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Abstract 

This paper explores the use of solid continuum finite elements and shell finite elements 

in the modelling of the nonlinear plastic buckling behaviour of cylindrical metal tubes 

and shells under global bending. The assumptions of shell analysis become 

increasingly uncertain as the ratio of the radius of curvature to the thickness becomes 

smaller, but the classical literature does not draw a clear line to define when a shell 

treatment is inappropriate and a continuum model becomes essential. This is a 

particularly important question for the bending of tubular members, pipelines, 

chimneys, piles, towers and similar structures. This study is therefore concerned solely 

with the uniform bending of thin tubes or thick shells which fail by plastic buckling 

well into the strain-hardening range. The analyses employ finite element formulations 

available in the commercial software ABAQUS because this is the most widely used 

tool for parametric research studies in this domain with an extensive and diverse 

element library. The results are of general validity and are applicable to other finite 

element implementations. This paper thus seeks to determine the adequacy of a thin or 

thick shell approximation, taking into account geometric nonlinearity, complex 

equilibrium paths, limit points and bifurcation buckling, extensive material ductility 

and linear strain hardening. It aims to establish when it is viable to employ shell 

elements and when this decision will lead to outcomes that lack sufficient precision for 

engineering design purposes.   

 

The results show that both thin and thick (shear-flexible) shell elements may give a 

reasonably accurate prediction of the buckling moment under global uniform bending 

for cylindrical tubes as thick as R/t = 10. A finite strain and thick shell formulation are 

additionally shown to model the ductility of such thick tubes well, even when 

ovalisation of the cross-section and strain hardening are included. The use of solid 
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continuum elements to model tubes in bending is found to become increasingly 

uneconomical as the R/t ratio rises above 25 with reduced advantages over shell 

elements, both in terms of the accuracy of the solution and the computation time. 
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1. Introduction 

Thin-walled shell theory is characterised by fundamental assumptions which allow 

shell structures to be analysed in an efficient manner by effectively reducing the 

dimensions of the problem from three to two.  Bushnell [1] summarises the familiar 

assumptions behind 'thin' or 'first-order' plate/shell theory, also known as Kirchhoff-

Love theory [2-5], as follows: 

I. Normals to the shell reference surface remain straight after deformation. 

II. Normals to the shell reference surface remain normal after deformation. 

III. The transverse normal stress is negligible. 

Further, though sometimes not specifically stated, this formulation also assumed that 

the strains are small compared with unity [6,7] and that the shell thickness is 

unchangeable (i.e. that the Poisson out-of-plane thickness changes can be ignored).  A 

'thick' or 'second-order' plate/shell theory is obtained by discarding Assumption II 

above, taking transverse shear deformation into account, and is known as Mindlin-

Reissner theory [8,9].  Progressively higher-order theories are obtained by additionally 

discarding first Assumption I and then III, leading to a full three-dimensional 

continuum theory with explicit modelling of all stress and strain components and 

changes of thickness (e.g. [10-13]). 

 

A decision on the choice between a thin or thick shell approximation or a full three-

dimensional analysis is not straightforward, since it depends strongly on the context. 

Flügge [14] suggested that “the shell thickness t should be small” compared to its other 

dimensions.  Timoshenko and Woinowsky-Krieger [15] wrote that thin shell theory is 

not rigorous enough when the thickness of a shell is “comparable to its radius of 

curvature R” and that thick shell theory, or a full three-dimensional analysis, should be 

applied instead.  Heyman [77] suggested that the term 'thin shell' refers to those with 

R/t > 20. Brush and Almroth [6] wrote simply that R/t >> 1 for thin shell theory to 

apply.  Bushnell [16] made a similar recommendation while Calladine [5] put a value 

on this limit, suggesting that shells as thick as R/t = 10 may be suitable for a “thin 

shell” treatment.  The theory manual of the widely used ABAQUS [17] finite element 

software recommends the application of transverse shear-flexible 'thick' shell elements 

when the thickness is “more than about 1/15 of a characteristic length on the surface of 

the shell”, which has multiple possible interpretations (e.g. R or Rt or 2.4 Rt ) and 
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so is slightly unclear.  Many other classical guidelines exist and each is similarly 

vague. 

 

The above ideas are all loosely based on order-of-magnitude assessments of analytical 

solutions to relatively simple linear-elastic problems and it is clear that all attempt to 

give advice, rather than a firm rule.  The present paper seeks to establish the validity of 

a shell theory approximation for the specific and practically important problem of thick 

cylindrical shells or thin tubular members (radius to thickness ratio R/t ≤ 50) of 

medium length (length to radius ratio L/R = 7) subject to global bending.  This 

configuration is significantly more complex than the elastic cases often considered in 

classical texts, and includes geometric nonlinearity with local bending effects, 

extensive material plasticity, strain hardening, and both limit point and bifurcation 

buckling.  This problem is an important and well-understood classical benchmark 

against which different theoretical analyses and modelling techniques may be tested.  

 

Since cylinders even thicker than those of this study are used as tubular structural 

members, those studied here are termed “thin tubes”.  By contrast, most of the 

literature on cylindrical shells is concerned with much thinner structures than are 

studied here, so the same cylinders are here termed “thick shells”.  These two terms are 

used here to refer to the same structure.  This paper forms part of a study that seeks to 

resolve the mismatches that currently exist between these two descriptions of the same 

item.  

 

2. Behaviour of thick shells under global bending  

When a bending moment is applied to the ends of a cylindrical tube or shell, the end 

cross-section rotates in the sense of the moment, inducing axial membrane 

compression on one side of the tube and corresponding tension on the opposite side.  

The system has two stable equilibrium paths, shown in Fig. 1 in terms of the applied 

end moment M (normalised by the full plastic moment Mp) against the end rotation θ.  

The primary path is elastic and close to linear until a moment approaching 

approximately 0.83Mp (the first yield moment My), after which inelastic strains develop 

and the tangent stiffness decreases significantly.  In the thicker tubes (approximately 

R/t < 50), the response remains almost geometrically linear up to Mp.  If a 
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geometrically linear elastic-plastic numerical analysis (termed MNA) is used to 

continue on this path, the analysis predicts indefinite strain hardening, but naturally 

there can be no loss of stability.  A geometrically nonlinear elastic-plastic numerical 

analysis (termed GMNA) predicts that significant ovalisation occurs after Mp has been 

exceeded, producing two causes for the loss of tangent stiffness until a limit point is 

reached [18-22].  This limit point corresponds to a snap-through buckle, and may be 

followed by a bifurcation in the post-buckling regime (Fig. 1).  The possibility of 

ovalisation causing elastic snap-through buckling, known as the Brazier effect 

[5,23,24], is only appropriate to very long cylinders, and thick tubes fail by plastic 

collapse before they reach the critical Brazier moment.  The plastic collapse of very 

thick cylinders involves extensive material straining, and this poses a significant 

challenge for many finite element models.  

 

 

Fig. 1 – Qualitative illustration of the equilibrium paths in cylinders with L/R = 7 and a 

strain hardening material law (cylinders of different length exhibit similar qualitative 

features) 

 

Following a possible bifurcation, a secondary path may produce localised axial 

wrinkles on the compressed side.  The point of bifurcation is strongly dependent on the 

R/t ratio.  If the tube is very thick, the response follows the primary ovalisation path 
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past the limit point to large deformations without bifurcating [25-27].  In slightly 

thinner cylinders, bifurcation may occur after the limit point, but for cylinders thinner 

than R/t = 50, bifurcation onto the secondary path occurs before the limit point is 

reached and the tube exhibits elastic-plastic bifurcation.  Perfect cylinders with R/t > 

200 suffer elastic bifurcation buckling [18,28,29,30,31,32].  The issue of wrinkling 

following bifurcation is important for a finite element model because it involves high 

local shell curvatures, so the elements must be able to accommodate these. 

