```
C(3E)-C(4E)-C(5E) 115.9(6)
C(3E)-C(4E)-S(17E) 111.1(5)
C(5E)-C(4E)-S(17E) 110.2(5)
C(6E)-C(5E)-C(26E) 108.3(6)
C(6E)-C(5E)-C(4E) 110.6(5)
C(26E)-C(5E)-C(4E) 112.8(6)
N(1E)-C(6E)-C(5E) 109.5(5)
N(1E)-C(6E)-C(28E) 109.8(5)
C(5E)-C(6E)-C(28E) 114.9(6)
O(9E)-S(7E)-O(8E) 117.2(3)
O(9E)-S(7E)-N(1E) 108.9(3)
O(8E)-S(7E)-N(1E) 103.6(3)
O(9E)-S(7E)-C(10E) 110.1(3)
O(8E)-S(7E)-C(10E) 109.2(3)
N(1E)-S(7E)-C(10E) 107.3(3)
C(11E)-C(10E)-C(15E) 121.0(7)
C(11E)-C(10E)-S(7E) 119.0(6)
C(15E)-C(10E)-S(7E) 120.0(5)
C(10E)-C(11E)-C(12E) 117.7(7)
C(13E)-C(12E)-C(11E) 123.3(8)
C(12E)-C(13E)-C(14E) 116.8(7)
C(12E)-C(13E)-C(16E) 121.1(8)
C(14E)-C(13E)-C(16E) 122.1(9)
C(15E)-C(14E)-C(13E) 120.7(7)
C(14E)-C(15E)-C(10E) 120.4(7)
O(18E)-S(17E)-O(19E) 119.4(4)
O(18E)-S(17E)-C(20E) 108.8(4)
O(19E)-S(17E)-C(20E) 107.9(4)
O(18E)-S(17E)-C(4E) 108.3(3)
O(19E)-S(17E)-C(4E) 106.9(3)
```

```
C(20E)-S(17E)-C(4E) 104.7(3)
C(21E)-C(20E)-C(25E) 118.3(8)
C(21E) -C(20E)-S(17E) 121.1(6)
C(25E)-C(20E)-S(17E) 120.6(6)
C(20E)-C(21E)-C(22E) 119.8(8)
C(23E)-C(22E)-C(21E) 121.2(8)
C(22E)-C(23E)-C(24E) 120.0(9)
C(25E)-C(24E)-C(23E) 117.7(9)
C(24E)-C(25E)-C(20E) 122.9(9)
O(27E)-C(26E)-C(5E) 113.6(7)
C(29E)-C(28E)-C(6E) 110.5(5)
C(30E)-C(29E)-C(37E) 106.6(6)
C(30E)-C(29E)-C(28E) 126.5(7)
C(37E)-C(29E)-C(28E) 126.9(7)
C(29E)-C(30E)-N(31E) 107.4(7)
C(32E)-N(31E)-C(30E) 112.3(6)
C(32E)-N(31E)-C(38E) 126.7(7)
C(30E)-N(31E)-C(38E) 121.0(7)
N(31E) -C (32E) -C(33E) 132.8(7)
N(31E)-C(32E)-C(37E) 105.0(7)
C(33E)-C(32E)-C(37E) 122.2(7)
C(34E)-C(33E)-C(32E) 118.5(7)
C(33E)-C(34E)-C(35E) 121.7(9)
C(36E)-C(35E)-C(34E) 120.7(8)
C(35E)-C(36E)-C(37E) 119.6(7)
C(36E)-C(37E)-C(29E) 134.0(7)
C(36E)-C(37E)-C(32E) 117.2(7)
C(29E)-C(37E)-C(32E) 108.8(7)
C(2F)-N(1F)-C(6F) 120.1(7)
C(2F)-N(1F)-S(7F) 117.9(5)
```

```
C(6F)-N(1F)-S(7F) 121.5(6)
O(2F)-C(2F)-N(1F) 125.9(8)
O(2F)-C(2F)-C(3F) 117.7(8)
N(1F)-C(2F)-C(3F) 116.5(6)
C(2F)-C(3F)-C(4F) 110.7(6)
C(5F)-C(4F)-C(3F) 115.8(6)
C(5F)-C(4F)-S(17F) 111.2(5)
C(3F)-C(4F)-S(17F) 109.8(5)
C(4F)-C(5F)-C(6F) 111.9(6)
C(4F)-C(5F)-C(26F) 116.2(6)
C(6F)-C(5F)-C(26F) 107.2(6)
C(4F)-C(5F)-C(26L) 106.9(8)
C(6F)-C(5F)-C(26L) 107.5(10)
C(26F)-C (5F)-C (26L) 11.0(9)
N(1F)-C(6F)-C(5F) 109.9(6)
N(1F)-C(6F)-C(28F) 112.9(6)
C(5F)-C(6F)-C(28F) 114.8(6)
O(8F)-S(7F)-O(9F) 119.9(3)
O(8F)-S(7F)-N(1F) 103.8(3)
O(9F)-S(7F)-N(1F) 108.8(3)
O(8F)-S(7F)-C(10F) 106.4(3)
O(9F)-S(7F)-C(10F) 109.3(3)
N(1F)-S(7F)-C(10F) 108.0(3)
C(11F)-C(10F)-C(15F) 121.7(7)
C(11F)-C(10F)-S(7F) 118.7(6)
C(15F)-C(10F)-S(7F) 119.6(6)
C(12F)-C(11F)-C(10F) 116.6(8)
C(13F)-C(12F)-C(11F) 124.5(8)
C(12F)-C(13F)-C(14F) 118.3(7)
C(12F)-C(13F)-C(16F) 122.3(8)
```

```
C(14F)-C(13F)-C(16F) 119.4(8)
C(13F)-C(14F)-C(15F) 119.3(8)
C(10F)-C(15F)-C(14F) 119.6(7)
O(18F)-S(17F)-O(19F) 119.5(4)
O(18F)-S(17F)-C(20F) 109.7(4)
O(19F)-S(17F)-C(20F) 107.5(4)
O(18F)-S(17F)-C(4F) 108.1(4)
O(19F)-S(17F)-C(4F) 105.9(4)
C(20F)-S(17F)-C(4F) 105.2(4)
C(21F)-C(20F)-C(25F) 120.3(9)
C(21F)-C(20F)-S(17F) 120.5(7)
C(25F) -C (20F) -S(17F) 119.2(7)
C(20F)-C(21F)-C(22F) 121.1(9)
C(23F)-C(22F)-C(21F) 117.3(10)
C(22F)-C(23F)-C(24F) 123.1(11)
C(23F)-C(24F)-C(25F) 121.0(9)
C(20F)-C(25F)-C(24F) 116.9(8)
O(27F)-C(26F)-C(5F) 113.0(7)
O(27L)-C(26L)-C(5F) 102.6(12)
C(29F)-C(28F)-C(6F) 113.4(6)
C(30F)-C(29F)-C(37F) 105.8(7)
C(30F)-C(29F)-C(28F) 126.4(8)
C(37F)-C(29F)-C(28F) 127.8(7)
C(29F)-C(30F)-N(31F) 110.4(8)
C(30F)-N(31F)-C(32F) 108.4(7)
C(30F)-N(31F)-C(38F) 127.5(7)
C(32F)-N(31F)-C(38F) 124.0(7)
C(33F)-C(32F)-N(31F) 130.6(8)
C(33F)-C(32F)-C(37F) 123.1(8)
N(31F)-C(32F)-C(37F) 106.3(7)
```

```
C(32F)-C(33F)-C(34F) 118.1(8)
C(33F)-C(34F)-C(35F) 120.2(8)
C(36F)-C(35F)-C(34F) 120.4(8)
C(35F)-C(36F)-C(37F) 119.9(7)
C(32F)-C(37F)-C(29F) 109.1(7)
C(32F)-C(37F)-C(36F) 118.3(7)
C(29F)-C(37F)-C(36F) 132.5(7)
```

4.1.4. 4-Methyl- N-((S)-2-(1-methyl-1H-indol-3-yl)-1-((3R,4R)-6-oxo-4-(phenylsulfonyl)tetrahydro-2H-pyran-3-yl)ethyl)benzenesulfonamide (133)

133

Table 1. Crystal data and structure refinement for 133.

Identification code

Formula

Formula weight
C29 H32 N2 O7 S
552.63

Temperature	173 K
Diffractometer, wavelength	OD Xcalibur 3, $0.71073 \AA$
Crystal system, space group	Triclinic, P-1
Unit cell dimensions	$a=10.1649(5) \AA \quad \AA=82.205(4)^{\circ}$
	$\mathrm{b}=10.4773(4) \AA \mathrm{A}^{\text {a }}$, $\quad \beta=74.919(4)^{\circ}$
Volume, Z	1321.60(11) $\AA^{3}, 2$
Density (calculated)	$1.389 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.174 \mathrm{~mm}^{-1}$
F(000)	584
Crystal colour / morphology	Colourless tabular needles
Crystal size	$0.47 \times 0.17 \times 0.03 \mathrm{~mm}^{3}$
θ range for data collection	3.18 to 32.65°
Index ranges	$-13<=\mathrm{h}<=15,-15<=\mathrm{k}<=15,-20<=1<=19$
Reflns collected / unique	14479 / 8609 [R(int) $=0.0188]$
Reflns observed [F>4O(F)]	6815
Absorption correction	Analytical
Max. and min. transmission	0.994 and 0.958
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$8609 / 0 / 354$
Goodness-of-fit on F^{2}	1.044
Final R indices [F>4O(F)]	$\mathrm{R} 1=0.0443, \mathrm{wR} 2=0.1154$
R indices (all data)	$\mathrm{R} 1=0.0610, \mathrm{wR} 2=0.1233$

```
Largest diff. peak, hole
    0.429, -0.298 e\AA
Mean and maximum shift/error
    0.000 and 0.000
Table 2. Bond lengths [Å] and angles [``] for DC1203.