 

3. Finite element modelling of thick shells under global bending  

A large body of research exists on the computational modelling of cylindrical tubes in 

bending, as it has wide applications in many engineering situations.  Early work on 

numerical solutions to the nonlinear ovalisation aspect of tubes in bending may be 

traced back to Ades [33], Reissner [34], Axelrad [35], Kempner and Chen [36], 

Kedward [37] and others, but finite element formulations arguably appeared some time 

later.  For example, Row et al. [26] presented a two-dimensional finite element for the 

analysis of thick-walled cylinders in the context of deep-water pipelines.  Karamanos 

and Tassoulas [27] employed specialised nonlinear 'tube elements' based on a finite 

strain formulation by Needleman [38] enhanced with the J2-flow theory of plasticity 

(von Mises yield criterion [39]) to study the elastic-plastic behaviour of tubes under 

both external pressure and bending, with the results being in very good agreement with 

experimental data [40].  Kyriakides and Ju [30,41] analysed the inelastic response of 

aluminium tubes in bending using experiments and numerical studies assuming their 

own small-strain J2-flow plasticity theory shell finite element formulation and exact 

modelling of circular geometries, with excellent agreement between the two.  

Karamanos and Tassoulas [42,43] compared numerical predictions of local elastic-

plastic buckling for thick tubes with R/t = 21 and L/R = 20 under bending using similar 

'tube elements' with experimental data, also successfully.  More recently, Karamanos 

and Houliara [31,44,45] studied the elastic bifurcation buckling behaviour of long thin-

walled tubes under bending (R/t > 100 and 'infinite' L/R) using a similar 'tube element' 

formulation.  Though successful, the numerical formulations presented in these 

publications are highly specialised and effectively beyond the reach of practising 

engineers and most researchers, who generally rely on commercially available finite 

element software. 
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 In recent years, several studies emerged on the elastic-plastic behaviour of tubes under 

combined bending and internal pressure in relation to buried pipelines.  These involved 

experiments but extended the knowledge base with extensive finite element analyses 

using ABAQUS.  They key effect of internal pressure is that it stabilises the tube and 

usually pushes bifurcation buckling into the plastic material range.  In particular, 

Jayadevan et al. [46] and Østby et al. [47] studied the large plastic deformation 

behaviour of very thick tubes with R/t = 10 under tension and bending respectively in 

the context of the fracture response of pipelines using the reduced-integration second 

order ABAQUS C3D20R solid continuum element and an isotropic power-law strain 

hardening material model.  Further, Corona et al. [48] applied the fully-integrated 

second order ABAQUS C3D27 solid continuum element to model thick tubes with R/t 

≈ 18 under bending using an elastic-plastic Ramberg-Osgood [49] strain hardening 

material model.   Limam et al. [50] used the fully-integrated first order ABAQUS S4 

thick shell element with a similar strain hardening model based on a Ramberg-Osgood 

empirical fit to measured material properties.  They successfully reproduced 

experimental moment-curvature curves for pressurised shells as thick as R/t ≈ 26 with 

L/R ranging from 22 to 34.  Lastly, Limam et al. [51] modelled similarly thick shells 

with L/R = 10 using instead the fully-integrated first order ABAQUS C3D8 solid 

continuum element and obtained the same degree of success in reproducing 

experimental results. 

 

The abovementioned studies suggest that an accurate modelling of the plastic material 

response is crucial for thick cylinders under global bending.  Together, these authors 

showed conclusively that both the shell and solid theoretical treatments may be used 

successfully to model the buckling of tubes with realistic, large strain, inelastic 

material behaviour.  Although these studies partially addressed the same topic as is 

covered by the work presented here, they gave little justification for their choice of 

theory and did not investigate whether a solid or shell element was necessary in each 

case.  The apparent bias towards ABAQUS is purely coincidental, and the authors are 

not aware of any published computational studies of tubes in bending which use other 

commercial finite element software.  
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The present paper is an attempt to provide rigorous numerical evidence to aid in the 

selection of an appropriate finite element by comparing the predicted nonlinear plastic 

buckling behaviours of thick and thin tubes under global bending when modelled using 

several solid continuum finite elements and several shell elements.  Three different 

radius to thickness (R/t) ratios were chosen: 10, 25 and 50.  The ratio R/t = 10 is a tube 

so thick that shell theory may be thought quite inappropriate (see initial discussion), 

while R/t = 50 should be well within the range where a thin shell treatment has 

traditionally been thought to be acceptable.  The cylinder was assumed to be of 

medium length with L/R = 7, of sufficient length for the local shell bending effects near 

the end boundaries to have little influence on the result [22,32,46,47]. 

 

4. Numerical treatment used in this study  

Three cylindrical tubes with radius to thickness (R/t) ratios of 10, 25 and 50 were 

modelled using finite elements corresponding to thick and thin shell and solid 

continuum theoretical treatments.  All analyses were undertaken using geometrically 

and materially nonlinear analysis (GMNA), as defined in the European Standard on 

shell buckling EN 1993-1-6 [52], to fully capture distortions, ovalisation and 

bifurcations. To provide relatively generic conclusions, the material properties were 

taken as a characterised version of the uniaxial tensile behaviour of a mild isotropic 

steel  (Fig. 2), with elastic modulus E = 200 GPa, linear-elastic up to a first yield stress 

of σy = 250 MPa, followed by 2.5% linear strain hardening up to an ultimate stress of 

σu = 380 MPa.  For simplicity, after the ultimate stress σu was reached, an indefinitely 

ductile plateau was assumed and no rupture or cracking was implemented in the 

material model.  ABAQUS [17] v.6.10.1 was used and the nonlinear equilibrium path 

was followed using the Riks modified arc-length method [53]. This particular choice of 

software package was made due to its widespread use and credibility in previous 

research work in this field and due to its arguably very extensive element library, 

though the results may readily be generalised to other commercial and academic finite 

element packages. 

 



Published in: International Journal of Mechanical Sciences, 74, 143-153. 
  DOI: http://dx.doi.org/10.1016/j.ijmecsci.2013.05.008 

 

 

0  0.13                 2.73  %   strain 
 

380 
 
250 
 

Stress 
(MPa) 
 

E 

 

0.025E 

 

σu 

σy 

 

Fig. 2 – Assumed engineering stress-strain relation, with 2.5% linear strain hardening 

 

The bending moment was applied through a reference point at the centre of the cross-

section at both ends as shown in Fig. 3, drawn using the right-hand screw convention.  

The moment was transferred into the end nodes of the tube through a rigid body 

kinematic coupling.  The end notes were not permitted to displace in the plane of the 

ends of the undeformed tube or to rotate into the plane of circumferential symmetry, 

keeping the end section circular, but free to displace axially.  The reference applied 

moment was the full plastic moment Mp (small displacement theory) assuming an ideal 

elastic-plastic material, and is given by: 

3 3
4

3 2 2
p y

t t
M R Rσ

    
= + − −    

     
       (1) 
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Fig. 3 – Features of the numerical model for both shell and solid elements 
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The tube geometry was initially assumed to be perfect with no modelled imperfections.  

Symmetry conditions were exploited where possible for a more efficient analysis (Fig. 

3), consistent with previous numerical research [46,47,50,51].  Because the 

calculations were performed on a powerful computer, it was not considered necessary 

to economise on the mesh and some analyses employed many more dofs than was 

strictly necessary.  Local shell bending effects were observed near the ends (z = 0, L) in 

tubes with R/t = 25 and 50 as well as local bifurcation buckling at midspan (z = L/2), so 

the mesh resolution was increased at these locations to keep the element size well 

below 0.25 Rt  (i.e. approximately 10% of the linear axial bending half-wavelength λ 

≈ 2.44 Rt  or 14% of the classical axisymmetric buckle wavelength λcl ≈ 1.73 Rt  

[54,55]).  This mesh resolution was verified by a careful initial mesh convergence 

study. 

 

The extensive ABAQUS [17] element library contains many elements corresponding 

closely to generic solid continuum and thick and thin shell finite element formulations.  

It is unfeasible and unnecessary to test all possible elements for this specific problem, 

so a representative selection was made of three element types from each of the 

theoretical treatments.  Tetrahedral and triangular elements are known to be sometimes 

unreliable and overly stiff [17,56,57] for problems involving extensive bending or high 

strain gradients, unless used with an extremely fine mesh, so only hexahedral and 

rectangular elements were used.  The chosen solid and shell elements are summarised 

in Tables 1 and 2 respectively. 
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Table 1 – Selected 3D solid continuum finite element formulations with ABAQUS 

implementations 

Name Order Type No. of integration 
points  

Other 

Brick-8 

(C3D8R) 

1st 

(linear) 

8-noded 

brick 

1×1×1 Reduced integration, 3 

displacement dofs/node 

Brick-8I 

(C3D8I) 

1st 

(linear) 

8-noded 

brick 

2×2×2 3 displacement + 13 

incompatible modes dofs 

Brick-20 

C3D20R 

2nd 

(quadratic) 

20-noded 

brick 

2×2×2 Reduced integration, 3 

displacement dofs/node 

 

The first-order reduced-integration Brick-8 solid continuum element is a constant-

strain element with a single Gauss integration point and is reported [17] to produce 

inferior results under certain load conditions, unless extremely fine meshes are used.  

The first-order Brick-8I element is fully-integrated with 2×2×2 internal Gauss points, 

includes 13 additional 'internal dofs per element for incompatible modes [58,59] and is 

of comparable accuracy to the higher-order Brick-20. The reduced integration 20-

noded brick element has the same number of through-thickness Gauss integration 

points as Brick-8I (2×2×2) but yields [17] more accurate results in stress analyses than 

the corresponding fully-integrated 20-noded brick element which boasts 3×3×3 

integration points and is an order of magnitude more computationally expensive.  The 

issue of parasitic shears leading to an overly stiff response in bending in the plane of a 

first-order solid continuum element is thought to be of minor significance here as only 

reduced-integration or incompatible mode solid continuum elements were used.  The 

formulation of each of these solid elements allows for large strains and rotations, and 

employs the flow theory of plasticity though the use of kinematic plastic strain 

hardening is not recommended for strains greater than 20-30% [60].  Such levels of 

strain were not reached in the analyses performed for this study. 
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Table 2 – Selected 3D structural shell finite element formulations with ABAQUS 

implementation 

Name Order Type Shell theory Other 

Thick-

shell-4 

(S4R) 

1st  

(linear) 

4-noded 

doubly-curved 

rectangle 

Thick & thin 

depending 

on thickness 

Finite strain, reduced integration, 

hourglass control, 6 dofs/node 

Thick-

shell-8 

(S8R) 

2nd 

(quadratic) 

8-noded 

doubly-curved 

rectangle 

Thick Small strain, finite rotation, 

reduced integration, 6 dofs/node 

Thin-

shell-9 

(S9R5) 

2nd 

(quadratic) 

9-noded 

doubly-curved 

rectangle 

Thin Small strain, finite rotation, 

reduced integration, 5 dofs/node 

 

Each of the shell elements investigated in this study employs reduced integration, 

which permits extensive savings in computation time.  Additionally, such elements are 

known to be generally free of shear locking [17,61,62,63].  The first-order Thick-shell-

4 element is as a general-purpose shell element with 6 dofs per node (3 displacements 

and 3 rotations), applicable for most thick and thin shell applications and permitting 

large strains.  Its present formulation includes a stabilisation parameter that effectively 

eliminates artificial 'hourglass' deformation modes.  It employs thick (Mindlin) shell 

theory when necessary and becomes a 'discrete Kirchhoff' element for thin shells.  The 

second-order Thick-shell-8 element is similar and includes finite rotations, though its 

formulation only permits small strains is suitable only for thick shell analyses.  The 

second-order Thin-shell-9 element formulation assumes only 5 dofs per node (3 

displacements and 2 tangential rotations) and includes an additional centre node, 

apparently for improved numerical stability [17,64,65].  It is recommended for use in 

elastic thin-shell buckling problems and it has been described as a robust and efficient 

element in a variety of structural engineering problems (e.g. [63,66,67,68]).  Lastly, 

though all solid elements are naturally capable of modelling changes in wall thickness 

due to Poisson effects, the only shell element that can do so is the Thick-shell-4 

element due to its finite strain formulation.  The strain measures in each of these shell 

elements are approximations to those of the Koiter-Sanders shell theory [69].  Other 
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finite strain formulations for shear-flexible shell finite elements include those of Bathe 

et al. [70], Ramm et al. [71], Bischoff and Ramm [72] and many others. 

 

The analysis of thick shells or thin tubes subject to global bending is a relatively 

'smooth' nonlinear problem with no contact conditions, sharp stress localisations or 

severe element distortions [1,17].  A second-order Brick-20 element might therefore be 

thought to offer the 'best' solution of all the elements explored.  It remains, however, 

difficult to say with full certainty a priori which element should give the 'right' answer 

for any particular R/t ratio, even for this apparently simple benchmark test.  It may also 

be noted that experiments on cylinders of this kind tend to display some scatter 

between individual apparently identical tests, and the mismatches with computational 

predictions are generally comparable in magnitude to the differences between the 

predictions of different elements in this study.  Consequently no attempt is made here 

to select the “correct” result on the basis of a match with physical testing.  

 

5. Results of the nonlinear buckling analyses 

5.1 Bending of cylindrical tubes with R/t = 10 

The preceding selection of shell and solid continuum elements were used to predict the 

behaviour of the thick cylindrical tube with R/t = 10.  The peak moments predicted by 

each formulation and selected properties of the meshes are summarised in Table 3.  

The predicted relationships between applied moment and the normalised mean tube 

curvature are presented in Fig. 4, with a close-up view near the limit point in Fig. 5.  

This normalised curvature Φ is defined as the ratio of the end rotation βy about the y-

axis (Fig. 3) to its first yield value given by Lσy/(ER) for a cross-section that is free of 

ovalisation. A normalised curvature value of unity is thus reached at the point of first 

yield in a section that does not distort. 
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Fig. 4 – Normalised moment-curvature curves for R/t = 10 

 

 

Fig. 5 – Normalised moment-curvature curves for R/t = 10: close-up near limit point 

 

The analyses that employed a solid continuum treatment were all successful in 

following the primary load path well into the post-buckling range and predicted a limit 

moment at approximately 1.41Mp.  This thick cylinder reaches a limit point snap-
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through buckle (Fig. 6) due to extensive plasticity and cross-section ovalisation.  The 

possible secondary path, involving axial wrinkling, is not found even very far into the 

post-buckling range.  The Brick-8I and Brick-20 solid continuum elements predict 

nearly identical responses (Fig. 4 & 5), which are slightly stiffer and consequently 

stronger (by 0.3%) than the predictions of the Brick-8 and Thick-shell-4 elements.  The 

very small differences between these three analyses are so tiny as to make them 

effectively all the same in engineering terms, so the results from these three elements 

are here deemed to be the 'correct' numerical prediction.  