N(1)-C(2) 1.3963(15)
N(1)-C(6) 1.4940(15)
N(1)-S(7) 1.6962(10)
C(2)-O(2) 1.2209(15)
C(2)-C(3) 1.5144(17)
C(3)-C(4) 1.5317(17)
C(4)-C(17) 1.5006(16)
C(4)-C(5) 1.5419(17)
C(5)-C(28) 1.5231(16)
C(5)-C(6) 1.5314(16)
C(6)-C(26) 1.5366(17)
S(7)-O(9) 1.4296(10)
S(7)-O(8) 1.4366(10)
S(7)-C(10) 1.7553(13)
C(10)-C(15) 1.3842(18)
C(10)-C(11) 1.3916(18)
C(11)-C(12) 1.3871(19)
C(12)-C(13) 1.394(2)
C(13)-C(14) 1.393(2)
C(13)-C(16) 1.507(2)
C(14)-C(15) 1.3901(18)
C(17)-C(25) 1.3699(17)
C(17)-N(18) 1.3890(15)
N(18)-C(19) 1.3843(16)
N(18)-C(27) 1.4471(18)
C(19)-C(20)
    1.4004(17)
\begin{tabular}{|c|c|}
\hline C(19)-C(24) & 1.410 (2) \\
\hline C (20)-C (21) & 1.385 (2) \\
\hline \(\mathrm{C}(21)-\mathrm{C}(22)\) & 1.402 (3) \\
\hline \(\mathrm{C}(22)-\mathrm{C}(23)\) & 1.383 (2) \\
\hline \(C(23)-C(24)\) & 1.4023 (19) \\
\hline \(C(24)-C(25)\) & 1.4345 (17) \\
\hline C (25) - C ( 26 ) & 1.4962(17) \\
\hline \(\mathrm{C}(28)-\mathrm{O}(29)\) & 1.4521 (15) \\
\hline O(29) - C (30) & 1.3445 (15) \\
\hline \(\mathrm{C}(30)-\mathrm{O}(30)\) & 1.2041 (18) \\
\hline \(C(30)-C(31)\) & 1.5060 (19) \\
\hline C (31)-C(32) & 1.549(2) \\
\hline C(32)-O(36) & 1.4160 (17) \\
\hline C(32) - 0 ( 33 ) & 1.4214 (17) \\
\hline \(C(32)-C(37)\) & 1.517 (2) \\
\hline O(33) - C ( 34 ) & 1.428(2) \\
\hline C (34)-C (35) & 1.526(2) \\
\hline C(35)-O(36) & 1.4233 (18) \\
\hline \(\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(6)\) & 125.12(10) \\
\hline \(\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{S}(7)\) & 117.45 (8) \\
\hline \(\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{S}(7)\) & 116.58(8) \\
\hline \(\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{N}(1)\) & 120.52(11) \\
\hline \(\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)\) & 121.48(11) \\
\hline \(\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)\) & 117.89(10) \\
\hline \(C(2)-C(3)-C(4)\) & 114.13(10) \\
\hline \(C(17)-C(4)-C(3)\) & 108.79(10) \\
\hline \(C(17)-C(4)-C(5)\) & 107.62(10) \\
\hline \(\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)\) & 109.34(9) \\
\hline \(C(28)-C(5)-C(6)\) & 113.62(10) \\
\hline
\end{tabular}
```

C(28)-C(5)-C(4) 111.31(10)
C(6)-C(5)-C(4) 108.76(9)
N(1)-C(6)-C(5) 109.68(9)
N(1)-C(6)-C(26) 110.88(10)
C(5)-C(6)-C(26) 110.45(9)
O(9)-S(7)-O(8) 118.60(7)
O(9)-S(7)-N(1) 110.04(6)
O(8)-S(7)-N(1) 104.12(6)
O(9)-S(7)-C(10) 110.24(6)
O(8)-S(7)-C(10) 108.56(6)
N(1)-S(7)-C(10) 104.21(5)
C(15)-C(10)-C(11) 121.45(12)
C(15)-C(10)-S(7) 120.08(10)
C(11)-C(10)-S(7) 118.39(10)
C(12)-C(11)-C(10) 118.63(13)
C(11)-C(12)-C(13) 121.21(13)
C(14)-C(13)-C(12) 118.71(12)
C(14)-C(13)-C(16) 120.59(14)
C(12)-C(13)-C(16) 120.71(13)
C(15)-C(14)-C(13) 121.00(13)
C(10)-C(15)-C(14) 118.90(12)
C(25)-C(17)-N(18) 110.08(10)
C(25)-C(17)-C(4) 125.12(11)
N(18)-C(17)-C(4) 124.36(11)
C(19)-N(18)-C(17) 107.87(11)
C(19)-N(18)-C(27) 124.96(11)
C(17)-N(18)-C(27) 127.16(11)
N(18)-C(19)-C(20) 129.59(14)
N(18)-C(19)-C(24) 108.30(11)
C(20)-C(19)-C(24) 122.10(13)

```
```

C(21)-C(20)-C(19) 117.14(15)
C(20)-C(21)-C(22) 121.56(13)
C(23)-C(22)-C(21) 121.15(14)
C(22)-C(23)-C(24) 118.70(15)
C(23)-C(24)-C(19) 119.35(12)
C(23)-C(24)-C(25) 133.78(13)
C(19)-C(24)-C(25) 106.84(11)
C(17)-C(25)-C(24) 106.91(11)
C(17)-C(25)-C(26) 122.61(11)
C(24)-C(25)-C(26) 130.39(11)
C(25)-C(26)-C(6) 110.11(10)
O(29)-C(28)-C(5) 107.35(10)
C(30)-O(29)-C(28) 114.41(10)
O(30)-C(30)-O(29) 123.13(13)
O(30)-C(30)-C(31) 124.30(12)
O(29)-C(30)-C(31) 112.55(12)
C(30)-C(31)-C(32) 111.25(11)
O(36)-C(32)-O(33) 105.06(11)
O(36)-C(32)-C(37) 108.86(12)
O(33)-C(32)-C(37) 108.94(13)
O(36)-C(32)-C(31) 109.31(11)
O(33)-C(32)-C(31) 110.20(11)
C(37)-C(32)-C(31) 114.06(12)
C(32)-O(33)-C(34) 106.67(12)
O(33)-C(34)-C(35) 104.58(13)
O(36)-C(35)-C(34) 104.86(13)
C(32)-O(36)-C(35) 107.52(11)

```

Symmetry transformations used to generate equivalent atoms:

\subsection*{4.2 References}
```

${ }^{1}$ Maehr, H., J. Chem. Ed. 1985, 62, 114.