 

The corresponding analyses employing a shell treatment were problematic.  The Riks 

algorithm was able to follow the primary equilibrium path until the limit point was 

almost reached, but encountered severe numerical difficulties when attempting to go 

into the post-buckling range.  A solution was finally obtained by increasing the number 

of section integration points from 5 (default) to at least 5 times that number (Simpson's 

rule) together with a small mesh perturbation.  This perturbation was axially sinusoidal 

but in the ovalising circumferential harmonic two (δ = δosin(πz/L)cos(2θ)) with an 

amplitude δo ≈ 10-2
t, where θ is the circumferential coordinate (Fig. 3).  This form 

maintained the ends circular and reflected the shape of the global nonlinear collapse 

mode (Fig. 6).  

 

Using this slightly perturbed mesh, the Thick-shell-4 element reproduced the same 

path as the Brick-8 element, with an identical limit moment and post-buckling 

response, but using far fewer dofs.  This success is attributable to its finite strain 

formulation, which allows the Thick-shell-4 element to model changes in wall 

thickness, albeit not quite as well as the solid continuum elements (Table 3).  The 

Thick-shell-8 and Thin-shell-9 elements both predicted a limit moment within 2% of 

the 'correct' value.  However, the predicted post-buckling response was not good, as the 

moment dropped to 95% of the limit value at a rotation only slightly greater than half 

the correct value.  This appears to be caused by the small strain formulation which 

renders these elements unable to model changes in wall thickness.  
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Fig. 6 – Predicted buckling modes for R/t = 10 

 

Table 3 – Buckling moments and selected mesh properties for R/t = 10  

R/t = 10 Brick-8 Brick-8I Brick-20 Thick-
shell-4 

Thick-
shell-8 

Thin-
shell-9 

No. of elements 

through wall thickness 

4 4 2 n/a n/a n/a 

Axial element size 0.08√(Rt) 0.08√(Rt) 0.17√(Rt) 0.04√(Rt) 0.09√(Rt) 0.08√(Rt) 

Total no. of dofs 245,031 1,074,951 137,184 40,632 175,212 232,812 

% change in thickness† 

(compressive side) 

+2.45 +2.46 +2.47 +1.10 n/a n/a 

% change in thickness† 

(tensile side) 

–1.65 –1.68 –1.68 –0.75 n/a n/a 

Buckling moment 

MGMNA/Mpl 

1.411 1.414 1.415 1.411 1.393 1.386 

† at the buckling moment 
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Plasticity clearly dominates the failure mode of such thick cylinders under bending.  

For an ideal elastic-plastic material without cross-section distortion, the entire cross-

section must be fully yielded to attain the full plastic moment Mp.  But in the presence 

of strain hardening, Mp is reached and significantly exceeded before bifurcation or a 

limit point.  It should be recalled that some manner of hardening, be it geometric or 

strain-related, is essential for the full plastic moment to be reached in a numerical 

analysis, and since cylinders under global bending do not exhibit any geometric 

hardening (ovalisation is destabilising), even at massive rotations of the tube ends, Mp 

cannot be reached without strain hardening (e.g. [73,74]). 

 

The degree of ovalisation is illustrated in Fig. 7 in terms of the convenient out-of-

roundness parameter U used in the European Standard on shell buckling EN 1993-1-6 

[52], defined as U = (Dmax – Dmin)/Dnom where Dnom, Dmin and Dmax are the nominal, 

minimum and maximum diameters respectively at any step in the analysis.  To provide 

a comparison, typical ovalisation fabrication tolerances are of the order of U ≈ 0.01, 

whereas for R/t = 10 this study found an ovalisation of U ≈ 0.08 at the maximum 

moment.  Ovalisation of the cross-section is thus significant in medium-length tubes 

even when they are very thick, though the peak moment is of course far below the 

elastic Brazier snap-through moment MBraz ≈ 1.035Et
2
R because of the dominant effect 

of plasticity (MBraz/Mp ≈ 20.7, 8.3 and 4.1 for R/t = 10, 25 and 50 respectively). 
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Fig. 7 – Illustration of the effect of ovalisation for R/t = 10 
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5.2 Bending of cylindrical tubes with R/t = 25 

For the cylindrical tube with R/t = 25, the predicted moment-curvature paths are 

presented in Figs 8 and 9.  The buckling moments and mesh details are summarised in 

Table 4.  In a manner similar to R/t = 10, the tube undergoes significant strain 

hardening and ovalisation leading to a limit point at approximately 1.28Mp.  However, 

a bifurcation onto a secondary equilibrium path is encountered close to the peak 

moment and in the post-buckling condition, local axial wrinkling occurs with a half-

wavelength of approximately 1.8√(Rt) (Fig. 9) which is very comparable with the half-

wavelength for axisymmetric buckles under uniform compression [54,55].  This 

wavelength was always modelled with more than 10 solid or 40 shell element lengths.  

No perturbation of the shell element meshes was necessary for these analyses and no 

numerical difficulties were encountered. 

 

 

Fig. 8 – Normalised moment-curvature curves for R/t = 25 

 

However, the rather rounded transition from the pre-buckling to the post-bifurcation 

paths, seen in the detailed examination of these curves (Fig. 9), deserves explanation.  

Such behaviour is typical of shells with very small imperfections [75].  No intentional 

imperfections were used in these models, but it may be noted that all of these elements 

are not truly circular in their geometry and that small round-off errors in the plasticity 
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modelling may also cause some tiny imperfections.  Indeed, even second-order 

elements offer at best a quadratic local approximation to what should be an exactly 

circular geometry for the tube.  Thus if the 'true' bifurcation is estimated as the 

intersection of the extrapolated pre-buckling and post-buckling paths, the drop in the 

predicted peak moment is less than 1%.  Elastic imperfection sensitivity curves for this 

load case in thin shells [32,76] indicate that such a fall could reasonably be caused by 

an imperfection of amplitude in the order of δo = 0.001t – 0.01t , which is clearly 

possible here despite the very fine mesh.  

 

 

Fig. 9 – Normalised moment-curvature curves for R/t = 25: close up near limit point 

 

In general, the close-up view of the peak of these curves (Fig. 9) suggests that similar 

conclusions concerning the elements may be drawn for R/t = 25 as for R/t = 10. The 

Brick-8I and Brick-20 solid continuum elements appear to follow identical paths and 

give a marginally higher prediction of the peak moment.  The first order Brick-8 

element is close on their heels, with the finite strain Thick-shell-4 element also very 

close behind predicting a peak moment that is lower by 0.3%.  The Thick-shell-8 Thin-

shell-9 elements both predict a slightly lower moment at the limit point and transition 

from prebuckling to post-buckling with more equivalent imperfection.   
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Nevertheless, the buckling moments are all within 1% of each other and no 

experiments are known that can achieve the accuracy necessary to identify a 'correct' 

result between different numerical models. Both the solid and shell treatments predict 

the same buckling mode (Fig. 10).  As the cylinder becomes thinner, it becomes 

increasingly uneconomical to use solid elements because at least two layers are 

required to model the through-thickness stress distribution properly (four layers for the 

reduced-integration first-order Brick-8 element with a single Gauss integration point 

per element - Table 1).  This greatly increases the required degrees of freedom.  

Additionally, solid elements no longer offer any useful increase in accuracy over the 

much cheaper finite strain Thick-shell-4 element.  Nevertheless, the differences 

between the predictions of all six elements are relatively small, so all may be regarded 

as providing an adequate modelling at this radius to thickness ratio.  

 

 

Fig. 10 – Predicted buckling modes for R/t = 25 
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Lastly, the present formulation of thick and thin second-order shell elements only 

permits small strains.  The circumferential distribution of the axial plastic membrane 

strains at the limit point through the axis of longitudinal symmetry at midspan (½L) is 

shown in Fig. 11.  This part of the cylinder experienced the highest stresses and strains, 

yet the maximum membrane plastic strains at buckling were only of the order of 3.5%.  

Elastic strains were naturally smaller, of the order of 0.2%.  As no post-bifurcation 

deformations have yet developed, there is no axial wrinkling of the shell with its 

associated high local curvatures, so the surface strains are very similar to the 

membrane strains.  These strain magnitudes are clearly small enough to allow a small-

strain shell element to follow the path at least as far as the limit point.  However, it is 

best if a shell element can model local changes in wall thickness to obtain an accurate 

prediction of the post-buckling ductility in shells with low R/t.  Neither of the small 

strain second-order shell elements is able to do this.  The apparently cruder first-order 

Thick-shell-4 element clearly offers the most accurate shell element treatment in this 

case (Fig. 9). 

 

 

Fig. 11 – Axial plastic membrane strains at the instant of buckling through the axis of 

axial symmetry (½L - midspan) 
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Table 4 – Buckling moments and selected mesh properties for R/t = 25 

R/t = 25 Brick-8 Brick-8I Brick-20 Thick-

shell-4 

Thick-

shell-8 

Thin-

shell-9 

No. of elements  

through wall thickness 

4 4 2 n/a n/a n/a 

Min. axial  

element size 

0.10√(Rt) 0.10√(Rt) 0.13√(Rt) 0.03√(Rt) 0.04√(Rt) 0.04√(Rt) 

Max. axial  

element size 

0.10√(Rt) 0.10√(Rt) 0.13√(Rt) 0.23√(Rt) 0.28√(Rt) 0.28√(Rt) 

Total no. of dofs 419,496 1,848,196 531,231 174,852 196,932 261,732 

% change in thickness† 

(compressive side) 

+1.80 +1.84 +1.84 +0.79 n/a n/a 

% change in thickness† 

(tensile side) 

–0.87 –0.89 –0.89 –0.40 n/a n/a 

Buckling moment 

MGMNA/Mpl 

1.278 1.282 1.282 1.279 1.262 1.262 

† at the buckling moment 

 

5.3 Bending of cylindrical tubes with R/t = 50 

For the cylindrical tube with R/t = 50, the predicted equilibrium paths and buckling 

modes are presented in Figs 12, 13 and 14.  The mesh details and buckling moments 

are summarised in Table 5.  As the tube is now relatively thin, the primary ovalisation 

path bifurcates onto the secondary wrinkling path well before the limit point and the 

cylinder experiences a sudden elastic-plastic bifurcation.  The axial half-wavelength of 

the local wrinkling mode is approximately 3.5√(Rt), corresponding to at least 20 

element lengths.  These wrinkles are roughly twice as long as those in the thicker tube 

and are quickly followed by localisation. The simple Brick-8 solid continuum element 

now becomes very uneconomical indeed, since four layers of these elements (with only 

4 integration points through the thickness) are needed to obtain an acceptable 

approximation of the rapidly-varying axial bending near the ends of the tube.  A better 

outcome was achieved using only 2 layers of Brick-8I or Brick-20 elements due to the 

larger number of integration points (Table 1).  However, the number of required dofs 
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in all solid element cases is almost three times that of the simplest shell elements, with 

no noticeable advantage in the accuracy of the solution. 

 

 

Fig. 12 – Normalised moment-curvature curves for R/t = 50 
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Fig. 13 – Normalised moment-curvature curves for R/t = 50: close up near bifurcation 

point 

 

 

Fig. 14 – Predicted buckling modes for R/t = 50 
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The axial membrane strains at midspan follow the same circumferential variation for 

R/t = 50 as for R/t = 25 (Fig. 11) except that the peak compressive strain at the instant 

before bifurcation is now less than 2%.  The axial variation on the compressed 

generator at θ = 0° (Fig. 15) shows that plastic strains are low everywhere before 

buckling, the largest variation being caused by local shell bending at the end 

boundaries.  However, the local curvatures associated with the axial wrinkling mode 

become significant in the post-buckling range.  At a post-buckling moment of 0.9Mp, 

the peak axial plastic strains reach 18% on the compressed outer surface, a value that 

depends on the element (Fig. 16).  A finite strain formulation may thus be necessary if 

the model is required to explore ductility well into the post-buckling range and 

extensive plasticity is involved.  

 

 

Fig. 15 – Axial plastic membrane strains at the instant before buckling through the axis 

of circumferential symmetry at θ = 0° for R/t = 50 
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Fig. 16 – Axial plastic surface strains at approx. 0.9Mp in the post-buckling range on 

the most tensile and compressive generators for R/t = 50 

 

Table 5 – Buckling moments and selected mesh properties for R/t = 50 

R/t = 50 Brick-8 Brick-8I Brick-20 Thick-

shell-4 

Thick-

shell-8 

Thin-

shell-9 

No. of elements  

through wall thickness 

4 2 2 n/a n/a n/a 

Min. axial element size 0.08√(Rt) 0.16√(Rt) 0.16√(Rt) 0.06√(Rt) 0.12√(Rt) 0.12√(Rt) 

Max. axial element size 0.25√(Rt) 0.31√(Rt) 0.31√(Rt) 0.31√(Rt) 0.37√(Rt) 0.37√(Rt) 

Total no. of dofs 609,036 591,849 564,636 194,172 146,172 194,172 

Buckling moment 

MGMNA/Mpl 

1.124 1.136 1.136 1.136 1.121 1.121 

 

6. Verification against experiments 

The preceding numerical investigations suggest that a shell element is suitable for the 

accurate modelling of cylindrical shells as thick as R/t = 10 under global bending with 

extensive plasticity. A further set of numerical analyses were performed to verify the 

suitability of a shell treatment to reproduce selected results from the extensive 
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programme of experiments described by Kyriakides and Ju [41]. Eleven long 

aluminium 6061-T6 alloy cylindrical tubes with R/t ratios between 9.75 and 30.25 

were bent well into the plastic range. The material properties were deduced from 

measured uniaxial stress-strain curves and a Ramberg-Osgood relation of the form ε = 

(σ/E)(1+ 3/7 (σ/σy)
n-1) was used to approximate the material. Tubes with R/t = 9.75, 

17.85 and 25 were chosen here for this verification, with R/t = 9.75 being at the very 

thickest limit of the expected range of validity for shell models. The geometrical and 

material parameters of selected experiments of tubes are listed in Table 6. The 

predictions of the Thick-shell-4 element were additionally compared with those of the 

specialised shell finite element formulation described in the companion paper to the 

experimental study, Ju and Kyriakides [30], which employed small strain, finite 

rotation kinematic relations, J2 plasticity theory and modelled the circular curvature of 

the shell exactly. 