${ }^{2}$ Keawpradub, N.; Kirby, G. C.; Steele, J. C.; Houghton, P. J., Planta Med. 1999, 65, 690.

```
\({ }^{3}\) (a) Bi, Y.; Zhang, L.-H.; Hamaker, L. K.; Cook, J. M., J. Am. Chem. Soc. 1994, 116, 9027; (b) Liao, X.; Zhou, H.; Wearing, X. Z.; Ma, J.; Cook, J. M., Org. Lett. 2005, 7, 3501; (c) Liao, X.; Zhou, H.; Yu, J.; Cook, J. M., J. Org. Chem. 2006, 71, 8884; (d) Miller, K. A.; Shanahan, C. S.; Martin, S. F., Tetrahedron 2008, 64, 6884 and references therein; (e) Bailey, P. D.; Morgan, K. M., J. Chem. Soc. Perkin Trans. 1 2000, 3578; (f) Kuthe, J.; Wong, A.; Davies, I. W.; Reider, P. J., Tetrahedron Lett. 2002, 43, 3871.
\({ }^{4}\) LeMen, J.; Taylor, W. I., Experientia 1965, 21, 508.
\({ }^{5}\) Trost, B. M.; Brennan, M. K., Synthesis 2009, 18, 3003.
\({ }^{6}\) (a) Kam, T.; Choo, Y. Bisindole Alkaloids, In The Alkaloids, Vol. 63; Cordell, G. A., Ed.; Academic Press: New York, 2006, 181; (b) Saxton, J. E. Synthesis of the Aspidosperma Alkaloids, In The Alkaloids, Vol. 50; Cordell, G. A., Ed.; Academic Press: New York, 1998, 343.
\({ }^{7}\) Stoll, A.; Hofmann, A., Helv. Chim. Acta 1953, 36, 1143.
\({ }^{8}\) (a) Bi, Y.; Hamaker, L. K.; Cook, J. M., The Synthesis of Macroline Related Indole Alkaloids in Studies in Natural Product Chemistry 1993, 13, 383; (b) Bi, Y.; Hamaker Y.; Cook, J. M., The Synthesis of Macroline-Related Indole Alkaloids; Studies in Natural Products Chemistry, Pergamon, London, 1994, vol. 9.
\({ }^{9}\) Hamaker, L. K.; Cook, J. M., The Synthesis of Macroline Related Sarpagine Alkaloids. Alkaloids: Chemical and Biological Perspectives, Elsevier Science, New York, 1995, Vol. 9.
\({ }^{10}\) Lounasmaa, M.; Hanhinen, P.; Westersund, M., The Sarpagine Group of Indole Alkaloids, Academic, San Diego, CA, 1999, Vol. 52.
\({ }^{11}\) Lounasmaa, M.; Hanhinen, P., The Ajmaline Group of Indole Alkaloids, Alkaloids, 2001, 55, 1.
\({ }^{12}\) Lewis, S. E., Tetrahedron 2006, 62, 8655.
\({ }^{13}\) Keawpradub, N.; Eno-Amooquaye, E.; Burke, P. J.; Houghton, P. J., Planta Med. 1999, 65, 311.
\({ }^{14}\) Gilman, R. E., Diss. Abs., 1959, 20, 1578.
\({ }^{15}\) Cook, J. M.; Le Quesne, P. W.; Elderfield, R. C., J. Chem. Soc. D. 1969, 22, 1306.
\({ }^{16}\) Zhang, L.-H.; Cook, J. M., J. Am. Chem. Soc. 1990, 112, 4088.
\({ }^{17}\) Gan, T.; Cook, J. M., Tetrahedron Lett. 1996, 37, 5033; (b) Gan, T.; Cook, J. M., J. Org. Chem. 1998, 63, 1478.
\({ }^{18}\) Gan, T.; Cook, J. M., Tetrahedron Lett. 1996, 37, 5037.