 

 

Fig. 17 – Numerical verification of selected experimental results of tubes in bending - 

normalised moment-curvature plots 

 



Published in: International Journal of Mechanical Sciences, 74, 143-153. 
  DOI: http://dx.doi.org/10.1016/j.ijmecsci.2013.05.008 

 

 

Fig. 18 – Numerical verification of selected experimental results of tubes in bending - 

normalised ovalisation-curvature plots 

 

Table 6 - Geometric and material characteristics of selected experiments from 

Kyriakides and Ju [41] assuming an aluminium alloy 6061-T6 

Experiment N. R/t L/R E (GPa) σy (MPa) σ0 (MPa) Power n 

3 25.00 59.84 70.67 307.5 307.0 29 

6 17.85 47.87 67.36 282.0 283.4 28 

11 9.75 47.83 68.67 308.9 309.0 37 

 

The experimental and predicted relationships between the bending moment, mean tube 

curvature and ovalisation (Figs 17 and 18) have been normalised by the parameters M0 

= σ0D
2
t and κ1 = t/D2 respectively (see Table 6 for σ0, the 0.2% proof stress), consistent 

with the notation of the original publication. The thick shell formulation exhibits a very 

good agreement with the experimental results for each tube, reproducing the 

ovalisation and buckling response accurately until deep into the plastic zone. In 

particular, the present predictions exhibit a remarkably close agreement with the 

numerical predictions of Ju and Kyriakides [30] for each tube except the very thickest 

one, R/t = 9.75, for which neither formulation appears to predict the ovalisation 

response particularly well (Fig. 18) though the moment-curvature path is captured 

reasonably adequately. This suggests that a shell treatment is quite satisfactory for the 
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nonlinear buckling analysis of very thick cylindrical tubes with a complex material 

definition and extensive plasticity.  

 

7. Conclusions 

The following conclusions may be drawn from this study: 

 

1) The classical literature is surprisingly vague about when a shell structure may be 

analysed using a thin shell theory approximation.  Current advice is based on order-of-

magnitude assessments of analytical solutions to elastic problems that have relatively 

simple mechanics. 

 

2) A thin shell treatment was found to give reasonably accurate estimates of the elastic-

plastic strain hardening buckling moment under uniform bending for cylinders as thick 

as R/t = 10.  However, this is insufficient to model the ductility of the response well, 

and in some cases this may also be an important criterion of failure. A thick shell 

treatment is more appropriate in such cases. 

 

3) The predictions produced by a finite strain thick shell formulation were found to be 

of comparable accuracy to those produced by a solid continuum formulation for 

cylinders as thick as R/t = 10. For such very thick cylinders, however, non-standard 

modelling techniques may need to be applied to ensure convergence.  It is 

recommended that the second order or enhanced solid continuum elements are used to 

model such thick tubes. 

 

4) It becomes uneconomical to use solid continuum elements for the analysis of 

uniform cylindrical tubes under global bending when R/t ≥ 25, as several layers of such 

elements are necessary to correctly model the through-thickness bending at the end 

boundaries.  Finite strain shell elements should be used instead, with no noticeable loss 

in accuracy.  This conclusion may of course no longer be valid for the analysis of 

composite shells, which were not considered here. 
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5) Small strain shell elements may be applied with confidence for R/t ≥ 50, except 

when the goal is to predict the ductility of the behaviour far into the post-buckling 

range. 

 

6) The finite strain thick shell element was carefully verified against selected 

experimental results of tubes in bending as reported in Kyriakides and Ju [41]. The 

predictions exhibit a remarkably close agreement for tubes as thick as R/t = 9.75. This 

suggests that thick shell elements may give realistic results even for very thick and 

long cylinders and that it is unnecessary to model such tubes using computationally-

expensive solid continuum elements or more specialised finite element formulations.   

 

Acknowledgements 

The authors would like to thank Dr Lei Chen who completed his PhD at The 

University of Edinburgh in 2011 and whose work laid much of the foundation and 

background to the material presented in this paper.  The work itself was carried out as 

part of the EU Combitube research project funded by the European Commission, grant 

number RFSR-CT-2011-00034. 

 

References 

[1] Bushnell D. (1985). “Computerized buckling analysis of shells” Martinus Nijhoff 

Publishers. 

 

[2] Donnell L.H. (1933). "Stability of thin-walled tubes under torsion" NACA Report 

No. 479. 

 

[3] Timoshenko S. P. (1953). “History of strength of materials” McGraw-Hill Book 

Company. 

 

[4] Novozhilov V. V. (1964). "The theory of thin shells" Translation of the 2nd 

Russian edition by P.G. Lowe, ed J.R.M. Radok, P. Noordhoff Ltd, Groningen-

Holland. 

 

[5] Calladine C. R. (1983). “Theory of shell structures” Cambridge University Press. 



Published in: International Journal of Mechanical Sciences, 74, 143-153. 
  DOI: http://dx.doi.org/10.1016/j.ijmecsci.2013.05.008 

 
 

[6] Brush D.O. & Almroth B.O. (1975). “Buckling of bars, plates and shells” McGraw-

Hill. 

 

[7] Seide P. (1975). "Small elastic deformations of thin shells" Noordhoff, Leyden, 

Holland. 

 

[8] Reissner E. (1945). “The effect of transverse shear deformation on the bending of 

elastic plates” J. Appl. Mech, 12, A69-A77. 

 

[9] Mindlin R. D. (1951). “Influence of rotary inertia and shear on flexural motions of 

isotropic elastic plates” J. Appl. Mech, 18, 31-38. 

 

[10] Mushkelishvili N.I. (1953). “Some basic problems in the mathematical theory of 

elasticity” 3rd. Ed. P. Noordhoff Ltd., Groningen-Holland. 

 

[11] Green A.E. & Zerna W. (1968). "Theoretical elasticity" Oxford University Press. 

 

[12] Timoshenko S. P. & Goodier J.N. (1970). “Theory of Elasticity” McGraw-Hill 

International Editions. 

 

[13] Ramm E. (2000). "From Reissner plate theory to three dimensions in large 

deformation shell analyses" ZAMM Zeitschrift für Angewandte Mathematik und 

Mechanik, 80(1), 61-68. 

 

[14] Flügge W. (1975). “Statik und Dynamik der Schalen” Springer-Verlag. 

 

[15] Timoshenko S. P. & Woinowsky-Krieger S. (1959). “Theory of plates and shells” 

McGraw-Hill International Editions. 

 

[16] Bushnell D. (1984). “Computerized analysis of shells - governing equations” 

Computers & Structures, 18(3), 471-536. 



Published in: International Journal of Mechanical Sciences, 74, 143-153. 
  DOI: http://dx.doi.org/10.1016/j.ijmecsci.2013.05.008 

 
 

[17] ABAQUS (2011). “ABAQUS Version 6.10.1” Dassault Systèmes Simulia Corp., 

Providence, RI, USA. 

 

[18] Stephens W.B., Starnes J.H. Jr & Almroth B.O. (1975). "Collapse of long 

cylindrical shells under combined bending and pressure loads" AIAA Journal, 13(1), 

20-25. 

 

[19] Gellin S. (1980). "The plastic buckling of long cylindrical shells under pure 

bending" International Journal of Solids and Structures, 10, 397-407. 