\({ }^{19}\) Li, J.; Cook, J. M., J. Org. Chem. 1998, 63, 4166.
\({ }^{20}\) Li, J.; Wang, T.; Yu, P.; Peterson, A.; Weber, R.; Soerens, D.; Grubisha, D.; Bennett, D.; Cook, J. M., J. Am. Chem. Soc. 1999, 121, 6998.
\({ }^{21}\) Wang, T.; Xu, Q.; Yu, P.; Liu, X.; Cook, J. M., Org. Lett. 2001, 3, 345.
\({ }^{22}\) For a review on the Pictet-Spengler condensation, see Cook, J. M.; Cox, E. D. Chem. Rev. 1995, 95, 1797.
\({ }^{23}\) (a) Jawdosiuk, M.; Cook, J. M., J. Org. Chem. 1984, 49, 2699; (b) Ungemach, F.; DiPierro, M.; Weber, R.; Cook, J. M., J. Org. Chem. 1981, 46, 164; (c) Czerwinski, K. M.; Deng, L.; Cook, J. M., Tetrahedron Lett. 1992, 33, 4721.
\({ }^{24}\) (a) Trudell, M. L., Soerens, D.; Webber, R. W.; Hutchins, L.; Grubisha, D.; Bennett, D.; Cook, J. M., Tetrahedron 1992, 48, 1805; (b) Zhang, L-H.; Bi, Y-Z.; Yu, F-X.; Menzia, G.; Cook, J. M., Heterocycles 1992, 34, 517.
\({ }^{25}\) Bailey, P. D.; Mclay, N. R., J. Chem. Soc. Perkin Trans. 1 1993, 441.
\({ }^{26}\) (a) Zhang, L.-H.; Cook, J. M., Heterocycles, 1988, 27, 6, 1353; (b) Zhang, L.-H.; Cook, J. M., Heterocycles, 1988, 27, 12, 2795.
\({ }^{27}\) Zhang, L.-H.; Trudell, M. L.; Hollinshead, S. P.; Cook, J. M., J. Am. Chem. Soc. 1989, 111, 8263.
\({ }^{28}\) Bi, Y.; Zhang, L.-H.; Hamaker, L. K.; Cook, J. M., J. Am. Chem. Soc. 1994, 116, 9027.
\({ }^{29}\) Liao, X.; Zhou, H.; Wearing, X. Z.; Ma, J.; Cook, J. M., Org. Lett. 2005, 7, 3501.
\({ }^{30}\) Liao, X.; Zhou, H.; Yu, J.; Cook, J. M., J. Org. Chem. 2006, 71, 8884.
\({ }^{31}\) Liu, X.; Zhang, C.; Liao, X.; Cook, J. M., Tetrahedron Lett. 2002, 43, 7373.
\({ }^{32}\) Wang, T.; Cook, J. M., Org. Lett. 2000, 2, 2057.
\({ }^{33}\) Yu, J.; Wang, T.; Liu, X.; Deschamps, J.; Flippen-Anderson, J.; Liao, X.; Cook, J. M., J. Org. Chem. 2003, 68, 7565.
\({ }^{34}\) Muratake, H.; Natsume, M., Tetrahedron Lett. 1997, 38, 7581.
\({ }^{35}\) Cao, H.; Yu, J.; Wearing, X.; Zhang, C.; Liu, X.; Deschamps, J.; Cook, J. M. Tetrahedron Lett. 2003, 44, 8013.
\({ }^{36}\) Liu, X.; Deschamp, J. R.; Cook, J. M., Org. Lett. 2002, 4, 3339.
\({ }^{37}\) Kuethe, J. T.; Wong, A.; Davies, I. W.; Reider, P. J., Tetrahedron Lett. 2002, 43, 3871.
\({ }^{38}\) Tran, Y. S.; Kwon, O., Org. Lett. 2005, 7, 4289.
\({ }^{39}\) Zhu, X.-F.; Lan, J.; Kwon, O., J. Am. Chem. Soc. 2003, 125, 4716.
\({ }^{40}\) Fukuyama, T.; Cheung, M.; Kan, T., Synlett 1999, 1301.
\({ }^{41}\) (a) Eschweiler, W., Ber. 1905, 38, 880; (b) Clarke, H. T.; Gillespie, H. B.; Weisshaus, S. Z., J. Am. Chem. Soc.
1933, 55, 4571; (c) Newman, M. S.; Lloyd, H. A., J. Am. Chem. Soc. 1952, 74, 2672.
\({ }^{42}\) Miller, K. A.; Martin, S. F., Org. Lett. 2007, 9, 1113.
\({ }^{43}\) Miller, K. A.; Shanahan, C. S.; Martin, S. F. Tetrahedron 2008, 64, 6884.
\({ }^{44}\) For reviews/reports on the synthesis and applications of aziridines, see (a) Tanner, D. Angew. Chem., Int. Ed. Engl. 1994, 33, 599; (b) Mccoull, W.; Davis, F. A. Synthesis 2000, 1347; (c) Sweeney, J. B., Chem Soc Rev 2002, 31, 247.
\({ }^{45}\) (a) Vandekerckhove, S.; H'Hooghe, M., Bioorg. \& Med. Chem. 2013, 21, 3643; (b) Bera, M.; Roy, S., Tetrahedron Lett. 2007, 48, 7144; (c) Chawla, R.; Singh, A. K.; Yadlav, L. D. S., RSC Advances 2013, 3, 11385.
\({ }^{46}\) (a) Craig, D.; Jones, P. S.; Rowlands, G. J., Synlett 1997, 12, 1423; (b) Berry, B.; Rowlands, G.; Craig, D.; Jones, P. S., Chem. Commun. 1997, 2141; (c) Caldwell, J. J.; Craig, D.; East, S. P., Synlett 2001, 10, 1602.
\({ }^{47}\) (a) Craig, D.; Mccague, R.; Potter, G. A.; Williams, M. R. V., Synlett 1998, 1, 55; (b) Craig, D.; Mccague, R.; Potter, G. A.; Williams, M. R. V., Synlett 1998, 1, 58; c) Adelbrecht, J.-C.; Craig, D.; Dymock, B. W.; Thorimbert, S., Synlett 2000, 4, 467.
\({ }^{48}\) Pak, C. S.; Lee, G. H., J. Org. Chem. 1991, 56, 1128.
\({ }^{49}\) Toyooka, N.; Zhou, D.; Nemoto, H., J. Org. Chem. 2008, 73, 4575.
\({ }^{50}\) Biard, J. F.; Guyot, S.; Roussakis, C.; Verbist, J. F.; Vercuateren, J.; Wber, J. F.; Boukef, K., Tetrahedron Lett. 1994, 35, 2691.
\({ }^{51}\) Berry, M. B.; Rowlands, G. J.; Craig, D.; Jones, P. S., Chem. Commun. 1997, 22, 2141.
\({ }^{52}\) Caldwell, J. J.; Craig, D., Angew. Chem., Int. Ed. Engl. 2007, 119, 2685.
\({ }^{53}\) Adelbrecht, J.-C.; Craig, D.; Thorimbert, S., Tetrahedron Lett. 2001, 42, 8369.
\({ }^{54}\) Adelbrecht, J.-C.; Craig, D.; Flemming, A. J.; Martin, F. M., Synlett 2005, 17, 2643.
\({ }^{55}\) Carballares, S.; Craig, D.; Hyland, C. J. T.; Lu, P.; Mathie, T.; White, A. J. P., Chem. Commun. 2009, 4, 451.
\({ }^{56}\) Lewis, S. E. Ph.D Thesis, Imperial College London, 2005.
\({ }^{57}\) Tholen, N. T. H., Ph.D Thesis, Imperial College London, 2010.
\({ }^{58}\) Ioannidis, S., Ph.D Thesis, University of London, 1999.
\({ }^{59}\) For the use of TMSI for cleaving ethers, see Jung, M. E.; Andrus, W. A.; Ornstein, P. L., Tetrahedron Lett. 1977, 18, 4175.
\({ }^{60}\) Hwu, J. R., J. Org. Chem. 1983, 48, 4432.
\({ }^{61}\) Maruoka, K.; Concepcion, A. B.; Murase, N.; Oishi, M.; Hirayama, N.; Yamamoto, H., J. Am. Chem. Soc. 1993, 115, 3943.
\({ }^{62}\) Rahn, V. S., Ph.D Thesis, Imperial College London, 2002.
\({ }^{63}\) (a) Schlosser, M.; Coffinet, D., Synthesis 1971, 7, 380; (b) Schlosser, M.; Titus, J.; Guggisberg, Y., Synlett 1990, 11, 704.
\({ }^{64}\) (a) Tanner, D.; Somfai, P. Tetrahedron Lett. 1987, 28, 1211; (b) Tanner, D.; Somfai, P. Tetrahedron 1988, 44, 613 (c) Tanner, D.; Somfai, P., Tetrahedron 1988, 44, 619.
\({ }^{65}\) Fuji, K.; Kawabata, T.; Kiryu, Y.; Sugiura, Y., Heterocycles 1996, 42, 701.
\({ }^{66}\) Mathie, T., Towards the Total Synthesis of Alstonerine, Craig Group internal document, 2008.
\({ }^{67}\) Carballares, S.; Craig, D.; Hyland, C. J. T.; Lu, P.; Mathie, T.; White, A. J. P., Chem. Commun. 2009, 4, 451.
\({ }^{68}\) Cox, P.; Craig, D.; Ioannidis, S. ; Rahn, V. S., Tetrahedron Lett. 2005, 46, 4687.
\({ }^{69}\) (a) Jeong, J. U.; Tao, B.; Sagasser, I; Henniges, H.; Sharpless, K. B., J. Am. Chem. Soc. 1998, 120, 6844; (b)
Ichiki, M.; Tanimoto, H.; Miwa, S.; Saito, R.; Sato, T.; Chida, N., Chemistry - A European Journal 2013, 19, 264.
\({ }^{70}\) Smith, A. B.; Kim, D.-S. Org. Lett. 2005, 7, 3247.
\({ }^{71}\) De Lombaert, S. ; Nemery, I. ; Roekens, B.; Carretero, J. C. ; Kimmel, T.; Ghosez, L., Tetrahedron Lett. 1986, 27, 5099.