 

[20] Kyriakides S. & Shaw P.K. (1982). “Response and stability of elastoplastic 

circular pipes under combined bending and external pressure” Int. J. Solids and 

Structures, 18(11), 957-973. 

 

[21] Shaw P.K. & Kyriakides S. (1985). “Inelastic analysis of thin-walled tubes under 

cyclic bending” Int. J. Solids and Structures, 21(11), 1073-1100. 

 

[22] Chen L., Doerich C. and Rotter J.M. (2008) “A study of cylindrical shells under 

global bending in the elastic-plastic range”, Steel Construction - Design and Research, 

Stahlbau, 1(1), 59-65. 

 

[23] Brazier L. G. (1927). “On the flexure of thin cylindrical shells and other 'thin 

sections'” Proc. Roy. Soc. London Series A, 116, 104-114. 

 

[24] Mathon C. & Limam A. (2006). "Experimental collapse of thin cylindrical shells 

submitted to internal pressure and pure bending" Thin-Walled Structures¸ 44, 39-50. 

 

[25] Sherman D.R. (1976). "Test of circular steel tubes in bending" ASCE J. Struct. 

Div., 102(11), 2181-2195. 

 



Published in: International Journal of Mechanical Sciences, 74, 143-153. 
  DOI: http://dx.doi.org/10.1016/j.ijmecsci.2013.05.008 

 
[26] Row D., Chan E. & Langner C.G. (1987). "Prediction of pipe collapse under 

external pressure, axial load and bending" Offshore and arctic pipelines, J. S. Chung 

and K. Karal (eds), ASME, New York. 

 

[27] Karamanos S.A. & Tassoulas J.L. (1991). “Stability of inelastic tubes under 

external pressure and bending” ASCE J. of Eng. Mech., 117(12), 2845-2861. 

 

[28] Seide P. & Weingarten V.I. (1961). "On the buckling of circular cylindrical shells 

under pure bending" Journal of Applied Mechanics, 28(1), 112-116. 

 

[29] Chen Y.N. & Kempner J. (1976). "Buckling of oval cylindrical shells under 

compression and asymmetric bending" AIAA Journal, 14, 1235-1240. 

 

[30] Ju G.T. & Kyriakides S. (1992). "Bifurcation and localization instabilities in 

cylindrical shells under bending - II. Predictions" International Journal of Solids and 

Structures, 29(9), 1143-1171, 

 

[31] Karamanos S.A. (2002). “Bending instabilities of elastic tubes” Int. J. Solids and 

Structures, 39, 2059-2085. 

 

[32] Chen L. (2011). “Buckling of circular steel cylindrical shells under different 

loading conditions” PhD Thesis, The University of Edinburgh. 

 

[33] Ades C.S. (1957). "Bending strength of tubing in the plastic range" J. 

Aeronautical Sci., 24, 605-610. 

 

[34] Reissner E. (1959). "On finite bending of pressurised tubes" Journal of Applied 

Mechanics, ASME 26, 386-392. 

 

[35] Axelrad E.L. (1965). "Refinement of buckling-load analysis for tube flexure by 

way of considering practical deformation" (Izvestiya Akademii Nauk SSSR, Otdelenie 

Teknicheskikh Nauk). Mekhanika i Mashinostroenie, 4, 133-139 (in Russian). 

 



Published in: International Journal of Mechanical Sciences, 74, 143-153. 
  DOI: http://dx.doi.org/10.1016/j.ijmecsci.2013.05.008 

 
[36] Kempner J. & Chen C.Y. (1974). "Buckling and initial post-buckling of oval 

cylindrical shells under combined axial compression and bending" Transactions of the 

New York Academy of Sciences, 171-191. 

 

[37] Kedward K.T. (1978). "Nonlines collapse of thin-walled composite cylinders 

under flexural loading." Proceedings of the 2nd Int. Conf. on Composite Materials 

(Toronto), Metallurgical Society of AIME, Warrendale, PA, 353-365. 

 

[38] Needleman A. (1982). "Finite elements for finite strain plasticity problems" In: 

Lee E.H., Mallet R.L. (eds), Plasticity of Metals at Finite Strain: Theory, Experiment 

and Computation. Rensselaer Polytechnic Institute, Troy, NY, 387-436. 

 

[39] Hill R. (1950). "The mathematical theory of plasticity" Oxford University Press. 

 

[40] Corona E. & Kyriakides S. (1988). “On the collapse of inelastic tubes under 

combined bending and pressure” Int. J. Solids and Structures, 24(5), 505-535. 

 

[41] Kyriakides S. & Ju. G.T. (1992). "Bifurcation and localization instabilities in 

cylindrical shells under bending - I. Experiments" International Journal of Solids and 

Structures, 29(9), 1117-1142, 

 

[42] Karamanos S.A. & Tassoulas J.L. (1996a). "Tubular members. I: Stability 

analysis and preliminary results" ASCE J. of Eng. Mech., 122(1), 64-71. 

 

[43] Karamanos S.A. & Tassoulas J.L. (1996b). "Tubular members. II: Local buckling 

and experimental verification" ASCE J. of Eng. Mech., 122(1), 72-78. 

 

[44] Houliara S. & Karamanos S. A. (2006). "Buckling and post-buckling of long 

pressurised elastic thin-walled tubes under in-plane bending" International Journal of 

Nonlinear Mechanics, 41, 491-511. 

 



Published in: International Journal of Mechanical Sciences, 74, 143-153. 
  DOI: http://dx.doi.org/10.1016/j.ijmecsci.2013.05.008 

 
[45] Houliara S. & Karamanos S. A. (2010). "Stability of long transversely-isotropic 

elastic cylindrical shells under bending" International Journal of Solids and Structures, 

47, 10-24. 

 

[46] Jayadevan K.R., Østby E. & Thaulow C. (2004). "Fracture response of pipelines 

subjected to large plastic deformation under tension" International Journal of Pressure 

Vessels and Piping, 81, 771-783. 

 

[47] Østby E., Jayadevan K.R. & Thaulow C. (2005). “Fracture response of pipelines 

subject to large plastic deformation under bending” Int. J. Pressure Vessels & Piping, 

82, 201-215. 

 

[48] Corona E., Lee L-H & Kyriakides S. (2006). "Yield anisotropy effects on bucking 

of circular tubes under bending" Int. J. Solids and Structures, 43, 7099-7118. 

 

[49] Ramberg W. & Osgood W.R. (1943). "Description of stress-strain curves by three 

parameters" National Advisory Committee on Aeronautics, Technical Note 902. 

 

[50] Limam A., Lee-L-H & Kyriakides S. (2010). "On the collapse of dented tubes 

under combined bending and internal pressure" International Journal of Mechanical 

Sciences, 55, 1-12. 

 

[51] Limam A., Lee-L-H, Corona E. & Kyriakides S. (2012). "Inelastic wrinkling and 

collapse of tubes under combined bending and internal pressure" International Journal 

of Mechanical Sciences, 52, 637-647. 

 

[52] EN 1993-1-6 (2007). “Eurocode 3: design of steel structures, Part 1-6: strength 

and stability of shell structures.” Comité Européen de Normalisation, Brussels. 

 

[53] Riks E. (1979). “An incremental approach to the solution of snapping and 

buckling problems” Int. J. Solids. Struct., 15, 529-551. 



Published in: International Journal of Mechanical Sciences, 74, 143-153. 
  DOI: http://dx.doi.org/10.1016/j.ijmecsci.2013.05.008 

 
 

[54] Timoshenko S.P. & Gere J.M. (1961). “Theory of Elastic Stability”, 2nd edn, 

McGraw-Hill, New York. 