\({ }^{72}\) Parham, W. E.; Schweizer, E. E., J. Org. Chem. 1959, 24, 1733.
\({ }^{73}\) Parham, W. E.; Christensen, L.; Groen, S. H.; Dodson, R. M., J. Org. Chem. 1964, 29, 2211.
\({ }^{74}\) Parham, W. E.; McKnow, W. D.; Nelson, V.; Kajigaeshi, S.; Ishikawa, N., J. Org. Chem. 1973, 38, 1361.
\({ }^{75}\) Carr, R. V. C.; Williams, R. V.; Paquette, L. A., J. Org. Chem. 1983, 48, 4976.
\({ }^{76}\) Kirner, W. R.; Richter, G. H., J. Am. Chem. Soc. 1929, 51, 3409.
\({ }^{77}\) Van Der Schaaf, P. A.; Kolly, R.; Kirner, H.-J.; Rime, F., Mühlebach, A.; Hafner, A., J. Organometallic Chem. 2000, 606, 65.
\({ }^{78}\) Russel, G. A.; Hershberger, J., J. Am. Chem. Soc. 1980, 102, 7603.
\({ }^{79}\) Cuadrado, P.; González-Nogal, A. M., Tetrahedron Lett. 2000, 41, 1111.
\({ }^{80}\) Armarego, W. L. F.; Chai, C., Purification of Laboratory Chemicals, Elsevier Science, New York, 2013, Vol. 7, 126.
\({ }^{81}\) Craig, D.; Lu, P.; Mathie, T.; Tholen, N. T. H., Tetrahedron, 2010, 66, 6376.
\({ }^{82}\) Ohno, H.; Hamaguchi, H.; Ohata, M.; Kosaka, S.; Tanaka, T., J. Am. Chem. Soc. 2004, 126, 8744.
\({ }^{83}\) Nicolaou, K.C.; Webber, S. E., Synthesis 1986, 6, 453.
\({ }^{84}\) Mohan, P.; Koushik, K.; Fuertes, M. J. Tetrahedron Lett. 2012, 53, 2730.
\({ }^{85}\) Clemens, R. J., J. Am. Chem. Soc. 1989, 11, 1989.
\({ }^{86}\) Tsunoda, T.; Suzuki, M.; Noyori, R., Tetrahedron Lett. 1980, 21, 1357.
\({ }^{87}\) Padwa, A.; Nara, S.; Wang, Q., J. Org. Chem. 2005, 70, 8538.
\({ }^{88}\) Tsunoda, T.; Suzuki, M.; Noyori, R., Tetrahedron Lett. 1980, 21, 1357.
\({ }^{89}\) Peters, S.; Eckhardt, M.; Hamilton, B. S.; Himmelsbach, F.; Kley, J.; Lehmann-Lintz, T., Alicyclic carboxylic acid derivatives of benzomorphans and related scaffolds, medicaments containing such compounds and their use. 2009, US Patent 0269791.
\({ }^{90}\) Aurrecoechea, J. M.; Gorgojo, J. M.; Saornil, C., J. Org. Chem. 2005, 70, 9640.
\({ }^{91}\) Bonjoch, J.; Solé, D.; García-Rubio, S.; Bosch, J., J. Am. Chem. Soc. 1997, 119, 7230.
\({ }^{92}\) Bosch, J.; Bonjoch, J.; Diez, A.; Linares, A.; Moral, M.; Rubiralta, M., Tetrahedron 1985, 41, 1753.
\({ }^{93}\) Diaba, F.; Bonjoch, J., Org. Biomol. Chem. 2009, 7, 2517.
\({ }^{94}\) Park, A.-Y.; Kim, W. H.; Kang, J.-A.; Lee, H. J.; Lee, C.-K.; Moon, H. R., Bioorg. \& Med. Chem. 2011, 19, 3945.
\({ }^{95}\) Abdelkafi, H.; Evanno, L.; Deville, A.; Dubost, L.; Chiaroni, A.; Nay, B., Eur. J. Org. Chem. 2011, 15, 2789.
\({ }^{96}\) Knight, S. D.; Overman, L. E.; Pairaudeau, G., J. Am. Chem. Soc. 1993. 115, 9293.
\({ }^{97}\) (a) Fan, X.; Sans, V.; Yaseneva, P.; Plaza, D. D.; Williams, J.; Lapkin, A., Org. Process R\&D 2012, 16, 1039; (b)
Takano, S.; Satoh, S.; Ogasawara, K., J. Chem. Soc., Chem Commun. 1988, 1, 59.
\({ }^{98}\) Shing, T. K. M.; Jiang, Q., J. Org. Chem. 2000, 65, 7059.
\({ }^{99}\) Ravindar, K.; Reddy, M. S.; Lindqvist, L.; Pelletier, J.; Deslongchamps, P., J. Org. Chem. 2011, 76, 1269.
\({ }^{100}\) Shimawaki, K.; Fujisawa, Y.; Sato, F.; Fujitani, N; Kurogochi, M.; Hoshi, H.; Hinou, H.; Nishamura, S.-I., Angew. Chem., Int. Ed. Engl. 2007, 46, 3074.