 

[55] Rotter J.M. (2004). "Buckling of cylindrical shells under axial compression" 

Chapters  and 2 in Buckling of Thin Metal Shells, Eds J.G. Teng & J.M. Rotter, Spon, 

London, 1-87. 

 

[56] Batoz J.L., Bathe K.J. & Ho L.W. (1980). "A study of three-node triangular plate 

bending elements" International Journal for Numerical Methods in Engineering, 15, 

1771-1821. 

 

[57] Cook R.D., Malkus D.S., Plesha M. E. & Witt R.J. (2002). “Concepts and 

applications of finite element analysis” 4th Ed., John Wiley & Sons. 

 

[58] Simo J.C. & Rifai M.S. (1990). "A class of assumed strain methods and the 

methods of incompatible modes" International Journal for Numerical Methods in 

Engineering, 29, 1595-1638. 

 

[59] Simo J.C. & Armero F. (1992). "Geometrically nonlinear enhanced strain mixed 

methods and the method of incompatible modes" International Journal for Numerical 

Methods in Engineering, 33, 1413-1449. 

 

[60] Agah-Tehrani A, Lee E. H., Mallett R. L. &  Onat E.T. (1986). "The theory of 

elastic-plastic deformation at finite strain with induced anisotropy modelled as 

combined isotropic-kinematic hardening" Metal Forming Report, Rensselaer 

Polytechnic Institute, Troy, New York. 

 

[61] Zienkiewicz O.C., Taylor R.L. & Too J.M. (1971). "Reduced integration 

technique in general analysis of plates and shells" IJNME 3, 275-290. 

 

[62] Laulusa A., Bauchau O.A., Choi J.Y., Tan V.B.C. & Li L. (2005). “Evaluation of 

some shear deformable shell elements” Int. J. Solids and Structures, 43, 5033-5054. 



Published in: International Journal of Mechanical Sciences, 74, 143-153. 
  DOI: http://dx.doi.org/10.1016/j.ijmecsci.2013.05.008 

 
 

[63] Schafer B.W., Li Z. & Moen C.D. (2010). "Computational modelling of cold-

formed steel" Thin-Walled Structures, 48, 752-762. 

 

[64] MacNeal R. (1994). "Finite Elements: Their Design and Application" Marcel 

Dekker, New York. 

 

[65] Song C.Y., Teng J.G. & Rotter J.M. (2004). "Imperfection sensitivity of thin 

elastic cylindrical shells subject to partial axial compression" International Journal of 

Solids and Structures, 41, 7155-7180. 

 

[66] Gardner L. & Nethercot D.A. (2004). "Numerical modelling of stainless steel 

structural components - a consistent approach" ASCE Journal of Structural 

Engineering, 130(10), 1586-1601. 

 

[67] Panasz P. & Wisniewski K. (2008). "Nine-node shell elements with 6 dofs/node 

based on two-level approximations. Part I Theory and linear tests" Finite Elements in 

Analysis and Design, 44, 784-796. 

 

[68] Moen C.D. & Schafer B.W. (2009). "Elastic buckling of thin plates with holes in 

compression or bending" Thin-Walled Structures, 47, 1597-1607. 

 

[69] Budiansky B. & Sanders J.L. (1963). "On the 'best' first-order linear shell theory" 

Progress in Applied Mechanics, The Prager Anniversary Volume, Macmillan, London, 

129-140. 

 

[70] Bathe K.J., Ramm E. & Wilson E.L. (1975). "Finite element formulations for 

large deformation dynamic analysis." International Journal for Numerical Methods in 

Engineering, 9(2), 353-386. 

 

[71] Ramm E., Braun M. & Bischoff M. (1995). "Higher order nonlinear shell 

formulations: theory and applications" Journal of the International Association for 

Shell and Spatial Structures, 36(119), 145-152. 



Published in: International Journal of Mechanical Sciences, 74, 143-153. 
  DOI: http://dx.doi.org/10.1016/j.ijmecsci.2013.05.008 

 
 

[72] Bischoff M. & Ramm E. (1997). "Shear deformable shell elements for large 

strains and rotations" International Journal for Numerical Methods in Engineering, 

40(23), 4427-4449. 

 

[73] Neal B.G. (1963). "The plastic methods of structural analysis" Chapman and Hall. 

 

[74] Bruneau M., Ung C.M. & Whittaker A. (1998). "Ductile design of steel 

structures" McGraw Hill. 

 

[75] Yamaki N. (1984). “Elastic Stability of Circular Cylindrical Shells”, North 

Holland, Elsevier Applied Science Publishers, Amsterdam. 

 

[76] Rotter J.M. & Teng J.G. (1989). "Elastic stability of cylindrical shells with weld 

depressions" ASCE Journal of Structural Engineering, 115(5), 1244-1263. 

 

[77] Heyman J. (1977). "Equilibrium of shell structures" Oxford University Press. 

 

FIGURE CAPTIONS 

Fig. 1 – Qualitative illustration of the equilibrium paths in cylinders with L/R = 7 and a 

strain hardening material law (cylinders of different length exhibit similar qualitative 

features) 

 

Fig. 2 – Assumed engineering stress-strain relation, with 2.5% linear strain hardening 

 

Fig. 3 – Features of the numerical model for both shell and solid elements 

 

Fig. 4 – Normalised moment-curvature curves for R/t = 10 

 

Fig. 5 – Normalised moment-curvature curves for R/t = 10: close-up near limit point 

 

Fig. 6 – Predicted buckling modes for R/t = 10 
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Fig. 7 – Illustration of the effect of ovalisation for R/t  = 10 

 

Fig. 8 – Normalised moment-curvature curves for R/t = 25 

 

Fig. 9 – Normalised moment-curvature curves for R/t = 25: close up near limit point 

 

Fig. 10 – Predicted buckling modes for R/t = 25 

 

Fig. 11 – Axial plastic membrane strains at the instant of buckling through the axis of 

axial symmetry (½L - midspan) 

 

Fig. 12 – Normalised moment-curvature curves for R/t = 50 

 

Fig. 13 – Normalised moment-curvature curves for R/t = 50: close up near bifurcation 

point 

 

Fig. 14 – Predicted buckling modes for R/t = 50 

 

Fig. 15 – Axial plastic membrane strains at the instant before buckling through the axis 

of circumferential symmetry at θ = 0° for R/t = 50 

 

Fig. 16 – Axial plastic surface strains at approx. 0.9Mp in the post-buckling range on 

the most tensile and compressive generators for R/t = 50 

 

Fig. 17 – Numerical verification of selected experimental results of tubes in bending - 

normalised moment-curvature plots 

 

Fig. 18 – Numerical verification of selected experimental results of tubes in bending - 

normalised ovalisation-curvature plots 

 

TABLE CAPTIONS 
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Table 1 – Selected 3D solid continuum finite element formulations with ABAQUS 

implementations 

 

Table 2 – Selected 3D structural shell finite element formulations with ABAQUS 

implementation 

 

Table 3 – Buckling moments and selected mesh properties for R/t = 10  

 

Table 4 – Buckling moments and selected mesh properties for R/t = 25 

 

Table. 5 – Buckling moments and selected mesh properties for R/t = 50 

 

Table 6 - Geometric and material characteristics of selected experiments from 

Kyriakides and Ju [41] assuming an aluminium alloy 6061-T6 

 