\({ }^{101}\) Kam, T. S.; Choo, Y. M., Phytochemistry 2004, 65, 603.
\({ }^{102}\) (a) Kam, T. S.; Iek, I.-H.; Choo, Y. M., Phytochemistry 1999, 51, 839; (b) Kam, T. S.; Choo, Y. M., J. Nat. Products 2004, 67, 547.
\({ }^{103}\) Taskinen, E., J. Phys. Org. Chem. 2007, 20, 539.
\({ }^{104}\) Halcomb, R. L.; Boyer, S. H.; Wittman, M. D.; Olson, S. H.; Denhart, D. J.; Liu, K. K. C.; Danishefsky, S. J., J. Am. Chem. Soc. 1995, 117, 5720.
\({ }^{105}\) Koci, J.; Grandclaude, V.; Massonneau, M.; Richard, J.-A.; Romieu, A.; Renard, P.-Y., Chem. Commun. 2011, 47, 6713.
\({ }^{106}\) Tang, Y.; Cole, K. P.; Buchanan, G. S.; Li, G.; Hsung, R. P., Org. Lett. 2009, 11, 1591.
\({ }^{107}\) For a review on the chemistry and synthetic applications of lactam-derived vinyl triflates and phosphates, see Occhiato, E. G., Mini-Rev. Org. Chem. 2004, 1, 149.
\({ }^{108}\) Dolle, R. E.; Schmidt, S. J.; Erhard, K. F.; Kruse, L. I., J. Am. Chem. Soc. 1989, 11, 278.
\({ }^{109}\) Scott, W. J.; Stille, J. K., J. Am. Chem. Soc. 1986, 108, 3033.
\({ }^{110}\) Dolle, R. E.; Schmidt, S. J.; Erhard, K. F.; Kruse, L. I., J. Am. Chem. Soc. 1989, 11, 278.
\({ }^{111}\) Chen, Z.; Izenwasser, S.; Katz, J. L.; Zhu, N.; Klein, C. L.; Trudell, M. L., J. Med. Chem. 1996, 39, 4744.
\({ }^{112}\) Walker, T. L.; Malasi, W.; Bhide, S.; Parker, T.; Zhang, D.; Freedman, A.; Modarelli, J. M.; Engle, J.T.; Ziegler, C. J., Custer, P.; Youngs, W. J.; Taschner, M. J., Tetrahedron Lett. 2012, 53, 6548.
\({ }^{113}\) Kneiss, T.; Laube, M.; Bergmann, R.; Sehn, F.; Graf.; Steinbach, J.; Wuest, F.; Pietzsch, J., Bioorg. \& Med. Chem. 2012, 20, 3410.
\({ }^{114}\) Ankner, T.; Hilmersson, G. R., Org. Lett. 2009, 11, 503.
\({ }^{115}\) (a) Nyasse, B.; Grehn, L.; Ragnarsson, U., Chem. Commun. 1997, 11, 1017; (b) Sridhar, M.; Kumar, B. A.; Narender, R., Tetrahedron Lett. 1998, 39, 2847.
\({ }^{116}\) Youn, S. W.; Bihn, J. H.; Kim, B. S., Org. Lett. 2011, 13, 3738.
\({ }^{117}\) Mayerl, F.; Hesse, M., Helv. Chim. Acta 1978, 61, 337.
\({ }^{118}\) Wright, C. W.; Allen, D.; Cai, Y.; Phillipson, J. D.; Said, I. M.; Kirby, G. C.; Warhurst, D. C., Phytotheraphy Research 1992, 6, 121.
\({ }^{119}\) Aggarwal, V. K.; Astle, C. J.; Rogers-Evans, M., Org. Lett. 2004, 6, 1469.
\({ }^{120}\) Davies, H. M. L.; Matasi, J.; Hodges, M.; Huby, N.; Thornley, C.; Kong, N.; Houser, J. J. Org. Chem. 1997, 62, 1095.
\({ }^{121}\) (a) Babinski, D.; Soltani, O.; Frantz, D. E., Org. Lett. 2008, 10, 2901; (b) Frantz, D. E.; Weaver, D. G.; Carey, J. P.; Kress, M. H.; Dolling, U. H., Org. Lett. 2002, 4, 4717.
\({ }^{122}\) Craig, D.; Goldberg, F. W.; Pett, R. W.; Tholen, N. T. H.; White, A. P., Chem. Commun. 2013, 81, 9275.
\({ }^{123}\) Berry, M. B.; Craig, D., Synlett 1992, 1, 41.
\({ }^{124}\) Nemoto, T.; Yamamoto, N.; Wada, N.; Harada, Y.; Tomatsu, M.; Ishighara, M.; Hirayama, S.; Iwai, T.; Fujii, H.; Nagase, H., Bioorg. \& Med. Chem. Lett. 2013, 23, 268.
\({ }^{125}\) Royals, E. E.; Brannock, K. C., J. Am. Chem. Soc. 1954, 76, 3041.```


[^0]:    ${ }^{\text {a }}$ Ratio of $161: 164: 165$ visible in ${ }^{1} H$ NMR of crude material, during chromatography 164 underwent hydrolysis to give only SM 91; ${ }^{\text {b }}$ Isolated yield following chromatography

